Muscle damage and repeated bout effect following blood flow restricted exercise.
Sieljacks, Peter; Matzon, Andreas; Wernbom, Mathias; Ringgaard, Steffen; Vissing, Kristian; Overgaard, Kristian
2016-03-01
Blood-flow restricted resistance exercise training (BFRE) is suggested to be effective in rehabilitation training, but more knowledge is required about its potential muscle damaging effects. Therefore, we investigated muscle-damaging effects of BFRE performed to failure and possible protective effects of previous bouts of BFRE or maximal eccentric exercise (ECC). Seventeen healthy young men were allocated into two groups completing two exercise bouts separated by 14 days. One group performed BFRE in both exercise bouts (BB). The other group performed ECC in the first and BFRE in the second bout. BFRE was performed to failure. Indicators of muscle damage were evaluated before and after exercise. The first bout in the BB group led to decrements in maximum isometric torque, and increases in muscle soreness, muscle water retention, and serum muscle protein concentrations after exercise. These changes were comparable in magnitude and time course to what was observed after first bout ECC. An attenuated response was observed in the repeated exercise bout in both groups. We conclude that unaccustomed single-bout BFRE performed to failure induces significant muscle damage. Additionally, both ECC and BFRE can precondition against muscle damage induced by a subsequent bout of BFRE.
Leslie, Andrew W; Lanovaz, Joel L; Andrushko, Justin W; Farthing, Jonathan P
2017-10-01
Both the repeated-bout effect and increased flexibility have been linked to reduced muscle damage, fatigue, and strength loss after intense eccentric exercise. Our purpose was to compare the eccentric-training (ECC) response after first priming the muscles with either static flexibility training or a single intense bout of eccentric exercise. Twenty-five participants were randomly assigned to flexibility training (n = 8; 3×/week; 30 min/day), a single bout of intense eccentric exercise (n = 9), or no intervention (control; n = 8) during a 4-week priming phase, prior to completing a subsequent 4-week period of eccentric training of the knee flexors. Testing was completed prior to the priming phase, before ECC, during acute ECC (0 h, 24 h, and 48 h after bouts 1 and 4), and after ECC. Measures included muscle thickness (MT; via ultrasound); isometric, concentric, and eccentric strength; muscle power (dynamometer); electromyography; range of motion; optimal angle of peak torque; and soreness (visual analog scale). Flexibility training and single-bout groups had 47% less soreness at 48 h after the first bout of ECC compared with control (p < 0.05). The flexibility training group had 10% less soreness at 48 h after the fourth ECC bout compared with both the single-bout and control groups (p < 0.05). Isometric strength loss was attenuated for the flexibility training group (-9%) after the fourth ECC bout compared with control (-19%; p < 0.05). All groups had similar increases in strength, MT, and power after ECC (p < 0.05). Prior flexibility training may be more effective than a single session of eccentric exercise in reducing adverse symptoms during the acute stages of eccentric training; however, these benefits did not translate into greater performance after training.
Pontifex, Matthew B; Saliba, Brian J; Raine, Lauren B; Picchietti, Daniel L; Hillman, Charles H
2013-03-01
To examine the effect of a single bout of moderate-intensity aerobic exercise on preadolescent children with attention-deficit/hyperactivity disorder (ADHD) using objective measures of attention, brain neurophysiology, and academic performance. Using a within-participants design, task performance and event-related brain potentials were assessed while participants performed an attentional-control task following a bout of exercise or seated reading during 2 separate, counterbalanced sessions. Following a single 20-minute bout of exercise, both children with ADHD and healthy match control children exhibited greater response accuracy and stimulus-related processing, with the children with ADHD also exhibiting selective enhancements in regulatory processes, compared with after a similar duration of seated reading. In addition, greater performance in the areas of reading and arithmetic were observed following exercise in both groups. These findings indicate that single bouts of moderately intense aerobic exercise may have positive implications for aspects of neurocognitive function and inhibitory control in children with ADHD. Copyright © 2013 Mosby, Inc. All rights reserved.
Electromyographic analysis of repeated bouts of eccentric exercise.
McHugh, M P; Connolly, D A; Eston, R G; Gartman, E J; Gleim, G W
2001-03-01
The repeated bout effect refers to the protective effect provided by a single bout of eccentric exercise against muscle damage from a similar subsequent bout. The aim of this study was to determine if the repeated bout was associated with an increase in motor unit activation relative to force production, an increased recruitment of slow-twitch motor units or increased motor unit synchronization. Surface electromyographic (EMG) signals were recorded from the hamstring muscles during two bouts of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions separated by 2 weeks. The EMG per unit torque and median frequency were analysed. The initial bout of eccentric exercise resulted in strength loss, pain and muscle tenderness, while the repeated eccentric bout resulted in a slight increase in strength, no pain and no muscle tenderness (bout x time effects, P < 0.05). Strength, pain and tenderness were unaffected by either bout of concentric exercise. The EMG per unit torque and median frequency were not different between the initial and repeated bouts of eccentric exercise. The EMG per unit torque and median frequency increased during both bouts of eccentric exercise (P < 0.01) but did not change during either concentric bout. In conclusion, there was no evidence that the repeated bout effect was due to a neural adaptation.
Muscle damage and adaptation after the second bout of eccentric exercise of the knee extensors.
Hassan, E S
2014-10-01
This study examined the muscles ability to adapt to eccentric exercise by the changes in serum myoglobin (Mb), creatine kinase (CK) activity and muscle soreness. The study involved 54 healthy young men from the 23± 2yr age group. These were distributed as subjects for three types of experiments with 18 men in each. Subjects performed 300 maximal eccentric exercises. In experiment I, after performing the first bout of exercise, they were split into three subgroups to perform the second bout after a period of 4, 6, and 8 weeks (WK), respectively. In experiment II, performed the second exercise after a period of 2, 3, and 5 wk, respectively. In experiment III, they performed four exercise bouts spaced 1 wk apart. in experiment II a significant (P<0.05) decrease in muscle soreness, serum Mb and CK was found on exercise bout 2. In experiment III, serum CK, Mb and muscle soreness responses were highest following bout 1. It was concluded that performance of a single exercise bout had a prophylactic effect on muscle soreness and serum protein responses that lasts approximately 2 wk, with the greatest adaptation occurring after one bout.
McHugh, Malachy P
2003-04-01
The repeated bout effect refers to the adaptation whereby a single bout of eccentric exercise protects against muscle damage from subsequent eccentric bouts. While the mechanism for this adaptation is poorly understood there have been significant recent advances in the understanding of this phenomenon. The purpose of this review is to provide an update on previously proposed theories and address new theories that have been advanced. The potential adaptations have been categorized as neural, mechanical and cellular. There is some evidence to suggest that the repeated bout effect is associated with a shift toward greater recruitment of slow twitch motor units. However, the repeated bout effect has been demonstrated with electrically stimulated contractions, indicating that a peripheral, non-neural adaptation predominates. With respect to mechanical adaptations there is evidence that both dynamic and passive muscle stiffness increase with eccentric training but there are no studies on passive or dynamic stiffness adaptations to a single eccentric bout. The role of the cytoskeleton in regulating dynamic stiffness is a possible area for future research. With respect to cellular adaptations there is evidence of longitudinal addition of sarcomeres and adaptations in the inflammatory response following an initial bout of eccentric exercise. Addition of sarcomeres is thought to reduce sarcomere strain during eccentric contractions thereby avoiding sarcomere disruption. Inflammatory adaptations are thought to limit the proliferation of damage that typically occurs in the days following eccentric exercise. In conclusion, there have been significant advances in the understanding of the repeated bout effect, however, a unified theory explaining the mechanism or mechanisms for this protective adaptation remains elusive.
Ostadan, Fatemeh; Centeno, Carla; Daloze, Jean-Felix; Frenn, Mira; Lundbye-Jensen, Jesper; Roig, Marc
2016-12-01
A single bout of cardiovascular exercise performed immediately after practicing a motor task improves the long-term retention of the skill through an optimization of memory consolidation. However, the specific brain mechanisms underlying the effects of acute cardiovascular exercise on procedural memory are poorly understood. We sought to determine if a single bout of exercise modifies corticospinal excitability (CSE) during the early stages of memory consolidation. In addition, we investigated if changes in CSE are associated with exercise-induced off-line gains in procedural memory. Participants practiced a serial reaction time task followed by either a short bout of acute exercise or a similar rest period. To monitor changes in CSE we used transcranial magnetic stimulation applied to the primary motor cortex (M1) at baseline, 15, 35, 65 and 125min after exercise or rest. Participants in the exercise condition showed larger (∼24%) improvements in procedural memory through consolidation although differences between groups did not reach statistical significance. Exercise promoted an increase in CSE, which remained elevated 2h after exercise. More importantly, global increases in CSE following exercise correlated with the magnitude of off-line gains in skill level assessed in a retention test performed 8h after motor practice. A single bout of exercise modulates short-term neuroplasticity mechanisms subserving consolidation processes that predict off-line gains in procedural memory. Copyright © 2016 Elsevier Inc. All rights reserved.
Kim, Chang Sun; Kim, Ji Yeon; Kim, Hyo Jin
2014-03-01
The purpose of this study was to examine the effect of a single bout pilates exercise on mRNA expression of bone metabolic cytokines in elderly osteopenia women. We selected 11 people of elderly osteopenia women and loaded a single bout pilates exercise about RPE 10-14 level. The blood samples were collected before, immediately after and 60 minute after pilates exercise, then examined calcium metabolic markers in serum and extracted peripheral blood mononuclear cell (PBMC) from whole blood and confirmed mRNA expression of bone metabolic cytokines from PBMC. To clarify the changes during exercise, we designed repeated measure ANOVA as the control group to perform blood sampling without exercise. As a result, serum P showed significant interaction effect between group and time (p<.001), the pilates exercise group decreased about 9% at immediately after exercise and 13% during recovery after exercise (p<.05), while the control group showed a tendency to increase. Serum CK also showed a significant interaction between group and time (p<.05), the pilates group significantly increased at immediately after exercise and during recovery after exercise (p<.05) but the control group didn't have changes. TNF-α and IL-6 mRNA expression in PBMC was significantly increased in the pilates group (p<.01, p<.05), although INF-γ mRNA expression didn't show statistically significant difference, it tended to increase in the pilates group (NS). These results suggested that a single bout pilates exercise of elderly osteopenia women cause hypophosphatemia with temporary muscle damage, and it leading high turnover bone metabolic state with to activate both of bone formation and bone resorption.
Kim, Chang Sun; Kim, Ji Yeon; Kim, Hyo Jin
2014-01-01
[Purpose] The purpose of this study was to examine the effect of a single bout pilates exercise on mRNA expression of bone metabolic cytokines in elderly osteopenia women. [Methods] We selected 11 people of elderly osteopenia women and loaded a single bout pilates exercise about RPE 10-14 level. The blood samples were collected before, immediately after and 60 minute after pilates exercise, then examined calcium metabolic markers in serum and extracted peripheral blood mononuclear cell (PBMC) from whole blood and confirmed mRNA expression of bone metabolic cytokines from PBMC. To clarify the changes during exercise, we designed repeated measure ANOVA as the control group to perform blood sampling without exercise. [Results] As a result, serum P showed significant interaction effect between group and time (p<.001), the pilates exercise group decreased about 9% at immediately after exercise and 13% during recovery after exercise (p<.05), while the control group showed a tendency to increase. Serum CK also showed a significant interaction between group and time (p<.05), the pilates group significantly increased at immediately after exercise and during recovery after exercise (p<.05) but the control group didn’t have changes. TNF-α and IL-6 mRNA expression in PBMC was significantly increased in the pilates group (p<.01, p<.05), although INF-γ mRNA expression didn’t show statistically significant difference, it tended to increase in the pilates group (NS). [Conclusion] These results suggested that a single bout pilates exercise of elderly osteopenia women cause hypophosphatemia with temporary muscle damage, and it leading high turnover bone metabolic state with to activate both of bone formation and bone resorption. PMID:25566441
Neck strength recovery after a single bout of specific strengthening exercise.
Netto, Kevin; Carstairs, Greg; Kidgell, Dawson; Aisbett, Brad
2010-08-01
To determine the level of neck strength decrement and the rate of strength recovery of the neck muscles after a single bout of specific neck conditioning exercise in both males and females. A decrement in neck strength may be evident after a bout of strengthening exercise. Intervention study with pre-and-post design. Biomechanics laboratory. Twenty healthy participants (10 male and 10 female, mean +/- standard deviation age 22 +/- 1.2 years). Participants performed a single bout of neck strengthening exercise. Neck strength testing using an isokinetic dynamometer was performed pre and at five time points (1 h, one, three, five and seven days) post-exercise to assess the level of neck strength decrement and neck strength recovery rate from pre-exercise levels. Statistically significant (p > or = 0.036) decreases in neck extension strength were recorded in all participants 1 h and one day post-exercise. The level of neck extension strength returned to pre-exercise levels three days post-exercise and surpassed pre-exercise levels five and seven days post-exercise. The male participants' neck flexion strength decrement and recovery followed a similar pattern to that displayed in neck extension but more variability in neck flexion strength recovery rates were recorded in the female participants in this study. The consistent strength recovery times for the male participants recorded in this study idealise the prescription of neck strengthening exercises in a periodised fashion. More investigation needs to be instigated for the female neck musculature as consistent strength recovery rates were not identified in this study. 2010 Elsevier Ltd. All rights reserved.
O'Leary, Kevin C; Pontifex, Matthew B; Scudder, Mark R; Brown, Michael L; Hillman, Charles H
2011-08-01
The effects of single bouts of aerobic exercise, exergaming, and action videogame play on event-related brain potentials (ERPs) and task performance indices of cognitive control were investigated using a modified flanker task that manipulated demands of attentional inhibition. Participants completed four counterbalanced sessions of 20 min of activity intervention (i.e., seated rest, seated videogame play, and treadmill-based and exergame-based aerobic exercise at 60% HR(max)) followed by cognitive testing once heart rate (HR) returned to within 10% of pre-activity levels. Results indicated decreased RT interference following treadmill exercise relative to seated rest and videogame play. P3 amplitude was increased following treadmill exercise relative to rest, suggesting an increased allocation of attentional resources during stimulus engagement. The seated videogame and exergame conditions did not differ from any other condition. The findings indicate that single bouts of treadmill exercise may improve cognitive control through an increase in the allocation of attentional resources and greater interference control during cognitively demanding tasks. However, similar benefits may not be derived following short bouts of aerobic exergaming or seated videogame participation. Although exergames may increase physical activity participation, they may not exert the same benefits to brain and cognition as more traditional physical activity behaviors. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Cellular adaptation to repeated eccentric exercise-induced muscle damage.
Stupka, N; Tarnopolsky, M A; Yardley, N J; Phillips, S M
2001-10-01
Eccentrically biased exercise results in skeletal muscle damage and stimulates adaptations in muscle, whereby indexes of damage are attenuated when the exercise is repeated. We hypothesized that changes in ultrastructural damage, inflammatory cell infiltration, and markers of proteolysis in skeletal muscle would come about as a result of repeated eccentric exercise and that gender may affect this adaptive response. Untrained male (n = 8) and female (n = 8) subjects performed two bouts (bout 1 and bout 2), separated by 5.5 wk, of 36 repetitions of unilateral, eccentric leg press and 100 repetitions of unilateral, eccentric knee extension exercises (at 120% of their concentric single repetition maximum), the subjects' contralateral nonexercised leg served as a control (rest). Biopsies were taken from the vastus lateralis from each leg 24 h postexercise. After bout 2, the postexercise force deficit and the rise in serum creatine kinase (CK) activity were attenuated. Women had lower serum CK activity compared with men at all times (P < 0.05), but there were no gender differences in the relative magnitude of the force deficit. Muscle Z-disk streaming, quantified by using light microscopy, was elevated vs. rest only after bout 1 (P < 0.05), with no gender difference. Muscle neutrophil counts were significantly greater in women 24 h after bout 2 vs. rest and bout 1 (P < 0.05) but were unchanged in men. Muscle macrophages were elevated in men and women after bout 1 and bout 2 (P < 0.05). Muscle protein content of the regulatory calpain subunit remained unchanged whereas ubiquitin-conjugated protein content was increased after both bouts (P < 0.05), with a greater increase after bout 2. We conclude that adaptations to eccentric exercise are associated with attenuated serum CK activity and, potentially, an increase in the activity of the ubiquitin proteosome proteolytic pathway.
A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition.
Statton, Matthew A; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J
2015-01-01
Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise-resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs.
Mental Fatigue and Physical and Cognitive Performance During a 2-Bout Exercise Test.
Vrijkotte, Susan; Meeusen, Romain; Vandervaeren, Cloe; Buyse, Luk; Cutsem, Jeroen van; Pattyn, Nathalie; Roelands, Bart
2018-04-01
The 2-bout exercise protocol has been developed to diagnose nonfunctional overreaching and the "overtraining syndrome." It consists of 2 maximal exercise bouts separated by 4 hours. Mental fatigue negatively influences performance, but the effects of its occurrence during the 2-bout exercise protocol have never been investigated. The aim of this study was to examine whether mental fatigue (induced during the rest period) influences physical and cognitive performance during/after the second exercise bout of the 2-bout exercise protocol. Nine healthy, well-trained male cyclists participated in a single-blind, randomized, placebo-controlled crossover study. The intervention consisted of either 1.5-hour rest (control) or performing a computer-based Stroop task to induce mental fatigue. Cognitive (Eriksen Flanker task), physiological (lactate, maximum heart rate, and maximum wattage), and subjective data (mental fatigue-visual analog scale, Profile of Mood States, and rating of perceived exertion) were gathered. Ratings of fatigue, tension, and mental fatigue were affected in the mental fatigue condition (P < .05). Neither physiological nor cognitive differences were found between conditions. Ratings of mental fatigue were already affected after the first maximum exercise test (P < .05). Neither physical nor cognitive performance was affected by mental fatigue, but subjective ratings did reveal significant differences. It is recommended to exclude mentally challenging tasks during the 2-bout exercise protocol rest period to ascertain unaffected subjective test results. This study should be repeated in athletes diagnosed with nonfunctional overreaching/overtraining syndrome.
A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition
Statton, Matthew A.; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J.
2015-01-01
Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise–resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs. PMID:26506413
Exercise training - Blood pressure responses in subjects adapted to microgravity
NASA Technical Reports Server (NTRS)
Convertino, Victor A.
1991-01-01
Conventional endurance exercise training that involves daily workouts of 1-2 hr duration during exposure to microgravity has not proven completely effective in ameliorating postexposure orthostatic hypotension. Single bouts of intense exercise have been shown to increase plasma volume and baroreflex sensitivity in ambulatory subjects through 24 hr postexercise and to reverse decrements in maximal oxygen uptake and syncopal episodes following exposure to simulated microgravity. These physiological adaptations to acute intense exercise were opposite to those observed following exposure to microgravity. These results suggest that the 'exercise training' stimulus used to prevent orthostatic hypotension induced by microgravity may be specific and should be redefined to include single bouts of maximal exercise which may provide an acute effective countermeasure against postflight hypotension.
Willoughby, Darryn S.; Taylor, Lemuel
2004-01-01
The present study determined the effects of concentric and eccentric muscle actions on the contents of serum myostatin and follistatin-like related gene (FLRG). Eight untrained males performed one exercise bout with each leg, separated by three weeks. One bout consisted of 7 sets of 10 repetitions of eccentric muscle actions of the knee extensors at 150% of the concentric 1-RM while the other bout consisted of 7 sets of 10 repetitions of concentric muscle actions at 75% 1-RM. The legs used and the bouts performed were randomized. Five days prior to each exercise bout, baseline measurements were taken for muscle strength. For both bouts, a venous blood sample was obtained immediately prior to exercise and again at 6, 24, and 48 hr post-exercise. Data were analyzed with 2 X 4 (bout x test) ANOVA (p < 0.05). Increases in serum myostatin and FLRG occurred with each exercise bout and, excluding 48 hr post-exercise, were significantly correlated to one another (p < 0.05). After eccentric exercise, peak increases of 68% and 50% (p < 0.05) were observed for myostatin and FLRG, respectively. Similar increases of 54% and 44% (p < 0.05) were observed after concentric muscle actions. There was no significant difference in expression of myostatin or FLRG as a function of muscle action type. Our results suggest that a single bout of exercise with either eccentric or concentric muscle actions appear to elicit a similar increase in serum myostatin and FLRG. Therefore, the type of muscle action may not be as much a mitigating factor for increasing serum myostatin and FLRG rather than the muscle action per se. Key Points Eccentric muscle actions do not preferentially increase serum myostatin. Increases in serum myostatin in response to eccentric muscle actions are associated with increase in serum FLRG. Increases in serum myostatin and FLRG in response to eccentric muscle actions are not correlated to serum cortisol. PMID:24624007
Differential Effects of Acute and Regular Physical Exercise on Cognition and Affect
Hopkins, Michael E.; Davis, F. Caroline; VanTieghem, Michelle R.; Whalen, Paul J.; Bucci, David J.
2012-01-01
The effects of regular exercise versus a single bout of exercise on cognition, anxiety, and mood were systematically examined in healthy, sedentary young adults who were genotyped to determine brain-derived neurotrophic factor (BDNF) allelic status (i.e., Val-Val or Val66Met polymorphism). Participants were evaluated on novel object recognition (NOR) memory and a battery of mental health surveys before and after engaging in either a) a four-week exercise program, with exercise on the final test day, b) a four-week exercise program, without exercise on the final test day, c) a single bout of exercise on the final test day, or d) remaining sedentary between test days. Exercise enhanced object recognition memory and produced a beneficial decrease in perceived stress, but only in participants who exercised for four weeks including the final day of testing. In contrast, a single bout of exercise did not affect recognition memory and resulted in increased perceived stress levels. An additional novel finding was that the improvements on the NOR task were observed exclusively in participants who were homozygous for the BDNF Val allele, indicating that altered activity-dependent release of BDNF in Met allele carriers may attenuate the cognitive benefits of exercise. Importantly, exercise-induced changes in cognition were not correlated with changes in mood/anxiety, suggesting that separate neural systems mediate these effects. These data in humans mirror recent data from our group in rodents. Taken together, these current findings provide new insights into the behavioral and neural mechanisms that mediate the effects of physical exercise on memory and mental health in humans. PMID:22554780
Stawski, Robert; Walczak, Konrad; Kosielski, Piotr; Meissner, Pawel; Budlewski, Tomasz; Padula, Gianluca; Nowak, Dariusz
2017-01-01
Objective Acute single strenuous exercise increases circulating cell free DNA (cf DNA). We tested whether three repeated bouts of exhaustive exercise induced the cf DNA response without development of tolerance in healthy men. Methods Eleven average-trained men (age 34.0±5.2 years, body mass index 26.2±3.1 kg/m2, maximal oxygen consumption—VO2max 49.6±4.5 ml/kg*min) performed three treadmill exercise tests to exhaustion at speed corresponding to 70% VO2max separated by 72 hours of resting. Blood was collected before and after each bout of exercise for determination of cell free nuclear and mitochondrial DNA (cf n-DNA, cf mt-DNA) by real-time PCR, selected markers of muscle damage, and blood cell count. Results Each bout induced the increase (p<0.05) in plasma cf n-DNA: from 3.4±1.4 to 38.5±27.5, from 4.1±3.3 to 48.5±26.2, and 3.1±1.6 to 53.8±39.9 ng/mL after the first, second, and third exercise, respectively. In a congruent way, cf mt-DNA rose significantly after the second (from 229±216 to 450±228*103 GE/mL) and third bout of exercise (from 173±120 to 462±314*103 GE/mL). Pre-exercise cf mt-DNA decreased (p<0.05) by 2-times (from 355±219 before the first bout to 173±120*103 GE/mL before the third bout) over the study period and were accompanied by significant increase in white blood cells, platelets, creatine kinase, creatinine and lactate after each bout. However, the exercise induced percentage increment of cf n-DNA was always many times higher than corresponding increments of the afore-mentioned markers at any occasion. Conclusions Repeated bouts of exhaustive exercise induced remarkable increase in circulating cf n-DNA without signs of tolerance development. Baseline cf mt-DNA decreased in response to series of strenuous exercise. Since percentage increments of cf n-DNA in response to exercise were many times higher than those observed for other markers, measurement of circulating cf n-DNA could be a sensitive tool for monitoring acute exercise effects in human body. PMID:28542490
Short, Kevin R; Pratt, Lauren V; Teague, April M; Man, Chiara Dalla; Cobelli, Claudio
2013-03-01
The purpose of this study was to determine the acute and residual impact of a single exercise bout on meal glucose control in adolescents with habitually low physical activity. Twelve adolescents (seven females/five males, 14 ± 2 yr) completed three trials. One trial [No Exercise (No Ex)] was completed after refraining from vigorous activity for ≥ 3 d. On the other two trials, a 45-min aerobic exercise bout at 75% peak heart rate was performed either 17-h Prior Day Exercise (Prior Day Ex) trial or 1-h Same Day Exercise (Same Day Ex) trial before consuming the test meal (2803 kJ, 45/40/15% energy as carbohydrate/fat/protein, respectively). Compared to No Ex, insulin sensitivity (SI) (minimal model analysis) was increased by 45% (p < 0.03) and 78% (p < 0.01) on the Prior Day Ex and Same Day Ex trials, respectively. This improvement in glucose control was supported by corresponding reductions in the net area under the curve for glucose, insulin, and c-peptide, although there was no change in postprandial suppression of fatty acids. These results show that SI is improved with a single bout of moderate intensity exercise in adolescents with habitually low physical activity and that the residual beneficial effect of exercise lasts at least 17 h. This finding highlights the plasticity of exercise responses in youth and the importance of daily exercise for metabolic health. © 2012 John Wiley & Sons A/S.
A single bout of resistance exercise can enhance episodic memory performance.
Weinberg, Lisa; Hasni, Anita; Shinohara, Minoru; Duarte, Audrey
2014-11-01
Acute aerobic exercise can be beneficial to episodic memory. This benefit may occur because exercise produces a similar physiological response as physical stressors. When administered during consolidation, acute stress, both physical and psychological, consistently enhances episodic memory, particularly memory for emotional materials. Here we investigated whether a single bout of resistance exercise performed during consolidation can produce episodic memory benefits 48 h later. We used a one-leg knee extension/flexion task for the resistance exercise. To assess the physiological response to the exercise, we measured salivary alpha amylase (a biomarker of central norepinephrine), heart rate, and blood pressure. To test emotional episodic memory, we used a remember-know recognition memory paradigm with equal numbers of positive, negative, and neutral IAPS images as stimuli. The group that performed the exercise, the active group, had higher overall recognition accuracy than the group that did not exercise, the passive group. We found a robust effect of valence across groups, with better performance on emotional items as compared to neutral items and no difference between positive and negative items. This effect changed based on the physiological response to the exercise. Within the active group, participants with a high physiological response to the exercise were impaired for neutral items as compared to participants with a low physiological response to the exercise. Our results demonstrate that a single bout of resistance exercise performed during consolidation can enhance episodic memory and that the effect of valence on memory depends on the physiological response to the exercise. Copyright © 2014 Elsevier B.V. All rights reserved.
Basso, Julia C.; Suzuki, Wendy A.
2017-01-01
A significant body of work has investigated the effects of acute exercise, defined as a single bout of physical activity, on mood and cognitive functions in humans. Several excellent recent reviews have summarized these findings; however, the neurobiological basis of these results has received less attention. In this review, we will first briefly summarize the cognitive and behavioral changes that occur with acute exercise in humans. We will then review the results from both human and animal model studies documenting the wide range of neurophysiological and neurochemical alterations that occur after a single bout of exercise. Finally, we will discuss the strengths, weaknesses, and missing elements in the current literature, as well as offer an acute exercise standardization protocol and provide possible goals for future research. PMID:29765853
Dantas, Wagner Silva; Marcondes, José Antonio Miguel; Shinjo, Samuel Katsuyuki; Perandini, Luiz Augusto; Zambelli, Vanessa Olzon; Neves, Willian Das; Barcellos, Cristiano Roberto Grimaldi; Rocha, Michele Patrocínio; Yance, Viviane Dos Reis Vieira; Pereira, Renato Tavares Dos Santos; Murai, Igor Hisashi; Pinto, Ana Lucia De Sá; Roschel, Hamilton; Gualano, Bruno
2015-11-01
The aim of this study was to examine the effects of acute exercise on insulin signaling in skeletal muscle of women with polycystic ovary syndrome (PCOS) and controls (CTRL). Fifteen women with obesity and PCOS and 12 body mass index-matched CTRL participated in this study. Subjects performed a 40-min single bout of exercise. Muscle biopsies were performed before and 60 min after exercise. Selected proteins were assessed by Western blotting. CTRL, but not PCOS, showed a significant increase in PI3-k p85 and AS160 Thr 642 after a single bout of exercise (P = 0.018 and P = 0.018, respectively). Only PCOS showed an increase in Akt Thr 308 and AMPK phosphorylation after exercise (P = 0.018 and P = 0.018, respectively). Total GLUT4 expression was comparable between groups (P > 0.05). GLUT4 translocation tended to be significantly higher in both groups after exercise (PCOS: P = 0.093; CTRL: P = 0.091), with no significant difference between them (P > 0.05). A single bout of exercise elicited similar GLUT4 translocation in skeletal muscle of PCOS and CTRL, despite a slightly differential pattern of protein phosphorylation. The absence of impairment in GLUT4 translocation suggests that PCOS patients with obesity and insulin resistance may benefit from exercise training. © 2015 The Obesity Society.
Broman-Fulks, Joshua J; Kelso, Kerry; Zawilinski, Laci
2015-01-01
The purpose of this study was to compare the relative effects of a single bout of aerobic exercise versus resistance training on cognitive vulnerabilities for anxiety disorders. Seventy-seven participants (60% female; 84% Caucasian) were randomized to complete 20 min of moderate-intensity aerobic exercise, resistance training, or rest, followed by a 35% CO2/65% O2 inhalation challenge task. Results indicated that aerobic exercise and resistance training were significantly and equally effective in reducing anxiety sensitivity (AS) compared with rest ((η(2)(p ) = 52), though only aerobic exercise significantly attenuated reactivity to the CO2 challenge task. Neither form of exercise generated observable effects on distress tolerance, discomfort intolerance, or state anxiety (all ps >.10). The results of this study are discussed with regard to their implications for the use of exercise interventions for anxiety and related forms of psychopathology, and potential directions for future research are discussed.
An Update on Accumulating Exercise and Postprandial Lipaemia: Translating Theory Into Practice
Burns, Stephen F; Stensel, David J
2013-01-01
Over the last two decades, significant research attention has been given to the acute effect of a single bout of exercise on postprandial lipaemia. A large body of evidence supports the notion that an acute bout of aerobic exercise can reduce postprandial triacylglycerol (TAG) concentrations. However, this effect is short-lived emphasising the important role of regular physical activity for lowering TAG concentrations through an active lifestyle. In 1995, the concept of accumulating physical activity was introduced in expert recommendations with the advice that activity can be performed in several short bouts throughout the day with a minimum duration of 10 minutes per activity bout. Although the concept of accumulation has been widely publicised, there is still limited scientific evidence to support it but several studies have investigated the effects of accumulated activity on health-related outcomes to support the recommendations in physical activity guidelines. One area, which is the focus of this review, is the effect of accumulating exercise on postprandial lipaemia. We propose that accumulating exercise will provide additional physical activity options for lowering postprandial TAG concentrations relevant to individuals with limited time or exercise capacity to engage in more structured forms of exercise, or longer bouts of physical activity. The benefits of accumulated physical activity might translate to a reduced risk of cardiovascular disease in the long-term. PMID:23412842
One Bout of Exercise Alters Free-Living Postprandial Glycemia in Type 2 Diabetes
Oberlin, Douglas J.; Mikus, Catherine R.; Kearney, Monica L.; Hinton, Pamela S.; Manrique, Camila; Leidy, Heather J.; Kanaley, Jill A.; Rector, R. Scott; Thyfault, John P.
2015-01-01
PURPOSE Elevated postprandial glycemic excursions (PPG) are significant risk factors for cardiovascular disease in type 2 diabetes patients. Here we tested if and for how many meals a single bout of exercise would reduce PPG responses to subsequent meals in type 2 diabetes (T2D) patients using continuous glucose monitors (CGMS). METHODS We recruited 9 sedentary (<30 minutes/week of exercise) individuals with T2D (BMI: 36.0 ± 1.1 kg/m2; age 60.3 ± 1.0 years; HbA1c: 6.3 ± 0.2 %). The subjects consumed a eucaloric diet (51% carbohydrate, 31% fat, 18% protein) consisting of 3 meals, identical in composition, over a 2-day period while wearing CGMS in two different conditions (exercise (EX; one 60 minute bout at 60-75% of heart rate reserve performed prior to breakfast) vs. a sedentary (SED) condition). We quantified 24-h average glucose, PPG-AUC (4 h glucose AUC following meals) and PPG-2 h (2 hour post-prandial glucose). RESULTS EX significantly reduced average [glucose] during the first 24 hour period (p=0.03). EX caused a reduction in PPG-AUC (p=0.02) for all of the meals over the two days (main effect between conditions). Comparison between the EX and SED conditions at each meal revealed that EX reduced PPG-AUC following the second meal of day 1 (lunch) (p=0.04). PPG-2 h was not significantly different between EX and SED. CONCLUSION Although a single EX bout does lower 24-h average [glucose], it only significantly lowered PPG-AUC at the second meal following the bout suggesting that daily exercise may be needed to most effectively improve PPG at the advent of exercise training in T2D patients. PMID:23872939
Differential effects of acute and regular physical exercise on cognition and affect.
Hopkins, M E; Davis, F C; Vantieghem, M R; Whalen, P J; Bucci, D J
2012-07-26
The effects of regular exercise versus a single bout of exercise on cognition, anxiety, and mood were systematically examined in healthy, sedentary young adults who were genotyped to determine brain-derived neurotrophic factor (BDNF) allelic status (i.e., Val-Val or Val66Met polymorphism). Participants were evaluated on novel object recognition (NOR) memory and a battery of mental health surveys before and after engaging in either (a) a 4-week exercise program, with exercise on the final test day, (b) a 4-week exercise program, without exercise on the final test day, (c) a single bout of exercise on the final test day, or (d) remaining sedentary between test days. Exercise enhanced object recognition memory and produced a beneficial decrease in perceived stress, but only in participants who exercised for 4 weeks including the final day of testing. In contrast, a single bout of exercise did not affect recognition memory and resulted in increased perceived stress levels. An additional novel finding was that the improvements on the NOR task were observed exclusively in participants who were homozygous for the BDNF Val allele, indicating that altered activity-dependent release of BDNF in Met allele carriers may attenuate the cognitive benefits of exercise. Importantly, exercise-induced changes in cognition were not correlated with changes in mood/anxiety, suggesting that separate neural systems mediate these effects. These data in humans mirror recent data from our group in rodents. Taken together, these current findings provide new insights into the behavioral and neural mechanisms that mediate the effects of physical exercise on memory and mental health in humans. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
The Effects of Local Vibration on Balance, Power, and Self-Reported Pain After Exercise.
Custer, Lisa; Peer, Kimberly S; Miller, Lauren
2017-05-01
Muscle fatigue and acute muscle soreness occur after exercise. Application of a local vibration intervention may reduce the consequences of fatigue and soreness. To examine the effects of a local vibration intervention after a bout of exercise on balance, power, and self-reported pain. Single-blind crossover study. Laboratory. 19 healthy, moderately active subjects. After a 30-min bout of full-body exercise, subjects received either an active or a sham vibration intervention. The active vibration intervention was performed bilaterally over the muscle bellies of the triceps surae, quadriceps, hamstrings, and gluteals. At least 1 wk later, subjects repeated the bout, receiving the other vibration intervention. Static balance, dynamic balance, power, and self-reported pain were measured at baseline, after the vibration intervention, and 24 h postexercise. After the bout of exercise, subjects had reduced static and dynamic balance and increased self-reported pain regardless of vibration intervention. There were no differences between outcome measures between the active and sham vibration conditions. The local vibration intervention did not affect balance, power, or self-reported pain.
Protection from Muscle Damage in the Absence of Changes in Muscle Mechanical Behavior.
Hoffman, Ben W; Cresswell, Andrew G; Carroll, Timothy J; Lichtwark, Glen A
2016-08-01
The repeated bout effect characterizes the protective adaptation after a single bout of unaccustomed eccentric exercise that induces muscle damage. Sarcomerogenesis and increased tendon compliance have been suggested as potential mechanisms for the repeated bout effect by preventing muscle fascicles from being stretched onto the descending limb of the length-tension curve (the region where sarcomere damage is thought to occur). In this study, evidence was sought for three possible mechanical changes that would support either the sarcomerogenesis or the increased tendon compliance hypotheses: a sustained rightward shift in the fascicle length-tension relationship, reduced fascicle strain amplitude, and reduced starting fascicle length. Subjects (n = 10) walked backward downhill (5 km·h, 20% incline) on a treadmill for 30 min on two occasions separated by 7 d. Kinematic data and medial gastrocnemius fascicle lengths (ultrasonography) were recorded at 10-min intervals to compare fascicle strains between bouts. Fascicle length-torque curves from supramaximal tibial nerve stimulation were constructed before, 2 h after, and 2 d after each exercise bout. Maximum torque decrement and elevated muscle soreness were present after the first, but not the second, backward downhill walking bout signifying a protective repeated bout effect. There was no sustained rightward shift in the length-torque relationship between exercise bouts, nor decreases in fascicle strain amplitude or shortening of the starting fascicle length. Protection from a repeated bout of eccentric exercise was conferred without changes in muscle fascicle strain behavior, indicating that sarcomerogenesis and increased tendon compliance were unlikely to be responsible. As fascicle strains are relatively small in humans, we suggest that changes to connective tissue structures, such as extracellular matrix remodeling, are better able to explain the repeated bout effect observed here.
Electromyographic analyses of muscle pre-activation induced by single joint exercise.
Júnior, Valdinar A R; Bottaro, Martim; Pereira, Maria C C; Andrade, Marcelino M; P Júnior, Paulo R W; Carmo, Jake C
2010-01-01
To investigate whether performing a low-intensity, single-joint exercises for knee extensors was an efficient strategy for increasing the number of motor units recruited in the vastus lateralis muscle during a subsequent multi-joint exercises. Nine healthy male participants (23.33+/-3.46 yrs) underwent bouts of exercise in which knee extension and 45 degrees , and leg press exercises were performed in sequence. In the low-intensity bout (R30), 15 unilateral knee extensions were performed, followed by 15 repetitions of the leg presses at 30% and 60% of one maximum repetition load (1-MR), respectively. In the high-intensity bout (R60), the same sequence was performed, but the applied load was 60% of 1-MR for both exercises. A single set of 15 repetitions of the leg press at 60% of 1-MR was performed as a control exercise (CR). The surface electromyographic signals of the vastus lateralis muscle were recorded by means of a linear electrode array. The root mean square (RMS) values were determined for each repetition of the leg press, and linear regressions were calculated from these results. The slopes of the straight lines obtained were then normalized using the linear coefficients of the regression equations and compared using one-way ANOVAs for repeated measures. The slopes observed in the CR were significantly lower than those in the R30 and R60 (p<0.05). The results indicated that the recruitment of motor units was more effective when a single-joint exercise preceded the multi-joint exercise. Article registered in the Australian New Zealand Clinical Trials Registry (ANZCTR) under the number ACTRN12609000413224.
Nepveu, Jean-Francois; Thiel, Alexander; Tang, Ada; Fung, Joyce; Lundbye-Jensen, Jesper; Boyd, Lara A; Roig, Marc
2017-08-01
One bout of high-intensity cardiovascular exercise performed immediately after practicing a motor skill promotes changes in the neuroplasticity of the motor cortex and facilitates motor learning in nondisabled individuals. To determine if a bout of exercise performed at high intensity is sufficient to induce neuroplastic changes and improve motor skill retention in patients with chronic stroke. Twenty-two patients with different levels of motor impairment were recruited. On the first session, the effects of a maximal graded exercise test on corticospinal and intracortical excitability were assessed from the affected and unaffected primary motor cortex representational area of a hand muscle with transcranial magnetic stimulation. On the second session, participants were randomly assigned to an exercise or a nonexercise control group. Immediately after practicing a motor task, the exercise group performed 15 minutes of high-intensity interval training while the control group rested. Twenty-four hours after motor practice all participants completed a test of the motor task to assess skill retention. The graded exercise test reduced interhemispheric imbalances in GABA A -mediated short-interval intracortical inhibition but changes in other markers of excitability were not statistically significant. The group that performed high-intensity interval training showed a better retention of the motor skill. The performance of a maximal graded exercise test triggers only modest neuroplastic changes in patients with chronic stroke. However, a single bout of high-intensity interval training performed immediately after motor practice improves skill retention, which could potentially accelerate motor recovery in these individuals.
Exercise and the Regulation of Immune Functions.
Simpson, Richard J; Kunz, Hawley; Agha, Nadia; Graff, Rachel
2015-01-01
Exercise has a profound effect on the normal functioning of the immune system. It is generally accepted that prolonged periods of intensive exercise training can depress immunity, while regular moderate intensity exercise is beneficial. Single bouts of exercise evoke a striking leukocytosis and a redistribution of effector cells between the blood compartment and the lymphoid and peripheral tissues, a response that is mediated by increased hemodynamics and the release of catecholamines and glucocorticoids following the activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. Single bouts of prolonged exercise may impair T-cell, NK-cell, and neutrophil function, alter the Type I and Type II cytokine balance, and blunt immune responses to primary and recall antigens in vivo. Elite athletes frequently report symptoms associated with upper respiratory tract infections (URTI) during periods of heavy training and competition that may be due to alterations in mucosal immunity, particularly reductions in secretory immunoglobulin A. In contrast, single bouts of moderate intensity exercise are "immuno-enhancing" and have been used to effectively increase vaccine responses in "at-risk" patients. Improvements in immunity due to regular exercise of moderate intensity may be due to reductions in inflammation, maintenance of thymic mass, alterations in the composition of "older" and "younger" immune cells, enhanced immunosurveillance, and/or the amelioration of psychological stress. Indeed, exercise is a powerful behavioral intervention that has the potential to improve immune and health outcomes in the elderly, the obese, and patients living with cancer and chronic viral infections such as HIV. © 2015 Elsevier Inc. All rights reserved.
Mang, Cameron S.; Snow, Nicholas J.; Campbell, Kristin L.; Ross, Colin J. D.
2014-01-01
The objectives of the present study were to evaluate the impact of a single bout of high-intensity aerobic exercise on 1) long-term potentiation (LTP)-like neuroplasticity via response to paired associative stimulation (PAS) and 2) the temporal and spatial components of sequence-specific implicit motor learning. Additionally, relationships between exercise-induced increases in systemic brain-derived neurotrophic factor (BDNF) and response to PAS and motor learning were evaluated. Sixteen young healthy participants completed six experimental sessions, including the following: 1) rest followed by PAS; 2) aerobic exercise followed by PAS; 3) rest followed by practice of a continuous tracking (CT) task and 4) a no-exercise 24-h retention test; and 5) aerobic exercise followed by CT task practice and 6) a no-exercise 24-h retention test. The CT task included an embedded repeated sequence allowing for evaluation of sequence-specific implicit learning. Slope of motor-evoked potential recruitment curves generated with transcranial magnetic stimulation showed larger increases when PAS was preceded by aerobic exercise (59.8% increase) compared with rest (14.2% increase, P = 0.02). Time lag of CT task performance on the repeated sequence improved under the aerobic exercise condition from early (−100.8 ms) to late practice (−75.2 ms, P < 0.001) and was maintained at retention (−79.2 ms, P = 0.004) but did not change under the rest condition (P > 0.16). Systemic BDNF increased on average by 3.4-fold following aerobic exercise (P = 0.003), but the changes did not relate to neurophysiological or behavioral measures (P > 0.42). These results indicate that a single bout of high-intensity aerobic exercise can prime LTP-like neuroplasticity and promote sequence-specific implicit motor learning. PMID:25257866
Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Tanaka, Daichi; Takeuchi, Tatsuya; Hamaoka, Takafumi; Isaka, Tadao; Ogoh, Shigehiko; Hashimoto, Takeshi
2016-06-01
A single bout of aerobic exercise improves executive function (EF), but only for a short period. Compared with a single bout of aerobic exercise, we recently found that high-intensity interval exercise (HIIE) could maintain a longer improvement in EF. However, the mechanism underlying the effect of different exercise modes on the modifications of EF remains unclear. The purpose of the current investigation was to test our hypothesis that the amount of exercise-induced lactate production and its accumulation affects human brain function during and after exercise, thereby affecting post-exercise EF. Ten healthy male subjects performed cycle ergometer exercise. The HIIE protocol consisted of four 4-min bouts at 90% peak VO2 with a 3-min active recovery period at 60% peak VO2. The amount of lactate produced during exercise was manipulated by repeating the HIIE twice with a resting period of 60min between the 1st HIIE and 2nd HIIE. To evaluate EF, a color-word Stroop task was performed, and reverse-Stroop interference scores were obtained. EF immediately after the 1st HIIE was significantly improved compared to that before exercise, and the improved EF was sustained during 40min of the post-exercise recovery. However, for the 2nd HIIE, the improved EF was sustained for only 10min of the post-exercise recovery period, despite the performance of the same exercise. In addition, during and following HIIE, the glucose and lactate accumulation induced by the 2nd HIIE was significantly lower than that induced by the 1st HIIE. Furthermore, there was an inverse relationship between lactate and EF by plotting the changes in lactate levels against changes in EF from pre-exercise during the late phase of post-exercise recovery. These findings suggested the possibility that repeated bouts of HIIE, which decreases lactate accumulation, may dampen the positive effect of exercise on EF during the post-exercise recovery. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Brand, Serge; Colledge, Flora; Ludyga, Sebastian; Emmenegger, Raphael; Kalak, Nadeem; Sadeghi Bahmani, Dena; Holsboer-Trachsler, Edith; Pühse, Uwe; Gerber, Markus
2018-01-01
Background: Studies at the macro level (such as longer-term interventions) showed that physical activity impacts positively on cognitive-emotional processes of patients with mental disorders. However, research focusing on the immediate impact of acute bouts of exercise (micro level) are missing. The aim of the present study was therefore to investigate whether and to what extent single bouts of moderately intense exercise can influence dimensions of psychological functioning in inpatients with mental disorders. Method: 129 inpatients (mean age: 38.16 years; 50.4% females) took part and completed a questionnaire both immediately before and immediately after exercising. Thirty inpatients completed the questionnaires a second time in the same week. The questionnaire covered socio-demographic and illness-related information. Further, the questionnaire asked about current psychological states such as mood, rumination, social interactions, and attention, tiredness, and physical strengths as a proxy of physiological states. Results: Psychological states improved from pre- to post-session. Improvements were observed for mood, social interactions, attention, and physical strengths. Likewise, rumination and tiredness decreased. Mood, rumination, and tiredness further improved, when patients completed the questionnaires the second time in the same week. Conclusion: At micro level, single bouts of exercise impacted positively on cognitive-emotional processes such as mood, rumination, attention and social interactions, and physiological states of tiredness and physical strengths among inpatients with mental disorders. In addition, further improvements were observed, if patients participated in physical activities a second time.
Brand, Serge; Colledge, Flora; Ludyga, Sebastian; Emmenegger, Raphael; Kalak, Nadeem; Sadeghi Bahmani, Dena; Holsboer-Trachsler, Edith; Pühse, Uwe; Gerber, Markus
2018-01-01
Background: Studies at the macro level (such as longer-term interventions) showed that physical activity impacts positively on cognitive-emotional processes of patients with mental disorders. However, research focusing on the immediate impact of acute bouts of exercise (micro level) are missing. The aim of the present study was therefore to investigate whether and to what extent single bouts of moderately intense exercise can influence dimensions of psychological functioning in inpatients with mental disorders. Method: 129 inpatients (mean age: 38.16 years; 50.4% females) took part and completed a questionnaire both immediately before and immediately after exercising. Thirty inpatients completed the questionnaires a second time in the same week. The questionnaire covered socio-demographic and illness-related information. Further, the questionnaire asked about current psychological states such as mood, rumination, social interactions, and attention, tiredness, and physical strengths as a proxy of physiological states. Results: Psychological states improved from pre- to post-session. Improvements were observed for mood, social interactions, attention, and physical strengths. Likewise, rumination and tiredness decreased. Mood, rumination, and tiredness further improved, when patients completed the questionnaires the second time in the same week. Conclusion: At micro level, single bouts of exercise impacted positively on cognitive-emotional processes such as mood, rumination, attention and social interactions, and physiological states of tiredness and physical strengths among inpatients with mental disorders. In addition, further improvements were observed, if patients participated in physical activities a second time. PMID:29593592
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Taro, E-mail: tamuraka@sgk.ac.jp; Yoshinaga, Mariko
Highlights: •Regulation of amino acid transporter expression in working muscle remains unclear. •Expression of amino acid transporters for leucine were induced by a bout of exercise. •Requirement of leucine in muscle cells might regulate expression of its transporters. •This information is beneficial for understanding the muscle remodeling by exercise. -- Abstract: We here investigated whether an acute bout of endurance exercise would induce the expression of amino acid transporters that regulate leucine transport across plasma and lysosomal membranes in rat skeletal muscle. Rats ran on a motor-driven treadmill at a speed of 28 m/min for 90 min. Immediately after themore » exercise, we observed that expression of mRNAs encoding L-type amino acid transporter 1 (LAT1) and CD98 was induced in the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles. Sodium-coupled neutral amino acid transporter 2 (SNAT2) mRNA was also induced by the exercise in those three muscles. Expression of proton-assisted amino acid transporter 1 (PAT1) mRNA was slightly but not significantly induced by a single bout of exercise in soleus and EDL muscles. Exercise-induced mRNA expression of these amino acid transporters appeared to be attenuated by repeated bouts of the exercise. These results suggested that the expression of amino acid transporters for leucine may be induced in response to an increase in the requirement for this amino acid in the cells of working skeletal muscles.« less
Baumeister, P.; Peppler, W. T.; Wright, D. C.; Little, J. P.
2015-01-01
Obesity and type 2 diabetes are significant risk factors in the development of neurodegenerative diseases, such as Alzheimer's disease. A variety of cellular mechanisms, such as altered Akt and AMPK and increased inflammatory signaling, contribute to neurodegeneration. Exercise training can improve markers of neurodegeneration, but the underlying mechanisms remain unknown. The purpose of this study was to determine the effects of a single bout of exercise on markers of neurodegeneration and inflammation in brains from mice fed a high-fat diet. Male C57BL/6 mice were fed a low (LFD; 10% kcal from lard)- or a high-fat diet (HFD; 60% kcal from lard) for 7 wk. HFD mice underwent an acute bout of exercise (treadmill running: 15 m/min, 5% incline, 120 min) followed by a recovery period of 2 h. The HFD increased body mass and glucose intolerance (both P < 0.05). This was accompanied by an approximately twofold increase in the phosphorylation of Akt, ERK, and GSK in the cortex (P < 0.05). Following exercise, there was a decrease in beta-site amyloid precursor protein cleaving enzyme 1 (BACE1; P < 0.05) and activity (P < 0.001). This was accompanied by a reduction in AMPK phosphorylation, indicative of a decline in cellular stress (P < 0.05). Akt and ERK phosphorylation were decreased following exercise in HFD mice to a level similar to that of the LFD mice (P < 0.05). This study demonstrates that a single bout of exercise can reduce BACE1 content and activity independent of changes in adiposity. This effect is associated with reductions in Akt, ERK, and AMPK signaling in the cortex. PMID:26404616
Combined effect of coffee ingestion and repeated bouts of low-intensity exercise on fat oxidation.
Kurobe, Kazumichi; Nakao, Saori; Nishiwaki, Masato; Matsumoto, Naoyuki
2017-03-01
We investigated the effect of the combination of coffee ingestion and repeated bouts of low-intensity exercise on fat oxidation. Subjects were seven young, healthy male adults. They performed four trials: a single 30-min bout of exercise following ingestion of plain hot water (WS) or coffee (CS); a trial with three 10-min bouts of exercise separated by 10-min periods of rest following ingestion of plain hot water (WR) or coffee (CR). The coffee contained 5 mg kg -1 of caffeine. All trials were performed on a cycle ergometer at 40% maximal oxygen uptake for each subject an hour after beverage ingestion. Oxygen uptake in the CS and CR trials was higher compared with the WS and WR trials at 90 min after exercise (P<0·05). Respiratory exchange ratio (RER) in the CS and CR trials was decreased during the whole recovery period compared with baseline (P<0·05), whereas no significant decreases were observed in either the WS or WR trials. Moreover, RER was significantly lower at 30 min after exercise in the CR trial than in either the WS or WR trials (P<0·05 each). Similarly, it is notable that fat oxidation rate in the CR trial was significantly higher at 30 min after exercise compared to that in the WS and WR trials (P<0·05). These results suggest that the combination of coffee intake and repeated bouts of low-intensity exercise enhances fat oxidation in the period after exercise. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
D'Souza, Randall F; Markworth, James F; Aasen, Kirsten M M; Zeng, Nina; Cameron-Smith, David; Mitchell, Cameron J
2017-01-01
A subset of short non-coding RNAs, microRNAs (miRs), have been identified in the regulation of skeletal muscle hypertrophy and atrophy. Expressed within cells, miRs are also present in circulation (c-miR) and have a putative role in cross-tissue signalling. The aim of this study was to examine the impact of a single bout of high intensity resistance exercise (RE) on skeletal muscle and circulatory miRs harvested simultaneously. Resistance trained males (n = 9, 24.6 ± 4.9 years) undertook a single bout of high volume RE with venous blood and muscle biopsies collected before, 2 and 4hr post-exercise. Real time polymerase chain reaction (Rt-PCR) analyses was performed on 30 miRs that have previously been shown to be required for skeletal muscle function. Of these, 6 miRs were significantly altered within muscle following exercise; miR-23a, -133a, -146a, -206, -378b and 486. Analysis of these same miRs in circulation demonstrated minimal alterations with exercise, although c-miR-133a (~4 fold, p = 0.049) and c-miR-149 (~2.4 fold; p = 0.006) were increased 4hr post-exercise. Thus a single bout of RE results in the increased abundance of a subset of miRs within the skeletal muscle, which was not evident in plasma. The lack a qualitative agreement in the response pattern of intramuscular and circulating miR expression suggests the analysis of circulatory miRs is not reflective of the miR responses within skeletal muscle after exercise.
cAMP levels in fast- and slow-twitch skeletal muscle after an acute bout of aerobic exercise
NASA Technical Reports Server (NTRS)
Sheldon, A.; Booth, F. W.; Kirby, C. R.
1993-01-01
The present study examined whether exercise duration was associated with elevated and/or sustained elevations of postexercise adenosine 3',5'-cyclic monophosphate (cAMP) by measuring cAMP levels in skeletal muscle for up to 4 h after acute exercise bouts of durations that are known to either produce (60 min) or not produce (10 min) mitochondrial proliferation after chronic training. Treadmill-acclimatized, but untrained, rats were run at 22 m/min for 0 (control), 10, or 60 min and were killed at various postexercise (0, 0.5, 1, 2, and 4 h) time points. Fast-twitch white and red (quadriceps) and slow-twitch (soleus) muscles were quickly excised, frozen in liquid nitrogen, and assayed for cAMP with a commercial kit. Unexpectedly, cAMP contents in all three muscles were similar to control (nonexercise) at most (21 of 30) time points after a single 10- or 60-min run. Values at 9 of 30 time points were significantly different from control (P < 0.05); i.e., 3 time points were significantly higher than control and 6 were significantly less than control. These data suggest that the cAMP concentration of untrained skeletal muscle after a single bout of endurance-type exercise is not, by itself, associated with exercise duration.
Charalambous, Charalambos C; Alcantara, Carolina C; French, Margaret A; Li, Xin; Matt, Kathleen S; Kim, Hyosub E; Morton, Susanne M; Reisman, Darcy S
2018-05-15
Previous work demonstrated an effect of a single high-intensity exercise bout coupled with motor practice on the retention of a newly acquired skilled arm movement, in both neurologically intact and impaired adults. In the present study, using behavioural and computational analyses we demonstrated that a single exercise bout, regardless of its intensity and timing, did not increase the retention of a novel locomotor task after stroke. Considering both present and previous work, we postulate that the benefits of exercise effect may depend on the type of motor learning (e.g. skill learning, sensorimotor adaptation) and/or task (e.g. arm accuracy-tracking task, walking). Acute high-intensity exercise coupled with motor practice improves the retention of motor learning in neurologically intact adults. However, whether exercise could improve the retention of locomotor learning after stroke is still unknown. Here, we investigated the effect of exercise intensity and timing on the retention of a novel locomotor learning task (i.e. split-belt treadmill walking) after stroke. Thirty-seven people post stroke participated in two sessions, 24 h apart, and were allocated to active control (CON), treadmill walking (TMW), or total body exercise on a cycle ergometer (TBE). In session 1, all groups exercised for a short bout (∼5 min) at low (CON) or high (TMW and TBE) intensity and before (CON and TMW) or after (TBE) the locomotor learning task. In both sessions, the locomotor learning task was to walk on a split-belt treadmill in a 2:1 speed ratio (100% and 50% fast-comfortable walking speed) for 15 min. To test the effect of exercise on 24 h retention, we applied behavioural and computational analyses. Behavioural data showed that neither high-intensity group showed greater 24 h retention compared to CON, and computational data showed that 24 h retention was attributable to a slow learning process for sensorimotor adaptation. Our findings demonstrated that acute exercise coupled with a locomotor adaptation task, regardless of its intensity and timing, does not improve retention of the novel locomotor task after stroke. We postulate that exercise effects on motor learning may be context specific (e.g. type of motor learning and/or task) and interact with the presence of genetic variant (BDNF Val66Met). © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Exercise-induced muscle damage and the repeated bout effect: evidence for cross transfer.
Starbuck, Chelsea; Eston, Roger G
2012-03-01
We examined whether a prior bout of eccentric exercise in the elbow flexors provided protection against exercise-induced muscle damage in the contralateral arm. Fifteen males (age 22.7 ± 2.1 years; height 178.6 ± 6.8 cm, mass 75.8 ± 9.3 kg) were randomly assigned to two groups who performed two bouts of 60 eccentric contractions (30°/s) separated by 2 weeks: ipsilateral (n = 7, both bouts performed in the same arm), contralateral (n = 8, one bout performed in each arm). Strength, muscle soreness and resting arm angle (RAA) were measured at baseline and at 1, 24 and 48 h post exercise. Surface electromyography was recorded during both bouts of exercise. The degree of strength loss was attenuated (p < 0.05) in the ipsilateral group after the second bout of eccentric exercise (-22 cf. -3% for bout 1 and 2 at 24 h, respectively). Strength loss following eccentric exercise was also attenuated (p < 0.05) at 24 h in the contralateral group (-30 cf. 13% for bout 1 and 2, respectively). Muscle soreness (≈34 cf 19 mm) and change in RAA (≈5 cf. 3%) were also lower following the second bout of eccentric exercise (p < 0.05), although there was no difference in the overall change in these values between groups. Median frequency (MF) was decreased by 31% between bouts, with no difference between groups. Data support observations that the repeated bout effect transfers to the opposite (untrained) limb. The similar reduction in MF between bouts for the two groups provides evidence for a centrally mediated, neural adaptation.
Spielmann, Guillaume; Bollard, Catherine M.; Kunz, Hawley; Hanley, Patrick J.; Simpson, Richard J.
2016-01-01
Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections remain a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). The adoptive transfer of donor-derived viral-specific cytotoxic T-cells (VSTs) is an effective treatment for controlling CMV and EBV infections after HSCT; however, new practical methods are required to augment the ex vivo manufacture of multi-VSTs from healthy donors. This study investigated the effects of a single exercise bout on the ex vivo manufacture of multi-VSTs. PBMCs isolated from healthy CMV/EBV seropositive participants before (PRE) and immediately after (POST) 30-minutes of cycling exercise were stimulated with CMV (pp65 and IE1) and EBV (LMP2A and BMLF1) peptides and expanded over 8 days. The number (fold difference from PRE) of T-cells specific for CMV pp65 (2.6), EBV LMP2A (2.5), and EBV BMLF1 (4.4) was greater among the VSTs expanded POST. VSTs expanded PRE and POST had similar phenotype characteristics and were equally capable of MHC-restricted killing of autologous target cells. We conclude that a single exercise bout enhances the manufacture of multi-VSTs from healthy donors without altering their phenotype or function and may serve as a simple and economical adjuvant to boost the production of multi-VSTs for allogeneic adoptive transfer immunotherapy. PMID:27181409
Spielmann, Guillaume; Bollard, Catherine M; Kunz, Hawley; Hanley, Patrick J; Simpson, Richard J
2016-05-16
Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections remain a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). The adoptive transfer of donor-derived viral-specific cytotoxic T-cells (VSTs) is an effective treatment for controlling CMV and EBV infections after HSCT; however, new practical methods are required to augment the ex vivo manufacture of multi-VSTs from healthy donors. This study investigated the effects of a single exercise bout on the ex vivo manufacture of multi-VSTs. PBMCs isolated from healthy CMV/EBV seropositive participants before (PRE) and immediately after (POST) 30-minutes of cycling exercise were stimulated with CMV (pp65 and IE1) and EBV (LMP2A and BMLF1) peptides and expanded over 8 days. The number (fold difference from PRE) of T-cells specific for CMV pp65 (2.6), EBV LMP2A (2.5), and EBV BMLF1 (4.4) was greater among the VSTs expanded POST. VSTs expanded PRE and POST had similar phenotype characteristics and were equally capable of MHC-restricted killing of autologous target cells. We conclude that a single exercise bout enhances the manufacture of multi-VSTs from healthy donors without altering their phenotype or function and may serve as a simple and economical adjuvant to boost the production of multi-VSTs for allogeneic adoptive transfer immunotherapy.
A single exercise bout augments adenovirus-specific T-cell mobilization and function.
Kunz, Hawley E; Spielmann, Guillaume; Agha, Nadia H; O'Connor, Daniel P; Bollard, Catherine M; Simpson, Richard J
2018-04-30
Adoptive transfer of virus-specific T-cells (VSTs) effectively treats viral infections following allogeneic hematopoietic stem cell transplantation (alloHSCT), but logistical difficulties have limited widespread availability of VSTs as a post-transplant therapeutic. A single exercise bout mobilizes VSTs specific for latent herpesviruses (i.e. CMV and EBV) to peripheral blood and augments their ex vivo expansion. We investigated whether exercise exerts similar effects on T-cells specific for a NON-latent virus such as adenovirus, which is a major contributor to infection-related morbidity and mortality after alloHSCT. Thirty minutes of cycling exercise increased circulating adenovirus-specific T-cells 2.0-fold and augmented their ex vivo expansion by ~33% compared to rest without altering antigen and MHC-specific autologous target cell killing capabilities. We conclude that exercise is a simple and economical adjuvant to boost the isolation and manufacture of therapeutic VSTs specific to latent and non-latent viruses from healthy donors. Copyright © 2018. Published by Elsevier Inc.
Cunha, Felipe A; Midgley, Adrian W; McNaughton, Lars R; Farinatti, Paulo T V
2016-02-01
The purpose of this study was to investigate excess postexercise oxygen consumption (EPOC) induced by isocaloric bouts of continuous and intermittent running and cycling exercise. This was a counterbalanced randomized cross-over study. Ten healthy men, aged 23-34yr, performed six bouts of exercise: (a) two maximal cardiopulmonary exercise tests for running and cycling to determine exercise modality-specific peak oxygen uptake (VO2peak); and (b) four isocaloric exercise bouts (two continuous bouts expending 400kcal and two intermittent bouts split into 2×200kcal) performed at 75% of the running and cycling oxygen uptake reserve. Exercise bouts were separated by 72h and performed in a randomized, counter-balanced order. The VO2 was monitored for 60-min postexercise and for 60-min during a control non-exercise day. The VO2 was significantly greater in all exercise conditions compared to the control session (P<0.001). The combined magnitude of the EPOC from the two intermittent bouts was significantly greater than that of the continuous cycling (mean difference=3.5L, P=0.001) and running (mean difference=6.4L, P<0.001). The exercise modality had a significant effect on net EPOC, where running elicited a higher net EPOC than cycling (mean difference=2.2L, P<0.001). Intermittent exercise increased the EPOC compared to a continuous exercise bout of equivalent energy expenditure. Furthermore, the magnitude of EPOC was influenced by exercise modality, with the greatest EPOC occurring with isocaloric exercise involving larger muscle mass (i.e., treadmill running vs. cycling). Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Mills, Chris; Knight, James; Milligan, Gemma
2015-01-01
Ergogenic aids have been used to alter joint kinematics in an attempt to minimise injury risk, yet the effectiveness of these aids may be compromised following a bout of exercise. This preliminary study aimed to measure the effect of compression garments and Kinesio Tape® on lower extremity joint alignment prior to and following an exercise bout. Eight male athletes (age = 24.1 ± 3.0 years, body height = 177.4 ± 5.2 cm, body mass = 72.3 ± 7.2 kg) volunteered to participant in this study. Joint kinematics were recorded whilst all participants performed three rotational lunges, in three conditions (control, compression garment, Kinesio Tape®), prior to and following a 10 minute exercise bout. Frontal plane kinematics (lateral pelvic tilt, knee valgus, ankle inversion/eversion) were used to assess ergogenic aid effectiveness during the lunge. Participants exhibited no significant differences in joint kinematics between ergogenic aid conditions prior to the exercise bout. Following exercise the only significant difference occurred within the Kinesio Tape® condition where maximum knee valgus angle significantly increased from 6.5° prior to exercise, to 7.7° following the exercise bout. The results of this study suggest joint kinematics are not affected by the ergogenic aids in this study prior to an exercise bout. However, there is evidence to suggest that the application of Kinesio Tape® may allow an increase in knee valgus angle following a bout of exercise, yet, compression garments are effective at maintaining joint alignment following a bout of exercise. PMID:25964805
Time course of the acute effects of core stabilisation exercise on seated postural control.
Lee, Jordan B; Brown, Stephen H M
2017-09-20
Core stabilisation exercises are often promoted for purposes ranging from general fitness to high-performance athletics, and the prevention and rehabilitation of back troubles. These exercises, when performed properly, may have the potential to enhance torso postural awareness and control, yet the potential for achieving immediate gains has not been completely studied. Fourteen healthy young participants performed a single bout of non-fatiguing core stabilisation exercise that consisted of repeated sets of 2 isometric exercises, the side bridge and the four-point contralateral arm-and-leg extension. Seated postural control, using an unstable balance platform on top of a force plate, was assessed before and after exercise, including multiple time points within a 20-minute follow-up period. Nine standard postural control variables were calculated at each time point, including sway displacement and velocity ranges, root mean squares and cumulative path length. Statistical analysis showed that none of the postural control variables were significantly different at any time point following completion of core stabilisation exercise. Thus, we conclude that a single bout of acute core stabilisation exercise is insufficient to immediately improve seated trunk postural control in young healthy individuals.
The effect of resistance exercise on the thermic effect of food.
Denzer, Charlene M; Young, John C
2003-09-01
The thermic effect of food (TEF) is the increment in energy expenditure above resting metabolic rate associated with the cost of absorption and processing of food for storage. Previous studies have shown that TEF is enhanced by aerobic endurance exercise of sufficient duration and intensity. The purpose of this study was to determine if a similar effect occurs with a single bout of resistance exercise (weightlifting). VO2 was measured in 9 healthy volunteers (3 males and 6 females) for 2 hours after ingestion of a 2760 kJ (660 kcal) carbohydrate meal with and without prior completion of a resistance training regimen (2 sets of 10 repetitions of 10 different exercises). The meal caused an immediate and persistent thermic effect in both the control and the exercise trial. Mean oxygen consumption over baseline increased 20% in the control trial and 34% in the exercise trial. TEF calculated from VO2 and RER (total area under the response curve above baseline) was 73% greater in the exercise trial compared with the control trial (159 +/- 18 vs. 92 +/- 14 KJ/2 hrs, p < .02). These results indicate that TEF in response to a carbohydrate meal is enhanced following a single bout of resistance exercise.
Xin, Ling; Hyldahl, Robert D; Chipkin, Stuart R; Clarkson, Priscilla M
2014-06-01
We investigated the existence of contralateral repeated bout effect and tested if the attenuation of nuclear factor-kappa B (NF-κB; an important regulator of muscle inflammation) induction following eccentric exercise is a potential mechanism. Thirty-one healthy men performed two bouts of knee extension eccentric exercise, initially with one leg and then with the opposite leg 4 wk later. Vastus lateralis muscle biopsies of both exercised and control legs were taken 3 h postexercise. Knee extension isometric and isokinetic strength (60°/sec and 180°/sec) were measured at baseline, pre-exercise, immediately postexercise, and 1/day for 5 days postexercise. Serum creatine kinase (CK) activity and muscle soreness were assessed at baseline and 1/day for 5 days postexercise. NF-κB (p65) DNA-binding activity was measured in the muscle biopsies. Isometric strength loss was lower in bout 2 than in bout 1 at 24, 72, and 96 h postexercise (P < 0.05). Isokinetic strength (60°/s and 180°/s) was reduced less in bout 2 than in bout 1 at 72 h postexercise (P < 0.01). There were no significant differences between bouts for postexercise CK activity or muscle soreness. p65 DNA-binding activity was increased following eccentric exercise (compared with the control leg) in bout 1 (122.9% ± 2.6%; P < 0.001) and bout 2 (109.1% ± 3.0%; P < 0.05). Compared with bout 1, the increase in NF-κB DNA-binding activity postexercise was attenuated after bout 2 (P = 0.0008). Repeated eccentric exercise results in a contralateral repeated bout effect, which could be due to the attenuated increase in NF-κB activity postexercise. Copyright © 2014 the American Physiological Society.
Pugh, Jamie K; Faulkner, Steve H; Turner, Mark C; Nimmo, Myra A
2018-02-01
Sarcopenia can begin from the 4-5th decade of life and is exacerbated by obesity and inactivity. A combination of resistance exercise (RE) and endurance exercise is recommended to combat rising obesity and inactivity levels. However, work continues to elucidate whether interference in adaptive outcomes occur when RE and endurance exercise are performed concurrently. This study examined whether a single bout of concurrent RE and high-intensity interval training (HIIT) alters the satellite cell response following exercise compared to RE alone. Eight sedentary, overweight/obese, middle-aged individuals performed RE only (8 × 8 leg extensions at 70% 1RM), or RE + HIIT (10 × 1 min at 90% HR max on a cycle ergometer). Muscle biopsies were collected from the vastus lateralis before and 96 h after the RE component to determine muscle fiber type-specific total (Pax7 + cells) and active (MyoD + cells) satellite cell number using immunofluorescence microscopy. Type-I-specific Pax7 + (P = 0.001) cell number increased after both exercise trials. Type-I-specific MyoD + (P = 0.001) cell number increased after RE only. However, an elevated baseline value in RE + HIIT compared to RE (P = 0.046) was observed, with no differences between exercise trials at 96 h (P = 0.21). Type-II-specific Pax7 + and MyoD + cell number remained unchanged after both exercise trials (all P ≥ 0.13). Combining a HIIT session after a single bout of RE does not interfere with the increase in type-I-specific total, and possibly active, satellite cell number, compared to RE only. Concurrent RE + HIIT may offer a time-efficient way to maximise the physiological benefits from a single bout of exercise in sedentary, overweight/obese, middle-aged individuals.
Acute effects of aerobic exercise on cognitive function in individuals with Parkinson's disease.
Silveira, Carolina R A; Roy, Eric A; Almeida, Quincy J
2018-04-03
Deficits in executive functions are highly prevalent in Parkinson's disease (PD). Although chronic physical exercise has been shown to improve executive functions in PD, evidence of acute exercise effects is limited. This study aimed to evaluate the effects of an acute bout of exercise on cognitive processes underlying executive functions in PD. Twenty individuals with PD were assessed in both a Control and an Exercise conditions. In each condition, individuals started performing a simple and a choice reaction time (RT) task. Subsequently, participants were asked to sit on a cycle ergometer (Control) or cycle (Exercise) for 20 min in counterbalanced order. Participants were asked to repeat both reaction time tasks after 15-min rest period in both conditions. While no differences were found in simple RT, participants showed faster choice RT post Exercise as well as Control conditions (p = .012). Participants had slower choice RT for target stimulus compared to non-target stimuli irrespective of time or experimental condition (p < .001). There was no change in accuracy following experimental conditions. Results suggest that individuals with PD may not respond behaviourally to a single bout of exercise. The lack of selective effects of exercise on cognition suggests that practice effects may have influenced previous research. Future studies should assess whether neurophysiological changes might occur after an acute bout of exercise in PD. Copyright © 2018 Elsevier B.V. All rights reserved.
Ensari, Ipek; Greenlee, Tina A; Motl, Robert W; Petruzzello, Steven J
2015-08-01
One prominent and well-cited meta-analysis published nearly 25 years ago reported that an acute or single bout of exercise reduced state anxiety by approximately ¼ standard deviation. We conducted a meta-analysis of randomized controlled trials (RCTs) published after that meta-analysis for updating our understanding of the acute effects of exercise on state anxiety. We searched PubMed, EBSCOHost, Medline, PsycINFO, ERIC, and ScienceDirect for RCTs of acute exercise and state anxiety as an outcome. There were 36 RCTs that met inclusion criteria and yielded data for effect size (ES) generation (Cohen's d). An overall ES was calculated using a random effects model and expressed as Hedge's g. The weighted mean ES was small (Hedge's g = 0.16, standard error (SE) = 0.06), but statistically significant (P < 0.05), and indicated that a single bout of exercise resulted in an improvement in state anxiety compared with control. The overall ES was heterogeneous and post hoc, exploratory analyses using both random- and fixed-effects models identified several variables as moderators including sample age, sex and health status, baseline activity levels, exercise intensity, modality and control condition, randomization, overall study quality, and the anxiety measure (P < 0.05). The cumulative evidence from high quality studies indicates that acute bouts of exercise can yield a small reduction in state anxiety. The research is still plagued by floor effects associated with recruiting persons with normal or lower levels of state anxiety, and this should be overcome in subsequent trials. © 2015 Wiley Periodicals, Inc.
The protective effects of acute cardiovascular exercise on the interference of procedural memory.
Jo, J S; Chen, J; Riechman, S; Roig, M; Wright, D L
2018-04-10
Numerous studies have reported a positive impact of acute exercise for procedural skill memory. Previous work has revealed this effect, but these findings are confounded by a potential contribution of a night of sleep to the reported exercise-mediated reduction in interference. Thus, it remains unclear if exposure to a brief bout of exercise can provide protection to a newly acquired motor memory. The primary objective of the present study was to examine if a single bout of moderate-intensity cardiovascular exercise after practice of a novel motor sequence reduces the susceptibility to retroactive interference. To address this shortcoming, 17 individuals in a control condition practiced a novel motor sequence that was followed by test after a 6-h wake-filled interval. A separate group of 17 individuals experienced practice with an interfering motor sequence 45 min after practice with the original sequence and were then administered test trials 6 h later. One additional group of 12 participants was exposed to an acute bout of exercise immediately after practice with the original motor sequence but prior to practice with the interfering motor sequence and the subsequent test. In comparison with the control condition, increased response times were revealed during the 6-h test for the individuals that were exposed to interference. The introduction of an acute bout of exercise between the practice of the two motor sequences produced a reduction in interference from practice with the second task at the time of test, however, this effect was not statistically significant. These data reinforce the hypothesis that while there may be a contribution from exercise to post-practice consolidation of procedural skills which is independent of sleep, sleep may interact with exercise to strengthen the effects of the latter on procedural memory.
Inflammatory gene changes associated with the repeated-bout effect.
Hubal, Monica J; Chen, Trevor C; Thompson, Paul D; Clarkson, Priscilla M
2008-05-01
This study proposed that attenuated expression of inflammatory factors is an underlying mechanism driving the repeated-bout effect (rapid adaptation to eccentric exercise). We investigated changes in mRNA levels and protein localization of inflammatory genes after two bouts of muscle-lengthening exercise. Seven male subjects performed two bouts of lower body exercise (separated by 4 wk) in which one leg performed 300 eccentric-concentric actions, and the contralateral leg performed 300 concentric actions only. Vastus lateralis biopsies were collected at 6 h, and strength was assessed at baseline and at 0, 3, and 5 days after exercise. mRNA levels were measured via semiquantitative RT-PCR for the following genes: CYR61, HSP40, HSP70, IL1R1, TCF8, ZFP36, CEBPD, and MCP1. Muscle functional adaptation was demonstrated via attenuated strength loss (16% less, P = 0.04) at 5 days after bout 2 compared with bout 1 in the eccentrically exercised leg. mRNA expression of three of the eight genes tested was significantly elevated in the eccentrically exercised leg from bout 1 to bout 2 (+3.9-fold for ZFP36, +2.3-fold for CEBPD, and +2.6-fold for MCP1), while all eight mRNA levels were unaffected by bout in the concentrically exercised leg. Immunohistochemistry further localized the protein of one of the elevated factors [monocyte chemoattractant protein-1 (MCP1)] within the tissue. MCP1 colocalized with resident macrophage and satellite cell populations, suggesting that alterations in cytokine signaling between these cell populations may play a role in muscle adaptation to exercise. Contrary to our hypothesis, several inflammatory genes were transcriptionally upregulated (rather than attenuated) after a repeated exercise bout, potentially indicating a role for these genes in the adaptation process.
Correia, Ana Luiza Matias; de Lima, Filipe Dinato; Bottaro, Martim; Vieira, Amilton; da Fonseca, Andrew Correa; Lima, Ricardo M
2018-02-08
The purpose of this study was to investigate the effects of a single-dose of β-hydroxy-β-methylbutyrate free acid (HMB-FA) supplementation on muscle recovery after a high-intensity exercise bout. Twenty-three trained young males were randomly assigned to receive either a single-dose supplementation of 3g of HMB-FA (n = 12; age 22.8 ± 3.0 years) or placebo (PLA; n = 11; age 22.9 ± 3.1 years). A muscle damage protocol was applied 60 minutes after supplementation, and consisted of seven sets of 20 drop jumps from a 60-cm box with 2-min rest intervals between sets. Muscle swelling, countermovement jump (CMJ), maximal voluntary isometric torque (MVIT) and work capacity (WC) were measured before, immediately after, 24, 48 and 72 hours after the exercise protocol. Muscle swelling, CMJ and MVIT changed similarly in both groups after the exercise protocol (p < 0.001), but returned to pre-exercise levels after 24 hours in both groups. WC decreased similarly in both groups after the exercise protocol (p < 0.01). For HMB-FA, WC returned to pre-exercise level 24 hours after exercise protocol. However, on PLA, WC did not return to pre-exercise level even 72 hours after the exercise protocol. In summary, a single-dose of HMB-FA supplementation improved WC recovery after a high-intensity exercise bout. However, HMB-FA did not affect the time-course of muscle swelling, MVIT and CMJ recovery.
Rest Intervals Reduce the Number of Loading Bouts Required to Enhance Bone Formation
Srinivasan, Sundar; Ausk, Brandon J.; Bain, Steven D.; Gardiner, Edith M.; Kwon, Ronald Y.; Gross, Ted S.
2015-01-01
Purpose As our society becomes increasingly sedentary, compliance with exercise regimens that require numerous high-energy activities each week become less likely. Alternatively, given an osteogenic exercise intervention that required minimal effort, it is reasonable to presume that participation would be enhanced. Insertion of brief rest-intervals between each cycle of mechanical loading holds potential to achieve this result as substantial osteoblast function is activated by many fewer loading repetitions within each loading bout. Here, we examined the complementary hypothesis that the number of bouts/wk of rest-inserted loading could be reduced from 3/wk without loss of osteogenic efficacy. Methods We conducted a series of 3 wk in vivo experiments that non-invasively exposed the right tibiae of mice to either cyclic (1 Hz) or rest-inserted loading interventions and quantified osteoblast function via dynamic histomorphometry. Results While reducing loading bouts from 3/wk (i.e., 9 total bouts) to 1/wk (3 total bouts) effectively mitigated the osteogenic benefit of cyclic loading, the same reduction did not significantly reduce periosteal bone formation parameters induced by rest-inserted loading. The osteogenic response was robust to the timing of the rest-inserted loading bouts (3 bouts in the first week vs 1 bout/wk for three weeks). However, elimination of any single bout of the three 1/wk bouts mitigated the osteogenic response to rest-inserted loading. Finally, periosteal osteoblast function assessed after the 3 wk intervention was not sensitive to the timing or number of rest-inserted loading bouts. Conclusions We conclude that rest-inserted loading holds potential to retain the osteogenic benefits of mechanical loading with significantly reduced frequency of bouts of activity while also enabling greater flexibility in the timing of the activity. PMID:25207932
Hostler, David; Bednez, James C; Kerin, Sarah; Reis, Steven E; Kong, Pui Wah; Morley, Julia; Gallagher, Michael; Suyama, Joe
2010-01-01
Performing fire suppression activities results in cardiovascular stress, hyperthermia, and hypohydration. Fireground rehabilitation (rehab) is recommended to blunt the deleterious effects of these conditions. We tested the hypothesis that three rehydration fluids provided after exercise while wearing thermal protective clothing (TPC) would produce different heart rate or core temperature responses during a second bout of exercise in TPC. On three occasions, 18 euhydrated firefighters (16 men, two women) wearing TPC completed a standardized, 50-minute bout of upper and lower body exercise in a hot room that mimicked the National Fire Protection Association (NFPA) rehabilitation guidelines of "two cylinders before rehab" (20 minutes of work, 10 minutes of recovery, 20 minutes of work). After an initial bout of exercise (bout 1), subjects were randomly assigned water, sport drink, or an intravenous (IV) infusion of normal saline equal to the amount of body mass lost during exercise. After rehydration, the subject performed a second bout of exercise (bout 2). Heart rates, core and skin temperatures, and exercise durations were compared with a two-way analysis of variance (ANOVA). Subjects were firefighters with a mean (+/- standard deviation [SD]) age of 28.2 +/- 11.3 years and a mean peak oxygen consumption (VO(2peak)) of 37.4 +/- 3.4 mL/kg/min. The mean amount of fluid provided during the rehabilitation period was 527 +/- 302 mL. No subject could complete either the pre- or postrehydration 50-minute bout of exercise. The mean (+/-SD) times to exhaustion were longer (p < 0.001) in bout 1 (25.9 +/- 12.9 min, water; 28.0 +/- 14.1 min, sport drink; 27.4 +/- 13.8 min, IV) compared with bout 2 (15.6 +/- 9.6 min, water; 14.7 +/- 8.6 min, sport drink; 15.7 +/- 8.0 min, IV) for all groups but did not differ by intervention. All subjects approached their age-predicted maximum heart rate at the end of bout 1 (180 +/- 11 bpm) and bout 2 (176 +/- 13 bpm). Core temperature rose 1.1 degrees C +/- 0.7 degrees C during bout 1 and 0.5 degrees C +/- 0.4 degrees C during bout 2. Core temperatures, heart rates, and exercise times during bout 2 did not differ between the rehydration fluids. Performances during a second bout of exercise in TPC did not differ when firefighters were rehydrated with water, sport drink, or IV normal saline when full rehydration was provided. Of concern was the inability of all subjects to complete two consecutive periods of heavy exercise in TPC, suggesting that the NFPA's "two cylinders before rehab" guideline may not be appropriate in continuous heavy work scenarios.
Orlando, Patrick; Silvestri, Sonia; Galeazzi, Roberta; Antonicelli, Roberto; Marcheggiani, Fabio; Cirilli, Ilenia; Bacchetti, Tiziana; Tiano, Luca
2018-12-01
Physical exercise significantly impacts the biochemistry of the organism. Ubiquinone is a key component of the mitochondrial respiratory chain and ubiquinol, its reduced and active form, is an emerging molecule in sport nutrition. The aim of this study was to evaluate the effect of ubiquinol supplementation on biochemical and oxidative stress indexes after an intense bout of exercise. 21 male young athletes (26 + 5 years of age) were randomized in two groups according to a double blind cross-over study, either supplemented with ubiquinol (200 mg/day) or placebo for 1 month. Blood was withdrawn before and after a single bout of intense exercise (40 min run at 85% maxHR). Physical performance, hematochemical parameters, ubiquinone/ubiquinol plasma content, intracellular reactive oxygen species (ROS) level, mitochondrial membrane depolarization, paraoxonase activity and oxidative DNA damage were analyzed. A single bout of intense exercise produced a significant increase in most hematochemical indexes, in particular CK and Mb while, on the contrary, normalized coenzyme Q 10 plasma content decreased significantly in all subjects. Ubiquinol supplementation prevented exercise-induced CoQ deprivation and decrease in paraoxonase activity. Moreover at a cellular level, in peripheral blood mononuclear cells, ubiquinol supplementation was associated with a significant decrease in cytosolic ROS while mitochondrial membrane potential and oxidative DNA damage remained unchanged. Data highlights a very rapid dynamic of CoQ depletion following intense exercise underlying an increased demand by the organism. Ubiquinol supplementation minimized exercise-induced depletion and enhanced plasma and cellular antioxidant levels but it was not able to improve physical performance indexes or markers of muscular damage.
O'Brien, Jessica; Ottoboni, Giovanni; Tessari, Alessia; Setti, Annalisa
2017-01-01
One single bout of exercise can be associated with positive effects on cognition, due to physiological changes associated with muscular activity, increased arousal, and training of cognitive skills during exercise. While the positive effects of life-long physical activity on cognitive ageing are well demonstrated, it is not well established whether one bout of exercise is sufficient to register such benefits in older adults. The aim of this study was to test the effect of one bout of exercise on two cognitive processes essential to daily life and known to decline with ageing: audio-visual perception and immediate memory. Fifty-eight older adults took part in a quasi-experimental design study and were divided into three groups based on their habitual activity (open skill exercise (mean age = 69.65, SD = 5.64), closed skill exercise, N = 18, 94% female; sedentary activity-control group, N = 21, 62% female). They were then tested before and after their activity (duration between 60 and 80 minutes). Results showed improvement in sensitivity in audio-visual perception in the open skill group and improvements in one of the measures of immediate memory in both exercise groups, after controlling for baseline differences including global cognition and health. These findings indicate that immediate benefits for cross-modal perception and memory can be obtained after open skill exercise. However, improvements after closed skill exercise may be limited to memory benefits. Perceptual benefits are likely to be associated with arousal, while memory benefits may be due to the training effects provided by task requirements during exercise. The respective role of qualitative and quantitative differences between these activities in terms of immediate cognitive benefits should be further investigated. Importantly, the present results present the first evidence for a modulation of cross-modal perception by exercise, providing a plausible avenue for rehabilitation of cross-modal perception deficits, which are emerging as a significant contributor to functional decline in ageing.
Vascular Nitric Oxide-Superoxide Balance and Thrombus Formation after Acute Exercise.
Przyborowski, Kamil; Proniewski, Bartosz; Czarny, Joanna; Smeda, Marta; Sitek, Barbara; Zakrzewska, Agnieszka; Zoladz, Jerzy A; Chlopicki, Stefan
2018-02-21
An acute bout of strenuous exercise in humans results in transient impairment of NO-dependent function, but it remains unknown whether this phenomenon is associated with increased risk of post-exercise thrombotic events. This study aimed to evaluate effects of a single bout of exhaustive running in mice on the balance of vascular nitric oxide (NO)/reactive oxygen species (ROS) production, and on thrombogenicity. At different time-points (0h, 2h and 4h) after exercise and in sedentary C57BL/6 mice the production of NO and superoxide (O2) in aorta was measured by electron paramagnetic resonance (EPR) spin trapping and by dihydroethidium (DHE)/HPLC-based method, respectively, while collagen-induced thrombus formation was analyzed in a microchip-based flow-chamber system (T-TAS). We also measured pre- and post-exercise plasma concentration of nitrite/nitrate and 6-keto-PGF1α. An acute bout of exhaustive running in mice resulted in decreased production of NO and increased production of O2 in aorta, with maximum changes 2h after completion of exercise when compared to sedentary mice. However, platelet thrombus formation was not changed by exercise as evidenced by unaltered time to start of thrombus formation (T10) and capillary occlusion (OT), and total thrombogenicity (AUC) as measured in a flow-chamber system. Strenuous exercise increased the plasma concentration of nitrite but did not affect nitrate and 6-keto-PGF1α concentrations. An acute bout of strenuous exercise in mice reduced NO and in parallel increased O2 production in aorta. This response was most pronounced 2h after exercise. Surprisingly, the reduced NO and increased O2 production did not result in increased post-exercise platelet-dependent thrombogenicity. These results show that transient reduction in NO bioavailability, caused by exercise-induced oxidative stress, does not modify post-exercise thromboresistance in healthy mice.
Exercise-induced muscle damage and running economy in humans.
Assumpção, Cláudio de Oliveira; Lima, Leonardo Coelho Rabello; Oliveira, Felipe Bruno Dias; Greco, Camila Coelho; Denadai, Benedito Sérgio
2013-01-01
Running economy (RE), defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (~15-30 days), have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VO₂max). However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises) seems to impair RE only for subsequent high-intensity exercise (~90% VO₂max). Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect) attenuates changes in indirect markers of muscle damage and blunts changes in RE.
Neuromuscular changes and the rapid adaptation following a bout of damaging eccentric exercise.
Goodall, S; Thomas, K; Barwood, M; Keane, K; Gonzalez, J T; St Clair Gibson, A; Howatson, G
2017-08-01
An initial bout of eccentric exercise is known to protect against muscle damage following a repeated bout of the same exercise; however, the neuromuscular adaptations owing to this phenomenon are unknown. To determine whether neuromuscular disturbances are modulated following a repeated bout of eccentric exercise. Following eccentric exercise performed with the elbow flexors, we measured maximal voluntary force, resting twitch force, muscle soreness, creatine kinase (CK) and voluntary activation (VA) using motor point and motor cortex stimulation at baseline, immediately post-exercise and at 1, 2, 3, 4 and 7 days post-exercise on two occasions, separated by 3 weeks. Significant muscle damage and fatigue were evident following the first exercise bout; maximal voluntary contraction (MVC) was reduced immediately by 35% and remained depressed at 7 days post-exercise. Soreness and CK release peaked at 3 and 4 days post-exercise respectively. Resting twitch force remained significantly reduced at 7 days (-48%), whilst VA measured with motor point and motor cortex stimulation was reduced until 2 and 3 days respectively. A repeated bout effect (RBE) was observed with attenuated soreness and CK release and a quicker recovery of MVC and resting twitch force. A similar decrement in VA was observed following both bouts; however, following the repeated bout there was a significantly smaller reduction in, and a faster recovery of, VA measured using motor cortical stimulation. Our data suggest that the RBE may be explained, partly, by a modification in motor corticospinal drive. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Frazão, Danniel Thiago; de Farias Junior, Luiz Fernando; Dantas, Teresa Cristina Batista; Krinski, Kleverton; Elsangedy, Hassan Mohamed; Prestes, Jonato; Hardcastle, Sarah J.; Costa, Eduardo Caldas
2016-01-01
Objectives To examine the affective responses during a single bout of a low-volume HIIE in active and insufficiently active men. Materials and methods Fifty-eight men (aged 25.3 ± 3.6 years) volunteered to participate in this study: i) active (n = 29) and ii) insufficiently active (n = 29). Each subject undertook i) initial screening and physical evaluation, ii) maximal exercise test, and iii) a single bout of a low-volume HIIE. The HIIE protocol consisted of 10 x 60s work bouts at 90% of maximal treadmill velocity (MTV) interspersed with 60s of active recovery at 30% of MTV. Affective responses (Feeling Scale, -5/+5), rating of perceived exertion (Borg’s RPE, 6–20), and heart rate (HR) were recorded during the last 10s of each work bout. A two-factor mixed-model repeated measures ANOVA, independent-samples t test, and chi-squared test were used to data analysis. Results There were similar positive affective responses to the first three work bouts between insufficiently active and active men (p > 0.05). However, insufficiently active group displayed lower affective responses over time (work bout 4 to 10) than the active group (p < 0.01). Also, the insufficiently active group displayed lower values of mean, lowest, and highest affective response, as well as lower values of affective response at the highest RPE than the active group (p < 0.001). There were no differences in the RPE and HR between the groups (p > 0.05). Conclusions Insufficiently active and active men report feelings of pleasure to few work bouts (i.e., 3–4) during low-volume HIIE, while the affective responses become more unpleasant over time for insufficiently active subjects. Investigations on the effects of low-volume HIIE protocols including a fewer number of work bouts on health status and fitness of less active subjects would be interesting, especially in the first training weeks. PMID:27028191
Rogers, Robert S; Dawson, Andrew W; Wang, Ze; Thyfault, John P; Hinton, Pamela S
2011-11-01
The time course of changes in plasma bone turnover markers following an acute bout of resistance training (RT) or plyometrics (PLY) has not been well characterized. This study is the first to compare the acute response of bone formation and resorption markers to a single bout of RT or PLY. Using a partially randomized, cross-over study design, 12 recreationally active men, aged 43 ± 5 yr, each completed four exercise trials: RT (Fed/Fasted) and PLY (Fed/Fasted). In addition to the RT and PLY trials, 5 of the original 12 participants also completed a fasted, no-exercise control trial to examine time-of-day variation. For each trial, blood was drawn immediately before exercise (PRE), immediately following exercise, and 15 min, 30 min, 1 h, 2 h, and 24 h following PRE for determination of plasma bone-specific alkaline phosphatase (BAP), osteocalcin (OC), tartrate-resistant acid phosphatase 5b (TRAP5b), COOH-terminal telopeptide of type I collagen (CTX), testosterone, parathyroid hormone, and cortisol. A one-factor repeated-measures ANOVA was performed for each trial to detect changes in bone markers during the 2 h following RT or PLY. TRAP5b transiently decreased during the 2 h following all exercise trials (main effect for time, P < 0.05), but returned to PRE concentrations 2 h postexercise. BAP, CTX, and OC remained unchanged, except for reductions in BAP and CTX following PLY-Fasted and PLY-Fed, respectively. During the control trial, BAP decreased, while TRAP5b, CTX, and OC remained unchanged. In general, plasma hormone concentrations decreased during the 2 h following PLY or RT, and cumulative decreases in TRAP5b during the 2 h following exercise were positively correlated with cumulative decreases in parathyroid hormone. The results of the present study suggest that the timing of the measurement of bone turnover markers relative to the last exercise bout is important for detection of exercise-associated changes in bone turnover markers, as the markers returned to preexercise values within 2 h of RT or PLY.
Statistical Learning Is Not Affected by a Prior Bout of Physical Exercise
ERIC Educational Resources Information Center
Stevens, David J.; Arciuli, Joanne; Anderson, David I.
2016-01-01
This study examined the effect of a prior bout of exercise on implicit cognition. Specifically, we examined whether a prior bout of moderate intensity exercise affected performance on a statistical learning task in healthy adults. A total of 42 participants were allocated to one of three conditions--a control group, a group that exercised for…
Acute effects of aerobic exercise promote learning
Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo
2016-01-01
The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity–induced plasticity with specific cognitive training–induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity. PMID:27146330
NASA Technical Reports Server (NTRS)
Engelke, K. A.; Doerr, D. F.; Convertino, V. A.
1995-01-01
We tested the hypothesis that one bout of maximal exercise performed 24 h before reambulation from 16 days of 6 degrees head-down tilt (HDT) could increase integrated baroreflex sensitivity. Isolated carotid-cardiac and integrated baroreflex function was assessed in seven subjects before and after two periods of HDT separated by 11 mo. On the last day of one HDT period, subjects performed a single bout of maximal cycle ergometry (exercise). Subjects did not exercise after the other HDT period (control). Carotid-cardiac baroreflex sensitivity was evaluated using a neck collar device. Integrated baroreflex function was assessed by recording heart rate (HR) and blood pressure (MAP) during a 15-s Valsalva maneuver (VM) at a controlled expiratory pressure of 30 mmHg. The ratio of change in HR to change in MAP (delta HR/ delta MAP) during phases II and IV of the VM was used as an index of cardiac baroreflex sensitivity. Baroreflex-mediated vasoconstriction was assessed by measuring the late phase II rise in MAP. Following HDT, carotid-cardiac baroreflex sensitivity was reduced (2.8 to 2.0 ms/mmHg; P = 0.05) as was delta HR/ delta MAP during phase II (-1.5 to -0.8 beats/mmHg; P = 0.002). After exercise, isolated carotid baroreflex activity and phase II delta HR/ delta MAP returned to pre-HDT levels but remained attenuated in the control condition. Phase IV delta HR/ delta MAP was not altered by HDT or exercise. The late phase II increase of MAP was 71% greater after exercise compared with control (7 vs. 2 mmHg; P = 0.041).(ABSTRACT TRUNCATED AT 250 WORDS).
Ferrer-Uris, Blai; Busquets, Albert; Angulo-Barroso, Rosa
2018-02-01
We assessed the effect of an acute intense exercise bout on the adaptation and consolidation of a visuomotor adaptation task in children. We also sought to assess if exercise and learning task presentation order could affect task consolidation. Thirty-three children were randomly assigned to one of three groups: (a) exercise before the learning task, (b) exercise after the learning task, and (c) only learning task. Baseline performance was assessed by practicing the learning task in a 0° rotation condition. Afterward, a 60° rotation-adaptation set was applied followed by three rotated retention sets after 1 hr, 24 hr, and 7 days. For the exercise groups, exercise was presented before or after the motor adaptation. Results showed no group differences during the motor adaptation while exercise seemed to enhance motor consolidation. Greater consolidation enhancement was found in participants who exercised before the learning task. Our data support the importance of exercise to improve motor-memory consolidation in children.
Muscle fascicle behavior during eccentric cycling and its relation to muscle soreness.
Peñailillo, Luis; Blazevich, Anthony J; Nosaka, Kazunori
2015-04-01
A single bout of eccentric exercise confers a protective effect against muscle damage and soreness in subsequent eccentric exercise bouts, but the mechanisms underpinning this effect are unclear. This study compared vastus lateralis (VL) muscle-tendon behavior between two eccentric cycling bouts to test the hypothesis that muscle-tendon behavior would be different between bouts and would be associated with the protective effect. Eleven untrained men (27.1 ± 7.0 yr) performed two bouts of eccentric cycling (ECC1 and ECC2) separated by 2 wk for 10 min at 65% of maximal concentric workload (191.9 ± 44.2 W) each. Muscle soreness (by visual analog scale) and maximal voluntary isometric contraction (MVC) torque of the knee extensors were assessed before and 1-2 d after exercise. Using ultrasonography, VL fascicle length and angle changes during cycling were assessed, and tendinous tissue (TT) length changes were estimated. VL EMG amplitude, crank torque, and knee joint angles were measured during cycling. Soreness was greater (P < 0.0001) after ECC1 than ECC2, although MVC changes were not different between bouts (P = 0.47). No significant differences in peak EMG amplitude (normalized to EMG during MVC), crank peak torque, or knee angles were evident between bouts. However, fascicle elongation was 16% less during ECC2 than ECC1 (P < 0.01), indicating less fascicle strain in ECC2. Maximum TT length occurred at a smaller knee joint angle during ECC2 than ECC1 (P = 0.055). These results suggest that a lesser fascicle elongation and earlier TT elongation were associated with reduced muscle soreness after ECC2 than ECC1; thus, changes in muscle-tendon behavior may be an important mechanism underpinning the protective effect.
Different Patterns of Walking and Postprandial Triglycerides in Older Women
KASHIWABARA, KYOKO; KIDOKORO, TETSUHIRO; YANAOKA, TAKUMA; BURNS, STEPHEN F.; STENSEL, DAVID J.; MIYASHITA, MASASHI
2018-01-01
ABSTRACT Purpose Although a single bout of continuous exercise (≥30 min) reduces postprandial triglyceride (TG), little evidence is available regarding the effect of multiple short (≤10 min) bouts of exercise on postprandial TG in individuals at increased risk for cardiovascular diseases. This study compared the effects of different patterns of walking on postprandial TG in postmenopausal, older women with hypertriglyceridemia. Methods Twelve inactive women (mean age ± SD, 71 ± 5 yr) with hypertriglyceridemia (fasting TG ≥1.70 mmol·L−1) completed three, 1-d laboratory-based trials in a random order: 1) control, 2) continuous walking, and 3) multiple short bouts of walking. On the control trial, participants sat in a chair for 8 h. For the walking trials, participants walked briskly in either one 30-min bout in the morning (0900–0930 h) or twenty 90-s bouts over 8 h. Except for walking, both exercise trials mimicked the control trial. In each trial, participants consumed a standardized breakfast (0800 h) and lunch (1100 h). Venous blood samples were collected in the fasted state and at 2, 4, 6, and 8 h after breakfast. Results The serum TG incremental area under the curve was 35% and 33% lower on the continuous and multiple short bouts of walking trials than that on the control trial (8.2 ± 3.1 vs 8.5 ± 5.4 vs 12.7 ± 5.8 mmol per 8 h·L−1, respectively; main effect of trial: effect size = 0.459, P = 0.001). Conclusions Accumulating walking in short bouts limits postprandial TG in at-risk, inactive older women with fasting hypertriglyceridemia. PMID:28857839
Hostler, David; Bednez, James C; Kerin, Sarah; Reis, Steven E; Kong, Pui Wah; Morley, Julia; Gallagher, Michael; Suyama, Joe
2010-01-01
Background: Fire suppression activities results in cardiovascular stress, hyperthermia, and hypohydration. Fireground rehabilitation (rehab) is recommended to blunt the deleterious effects of these conditions. Objective: We tested the hypothesis that three rehydration fluids provided after exercise in thermal protective clothing (TPC) would produce different heart rate or core temperature responses during a second bout of exercise in TPC. Methods: On three occasions, 18 euhydrated firefighters (16 males, 2 females) wearing TPC completed a standardized, 50-minute bout of upper and lower body exercise in a hot room that mimicked the National Fire Protection Association (NFPA) rehabilitation guidelines of “two cylinders before rehab” (20 min work, 10 min recovery, 20 min work). After an initial bout of exercise, subjects were randomly assigned water, sport drink, or an intravenous (IV) infusion of normal saline equal to the amount of body mass lost during exercise. After rehydration, the subject performed a second bout of exercise. Heart rate, core and skin temperature, and exercise duration were compared with a two-way ANOVA. Results: Subjects were firefighters aged 28.2±11.3 years with a VO2peak of 37.4±3.4 ml/kg/min. 527±302 mL of fluid were provided during the rehabilitation period. No subject could complete either the pre- or post-rehydration 50-minute bout of exercise. Mean (SD) time to exhaustion (min) was longer (p<0.001) in bout 1 (25.9±12.9 min. water, 28.0±14.1 min. sport drink, 27.4±13.8 min. IV) compared to bout 2 (15.6±9.6 min. water, 14.7±8.6 min. sport drink, 15.7±8.0 min. IV) for all groups but did not differ by intervention. All subjects approached age predicted maximum heart rate at the end of bout 1 (180±11 bpm) and bout 2 (176±13 bpm). Core temperature rose 1.1±0.7°C during bout 1 and 0.5±0.4°C during bout 2. Core temperature, heart rate, and exercise time during bout 2 did not differ between rehydration fluids. Conclusions: Performance during a second bout of exercise in TPC did not differ when firefighters were rehydrated with water, sport drink, or IV normal saline when full rehydration is provided. Of concern was the inability of all subjects to complete two consecutive periods of heavy exercise in TPC suggesting the NFPA “two cylinders before rehab” guideline may not be appropriate in continuous heavy work scenarios. PMID:20095824
Layec, Gwenael; Bringard, Aurélien; Le Fur, Yann; Vilmen, Christophe; Micallef, Jean-Paul; Perrey, Stéphane; Cozzone, Patrick J; Bendahan, David
2009-06-01
The effects of a priming exercise bout on both muscle energy production and the pattern of muscle fibre recruitment during a subsequent exercise bout are poorly understood. The purpose of the present study was to determine whether a prior exercise bout which is known to increase O(2) supply and to induce a residual acidosis could alter energy cost and muscle fibre recruitment during a subsequent heavy-intensity knee-extension exercise. Fifteen healthy subjects performed two 6 min bouts of heavy exercise separated by a 6 min resting period. Rates of oxidative and anaerobic ATP production, determined with (31)P-magnetic resonance spectroscopy, and breath-by-breath measurements of pulmonary oxygen uptake were obtained simultaneously. Changes in muscle oxygenation and muscle fibre recruitment occurring within the quadriceps were measured using near-infrared spectroscopy and surface electromyography. The priming heavy-intensity exercise increased motor unit recruitment (P < 0.05) in the early part of the subsequent exercise bout but did not alter muscle energy cost. We also observed a reduced deoxygenation time delay, whereas the deoxygenation amplitude was increased (P < 0.01). These changes were associated with an increased oxidative ATP cost after approximately 50 s (P < 0.05) and a slight reduction in the overall anaerobic rate of ATP production (0.11 +/- 0.04 mM min(-1) W(-1) for bout 1 and 0.06 +/- 0.11 mM min(-1) W(-1) for bout 2; P < 0.05). We showed that a priming bout of heavy exercise led to an increased recruitment of motor units in the early part of the second bout of heavy exercise. Considering the increased oxidative cost and the unaltered energy cost, one could suggest that our results illustrate a reduced metabolic strain per fibre.
The effect of preseason training on mucosal immunity in male basketball players.
Azarbayjani, M; Nikbakht, H; Rasaee, M J
2011-12-01
This study examined the effects of pre season training on restring level and acute response of mucosal immunity in male basketball players. Twenty male basketball players performed 8 weeks progressive exercise training, consisting of interval and continuous parts. Five mL un-stimulated saliva was collected from each subject before, immediately and one hour after the end of one bout of exercise to exhaustion on treadmill at the beginning of the first week and end of 8 weeks to determine the acute responses. At the beginning of each 2 weeks (resting state) induced changes in basal mucosal immunity was evaluated. The concentration of sIgA and total protein was measured by the ELISA and Bradford methods respectively. One bout exercise training at beginning of first week decreased significantly sIgA level but not at the end of 8th week. Total protein did not change significantly at 1st week after exercise, but at eight week significantly increased and remained at high level until one hour after exercise. sIgA to total protein ratio at first week significantly decreased and remained constant one hour after exercise. At the eight week sIgA decreased significantly immediately after exercise and remained low until one hour after exercise. The comparison of sIgA and total protein levels indicates significant decrease after eight weeks training. These results suggest that repetition of single bout of exercise training have a cumulative effect on the mucosal immune system.
Nederveen, Joshua P; Joanisse, Sophie; Snijders, Tim; Ivankovic, Victoria; Baker, Steven K; Phillips, Stuart M; Parise, Gianni
2016-12-01
Skeletal muscle satellite cells (SC) are instrumental in maintenance of muscle fibres, the adaptive responses to exercise, and there is an age-related decline in SC. A spatial relationship exists between SC and muscle fibre capillaries. In the present study, we aimed to investigate whether chronologic age has an impact on the spatial relationship between SC and muscle fibre capillaries. Secondly, we determined whether this spatial relationship changes in response to a single session of resistance exercise. Muscle biopsies were obtained from the vastus lateralis of previously untrained young men (YM, 24 ± 3 years; n = 23) and older men (OM, 67 ± 4 years; n = 22) at rest. A subset of YM ( n = 9) performed a single bout of resistance exercise, where additional muscle biopsies taken at 24 and 72 h post-exercise recovery. Skeletal muscle fibre capillarization, SC content, and activation status were assessed using immunofluorescent microscopy of muscle cross sections. Type II muscle fibre SC and capillary content was significantly lower in the YM compared with OM ( P < 0.05). Furthermore, type II muscle fibre SC were located at a greater distance from the nearest capillary in OM compared with YM (21.6 ± 1.3 vs. 17.0 ± 0.8 µm, respectively; P < 0.05). In response to a single bout of exercise, we observed a significant increase in SC number and activation status ( P < 0.05). In addition, activated vs. quiescent SC were situated closer ( P < 0.05) to capillaries. We demonstrate that there is a greater distance between capillaries and type II fibre-associated SC in OM as compared with YM. Furthermore, quiescent SC are located significantly further away from capillaries than active SC after single bout of exercise. Our data have implications for how muscle adapts to exercise and how aging may affect such adaptations.
Molecular responses to moderate endurance exercise in skeletal muscle
USDA-ARS?s Scientific Manuscript database
This study examined alterations in skeletal-muscle growth and atrophy-related molecular events after a single bout of moderate-intensity endurance exercise. Muscle biopsies were obtained from 10 men (23 +/- 1 yr, body mass 80 +/- 2 kg, and VO(2peak) 45 +/- 1 ml x kg'¹ x min'¹) immediately (0 hr) and...
Genetic Response of Rat Supraspinatus Tendon and Muscle to Exercise
Rooney, Sarah Ilkhanipour; Tobias, John W.; Bhatt, Pankti R.; Kuntz, Andrew F.; Soslowsky, Louis J.
2015-01-01
Inflammation is a complex, biologic event that aims to protect and repair tissue. Previous studies suggest that inflammation is critical to induce a healing response following acute injury; however, whether similar inflammatory responses occur as a result of beneficial, non-injurious loading is unknown. The objective of this study was to screen for alterations in a subset of inflammatory and extracellular matrix genes to identify the responses of rat supraspinatus tendon and muscle to a known, non-injurious loading condition. We sought to define how a subset of genes representative of specific inflammation and matrix turnover pathways is altered in supraspinatus tendon and muscle 1) acutely following a single loading bout and 2) chronically following repeated loading bouts. In this study, Sprague-Dawley rats in the acute group ran a single bout of non-injurious exercise on a flat treadmill (10 m/min, 1 hour) and were sacrificed 12 or 24 hours after. Rats in the chronic group ran 5 days/wk for 1 or 8 weeks. A control group maintained normal cage activity. Supraspinatus muscle and tendon were harvested for RNA extractions, and a custom Panomics QuantiGene 2.0 multiplex assay was used to detect 48 target and 3 housekeeping genes. Muscle/tendon and acute/chronic groups had distinct gene expression. Components of the arachidonic acid cascade and matrix metalloproteinases and their inhibitors were altered with acute and chronic exercise. Collagen expression increased. Using a previously validated model of non-injurious exercise, we have shown that supraspinatus tendon and muscle respond to acute and chronic exercise by regulating inflammatory- and matrix turnover-related genes, suggesting that these pathways are involved in the beneficial adaptations to exercise. PMID:26447778
Perspectives on high-intensity interval exercise for health promotion in children and adolescents
Bond, Bert; Weston, Kathryn L; Williams, Craig A; Barker, Alan R
2017-01-01
Physical activity lowers future cardiovascular disease (CVD) risk; however, few children and adolescents achieve the recommended minimum amount of daily activity. Accordingly, there is virtue in identifying the efficacy of small volumes of high-intensity exercise for health benefits in children and adolescents for the primary prevention of CVD risk. The purpose of this narrative review is to provide a novel overview of the available literature concerning high-intensity interval-exercise (HIIE) interventions in children and adolescents. Specifically, the following areas are addressed: 1) outlining the health benefits observed following a single bout of HIIE, 2) reviewing the role of HIIE training in the management of pediatric obesity, and 3) discussing the effectiveness of school-based HIIE training. In total, 39 HIIE intervention studies were included in this review. Based upon the available data, a single bout of high-intensity exercise provides a potent stimulus for favorable, acute changes across a range of cardiometabolic outcomes that are often superior to a comparative bout of moderate-intensity exercise (14 studies reviewed). HIIE also promotes improvements in cardiorespiratory fitness and cardiometabolic health status in overweight and obese children and adolescents (10 studies reviewed) and when delivered in the school setting (15 studies reviewed). We thus conclude that high-intensity exercise is a feasible and potent method of improving a range of cardiometabolic outcomes in children and adolescents. However, further work is needed to optimize the delivery of HIIE interventions in terms of participant enjoyment and acceptability, to include a wider range of health outcomes, and to control for important confounding variables (eg, changes in diet and habitual physical activity). Finally, research into the application of HIIE training interventions to children and adolescents of different ages, sexes, pubertal status, and sociocultural backgrounds is required. PMID:29225481
Effects of acute exercise on attenuated vagal baroreflex function during bed rest
NASA Technical Reports Server (NTRS)
Convertino, Victor A.; Doerr, Donald F.; Guell, Antonio; Marini, J.-F.
1992-01-01
We measured carotid baroreceptor-cardiac reflex responses in six healthy men, 24 h before and 24 h after a bout of leg exercise during 6 deg head-down bed rest to determine if depressed vagal baroreflex function associated with exposure to microgravity environments could be reversed by a single exposure to acute intense exercise. Baroreflex responses were measured before bed rest and on day 7 of bed rest. An exercise bout consisting of dynamic and isometric actions of the quadriceps at graded speeds and resistances was performed on day 8 of bed rest and measurements of baroreflex response were repeated 24 h later. Vagally-mediated cardiac responses were provoked with ramped neck pressure-suction sequences comprising pressure elevations to +40 mm Hg, followed by serial, R-wave triggered 15 mm Hg reductions, to -65 mm Hg. Baroreceptor stimulus-cardiac response relationships were derived by plotting each R-R interval as a function of systolic pressure less the neck chamber pressure applied during the interval. Compared with pre-bed rest baseline measurements, 7 d of bed rest decreased the gain (maximum slope) of the baroreflex stimulus-response relationship by 16.8 +/- 3.4 percent (p less than 0.05). On day 9 of bed rest, 24 h after exercise, the maximum slope of the baroreflex stimulus-response relationship was increased (p less than 0.05) by 10.7 +/- 3.7 percent above pre-bed rest levels and 34.3 +/- 7.9 percent above bed rest day 7. Our data verify that vagally-mediated baroreflex function is depressed by exposure to simulated microgravity and demonstrate that this effect can be acutely reversed by exposure to a single bout of intense exercise.
12,13-diHOME: An Exercise-Induced Lipokine that Increases Skeletal Muscle Fatty Acid Uptake.
Stanford, Kristin I; Lynes, Matthew D; Takahashi, Hirokazu; Baer, Lisa A; Arts, Peter J; May, Francis J; Lehnig, Adam C; Middelbeek, Roeland J W; Richard, Jeffrey J; So, Kawai; Chen, Emily Y; Gao, Fei; Narain, Niven R; Distefano, Giovanna; Shettigar, Vikram K; Hirshman, Michael F; Ziolo, Mark T; Kiebish, Michael A; Tseng, Yu-Hua; Coen, Paul M; Goodyear, Laurie J
2018-05-01
Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed that a bout of moderate-intensity exercise causes a pronounced increase in the circulating lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in male, female, young, old, sedentary, and active human subjects. In mice, both a single bout of exercise and exercise training increased circulating 12,13-diHOME and surgical removal of brown adipose tissue (BAT) negated the increase in 12,13-diHOME, suggesting that BAT is the tissue source for exercise-stimulated 12,13-diHOME. Acute 12,13-diHOME treatment of mice in vivo increased skeletal muscle fatty acid uptake and oxidation, but not glucose uptake. These data reveal that lipokines are novel exercise-stimulated circulating factors that may contribute to the metabolic changes that occur with physical exercise. Copyright © 2018 Elsevier Inc. All rights reserved.
Smith, Ashleigh E; Goldsworthy, Mitchell R; Wood, Fiona M; Olds, Timothy S; Garside, Tessa; Ridding, Michael C
2018-03-01
Acute exercise studies using transcranial magnetic stimulation (TMS) can provide important insights into the mechanisms underpinning the positive relationship between regular engagement in physical activity and cortical neuroplasticity. Emerging evidence indicates that a single session of aerobic exercise can promote the response to an experimentally induced suppressive neuroplasticity paradigm; however, little is known about the neuroplasticity response to facilitatory paradigms, including intermittent theta burst stimulation (iTBS). To more fully characterize the effects of exercise on brain plasticity we investigated if a single 30 min bout of high-intensity cycling (80% predicted heart rate reserve) modulated the response to an iTBS paradigm compared to rest. In 18 participants (9 females; 25.5 ± 5.0 years, range: 18-35 years) iTBS was applied using standard repetitive transcranial magnetic stimulation techniques immediately following exercise or 30 min of rest. Motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous muscle at baseline, after the exercise/rest period but before iTBS, and at 5 time points following iTBS (0, 5, 10, 20 and 30 min). Contrary to our hypothesis, MEPs were suppressed following iTBS after a single 30 min bout of lower limb aerobic exercise compared to rest. These results indicate that acute aerobic exercise may not always enhance the response to an experimentally induced neuroplasticity paradigm. Further investigation of the factors that influence the relationship between exercise and neuroplasticity is warranted. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Preferential type II muscle fiber damage from plyometric exercise.
Macaluso, Filippo; Isaacs, Ashwin W; Myburgh, Kathryn H
2012-01-01
Plyometric training has been successfully used in different sporting contexts. Studies that investigated the effect of plyometric training on muscle morphology are limited, and results are controversial with regard to which muscle fiber type is mainly affected. To analyze the skeletal muscle structural and ultrastructural change induced by an acute bout of plyometric exercise to determine which type of muscle fibers is predominantly damaged. Descriptive laboratory study. Research laboratory. Eight healthy, untrained individuals (age = 22 ± 1 years, height = 179.2 ± 6.4 cm, weight = 78.9 ± 5.9 kg). Participants completed an acute bout of plyometric exercise (10 sets of 10 squat-jumps with a 1-minute rest between sets). Blood samples were collected 9 days and immediately before and 6 hours and 1, 2, and 3 days after the acute intervention. Muscle samples were collected 9 days before and 3 days after the exercise intervention. Blood samples were analyzed for creatine kinase activity. Muscle biopsies were analyzed for damage using fluorescent and electron transmission microscopy. Creatine kinase activity peaked 1 day after the exercise bout (529.0 ± 317.8 U/L). Immunofluorescence revealed sarcolemmal damage in 155 of 1616 fibers analyzed. Mainly fast-twitch fibers were damaged. Within subgroups, 7.6% of type I fibers, 10.3% of type IIa fibers, and 14.3% of type IIx fibers were damaged as assessed by losses in dystrophin staining. Similar damage was prevalent in IIx and IIa fibers. Electron microscopy revealed clearly distinguishable moderate and severe sarcomere damage, with damage quantifiably predominant in type II muscle fibers of both the glycolytic and oxidative subtypes (86% and 84%, respectively, versus only 27% of slow-twitch fibers). We provide direct evidence that a single bout of plyometric exercise affected mainly type II muscle fibers.
Effects of intervals between jumps or bouts on osteogenic response to loading.
Umemura, Yoshihisa; Sogo, Naota; Honda, Akiko
2002-10-01
Prolonged loading repetitions can diminish the mechanosensitivity of bones, and increased intervals between loading might restore sensitivity. This study was designed to investigate the effects of intervals between loadings or bouts on osteogenic response. Forty female Fisher 344 rats aged 5 wk were divided into a control group and three exercise groups: 20 jumps in a single bout with a 3-s (S3) or 30-s (S30) jump interval, or 20 jumps in 2 bouts (10 x 2) separated by a 6-h interval with a 3-s jump interval (D3). After 8 wk of training, the bone masses per body weight of the femur and tibia were significantly greater in the three exercise groups than in the control group, and these values were also greater in S30 than in S3, although they were at the same level in D3 and S3. These data suggest that a longer interval (30 s) between individual loading had more effective anabolic effects on bone than a shorter interval (3 s).
Ortega, Eduardo; Hinchado, M D; Martín-Cordero, L; Asea, A
2009-05-01
We studied the physiological role of the 72 kDa extracellular heat shock protein (Hsp72, a stress-inducible protein) in modulating neutrophil chemotaxis during a single bout of intense exercise performed by sedentary women, together with various cell mechanisms potentially involved in the modulation. For each volunteer, we evaluated neutrophil chemotaxis and serum Hsp72 concentration before and immediately after a single bout of exercise (1 h on a cycle ergometer at 70% VO(2) max), and 24 h later. Both parameters were found to be stimulated by the exercise, and had returned to basal values 24 h later. In vitro, there was a dose-dependent increase in chemotaxis when neutrophils were incubated both with physiological Hsp72 concentrations and with a 100 x greater concentration. The chemotaxis was greater when the neutrophils were incubated with the post-exercise Hsp72 concentration than with the basal concentration, suggesting a physiological role for this protein in the context of the stimulation of neutrophil chemotaxis by intense exercise. The 100 x Hsp72 concentration stimulated chemotaxis even more strongly. In addition, Hsp72 was found to have chemoattractant and chemokinetic effects on the neutrophils at physiological concentrations, with these effects being significantly greater with the post-exercise than with the basal Hsp72 concentration. The Hsp72-induced stimulation of neutrophil chemotaxis disappeared when the toll-like receptor 2 (TLR-2) was blocked, and phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), and nuclear transcription factor kappa B (NF-kappaB) were also found to be involved in the signaling process. No changes were observed, however, in neutrophil intracellular calcium levels in response to Hsp72. In conclusion, physiological concentrations of the stress protein Hsp72 stimulate human neutrophil chemotaxis through TLR-2 with its cofactor CD14, involving ERK, NF-kappaB, and PI3K, but not iCa(2 + ), as intracellular messengers. In addition, Hsp72 seems to participate in the stimulation of chemotaxis induced by a single bout of intense exercise performed by sedentary women.
Immediate effect of exercise on achilles tendon properties: systematic review.
Obst, Steven J; Barrett, Rod S; Newsham-West, Richard
2013-08-01
Understanding the mechanical and morphological adaptation of the Achilles tendon (AT) in response to acute exercise could have important implications for athletic performance, injury prevention, and rehabilitation. The purpose of this study was to conduct a systematic review and critical evaluation of the literature to determine the immediate effect of a single bout of exercise on the mechanical and morphological properties of the AT in vivo. Five electronic research databases were systematically searched for intervention-based studies reporting mechanical and morphological properties of the AT after a single bout of exercise. Searches revealed 3292 possible articles; 21 met the inclusion criteria. There is evidence that maximal isometric contractions and prolonged static stretching (>5 min) of the triceps surae complex cause an immediate decrease in AT stiffness, whereas prolonged running and hopping have minimal effect. Limited but consistent evidence exists, indicating that AT hysteresis is reduced after prolonged static stretching. Consistent evidence supports a reduction in free AT diameter (anterior-posterior) after dynamic ankle exercise, and this change appears most pronounced in the healthy tendon and after eccentric exercise. The mechanical and morphological properties of the AT in vivo are affected by acute exercise in a mode- and dose-dependent manner. Transient changes in AT stiffness, hysteresis, and diameter after unaccustomed exercise modes and doses may expose the tendon to increased risk of strain injury and impact on the mechanical function of the triceps surae muscle-tendon unit.
Acute effects of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion.
Kobayashi, Ryota; Hashimoto, Yuto; Hatakeyama, Hiroyuki; Okamoto, Takanobu
2018-03-22
The aim of this study was to investigate the acute repeated bouts of aerobic exercise decrease leg arterial stiffness. However, the influence of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion is unknown. The present study investigates the acute effects of repeated bouts of aerobic exercise on arterial stiffness after the 75-g oral glucose tolerance test (OGTT). Ten healthy young men (age, 23.2 ± 0.9 years) performed repeated bouts of aerobic exercise trial (RE, 65% peak oxygen uptake; two 15 min bouts of cycling performed 20 min apart) and control trial (CON, seated and resting in a quiet room) at 80 min before the 75-g OGTT on separate days in a randomized, controlled crossover fashion. Carotid-femoral (aortic) and femoral-ankle (leg) pulse wave velocity, carotid augmentation index, brachial and ankle blood pressure, heart rate and blood glucose and insulin levels were measured before (baseline) and 30, 60 and 120 min after the 75-g OGTT. Leg pulse wave velocity, ankle systolic blood pressure and blood glucose levels increased from baseline after the 75-g OGTT in the CON trial, but not in the RE trial. The present findings indicate that acute repeated bouts of aerobic exercise before glucose ingestion suppress increases in leg arterial stiffness following glucose ingestion. RE trial repeated bouts of aerobic exercise trial; CON trial control trial; BG blood glucose; VO 2peak peak oxygen uptake; PWV Pulse wave velocity; AIx carotid augmentation index; BP blood pressure; HR heart rate; CVs coefficients of variation; RPE Ratings of perceived exertion; SE standard error.
Wang, Fu-Wen; Zhao, Jing-Guo; Wang, Yan; Li, Jie; Hu, Zhi-Li
2011-02-01
To study the dynamic changes of serum CK, CK-MB and myocardium histomorphology in different time periods after single bout and repeated exhausted exercise in rats. The animal models of myocardial injury were established by exhausted swimming. Creatine kinase (CK), creatine kinase mass (CK-MB) activities in serum were measured immediately at 3, 6, 12, 24, 48 and 96 hours after exhausted exercise, and the dynamic changes of myocardial histopathology were examined. The CK, CK-MB activities were significantly increased immediately at 3, 6, 12 hours and peaked at 6 hours after single bout of exhausted exercise, meantime the degree of inflammatory cell infiltrate and strong acidophil staining were gradually increased in myocardium of rat, and the myocardial injury was most severe at 12 hours. After 1-week consecutive daily exhausted swimming, CK, CK-MB in serum were obviously increased immediately at, 3, 6, 12, 48 and 96 hours postexercise and peaked immediately and at 96 hours respectively postexercise. There were different degrees of myocardial injury in different time of recovery phase, and was most severe at 48 hours postexercise. The myocardial injury was induced by excessive exercise and/or exhausted exercise, and the resulting delayed-onset myocardial injury was further certified.
Barcelos, Rômulo Pillon; Bresciani, Guilherme; Cuevas, Maria José; Martínez-Flórez, Susana; Soares, Félix Alexandre Antunes; González-Gallego, Javier
2017-07-01
Nonsteroidal anti-inflammatory drugs, such as diclofenac, are widely used to treat inflammation and pain in several conditions, including sports injuries. This study analyzes the influence of diclofenac on the toll-like receptor-nuclear factor kappa B (TLR-NF-κB) pathway in skeletal muscle of rats submitted to acute eccentric exercise. Twenty male Wistar rats were divided into 4 groups: control-saline, control-diclofenac, exercise-saline, and exercise-diclofenac. Diclofenac or saline were administered for 7 days prior to an acute eccentric exercise bout. The inflammatory status was evaluated through mRNA levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α), and protein content of COX-2, IL-6, and TNF-α in vastus lateralis muscle. Data obtained showed that a single bout of eccentric exercise significantly increased COX-2 gene expression. Similarly, mRNA expression and protein content of other inflammation-related genes also increased after the acute exercise. However, these effects were attenuated in the exercise + diclofenac group. TLR4, myeloid differentiation primary response gene 88 (MyD88), and p65 were also upregulated after the acute eccentric bout and the effect was blunted by the anti-inflammatory drug. These findings suggest that pretreatment with diclofenac may represent an effective tool to ameliorate the pro-inflammatory status induced by acute exercise in rat skeletal muscle possibly through an attenuation of the TLR4-NF-κB signaling pathway.
Dimitrova, Julia; Hogan, Michael; Khader, Patrick; O'Hora, Denis; Kilmartin, Liam; Walsh, Jane C; Roche, Richard; Anderson-Hanley, Cay
2017-10-01
Physical exercise has been shown to improve cognitive and neural functioning in older adults. The current study compared the effects of an acute bout of physical exercise with a bout of interactive mental and physical exercise (i.e., "exergaming") on executive (Stroop) task performance and event-related potential (ERP) amplitudes in younger and older adults. Results revealed enhanced executive task performance in younger and older adults after exercise, with no differences in performance between exercise conditions. Stroop (RT) performance in older adults improved more than in younger adults from pre- to post-exercise. A significant increase in EEG amplitude from pre- to post-exercise was found at the Cz site from 320 to 700 ms post-stimulus for both younger and older adults, with older adults demonstrating a larger Stroop interference effect. While younger adults exhibited overall greater EEG amplitudes than older adults, they showed no differences between congruent and incongruent trials (i.e., minimal interference). Compared to peers with higher BMI (body mass index), older adults with lower BMI showed a greater reduction in Stroop interference effects from pre- to post-exercise. The beneficial effects of an acute bout of physical exercise on cognitive and neural functioning in younger and older adults were confirmed, with no difference between standard exercise and exergaming. Findings suggest that BMI, sometimes used as a proxy for fitness level, may modulate benefits that older adults derive from an acute bout of exercise. Findings have implications for future research that seeks to investigate unique effects of exergaming when compared to standard physical exercise.
Acute-Phase Inflammatory Response to Single-Bout HIIT and Endurance Training: A Comparative Study.
Kaspar, Felix; Jelinek, Herbert F; Perkins, Steven; Al-Aubaidy, Hayder A; deJong, Bev; Butkowski, Eugene
2016-01-01
This study compared acute and late effect of single-bout endurance training (ET) and high-intensity interval training (HIIT) on the plasma levels of four inflammatory cytokines and C-reactive protein and insulin-like growth factor 1. Cohort study with repeated-measures design. Seven healthy untrained volunteers completed a single bout of ET and HIIT on a cycle ergometer. ET and HIIT sessions were held in random order and at least 7 days apart. Blood was drawn before the interventions and 30 min and 2 days after the training sessions. Plasma samples were analyzed with ELISA for the interleukins (IL), IL-1β, IL-6, and IL-10, monocyte chemoattractant protein-1 (MCP-1), insulin growth factor 1 (IGF-1), and C-reactive protein (CRP). Statistical analysis was with Wilcoxon signed-rank tests. ET led to both a significant acute and long-term inflammatory response with a significant decrease at 30 minutes after exercise in the IL-6/IL-10 ratio (-20%; p = 0.047) and a decrease of MCP-1 (-17.9%; p = 0.03). This study demonstrates that ET affects the inflammatory response more adversely at 30 minutes after exercise compared to HIIT. However, this is compensated by a significant decrease in MCP-1 at two days associated with a reduced risk of atherosclerosis.
van Someren, Ken A; Edwards, Adam J; Howatson, Glyn
2005-08-01
This study examined the effects of beta-hydroxyl-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) supplementation on signs and symptoms of exercise-induced muscle damage following a single bout of eccentrically biased resistance exercise. Six non-resistance trained male subjects performed an exercise protocol designed to induce muscle damage on two separate occasions, performed on the dominant or non-dominant arm in a counter-balanced crossover design. Subjects were assigned to an HMB/KIC (3 g HMB and 0.3 g alpha-ketoisocaproic acid, daily) or placebo treatment for 14 d prior to exercise in the counter-balanced crossover design. One repetition maximum (1RM), plasma creatine kinase activity (CK), delayed onset muscle soreness (DOMS), limb girth, and range of motion (ROM) were determined pre-exercise, at 1h, 24 h, 48 h, and 72 h post-exercise. DOMS and the percentage changes in 1RM, limb girth, and ROM all changed over the 72 h period (P < 0.05). HMB//IC supplementation attenuated the CK response, the percentage decrement in 1RM, and the percentage increase in limb girth (P < 0.05). In addition, DOMS was reduced at 24 h post-exercise (P < 0.05) in the HMB/KIC treatment. In conclusion, 14 d of HMB and KIC supplementation reduced signs and symptoms of exercise-induced muscle damage in non-resistance trained males following a single bout of eccentrically biased resistance exercise.
Aerobic exercise before diving reduces venous gas bubble formation in humans
Dujić, Željko; Duplančic, Darko; Marinovic-Terzić, Ivana; Baković, Darija; Ivančev, Vladimir; Valic, Zoran; Eterović, Davor; Petri, Nadan M; Wisløff, Ulrik; Brubakk, Alf O
2004-01-01
We have previously shown in a rat model that a single bout of high-intensity aerobic exercise 20h before a simulated dive reduces bubble formation and after the dive protects from lethal decompression sickness. The present study investigated the importance of these findings in man. Twelve healthy male divers were compressed in a hyperbaric chamber to 280kPa at a rate of 100kPamin−1 breathing air and remaining at pressure for 80min. The ascent rate was 9mmin−1 with a 7min stop at 130kPa. Each diver underwent two randomly assigned simulated dives, with or without preceding exercise. A single interval exercise performed 24h before the dive consisted of treadmill running at 90% of maximum heart rate for 3min, followed by exercise at 50% of maximum heart rate for 2min; this was repeated eight times for a total exercise period of 40min. Venous gas bubbles were monitored with an ultrasonic scanner every 20min for 80min after reaching surface pressure. The study demonstrated that a single bout of strenuous exercise 24h before a dive to 18 m of seawater significantly reduced the average number of bubbles in the pulmonary artery from 0.98 to 0.22 bubbles cm−2(P= 0.006) compared to dives without preceding exercise. The maximum bubble grade was decreased from 3 to 1.5 (P= 0.002) by pre-dive exercise, thereby increasing safety. This is the first report to indicate that pre-dive exercise may form the basis for a new way of preventing serious decompression sickness. PMID:14755001
Standage, Martyn; Sebire, Simon J; Loney, Tom
2008-08-01
This study examined the utility of motivation as advanced by self-determination theory (Deci & Ryan, 2000) in predicting objectively assessed bouts of moderate intensity exercise behavior. Participants provided data pertaining to their exercise motivation. One week later, participants wore a combined accelerometer and heart rate monitor (Actiheart; Cambridge Neurotechnology Ltd) and 24-hr energy expenditure was estimated for 7 days. After controlling for gender and a combined marker of BMI and waist circumference, results showed autonomous motivation to positively predict moderate-intensity exercise bouts of >or=10 min, or=20 min, and an accumulation needed to meet public health recommendations for moderate intensity activity (i.e., ACSM/AHA guidelines). The present findings add bouts of objectively assessed exercise behavior to the growing body of literature that documents the adaptive consequences of engaging in exercise for autonomous reasons. Implications for practice and future work are discussed.
Muscle damage and repeated bout effect induced by enhanced eccentric squats.
Coratella, Giuseppe; Chemello, Alessandro; Schena, Federico
2016-12-01
Muscle damage and repeated bout effect have been studied after pure eccentric-only exercise. The aim of this study was to evaluate muscle damage and repeated bout effect induced by enhanced eccentric squat exercise using flywheel device. Thirteen healthy males volunteered for this study. Creatine kinase blood activity (CK), quadriceps isometric peak torque and muscle soreness were used as markers of muscle damage. The dependent parameters were measured at baseline, immediately after and each day up to 96 hours after the exercise session. The intervention consisted of 100 repetitions of enhanced eccentric squat exercise using flywheel device. The same protocol was repeated after 4 weeks. After the first bout, CK and muscle soreness were significantly greater (P<0.05) than baseline respectively up to 72 and 96 hours. Isometric peak torque was significantly lower (P<0.05) up to 72 hours. After the second bout, CK showed no significant increase (P>0.05), while isometric peak torque and muscle soreness returned to values similar to baseline after respectively 48 and 72 hours. All muscle damage markers were significantly lower after second compared to first bout. The enhanced eccentric exercise induced symptoms of muscle damage up to 96 hours. However, it provided muscle protection after the second bout, performed four weeks later. Although it was not eccentric-only exercise, the enhancement of eccentric phase provided muscle protection.
Barcelos, Nicole; Shah, Nikita; Cohen, Katherine; Hogan, Michael J; Mulkerrin, Eamon; Arciero, Paul J; Cohen, Brian D; Kramer, Arthur F; Anderson-Hanley, Cay
2015-11-01
Dementia cases are increasing worldwide; thus, investigators seek to identify interventions that might prevent or ameliorate cognitive decline in later life. Extensive research confirms the benefits of physical exercise for brain health, yet only a fraction of older adults exercise regularly. Interactive mental and physical exercise, as in aerobic exergaming, not only motivates, but has also been found to yield cognitive benefit above and beyond traditional exercise. This pilot study sought to investigate whether greater cognitive challenge while exergaming would yield differential outcomes in executive function and generalize to everyday functioning. Sixty-four community based older adults (mean age=82) were randomly assigned to pedal a stationary bike, while interactively engaging on-screen with: (1) a low cognitive demand task (bike tour), or (2) a high cognitive demand task (video game). Executive function (indices from Trails, Stroop and Digit Span) was assessed before and after a single-bout and 3-month exercise intervention. Significant group × time interactions were found after a single-bout (Color Trails) and after 3 months of exergaming (Stroop; among 20 adherents). Those in the high cognitive demand group performed better than those in the low cognitive dose condition. Everyday function improved across both exercise conditions. Pilot data indicate that for older adults, cognitive benefit while exergaming increased concomitantly with higher doses of interactive mental challenge.
Oxidative stress and inflammation response following aerobic exercise: role of ethnicity.
McKenzie, M J; Goldfarb, A; Garten, R S; Vervaecke, L
2014-09-01
African-Americans are at a significantly greater risk for developing several diseases and conditions. These conditions often have underlying oxidative stress mechanisms. Therefore the purpose of this investigation was to ascertain the post-exercise oxidative response to a single bout of aerobic exercise in African-American and Caucasian college-age females. A total of 10 African-American and 10 Caucasian females completed the study. Each subject had her VO2 max measured while exercising on a treadmill. A week later, each subject returned to the laboratory and performed a 30-min run at 70% of her VO2max. Blood samples were taken immediately prior to and following exercise for analysis. Lipid hydroperoxides, protein carbonyls, malondialdehyde, xanthine oxidase, glutathione in the reduced (GSH) and oxidized (GSSG) forms, TNFα and interleukin 6 were measured from blood taken before and after exercise. Significance was set at p≤0.05 a priori. Xanthine oxidase was the only measure that did not significantly increase following exercise. All other markers showed a significant elevation in response to the exercise bout with no difference between groups except that the Caucasian group had significantly higher malondialdehyde post-exercise compared to the African-American group. This cohort of college-age African-American and Caucasian females showed little difference in their response to a single 30-min run at 70% of their max in the markers of oxidative stress within the blood. © Georg Thieme Verlag KG Stuttgart · New York.
Jannig, Paulo R; Alves, Christiano R R; Voltarelli, Vanessa A; Bozi, Luiz H M; Vieira, Janaina S; Brum, Patricia C; Bechara, Luiz R G
2017-12-15
The current study tested the hypotheses that 1) an acute bout of aerobic exercise impairs isolated skeletal muscle contractile properties and 2) N-acetylcysteine (a thiol antioxidant; NAC) administration can restore the impaired muscle contractility after exercise. At rest or immediately after an acute bout of aerobic exercise, extensor digitorum longus (EDL) and soleus muscles from male Wistar rats were harvested for ex vivo skeletal muscle contraction experiments. Muscles from exercised animals were incubated in Krebs Ringer's buffer in absence or presence of 20mM of NAC. Force capacity and fatigue properties were evaluated. Exercised EDL and soleus displayed lower force production across various stimulation frequencies (p<0.001), indicating that skeletal muscle force production was impaired after an acute bout of exercise. However, NAC treatment restored the loss of force production in both EDL and soleus after fatiguing exercise (p<0.05). Additionally, NAC treatment increased relative force production at different time points during a fatigue-induced protocol, suggesting that NAC treatment mitigates fatigue induced by successive contractions. NAC treatment improves force capacity and fatigue properties in ex vivo skeletal muscle from rats submitted to an acute bout of aerobic exercise. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of acute and 2-hour postphysical activity on the estimation of body fat made by the bod pod.
Harrop, Bradley J; Woodruff, Sarah J
2015-06-01
The Bod Pod has been found to be reliable/valid against several criterion methods, including hydrostatic weighing and dual-energy x-ray absorptiometry, and under different conditions, such as clothing, dehydrated states, and body temperature changes. However, questions remain regarding the effects of an acute bout of exercise. Therefore, the purpose was to determine the effects of an acute bout of exercise on the estimations made by the Bod Pod. Participants (15 men and 22 women) were of age 18-27 years and were currently exercising. Baseline Bod Pod measures were completed followed by a 30-minute cycling trial at 75% of maximum heart rate. Bod Pod measures were taken immediately after exercise and 2 hours after exercise. Differences between men and women were found at baseline between height (p < 0.001), weight (p < 0.001), body volume (BV; p < 0.001), and body density (Db; p < 0.001). Among men, body mass (p < 0.001), body fat percentage (%BF; p < 0.001), and BV (p < 0.001) decreased, whereas Db (p < 0.001) and body temperature (p < 0.001) increased directly after exercise; body mass (p < 0.001) and BV (p < 0.001) remained lower after 2 hours. Among women, body mass (p < 0.001) and BV (p < 0.001) decreased, whereas thoracic gas volume (p = 0.014) and temperature (p < 0.001) increased directly after exercise; body mass (p < 0.001) and BV (p < 0.001) remained lower, whereas %BF (p < 0.001) and Db (p = 0.006) remained higher 2 hours after exercise. These results suggest that a single bout of exercise immediately before Bod Pod testing seems to alter the estimate of %BF, and continues to affect the prediction 2 hours after exercise in women.
Experimental Effects of Acute Exercise and Meditation on Parameters of Cognitive Function.
Edwards, Meghan K; Loprinzi, Paul D
2018-05-29
Single bouts of aerobic exercise and meditation have been shown to improve cognitive function. Yet to be examined in the literature, we sought to examine the effects of a combination of acute bouts of aerobic exercise and meditation on cognitive function among young adults. Participants ( n = 66, mean (SD) age = 21 (2)) were randomly assigned to walk then meditate, meditate then walk, or to sit (inactive control). All walking and meditation bouts were 10 min in duration. Participants' cognition was monitored before and after the intervention using Identification, Set Shifting, Stroop, and Trail Making tasks. Additionally, a subjective assessment of cognitive function was implemented before and after the intervention. Significant group by time interaction effects were observed when examining the Stroop congruent trials ( P = 0.05). Post hoc paired t -tests revealed that reaction time significantly decreased from baseline to post-intervention in both combination groups ( P < 0.001 for both), but not in the control group ( P = 0.09). Regarding all other cognitive assessments, there were no significant group by time interaction effects ( P > 0.05). Cognitive function was not substantially affected by a combination of brief meditation and exercise, though there is evidence to suggest that this combination may have beneficial effects on certain aspects of cognition. Future work should be conducted to evaluate the influences of different doses of exercise and meditation on cognitive functioning.
The Acute Effect of Aerobic Exercise on Measures of Stress.
ERIC Educational Resources Information Center
Fort, Inza L.; And Others
The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…
Statistical Learning Is Not Affected by a Prior Bout of Physical Exercise.
Stevens, David J; Arciuli, Joanne; Anderson, David I
2016-05-01
This study examined the effect of a prior bout of exercise on implicit cognition. Specifically, we examined whether a prior bout of moderate intensity exercise affected performance on a statistical learning task in healthy adults. A total of 42 participants were allocated to one of three conditions-a control group, a group that exercised for 15 min prior to the statistical learning task, and a group that exercised for 30 min prior to the statistical learning task. The participants in the exercise groups cycled at 60% of their respective V˙O2 max. Each group demonstrated significant statistical learning, with similar levels of learning among the three groups. Contrary to previous research that has shown that a prior bout of exercise can affect performance on explicit cognitive tasks, the results of the current study suggest that the physiological stress induced by moderate-intensity exercise does not affect implicit cognition as measured by statistical learning. Copyright © 2015 Cognitive Science Society, Inc.
Evaluating Daily Load Stimulus Formulas in Relating Bone Response to Exercise
NASA Technical Reports Server (NTRS)
Pennline, James A.; Mulugeta, Lealem
2014-01-01
Six formulas representing what is commonly referred to as "daily load stimulus" are identified, compared and tested in their ability to relate skeletal mechanical loading to bone maintenance and osteogenic response. Particular emphasis is placed on exercise- induced skeletal loading and whether or not the formulas can adequately capture the known experimental observations of saturation of continuous cyclic loading, rest insertion between repetitions (cycles), recovery of osteogenic potential following saturation, and multiple shorter bouts versus a single long bout of exercise. To evaluate the ability of the formulas to capture these characteristics, a set of exercise scenarios with type of exercise bout, specific duration, number of repetitions, and rest insertion between repetitions is defined. The daily load values obtained from the formulas for the loading conditions of the set of scenarios is illustrated. Not all of the formulas form estimates of daily load in units of stress or in terms of strain at a skeletal site due to the loading force from a specific exercise prescription. The comparative results show that none of the formulas are able to capture all of the experimentally observed characteristics of cyclic loading. However, the enhanced formula presented by Genc et al. does capture several characteristics of cyclic loading that the others do not, namely recovery of osteogenic potential and saturation. This could be a basis for further development of mathematical formulas that more adequately approximates the amount of daily stress at a skeletal site that contributes to bone adaptation.
Repeated high-intensity exercise in professional rugby union.
Austin, Damien; Gabbett, Tim; Jenkins, David
2011-07-01
The aim of the present study was to describe the frequency, duration, and nature of repeated high-intensity exercise in Super 14 rugby union. Time-motion analysis was used during seven competition matches over the 2008 and 2009 Super 14 seasons; five players from each of four positional groups (front row forwards, back row forwards, inside backs, and outside backs) were assessed (20 players in total). A repeated high-intensity exercise bout was considered to involve three or more sprints, and/or tackles and/or scrum/ruck/maul activities within 21 s during the same passage of play. The range of repeated high-intensity exercise bouts for each group in a match was as follows: 11-18 for front row forwards, 11-21 for back row forwards, 13-18 for inside backs, and 2-11 for outside backs. The durations of the most intense repeated high-intensity exercise bouts for each position ranged from 53 s to 165 s and the minimum recovery periods between repeated high-intensity exercise bouts ranged from 25 s for the back row forwards to 64 s for the front row forwards. The present results show that repeated high-intensity exercise bouts vary in duration and activities relative to position but all players in a game will average at least 10 changes in activity in the most demanding bouts and complete at least one tackle and two sprints. The most intense periods of activity are likely to last as long as 120 s and as little as 25 s recovery may separate consecutive repeated high-intensity exercise bouts. The present findings can be used by coaches to prepare their players for the most demanding passages of play likely to be experienced in elite rugby union.
A single-bout of one-hour spinning exercise increases troponin T in healthy subjects.
Duttaroy, Smita; Thorell, Daniel; Karlsson, Lena; Börjesson, Mats
2012-02-01
While long-term endurance exercise is known to increase cardiac biomarkers, only a few studies on short-term exercise and these markers have been reported. The aim of this study was to investigate the acute effects of a one-hour bicycle spinning on cardiac biomarkers in healthy individuals. Serum levels of high-sensitive troponin T (TnT), creatinine kinase MB fraction (CK-MB), N-terminal pro-brain natriuretic peptide (NT-proBNP), creatinine kinase (CK) and myoglobin were measured at baseline, 1 and 24 hour after one hour of spinning exercise in ten healthy and fit (age 31.0 ± 6.6 years) individuals. TnT doubled one hour post-exercise (All values ≤ 5 - 9.7 ± 6.0 ng/L, p < 0.001). Two individuals had TnT levels above upper reference limit, URL (20.7 and 20.2 ng/L, URL = 12 ng/L). Myoglobin levels increased 72% one hour post-exercise (38 ± 20 - 66 ± 41 mg/L, p < 0.02). TnT and myoglobin levels returned to baseline 24 hour post-exercise. Serum levels of CK-MB, NT-proBNP and CK were not significantly changed. A single-bout of one-hour bicycle spinning transiently increases TnT and myoglobin in healthy subjects. Some subjects even have TnT release above URL. Thus, recently performed exercise also of short duration should be taken into consideration in the evaluation of acute chest pain with release of cardiac TnT.
Lai, Byron; Jeng, Brenda; Vrongistinos, Konstantinos; Jung, Taeyou
2015-06-01
The purpose of this study is to investigate the effects of a single-bout of aquatic treadmill walking (ATW) and overground treadmill walking (OTW) on the magnitude and duration of post-exercise ambulatory blood pressure (BP) in people post-stroke. Seven people post-stroke participated in a cross-sectional comparative study. BP was monitored for up to 9 hours after a 15-minute bout of ATW and OTW at approximately 70% of maximal oxygen consumption (VO2max), performed on separate days. Mean systolic and diastolic BP values were compared between both exercise conditions and a day without exercise (control). Three hours after OTW, mean SBP increased by 9% from pre-exercise baseline compared to a 3% decrease during the control day (P < 0.05). A similar trend was observed after the third hour of ATW (P = 0.06). However, ATW demonstrated a 3% overall decline in DBP after exercise compared to a 1% DBP increase of the control day (P < 0.05). Additionally, ATW showed a 6% reduction in mean systolic BP at the ninth hour post-exercise (P < 0.05) compared to baseline. Our results indicate people post-stroke can sustain sufficient walking intensities necessary to reduce BP following cardiovascular exercise. Also, these data suggest that ATW can elicit clinically meaningful reductions in DBP and night-time SBP. Thus, it is recommended for clinicians to consider ATW as a non-pharmaceutical means to regulate DBP and promote nighttime dipping of SBP in people post-stroke. However, caution is advised during the immediate hours after exercise, a period of possible BP inflation.
NOX2 Inhibition Impairs Early Muscle Gene Expression Induced by a Single Exercise Bout.
Henríquez-Olguín, Carlos; Díaz-Vegas, Alexis; Utreras-Mendoza, Yildy; Campos, Cristian; Arias-Calderón, Manuel; Llanos, Paola; Contreras-Ferrat, Ariel; Espinosa, Alejandra; Altamirano, Francisco; Jaimovich, Enrique; Valladares, Denisse M
2016-01-01
Reactive oxygen species (ROS) participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2) in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg) or vehicle for 3 days, were swim-exercised for 60 min. Phospho-p47(phox) levels were significantly upregulated by exercise in flexor digitorum brevis (FDB). Moreover, exercise significantly increased NOX2 complex assembly (p47(phox)-gp91(phox) interaction) demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx), citrate synthase (CS), mitochondrial transcription factor A (tfam) and interleukin-6 (IL-I6) in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p < 0.001). These results were corroborated using gp91-dstat in an in vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise.
NOX2 Inhibition Impairs Early Muscle Gene Expression Induced by a Single Exercise Bout
Henríquez-Olguín, Carlos; Díaz-Vegas, Alexis; Utreras-Mendoza, Yildy; Campos, Cristian; Arias-Calderón, Manuel; Llanos, Paola; Contreras-Ferrat, Ariel; Espinosa, Alejandra; Altamirano, Francisco; Jaimovich, Enrique; Valladares, Denisse M.
2016-01-01
Reactive oxygen species (ROS) participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2) in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg) or vehicle for 3 days, were swim-exercised for 60 min. Phospho–p47phox levels were significantly upregulated by exercise in flexor digitorum brevis (FDB). Moreover, exercise significantly increased NOX2 complex assembly (p47phox–gp91phox interaction) demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx), citrate synthase (CS), mitochondrial transcription factor A (tfam) and interleukin-6 (IL-I6) in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p < 0.001). These results were corroborated using gp91-dstat in an in vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise. PMID:27471471
ERIC Educational Resources Information Center
Labelle, Veronique; Bosquet, Laurent; Mekary, Said; Bherer, Louis
2013-01-01
Studies on the effects of acute bouts of cardiovascular exercise on cognitive performances show contradictory findings due to methodological differences (e.g., exercise intensity, cognitive function assessed, participants' aerobic fitness level, etc.). The present study assessed the acute effect of exercise intensity on cognition while controlling…
Exercise promotes alpha7 integrin gene transcription and protection of skeletal muscle.
Boppart, Marni D; Volker, Sonja E; Alexander, Nicole; Burkin, Dean J; Kaufman, Stephen J
2008-11-01
The alpha7beta1 integrin is increased in skeletal muscle in response to injury-producing exercise, and transgenic overexpression of this integrin in mice protects against exercise-induced muscle damage. The present study investigates whether the increase in the alpha7beta1 integrin observed in wild-type mice in response to exercise is due to transcriptional regulation and examines whether mobilization of the integrin at the myotendinous junction (MTJ) is a key determinant in its protection against damage. A single bout of downhill running exercise selectively increased transcription of the alpha7 integrin gene in 5-wk-old wild-type mice 3 h postexercise, and an increased alpha7 chain was detected in muscle sarcolemma adjacent to tendinous tissue immediately following exercise. The alpha7B, but not alpha7A isoform, was found concentrated and colocalized with tenascin-C in muscle fibers lining the MTJ. To further validate the importance of the integrin in the protection against muscle damage following exercise, muscle injury was quantified in alpha7(-/-) mice. Muscle damage was extensive in alpha7(-/-) mice in response to both a single and repeated bouts of exercise and was largely restricted to areas of high MTJ concentration and high mechanical force near the Achilles tendon. These results suggest that exercise-induced muscle injury selectively increases transcription of the alpha7 integrin gene and promotes a rapid change in the alpha7beta integrin at the MTJ. These combined molecular and cellular alterations are likely responsible for integrin-mediated attenuation of exercise-induced muscle damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heming, T.A.; Blumhagen, K.A.
The toxicity of thiocyanate (SCN{sup {minus}}) to fish is influenced by the level of fish activity. This is evidenced most dramatically when fish are forced to perform short bouts of strenuous swimming, such as occurs during capture avoidance. Strenuous exercise of SCN{sup {minus}}-exposed fish results in sudden death syndrome, characterized by the immediate onset of convulsions, loss of equilibrium and buoyancy, flaring of the operculum, darkening of the skin epithelium and, within minutes, cessation of ventilation and extreme rigor. The present study was undertaken to examine the accumulation and toxicity of SCN{sup {minus}} in rainbow trout (Salmo gairdneri), in relationmore » to exercise stress and ambient water quality. The effect of a single bout of exercise on blood SCN{sup {minus}} concentration was measured. In addition, effects of water hardness and Cl{sup {minus}} concentration on the accumulation of SCN{sup {minus}} in blood were determined.« less
Spillane, Mike; Schwarz, Neil; Willoughby, Darryn S
2015-06-01
The purpose of the study was to determine the effect of single bouts of lower-body (LB) and upper- and lower-body (ULB) resistance exercise on serum testosterone concentrations and the effects on muscle testosterone, dihydrotestosterone (DHT), androgen receptor (AR) protein content, and AR-DNA binding. A secondary purpose was to determine the effects on serum wingless-type MMTV integration site (Wnt4) levels and skeletal muscle β-catenin content. In a randomized cross-over design, exercise bouts consisted of a LB and ULB protocol, and each bout was separated by 1 week. Blood and muscle samples were obtained before exercise and 3 and 24h post-exercise; blood samples were also obtained at 0.5, 1, and 2 h post-exercise. Statistical analyses were performed by separate two-way factorial analyses of variance (ANOVA) with repeated measures. No significant differences from baseline were observed in serum total and free testosterone and skeletal muscle testosterone and DHT with either protocol (p>0.05). AR protein was significantly increased at 3 h post-exercise and decreased at 24 h post-exercise for ULB, whereas AR-DNA binding was significantly increased at 3 and 24h post-exercise (p<0.05). In response to ULB, serum Wnt4 was significantly increased at 0.5, 1, and 2 h post-exercise (p<0.05) and β-catenin was significantly increased at 3 and 24 h post-exercise (p<0.05). It was concluded that, despite a lack of increase in serum testosterone and muscle androgen concentrations from either mode of resistance exercise, ULB resistance exercise increased Wnt4/β-catenin signaling and AR-DNA binding. Copyright © 2015 Elsevier Inc. All rights reserved.
Acute-Phase Inflammatory Response to Single-Bout HIIT and Endurance Training: A Comparative Study
Kaspar, Felix; Jelinek, Herbert F.; Perkins, Steven; Al-Aubaidy, Hayder A.; deJong, Bev; Butkowski, Eugene
2016-01-01
Objective. This study compared acute and late effect of single-bout endurance training (ET) and high-intensity interval training (HIIT) on the plasma levels of four inflammatory cytokines and C-reactive protein and insulin-like growth factor 1. Design. Cohort study with repeated-measures design. Methods. Seven healthy untrained volunteers completed a single bout of ET and HIIT on a cycle ergometer. ET and HIIT sessions were held in random order and at least 7 days apart. Blood was drawn before the interventions and 30 min and 2 days after the training sessions. Plasma samples were analyzed with ELISA for the interleukins (IL), IL-1β, IL-6, and IL-10, monocyte chemoattractant protein-1 (MCP-1), insulin growth factor 1 (IGF-1), and C-reactive protein (CRP). Statistical analysis was with Wilcoxon signed-rank tests. Results. ET led to both a significant acute and long-term inflammatory response with a significant decrease at 30 minutes after exercise in the IL-6/IL-10 ratio (−20%; p = 0.047) and a decrease of MCP-1 (−17.9%; p = 0.03). Conclusion. This study demonstrates that ET affects the inflammatory response more adversely at 30 minutes after exercise compared to HIIT. However, this is compensated by a significant decrease in MCP-1 at two days associated with a reduced risk of atherosclerosis. PMID:27212809
Short, Kevin R.; Pratt, Lauren V.; Teague, April M.
2012-01-01
The study goals were to (1) establish the variability in postprandial glucose control in healthy young people consuming a mixed meal and, then (2) determine the acute and residual impact of a single exercise bout on postprandial glucose control. In study 1, 18 people completed two similar mixed meal trials and an intravenous glucose tolerance test (IVGTT). There were strong test-retest correlations for the post-meal area under the curve (AUC) for glucose, insulin, and Cpeptide (r = 0.73–0.83) and the Matsuda insulin sensitivity index (ISI, r = 0.76), and between meal and IVGTT-derived ISI (r = 0.83). In study 2, 11 untrained young adults completed 3 trials. One trial (No Ex) was completed after refraining from vigorous activity for ≥3 days. On the other 2 trials, a 45-min aerobic exercise bout was performed either 17-hours (Prior Day Ex) or 1-hour (Same Day Ex) before consuming the test meal. Compared to No Ex and Prior Day Ex, which did not differ from one another, there were lower AUCs on the Same Day Ex trial for glucose (6%), insulin (20%) and C-peptide (14%). Thus, a single moderate intensity exercise session can acutely improve glycemic control but the effect is modest and short-lived. PMID:22666560
Ambulatory blood pressure response to a bout of HIIT in metabolic syndrome patients.
Ramirez-Jimenez, M; Morales-Palomo, F; Pallares, J G; Mora-Rodriguez, Ricardo; Ortega, J F
2017-07-01
The effectiveness of exercise to lower blood pressure may depend on the type and intensity of exercise. We study the short-term (i.e., 14-h) effects of a bout of high-intensity aerobic interval training (HIIT) on blood pressure in metabolic syndrome (MetS) patients. Nineteen MetS patients (55.2 ± 7.3 years, 6 women) entered the study. Eight of them were normotensive and eleven hypertensive according to MetS threshold (≥130 mmHg for SBP and/or ≥85 mmHg for DBP). In the morning of 3 separated days, they underwent a cycling exercise bout of HIIT (>90% of maximal heart rate, ~85% VO 2max ), or a bout of isocaloric moderate-intensity continuous training (MICT; ~70% of maximal heart rate, ~60% VO 2max ), or a control no-exercise trial (REST). After exercise, ambulatory blood pressure (ABP; 14 h) was monitored, while subjects continued their habitual daily activities wearing a wrist-band activity monitor. No ABP differences were found for normotensive subjects. In hypertensive subjects, systolic ABP was reduced by 6.1 ± 2.2 mmHg after HIIT compared to MICT and REST (130.8 ± 3.9 vs. 137.4 ± 5.1 and 136.4 ± 3.8 mmHg, respectively; p < 0.05). However, diastolic ABP was similar in all three trials (77.2 ± 2.6 vs. 78.0 ± 2.6 and 78.9 ± 2.8 mmHg, respectively). Motion analysis revealed no differences among trials during the 14-h. This study suggests that the blood pressure reducing effect of a bout of exercise is influence by the intensity of exercise. A HIIT exercise bout is superior to an equivalent bout of continuous exercise when used as a non-pharmacological aid in the treatment of hypertension in MetS.
Purpura, Martin; Rathmacher, John A; Sharp, Matthew H; Lowery, Ryan P; Shields, Kevin A; Partl, Jeremy M; Wilson, Jacob M; Jäger, Ralf
2017-01-01
Oral adenosine-5'-triphosphate (ATP) administration has failed to increase plasma ATP levels; however, chronic supplementation with ATP has shown to increase power, strength, lean body mass, and blood flow in trained athletes. The purpose of this study was to investigate the effects of ATP supplementation on postexercise ATP levels and on muscle activation and excitability and power following a repeated sprint bout. In a double-blind, placebo-controlled, randomized design, 42 healthy male individuals were given either 400 mg of ATP as disodium salt or placebo for 2 weeks prior to an exercise bout. During the exercise bout, muscle activation and excitability (ME, ratio of power output to muscle activation) and Wingate test peak power were measured during all sprints. ATP and metabolites were measured at baseline, after supplementation, and immediately following exercise. Oral ATP supplementation prevented a drop in ATP, adenosine-5'-diphosphate (ADP), and adenosine-5'-monophosphate (AMP) levels postexercise (p < 0.05). No group by time interaction was observed for muscle activation. Following the supplementation period, muscle excitability significantly decreased in later bouts 8, 9, and 10 in the placebo group (-30.5, -28.3, and -27.9%, respectively; p < 0.02), whereas ATP supplementation prevented the decline in later bouts. ATP significantly increased Wingate peak power in later bouts compared to baseline (bout 8: +18.3%, bout 10: +16.3%). Oral ATP administration prevents exercise-induced declines in ATP and its metabolite and enhances peak power and muscular excitability, which may be beneficial for sports requiring repeated high-intensity sprinting bouts.
Acute bouts of wheel running decrease cocaine self-administration: Influence of exercise output.
Smith, Mark A; Fronk, Gaylen E; Zhang, Huailin; Magee, Charlotte P; Robinson, Andrea M
Exercise is associated with lower rates of drug use in human populations and decreases drug self-administration in laboratory animals. Most of the existing literature examining the link between exercise and drug use has focused on chronic, long-term exercise, and very few studies have examined the link between exercise output (i.e., amount of exercise) and drug self-administration. The purpose of this study was to examine the effects of acute bouts of exercise on cocaine self-administration, and to determine whether these effects were dependent on exercise output and the time interval between exercise and drug self-administration. Female rats were trained to run in automated running wheels, implanted with intravenous catheters, and allowed to self-administer cocaine on a fixed ratio (FR1) schedule of reinforcement. Immediately prior to each test session, subjects engaged in acute bouts of exercise in which they ran for 0, 30, or 60min at 12m/min. Acute bouts of exercise before test sessions decreased cocaine self-administration in an output-dependent manner, with the greatest reduction in cocaine intake observed in the 60-min exercise condition. Exercise did not reduce cocaine self-administration when wheel running and test sessions were separated by 12h, and exercise did not reduce responding maintained by food or responding during a saline substitution test. These data indicate that acute bouts of exercise decrease cocaine self-administration in a time- and output-dependent manner. These results also add to a growing body of literature suggesting that physical activity may be an effective component of drug abuse treatment programs. Copyright © 2016 Elsevier Inc. All rights reserved.
Smiles, William J; Conceição, Miguel S; Telles, Guilherme D; Chacon-Mikahil, Mara P T; Cavaglieri, Cláudia R; Vechin, Felipe C; Libardi, Cleiton A; Hawley, John A; Camera, Donny M
2017-02-01
Autophagy is an intracellular degradative system sensitive to hypoxia and exercise-induced perturbations to cellular bioenergetics. We determined the effects of low-intensity endurance-based exercise performed with blood-flow restriction (BFR) on cell signaling adaptive responses regulating autophagy and substrate metabolism in human skeletal muscle. In a randomized cross-over design, nine young, healthy but physically inactive males completed three experimental trials separated by 1 week of recovery consisting of either a resistance exercise bout (REX: 4 × 10 leg press repetitions, 70% 1-RM), endurance exercise (END: 30 min cycling, 70% VO 2peak ), or low-intensity cycling with BFR (15 min, 40% VO 2peak ). A resting muscle biopsy was obtained from the vastus lateralis 2 weeks prior to the first exercise trial and 3 h after each exercise bout. END increased ULK1 Ser757 phosphorylation above rest and BFR (~37 to 51%, P < 0.05). Following REX, there were significant elevations compared to rest (~348%) and BFR (~973%) for p38γ MAPK Thr180/Tyr182 phosphorylation (P < 0.05). Parkin content was lower following BFR cycling compared to REX (~20%, P < 0.05). There were no exercise-induced changes in select markers of autophagy following BFR. Genes implicated in substrate metabolism (HK2 and PDK4) were increased above rest (~143 to 338%) and BFR cycling (~212 to 517%) with END (P < 0.001). A single bout of low-intensity cycling with BFR is insufficient to induce intracellular "stress" responses (e.g., high rates of substrate turnover and local hypoxia) necessary to activate skeletal muscle autophagy signaling.
Preferential Type II Muscle Fiber Damage From Plyometric Exercise
Macaluso, Filippo; Isaacs, Ashwin W.; Myburgh, Kathryn H.
2012-01-01
Context Plyometric training has been successfully used in different sporting contexts. Studies that investigated the effect of plyometric training on muscle morphology are limited, and results are controversial with regard to which muscle fiber type is mainly affected. Objective To analyze the skeletal muscle structural and ultrastructural change induced by an acute bout of plyometric exercise to determine which type of muscle fibers is predominantly damaged. Design Descriptive laboratory study. Setting Research laboratory. Patients or Other Participants Eight healthy, untrained individuals (age = 22 ± 1 years, height = 179.2 ± 6.4 cm, weight = 78.9 ± 5.9 kg). Intervention(s) Participants completed an acute bout of plyometric exercise (10 sets of 10 squat-jumps with a 1-minute rest between sets). Main Outcome Measure(s) Blood samples were collected 9 days and immediately before and 6 hours and 1, 2, and 3 days after the acute intervention. Muscle samples were collected 9 days before and 3 days after the exercise intervention. Blood samples were analyzed for creatine kinase activity. Muscle biopsies were analyzed for damage using fluorescent and electron transmission microscopy. Results Creatine kinase activity peaked 1 day after the exercise bout (529.0 ± 317.8 U/L). Immunofluorescence revealed sarcolemmal damage in 155 of 1616 fibers analyzed. Mainly fast-twitch fibers were damaged. Within subgroups, 7.6% of type I fibers, 10.3% of type IIa fibers, and 14.3% of type IIx fibers were damaged as assessed by losses in dystrophin staining. Similar damage was prevalent in IIx and IIa fibers. Electron microscopy revealed clearly distinguishable moderate and severe sarcomere damage, with damage quantifiably predominant in type II muscle fibers of both the glycolytic and oxidative subtypes (86% and 84%, respectively, versus only 27% of slow-twitch fibers). Conclusions We provide direct evidence that a single bout of plyometric exercise affected mainly type II muscle fibers. PMID:22889657
Snow, Nicholas J.; Mang, Cameron S.; Roig, Marc; Boyd, Lara A.
2016-01-01
Introduction There is evidence for beneficial effects of acute and long-term exercise interventions on several forms of memory, including procedural motor learning. In the present study we examined how performing a single bout of continuous moderate intensity aerobic exercise would impact motor skill acquisition and retention in young healthy adults, compared to a period of rest. We hypothesized that exercise would improve motor skill acquisition and retention, compared to motor practice alone. Materials and Methods Sixteen healthy adults completed sessions of aerobic exercise or seated rest that were immediately followed by practice of a novel motor task (practice). Exercise consisted of 30 minutes of continuous cycling at 60% peak O2 uptake. Twenty-four hours after practice, we assessed motor learning with a no-exercise retention test (retention). We also quantified changes in offline motor memory consolidation, which occurred between practice and retention (offline). Tracking error was separated into indices of temporal precision and spatial accuracy. Results There were no differences between conditions in the timing of movements during practice (p = 0.066), at retention (p = 0.761), or offline (p = 0.966). However, the exercise condition enabled participants to maintain spatial accuracy during practice (p = 0.477); whereas, following rest performance diminished (p = 0.050). There were no significant differences between conditions at retention (p = 0.532) or offline (p = 0.246). Discussion An acute bout of moderate-intensity aerobic exercise facilitated the maintenance of motor performance during skill acquisition, but did not influence motor learning. Given past work showing that pairing high intensity exercise with skilled motor practice benefits learning, it seems plausible that intensity is a key modulator of the effects of acute aerobic exercise on changes in complex motor behavior. Further work is necessary to establish a dose-response relationship between aerobic exercise and motor learning. PMID:26901664
Freese, Eric C; Gist, Nicholas H; Acitelli, Rachelle M; McConnell, Whitni J; Beck, Catherine D; Hausman, Dorothy B; Murrow, Jonathan R; Cureton, Kirk J; Evans, Ellen M
2015-04-01
Individuals diagnosed with the metabolic syndrome (MetS) exhibit elevated postprandial lipemia (PPL). The aims of this investigation were to determine 1) if an acute bout of sprint interval training (SIT) attenuates PPL; and 2) if the attenuation of PPL following 6 wk of SIT is magnified compared with a single session of SIT prior to training in women at-risk for MetS (n = 45; 30-65 yr). Women were randomized to SIT (n = 22) or a nonexercise control (n = 23; CON) for 6 wk. Postprandial responses to a high-fat meal challenge (HFMC) were assessed in the CON group before (B-HFMC) and after (Post-HFMC) without prior exercise and in the SIT group at baseline (B-HFMC) without prior exercise, after an acute bout of SIT (four 30-s all-out sprints with 4-min recovery) prior to (Pre-HFMC), and after the 6-wk intervention (Post-HFMC). Responses to the HFMC were assessed by collecting venous blood samples in the fasted state and at 0, 30, 60, 120, and 180 min postprandial. Compared with baseline, an acute bout of SIT before (Pre-HFMC) and after the 6-wk intervention (Post-HFMC) significantly attenuated fasted TG (P < 0.05; 16.6% and 12.3%, respectively) and postprandial area under the curve (13.1% and 9.7%, respectively; tAUC) TG responses. There was no difference in fasted or tAUC TG responses between Pre-HFMC and Post-HFMC. SIT is an effective mode of exercise to reduce fasted and postprandial TG concentrations in women at-risk for MetS. Six weeks of SIT does not magnify the attenuation of PPL in response to a single session of SIT. Copyright © 2015 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Engelke, K. A.; Ludwig, D. A.; Doerr, D. F.
1996-01-01
Seven healthy men performed maximal exercise 24 h before the end of 16 days exposure to 6 degrees head-down tilt (HDT) to test the hypothesis that such an exercise technique could restore plasma volume (PV) at the end of a simulated space mission. Exercise consisted of supine cycling with graded work rates increasing by 16 W/min to volitional fatigue and required an average of 16 min. The experimental protocol was a standard cross-over design in which the order of treatment (exercise or control) was counterbalanced across all seven subjects. PV, fluid intake (ad libitum), urine output, renal function, and hormones associated with fluid homeostasis were measured before HDT, 24 h before the end of HDT just prior to exercise, and at the end of HDT 24 h after exercise. HDT reduced PV by 16% in both control and exercise conditions. Maximal exercise completely restored plasma volume within 24 h to 3.9 +/- 3.2% of pre-HDT levels despite continued HDT. Compared with control, exercise induced a 660-ml larger positive fluid balance because of greater fluid intake and reduced urine volume during the 24 h after exercise. These results suggest that one bout of maximal leg exercise before return from 16 days of spaceflight may be completely effective in stimulating thirst and restoring plasma volume to preflight levels.
The effect of an acute bout of exercise on executive function among individuals with schizophrenia.
Subramaniapillai, Mehala; Tremblay, Luc; Grassmann, Viviane; Remington, Gary; Faulkner, Guy
2016-12-30
Cognitive impairment represents a significant source of disability among individuals with schizophrenia. Therefore, the aim of this study was to investigate, at a proof-of-concept level, whether one single bout of exercise can improve executive function among these individuals. In this within-participant, counterbalanced experiment, participants with schizophrenia (n=36) completed two sessions (cycling at moderate-intensity and passively sitting) for 20min, with a one-week washout period between the two sessions. Participants completed the Wisconsin Card Sorting Test (WCST) before and after each session to measure changes in executive function. The inclusion of both sessions completed by each participant in the analyses revealed a significant carryover effect. Consequently, only the WCST scores from the first session completed by each participant was analyzed. There was a significant time by session interaction effect for non-perseverative errors. Post-hoc Tukey's HSD contrasts revealed a significant reduction in non-perseverative errors in the exercise group that was of moderate-to-large effect. Furthermore, there was also a moderate between-group difference at post-testing. Therefore, an acute bout of exercise can improve performance on an executive function task in individuals with schizophrenia. Specifically, the reduction in non-perseverative errors on the WCST may reflect improved attention, inhibition and overall working memory. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ferguson, Carrie; Wilson, John; Birch, Karen M.; Kemi, Ole J.
2013-01-01
The tolerable duration of continuous high-intensity exercise is determined by the hyperbolic Speed-tolerable duration (S-tLIM) relationship. However, application of the S-tLIM relationship to normalize the intensity of High-Intensity Interval Training (HIIT) has yet to be considered, with this the aim of present study. Subjects completed a ramp-incremental test, and series of 4 constant-speed tests to determine the S-tLIM relationship. A sub-group of subjects (n = 8) then repeated 4 min bouts of exercise at the speeds predicted to induce intolerance at 4 min (WR4), 6 min (WR6) and 8 min (WR8), interspersed with bouts of 4 min recovery, to the point of exercise intolerance (fixed WR HIIT) on different days, with the aim of establishing the work rate that could be sustained for 960 s (i.e. 4×4 min). A sub-group of subjects (n = 6) also completed 4 bouts of exercise interspersed with 4 min recovery, with each bout continued to the point of exercise intolerance (maximal HIIT) to determine the appropriate protocol for maximizing the amount of high-intensity work that can be completed during 4×4 min HIIT. For fixed WR HIIT tLIM of HIIT sessions was 399±81 s for WR4, 892±181 s for WR6 and 1517±346 s for WR8, with total exercise durations all significantly different from each other (P<0.050). For maximal HIIT, there was no difference in tLIM of each of the 4 bouts (Bout 1: 229±27 s; Bout 2: 262±37 s; Bout 3: 235±49 s; Bout 4: 235±53 s; P>0.050). However, there was significantly less high-intensity work completed during bouts 2 (153.5±40. 9 m), 3 (136.9±38.9 m), and 4 (136.7±39.3 m), compared with bout 1 (264.9±58.7 m; P>0.050). These data establish that WR6 provides the appropriate work rate to normalize the intensity of HIIT between subjects. Maximal HIIT provides a protocol which allows the relative contribution of the work rate profile to physiological adaptations to be considered during alternative intensity-matched HIIT protocols. PMID:24244266
An Acute Bout of Exercise Improves the Cognitive Performance of Older Adults.
Johnson, Liam; Addamo, Patricia K; Selva Raj, Isaac; Borkoles, Erika; Wyckelsma, Victoria; Cyarto, Elizabeth; Polman, Remco C
2016-10-01
There is evidence that an acute bout of exercise confers cognitive benefits, but it is largely unknown what the optimal mode and duration of exercise is and how cognitive performance changes over time after exercise. We compared the cognitive performance of 31 older adults using the Stroop test before, immediately after, and at 30 and 60 min after a 10 and 30 min aerobic or resistance exercise session. Heart rate and feelings of arousal were also measured before, during, and after exercise. We found that, independent of mode or duration of exercise, the participants improved in the Stroop Inhibition task immediately postexercise. We did not find that exercise influenced the performance of the Stroop Color or Stroop Word Interference tasks. Our findings suggest that an acute bout of exercise can improve cognitive performance and, in particular, the more complex executive functioning of older adults.
Effect of Acute Exercise on Fatigue in People with ME/CFS/SEID: A Meta-analysis.
Loy, Bryan D; O'Connor, Patrick J; Dishman, Rodney K
2016-10-01
A prominent symptom of myalgic encephalomyelitis, chronic fatigue syndrome, or systemic exertion intolerance disease (ME/CFS/SEID) is persistent fatigue that is worsened by physical exertion. Here the population effect of a single bout of exercise on fatigue symptoms in people with ME/CFS/SEID was estimated and effect moderators were identified. Google Scholar was systematically searched for peer-reviewed articles published between February 1991 and May 2015. Studies were included where people diagnosed with ME/CFS/SEID and matched control participants completed a single bout of exercise and fatigue self-reports were obtained before and after exercise. Fatigue means, standard deviations, and sample sizes were extracted to calculate effect sizes and the 95% confidence interval. Effects were pooled using a random-effects model and corrected for small sample bias to generate mean Δ. Multilevel regression modeling adjusted for nesting of effects within studies. Moderators identified a priori were diagnostic criteria, fibromyalgia comorbidity, exercise factors (intensity, duration, and type), and measurement factors. Seven studies examining 159 people with ME/CFS/SEID met inclusion criteria, and 47 fatigue effects were derived. The mean fatigue effect was Δ = 0.73 (95% confidence interval = 0.24-1.23). Fatigue increases were larger for people with ME/CFS/SEID when fatigue was measured 4 h or more after exercise ended rather than during or immediately after exercise ceased. This preliminary evidence indicates that acute exercise increases fatigue in people with ME/CFS/SEID more than that in control groups, but effects were heterogeneous between studies. Future studies with no-exercise control groups of people with ME/CFS/SEID are needed to obtain a more precise estimate of the effect of exercise on fatigue in this population.
Variability in Muscle Damage after Eccentric Exercise and the Repeated Bout Effect
ERIC Educational Resources Information Center
Chen, Trevor C.
2006-01-01
The first purpose of this study was to determine a possible explanation for the variability in the response to eccentric exercise by having participants repeat the same exercise 1 year apart. The second purpose was to examine whether initial injury in response to eccentric exercise was associated with the extent of the repeated bout effect (RBE).…
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Engelke, K. A.; Doerr, D. F.
1999-01-01
Development of orthostatic hypotension and intolerance in astronauts who return to earth following a spaceflight mission represents a significant operational concern to NASA. Reduced plasma volume, vascular resistance, and baroreflex responsiveness following exposure to actual and ground-based analogs of microgravity have been associated with orthostatic instability, suggesting that these mechanisms may contribute alone or in combination to compromise of blood pressure regulation after spaceflight. It therefore seems reasonable that development of procedures designed to reverse or restore the effects of microgravity on regulatory mechanisms of blood volume, vascular resistance and cardiac function should provide some protection against postflight orthostatic intolerance. Several investigations have provided evidence that a single bout of exhaustive dynamic exercise enhances functions of mechanisms responsible for blood pressure stability. Therefore, the purpose of our research project was to conduct a series of experiments using ground-based analogs of reduced gravity (i.e., prolonged restriction to the upright standing posture) in human subjects to investigate the hypothesis that a single bout of dynamic maximal exercise would restore blood volume, vascular resistance and cardiac function and improve blood pressure stability.
Campbell, John P; Turner, James E
2018-01-01
Epidemiological evidence indicates that regular physical activity and/or frequent structured exercise reduces the incidence of many chronic diseases in older age, including communicable diseases such as viral and bacterial infections, as well as non-communicable diseases such as cancer and chronic inflammatory disorders. Despite the apparent health benefits achieved by leading an active lifestyle, which imply that regular physical activity and frequent exercise enhance immune competency and regulation, the effect of a single bout of exercise on immune function remains a controversial topic. Indeed, to this day, it is perceived by many that a vigorous bout of exercise can temporarily suppress immune function. In the first part of this review, we deconstruct the key pillars which lay the foundation to this theory-referred to as the "open window" hypothesis-and highlight that: (i) limited reliable evidence exists to support the claim that vigorous exercise heightens risk of opportunistic infections; (ii) purported changes to mucosal immunity, namely salivary IgA levels, after exercise do not signpost a period of immune suppression; and (iii) the dramatic reductions to lymphocyte numbers and function 1-2 h after exercise reflects a transient and time-dependent redistribution of immune cells to peripheral tissues, resulting in a heightened state of immune surveillance and immune regulation, as opposed to immune suppression. In the second part of this review, we provide evidence that frequent exercise enhances-rather than suppresses-immune competency, and highlight key findings from human vaccination studies which show heightened responses to bacterial and viral antigens following bouts of exercise. Finally, in the third part of this review, we highlight that regular physical activity and frequent exercise might limit or delay aging of the immune system, providing further evidence that exercise is beneficial for immunological health. In summary, the over-arching aim of this review is to rebalance opinion over the perceived relationships between exercise and immune function. We emphasize that it is a misconception to label any form of acute exercise as immunosuppressive, and, instead, exercise most likely improves immune competency across the lifespan.
Winn, Nathan C.; Grunewald, Zachary I.; Liu, Ying; Heden, Timothy D.; Nyhoff, Lauren M.; Kanaley, Jill A.
2017-01-01
Background and Purpose Irisin is an exercise-responsive myokine that has been proposed to exert anti-obesity benefits; yet its response during exercise in obese women is not described. This study characterized plasma irisin levels during a single bout of afternoon isocaloric-exercise of different intensities (moderate- vs high-intensity) in obese females. Methods Eleven obese females participated in 3 randomized study days beginning at 1600h: 1) no exercise (NoEx), 2) moderate exercise (ModEx; 55%VO2max) and 3) high intensity interval exercise (IntEx; 4 min (80%VO2max)/3 min (50% VO2max). Frequent blood samples were analyzed for glucose and lactate (whole-blood), and insulin, c-peptide, glucagon, and irisin (plasma) throughout 190 min of testing. Results Plasma irisin increased above baseline during ModEx and IntEx (P<0.05), but not NoEx (P>0.05). Peak irisin levels during ModEx and IntEx exercise were 11.9± 3.4% and 12.3 ± 4.1% relative to baseline (P<0.05), respectively, with no differences between exercise intensities (P>0.05). Irisin levels remained elevated above resting for 125 minutes post-exercise during ModEx, whereas levels returned to baseline within 15 minutes post-exercise during IntEx. Similarly, no associations were found between plasma irisin levels and circulating lactate, glucose, insulin, c-peptide, or glucagon among study days (P>0.05). However, there was an inverse association between basal irisin and lean mass (r = -0.70, P = 0.01). Conclusion A single bout of moderate and high intensity afternoon exercise induces modest increases in circulating irisin concentrations during exercise; however the regulation post-exercise appears to be dimorphic between exercise intensity in obese females. Future studies are needed to compare morning and afternoon exercise on irisin secretion. PMID:28125733
The Influence of Hydration on Anaerobic Performance: A Review
ERIC Educational Resources Information Center
Kraft, Justin A.; Green, James M.; Bishop, Phillip A.; Richardson, Mark T.; Neggers, Yasmin H.; Leeper, James D.
2012-01-01
This review examines the influence of dehydration on muscular strength and endurance and on single and repeated anaerobic sprint bouts. Describing hydration effects on anaerobic performance is difficult because various exercise modes are dominated by anaerobic energy pathways, but still contain inherent physiological differences. The critical…
Lee, SoJung; Burns, Stephen F.; White, David; Kuk, Jennifer L.; Arslanian, Silva
2014-01-01
Objective We examined the effects of acute exercise on postprandial triglyceride (TG) metabolism following a high fat meal in overweight black vs. white adolescents. Design and Subjects Twenty-one black and 17 white adolescents (12-18 yrs, BMI >85th percentile) were evaluated twice, during control versus exercise trials, 1-4 weeks apart, in a counterbalanced randomized design. In the control trial, participants performed no exercise on day 1. In the exercise trial, participants performed a single bout of 60 min exercise (50% VO2peak) on a cycle ergometer on day 1. On day 2 of both trials, participants consumed a high-fat breakfast (70% calories from fat) and blood was sampled for TG concentration in the fasted state and for 6 hrs postprandially. Results There was a significant main effect of condition on postprandial peak TG concentration (P=0.01) and TG-area under the curve (AUC) (P=0.003), suggesting that independent of race, peak TG and TG-AUC was lower in the exercise trial vs. control trial. Including Tanner stage, gender, total fat (kg) and VAT as independent variables, stepwise multiple regression analyses revealed that in whites, VAT was the strongest (P<0.05) predictor of postprandial TG-AUC explaining 56% and 25% of the variances in TG-AUC in the control and exercise trials, respectively. In blacks, VAT was not associated with postprandial TG-AUC independent of trial. Conclusion A single bout of aerobic exercise preceding a high fat meal is beneficial to reduce postprandial TG concentrations in overweight white adolescents to a greater extent than black adolescents, particularly those with increased visceral adiposity. PMID:23507997
Lee, S; Burns, S F; White, D; Kuk, J L; Arslanian, S
2013-07-01
We examined the effects of acute exercise on postprandial triglyceride (TG) metabolism following a high-fat meal in overweight black vs white adolescents. Twenty-one black and 17 white adolescents (12-18 yrs, body mass index 85th percentile) were evaluated twice, during control versus exercise trials, 1-4 weeks apart, in a counterbalanced randomized design. In the control trial, participants performed no exercise on day 1. In the exercise trial, participants performed a single bout of 60-min exercise (50% VO2 peak) on a cycle ergometer on day 1. On day 2 of both trials, participants consumed a high-fat breakfast (70% calories from fat) and blood was sampled for TG concentration in the fasted state and for 6 h postprandially. There was a significant main effect of condition on postprandial peak TG concentration (P=0.01) and TG area under the curve (AUC) (P=0.003), suggesting that independent of race, peak TG and TG-AUC was lower in the exercise trial vs control trial. Including Tanner stage, gender, total fat (kg) and visceral adipose tissue (VAT) as independent variables, stepwise multiple regression analyses revealed that in whites, VAT was the strongest (P<0.05) predictor of postprandial TG-AUC, explaining 56 and 25% of the variances in TG-AUC in the control and exercise trials, respectively. In blacks, VAT was not associated with postprandial TG-AUC, independent of trial. A single bout of aerobic exercise preceding a high-fat meal is beneficial to reduce postprandial TG concentrations in overweight white adolescents to a greater extent than black adolescents, particularly those with increased visceral adiposity.
Medford, Heidi M.; Porter, Karen
2013-01-01
Cardiac hypertrophy induced by pathological stimuli is regulated by a complex formed by the repressor element 1-silencing transcription factor (REST) and its corepressor mSin3A. We previously reported that hypertrophic signaling is blunted by O-linked attachment of β-N-acetylglucosamine (O-GlcNAc) to proteins. Regular exercise induces a physiological hypertrophic phenotype in the heart that is associated with decreased O-GlcNAc levels, but a link between O-GlcNAc, the REST complex, and initiation of exercise-induced cardiac hypertrophy is not known. Therefore, mice underwent a single 15- or 30-min bout of moderate- to high-intensity treadmill running, and hearts were harvested immediately and compared with sedentary controls. Cytosolic O-GlcNAc was lower (P < 0.05) following 15 min exercise with no differences in nuclear levels (P > 0.05). There were no differences in cytosolic or nuclear O-GlcNAc levels in hearts after 30 min exercise (P > 0.05). Cellular compartment levels of O-GlcNAc transferase (OGT, the enzyme that removes the O-GlcNAc moiety from proteins), REST, mSin3A, and histone deacetylases (HDACs) 1, 2, 3, 4, and 5 were not changed with exercise. Immunoprecipitation revealed O-GlcNAcylation of OGT and HDACs 1, 2, 4, and 5 that was not changed with acute exercise; however, exercised hearts did exhibit lower interactions between OGT and REST (P < 0.05) but not between OGT and mSin3A. These data suggest that hypertrophic signaling in the heart may be initiated by as little as 15 min of exercise via intracellular changes in protein O-GlcNAcylation distribution and reduced interactions between OGT and the REST chromatin repressor. PMID:23624624
Role of beta-alanine supplementation on muscle carnosine and exercise performance.
Artioli, Guilherme Giannini; Gualano, Bruno; Smith, Abbie; Stout, Jeffrey; Lancha, Antonio Herbert
2010-06-01
In this narrative review, we present and discuss the current knowledge available on carnosine and beta-alanine metabolism as well as the effects of beta-alanine supplementation on exercise performance. Intramuscular acidosis has been attributed to be one of the main causes of fatigue during intense exercise. Carnosine has been shown to play a significant role in muscle pH regulation. Carnosine is synthesized in skeletal muscle from the amino acids l-histidine and beta-alanine. The rate-limiting factor of carnosine synthesis is beta-alanine availability. Supplementation with beta-alanine has been shown to increase muscle carnosine content and therefore total muscle buffer capacity, with the potential to elicit improvements in physical performance during high-intensity exercise. Studies on beta-alanine supplementation and exercise performance have demonstrated improvements in performance during multiple bouts of high-intensity exercise and in single bouts of exercise lasting more than 60 s. Similarly, beta-alanine supplementation has been shown to delay the onset of neuromuscular fatigue. Although beta-alanine does not improve maximal strength or VO2max, some aspects of endurance performance, such as anaerobic threshold and time to exhaustion, can be enhanced. Symptoms of paresthesia may be observed if a single dose higher than 800 mg is ingested. The symptoms, however, are transient and related to the increase in plasma concentration. They can be prevented by using controlled release capsules and smaller dosing strategies. No important side effect was related to the use of this amino acid so far. In conclusion, beta-alanine supplementation seems to be a safe nutritional strategy capable of improving high-intensity anaerobic performance.
NASA Technical Reports Server (NTRS)
Colliander, E. B.; Dudley, G. A.; Tesch, P. A.
1988-01-01
Force output and fatigue and recovery patterns were studied during intermittent short-term exercise. 27 men performed three bouts of 30 maximal unilateral knee extensions on 2 different occasions. Blood flow was maintained or occluded during recovery periods (60 s). Blood flow was restricted by inflating a pneumatic cuff placed around the proximal thigh. Muscle biopsies from vastus lateralis were analyzed for identification of fast twitch (FT) and slow twitch (ST) fibers and relative FT area. Peak torque decreased during each bout of exercise and more when blood flow was restricted during recovery. Initial peak torque (IPT) and average peak torque (APT) decreased over the three exercise bouts. This response was 3 fold greater without than with blood flow during recovery. IPT and APT decreased more in individuals with mainly FT fibers than in those with mainly ST fibers. It is suggested that performance during repeated bouts of maximal concentric contractions differs between individuals with different fiber type composition. Specifically, in high intensity, intermittent exercise with emphasis on anaerobic energy release a high FT composition may not necessarily be advantageous for performance.
Freire, Raul; Farinatti, Paulo; Cunha, Felipe; Silva, Brenno; Monteiro, Walace
2017-07-01
This study investigated cardiorespiratory responses and rating of perceived exertion (RPE) during prolonged walking and running exercise performed at the walk-run transition speed (WRTS) in untrained healthy elderly men. 20 volunteers (mean±SE, age: 68.4±1.2 yrs; height: 170.0±0.02 cm; body mass: 74.7±2.3 kg) performed the following bouts of exercise: a) maximal cardiopulmonary exercise test (CPET); b) specific protocol to detect WRTS; and c) two 30-min walking and running bouts at WRTS. Expired gases were collected during exercise bouts via the Ultima CardiO 2 metabolic analyzer. Compared to walking, running at the WRTS resulted in higher oxygen uptake (>0.27 L·min -1 ), pulmonary ventilation (>7.7 L·min -1 ), carbon dioxide output (>0.23 L·min -1 ), heart rate (>15 beats·min -1 ), oxygen pulse (>0.88 15 mL·beats -1 ), energy expenditure (>27 kcal) and cost of oxygen transport (>43 mL·kg -1 ·km -1 ·bout -1 ). The increase of overall and local RPEs with exercise duration was similar across locomotion modes (P<0.001). In all participants, %HRR and %VO 2 R throughout walking and running bouts were around or above the gas exchange threshold. In conclusion, elderly men exhibited higher cardiorespiratory responses during 30-min bouts of running than walking at WRTS. Nevertheless, walking corresponded to relative metabolic intensities compatible with preservation or improvement of cardiorespiratory fitness and should be preferable over running at WRTS in the untrained elderly characterized by poor fitness and reduced exercise tolerance. © Georg Thieme Verlag KG Stuttgart · New York.
Potential benefits of maximal exercise just prior to return from weightlessness
NASA Technical Reports Server (NTRS)
Convertino, Victor A.
1987-01-01
The purpose of this study was to determine whether performance of a single maximal bout of exercise during weightlessness within hours of return to earth would enhance recovery of aerobic fitness and physical work capacities under a 1G environment. Ten healthy men were subjected to a 10-d bedrest period in the 6-deg headdown position. A graded maximal supine cycle ergometer test was performed before and at the end of bedrest to simulate exercise during weightlessness. Following 3 h of resumption of the upright posture, a second maximal exercise test was performed on a treadmill to measure work capacity under conditions of 1G. Compared to before bedrest, peak oxygen consumption, V(O2), decreased by 8.7 percent and peak heart rate (HR) increased by 5.6 percent in the supine cycle test at the end of bedrest. However, there were no significant changes in peak V(O2) and peak HR in the upright treadmill test following bedrest. These data suggest that one bout of maximal leg exercise prior to return from 10 d of weightlessness may be adequate to restore preflight aerobic fitness and physical work capacity.
ERIC Educational Resources Information Center
Chen, C.-C.; Ringenbach, S. D. R.; Crews, D.; Kulinna, P. H.; Amazeen, Eric L.
2015-01-01
Background: This study was aimed at investigating the impact of a single exercise intervention on executive function in young adults with Down syndrome (DS). Methods: Considering the relations among executive function, physical and mental health and early onset of Alzheimer's disease in this population, we tested three components of executive…
Strength Recovery Following Rhythmic or Sustained Exercise as a Function of Time.
ERIC Educational Resources Information Center
Kearney, Jay T.
The relative rates of strength recovery subsequent to bouts of rhythmic or sustained isometric exercise were investigated. The 72 undergraduates who served as subjects were tested seven times within the framework of a repeated measures design. Each testing session involved two bouts of either rhythmic or sustained isometric exercise separated by a…
Ensari, Ipek; Sandroff, Brian M.
2016-01-01
Background: Little is known about the acute or immediate effects of walking exercise and yoga on mood in people with multiple sclerosis (MS). Such an examination is important for identifying an exercise modality for inclusion in exercise-training interventions that yields mood benefits in MS. We examined the effects of single bouts of treadmill walking and yoga compared with a quiet, seated-rest control condition on acute mood symptoms in MS. Methods: Twenty-four participants with MS completed 20 minutes of treadmill walking, yoga, or quiet rest in a randomized, counterbalanced order with 1 week between sessions. Participants completed the Profile of Mood States questionnaire before and immediately after each condition. Total mood disturbance (TMD) and the six subscales of the Profile of Mood States were analyzed using repeated-measures analysis of variance and paired-samples t tests. Results: There was a significant condition × time interaction on TMD scores (ηp2 = 0.13). Walking and yoga conditions yielded comparable reductions in TMD scores. There was a significant condition × time interaction on vigor (ηp2 = 0.23) whereby walking but not yoga yielded an improvement in vigor. There was a significant main effect of time on anger, confusion, depression, and tension (P < .05) but not on fatigue. Conclusions: Walking and yoga yielded similar improvements in overall acute mood symptoms, and walking improved feelings of vigor. These effects should be further investigated in long-term exercise-training studies. PMID:26917992
Hsu, Mei-Chich; Chien, Kuei-Yu; Hsu, Cheng-Chen; Chung, Chia-Jung; Chan, Kuei-Hui; Su, Borcherng
2011-04-30
This study investigated the effects of BCAA, arginine and carbohydrate combined beverage (BCAA Drink) on biochemical responses and psychological conditions during recovery after a single bout of exhaustive exercise. Fourteen healthy males were assigned to drink either BCAA Drink (BA trial) or placebo (PL trial) on two sessions separated by 2 weeks. Blood samples of each subject were collected before exercise, 0, 10, 20, 40, 60, 120 min and 24 h after exercise. No significant differences in the levels of lactate, ammonia, creatine kinase and glycerol between the two groups were observed at any of the time points. However, the levels of glucose and insulin were significantly higher in the BA trial as compared to those in the PL trial at the 40 and 60 min recovery points. Furthermore, the testosterone-to-cortisol ratio at the 120 min recovery point was significantly higher in the BA trial as compared to that in the PL trial. The results indicate the occurrence of anabolic response during the recovery period. The benefit of BCAA Drink was also performed by Profile of Mood States to assess the psychological condition. Fatigue score increased immediately at exhaustion in both groups, but the decrease in the fatigue score at 120 min recovery point was significant only in BA trial. These data indicate that a single bout of exhaustive exercise enhanced the feeling of fatigue. The detrimental consequence was reduced by an ingestion of BCAA Drink.
Role of Exercise and Nutrition in the Prevention of Sarcopenia.
Makanae, Yuhei; Fujita, Satoshi
2015-01-01
The age-associated loss of skeletal muscle mass and strength (sarcopenia) has been shown to increase the risk of injury due to falls and incidence of metabolic complications including insulin resistance and diabetes, which subsequently becomes a significant factor to disability among the elderly population. Nutrient intake is the most important anabolic stimulus for skeletal muscle. Specifically, the amino acid leucine and meal-induced insulin both independently stimulate muscle protein synthesis. However, age-specific changes in muscle anabolic responses to leucine become apparent when sub-maximal amounts of amino acids are administered in older subjects. Furthermore, insulin resistance of muscle protein metabolism with aging has been demonstrated in healthy non-diabetic older subjects. Resistance exercise is another anabolic stimulus which increases myofibrillar muscle protein synthesis in both young and older individuals. The increased muscle anabolism is apparent within 2-3 h after a single bout of heavy resistance exercise and remains elevated up to 2 d following the exercise. The mTOR signaling pathway in skeletal muscle is associated with an increased rate of muscle protein synthesis during the early recovery phase following a bout of resistance exercise. Finally, recent evidence on the cumulative effect of resistance exercise in combination with nutritional supplement on muscle protein metabolism will be discussed to propose a possible preventative measure against sarcopenia.
Fatigue Exacerbation by Interval or Continuous Exercise in Chronic Fatigue Syndrome.
Sandler, Carolina X; Lloyd, Andrew R; Barry, Benjamin K
2016-10-01
The objective of this study is to determine whether the typical exacerbation of symptoms in patients with chronic fatigue syndrome (CFS) after a bout of exercise differs between high-intensity interval training (HIIT) or continuous (CONT) aerobic exercise of the same duration and mechanical work. Participants with specialist-diagnosed CFS performed two 20-min bouts of cycling in a randomized crossover study. The bouts were either moderate-intensity continuous (70% age-predicted HR maximum) or high-intensity interval exercise, separated by at least 2 wk. Self-report questionnaires capturing fatigue, the related symptoms, and actigraphy were collected across 2 d before and 4 d after the exercise. Comparisons between exercise bouts were made using paired sample t-tests. Fourteen moderately affected participants who were unable to work, but not bed bound, completed the study (nine female, 32 ± 10 yr, 67 ± 11 kg). Mechanical work was matched successfully between the exercise bouts (HIIT, 83,037, vs CONT, 83,348 J, P = 0.84). Mean HR (HIIT, 76% ± 5%, vs CONT, 73% ± 6% age-predicted HR maximum, P < 0.05) and RPE (6-20) in the legs (HIIT, 15.4 ± 1.4, vs CONT, 13.2 ± 1.2, P < 0.001) were higher for the interval compared with continuous exercise. Mean fatigue scores (0-10) were similar before each exercise challenge (HIIT, 4.5 ± 1.8, vs CONT, 4.1 ± 1.7, P = 0.43). Participants reported an increase in fatigue scores after both challenges (mean difference: HIIT, 1.0 ± 1.3, P < 0.01; CONT, 1.5 ± 0.7, P < 0.001), but these exacerbations in fatigue were not statistically or clinically different (P = 0.20). High-intensity interval exercise did not exacerbate fatigue any more than continuous exercise of comparable workload. This finding supports evaluation of HIIT in graded exercise therapy interventions for patients with CFS.
The effect of exercise on affective and self-efficacy responses in older and younger women.
Barnett, Fiona
2013-01-01
This study examined the self-efficacy and affective responses to an acute exercise bout in sedentary older and younger women to determine whether aging has an effect on affective states. Twenty-five sedentary younger (mean age = 19.9 yrs) and 25 older (mean age = 55.7 yrs) women completed an acute bout of exercise. Affective responses were measured before, during, and immediately following exercise. Self-efficacy responses were measured before and immediately following exercise. Positive engagement, revitalization, tranquility, Felt Arousal and Feeling Scale responses, and self-efficacy were all higher immediately following compared with before or during exercise for both groups of women. In addition, older women experienced higher overall positive engagement and lower physical exhaustion compared with younger women as well as higher tranquility and Feeling Scale responses immediately following exercise. This investigation found that an acute bout of moderate-intensity exercise produced more positive and fewer negative affective states in both younger and older women.
Farabi, Sarah S; Carley, David W; Smith, Donald; Quinn, Lauretta
2015-09-01
We measured the effects of a single bout of exercise on diurnal and nocturnal oxidative stress and glycaemic variability in obese subjects with type 2 diabetes mellitus or impaired glucose tolerance versus obese healthy controls. Subjects (in random order) performed either a single 30-min bout of moderate-intensity exercise or remained sedentary for 30 min at two separate visits. To quantify glycaemic variability, standard deviation of glucose (measured by continuous glucose monitoring system) and continuous overlapping net glycaemic action of 1-h intervals (CONGA-1) were calculated for three 12-h intervals during each visit. Oxidative stress was measured by 15-isoprostane F(2t) levels in urine collections for matching 12-h intervals. Exercise reduced daytime glycaemic variability (ΔCONGA-1 = -12.62 ± 5.31 mg/dL, p = 0.04) and urinary isoprostanes (ΔCONGA-1 = -0.26 ± 0.12 ng/mg, p = 0.04) in the type 2 diabetes mellitus/impaired glucose tolerance group. Daytime exercise-induced change in urinary 15-isoprostane F(2t) was significantly correlated with both daytime standard deviation (r = 0.68, p = 0.03) and with subsequent overnight standard deviation (r = 0.73, p = 0.027) in the type 2 diabetes mellitus/impaired glucose tolerance group. Exercise significantly impacts the relationship between diurnal oxidative stress and nocturnal glycaemic variability in individuals with type 2 diabetes mellitus/impaired glucose tolerance. © The Author(s) 2015.
Intensity and duration of intermittent exercise and recovery during a soccer match.
Orendurff, Michael S; Walker, Jason D; Jovanovic, Mladen; Tulchin, Kirsten L; Levy, Morris; Hoffmann, David K
2010-10-01
Soccer is a sport consisting of high-intensity intermittent exercise, with players making forays across their anaerobic threshold for tactical advantage followed by periods of recovery. The intensity and duration of these work and recovery bouts were defined during a men's soccer match using StepWatch Activity Monitors recording step rate for each 3-second period. The data were coded by custom software to separate work bouts (step rate ≥ 4) from recovery bouts (step rate < 4), and a square wave of the pattern of bouts was plotted for 5 players: center forward, central midfielder, wing midfielder, central defender, and wing defender. Four values were calculated for each work and recovery bout identified: duration, and mean, maximum, and minimum step rate (intensity). This novel technique provided detailed graphical information on the duration and exercise intensity of each position throughout the match. The center midfielder was able to sustain work and recovery bout characteristics throughout the match and appeared to recover at higher intensity levels than other players. The forward showed the consequence of accumulated fatigue late in the match and was unable to sustain the duration of high-intensity work bouts observed earlier in the match. The central defender attenuated the intensity of his work and recovery bouts late in the match staying closer to a more moderate work rate with fewer high- or low-intensity bouts. Having objective data qualifying players' work and recovery bout characteristics might prove valuable for tactical decision making, substitution timing, and for planning future training sessions.
Zafeiridis, Andreas; Chatziioannou, Anastasia Chrysovalantou; Sarivasiliou, Haralambos; Kyparos, Antonios; Nikolaidis, Michalis G; Vrabas, Ioannis S; Pechlivanis, Alexandros; Zoumpoulakis, Panagiotis; Baskakis, Constantinos; Dipla, Konstantina; Theodoridis, Georgios A
2016-12-02
The overall metabolic/energetic stress that occurs during an acute bout of exercise is proposed to be the main driving force for long-term training adaptations. Continuous and high-intensity interval exercise protocols (HIIE) are currently prescribed to acquire the muscular and metabolic benefits of aerobic training. We applied 1 H NMR-based metabonomics to compare the overall metabolic perturbation and activation of individual bioenergetic pathways of three popular aerobic exercises matched for effort/strain. Nine men performed continuous, long-interval (3 min), and short-interval (30 s) bouts of exercise under isoeffort conditions. Blood was collected before and after exercise. The multivariate PCA and OPLS-DA models showed a distinct separation of pre- and postexercise samples in three protocols. The two models did not discriminate the postexercise overall metabolic profiles of the three exercise types. Analysis focused on muscle bioenergetic pathways revealed an extensive upregulation of carbohydrate-lipid metabolism and the TCA cycle in all three protocols; there were only a few differences among protocols in the postexercise abundance of molecules when long-interval bouts were performed. In conclusion, continuous and HIIE exercise protocols, when performed with similar effort/strain, induce comparable global metabolic response/stress despite their marked differences in work-bout intensities. This study highlights the importance of NMR metabonomics in comprehensive monitoring of metabolic consequences of exercise training in the blood of athletes and exercising individuals.
Acute Hypotension after High-Intensity Interval Exercise in Metabolic Syndrome Patients.
Morales-Palomo, Felix; Ramirez-Jimenez, Miguel; Ortega, Juan Fernando; Pallarés, Jesús G; Mora-Rodriguez, Ricardo
2017-07-01
The purpose of this study was to compare the magnitude of post-exercise hypotension (PEH) after a bout of cycling exercise using high-intensity interval training (HIIT) in comparison to a bout of traditional moderate-intensity continuous exercise (CE). After supine rest 14 obese (31±1 kg·m -2 ) middle-age (57±2 y) metabolic syndrome patients (50% hypertensive) underwent a bout of HIIT or a bout of CE in a random order and then returned to supine recovery for another 45 min. Exercise trials were isocaloric and compared to a no-exercise trial (CONT) of supine rest for a total of 160 min. Before and after exercise we assessed blood pressure (BP), heart rate (HR), cardiac output (Q), systemic vascular resistance (SVR), intestinal temperature (T INT ), forearm skin blood flow (S K BF) and percent dehydration. HIIT produced a larger post-exercise reduction in systolic blood pressure than CE in the hypertensive group (-20±6 vs. -5±3 mmHg) and in the normotensive group (-8±3 vs. -3±2 mmHg) while HIIT reduced SVR below CE (P<0.05). Percent dehydration was larger after HIIT, and post-exercise T INT and S K BF increased only after HIIT (all P<0.05). Our findings suggest that HIIT is a superior exercise method to CE to acutely reduce blood pressure in MSyn subjects. © Georg Thieme Verlag KG Stuttgart · New York.
Brain reactivity to visual food stimuli after moderate-intensity exercise in children.
Masterson, Travis D; Kirwan, C Brock; Davidson, Lance E; Larson, Michael J; Keller, Kathleen L; Fearnbach, S Nicole; Evans, Alyssa; LeCheminant, James D
2017-09-19
Exercise may play a role in moderating eating behaviors. The purpose of this study was to examine the effect of an acute bout of exercise on neural responses to visual food stimuli in children ages 8-11 years. We hypothesized that acute exercise would result in reduced activity in reward areas of the brain. Using a randomized cross-over design, 26 healthy weight children completed two separate laboratory conditions (exercise; sedentary). During the exercise condition, each participant completed a 30-min bout of exercise at moderate-intensity (~ 67% HR maximum) on a motor-driven treadmill. During the sedentary session, participants sat continuously for 30 min. Neural responses to high- and low-calorie pictures of food were determined immediately following each condition using functional magnetic resonance imaging. There was a significant exercise condition*stimulus-type (high- vs. low-calorie pictures) interaction in the left hippocampus and right medial temporal lobe (p < 0.05). Main effects of exercise condition were observed in the left posterior central gyrus (reduced activation after exercise) (p < 0.05) and the right anterior insula (greater activation after exercise) (p < 0.05). The left hippocampus, right medial temporal lobe, left posterior central gyrus, and right anterior insula appear to be activated by visual food stimuli differently following an acute bout of exercise compared to a non-exercise sedentary session in 8-11 year-old children. Specifically, an acute bout of exercise results in greater activation to high-calorie and reduced activation to low-calorie pictures of food in both the left hippocampus and right medial temporal lobe. This study shows that response to external food cues can be altered by exercise and understanding this mechanism will inform the development of future interventions aimed at altering energy intake in children.
The Effect of a Single Bout of Surfing on Exercise-Induced Affect.
Pittsinger, Ryan; Kress, Jeff; Crussemeyer, Jill
2017-01-01
Exercise-induced affect (EIA) has been well documented and is often composed of positive affect, negative affect, tranquility, and fatigue. Research on EIA has focused on mainstream sports such as running, walking, or cycling; however, no research has evaluated the influence of action sports participation in activities such surfing on EIA. The current study examined the effect of a single 30-min surfing bout on EIA in 107 adult volunteers. An additional purpose was if change in affect was similar based on surfing history, surfing frequency, and surfing skill level. To assess EIA, each participant completed the Physical Activity Affect Scale (PAAS) prior to and immediately following the 30-min surf session. Dependent t -tests were used to examine differences between pre- and post-test EIA. For the secondary purpose, a change score (PAAS posttest-PAAS pretest) was computed for each subscale. One-way ANOVAs were performed to determine differences among comparisons of surfing history, surfing frequency, and surfing skill level, and the change score for each of the 4 subscales. EIA was significantly altered by surfing, with significant improvements in positive affect and tranquility, and significant reductions in negative affect and fatigue. There were no significant differences among surfing history, surfing frequency, and surfing skill level, and positive affect, negative affect or tranquility. However, there were significant differences between fatigue and surfing history, surfing frequency, and surfing skill level. The results indicate that a single 30-min surfing bout may provide positive benefits for the participant. Implications for future surfing research and EIA are discussed.
The Effect of a Single Bout of Surfing on Exercise-Induced Affect
PITTSINGER, RYAN; KRESS, JEFF; CRUSSEMEYER, JILL
2017-01-01
Exercise-induced affect (EIA) has been well documented and is often composed of positive affect, negative affect, tranquility, and fatigue. Research on EIA has focused on mainstream sports such as running, walking, or cycling; however, no research has evaluated the influence of action sports participation in activities such surfing on EIA. The current study examined the effect of a single 30-min surfing bout on EIA in 107 adult volunteers. An additional purpose was if change in affect was similar based on surfing history, surfing frequency, and surfing skill level. To assess EIA, each participant completed the Physical Activity Affect Scale (PAAS) prior to and immediately following the 30-min surf session. Dependent t-tests were used to examine differences between pre- and post-test EIA. For the secondary purpose, a change score (PAAS posttest-PAAS pretest) was computed for each subscale. One-way ANOVAs were performed to determine differences among comparisons of surfing history, surfing frequency, and surfing skill level, and the change score for each of the 4 subscales. EIA was significantly altered by surfing, with significant improvements in positive affect and tranquility, and significant reductions in negative affect and fatigue. There were no significant differences among surfing history, surfing frequency, and surfing skill level, and positive affect, negative affect or tranquility. However, there were significant differences between fatigue and surfing history, surfing frequency, and surfing skill level. The results indicate that a single 30-min surfing bout may provide positive benefits for the participant. Implications for future surfing research and EIA are discussed. PMID:29170700
ERIC Educational Resources Information Center
Dunton, Genevieve Fridlund; Berrigan, David; Ballard-Barbash, Rachel; Perna, Frank; Graubard, Barry I.; Atienza, Audie A.
2012-01-01
We used data from the American Time Use Survey (years 2003-06) to analyze whether the intensity and duration of high school students' (ages 15-18 years) sports and exercise bouts differed across physical and social environments. Boys' sports and exercise bouts were more likely to reach a vigorous intensity when taking place at school and with…
Influence of Number of Contact Efforts on Running Performance During Game-Based Activities.
Johnston, Rich D; Gabbett, Tim J; Jenkins, David G
2015-09-01
To determine the influence the number of contact efforts during a single bout has on running intensity during game-based activities and assess relationships between physical qualities and distances covered in each game. Eighteen semiprofessional rugby league players (age 23.6 ± 2.8 y) competed in 3 off-side small-sided games (2 × 10-min halves) with a contact bout performed every 2 min. The rules of each game were identical except for the number of contact efforts performed in each bout. Players performed 1, 2, or 3 × 5-s wrestles in the single-, double-, and triple-contact game, respectively. The movement demands (including distance covered and intensity of exercise) in each game were monitored using global positioning system units. Bench-press and back-squat 1-repetition maximum and the 30-15 Intermittent Fitness Test (30-15IFT) assessed muscle strength and high-intensity-running ability, respectively. There was little change in distance covered during the single-contact game (ES = -0.16 to -0.61), whereas there were larger reductions in the double- (ES = -0.52 to -0.81) and triple-contact (ES = -0.50 to -1.15) games. Significant relationships (P < .05) were observed between 30-15IFT and high-speed running during the single- (r = .72) and double- (r = .75), but not triple-contact (r = .20) game. There is little change in running intensity when only single contacts are performed each bout; however, when multiple contacts are performed, greater reductions in running intensity result. In addition, high-intensity-running ability is only associated with running performance when contact demands are low.
Mendham, Amy E; Duffield, Rob; Coutts, Aaron J; Marino, Frank E; Boyko, Andriy; McAinch, Andrew J; Bishop, David John
2016-12-01
This study assessed the mitochondrial related signaling responses to a single bout of noncontact, modified football (touch rugby), played as small-sided games (SSG), or cycling (CYC) exercise in sedentary, obese, middle-aged men. In a randomized, crossover design, nine middle-aged, sedentary, obese men completed two, 40-min exercise conditions (CYC and SSG) separated by a 21-day recovery period. Heart rate (HR) and ratings of perceived exertion (RPE) were collected during each bout. Needle biopsies from the vastus lateralis muscle were collected at rest and 30 and 240 min postexercise for analysis of protein content and phosphorylation (PGC-1α, SIRT1, p53, p53 Ser15 , AMPK, AMPK Thr172 , CAMKII, CAMKII Thr286 , p38MAPK, and p38MAPK Thr180/Tyr182 ) and mRNA expression (PGC-1α, p53, NRF1, NRF2, Tfam, and cytochrome c). A main effect of time effect for both conditions was evident for HR, RPE, and blood lactate (P < 0.05), with no condition by time interaction (P > 0.05). Both conditions increased PGC1-α protein and mRNA expression at 240 min (P < 0.05). AMPK Thr172 increased 30 min post CYC (P < 0.05), with no change in SSG (P > 0.05). CYC increased p53 protein content at 240 min to a greater extent than SSG (P < 0.05). mRNA expression of NRF2 decreased in both conditions (P < 0.05). No condition by time interactions were evident for mRNA expression of Tfam, NRF1, cytochrome c, and p53. The similar PGC-1α response between intensity-matched conditions suggests both conditions are of similar benefit for stimulating mitochondrial biogenesis. Differences between conditions regarding fluctuation in exercise intensity and type of muscle contraction may explain the increase of p53 and AMPK within CYC and not SSG (noncontact, modified football). Copyright © 2016 the American Physiological Society.
Strength After Bouts of Eccentric or Concentric Actions
NASA Technical Reports Server (NTRS)
Golden, Catherine L.; Dudley, Gary A.
1992-01-01
This study examined the influence of an initial bout of eccentric or concentric actions and a subsequent bout of eccentric actions on muscular strength. Twenty-four healthy males, 24-45 yr old, were placed in three groups that performed eccentric actions in bouts 1 and 2 (ECC/ECC, N = 8), concentric actions in bout 1, and eccentric actions in bout 2 (CON/ECC, N = 8) or served as controls (N = 8). Bouts involved unilateral actions with the left and right quadriceps femoris. Ten sets of 10 repetitions with an initial resistance equal to 85% of the eccentric or concentric one repetition maximum (1 RM) were performed for each bout. Three minutes of rest were given between sets and 3 wk between bouts. Two weeks before bout 1 and 1, 4, 7, and 10 d after bouts 1 and 2, eccentric and concentric 1 RM were measured for the right quadriceps femoris and a speed-torque relation established for the left quadriceps femoris. Eccentric and concentric 1 RM decreased (P less than 0.05) 32% 1 d after bout 1 for group ECC/ECC. The speed-torque relation was down-shifted (P less than 0.05) 38%. Eccentric 1 RM and eccentric and isometric torque returned to normal 6 d later. Concentric 1 RM and torque at 3.14 rad-s(exp -1) had not recovered on day 10 (-7% for both, P less than 0.05). Decreases in strength after bout 2 for group ECC/ECC only occurred on day 1 (-9% for concentric 1 RM and 16% downshift of the speed- torque relation). Group CONIECC showed the opposite responses; marked decreases in strength after bout 2 but not bout 1. The results indicate that the initial decrease in strength after performance of a novel bout of eccentric exercise is comparable for eccentric, concentric and isometric muscle actions. Recovery of strength, however, appears to occur more rapidly for eccentric and isometric actions. They suggest that performance of a prior bout of eccentric but not concentric actions, as done in this study, can essentially eradicate decreases in strength after a subsequent bout of eccentric exercise. It is suggested that neural factors are, in part, responsible for adaptations to eccentric exercise.
Mothes, Hendrik; Leukel, Christian; Jo, Han-Gue; Seelig, Harald; Schmidt, Stefan; Fuchs, Reinhard
2017-04-01
The study investigated whether typical psychological, physiological, and neurophysiological changes from a single exercise are affected by one's beliefs and expectations. Seventy-six participants were randomly assigned to four groups and saw different multimedia presentations suggesting that the subsequent exercise (moderate 30 min cycling) would result in more or less health benefits (induced expectations). Additionally, we assessed habitual expectations reflecting previous experience and beliefs regarding exercise benefits. Participants with more positive habitual expectations consistently demonstrated both greater psychological benefits (more enjoyment, mood increase, and anxiety reduction) and greater increase of alpha-2 power, assessed with electroencephalography. Manipulating participants' expectations also resulted in largely greater increases of alpha-2 power, but not in more psychological exercise benefits. On the physiological level, participants decreased their blood pressure after exercising, but this was independent of their expectations. These results indicate that habitual expectations in particular affect exercise-induced psychological and neurophysiological changes in a self-fulfilling manner.
Relationship between perceived exertion during exercise and subsequent recovery measurements.
Mann, T N; Lamberts, R P; Nummela, A; Lambert, M I
2017-03-01
The return towards resting homeostasis in the post-exercise period has the potential to represent the internal training load of the preceding exercise bout. However, the relative potential of metabolic and autonomic recovery measurements in this role has not previously been established. Therefore the aim of this study was to investigate which of 4 recovery measurements was most closely associated with Borg's Rating of Perceived Exertion (RPE), a measurement widely acknowledged as an integrated measurement of the homeostatic stress of an exercise bout. A heterogeneous group of trained and untrained participants (n = 36) completed a bout of exercise on the treadmill (3 km at 70% of maximal oxygen uptake) followed by 1 hour of controlled recovery. Expired respiratory gases and heart rate (HR) were measured throughout the exercise and recovery phases of the trial with recovery measurements used to calculate the magnitude of excess post-exercise oxygen consumption (EPOC MAG ), the time constant of the EPOC curve (EPOCτ), 1 min heart rate recovery (HRR 60s ) and the time constant of the HR recovery curve (HRRτ) for each participant. RPE taken in the last minute of exercise was significantly associated with HRR 60s (r=-0.69), EPOCτ (r=0.52) and HRRτ (r=0.43) but not with EPOC MAG . This finding suggests that, of the 4 recovery measurements under investigation, HRR 60s shows modest potential to represent inter-individual variation in the homeostatic stress of a standardized exercise bout, in a group with a range of fitness levels.
Relationship between perceived exertion during exercise and subsequent recovery measurements
Lamberts, RP; Nummela, A; Lambert, MI
2016-01-01
The return towards resting homeostasis in the post-exercise period has the potential to represent the internal training load of the preceding exercise bout. However, the relative potential of metabolic and autonomic recovery measurements in this role has not previously been established. Therefore the aim of this study was to investigate which of 4 recovery measurements was most closely associated with Borg’s Rating of Perceived Exertion (RPE), a measurement widely acknowledged as an integrated measurement of the homeostatic stress of an exercise bout. A heterogeneous group of trained and untrained participants (n = 36) completed a bout of exercise on the treadmill (3 km at 70% of maximal oxygen uptake) followed by 1 hour of controlled recovery. Expired respiratory gases and heart rate (HR) were measured throughout the exercise and recovery phases of the trial with recovery measurements used to calculate the magnitude of excess post-exercise oxygen consumption (EPOCMAG), the time constant of the EPOC curve (EPOCτ), 1 min heart rate recovery (HRR60s) and the time constant of the HR recovery curve (HRRτ) for each participant. RPE taken in the last minute of exercise was significantly associated with HRR60s (r=-0.69), EPOCτ (r=0.52) and HRRτ (r=0.43) but not with EPOCMAG. This finding suggests that, of the 4 recovery measurements under investigation, HRR60s shows modest potential to represent inter-individual variation in the homeostatic stress of a standardized exercise bout, in a group with a range of fitness levels. PMID:28416890
Substrate Utilization is Influenced by Acute Dietary Carbohydrate Intake in Active, Healthy Females.
Gregory, Sara; Wood, Richard; Matthews, Tracey; Vanlangen, Deborah; Sawyer, Jason; Headley, Samuel
2011-01-01
The present study compared the metabolic responses between a single low-carbohydrate (LC) and low-fat (LF) meal followed by an aerobic exercise bout in females. Subjects included 8 active, premenopausal females. Subjects completed a LC and LF testing session. Respiratory gas exchange (RER) measurements were taken for 20 min fasted, for 55 min postprandial (PP), and during 30 min of exercise. Blood was collected for assessment of glucose (G), insulin (IN), triglycerides (TG), and free fatty acids (FFA) during the final 10 min of each time period. The LF meal provided 396 kcal (78% carbohydrate, 7% fat, and 15% protein). The LC meal provided 392 kcal (15% carbohydrate, 68% fat, and 18% protein). No significant differences existed between test meals for fasting blood measurements. PP IN (μU·mL(-1)) levels were significantly lower following LC compared to LF [10.7 (6.1) vs. 26.0 (21.0)]. Postexercise (PE) FFA (mEq·L(-1)) levels were significantly greater following LC [1.1 (0.3) vs. 0.5 (0.3)]. PE TG (mg·dL(-1)) levels were significantly greater following LC [152.0 (53.1) vs. 114.4 (40.9)]. RER was significantly lower at all time points following LC compared to LF. In moderately active adult females, ingestion of a single LC meal resulted in greater lipid oxidation at rest and during exercise as compared to a single LF meal. Although macronutrient distribution appears to have dictated substrate utilization in the present study, more research is needed regarding the long-term effects of macronutrient redistribution with and without exercise on substrate utilization. Key pointsThe relative carbohydrate content of a single meal has a significant impact on postprandial metabolism and substrate utilization in healthy, active females.A single bout of aerobic exercise performed within an hour of meal ingestion has the potential to modify the postprandial response.Interventions aimed at improving body composition and preventing chronic disease should focus on dietary macronutrient redistribution and postprandial metabolism in concert with exercise training.
A Pilot Study of Women’s Affective Responses to Common and Uncommon Forms of Aerobic Exercise
Stevens, Courtney J.; Smith, Jane Ellen; Bryan, Angela D.
2015-01-01
Objective To test the extent to which participants exposed to an uncommon versus common exercise stimulus would result in more favourable affect at post task. Design Experimental design. Participants, (N = 120) American women aged 18–45 years, were randomly assigned to complete 30-minutes of either the uncommon (HOOP; n = 58) or common (WALK; n = 62) exercise stimulus. Main Outcome Measures Self-reported affect and intentions for future exercise were measured before and after the 30-minute exercise bout. Results Analyses of covariance (ANCOVA) were run to compare post-task affect across the HOOP and WALK conditions. At post-task, participants assigned to HOOP reported more positively valenced affect, higher ratings of positive activated affect, lower ratings of negative deactivated affect, and stronger intentions for future aerobic exercise compared to participants assigned to WALK. Conclusions Participants who completed an uncommon bout of aerobic exercise (HOOP) reported more favourable affect post-exercise, as well as stronger intentions for future exercise, compared to participants who completed a common bout of aerobic exercise (WALK). Future work using a longitudinal design is needed to understand the relationships between familiarity with an exercise stimulus, affective responses to exercise, motivation for future exercise behaviour, and exercise maintenance over time. PMID:26394246
Zorgati, Houssem; Prieur, Fabrice; Vergniaud, Thomas; Cottin, François; Do, Manh-Cuong; Labsy, Zakaria; Amarantini, David; Gagey, Olivier; Lasne, Françoise; Collomp, Katia
2014-08-01
All systemically administered glucocorticoids (GC) are prohibited in-competition, because of the potential ergogenic effects. Although short-term GC intake has been shown to improve performance during submaximal exercise, literature on its impact during brief intense exercise appears to be very scant. The purpose of this study was to examine the ergogenic and metabolic effects of prednisone during repeated bouts of high-intensity exercise. In a double-blind randomized protocol, ten recreational male athletes followed two 1-week treatments (Cor: prednisone, 60mg/day or Pla: placebo). At the end of each treatment, they hopped on their dominant leg for 30s three times consecutively and then hopped until exhaustion, with intervals of 5min of passive recovery. Blood and saliva samples were collected at rest and 3min after each exercise bout to determine the lactate, interleukin-6, interleukin-10, TNF-alpha, DHEA and testosterone values. The absolute peak force of the dominant leg was significantly increased by Cor but only during the first 30-s hopping bout (p<0.05), whereas time to exhaustion was not significantly changed after Cor treatment vs Pla (Pla: 119.9±24.7; Cor: 123.1±29.5s). Cor intake lowered basal and end-exercise plasma interleukin-6 and saliva DHEA (p<0.01) and increased interleukin-10 (p<0.01), whereas no significant change was found in blood lactate and TNF-alpha or saliva testosterone between Pla and Cor. According to these data, short-term glucocorticoid intake did not improve endurance performance during repeated bouts of high-intensity exercise, despite the significant initial increase in absolute peak force and anti-inflammatory effect. Copyright © 2014 Elsevier Inc. All rights reserved.
Dekker, Jennifer; Nelson, Katlynne; Kurgan, Nigel; Falk, Bareket; Josse, Andrea; Klentrou, Panagiota
2017-11-01
This study examined resting levels of catabolic and anabolic osteokines related to Wnt signaling and their responses to a single bout of plyometric exercise in child and adolescent females. Fourteen premenarcheal girls [10.5 (1.8) y old] and 12 postmenarcheal adolescent girls [15.0 (1.0) y old] performed a plyometric exercise trial. One resting and 3 postexercise blood samples (5 min, 1 h, and 24 h postexercise) were analyzed for sclerostin, dickkopf-1 (DKK-1), osteoprotegerin (OPG), receptor activator of nuclear factor kappa-β ligand (RANKL), and transforming growth factors (TGF-β1, TGF-β2, and TGF-β3). Premenarcheal girls had significantly higher resting sclerostin, TGF-β1, TGF-β2, and TGF-β3 than the postmenarcheal girls, with no significant time effect or group-by-time interaction. DKK-1 was higher in premenarcheal compared with postmenarcheal girls. There was an overall significant DKK-1 decrease from baseline to 1 h postexercise, which remained lower than baseline 24 h postexercise in both groups. There was neither a significant group effect nor group-by-time interaction in OPG, RANKL, and their ratio. RANKL decreased 5 min postexercise compared with baseline and remained significantly lower from baseline 24 h following the exercise. No changes were observed in OPG. OPG/RANKL ratio was significantly elevated compared with resting values 1 h postexercise. In young females, high-impact exercise induces an overall osteogenic effect through a transitory suppression of catabolic osteokines up to 24 h following exercise.
PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle
Dethlefsen, Maja Munk; Bangsbo, Jens; Pilegaard, Henriette
2017-01-01
The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO) and littermate wildtype (WT) mice performed a single treadmill running bout at either low intensity (LI) for 40 min or moderate intensity (MI) for 20 min. Blood and quadriceps muscles were removed either immediately after exercise or at 3h or 6h into recovery from exercise and from resting controls. In addition PGC-1α KO and littermate WT mice were exercise trained at either low intensity (LIT) for 40 min or at moderate intensity (MIT) for 20 min 2 times pr. day for 5 weeks. In the first and the last week of the intervention period, mice performed a graded running endurance test. Quadriceps muscles were removed before and after the training period for analyses. The acute exercise bout elicited intensity dependent increases in LC3I and LC3II protein and intensity independent decrease in p62 protein in skeletal muscle late in recovery and increased LC3II with exercise training independent of exercise intensity and volume in WT mice. Furthermore, acute exercise and exercise training did not increase LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute and exercise training-induced autophagy in skeletal muscle potentially in a PGC-1α isoform specific manner. PMID:29049322
Cockcroft, Emma J; Williams, Craig A; Jackman, Sarah R; Bassi, Shikhar; Armstrong, Neil; Barker, Alan R
2018-01-01
The purpose of this study was to assess the acute effect of high-intensity interval exercise (HIIE) and moderate-intensity exercise (MIE) on glucose tolerance, insulin sensitivity and fat oxidation in young boys. Eleven boys (8.8 ± 0.8 y) completed three conditions: 1) HIIE; 2) work-matched MIE; and 3) rest (CON) followed by an oral glucose tolerance test (OGTT) to determine glucose tolerance and insulin sensitivity (Cederholm index). Fat oxidation was measured following the OGTT using indirect calorimetry. There was no effect for condition on plasma [glucose] and [insulin] area under the curve (AUC) responses following the OGTT (P > 0.09). However, there was a "trend" for a condition effect for insulin sensitivity with a small increase after HIIE (P = 0.04, ES = 0.28, 9.7%) and MIE (P = 0.07, ES = 0.21, 6.5%) compared to CON. There was an increase in fat oxidation AUC following HIIE (P = 0.008, ES = 0.79, 38.9%) compared to CON, but with no differences between MIE and CON and HIIE and MIE (P > 0.13). In conclusion, 7- to 10-year-old boys may have limited scope to improve insulin sensitivity and glucose tolerance after a single bout of HIIE and MIE. However, fat oxidation is augmented after HIIE but not MIE.
Effect of glutamine supplementation on changes in the immune system induced by repeated exercise.
Rohde, T; MacLean, D A; Pedersen, B K
1998-06-01
The ability of lymphocytes to proliferate and generate lymphokine activated killer (LAK) cell activity in vitro is dependent on glutamine. In relation to intense exercise the lymphocyte concentration, the proliferative response, the natural killer and LAK cell activity, and the plasma glutamine concentration decline. It has been hypothesized that in relation to physical activity a lack of glutamine may temporarily affect the function of the immune system. The purpose of this study was to examine the influence of glutamine supplementation on exercise-induced immune changes. In a randomized cross-over placebo-controlled study, eight healthy male subjects performed three bouts of ergometer bicycle exercise lasting 60, 45, and 30 min at 75% of their VO2max separated by 2 h of rest. The arterial plasma glutamine concentration declined from 508 +/- 35 (pre-exercise) to 402 +/- 38 microM (2 h after the last exercise bout) in the placebo trial and was maintained above pre-exercise levels in the glutamine supplementation trial. The numbers of circulating lymphocytes and the phytohemagglutinin-stimulated lymphocyte proliferative response declined 2 h after, respectively, during each bout of exercise, whereas the LAK cell activity declined 2 h after the third bout. Glutamine supplementation in vivo, given in the described doses at the specific times, did not influence these changes. The present study does not appear to support the hypothesis that those aspects of postexercise immune changes studied are caused by decreased plasma glutamine concentrations.
Roxburgh, Brendon H.; Nolan, Paul B.; Weatherwax, Ryan M.; Dalleck, Lance C.
2014-01-01
The purpose of this study was to compare the effectiveness of either continuous moderate intensity exercise training (CMIET) alone vs. CMIET combined with a single weekly bout of high intensity interval training (HIIT) on cardiorespiratory fitness. Twenty nine sedentary participants (36.3 ± 6.9 yrs) at moderate risk of cardiovascular disease were recruited for 12 weeks of exercise training on a treadmill and cycle ergometer. Participants were randomised into three groups: CMIET + HIIT (n = 7; 8-12 x 60 sec at 100% VO2max, 150 sec active recovery), CMIET (n = 6; 30 min at 45-60% oxygen consumption reserve (VO2R)) and a sedentary control group (n = 7). Participants in the CMIET + HIIT group performed a single weekly bout of HIIT and four weekly sessions of CMIET, whilst the CMIET group performed five weekly CMIET sessions. Probabilistic magnitude-based inferences were determined to assess the likelihood that the true value of the effect represents substantial change. Relative VO2max increased by 10.1% (benefit possible relative to control) in in the CMIET + HIIT group (32.7 ± 9.2 to 36.0 ± 11.5 mL·kg-1·min-1) and 3.9% (benefit possible relative to control) in the CMIET group (33.2 ± 4.0 to 34.5 ± 6.1 mL·kg-1·min-1), whilst there was a 5.7% decrease in the control group (30.0 ± 4.6 to 28.3 ± 6.5 mL·kg-1·min-1). It was ‘unclear’ if a clinically significant difference existed between the effect of CMIET + HIIT and CMIET on the change in VO2max. Both exercising groups showed clinically meaningful improvements in VO2max. Nevertheless, it remains ‘unclear’ whether one type of exercise training regimen elicits a superior improvement in cardiorespiratory fitness relative to its counterpart. Key Points Both continuous moderate intensity exercise training (CMIET) alone and CMIET combined with a single weekly bout of high intensity interval training (CMIET + HIIT) elicit ‘possibly beneficial’ clinically meaningful improvements in cardiorespiratory fitness. Cardiorespiratory fitness improved by ~1.0 MET in the CMIET + HIIT exercise intervention group, which likely leads to important long-term prevention implications as a 1 MET increase in cardiorespiratory fitness has been linked with an 18% reduction in deaths due to CVD. There was 100% adherence to interval sessions in the CMIET + HIIT group, suggesting this combination of training can be well-tolerated in previously inactive overweight/obese individuals. PMID:25177202
Burt, Dean; Lamb, Kevin; Nicholas, Ceri; Twist, Craig
2015-07-01
This study examined whether lower-volume exercise-induced muscle damage (EIMD) performed 2 weeks before high-volume muscle-damaging exercise protects against its detrimental effect on running performance. Sixteen male participants were randomly assigned to a lower-volume (five sets of ten squats, n = 8) or high-volume (ten sets of ten squats, n = 8) EIMD group and completed baseline measurements for muscle soreness, knee extensor torque, creatine kinase (CK), a 5-min fixed-intensity running bout and a 3-km running time-trial. Measurements were repeated 24 and 48 h after EIMD, and the running time-trial after 48 h. Two weeks later, both groups repeated the baseline measurements, ten sets of ten squats and the same follow-up testing (Bout 2). Data analysis revealed increases in muscle soreness and CK and decreases in knee extensor torque 24-48 h after the initial bouts of EIMD. Increases in oxygen uptake [Formula: see text], minute ventilation [Formula: see text] and rating of perceived exertion were observed during fixed-intensity running 24-48 h after EIMD Bout 1. Likewise, time increased and speed and [Formula: see text] decreased during a 3-km running time-trial 48 h after EIMD. Symptoms of EIMD, responses during fixed-intensity and running time-trial were attenuated in the days after the repeated bout of high-volume EIMD performed 2 weeks after the initial bout. This study demonstrates that the protective effect of lower-volume EIMD on subsequent high-volume EIMD is transferable to endurance running. Furthermore, time-trial performance was found to be preserved after a repeated bout of EIMD.
Experimental effects of acute exercise duration and exercise recovery on mood state.
Crush, Elizabeth A; Frith, Emily; Loprinzi, Paul D
2018-03-15
Accumulating evidence suggests that, in addition to various psychosocial parameters, affective responses to exercise play an important role in subserving future exercise behavior. This study comprehensively evaluated whether acute exercise duration and recovery period influenced the relationship between moderate-intensity walking exercise and mood profile. We employed a randomized controlled cross-over trial. Participants completed two laboratory visits, separated by one-week. One of the visits involved a mood profile assessment with no exercise, while the other visit involved a mood profile assessment after an acute bout of exercise. Participants (N = 352; 22 per group; young [M age = 21 yrs] healthy adults) were randomized into one of 16 experimental groups: 10, 20, 30, 45 or 60min bout of exercise coupled with either a 5, 15 or 30min recovery period. The exercise bout was of moderate-intensity (40-59% of HRR). Mood profile was assessed from the POMS survey, considering subscales of depression, anger and hostility. For all three mood profile parameters, there was no evidence of a group x time interaction effect. However, the main effect for time was statistically significant for each mood parameter. These significant results demonstrate that, generally, exercise had a favorable effect on each of the mood profile, regardless of exercise duration and recovery period. In addition to the significant main effects for time, we also observed a significant main effect for group for the mood parameter hostility. With the exception of the group 13 (60min of exercise with 5min recovery) and the 3 groups that employed a 10-min bout of exercise (groups 1-3), all other experimental groups had a lower (better) hostility score after the exercise visit. Generally, exercise had a favorable effect on various mood profiles, regardless of exercise duration (between 10 and 60min) and recovery period (between 5 and 30min). Copyright © 2018 Elsevier B.V. All rights reserved.
Cell-derived microparticles promote coagulation after moderate exercise.
Sossdorf, Maik; Otto, Gordon P; Claus, Ralf A; Gabriel, Holger H W; Lösche, Wolfgang
2011-07-01
Cell-derived procoagulant microparticles (MP) might be able to contribute to exercise-induced changes in blood hemostasis. This study aimed to examine (i) the concentration and procoagulant activity of cell-derived MP after a moderate endurance exercise and (ii) the differences in the release, clearance, and activity of MP before and after exercise between trained and untrained individuals. All subjects performed a single bout of physical exercise on a bicycle ergometer for 90 min at 80% of their individual anaerobic threshold. MP were identified and quantified by flow cytometry measurements. Procoagulant activity of MP was measured by a prothrombinase activity assay as well as tissue factor-induced fibrin formation in MP-containing plasma. At baseline, no differences were observed for the absolute number and procoagulant activities of MP between trained and untrained subjects. However, trained individuals had a lower number of tissue factor-positive monocyte-derived MP compared with untrained individuals. In trained subjects, exercise induced a significant increase in the number of MP derived from platelets, monocytes, and endothelial cells, with maximum values at 45 min after exercise and returned to basal levels at 2 h after exercise. Untrained subjects revealed a similar increase in platelet-derived MP, but their level was still increased at 2 h after exercise, indicating a reduced clearance compared with trained individuals. Procoagulant activities of MP were increased immediately after exercise and remained elevated up to 2 h after exercise. We conclude that increased levels of MP were found in healthy individuals after an acute bout of exercise, that the amount of circulating MP contributes to an exercise-induced increase of hemostatic potential, and that there were differences in kinetic and dynamic characteristics between trained and untrained individuals.
Irisin in response to acute and chronic whole-body vibration exercise in humans.
Huh, Joo Young; Mougios, Vassilis; Skraparlis, Athanasios; Kabasakalis, Athanasios; Mantzoros, Christos S
2014-07-01
Irisin is a recently identified myokine, suggested to mediate the beneficial effects of exercise by inducing browning of white adipocytes and thus increasing energy expenditure. In humans, the regulation of irisin by exercise is not completely understood. We investigated the effect of acute and chronic whole-body vibration exercise, a moderate-intensity exercise that resembles shivering, on circulating irisin levels in young healthy subjects. Healthy untrained females participated in a 6-week program of whole-body vibration exercise training. Blood was drawn before and immediately after an acute bout of exercise at baseline (week 0) and after 6 weeks of training. The resting irisin levels were not different at baseline (week 0) and after 6 weeks of training. At both 0 and 6 weeks of training, an acute bout of vibration exercise significantly elevated circulating irisin levels by 9.5% and 18.1%, respectively (p=0.05 for the percent change of irisin levels). Acute bouts of whole-body vibration exercise are effective in increasing circulating irisin levels but chronic training does not change levels of baseline irisin levels in humans. Copyright © 2014 Elsevier Inc. All rights reserved.
Unick, Jessica L; O'Leary, Kevin C; Dorfman, Leah; Thomas, J Graham; Strohacker, Kelley; Wing, Rena R
2015-04-14
It is often assumed that some individuals reliably increase energy intake (EI) post-exercise ('compensators') and some do not ('non-compensators'), leading researchers to examine the characteristics that distinguish these two groups. However, it is unclear whether EI post-exercise is stable over time. The present study examined whether compensatory eating responses to a single exercise bout are consistent within individuals across three pairs of trials. Physically inactive, overweight/obese women (n 28, BMI 30·3 (SD 2·9) kg/m²) participated in three pairs of testing sessions, with each pair consisting of an exercise (30 min of moderate-intensity walking) and resting testing day. EI was measured using a buffet meal 1 h post-exercise/rest. For each pair, the difference in EI (EIdiff = EIex - EIrest) was calculated, where EIex is the EI of the exercise session and EIrest is the EI of the resting session, and women were classified as a 'compensator' (EIex > EIrest) or 'non-compensator' (EIex ≤ EIrest). The average EI on exercise days (3328·0 (SD 1686·2) kJ) was similar to those on resting days (3269·4 (SD 1582·4) kJ) (P= 0·67). Although EI was reliable within individuals across the three resting days (intraclass correlation coefficient (ICC) 0·75, 95 % CI 0·60, 0·87; P< 0·001) and three exercise days (ICC 0·83, 95 % CI 0·70, 0·91; P< 0·001), the ICC for EIdiff across the three pairs of trials was low (ICC 0·20, 95 % CI -0·02, 0·45; P= 0·04), suggesting that compensatory eating post-exercise is not a stable construct. Moreover, the classification of 'compensators'/'non-compensators' was not reliable (κ = -0·048; P= 0·66). The results were unaltered when 'relative' EI was used, which considers the energy expenditure of the exercise/resting sessions. Acute compensatory EI following an exercise bout is not reliable in overweight women. Seeking to understand what distinguishes 'compensators' from 'non-compensators' based on a single eating episode post-exercise is not justified.
Temperature responses in severely burned children during exercise in a hot environment.
McEntire, Serina J; Chinkes, David L; Herndon, David N; Suman, Oscar E
2010-01-01
The authors have previously described thermoregulatory responses of severely burned children during submaximal exercise in a thermoneutral environment. However, the thermoregulatory response of burned children to exercise in the heat is not well understood and could have important safety implications for rehabilitation. Children (n = 10) with >40% TBSA burns and nonburned children (n = 10) performed a 30-minute bout of treadmill exercise at 75% of their peak aerobic power in a heated environment. Intestinal temperature, burned and unburned skin temperature, and heart rate were recorded pre-exercise, every 2 minutes during exercise, and during recovery. Three of the 10 burned children completed the exercise bout in the heat; however, all the nonburned children completed the 30-minute bout. One burned child reached a core body temperature >39 degrees C at minute 23. Burned children had significantly higher core body temperature through the first 12 minutes of exercise compared with nonburned children. However, nine of 10 (90%) burned children did not become hyperthermic during exercise in the heat. Specific to this study, hyperthermia did not typically occur in burned children, relative to nonburned children. Whether this is due to an intolerance to exercise in the heat or to an inability to generate sufficient heat during exercise needs to be explored further.
Van Craenenbroeck, Emeline M; Hoymans, Vicky Y; Beckers, Paul J; Possemiers, Nadine M; Wuyts, Kurt; Paelinck, Bernard P; Vrints, Christiaan J; Conraads, Viviane M
2010-09-01
Alterations in circulating angiogenic cells (CAC) and endothelial progenitor cells (EPC), known to contribute to endothelial repair, could explain the reversal of endothelial function in response to exercise training. Moreover, training-induced vascular remodeling might affect the acute response of EPC and CAC following a single exercise bout. We studied the impact of exercise training on CAC function and numbers of CD34(+)/KDR(+) EPC in patients with chronic heart failure (CHF) and we assessed the effect of acute exercise on CAC and EPC in sedentary and trained patients. Twenty-one sedentary CHF patients underwent 6-month exercise training and were compared to a non-trained control group (n = 17) and 10 healthy age-matched subjects. At baseline and follow-up, flow-mediated dilation was assessed and graded exercise testing (GXT) was performed. Before and immediately after GXT, CAC migratory capacity was assessed in vitro and circulating CD34(+)/KDR(+) EPC were quantified using flow cytometry. At baseline, CAC migration was significantly impaired in sedentary CHF patients but normalized acutely after GXT. Training corrected endothelial dysfunction, which coincided with a 77% increase in CAC migration (P = 0.0001). Moreover, the GXT-induced improvement detected at baseline was no longer observed after training. Numbers of CD34(+)/KDR(+) EPC increased following 6-month exercise training (P = 0.021), but were not affected by GXT, either prior or post-training. In conclusion, the present findings demonstrate for the first time that exercise training in CHF reverses CAC dysfunction and increases numbers of CD34(+)/KDR(+) EPC, which is accompanied by improvement of peripheral endothelial function. The acute exercise-induced changes in CAC function wane with exercise training, suggesting that repetitive exercise bouts progressively lead to functional endothelial repair.
Effects of Static Stretching Exercise on Lumbar Flexibility and Central Arterial Stiffness.
Logan, Jeongok G; Kim, Suk-Sun; Lee, Mijung; Byon, Ha Do; Yeo, SeonAe
Previous studies have demonstrated that arterial stiffness is associated with lumbar flexibility (LF). Stretching exercise targeted to improve LF may have a beneficial effect on reducing arterial stiffness. We examined the effects of a single bout of a structured, static stretching exercise on arterial stiffness, LF, peripheral and central blood pressure (BP), and heart rate (HR) and tested the association between LF and central arterial stiffness. The study had a pretest-posttest design without a control group. Thirty healthy women followed a video demonstration of a 30-minute whole-body stretching exercise. Carotid-femoral pulse wave velocity (cf-PWV), augmentation index, LF, peripheral and central BP, and HR were measured before and after the stretching exercise. One bout of a static stretching exercise significantly reduced cf-PWV (t29 = 2.708, P = .011) and HR (t29 = 7.160, P = .000) and increased LF (t29 = 12.248, P < .000). Augmentation index and peripheral and central BP also decreased but did not reach statistical significance. Despite no association found between cf-PWV and LF, the larger increase in LF the subjects had, the larger decrease in cf-PWV they had after exercise (r = 0.500, P = .005). Study findings highlight the potential benefit of a static stretching exercise on central arterial stiffness, an independent predictor of cardiovascular morbidity. Static stretching exercise conducted in the sitting position may be used as an effective intervention to reduce cardiovascular risk after a cardiac event or for patients whose sympathetic function should not be overly activated or whose gaits are not stable.
2009-10-01
four days post-exercise and is unaffected by training status. In physically - active men, who have consumed an appropriate diet, two bouts of... physically - active men, who have consumed an appropriate diet, two bouts of moderate exercise separated by either 23 h or 3 h has no effect on bone...relative intensity would decrease with increased physical fitness. Given the results of Study IV, where β-CTX concentrations were higher, albeit
Exercise increases TBC1D1 phosphorylation in human skeletal muscle
Jessen, Niels; An, Ding; Lihn, Aina S.; Nygren, Jonas; Hirshman, Michael F.; Thorell, Anders
2011-01-01
Exercise and weight loss are cornerstones in the treatment and prevention of type 2 diabetes, and both interventions function to increase insulin sensitivity and glucose uptake into skeletal muscle. Studies in rodents demonstrate that the underlying mechanism for glucose uptake in muscle involves site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 (TBC1D4) and TBC1D1. Multiple kinases, including Akt and AMPK, phosphorylate TBC1D1 and AS160 on distinct residues, regulating their activity and allowing for GLUT4 translocation. In contrast to extensive rodent-based studies, the regulation of AS160 and TBC1D1 in human skeletal muscle is not well understood. In this study, we determined the effects of dietary intervention and a single bout of exercise on TBC1D1 and AS160 site-specific phosphorylation in human skeletal muscle. Ten obese (BMI 33.4 ± 2.4, M-value 4.3 ± 0.5) subjects were studied at baseline and after a 2-wk dietary intervention. Muscle biopsies were obtained from the subjects in the resting (basal) state and immediately following a 30-min exercise bout (70% V̇o2 max). Muscle lysates were analyzed for AMPK activity and Akt phosphorylation and for TBC1D1 and AS160 phosphorylation on known or putative AMPK and Akt sites as follows: AS160 Ser711 (AMPK), TBC1D1 Ser231 (AMPK), TBC1D1 Ser660 (AMPK), TBC1D1 Ser700 (AMPK), and TBC1D1 Thr590 (Akt). The diet intervention that consisted of a major shift in the macronutrient composition resulted in a 4.2 ± 0.4 kg weight loss (P < 0.001) and a significant increase in insulin sensitivity (M value 5.6 ± 0.6), but surprisingly, there was no effect on expression or phosphorylation of any of the muscle-signaling proteins. Exercise increased muscle AMPKα2 activity but did not increase Akt phosphorylation. Exercise increased phosphorylation on AS160 Ser711, TBC1D1 Ser231, and TBC1D1 Ser660 but had no effect on TBC1D1 Ser700. Exercise did not increase TBC1D1 Thr590 phosphorylation or TBC1D1/AS160 PAS phosphorylation, consistent with the lack of Akt activation. These data demonstrate that a single bout of exercise regulates TBC1D1 and AS160 phosphorylation on multiple sites in human skeletal muscle. PMID:21505148
Beneka, Anastasia G; Malliou, Paraskevi K; Missailidou, Victoria; Chatzinikolaou, Athanasios; Fatouros, Ioannis; Gourgoulis, Vassilios; Georgiadis, Elias
2013-01-01
To determine the time course of performance responses after an acute bout of plyometric exercise combined with high and low intensity weight training, a 3-group (including a control group), repeated-measures design was employed. Changes in performance were monitored through jumping ability by measuring countermovement and squat jumping, and strength performance assessment through isometric and isokinetic testing of knee extensors (at two different velocities). Participants in both experimental groups performed a plyometric protocol consisting of 50 jumps over 50 cm hurdles and 50 drop jumps from a 50 cm plyometric box. Additionally, each group performed two basic weight exercises consisting of leg presses and leg extensions at 90-95% of maximum muscle strength for the high intensity group and 60% of maximum muscle strength for the low intensity group. The results of the study suggest that an acute bout of intense plyometric exercise combined with weight exercise induces time-dependent changes in performance, which are also dependent on the nature of exercise protocol and testing procedures. In conclusion, acute plyometric exercise with weight exercise may induce a substantial decline in jumping performance for as long as 72 hours but not in other forms of muscle strength.
Muscle metaboreceptor modulation of cutaneous active vasodilation
NASA Technical Reports Server (NTRS)
Crandall, C. G.; Stephens, D. P.; Johnson, J. M.
1998-01-01
PURPOSE: Isometric handgrip exercise in hyperthermia has been shown to reduce cutaneous vascular conductance (CVC) by inhibiting the cutaneous active vasodilator system. METHODS: To identify whether this response was initiated by muscle metaboreceptors, in seven subjects two 3-min bouts of isometric handgrip exercise in hyperthermia were performed, followed by 2 min of postexercise ischemia (PEI). An index of forearm skin blood flow (laser-Doppler flowmetry) was measured on the contralateral arm at an unblocked site and at a site at which adrenergic vasoconstrictor function was blocked via bretylium iontophoresis to reveal active cutaneous vasodilator function unambiguously. Sweat rate was measured via capacitance hygrometry, CVC was indexed from the ratio of skin blood flow to mean arterial pressure and was expressed as a percentage of maximal CVC at that site. In normothermia, neither isometric exercise nor PEI affected CVC (P > 0.05). RESULTS: The first bout of isometric handgrip exercise in hyperthermia reduced CVC at control sites and this reduction persisted through PEI (pre-exercise: 59.8 +/- 5.4, exercise: 49.8 +/- 4.9, PEI: 49.7 +/- 5.3% of maximum; both P < 0.05), whereas there were no significant changes in CVC at the bretylium treated sites. The succeeding bout of isometric exercise in hyperthermia significantly reduced CVC at both untreated (pre-exercise: 59.0 +/- 4.8, exercise: 47.3 +/- 4.0, PEI: 50.1 +/- 4.1% of maximum; both P < 0.05) and bretylium treated sites (pre-exercise: 61.4 +/- 7.3, exercise: 50.6 +/- 5.1, PEI: 53.9 +/- 6.0% of maximum, both P < 0.05). At both sites, CVC during PEI was lower than during the pre-exercise period (P < 0.05). Sweat rate rose significantly during both bouts of isometric exercise and remained elevated during PEI. CONCLUSIONS: These data suggest that the reduction in CVC during isometric exercise in hyperthermia, including the inhibition of the active vasodilator system, is primarily mediated by muscle metaboreceptors, whereas central command or muscle mechanoreceptors have less influence.
Physical Activity and Aging: Implications for Health and Quality of Life in Older Persons.
ERIC Educational Resources Information Center
Chodzko-Zajko, Wojtek J.
1998-01-01
This publication summarizes what is known about the influence of regular physical activity on the health and quality of life of older individuals, addressing both the acute effects of a single bout of physical activity and the more persistent, long-term effects of sustained participation in exercise and physical activity. Section 1 discusses the…
Optimizing the measurement of mitochondrial protein synthesis in human skeletal muscle.
Burd, Nicholas A; Tardif, Nicolas; Rooyackers, Olav; van Loon, Luc J C
2015-01-01
The measurement of mitochondrial protein synthesis after food ingestion, contractile activity, and/or disease is often used to provide insight into skeletal muscle adaptations that occur in the longer term. Studies have shown that protein ingestion stimulates mitochondrial protein synthesis in human skeletal muscle. Minor differences in the stimulation of mitochondrial protein synthesis occur after a single bout of resistance or endurance exercise. There appear to be no measurable differences in mitochondrial protein synthesis between critically ill patients and aged-matched controls. However, the mitochondrial protein synthetic response is reduced at a more advanced age. In this paper, we discuss the challenges involved in the measurement of human skeletal muscle mitochondrial protein synthesis rates based on stable isotope amino acid tracer methods. Practical guidelines are discussed to improve the reliability of the measurement of mitochondrial protein synthesis rates. The value of the measurement of mitochondrial protein synthesis after a single meal or exercise bout on the prediction of the longer term skeletal muscle mass and performance outcomes in both the healthy and disease populations requires more work, but we emphasize that the measurements need to be reliable to be of any value to the field.
An acute bout of localized resistance exercise can rapidly improve inhibitory control
Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Takeuchi, Tatsuya; Tanaka, Daichi; Hamaoka, Takafumi; Hashimoto, Takeshi; Isaka, Tadao
2017-01-01
The positive effect of acute resistance exercise on executive function, such as inhibitory control (IC), is poorly understood. Several previous studies have demonstrated this effect using whole-body resistance exercise. However, it remains unclear whether localized resistance exercise performed using only limited muscle groups could also acutely improve IC. Thus, the present study examined the effect of an acute bout of localized resistance exercise on IC. Twelve healthy men performed a color-word Stroop task (CWST) before and immediately after the experimental conditions, which consisted of 2 resistance exercises and a resting control (CON). Bilateral knee extension was used to create 2 resistance exercise conditions: light-intensity resistance exercise (LRE) and high-intensity resistance exercise (HRE) conditions, which were 40% and 80% of one-repetition maximum, respectively. The resistance exercise session was programmed for 6 sets with 10 repetitions per set. The CWST-measured IC was significantly improved immediately after both LRE and HRE, but it did not improve immediately after CON. However, the improved IC was significantly greater in HRE than in LRE. The present findings showed that IC could be rapidly improved by an acute bout of localized resistance exercise, especially with high-intensity. Therefore, we suggest that in addition to whole-body resistance exercise, localized resistance exercise performed using limited muscle groups may be sufficient for improving IC. PMID:28877232
Neuromuscular Fatigue during Prolonged Exercise in Hypoxia.
Jubeau, Marc; Rupp, Thomas; Temesi, John; Perrey, Stéphane; Wuyam, Bernard; Millet, Guillaume Y; Verges, Samuel
2017-03-01
Prolonged cycling exercise performance in normoxia is limited because of both peripheral and central neuromuscular impairments. It has been reported that cerebral perturbations are greater during short-duration exercise in hypoxia compared with normoxia. The purpose of this study was to test the hypothesis that central deficits are accentuated in hypoxia compared with normoxia during prolonged (three bouts of 80 min separated by 25 min) whole-body exercise at the same relative intensity. Ten subjects performed two sessions consisting of three 80-min cycling bouts at 45% of their relative maximal aerobic power in normoxia and hypoxia (FiO2 = 0.12). Before exercise and after each bout, maximal voluntary force, voluntary activation assessed with nerve stimulation and transcranial magnetic stimulation, corticospinal excitability (motor evoked potential), intracortical inhibition (cortical silent period), and electrical (M-wave) and contractile (twitch and doublet peak forces) properties of the knee extensors were measured. Prefrontal and motor cortical oxygenation was also recorded during each cycling bout in both conditions. A significant but similar force reduction (≈-22%) was observed at the end of exercise in normoxia and hypoxia. The modifications of voluntary activation assessed with transcranial magnetic stimulation and nerve stimulation, motor evoked potential, cortical silent period, and M-wave were also similar in both conditions. However, cerebral oxygenation was reduced in hypoxia compared with normoxia. These findings show that when performed at the same relative low intensity, prolonged exercise does not induce greater supraspinal fatigue in hypoxia compared with normoxia. Despite lower absolute exercise intensities in hypoxia, reduced brain O2 availability might contribute to similar amounts of central fatigue compared with normoxia.
The effect of acute exercise on cigarette cravings while using a nicotine lozenge.
Tritter, Amelia; Fitzgeorge, Lyndsay; Prapavessis, Harry
2015-07-01
It is imperative that smoking cessation aids effectively alleviate cigarette craving and withdrawal symptoms because their intensity has shown to predict relapse. The nicotine lozenge and a single session of exercise have both been shown to provide relief from craving for smokers who have stopped smoking. These two efficacious monotherapies have distinct mechanic pathways, and applying them concurrently may provide additive-craving relief benefit. This study aimed to examine whether an acute bout of moderate-intensity exercise provides additional craving relief to the nicotine replacement lozenge in recently quit smokers. Thirty smokers who had abstained from smoking for 15 h were randomized to either the experimental (exercise and lozenge, n = 15) or control (lozenge alone, n = 15) condition. Craving was assessed before (baseline), during (10 and 20 min), and after (10, 20, 30, and 40 min) treatment. A significant condition by time interaction effect was found for craving (F(6, 23) = 2.70, p = 0.039, Wilks' Λ = 0.59, η ρ (2) = 0.41). While both conditions demonstrated reductions in craving, the reduction was significantly greater for the experimental group. These findings demonstrate that an acute bout of exercise provides additional craving relief to the nicotine lozenge in recently quit smokers. We recommend smokers who attempt to quit employ both cessation aids simultaneously to maximize reductions in cravings.
Exercise intensity and postprandial health outcomes in adolescents.
Bond, Bert; Williams, Craig A; Isic, Carly; Jackman, Sarah R; Tolfrey, Keith; Barrett, Laura A; Barker, Alan R
2015-05-01
The effect of exercise intensity and sex on postprandial risk factors for cardiovascular disease in adolescents is unknown. We examined the effect of a single bout of work-matched high-intensity interval exercise (HIIE) and moderate-intensity exercise (MIE) on postprandial triacylglycerol (TAG) and systolic blood pressure (SBP) in adolescents. Twenty adolescents (10 male, 14.3 ± 0.3 years) completed three 1-day trials: (1) rest (CON); (2) 8 × 1 min cycling at 90 % peak power with 75 s recovery (HIIE); (3) cycling at 90 % of the gas exchange threshold (MIE), 1 h before consuming a high-fat milkshake (1.50 g fat and 80 kJ kg(-1)). Postprandial TAG, SBP and fat oxidation were assessed over 4 h Compared to CON, the incremental area under the curve for TAG (IAUC-TAG) was not significantly lowered in HIIE [P = 0.22, effect size (ES) = 0.24] or MIE (P = 0.65, ES = 0.04) for boys. For girls, HIIE and MIE lowered IAUC-TAG by 34 % (P = 0.02, ES = 0.58) and 38 % (P = 0.09, ES = 0.73), respectively, with no difference between HIIE and MIE (P = 0.74, ES = 0.14). Changes in TAG were not related to energy expenditure during exercise or postprandial fat oxidation. Postprandial SBP (total-AUC pooled for both sexes) was lower in HIIE compared to CON (P = 0.01, ES = 0.68) and MIE (P = 0.02, ES = 0.60), with no difference between MIE and CON (P = 0.45, ES = 0.14). A single bout of HIIE and MIE, performed 1 h before an HFM, can meaningfully attenuate IAUC-TAG in girls but not boys. Additionally, HIIE, but not MIE, may lower postprandial SBP in normotensive adolescents.
Oxidative stress response in trained men following repeated squats or sprints.
Bloomer, Richard J; Falvo, Michael J; Fry, Andrew C; Schilling, Brian K; Smith, Webb A; Moore, Christopher A
2006-08-01
The purpose of this investigation was to measure the oxidative stress response to similarly matched work bouts of squat and sprint exercise. Twelve anaerobically trained men performed six 10-s sprints and, on a separate occasion, repeated barbell squats to approximately equal the amount of work performed during the sprints. Blood lactate, heart rate, and perceived exertion was measured before and following each exercise bout. Muscle soreness, muscle force, and creatine kinase activity was determined preexercise and through 48 h of recovery. Desmin cytoskeletal protein was determined via muscle biopsy of the vastus lateralis before and at 24 h following each exercise. Plasma protein carbonyls (PC) and malondialdehyde (MDA) were measured as biomarkers of oxidative stress. Heart rate and perceived exertion was not different between exercise sessions (P > 0.05), although lactate was higher following sprinting compared with squatting (P = 0.002). Muscle soreness was greater for squatting than sprinting (P = 0.003) and reached a peak immediately postexercise for both sessions (P = 0.0003). Muscle force was unaffected by either exercise session (P > 0.05), and creatine kinase activity was elevated to a similar extent following both sessions. Desmin-negative fibers were virtually nonexistent after either exercise bout, indicating no loss of this cytoskeletal protein. Neither PC nor MDA was affected by the exercise (P > 0.05). These results suggest that in anaerobically trained men, the oxidative stress and muscle injury response to similarly matched anaerobic exercise bouts is minimal, and not different between exercise modes. Furthermore, when compared with previous literature on untrained subjects, the response is significantly attenuated, possibly because of adaptations occurring as a result of chronic, strenuous anaerobic training.
McBride, Jeffrey M; Porcari, John P; Scheunke, Mark D
2004-11-01
This investigation was designed to determine if vibration during fatiguing resistance exercise would alter associated patterns of muscle activity. A cross-over design was employed with 8 subjects completing a resistance exercise bout once with a vibrating dumbbell (V) (44 Hz, 3 mm displacement) and once without vibration (NV). For both exercise bouts, 10 sets were performed with a load that induced concentric muscle failure during the 10th repetition. The appropriate load for each set was determined during a pretest. Each testing session was separated by 1 week. Electromyography (EMG) was obtained from the biceps brachii muscle at 12 different time points during a maximum voluntary contraction (MVC) at a 170 degrees elbow angle after each set of the dumbbell exercise. The time points were as follows: pre (5 minutes before the resistance exercise bout), T1-T10 (immediately following each set of resistance exercise), and post (15 minutes after the resistance exercise bout). EMG was analyzed for median power frequency (MPF) and maximum (mEMG). NV resulted in a significant decrease in MPF at T1-T4 (p < or 0.05) and a significant increase in mEMG at T2 during the MVC. V had an overall trend of lower mEMG in comparison to NV. The mEMG and MPF values associated with NV were similar to previously reported investigations. The lower mEMG values and the higher MPF of V in comparison to NV are undocumented. The EMG patterns observed with vibration may indicate a more efficient and effective recruitment of high threshold motor units during fatiguing contractions. This may indicate the usage of vibration with resistance exercise as an effective tool for strength training athletes.
Velocity-specific strength recovery after a second bout of eccentric exercise.
Barss, Trevor S; Magnus, Charlene R A; Clarke, Nick; Lanovaz, Joel L; Chilibeck, Philip D; Kontulainen, Saija A; Arnold, Bart E; Farthing, Jonathan P
2014-02-01
A bout of eccentric exercise (ECC) has the protective effect of reducing muscle damage during a subsequent bout of ECC known as the "repeated bout effect" (RBE). The purpose of this study was to determine if the RBE is greater when both bouts of ECC are performed using the same vs. different velocity of contraction. Thirty-one right-handed participants were randomly assigned to perform an initial bout of either fast (3.14 rad·s [180°·s]) or slow (0.52 rad·s [30°·s]) maximal isokinetic ECCs of the elbow flexors. Three weeks later, the participants completed another bout of ECC at the same velocity (n = 16), or at a different velocity (n = 15). Indirect muscle damage markers were measured before, immediately after, and at 24, 48, and 72 hours postexercise. Measures included maximal voluntary isometric contraction (MVC) strength (dynamometer), muscle thickness (MT; ultrasound), delayed onset muscle soreness (DOMS; visual analog scale), biceps and triceps muscle activation amplitude (electromyography), voluntary activation (interpolated twitch), and twitch torque. After the repeated bout, MVC strength recovered faster compared with the same time points after the initial bout for only the same velocity group (p = 0.017), with no differences for all the other variables. Irrespective of velocity, MT and DOMS were reduced after the repeated bout compared with that of the initial bout at 24, 48, and 72 hours with a corresponding increase in TT at 72 hours (p < 0.05). Faster recovery of isometric strength associated with a repeated bout of ECC was evident when the velocity was matched between bouts, suggesting that specificity effects contribute to the RBE. The current findings support the idea of multiple mechanisms contributing to the RBE.
Demarzo, Marcelo Marcos Piva; Garcia, Sérgio Britto
2004-12-08
Aberrant crypt foci (ACF) have been used for early detection of factors that influence colorectal carcinogenesis in rats. It has been observed that exhaustive exercise increases free radical DNA oxidative damage and depresses immune function, events also related to the increased risk for cancer development. Fifteen days after a single exhaustive swimming bout in untrained rats treated with a colon carcinogen, we observed a statistically significant increased number of ACF when compared to the non-exercised group. Thus, we concluded that exhaustive exercise increased the susceptibility for colon cancer in rats. From our finding and literature data, we hypothesize that, similarly to the suggested relationship between exercise and infections, exercise could be protective against cancer or it could increase the risk for this disease depending on its type, dose and duration.
Done, Aaron J; Traustadóttir, Tinna
2016-12-01
Older individuals who exercise regularly exhibit greater resistance to oxidative stress than their sedentary peers, suggesting that exercise can modify age-associated loss of resistance to oxidative stress. However, we recently demonstrated that a single bout of exercise confers protection against a subsequent oxidative challenge in young, but not older adults. We therefore hypothesized that repeated bouts of exercise would be needed to increase resistance to an oxidative challenge in sedentary older middle-aged adults. Sedentary older middle-aged men and women (50-63 years, n = 11) participated in an 8-week exercise intervention. Maximal oxygen consumption was measured before and after the intervention. The exercise intervention consisted of three sessions per week, for 45 min at an intensity corresponding to 70-85 % maximal heart rate (HR max ). Resistance to oxidative stress was measured by F 2 -isoprostane response to a forearm ischemia/reperfusion (I/R) trial. Each participant underwent the I/R trial before and after the exercise intervention. The intervention elicited a significant increase in maximal oxygen consumption (VO 2max ) (P < 0.0001). Baseline levels of F 2 -isoprostanes pre- and post-intervention did not differ, but the F 2 -isoprostane response to the I/R trial was significantly lower following the exercise intervention (time-by-trial interaction, P = 0.043). Individual improvements in aerobic fitness were associated with greater improvements in the F 2 -isoprostane response (r = -0.761, P = 0.011), further supporting the role of aerobic fitness in resistance to oxidative stress. These data demonstrate that regular exercise with improved fitness leads to increased resistance to oxidative stress in older middle-aged adults and that this measure is modifiable in previously sedentary individuals.
Jones, Andrew M; Krustrup, Peter; Wilkerson, Daryl P; Berger, Nicolas J; Calbet, José A; Bangsbo, Jens
2012-01-01
Following the start of low-intensity exercise in healthy humans, it has been established that the kinetics of skeletal muscle O2 delivery is faster than, and does not limit, the kinetics of muscle O2 uptake (). Direct data are lacking, however, on the question of whether O2 delivery might limit kinetics during high-intensity exercise. Using multiple exercise transitions to enhance confidence in parameter estimation, we therefore investigated the kinetics of, and inter-relationships between, muscle blood flow (), a– difference and following the onset of low-intensity (LI) and high-intensity (HI) exercise. Seven healthy males completed four 6 min bouts of LI and four 6 min bouts of HI single-legged knee-extension exercise. Blood was frequently drawn from the femoral artery and vein during exercise and , a– difference and were calculated and subsequently modelled using non-linear regression techniques. For LI, the fundamental component mean response time (MRTp) for kinetics was significantly shorter than kinetics (mean ± SEM, 18 ± 4 vs. 30 ± 4 s; P < 0.05), whereas for HI, the MRTp for and was not significantly different (27 ± 5 vs. 29 ± 4 s, respectively). There was no difference in the MRTp for either or between the two exercise intensities; however, the MRTp for a– difference was significantly shorter for HI compared with LI (17 ± 3 vs. 28 ± 4 s; P < 0.05). Excess O2, i.e. oxygen not taken up (×), was significantly elevated within the first 5 s of exercise and remained unaltered thereafter, with no differences between LI and HI. These results indicate that bulk O2 delivery does not limit kinetics following the onset of LI or HI knee-extension exercise. PMID:22711961
Repeated high-intensity exercise modulates Ca(2+) sensitivity of human skeletal muscle fibers.
Gejl, K D; Hvid, L G; Willis, S J; Andersson, E; Holmberg, H-C; Jensen, R; Frandsen, U; Hansen, J; Plomgaard, P; Ørtenblad, N
2016-05-01
The effects of short-term high-intensity exercise on single fiber contractile function in humans are unknown. Therefore, the purposes of this study were: (a) to access the acute effects of repeated high-intensity exercise on human single muscle fiber contractile function; and (b) to examine whether contractile function was affected by alterations in the redox balance. Eleven elite cross-country skiers performed four maximal bouts of 1300 m treadmill skiing with 45 min recovery. Contractile function of chemically skinned single fibers from triceps brachii was examined before the first and following the fourth sprint with respect to Ca(2+) sensitivity and maximal Ca(2+) -activated force. To investigate the oxidative effects of exercise on single fiber contractile function, a subset of fibers was incubated with dithiothreitol (DTT) before analysis. Ca(2+) sensitivity was enhanced by exercise in both MHC I (17%, P < 0.05) and MHC II (15%, P < 0.05) fibers. This potentiation was not present after incubation of fibers with DTT. Specific force of both MHC I and MHC II fibers was unaffected by exercise. In conclusion, repeated high-intensity exercise increased Ca(2+) sensitivity in both MHC I and MHC II fibers. This effect was not observed in a reducing environment indicative of an exercise-induced oxidation of the human contractile apparatus. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Shannon, Christopher E; Ghasemi, Reza; Greenhaff, Paul L; Stephens, Francis B
2018-01-01
Increasing skeletal muscle carnitine availability alters muscle metabolism during steady-state exercise in healthy humans. We investigated whether elevating muscle carnitine, and thereby the acetyl-group buffering capacity, altered the metabolic and physiological adaptations to 24 weeks of high-intensity interval training (HIIT) at 100% maximal exercise capacity (Watt max ). Twenty-one healthy male volunteers (age 23±2 years; BMI 24.2±1.1 kg/m 2 ) performed 2 × 3 minute bouts of cycling exercise at 100% Watt max , separated by 5 minutes of rest. Fourteen volunteers repeated this protocol following 24 weeks of HIIT and twice-daily consumption of 80 g carbohydrate (CON) or 3 g l-carnitine+carbohydrate (CARN). Before HIIT, muscle phosphocreatine (PCr) degradation (P<.0001), glycogenolysis (P<.0005), PDC activation (P<.05), and acetylcarnitine (P<.005) were 2.3-, 2.1-, 1.5-, and 1.5-fold greater, respectively, in exercise bout two compared to bout 1, while lactate accumulation tended (P<.07) to be 1.5-fold greater. Following HIIT, muscle free carnitine was 30% greater in CARN vs CON at rest and remained 40% elevated prior to the start of bout 2 (P<.05). Following bout 2, free carnitine content, PCr degradation, glycogenolysis, lactate accumulation, and PDC activation were all similar between CON and CARN, albeit markedly lower than before HIIT. VO 2max , Watt max , and work output were similarly increased in CON and CARN, by 9, 15, and 23% (P<.001). In summary, increased reliance on non-mitochondrial ATP resynthesis during a second bout of intense exercise is accompanied by increased carnitine acetylation. Augmenting muscle carnitine during 24 weeks of HIIT did not alter this, nor did it enhance muscle metabolic adaptations or performance gains beyond those with HIIT alone. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Janzen, Natalie R; Hight, Robert E; Patel, Darshit S; Campbell, Jason A; Larson, Rebecca D; Black, Christopher D
2018-05-02
Characterization of critical power/torque (CP/CT) during voluntary exercise requires maximal effort, making difficult for those with neuromuscular impairments. To address this issue we sought to determine if electrically stimulated intermittent isometric exercise resulted in a critical end-test torque (ETT) that behaved similar to voluntary CT. In the first experiment participants (n = 9) completed four bouts of stimulated exercise at a 3:2 duty cycle, at frequencies of 100, 50, 25 Hz, and a low frequency below ETT (Sub-ETT; ≤ 15 Hz). The second experiment (n = 20) consisted of four bouts at a 2:2 duty cycle-two bouts at 100 Hz, one at an intermediate frequency (15-30 Hz), and one at Sub-ETT. The third experiment (n = 12) consisted of two bouts at 50 Hz at a 3:2 duty* cycle with proximal blood flow occlusion during one of the bouts. ETT torque was similar (p ≥ 0.43) within and among stimulation frequencies in experiment 1. No fatigue was observed during the Sub-ETT bouts (p > 0.05). For experiment 2, ETT was similar at 100 Hz and at the intermediate frequency (p ≥ 0.29). Again, Sub-ETT stimulation did not result in fatigue (p > 0.05). Altering oxygen delivery by altering the duty cycle (3:2 vs. 2:2; p = 0.02) and by occlusion (p < 0.001) resulted in lower ETT values. Stimulated exercise resulted in an ETT that was consistent from day-to-day and similar regardless of initial torque, as long as that torque exceeded ETT, and was sensitive to oxygen delivery. As such we propose it represents a parameter similar to voluntary CT.
Hody, S; Rogister, B; Leprince, P; Laglaine, T; Croisier, J-L
2013-09-01
The aims of this study were first to compare the response of dominant and non-dominant legs to eccentric exercise and second, to examine whether there is an effect of exercise order on the magnitude of symptoms associated with intense eccentric protocols. Eighteen young men performed three sets of 30 maximal eccentric isokinetic (60° s(-1)) contractions of the knee extensors (range of motion, ROM: 0°-100°, 0 = full extension) using either dominant or non-dominant leg. They repeated a similar eccentric bout using the contralateral leg 6 weeks later. The sequence of leg's use was allocated to create equally balanced groups. Four indirect markers of muscle damage including subjective pain intensity, maximal isometric strength, muscle stiffness and plasma creatine kinase (CK) activity were measured before and 24 h after exercise. All markers changed significantly following the eccentric bout performed either by dominant or non-dominant legs, but no significant difference was observed between legs. Interestingly, the comparison between the first and second eccentric bouts revealed that muscle soreness (-42%, P<0.001), CK activity (-62%, P<0.05) and strength loss (-54%, P<0.01) were significantly lower after the second bout. This study suggests that leg dominance does not influence the magnitude of exercise-induced muscle damage and supports for the first time the existence of a contralateral protection against exercise-induced muscle damage in the lower limbs. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Burnley, Mark; Doust, Jonathan H; Ball, Derek; Jones, Andrew M
2002-07-01
We hypothesized that the elevated primary O(2) uptake (VO(2)) amplitude during the second of two bouts of heavy cycle exercise would be accompanied by an increase in the integrated electromyogram (iEMG) measured from three leg muscles (gluteus maximus, vastus lateralis, and vastus medialis). Eight healthy men performed two 6-min bouts of heavy leg cycling (at 70% of the difference between the lactate threshold and peak VO(2)) separated by 12 min of recovery. The iEMG was measured throughout each exercise bout. The amplitude of the primary VO(2) response was increased after prior heavy leg exercise (from mean +/- SE 2.11 +/- 0.12 to 2.44 +/- 0.10 l/min, P < 0.05) with no change in the time constant of the primary response (from 21.7 +/- 2.3 to 25.2 +/- 3.3 s), and the amplitude of the VO(2) slow component was reduced (from 0.79 +/- 0.08 to 0.40 +/- 0.08 l/min, P < 0.05). The elevated primary VO(2) amplitude after leg cycling was accompanied by a 19% increase in the averaged iEMG of the three muscles in the first 2 min of exercise (491 +/- 108 vs. 604 +/- 151% increase above baseline values, P < 0.05), whereas mean power frequency was unchanged (80.1 +/- 0.9 vs. 80.6 +/- 1.0 Hz). The results of the present study indicate that the increased primary VO(2) amplitude observed during the second of two bouts of heavy exercise is related to a greater recruitment of motor units at the onset of exercise.
Lowe, Cassandra J; Kolev, Dimitar; Hall, Peter A
2016-12-01
The primary objective of this study was to examine the effects of aerobic exercise on executive function, specifically inhibitory control, and the transfer to self-control in the dietary domain. It was hypothesized that exercise would enhance inhibitory control, and that this enhancement would facilitate self-control in a laboratory taste test paradigm. Using a crossover design, 51 participants completed counterbalanced sessions of both moderate exercise (experimental condition) and minimal effort walking (control condition) using a treadmill; the intersession interval was 7days. Prior to each exercise bout participants completed a Stroop task. Following each bout participants completed a second Stoop task, as well as a bogus taste test involving three appetitive calorie dense snack foods and two control foods; the amount of each food type consumed during the taste test was covertly measured. Results revealed that moderate exercise significantly improved performance on the Stroop task, and also reduced food consumption during the taste test for appetitive calorie dense snack foods; there was no exercise effect on control food consumption. Exercise-induced gains in Stroop performance mediated the effects of moderate exercise on appetitive snack food consumption. Together these findings provide evidence that a bout of a moderate aerobic exercise can enhance inhibitory control, and support for cross-domain transfer effects to dietary self-control. Copyright © 2016 Elsevier Inc. All rights reserved.
Farrokhi, Shawn; Jayabalan, Prakash; Gustafson, Jonathan A; Klatt, Brian A; Sowa, Gwendolyn A; Piva, Sara R
2017-07-01
To evaluate whether knee contact force and knee pain are different between continuous and interval walking exercise in patients with knee osteoarthritis (OA). Twenty seven patients with unilateral symptomatic knee OA completed two separate walking exercise sessions on a treadmill at 1.3m/s on two different days: 1) a continuous 45min walking exercise session, and 2) three 15min bouts of walking exercise separated by 1h rest periods for a total of 45min of exercise in an interval format. Estimated knee contact forces using the OpenSim software and knee pain were evaluated at baseline (1st minute of walking) and after every 15min between the continuous and interval walking conditions. A significant increase from baseline was observed in peak knee contact force during the weight-acceptance phase of gait after 30 and 45min of walking, irrespective of the walking exercise condition. Additionally, whereas continuous walking resulted in an increase in knee pain, interval walking did not lead to increased knee pain. Walking exercise durations of 30min or greater may lead to undesirable knee joint loading in patients with knee OA, while performing the same volume of exercise in multiple bouts as opposed to one continuous bout may be beneficial for limiting knee pain. Copyright © 2017. Published by Elsevier B.V.
Stenson, Mary C; Stenson, Matthew R; Matthews, Tracey D; Paolone, Vincent J
2017-06-01
Cold water immersion (CWI) is used by endurance athletes to speed recovery between exercise bouts, but little evidence is available on the effects of CWI on subsequent endurance performance. The purpose of this study was to investigate the effects of CWI following an acute bout of interval training on 5000 m run performance 24 hrs after interval training, perceived muscle soreness (PMS), range of motion (ROM), thigh circumference (TC), and perceived exertion (RPE). Nine endurance-trained males completed 2 trials, each consisting of an interval training session of 8 repetitions of 1200 m at a running pace equal to 75% of VO 2 peak, either a control or CWI treatment, and a timed 5000 m run 24 hrs post interval training session. CWI was performed for 12 min at 12 degrees Celsius on the legs. Recovery treatments were performed in a counterbalanced design. Run time for 5000 m was not different between the CWI and control trials (CWI = 1317.33 ± 128.33 sec, control = 1303.44 ± 105.53 sec; p = 0.48). PMS increased significantly from baseline to immediately post exercise (BL = 1.17 ± 0.22, POST = 2.81 ± 0.52; p = 0.02) and remained elevated from baseline to 24 hrs post exercise (POST24 = 2.19 ± 0.32; p = 0.02), but no difference was observed between the treatments. No differences were observed for the interaction between time and treatment for TC (λ = 0.73, p = 0.15) and ROM (λ = 0.49; p = 0.10). CWI performed immediately following an interval training exercise bout did not enhance subsequent 5000 m run performance or reduce PMS. CWI may not provide a recovery or performance advantage when athletes are accustomed to the demands of the prior exercise bout.
Paschalis, Vassilis; Theodorou, Anastasios A.; Panayiotou, George; Kyparos, Antonios; Patikas, Dimitrios; Grivas, Gerasimos V.; Nikolaidis, Michalis G.; Vrabas, Ioannis S.
2013-01-01
A novel automatic escalator was designed, constructed and used in the present investigation. The aim of the present investigation was to compare the effect of two repeated sessions of stair descending versus stair ascending exercise on muscle performance and health-related parameters in young healthy men. Twenty males participated and were randomly divided into two equal-sized groups: a stair descending group (muscle-damaging group) and a stair ascending group (non-muscle-damaging group). Each group performed two sessions of stair descending or stair ascending exercise on the automatic escalator while a three week period was elapsed between the two exercise sessions. Indices of muscle function, insulin sensitivity, blood lipid profile and redox status were assessed before and immediately after, as well as at day 2 and day 4 after both exercise sessions. It was found that the first bout of stair descending exercise caused muscle damage, induced insulin resistance and oxidative stress as well as affected positively blood lipid profile. However, after the second bout of stair descending exercise the alterations in all parameters were diminished or abolished. On the other hand, the stair ascending exercise induced only minor effects on muscle function and health-related parameters after both exercise bouts. The results of the present investigation indicate that stair descending exercise seems to be a promising way of exercise that can provoke positive effects on blood lipid profile and antioxidant status. PMID:23437093
Effect of an acute bout of aerobic exercise on chemerin levels in obese adults
Lloyd, Jesse W.; Evans, Kristin A.; Zerfass, Kristy M.; Holmstrup, Michael E.; Kanaley, Jill A.; Keslacy, Stefan
2015-01-01
AIMS Serum chemerin concentrations are elevated in obese individuals and may play a role in type 2 diabetes. Exercise improves insulin sensitivity, which may be related to changes in chemerin. This study explored how an acute bout of aerobic exercise affected chemerin levels in non-diabetic obese adults. METHODS Blood samples from 11 obese adults were obtained during two separate conditions: sedentary (SED) and exercise (EX; 60-65% VO2peak). Samples were drawn at baseline, immediately following exercise and hourly for an additional 2 hours. ANOVA was used to test for differences in chemerin between conditions. RESULTS Unadjusted analysis showed no difference in overall change (baseline to 2 hrs post) in chemerin between conditions. During the 2-hr post-exercise period, chemerin decreased to 12% below baseline, compared to a 2.5% increase above baseline during that time period on the sedentary day (p=0.06, difference in post-to-2hr change between conditions). Controlling for homeostatic model assessment of insulin resistance (HOMA-IR), a significant difference existed between EX and SED in the change in chemerin from baseline to 2-hr post (p=0.02). Stratified analyses showed a consistent exercise-induced decrease in chemerin among non-insulin resistant subjects, while chemerin increased during exercise among insulin resistant subjects, and then decreased post-exercise. CONCLUSION An acute bout of exercise in obese individuals may elicit a drop in chemerin levels during the post-exercise period, and this response may vary based on insulin resistance. PMID:26008676
Oxygen consumption, substrate oxidation, and blood pressure following sprint interval exercise.
Chan, Huan Hao; Burns, Stephen Francis
2013-02-01
This study examined the acute effect of sprint interval exercise (SIE) on postexercise oxygen consumption, substrate oxidation, and blood pressure. The participants were 10 healthy males aged 21-27 years. Following overnight fasts, each participant undertook 2 trials in a random balanced order: (i) four 30-s bouts of SIE on a cycle ergometer, separated by 4.5 min of recovery, and (ii) resting (control) in the laboratory for an equivalent period. Time-matched measurements of oxygen consumption, respiratory exchange ratio, and blood pressure were made for 2 h into recovery. Total 2-h oxygen consumption was significantly higher in the SIE than in the control trial (mean ± SD: 31.9 ± 6.7 L vs Exercise: 45.5 ± 6.8 L, p < 0.001). The rate of fat oxidation was 75% higher 2 h after the exercise trial compared with the control trial ( 0.08 ± 0.05 g·min(-1) vs Exercise: 0.14 ± 0.06 g·min(-1), p = 0.035). Systolic blood pressure ( 117 ± 8 mm Hg vs Exercise: 109 ± 8 mm Hg, p < 0.05) and diastolic blood pressure ( 84 ± 6 mm Hg vs Exercise: 77 ± 5 mm Hg, p < 0.05) were significantly lower 2 h after the exercise trial compared with the control trial. These data showed a 42% increase in oxygen consumption (∼13.6 L) over 2 h after a single bout of SIE. Moreover, the rate of fat oxidation increased by 75%, whereas blood pressure was reduced by ∼8 mm Hg 2 h after SIE. Whether these acute benefits of SIE can translate into long-term changes in body composition and an improvement in vascular health needs investigation.
Muscle sympathetic nerve responses to physiological changes in prostaglandin production in humans
NASA Technical Reports Server (NTRS)
Doerzbacher, K. J.; Ray, C. A.
2001-01-01
Previous studies suggest that prostaglandins may contribute to exercise-induced increases in muscle sympathetic nerve activity (MSNA). To test this hypothesis, MSNA was measured at rest and during exercise before and after oral administration of ketoprofen, a cyclooxygenase inhibitor, or placebo. Twenty-one subjects completed two bouts of graded dynamic and isometric handgrip to fatigue. Each exercise bout was followed by 2 min of postexercise muscle ischemia. The second exercise bouts were performed after 60 min of rest in which 11 subjects were given ketoprofen (300 mg) and 10 subjects received a placebo. Ketoprofen significantly lowered plasma thromboxane B(2) in the drug group (from 36 +/- 6 to 22 +/- 3 pg/ml, P < 0.04), whereas thromboxane B(2) in the placebo group increased from 40 +/- 5 to 61 +/- 9 pg/ml from trial 1 to trial 2 (P < 0.008). Ketoprofen and placebo did not change sympathetic and cardiovascular responses to dynamic handgrip, isometric handgrip, and postexercise muscle ischemia. There was no relationship between thromboxane B(2) concentrations and MSNA or arterial pressure responses during both exercise modes. The data indicate that physiological increases or decreases in prostaglandins do not alter exercise-induced increases in MSNA and arterial pressure in humans. These findings suggest that contraction-induced metabolites other than prostaglandins mediate MSNA responses to exercise in humans.
Effects of an acute bout of exercise on memory in 6th grade children.
Etnier, Jennifer; Labban, Jeffrey D; Piepmeier, Aaron; Davis, Matthew E; Henning, David A
2014-08-01
Research supports the positive effects of exercise on cognitive performance by children. However, a limited number of studies have explored the effects specifically on memory. The purpose of this study was to compare the effects of an acute bout of exercise on learning, short-term memory, and long-term memory in a sample of children. Children were randomly assigned to an exercise condition or to a no-treatment control condition and then performed repeated trials on an auditory verbal learning task. In the exercise condition, participants performed the PACER task, an aerobic fitness assessment, in their physical education class before performing the memory task. In the control condition, participants performed the memory task at the beginning of their physical education class. Results showed that participants in the exercise condition demonstrated significantly better learning of the word lists and significantly better recall of the words after a brief delay. There were not significant differences in recognition of the words after an approximately 24-hr delay. These results provide evidence in a school setting that an acute bout of exercise provides benefits for verbal learning and long-term memory. Future research should be designed to identify the extent to which these findings translate to academic measures.
Cochrane, D J; Booker, H R; Mundel, T; Barnes, M J
2013-11-01
Intermittent pneumatic compression (IPC) has gained rapid popularity as a post-exercise recovery modality. Despite its widespread use and anecdotal claims for enhancing muscle recovery there is no scientific evidence to support its use. 10 healthy, active males performed a strenuous bout of eccentric exercise (3 sets of 100 repetitions) followed by IPC treatment or control performed immediately after exercise and at 24 and 48 h post-exercise. Muscular performance measurements were taken prior to exercise and 24, 48 and 72 h post-exercise and included single-leg vertical jump (VJ) and peak and average isometric [knee angle 75º] (ISO), concentric (CON) and eccentric (ECC) contractions performed at slow (30° · s⁻¹) and fast (180° · s⁻¹) velocities. Plasma creatine kinase (CK) samples were taken at pre- and post-exercise 24, 48 and 72 h. Strenuous eccentric exercise resulted in a significant decrease in peak ISO, peak and average CON (30° · s⁻¹) at 24 h compared to pre-exercise for both IPC and control, however VJ performance remained unchanged. There were no significant differences between conditions (IPC and control) or condition-time interactions for any of the contraction types (ISO, CON, ECC) or velocities (CON, ECC 30° · s⁻¹ and 180° · s⁻¹). However, CK was significantly elevated at 24 h compared to pre-exercise in both conditions (IPC and control). IPC did not attenuate muscle force loss following a bout of strenuous eccentric exercise in comparison to a control. While IPC has been used in the clinical setting to treat pathologic conditions, the parameters used to treat muscle damage following strenuous exercise in healthy participants are likely to be very different than those used to treat pathologic conditions. © Georg Thieme Verlag KG Stuttgart · New York.
Exercise Intervention for Cancer Survivors with Heart Failure: Two Case Reports
Hughes, Daniel C.; Lenihan, Daniel J.; Harrison, Carol A.; Basen-Engquist, Karen M.
2011-01-01
Rationale Cardiotoxicity is a troubling long-term side effect of chemotherapy cancer treatment, affecting therapy and quality of life (QOL). Exercise is beneficial in heart failure (HF) patients and in cancer survivors without HF, but has not been tested in cancer survivors with treatment induced HF. Methods We present case studies for two survivors: a 56-year old female Hodgkin’s lymphoma survivor (Pt 1) and a 44-year old male leukemia survivor (Pt 2). We conducted a 16-week exercise program with the goal of 30 minutes of exercise performed 3 times per week at a minimum intensity of 50% heart rate reserve (HRR) or ‘12’ rating of perceived exertion (RPE). Results Pt 1 improved from 11.5 minutes of exercise split over two bouts at an RPE of 14 to a 30 minute bout at an RPE of 15. Pt 2 improved from 11 minutes of exercise split over two bouts at an RPE of 12 to an 18 minute bout at an RPE of 12. Both improved in VO2 peak (Pt 1: 13.9 to 14.3 mlO2/kg/min; Pt 2: 12.5 to 18.7 mlO2/kg/min). Ejection fraction increased for Pt 2 (25–30% to 35–40%) but not for Pt 1 (35–40%). QOL as assessed by the SF-36 Physical Component Scale (PCS) improved from 17.79 to 25.31 for Pt 1 and the Mental Component Scale (MCS) improved from 43.84 to 56.65 for Pt 1 and from 34.79 to 44.45 for Pt 2. Conclusions Properly designed exercise interventions can improve physical functioning and quality of life for this growing group of survivors. PMID:21709755
Paddon-Jones, D; Muthalib, M; Jenkins, D
2000-03-01
This study examined markers of muscle damage following a repeated bout of maximal isokinetic eccentric exercise performed prior to full recovery from a previous bout. Twenty non-resistance trained volunteers were randomly assigned to a control (CON, n=10) or experimental (EXP, n=10) group. Both groups performed 36 maximal isokinetic eccentric contractions of the elbow flexors of the non-dominant arm (ECC1). The EXP group repeated the same eccentric exercise bout two days later (ECC2). Total work and peak eccentric torque were recorded during each set of ECC1 and ECC2. Isometric torque, delayed onset muscle soreness (DOMS), flexed elbow angle and plasma creatine kinase (CK) activity were measured prior to and immediately following ECC1 and ECC2. at 24h intervals for 7 days following ECC1 and finally on day 11. In both groups, all dependent variables changed significantly during the 2 days following ECC1. A further acute post-exercise impairment in isometric torque (30 +/- 5%) and flexed elbow angle (20 +/- 4%) was observed following ECC2 (p<0.05), despite EXP subjects producing uniformly lower work and peak eccentric torque values during ECC2 (p<0.05). No other significant differences between the CON and EXP groups were observed throughout the study (p>0.05). These findings suggest that when maximal isokinetic eccentric exercise is repeated two days after experiencing of contraction-induced muscle damage, the recovery time course is not significantly altered.
Ranadive, Sushant M.; Lane-Cordova, Abbi D.; Kappus, Rebecca M.; Behun, Michael A.; Cook, Marc D.; Woods, Jeffrey A.; Wilund, Kenneth R.; Baynard, Tracy; Fernhall, Bo
2017-01-01
African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA. NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise compared with Caucasians, which may contribute to their higher risk of cardiovascular disease. Furthermore, African Americans exhibit attenuated vasodilator response compared with Caucasians. PMID:27979988
Yan, Huimin; Ranadive, Sushant M; Lane-Cordova, Abbi D; Kappus, Rebecca M; Behun, Michael A; Cook, Marc D; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Halliwill, John R; Fernhall, Bo
2017-02-01
African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA. NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise compared with Caucasians, which may contribute to their higher risk of cardiovascular disease. Furthermore, African Americans exhibit attenuated vasodilator response compared with Caucasians. Copyright © 2017 the American Physiological Society.
Prolonged adenosine triphosphate infusion and exercise hyperemia in humans.
Shepherd, John R A; Joyner, Michael J; Dinenno, Frank A; Curry, Timothy B; Ranadive, Sushant M
2016-09-01
In humans, intra-arterial ATP infusion in limbs mimics many features of exercise hyperemia. However, it remains unknown whether ATP can evoke the prolonged vasodilation seen during exercise. Therefore, we addressed two questions during a continuous 3-h brachial artery infusion of ATP [20 μg·100 ml forearm volume (FAV)(-1)·min(-1)]: 1) would skeletal muscle blood flow remain robust or wane over time (tachyphylaxis); and 2) would the hyperemic response to moderate-intensity exercise performed during the ATP administration be blunted compared with that during control (saline) infusion. Nine participants (25 ± 1 yr) performed one trial consisting of seven bouts of rhythmic handgrip exercise (20 contractions/min at 20% of maximum), two bouts during saline (control), and five bouts during 180 min of continuous ATP infusion. Five minutes of ATP infusion resulted in a 710% increase in forearm vascular conductance (FVC) from control (4.8 ± 0.77 vs. 35.0 ± 5.7 ml·min(-1)·100 mmHg(-1)·dl FAV(-1), P < 0.05). Contrary to our expectations, FVC did not wane over time with values of 35.0 ± 5.7 and 36.0 ± 7.7 ml·min(-1)·100 mmHg(-1)·dl FAV(-1) (P > 0.05), seen prior to the exercise bouts at 5 vs. 150 min, respectively. During superimposed exercise, FVC increased from 35.0 ± 5.7 to 49.6 ± 5.4 ml·min(-1)·100 mmHg(-1)·dl FAV(-1) at 5 min and 36.0 ± 7.7 to 54.5 ± 5.0 at 150 min (P < 0.05). Our findings demonstrate ATP vasodilation is prolonged over time without tachyphylaxis; however, exercise hyperemia responses remain intact. Our results challenge the metabolic theory of exercise hyperemia, suggesting a disconnect between matching of blood flow and metabolic demand. Copyright © 2016 the American Physiological Society.
The effects of low-intensity cycling on cognitive performance following sleep deprivation.
Slutsky, Alexis B; Diekfuss, Jed A; Janssen, James A; Berry, Nate T; Shih, Chia-Hao; Raisbeck, Louisa D; Wideman, Laurie; Etnier, Jennifer L
2017-10-15
This study examined the effect of 24h of sleep deprivation on cognitive performance and assessed the effect of acute exercise on cognitive performance following sleep deprivation. Young, active, healthy adults (n=24, 14 males) were randomized to control (age=24.7±3.7years, BMI=27.2±7.0) or exercise (age=25.3±3.3years, BMI=25.6±5.1) groups. Cognitive testing included a 5-min psychomotor vigilance task (PVT), three memory tasks with increasing cognitive load, and performance of the PVT a second time. On morning one, cognitive testing followed a typical night's sleep. Following 24-h of sustained wakefulness, cognitive testing was conducted again prior to and after the acute intervention. Participants in the exercise condition performed low-intensity cycling (∼40%HRR) for 15-min and those in the control condition sat quietly on the bike for 15-min. t-Tests revealed sleep deprivation negatively affected performance on the PVT, but did not affect memory performance. Following the acute intervention, there were no cognitive performance differences between the exercise and rested conditions. We provide support for previous literature suggesting that during simple tasks, sleep deprivation has negative effects on cognitive performance. Importantly, in contrast to previous literature which has shown multiple bouts of exercise adding to cognitive detriment when combined with sleep deprivation, our results did not reveal any further detriments to cognitive performance from a single-bout of exercise following sleep deprivation. Copyright © 2017 Elsevier Inc. All rights reserved.
Elbin, R J; Beatty, Amanda; Covassin, Tracey; Schatz, Philip; Hydeman, Ana; Kontos, Anthony P
2015-01-01
This study compared changes in neurocognitive performance and symptom reports following an acute bout of soccer heading among athletes with and without protective soccer headgear. A total of 25 participants headed a soccer ball 15 times over a 15-minute period, using a proper linear heading technique. Participants in the experimental group completed the heading exercise while wearing a protective soccer headband and controls performed the heading exercise without wearing the soccer headband. Neurocognitive performance and symptom reports were assessed before and after the acute bout of heading. Participants wearing the headband showed significant decreases on verbal memory (p = 0.02) compared with the no headband group, while the no headband group demonstrated significantly faster reaction time (p = 0.03) than the headband group following the heading exercise. These findings suggest that protective soccer headgear likely does not mitigate the subtle neurocognitive effects of acute soccer heading.
Byun, Kyeongho; Hyodo, Kazuki; Suwabe, Kazuya; Ochi, Genta; Sakairi, Yosuke; Kato, Morimasa; Dan, Ippeita; Soya, Hideaki
2014-09-01
Despite the practical implication of mild exercise, little is known about its influence on executive function and its neural substrates. To address these issues, the present study examined the effect of an acute bout of mild exercise on executive function and attempted to identify potential neural substrates using non-invasive functional near-infrared spectroscopy (fNIRS). Twenty-five young individuals performed a color-word matching Stroop task (CWST) and a two-dimensional scale to measure changes of psychological mood states both before and after a 10-minute exercise session on a cycle ergometer at light intensity (30% v(·)o2peak) and, for the control session, without exercise. Cortical hemodynamic changes in the prefrontal area were monitored with fNIRS during the CWST in both sessions. The acute bout of mild exercise led to improved Stroop performance, which was positively correlated with increased arousal levels. It also evoked cortical activations regarding Stroop interference on the left dorsolateral prefrontal cortex and frontopolar area. These activations significantly corresponded with both improved cognitive performance and increased arousal levels. Concurrently, this study provides empirical evidence that an acute bout of mild exercise improves executive function mediated by the exercise-induced arousal system, which intensifies cortical activation in task-related prefrontal sub-regions. Copyright © 2014 Elsevier Inc. All rights reserved.
Stretch-activated ion channel blockade attenuates adaptations to eccentric exercise.
Butterfield, Timothy A; Best, Thomas M
2009-02-01
The purpose of this study was to test the hypothesis that stretch-activated ion channel (SAC) function is essential for the repeated bout effect (RBE) in skeletal muscle. Specifically, we investigated if daily injections of streptomycin (a known SAC blocker) would abrogate the muscle's adaptive resistance to the damaging effects of eccentric exercise over a 4-wk period. Furthermore, we hypothesized that the lack of an RBE would be due to the lack of functional adaptations that typically result from repeated bouts of eccentric exercise, including increased peak isometric torque, muscle hypertrophy, and rightward shift of the torque-angle relationship. Twelve New Zealand white rabbits were each subjected to 12 bouts of eccentric exercise over a 4-wk period while receiving either daily injections of streptomycin or sham injections. Although blocking the SAC function completely eliminated the expected adaptive response in biomechanical parameters during the exercise regimen, there remained evidence of an acquired RBE, albeit with an attenuated response when compared with the muscles with intact SAC function. Blocking sarcolemmal SAC eliminates functional adaptations of muscle after eccentric exercise. In the absence of SAC function, muscles subjected to chronic eccentric exercise still exhibit some degree of the RBE. As such, it appears that the signaling cascade that results in functional, biomechanical adaptations associated with the RBE during eccentric exercise is dependent upon intact SAC function.
Nixon, Elena; Glazebrook, Cris; Hollis, Chris; Jackson, Georgina M
2014-03-01
In light of descriptive accounts of attenuating effects of physical activity on tics, we used an experimental design to assess the impact of an acute bout of aerobic exercise on tic expression in young people (N = 18) with Tourette Syndrome (TS). We compared video-based tic frequency estimates obtained during an exercise session with tic rates obtained during pre-exercise (baseline) and post-exercise interview-based sessions. Results showed significantly reduced tic rates during the exercise session compared with baseline, suggesting that acute exercise has an attenuating effect on tics. Tic rates also remained reduced relative to baseline during the post-exercise session, likely reflecting a sustained effect of exercise on tic reduction. Parallel to the observed tic attenuation, exercise also had a beneficial impact on self-reported anxiety and mood levels. The present findings provide novel empirical evidence for the beneficial effect of exercise on TS symptomatology bearing important research and clinical implications. © The Author(s) 2014.
Nagy, Tamás; Kátai, Emese; Fisi, Viktória; Takács, Tamás Tibor; Stréda, Antal; Wittmann, István; Miseta, Attila
2018-01-01
Protein O-linked N -acetylglucosamine (O-GlcNAc) is a dynamic posttranslational modification influencing the function of many intracellular proteins. Recently it was revealed that O-GlcNAc regulation is modified under various stress states, including ischemia and oxidative stress. Aside from a few contradictory studies based on animal models, the effect of exercise on O-GlcNAc is unexplored. To evaluate O-GlcNAc levels in white blood cells (WBC) of human volunteers following physical exercise. Young (age 30 ± 5.2), healthy male volunteers ( n = 6) were enlisted for the study. Blood parameters including metabolites, ions, "necro"-enzymes, and cell counts were measured before and after a single bout of exercise (2-mile run). From WBC samples, we performed western blots to detect O-GlcNAc modified proteins. The distribution of O-GlcNAc in WBC subpopulations was assessed by flow cytometry. Elevation of serum lactic acid (increased from 1.3 ± 0.4 to 6.9 ± 1.7 mM), creatinine (from 77.5 ± 6.3 U/L to 102.2 ± 7.0 μM), and lactate dehydrogenase (from 318.5 ± 26.2 to 380.5 ± 33.2 U/L) confirmed the effect of exercise. WBC count also significantly increased (from 6.6 ± 1.0 to 8.4 ± 1.4 G/L). The level of O-GlcNAc modified proteins in WBCs showed significant elevation after exercise (85 ± 51%, p < 0.05). Flow cytometry revealed that most of this change could be attributed to lymphocytes and monocytes. Our results indicate that short-term exercise impacts the O-GlcNAc status of WBCs. O-GlcNAc modification could be a natural process by which physical activity modulates the immune system. Further research could elucidate the role of O-GlcNAc during exercise and validate O-GlcNAc as a biomarker for fitness assessment.
Energy cost of isolated resistance exercises across low- to high-intensities
Garrido, Nuno Domingos; Vianna, Jeferson; Sousa, Ana Catarina; Alves, José Vilaça; Marques, Mário Cardoso
2017-01-01
This study aimed to estimate the energy cost across various intensities at eight popular resistance exercises: half squat, 45° inclined leg press, leg extension, horizontal bench press, 45° inclined bench press, lat pull down, triceps extension and biceps curl. 58 males (27.5 ± 4.9 years, 1.78 ± 0.06 m height, 78.67 ± 10.7 kg body mass and 11.4 ± 4.1% estimated body fat) were randomly divided into four groups of 14 subjects each. For each group, two exercises were randomly assigned and on different days, they performed four bouts of 5-min constant-intensity for each of the two assigned exercises: 12%, 16%, 20% and 24% 1-RM. Later, the subjects performed exhaustive bouts at 80% 1-RM in the same two exercises. The mean values of VO2 at the last 30s of exercise at 12, 16, 20 and 24% 1-RM bouts were plotted against relative intensity (% 1-RM) in a simple linear regression mode. The regressions were then used to predict O2 demand for the higher intensity (80% 1-RM). Energy cost rose linearly with exercise intensity in every exercise with the lowest mean values were found in biceps curl and the highest in half squat exercise (p<0.001). Half squat exercise presented significant (p<0.001) higher values of energy cost in all intensities, when compared with the remaining exercises. This study revealed that low-intensity resistance exercise provides energy cost comprised between 3 and 10 kcal∙min-1. Energy cost rose past 20 kcal∙min-1 at 80% 1-RM in leg exercise. In addition, at 80% 1-RM, it was found that upper body exercises are less anaerobic than lower-body exercises. PMID:28742112
Complex active travel bout motivations: Gender, place, and social context associations.
Brown, Barbara B; Smith, Ken R
2017-09-01
Active travel bouts are healthy, but bout-specific motives, social, and physical contexts have been poorly characterized. Adults (n= 421 in 2012, 436 in 2013) described their moderate activity bouts over the past week, aided by accelerometry/GPS data integration. Participants viewed maps indicating date, time, and starting and ending locations of their past week moderate-to-vigorous active travel bouts of 3 or more minutes. These prompts helped participants recall their social and physical contexts and motives for the bouts. Three bout motivations were modeled: leisure, transportation, and their "T-L" difference scores (transportation minus leisure scores). Blends of leisure and transportation motives characterized most bouts, even though most studies do not allow participants to endorse multiple motives for their active travel. Bouts were often neighborhood-based. Leisure motives were related to pleasant place perceptions, homes, and exercise places; workplaces were associated with stronger transportation and T-L bout motives. Women's bout motives were more closely associated with place than men's. Our novel method of individual bout assessment can illuminate the social-ecological contexts and experiences of everyday healthy bouts of activity.
Acute Exercise Improves Mood and Motivation in Young Men with ADHD Symptoms.
Fritz, Kathryn M; O'Connor, Patrick J
2016-06-01
Little is known about whether acute exercise affects signs or symptoms of attention deficit/hyperactivity disorder (ADHD) in adults. This experiment sought to determine the effects of a single bout of moderate-intensity leg cycling exercise on measures of attention, hyperactivity, mood, and motivation to complete mental work in adult men reporting elevated ADHD symptoms. A repeated-measures crossover experiment was conducted with 32 adult men (18-33 yr) with symptoms consistent with adult ADHD assessed by the Adult Self-Report Scale V1.1. Measures of attention (continuous performance task and Bakan vigilance task), motivation to perform the mental work (visual analog scale), lower leg physical activity (accelerometry), and mood (Profile of Mood States and Addiction Research Center Inventory amphetamine scale) were measured before and twice after a 20-min seated rest control or exercise condition involving cycling at 65% V˙O2peak. Condition (exercise vs rest) × time (baseline, post 1, and post 2) ANOVA was used to test the hypothesized exercise-induced improvements in all outcomes. Statistically significant condition-time interactions were observed for vigor (P < 0.001), amphetamine (P < 0.001), motivation (P = 0.027), and Profile of Mood States depression (P = 0.027), fatigue (P = 0.030), and confusion (P = 0.046) scales. No significant interaction effects were observed for leg hyperactivity, simple reaction time, or vigilance task performance (accuracy, errors, or reaction time). In young men reporting elevated symptoms of ADHD, a 20-min bout of moderate-intensity cycle exercise transiently enhances motivation for cognitive tasks, increases feelings of energy, and reduces feelings of confusion, fatigue, and depression, but this has no effect on the behavioral measures of attention or hyperactivity used.
Pervaiz, Nabeel; Hoffman-Goetz, Laurie
2012-01-01
Exhaustive exercise induces apoptosis and oxidative stress in systemic organs and tissues and is associated with increased levels of pro-inflammatory cytokines. The effects of acute exercise on cytokine expression and apoptosis of immune cells in the central nervous system (CNS) have not been well characterized. We investigated the effects of a single bout of strenuous exercise on the expression of TNF-alpha, IL-6, and IL-beta, as well as the apoptotic status of cells in the hippocampus of healthy mice. To compare central vs. systemic differences, cytokine expression in the intestinal lymphocytes of a subset of mice were also assessed. Female C57BL/6 mice were divided into three groups: sedentary controls (NOTREAD) (n = 22), treadmill exercise with immediate sacrifice (TREAD-Imm) (n = 21), or treadmill exercise with sacrifice after 2 hours (TREAD-2h). TNF-alpha, IL-6, and IL-1beta expression in the hippocampus and intestinal lymphocytes were measured by Western blot analysis. Percentages of hippocampal cells undergoing apoptosis (Annexin+) or necrosis (Propidium Iodide+) were determined through flow cytometry. Plasma levels of 8-isoprostane and corticosterone were measured using commercially available EIA kits. Acute treadmill exercise led to significant decreases in TNF-alpha (p<0.05) and increases in IL-6 (p<0.05) expression in the hippocampus of healthy mice. No effects of acute exercise on the apoptotic status of hippocampal cells were observed. In intestinal lymphocytes, the exercise bout led to significant increases in TNF-alpha (p<0.05), IL-6 (p<0.05), and IL-1beta (p<0.05). Acute exercise was associated with a significant increase in both plasma 8-isoprostane (p<0.05) and corticosterone (p<0.05) levels. Acute exercise differentially affects the pattern ofpro-inflammatory cytokine expression in the hippocampus compared to intestinal lymphocytes and, further, does not induce apoptosis in hippocampal cells.
The effect of exercise intensity on postresistance exercise hypotension in trained men.
Duncan, Michael J; Birch, Samantha L; Oxford, Samuel W
2014-06-01
The occurrence of postresistance exercise hypotension (PEH) after resistance exercise remains unknown. This study examined blood pressure and heart rate (HR) responses to an acute bout of low- and high-intensity resistance exercise, matched for total work, in trained males. Sixteen resistance-trained males (23.1 ± 5.9 years) performed an acute bout of low- (40% of 1 repetition maximum [1RM]) and high-intensity resistance exercise (80% 1RM), matched for total work, separated by 7 days and performed in a counterbalanced order. Systolic blood pressure (SBP) and diastolic blood pressure (DBP), mean arterial pressure (MAP), and HR were assessed before exercise, after completion of each exercise resistance exercise (3 sets of back squat, bench press, and deadlift) and every 10 minutes after resistance exercise for a period of 60 minutes. Results indicated a significant intensity × time interaction for SBP (p = 0.034, partial η(2) = 0.122) and MAP (p = 0.047, partial η(2) = 0.116) whereby SBP and MAP at 50-minute recovery and 60-minute recovery were significantly lower after high-intensity exercise (p = 0.01 for SBP and p = 0.05 for MAP in both cases) compared with low-intensity exercise. There were no significant main effects or interactions in regard to DBP (all p > 0.05). Heart rate data indicated a significant main effect for time (F(9, 135) = 2.479, p = 0.0001, partial η(2) = 0.344). Post hoc multiple comparisons indicated that HR was significantly higher after squat, bench press, and deadlift exercise compared with resting HR and HR at 40-, 50-, and 60-minute recovery (all p = 0.03). The present findings suggest that an acute bout of high intensity, but not low intensity, resistance exercise using compound movements can promote PEH in trained men.
Ichiyama, Ronaldo M; Gilbert, Andrea B; Waldrop, Tony G; Iwamoto, Gary A
2002-08-30
The purpose of this study was to determine whether exercise training changes the extent or pattern of activation of areas in the central nervous system (CNS) involved in cardiorespiratory control. Rats that spontaneously trained on running wheels for 80-100 days were compared to rats that were not provided an opportunity to exercise. Selected brain regions including the hypothalamic and mesencephalic locomotor regions, and ventrolateral medulla were studied using c-Fos-like immunocytochemistry. A single test bout of exercise evoked significantly less activation as indicated by Fos labeling in the posterior (caudal) hypothalamic area, periaqueductal gray, nucleus of the tractus solitarius and the rostral ventrolateral medulla of the trained rats when compared to sedentary rats. These results are consistent with the concept that the nervous system changes its responses to a given level of exercise after training. These changes may also be related to perceived exertion.
Yan, Huimin; Ranadive, Sushant M; Heffernan, Kevin S; Lane, Abbi D; Kappus, Rebecca M; Cook, Marc D; Wu, Pei-Tzu; Sun, Peng; Harvey, Idethia S; Woods, Jeffrey A; Wilund, Kenneth R; Fernhall, Bo
2014-01-01
African-American (AA) men have higher arterial stiffness and augmentation index (AIx) than Caucasian-American (CA) men. Women have greater age-associated increases in arterial stiffness and AIx than men. This study examined racial and sex differences in arterial stiffness and central hemodynamics at rest and after an acute bout of maximal exercise in young healthy individuals. One hundred young, healthy individuals (28 AA men, 24 AA women, 25 CA men, and 23 CA women) underwent measurements of aortic blood pressure (BP) and arterial stiffness at rest and 15 and 30 min after an acute bout of graded maximal aerobic exercise. Aortic BP and AIx were derived from radial artery applanation tonometry. Aortic stiffness (carotid-femoral) was measured via pulse wave velocity. Aortic stiffness was increased in AA subjects but not in CA subjects (P < 0.05) after an acute bout of maximal cycling exercise, after controlling for body mass index. Aortic BP decreased after exercise in CA subjects but not in AA subjects (P < 0.05). Women exhibited greater reductions in AIx after maximal aerobic exercise compared with men (P < 0.05). In conclusion, race and sex impact vascular and central hemodynamic responses to exercise. Young AA and CA subjects exhibited differential responses in central stiffness and central BP after acute maximal exercise. Premenopausal women had greater augmented pressure at rest and after maximal aerobic exercise than men. Future research is needed to examine the potential mechanisms.
Ranadive, Sushant M.; Heffernan, Kevin S.; Lane, Abbi D.; Kappus, Rebecca M.; Cook, Marc D.; Wu, Pei-Tzu; Sun, Peng; Harvey, Idethia S.; Woods, Jeffrey A.; Wilund, Kenneth R.; Fernhall, Bo
2013-01-01
African-American (AA) men have higher arterial stiffness and augmentation index (AIx) than Caucasian-American (CA) men. Women have greater age-associated increases in arterial stiffness and AIx than men. This study examined racial and sex differences in arterial stiffness and central hemodynamics at rest and after an acute bout of maximal exercise in young healthy individuals. One hundred young, healthy individuals (28 AA men, 24 AA women, 25 CA men, and 23 CA women) underwent measurements of aortic blood pressure (BP) and arterial stiffness at rest and 15 and 30 min after an acute bout of graded maximal aerobic exercise. Aortic BP and AIx were derived from radial artery applanation tonometry. Aortic stiffness (carotid-femoral) was measured via pulse wave velocity. Aortic stiffness was increased in AA subjects but not in CA subjects (P < 0.05) after an acute bout of maximal cycling exercise, after controlling for body mass index. Aortic BP decreased after exercise in CA subjects but not in AA subjects (P < 0.05). Women exhibited greater reductions in AIx after maximal aerobic exercise compared with men (P < 0.05). In conclusion, race and sex impact vascular and central hemodynamic responses to exercise. Young AA and CA subjects exhibited differential responses in central stiffness and central BP after acute maximal exercise. Premenopausal women had greater augmented pressure at rest and after maximal aerobic exercise than men. Future research is needed to examine the potential mechanisms. PMID:24186094
Effect of exercise on cigarette cravings and ad libitum smoking following concurrent stressors.
Fong, Angela J; De Jesus, Stefanie; Bray, Steven R; Prapavessis, Harry
2014-10-01
The health consequences of smoking are well documented, yet quit rates are modest. While exercise has supported decreased cravings and withdrawal symptoms in temporarily abstinent smokers, it has yet to be applied when smokers are experiencing concurrent stressors. This study examined the effect of an acute bout of moderate intensity exercise on cravings (primary outcome) and ad libitum smoking (secondary outcome) following concurrent stressors (i.e., temporary abstinence and environmental manipulation-Stroop cognitive task+cue-elicited smoking stimuli). Twenty-five smokers (>10cig/day; Mean age=37.4years) were randomized into either exercise (n=12) or passive sitting conditions. A repeated measure (RM) ANOVA showed that psychological withdrawal symptoms (a measure of distress) were significantly exacerbated after temporary abstinence and then again after the environmental manipulation for all participants (p<.0001, η(2)=.50). Furthermore, a treatment by time RM ANOVA revealed decreases in psychological withdrawal symptoms for only the exercise condition (p<.001, η(2)=.42). A treatment by time RM ANOVA also revealed craving reductions for only the exercise condition (p<.0001, η(2)=.82). Exercise had no effect on ad libitum smoking. This is the first study to use a lab-based scenario with high ecological validity to show that an acute bout of exercise can reduce cravings following concurrent stressors. Future work is now needed where momentary assessment is used in people's natural environment to examine changes in cigarette cravings following acute bouts of exercise. Copyright © 2014 Elsevier Ltd. All rights reserved.
Péronnet, F; Massicotte, D; Paquet, J E; Brisson, G; de Champlain, J
1989-01-01
The purpose of this study was to assess the effects of a 2 h cycle exercise (50% VO2max) on heart rate (HR) and blood pressure (BP), and on plasma epinephrine (E) and norepinephrine (NE) concentrations, during the recovery period in seven normotensive subjects. Measurements were made at rest in supine (20 min) and standing (10 min) positions, during isometric exercise (hand-grip, 3 min, 25% maximal voluntary, contraction), in response to a mild psychosocial challenge (Stroop conflicting color word task) and during a 5-min period of light exercise (42 +/- 3% VO2max). Data were compared to measurements taken on another occasion under similar experimental conditions, without a previous exercise bout (control). The results showed HR to be slightly elevated in all conditions following the exercise bout. However, diastolic and systolic BP during the recovery period following exercise were not significantly different from the values observed in the control situation. Plasma NE concentrations in supine position and in response to the various physiological and/or psychosocial challenges were similar in the control situation and during the recovery period following exercise. On the other hand plasma E (nmol.1-1) was about 50% lower at rest (0.11 +/- 0.03 vs 0.23 +/- 0.04) as well as in response to hand-grip (0.21 +/- 0.04 vs 0.41 +/- 0.20) and the Stroop-test (0.21 +/- 0.05 vs 0.41 +/- 0.15) following the exercise bout.(ABSTRACT TRUNCATED AT 250 WORDS)
Koenigstorfer, Joerg; Schmidt, Walter F J
2011-10-24
This paper aims to examine the similarities in effects of exercise training and a hypocaloric diet within overweight female monozygotic twin pairs and to assess differences in twin partners' responses depending on the timing of exercise bouts and main meals. Six previously untrained twin pairs (aged 20-37 years, body fat 35.8±6.3%) performed an identical exercise program (12 bouts endurance and 8 bouts resistance training) and took part in a nutrition counseling program for a period of 28 days. They pursued one identical goal: to lose body weight and fat. Each twin partner was randomly assigned to one of the two intervention groups: "exercise after dinner" (A) and "exercise before dinner" (B). Subjects followed a hypocaloric diet, supervised by a nutritionist, in free-living conditions. Reductions in body weight, waist and hip circumference, glucose tolerance, mean daily %fat intake, changes in morning resting energy rate and resting metabolic rate showed great variation between twin pairs, but only small variation within twin pairs. Thus, the genetic influence on the changes in most of the examined anthropometric and physiological variables was high. There was no influence of the specific timing on the dependent variables. Copyright © 2011 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Cox, Richard H.; Thomas, Tom R.; Hinton, Pam S.; Donahue, Owen M.
2004-01-01
The purpose of this investigation was to study the effects of an acute bout of aerobic exercise on state anxiety of women while controlling for iron status (hemoglobin and serum ferritin). Participants were 24 active women, ages 18-20 years (n=12) and 35-45 years (n=12). In addition to a nonexercise control condition, participants completed one…
Hostler, David; Reis, Steven E; Bednez, James C; Kerin, Sarah; Suyama, Joe
2010-01-01
Background Thermal protective clothing (TPC) worn by firefighters provides considerable protection from the external environment during structural fire suppression. However, TPC is associated with physiological derangements that may have adverse cardiovascular consequences. These derangements should be treated during on-scene rehabilitation periods. Objective The present study examined heart rate and core temperature responses during the application of four active cooling devices, currently being marketed to the fire service for on-scene rehab, and compared them to passive cooling in a moderate temperature (approximately 24°C) and to an infusion of cold (4°C) saline. Methods Subjects exercised in TPC in a heated room. Following an initial exercise period (BOUT 1) the subjects exited the room, removed TPC, and for 20 minutes cooled passively at room temperature, received an infusion of cold normal saline, or were cooled by one of four devices (fan, forearm immersion in water, hand cooling, water perfused cooling vest). After cooling, subjects donned TPC and entered the heated room for another 50-minute exercise period (BOUT 2). Results Subjects were not able to fully recover core temperature during a 20-minute rehab period when provided rehydration and the opportunity to completely remove TPC. Exercise duration was shorter during BOUT 2 when compared to BOUT 1 but did not differ by cooling intervention. The overall magnitude and rate of cooling and heart rate recovery did not differ by intervention. Conclusions No clear advantage was identified when active cooling devices and cold intravenous saline were compared to passive cooling in a moderate temperature after treadmill exercise in TPC. PMID:20397868
Effect of sprint training: training once daily versus twice every second day.
Ijichi, Toshiaki; Hasegawa, Yuta; Morishima, Takuma; Kurihara, Toshiyuki; Hamaoka, Takafumi; Goto, Kazushige
2015-01-01
This study compared training adaptations between once daily (SINGLE) and twice every second day (REPEATED) sprint training, with same number of training sessions. Twenty physically active males (20.9 ± 1.3 yr) were assigned randomly to the SINGLE (n = 10) or REPEATED (n = 10) group. The SINGLE group trained once per day (5 days per week) for 4 weeks (20 sessions in total). The REPEATED group conducted two consecutive training sessions on the same day, separated by a rest period of 1 h (2-3 days per week) for 4 weeks (20 sessions in total). Each training session consisted of three consecutive 30-s maximal pedalling sets with a 10-min rest between sets. Before and after the training period, the power output during two bouts of 30-s maximal pedalling, exercise duration during submaximal pedalling and resting muscle phosphocreatine (PCr) levels were evaluated. Both groups showed significant increases in peak and mean power output during the two 30-s bouts of maximal pedalling after the training period (P < 0.05). The groups showed similar increases in VO2max after the training period (P < 0.05). The REPEATED group showed a significant increase in the onset of blood lactate accumulation (OBLA) after the training period (P < 0.05), whereas no change was observed in the SINGLE group. The time to exhaustion at 90% of VO2max and muscle PCr concentration at baseline did not change significantly in either group. Sprint training twice every second day improved OBLA during endurance exercise more than the same training once daily.
Douglas, Jessica A; King, James A; McFarlane, Ewan; Baker, Luke; Bradley, Chloe; Crouch, Nicole; Hill, David; Stensel, David J
2015-09-01
Single bouts of exercise do not cause compensatory changes in appetite, food intake or appetite regulatory hormones on the day that exercise is performed. It remains possible that such changes occur over an extended period or in response to a higher level of energy expenditure. This study sought to test this possibility by examining appetite, food intake and appetite regulatory hormones (acylated ghrelin, total peptide-YY, leptin and insulin) over two days, with acute bouts of exercise performed on each morning. Within a controlled laboratory setting, 15 healthy males completed two, 2-day long (09:00-16:00) experimental trials (exercise and control) in a randomised order. On the exercise trial participants performed 60 min of continuous moderate-high intensity treadmill running (day one: 70.1 ± 2.5% VO2peak, day two: 70.0 ± 3.2% VO2max (mean ± SD)) at the beginning of days one and two. Across each day appetite perceptions were assessed using visual analogue scales and appetite regulatory hormones were measured from venous blood samples. Ad libitum energy and macronutrient intakes were determined from meals provided two and six hours into each day and from a snack bag provided in-between trial days. Exercise elicited a high level of energy expenditure (total = 7566 ± 635 kJ across the two days) but did not produce compensatory changes in appetite or energy intake over two days (control: 29,217 ± 4006 kJ; exercise: 28,532 ± 3899 kJ, P > 0.050). Two-way repeated measures ANOVA did not reveal any main effects for acylated ghrelin or leptin (all P > 0.050). However a significant main effect of trial (P = 0.029) for PYY indicated higher concentrations on the exercise vs. control trial. These findings suggest that across a two day period, high volume exercise does not stimulate compensatory appetite regulatory changes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Rocha, Natália Galito; Neves, Fabricia Junqueira; Silva, Bruno Moreira; Sales, Allan Robson Kluser; Nóbrega, Antonio Claudio
2012-03-01
Nitric oxide is the primary mediator of vasodilation during mental stress. Since genetic polymorphisms in the nitric oxide synthase (eNOS) gene seem to impair the production of NO, this study aimed to evaluate the effect of an exercise bout on hemodynamic responses to mental stress in subjects with the 894G>T polymorphism of eNOS. Subjects without (wild-type group; n = 16) or with (polymorphic-type group; n = 19) the 894G>T polymorphism underwent a mental stress challenge before and after a maximal cardiopulmonary exercise test. Blood pressure was measured by auscultation and forearm blood flow by venous occlusion plethysmography. The groups were similar regarding anthropometric, metabolic, resting blood pressure and exercise variables. Before exercise, systolic blood pressure response during mental stress was higher in the polymorphic-type group (∆wild-type: 8.0 ± 2.0% vs. ∆polymorphic-type: 12.5 ± 1.8%, P = 0.01), while the increase in forearm vascular conductance was similar between the groups (∆wild-type 90.8 ± 26.4% vs. ∆polymorphic-type: 86.3 ± 24.1%, P = 0.44). After exercise, the systolic blood pressure at baseline and during mental stress was lower than before exercise in the whole group (P < 0.05), but the pressure response during mental stress was still higher in the polymorphic-type group (∆wild-type: 5.8 ± 1.5% vs. ∆polymorphic-type: 10.2 ± 1.4%, P = 0.01). The increase in forearm vascular conductance was inhibited only in the polymorphic-type group (∆before exercise 86.3 ± 24.1% vs. ∆after exercise: 41.5 ± 12.6%, P = 0.04). In conclusion, these results suggest the 894G>T eNOS polymorphism is associated with altered hemodynamic responses to mental stress both before and after a single bout of dynamic exercise with potential clinical implications.
Acute Exercise and Oxidative Stress: CrossFit™ vs. Treadmill Bout
Kliszczewicz, Brian; Quindry, C. John; Blessing, L. Daniel; Oliver, D. Gretchen; Esco, R. Michael; Taylor, J. Kyle
2015-01-01
CrossFit™, a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit™ bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit™ experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit™ and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit™=+143%, Treadmill=+115%) and 2-HP (CrossFit™=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit™=−16%, Treadmill=−8%) and 2-HP (CF=−16%, TM=−1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit™ and Treadmill: IPE (CrossFit™=+25%, Treadmill=+17%), 1-HP (CrossFit™=+26%, Treadmill=+4.8%), 2-HP (CrossFit™=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit™=−10%, Treadmill=−12%), 1-HP (CrossFit™=−12%, Treadmill=−6%), 2-HP (CrossFit™=−7%, Treadmill=−11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit™ bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses. PMID:26557192
Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout.
Kliszczewicz, Brian; Quindry, C John; Blessing, L Daniel; Oliver, D Gretchen; Esco, R Michael; Taylor, J Kyle
2015-09-29
CrossFit(™), a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit(™) bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit(™) experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit(™) and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit(™)=+143%, Treadmill=+115%) and 2-HP (CrossFit(™)=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit(™)=-16%, Treadmill=-8%) and 2-HP (CF=-16%, TM=-1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit(™) and Treadmill: IPE (CrossFit(™)=+25%, Treadmill=+17%), 1-HP (CrossFit(™)=+26%, Treadmill=+4.8%), 2-HP (CrossFit(™)=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit(™)=-10%, Treadmill=-12%), 1-HP (CrossFit(™)=-12%, Treadmill=-6%), 2-HP (CrossFit(™)=-7%, Treadmill=-11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit(™) bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses.
Gallagher, Philip M; Touchberry, Chad D; Teson, Kelli; McCabe, Everlee; Tehel, Michelle; Wacker, Michael J
2013-05-01
The effects of resistance exercise on fiber-type-specific expression of insulin-like growth factor I receptor (IGF-1R) and glucose transporter 4 (GLUT4) was determined in 6 healthy males. The expression of both genes increased in Type I fibers (p < 0.05), but only GLUT4 increased (p < 0.05) in Type II fibers. These data demonstrates that an acute bout of resistance exercise can up-regulate mechanisms of glucose uptake in slow and fast-twitch fibers, but the IGF signaling axis may not be as effective in fast-twitch fibers.
Willoughby, Darryn S.; Wilborn, Colin D.
2006-01-01
Eccentric contractions produce a significant degree of inflammation and muscle injury that may increase the expression of myostatin. Due to its anti- oxidant and anti-flammatory effects, circulating 17-β estradiol (E2) may attenuate myostatin expression. Eight males and eight females performed 7 sets of 10 reps of eccentric contractions of the knee extensors at 150% 1-RM. Each female performed the eccentric exercise bout on a day that fell within her mid-luteal phase (d 21-23 of her 28-d cycle). Blood and muscle samples were obtained before and 6 and 24 h after exercise, while additional blood samples were obtained at 48 and 72 h after exercise. Serum E2 and myostatin LAP/propeptide (LAP/pro) levels were determined with ELISA, and myostatin mRNA expression determined using RT-PCR. Data were analyzed with two-way ANOVA and bivariate correlations (p < 0.05). Females had greater levels of serum E2 throughout the 72- h sampling period (p < 0.05). While males had greater body mass and fat-free mass, neither was correlated to the pre-exercise levels of myostatin mRNA and LAP/pro for either gender (p > 0.05). Compared to pre-exercise, males had significant increases (p < 0.05) in LAP/propetide and mRNA of 78% and 28%, respectively, at 24 h post-exercise, whereas females underwent respective decreases of 10% and 21%. E2 and LAP/propeptide were correlated at 6 h (r = -0.804, p = 0.016) and 24 h post- exercise (r = -0.841, p = 0.009) in males, whereas in females E2 levels were correlated to myostatin mRNA at 6 h (r =0.739, p = 0.036) and 24 h (r = 0.813, p = 0.014) post-exercise and LAP/propeptide at 6 h (r = 0.713, p = 0.047) and 24 h (r = 0.735, p = 0.038). In females, myostatin mRNA expression and serum LAP/propeptide levels do not appear to be significantly up-regulated following eccentric exercise, and may be due to higher levels of circulating E2. Key Points The pre-exercise levels of myostatin mRNA and propeptide were not significantly different between genders, and even though the total body mass and fat-free mass of males were significantly greater than females, neither was correlated to myostatin mRNA or LAP/propeptide. Myostatin mRNA expression in females is less than in males 24 h after a single bout of eccentric exercise. Myostatin LAP/propeptide levels in females are lower in females than in males 24 h after a single bout of eccentric exercise, thereby suggesting a gender-specific mechanism in which females may be less responsive to eccentric exercise than males. Myostatin mRNA expression in females is attenuated, possibly due to inhibition in myostatin signaling, and appears to be more related to the presence of a higher level of circulating E2 rather than body composition. Due to their higher level of E2, females seem to be less susceptible to the mechanism by which eccentric exercise apparently up-regulates myostatin mRNA expression in males. PMID:24357964
Barr, David; Reilly, Thomas; Gregson, Warren
2011-06-01
This study investigated the impact of ice vests and hand/forearm immersion on accelerating the physiological recovery between two bouts of strenuous exercise in the heat [mean (SD), 49.1(1.3)°C, RH 12 (1)]. On four occasions, eight firefighters completed two 20-min bouts of treadmill walking (5 km h, 7.5% gradient) while wearing standard firefighter protective clothing. Each bout was separated by a 15-min recovery period, during which one of four conditions were administered: ice vest (VEST), hand/forearm immersion (W), ice vest combined with hand/forearm immersion (VEST + W) and control (CON). Core temperature was significantly lower at the end of the recovery period in the VEST + W (37.97 ± 0.23°C) and W (37.96 ± 0.19°C) compared with the VEST (38.21 ± 0.12°C) and CON (38.29 ± 0.25°C) conditions and remained consistently lower throughout the second bout of exercise. Heart rate responses during the recovery period and bout 2 were similar between the VEST + W and W conditions which were significantly lower compared with the VEST and CON which did not differ from each other. Mean skin temperature was significantly lower at the start of bout 2 in the cooling conditions compared with CON; these differences reduced as exercise progressed. These findings demonstrate that hand/forearm immersion (~19°C) is more effective than ice vests in reducing the physiological strain when firefighters re-enter structural fires after short rest periods. Combining ice vests with hand/forearm immersion provides no additional benefit.
Vercruyssen, Fabrice; Missenard, Olivier; Brisswalter, Jeanick
2009-08-01
The aim of this study was to test the hypothesis that extreme pedal rates contributed to the slow component of oxygen uptake (VO(2) SC) in association with changes in surface electromyographic (sEMG) during heavy-cycle exercise. Eight male trained cyclists performed two square-wave transitions at 50 and 110 rpm at a work rate that would elicit a VO(2) corresponding to 50% of the difference between peak VO(2) and the ventilatory threshold. Pulmonary gas exchange was measured breath-by-breath and sEMG was obtained from the vastus lateralis and medialis muscles. Integrated EMG flow (QiEMG) and mean power frequency (MPF) were computed. The relative amplitude of the VO(2) SC was significantly higher during the 110-rpm bout (556+/-186 ml min(-1), P<0.05) with compared to the 50-rpm bout (372+/-227 ml min(-1)). QiEMG values increased throughout exercise only during the 110-rpm bout and were associated with the greater amplitude of the VO(2) SC observed for this condition (P<0.05). MPF values remained relatively constant whatever the cycle bout. These findings indicated a VO(2) SC at the two pedal rates but the association with sEMG responses was observed only at high pedal rate. Possible changes in motor units recruitment pattern, muscle energy turnover and muscle temperature have been suggested to explain the different VO(2) SC to heavy pedal rate bouts.
Terada, S; Yokozeki, T; Kawanaka, K; Ogawa, K; Higuchi, M; Ezaki, O; Tabata, I
2001-06-01
This study was performed to assess the effects of short-term, extremely high-intensity intermittent exercise training on the GLUT-4 content of rat skeletal muscle. Three- to four-week-old male Sprague-Dawley rats with an initial body weight ranging from 45 to 55 g were used for this study. These rats were randomly assigned to an 8-day period of high-intensity intermittent exercise training (HIT), relatively high-intensity intermittent prolonged exercise training (RHT), or low-intensity prolonged exercise training (LIT). Age-matched sedentary rats were used as a control. In the HIT group, the rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 2, the next 4, and the last 2 days, respectively. Between exercise bouts, a 10-s pause was allowed. RHT consisted of five 17-min swimming bouts with a 3-min rest between bouts. During the first bout, the rat swam without weight, whereas during the following four bouts, the rat was attached to a weight equivalent to 4 and 5% of its body weight for the first 5 days and the following 3 days, respectively. Rats in the LIT group swam 6 h/day for 8 days in two 3-h bouts separated by 45 min of rest. In the first experiment, the HIT, LIT, and control rats were compared. GLUT-4 content in the epitrochlearis muscle in the HIT and LIT groups after training was significantly higher than that in the control rats by 83 and 91%, respectively. Furthermore, glucose transport activity, stimulated maximally by both insulin (2 mU/ml) (HIT: 48%, LIT: 75%) and contractions (25 10-s tetani) (HIT: 55%, LIT: 69%), was higher in the training groups than in the control rats. However, no significant differences in GLUT-4 content or in maximal glucose transport activity in response to both insulin and contractions were observed between the two training groups. The second experiment demonstrated that GLUT-4 content after HIT did not differ from that after RHT (66% higher in trained rats than in control). In conclusion, the present investigation demonstrated that 8 days of HIT lasting only 280 s elevated both GLUT-4 content and maximal glucose transport activity in rat skeletal muscle to a level similar to that attained after LIT, which has been considered a tool to increase GLUT-4 content maximally.
Autonomic Recovery Is Delayed in Chinese Compared with Caucasian following Treadmill Exercise.
Sun, Peng; Yan, Huimin; Ranadive, Sushant M; Lane, Abbi D; Kappus, Rebecca M; Bunsawat, Kanokwan; Baynard, Tracy; Hu, Min; Li, Shichang; Fernhall, Bo
2016-01-01
Caucasian populations have a higher prevalence of cardiovascular disease (CVD) when compared with their Chinese counterparts and CVD is associated with autonomic function. It is unknown whether autonomic function during exercise recovery differs between Caucasians and Chinese. The present study investigated autonomic recovery following an acute bout of treadmill exercise in healthy Caucasians and Chinese. Sixty-two participants (30 Caucasian and 32 Chinese, 50% male) performed an acute bout of treadmill exercise at 70% of heart rate reserve. Heart rate variability (HRV) and baroreflex sensitivity (BRS) were obtained during 5-min epochs at pre-exercise, 30-min, and 60-min post-exercise. HRV was assessed using frequency [natural logarithm of high (LnHF) and low frequency (LnLF) powers, normalized high (nHF) and low frequency (nLF) powers, and LF/HF ratio] and time domains [Root mean square of successive differences (RMSSD), natural logarithm of RMSSD (LnRMSSD) and R-R interval (RRI)]. Spontaneous BRS included both up-up and down-down sequences. At pre-exercise, no group differences were observed for any HR, HRV and BRS parameters. During exercise recovery, significant race-by-time interactions were observed for LnHF, nHF, nLF, LF/HF, LnRMSSD, RRI, HR, and BRS (up-up). The declines in LnHF, nHF, RMSSD, RRI and BRS (up-up) and the increases in LF/HF, nLF and HR were blunted in Chinese when compared to Caucasians from pre-exercise to 30-min to 60-min post-exercise. Chinese exhibited delayed autonomic recovery following an acute bout of treadmill exercise. This delayed autonomic recovery may result from greater sympathetic dominance and extended vagal withdrawal in Chinese. Chinese Clinical Trial Register ChiCTR-IPR-15006684.
Autonomic Recovery Is Delayed in Chinese Compared with Caucasian following Treadmill Exercise
Sun, Peng; Yan, Huimin; Ranadive, Sushant M.; Lane, Abbi D.; Kappus, Rebecca M.; Bunsawat, Kanokwan; Baynard, Tracy; Hu, Min; Li, Shichang; Fernhall, Bo
2016-01-01
Caucasian populations have a higher prevalence of cardiovascular disease (CVD) when compared with their Chinese counterparts and CVD is associated with autonomic function. It is unknown whether autonomic function during exercise recovery differs between Caucasians and Chinese. The present study investigated autonomic recovery following an acute bout of treadmill exercise in healthy Caucasians and Chinese. Sixty-two participants (30 Caucasian and 32 Chinese, 50% male) performed an acute bout of treadmill exercise at 70% of heart rate reserve. Heart rate variability (HRV) and baroreflex sensitivity (BRS) were obtained during 5-min epochs at pre-exercise, 30-min, and 60-min post-exercise. HRV was assessed using frequency [natural logarithm of high (LnHF) and low frequency (LnLF) powers, normalized high (nHF) and low frequency (nLF) powers, and LF/HF ratio] and time domains [Root mean square of successive differences (RMSSD), natural logarithm of RMSSD (LnRMSSD) and R–R interval (RRI)]. Spontaneous BRS included both up-up and down-down sequences. At pre-exercise, no group differences were observed for any HR, HRV and BRS parameters. During exercise recovery, significant race-by-time interactions were observed for LnHF, nHF, nLF, LF/HF, LnRMSSD, RRI, HR, and BRS (up-up). The declines in LnHF, nHF, RMSSD, RRI and BRS (up-up) and the increases in LF/HF, nLF and HR were blunted in Chinese when compared to Caucasians from pre-exercise to 30-min to 60-min post-exercise. Chinese exhibited delayed autonomic recovery following an acute bout of treadmill exercise. This delayed autonomic recovery may result from greater sympathetic dominance and extended vagal withdrawal in Chinese. Trial Registration: Chinese Clinical Trial Register ChiCTR-IPR-15006684 PMID:26784109
Koopman, René; Gleeson, Benjamin G; Gijsen, Annemie P; Groen, Bart; Senden, Joan M G; Rennie, Michael J; van Loon, Luc J C
2011-08-01
We examined the effect of an acute bout of resistance exercise on fractional muscle protein synthesis rates in human type I and type II muscle fibres. After a standardised breakfast (31 ± 1 kJ kg(-1) body weight, consisting of 52 Energy% (En%) carbohydrate, 34 En% protein and 14 En% fat), 9 untrained men completed a lower-limb resistance exercise bout (8 sets of 10 repetitions leg press and leg extension at 70% 1RM). A primed, continuous infusion of L: -[ring-(13)C(6)]phenylalanine was combined with muscle biopsies collected from both legs immediately after exercise and after 6 h of post-exercise recovery. Single muscle fibres were dissected from freeze-dried biopsies and stained for ATPase activity with pre-incubation at a pH of 4.3. Type I and II fibres were separated under a light microscope and analysed for protein-bound L: -[ring-(13)C(6)]phenylalanine labelling. Baseline (post-exercise) L: -[ring-(13)C(6)]phenylalanine muscle tissue labelling, expressed as (∂(13)C/(12)C), averaged -32.09 ± 0.28, -32.53 ± 0.10 and -32.02 ± 0.16 in the type I and II muscle fibres and mixed muscle, respectively (P = 0.14). During post-exercise recovery, muscle protein synthesis rates were marginally (8 ± 2%) higher in the type I than type II muscle fibres, at 0.100 ± 0.005 versus 0.094 ± 0.005%/h, respectively (P < 0.05), whereby rates of mixed muscle protein were 0.091 ± 0.005%/h. Muscle protein synthesis rates following resistance-type exercise are only marginally higher in type I compared with type II muscle fibres.
Acute effect of walking on energy intake in overweight/obese women
Unick, Jessica L.; Otto, Amy D.; Goodpaster, Bret H.; Helsel, Diane L.; Pellegrini, Christine A.; Jakicic, John M.
2013-01-01
This study examined the acute effect of a bout of walking on hunger, energy intake, and appetite-regulating hormones [acylated ghrelin and glucagon-like peptide-1 (GLP-1)] in 19 overweight/obese women (BMI:32.5±4.3kg/m2). Subjects underwent two experimental testing sessions in a counterbalanced order: exercise and rest. Subjects walked at a moderate-intensity for approximately 40 minutes or rested for a similar duration. Subjective feelings of hunger were assessed and blood was drawn at 5 time points (pre-, post-, 30-minutes, 60-minutes, 120-minutes post-testing). Ad-libitum energy intake consumed 1–2 hours post-exercise/rest was assessed and similar between conditions (mean ± standard deviation; exercise: 551.5±245.1 kcals [2.31±1.0MJ] vs. rest: 548.7±286.9 kcals [2.29±1.2MJ]). However, when considering the energy cost of exercise, relative energy intake was significantly lower following exercise (197.8±256.5 kcals [0.83±1.1MJ]) compared to rest (504.3±290.1 kcals [2.11±1.2MJ]). GLP-1 was lower in the exercise vs. resting condition while acylated ghrelin and hunger were unaltered by exercise. None of these variables were associated with energy intake. In conclusion, hunger and energy intake were unaltered by a bout of walking suggesting that overweight/obese individuals do not acutely compensate for the energy cost of the exercise bout through increased caloric consumption. This allows for an energy deficit to persist post-exercise, having potentially favorable implications for weight control. PMID:20674640
Nosaka, K; Muthalib, M; Lavender, A; Laursen, P B
2007-01-01
This study investigated the hypothesis that muscle damage would be attenuated in muscles subjected to passive hyperthermia 1 day prior to exercise. Fifteen male students performed 24 maximal eccentric actions of the elbow flexors with one arm; the opposite arm performed the same exercise 2-4 weeks later. The elbow flexors of one arm received a microwave diathermy treatment that increased muscle temperature to over 40 degrees C, 16-20 h prior to the exercise. The contralateral arm acted as an untreated control. Maximal voluntary isometric contraction strength (MVC), range of motion (ROM), upper arm circumference, muscle soreness, plasma creatine kinase activity and myoglobin concentration were measured 1 day prior to exercise, immediately before and after exercise, and daily for 4 days following exercise. Changes in the criterion measures were compared between conditions (treatment vs. control) using a two-way repeated measures ANOVA with a significance level of P < 0.05. All measures changed significantly following exercise, but the treatment arm showed a significantly faster recovery of MVC, a smaller change in ROM, and less muscle soreness compared with the control arm. However, the protective effect conferred by the diathermy treatment was significantly less effective compared with that seen in the second bout performed 4-6 weeks after the initial bout by a subgroup of the subjects (n = 11) using the control arm. These results suggest that passive hyperthermia treatment 1 day prior to eccentric exercise-induced muscle damage has a prophylactic effect, but the effect is not as strong as the repeated bout effect.
NASA Technical Reports Server (NTRS)
Lee, S. M.; Bennett, B. S.; Hargens, A. R.; Watenpaugh, D. E.; Ballard, R. E.; Murthy, G.; Ford, S. R.; Fortney, S. M.
1997-01-01
Adaptation to bed rest or space flight is accompanied by an impaired ability to exercise in an upright position. We hypothesized that a daily, 30-min bout of intense, interval exercise in upright posture or supine against lower body negative pressure (LBNP) would maintain upright exercise heart rate and respiratory responses after bed rest. Twenty-four men (31 +/- 3 yr) underwent 5 d of 6 degree head-down tilt: eight performed no exercise (CON), eight performed upright treadmill exercise (UPex), and eight performed supine treadmill exercise against LBNP at -51.3 +/- 0.4 mm Hg (LBNPex). Submaximal treadmill exercise responses (56, 74, and 85% of VO2peak) were measured pre- and post-bed rest. In CON, submaximal heart rate, respiratory exchange ratio, and ventilation were significantly greater (P < or = 0.05) after bed rest. In UPex and LBNPex, submaximal exercise responses were similar pre- and post-bed rest. Our results indicate that a daily 30-min bout of intense, interval upright exercise training or supine exercise training against LBNP is sufficient to maintain upright exercise responses after 5 d of bed rest. These results may have important implications for the development of exercise countermeasures during space flight.
Kao, Shih-Chun; Westfall, Daniel R; Soneson, Jack; Gurd, Brendon; Hillman, Charles H
2017-09-01
The purpose of this study was to investigate the effects of a single bout of high-intensity interval training (HIIT) and continuous aerobic exercise (CAE) on inhibitory control. The P3 component of the stimulus-locked ERP was collected in 64 young adults during a modified flanker task following 20 min of seated rest, 20 min of CAE, and 9 min of HIIT on separate days in counterbalanced order. Participants exhibited shorter overall reaction time following CAE and HIIT compared to seated rest. Response accuracy improved following HIIT in the task condition requiring greater inhibitory control compared to seated rest and CAE. P3 amplitude was larger following CAE compared to seated rest and HIIT. Decreased P3 amplitude and latency were observed following HIIT compared to seated rest. The current results replicated previous findings indicating the beneficial effect of acute CAE on behavioral and neuroelectric indices of inhibitory control. With a smaller duration and volume of exercise, a single bout of HIIT resulted in additional improvements in inhibitory control, paralleled by a smaller and more efficient P3 component. In sum, the current study demonstrated that CAE and HIIT differentially facilitate inhibitory control and its underlying neuroelectric activation, and that HIIT may be a time-efficient approach for enhancing cognitive health. © 2017 Society for Psychophysiological Research.
Effects of Intermittent Neck Cooling During Repeated Bouts of High-Intensity Exercise
Galpin, Andrew J.; Bagley, James R.; Whitcomb, Blake; Wiersma, Leonard D.; Rosengarten, Jakob; Coburn, Jared W.; Judelson, Daniel A.
2016-01-01
The purpose of this investigation was to determine the influence of intermittent neck cooling during exercise bouts designed to mimic combat sport competitions. Participants (n = 13, age = 25.3 ± 5.0 year height = 176.9 ± 7.5 cm, mass = 79.3 ± 9.0 kg, body fat = 11.8% ± 3.1%) performed three trials on a cycle ergometer. Each trial consisted of two, 5-min high-intensity exercise (HEX) intervals (HEX1 and HEX2—20 s at 50% peak power, followed by 15 s of rest), and a time to exhaustion (TTE) test. One-minute rest intervals were given between each round (RI1 and RI2), during which researchers treated the participant’s posterior neck with either (1) wet-ice (ICE); (2) menthol spray (SPRAY); or (3) no treatment (CON). Neck (TNECK) and chest (TCHEST) skin temperatures were significantly lower following RI1 with ICE (vs. SPRAY). Thermal sensation decreased with ICE compared to CON following RI1, RI2, TTE, and a 2-min recovery. Rating of perceived exertion was also lower with ICE following HEX2 (vs. CON) and after RI2 (vs. SPRAY). Treatment did not influence TTE (68.9 ± 18.9s). The ability of intermittent ICE to attenuate neck and chest skin temperature rises during the initial HEX stages likely explains why participants felt cooler and less exerted during equivalent HEX bouts. These data suggest intermittent ICE improves perceptual stress during short, repeated bouts of vigorous exercise.
Exercise, an Active Lifestyle, and Obesity. Making the Exercise Prescription Work.
ERIC Educational Resources Information Center
Andersen, Ross E.
1999-01-01
An active lifestyle is important in helping overweight people both lose and manage their weight. Exercise has many health benefits beyond weight control. The traditional exercise prescription of regular bouts of continuous vigorous exercise may need modification to increase rates of adoption and compliance, with people needing encouragement to…
LeBouthillier, Daniel M; Asmundson, Gordon J G
2015-01-01
Several mechanisms have been posited for the anxiolytic effects of exercise, including reductions in anxiety sensitivity through interoceptive exposure. Studies on aerobic exercise lend support to this hypothesis; however, research investigating aerobic exercise in comparison to placebo, the dose-response relationship between aerobic exercise anxiety sensitivity, the efficacy of aerobic exercise on the spectrum of anxiety sensitivity and the effect of aerobic exercise on other related constructs (e.g. intolerance of uncertainty, distress tolerance) is lacking. We explored reductions in anxiety sensitivity and related constructs following a single session of exercise in a community sample using a randomized controlled trial design. Forty-one participants completed 30 min of aerobic exercise or a placebo stretching control. Anxiety sensitivity, intolerance of uncertainty and distress tolerance were measured at baseline, post-intervention and 3-day and 7-day follow-ups. Individuals in the aerobic exercise group, but not the control group, experienced significant reductions with moderate effect sizes in all dimensions of anxiety sensitivity. Intolerance of uncertainty and distress tolerance remained unchanged in both groups. Our trial supports the efficacy of aerobic exercise in uniquely reducing anxiety sensitivity in individuals with varying levels of the trait and highlights the importance of empirically validating the use of aerobic exercise to address specific mental health vulnerabilities. Aerobic exercise may have potential as a temporary substitute for psychotherapy aimed at reducing anxiety-related psychopathology.
Ueda, Shin-ya; Yoshikawa, Takahiro; Katsura, Yoshihiro; Usui, Tatsuya; Nakao, Hayato; Fujimoto, Shigeo
2009-04-01
We examined whether changes in gut hormone levels due to a single bout of aerobic exercise differ between obese young males and normal controls, and attempted to determine the involvement of hormonal changes during exercise in the regulation of energy balance (EB) in these obese subjects. Seven obese and seven age-matched subjects of normal weight participated in exercise and rest sessions. Subjects consumed a standardized breakfast that was followed by constant cycling exercise at 50% VO(2max) or rest for 60 min. At lunch, a test meal was presented, and energy intake (EI) and relative energy intake (REI) were calculated. Blood samples were obtained at 30 min intervals during both sessions for measurement of glucose, insulin, glucagon, ghrelin, peptide YY (PYY), and glucagon-like peptide-1 (GLP-1). Plasma levels of PYY and GLP-1 were increased by exercise, whereas plasma ghrelin levels were unaffected by exercise. The areas under the curve (AUC) of the time courses of PYY and GLP-1 levels did not significantly differ between the two groups. In contrast, EI and REI were decreased by exercise in both groups, and energy deficit was significantly larger in obese subjects than in normal controls. The present findings suggest that short-term EB during a single exercise session might be regulated not by increased amounts of these gut hormones per se.
Meyerspeer, Martin; Robinson, Simon; Nabuurs, Christine I; Scheenen, Tom; Schoisengeier, Adrian; Unger, Ewald; Kemp, Graham J; Moser, Ewald
2012-01-01
By improving spatial and anatomical specificity, localized spectroscopy can enhance the power and accuracy of the quantitative analysis of cellular metabolism and bioenergetics. Localized and nonlocalized dynamic 31P magnetic resonance spectroscopy using a surface coil was compared during aerobic exercise and recovery of human calf muscle. For localization, a short echo time single-voxel magnetic resonance spectroscopy sequence with adiabatic refocusing (semi-LASER) was applied, enabling the quantification of phosphocreatine, inorganic phosphate, and pH value in a single muscle (medial gastrocnemius) in single shots (TR = 6 s). All measurements were performed in a 7 T whole body scanner with a nonmagnetic ergometer. From a series of equal exercise bouts we conclude that: (a) with localization, measured phosphocreatine declines in exercise to a lower value (79 ± 7% cf. 53 ± 10%, P = 0.002), (b) phosphocreatine recovery shows shorter half time (t1/2 = 34 ± 7 s cf. t1/2 = 42 ± 7 s, nonsignificant) and initial postexercise phosphocreatine resynthesis rate is significantly higher (32 ± 5 mM/min cf. 17 ± 4 mM/min, P = 0.001) and (c) in contrast to nonlocalized 31P magnetic resonance spectroscopy, no splitting of the inorganic phosphate peak is observed during exercise or recovery, just an increase in line width during exercise. This confirms the absence of contaminating signals originating from weaker-exercising muscle, while an observed inorganic phosphate line broadening most probably reflects variations across fibers in a single muscle. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc. PMID:22334374
Kwan, Bethany M.; Bryan, Angela D.
2009-01-01
Problem: A positive affective response is associated with increased participation in voluntary exercise, but the mechanisms by which this occurs are not well known. Consistent with a Theory of Planned Behaviour perspective, we tested whether affective response to exercise leads to greater motivation in terms of attitudes, subjective norms, self-efficacy and intentions to exercise. We were also specifically interested in whether a positive affective response leads to more temporally stable intentions. Method: Participants (N = 127) self-reported Theory of Planned Behaviour constructs and exercise behavior at baseline and three months later, and provided reports of exercise-related affect during a 30-minute bout of moderate intensity treadmill exercise at baseline. Results: We show that participants who experience greater improvements in positive affect, negative affect and fatigue during exercise tended to report more positive attitudes, exercise self-efficacy and intentions to exercise three months later. Affective response was not predictive of subjective norms. As hypothesized, positive affective response was associated with more stable intentions over time. Conclusions: We conclude that a positive affective response to acute bouts of exercise can aid in building and sustaining exercise motivation over time. PMID:20161385
de Matos, Mariana A; Duarte, Tamiris C; Ottone, Vinícius de O; Sampaio, Pâmela F da M; Costa, Karine B; de Oliveira, Marcos F Andrade; Moseley, Pope L; Schneider, Suzanne M; Coimbra, Cândido C; Brito-Melo, Gustavo E A; Magalhães, Flávio de C; Amorim, Fabiano T; Rocha-Vieira, Etel
2016-06-01
Obesity is a low-grade chronic inflammation condition, and macrophages, and possibly monocytes, are involved in the pathological outcomes of obesity. Physical exercise is a low-cost strategy to prevent and treat obesity, probably because of its anti-inflammatory action. We evaluated the percentage of CD16(-) and CD16(+) monocyte subsets in obese insulin-resistant individuals and the effect of an exercise bout on the percentage of these cells. Twenty-seven volunteers were divided into three experimental groups: lean insulin sensitive, obese insulin sensitive and obese insulin resistant. Venous blood samples collected before and 1 h after an aerobic exercise session on a cycle ergometer were used for determination of monocyte subsets by flow cytometry. Insulin-resistant obese individuals have a higher percentage of CD16(+) monocytes (14.8 ± 2.4%) than the lean group (10.0 ± 1.3%). A positive correlation of the percentage of CD16(+) monocytes with body mass index and fasting plasma insulin levels was found. One bout of moderate exercise reduced the percentage of CD16(+) monocytes by 10% in all the groups evaluated. Also, the absolute monocyte count, as well as all other leukocyte populations, in lean and obese individuals, increased after exercise. This fact may partially account for the observed reduction in the percentage of CD16(+) cells in response to exercise. Insulin-resistant, but not insulin-sensitive obese individuals, have an increased percentage of CD16(+) monocytes that can be slightly modulated by a single bout of moderate aerobic exercise. These findings may be clinically relevant to the population studied, considering the involvement of CD16(+) monocytes in the pathophysiology of obesity. Copyright © 2016 John Wiley & Sons, Ltd. Obesity is now considered to be an inflammatory condition associated with many pathological consequences, including insulin resistance. It is proposed that insulin resistance contributes to the aggravation of the inflammatory dysfunction in obesity. The effect of obesity on the percentage of monocytes was previously observed in class II and III obese individuals who presented other alterations in addition to insulin resistance. In this study we observed that insulin-resistant obese individuals, but not insulin-sensitive ones, had an increased percentage of CD14(+) CD16(+) monocytes. This fact shows that a dysfunction of the monocyte percentage in class I obese individuals is only seen when this condition is associated with insulin resistance. Copyright © 2016 John Wiley & Sons, Ltd.
Effects of a single bout of strenuous exercise on platelet activation in female ApoE/LDLR-/- mice.
Przyborowski, K; Kassassir, H; Wojewoda, M; Kmiecik, K; Sitek, B; Siewiera, K; Zakrzewska, A; Rudolf, A M; Kostogrys, R; Watala, C; Zoladz, J A; Chlopicki, S
2017-11-01
Strenuous physical exercise leads to platelet activation that is normally counterbalanced by the production of endothelium-derived anti-platelet mediators, including prostacyclin (PGI 2 ) and nitric oxide (NO). However, in the case of endothelial dysfunction, e.g. in atherosclerosis, there exists an increased risk for intravascular thrombosis during exercise that might be due to an impairment in endothelial anti-platelet mechanisms. In the present work, we evaluated platelet activation at rest and following a single bout of strenuous treadmill exercise in female ApoE/LDLR - /- mice with early (3-month-old) and advanced (7-month-old) atherosclerosis compared to female age-matched WT mice. In sedentary and post-exercise groups of animals, we analyzed TXB 2 generation and the expression of platelet activation markers in the whole blood ex vivo assay. We also measured pre- and post-exercise plasma concentration of 6-keto-PGF 1α , nitrite/nitrate, lipid profile, and blood cell count. Sedentary 3- and 7-month-old ApoE/LDLR - /- mice displayed significantly higher activation of platelets compared to age-matched wild-type (WT) mice, as evidenced by increased TXB 2 production, expression of P-selectin, and activation of GPIIb/IIIa receptors, as well as increased fibrinogen and von Willebrand factor (vWf) binding. Interestingly, in ApoE/LDLR - /- but not in WT mice, strenuous exercise partially inhibited TXB 2 production, the expression of activated GPIIb/IIIa receptors, and fibrinogen binding, with no effect on the P-selectin expression and vWf binding. Post-exercise down-regulation of the activated GPIIb/IIIa receptor expression and fibrinogen binding was not significantly different between 3- and 7-month-old ApoE/LDLR - /- mice; however, only 7-month-old ApoE/LDLR - /- mice showed lower TXB 2 production after exercise. In female 4-6-month-old ApoE/LDLR - /- but not in WT mice, an elevated pre- and post-exercise plasma concentration of 6-keto-PGF 1α was observed. In turn, the pre- and post-exercise plasma concentrations of nitrite (NO 2 - ) and nitrate (NO 3 - ) were decreased in ApoE/LDLR - /- as compared to that in age-matched WT mice. In conclusion, we demonstrated overactivation of platelets in ApoE/LDLR - /- as compared to WT mice. However, platelet activation in ApoE/LDLR - /- mice was not further increased by strenuous exercise, but was instead attenuated, a phenomenon not observed in WT mice. This phenomenon could be linked to compensatory up-regulation of PGI 2 -dependent anti-platelet mechanisms in ApoE/LDLR - /- mice.
da Costa Santos, Vanessa Batista; de Paula Ramos, Solange; Milanez, Vinícius Flávio; Corrêa, Julio Cesar Molina; de Andrade Alves, Rubens Igor; Dias, Ivan Frederico Lupiano; Nakamura, Fábio Yuzo
2014-03-01
The aim of this study was to test, between two bouts of exercise, the effects of light-emitting diode (LED) therapy and cryotherapy regarding muscle damage, inflammation, and performance. Male Wistar rats were allocated in four groups: control, passive recovery (PR), cryotherapy (Cryo), and LED therapy. The animals were submitted to 45 min of swimming exercise followed by 25 min of recovery and then a second bout of either 45 min of exercise (muscle damage analysis) or time to exhaustion (performance). During the rest intervals, the rats were kept in passive rest (PR), submitted to cold water immersion (10 min, 10 °C) or LED therapy (940 nm, 4 J/cm(2)) of the gastrocnemius muscle. Blood samples were collected to analyze creatine kinase activity (CK), C-reactive protein (CRP), and leukocyte counts. The soleus muscles were evaluated histologically. Time to exhaustion was recorded during the second bout of exercise. After a second bout of 45 min, the results demonstrated leukocytosis in the PR and Cryo groups. Neutrophil counts were increased in all test groups. CK levels were increased in the Cryo group. CRP was increased in PR animals. The PR group presented a high frequency of necrosis, but the LED group had fewer necrotic areas. Edema formation was prevented, and fewer areas of inflammatory cells were observed in the LED group. The time to exhaustion was greater in both the LED and Cryo groups, without differences in CK levels. CRP was decreased in LED animals. We conclude that LED therapy and cryotherapy can improve performance, although LED therapy is more efficient in preventing muscle damage and local and systemic inflammation.
Cancer and Exercise: Warburg Hypothesis, Tumour Metabolism and High-Intensity Anaerobic Exercise.
Hofmann, Peter
2018-01-31
There is ample evidence that regular moderate to vigorous aerobic physical activity is related to a reduced risk for various forms of cancer to suggest a causal relationship. Exercise is associated with positive changes in fitness, body composition, and physical functioning as well as in patient-reported outcomes such as fatigue, sleep quality, or health-related quality of life. Emerging evidence indicates that exercise may also be directly linked to the control of tumour biology through direct effects on tumour-intrinsic factors. Beside a multitude of effects of exercise on the human body, one underscored effect of exercise training is to target the specific metabolism of tumour cells, namely the Warburg-type highly glycolytic metabolism. Tumour metabolism as well as the tumour⁻host interaction may be selectively influenced by single bouts as well as regularly applied exercise, dependent on exercise intensity, duration, frequency and mode. High-intensity anaerobic exercise was shown to inhibit glycolysis and some studies in animals showed that effects on tumour growth might be stronger compared with moderate-intensity aerobic exercise. High-intensity exercise was shown to be safe in patients; however, it has to be applied carefully with an individualized prescription of exercise.
Appetite, food intake and gut hormone responses to intense aerobic exercise of different duration.
Holliday, Adrian; Blannin, Andrew
2017-12-01
The purpose of the study is to investigate the effect of acute bouts of high-intensity aerobic exercise of differing durations on subjective appetite, food intake and appetite-associated hormones in endurance-trained males. Twelve endurance-trained males (age = 21 ± 2 years; BMI = 21.0 ± 1.6 kg/m 2 ; VO 2max = 61.6 ± 6.0 mL/kg/min) completed four trials, within a maximum 28 day period, in a counterbalanced order: resting (REST); 15 min exercise bout (15-min); 30 min exercise bout (30-min) and 45 min exercise bout (45-min). All exercise was completed on a cycle ergometer at an intensity of ~76% VO 2max Sixty minutes post exercise, participants consumed an ad libitum meal. Measures of subjective appetite and blood samples were obtained throughout the morning, with plasma analyzed for acylated ghrelin, total polypeptide tyrosine-tyrosine (PYY) and total glucagon-like peptide 1 (GLP-1) concentrations. The following results were obtained: Neither subjective appetite nor absolute food intake differed between trials. Relative energy intake (intake - expenditure) was significantly greater after REST (2641 ± 1616 kJ) compared with both 30-min (1039 ± 1520 kJ) and 45-min (260 ± 1731 kJ), and significantly greater after 15-min (2699 ± 1239 kJ) compared with 45-min (condition main effect, P < 0.001). GLP-1 concentration increased immediately post exercise in 30-min and 45-min, respectively (condition × time interaction, P < 0.001). Acylated ghrelin was transiently suppressed in all exercise trials (condition × time interaction, P = 0.011); the greatest, most enduring suppression, was observed in 45-min. PYY concentration was unchanged with exercise. In conclusion, high-intensity aerobic cycling lasting up to 45 min did not suppress subjective appetite or affect absolute food intake, but did reduce relative energy intake, in well-trained endurance athletes. Findings question the role of appetite hormones in regulating subjective appetite in the acute post-exercise period. © 2017 Society for Endocrinology.
Lifelong endurance training attenuates age-related genotoxic stress in human skeletal muscle.
Cobley, James N; Sakellariou, George K; Murray, Scott; Waldron, Sarah; Gregson, Warren; Burniston, Jatin G; Morton, James P; Iwanejko, Lesley A; Close, Graeme L
2013-07-12
The aim of the present study was to determine the influence of age and habitual activity level, at rest and following a single bout of high-intensity exercise, on the levels of three proteins poly(ADP-ribose) polymerase-1 (PARP-1), cleaved-PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), involved in the DNA repair and cell death responses to stress and genotoxic insults. Muscle biopsies were obtained from the vastus lateralis of young trained (22 ± 3 years, n = 6), young untrained (24 ± 4 years, n = 6), old trained (64 ± 3 years, n = 6) and old untrained (65 ± 6 years, n = 6) healthy males before, immediately after and three days following a high-intensity interval exercise bout. PARP-1, which catalyzes poly(ADP-ribosyl)ation of proteins and DNA in response to a range of intrinsic and extrinsic stresses, was increased at baseline in old trained and old untrained compared with young trained and young untrained participants (P ≤ 0.05). Following exercise, PARP-1 levels remained unchanged in young trained participants, in contrast to old trained and old untrained where levels decreased and young untrained where levels increased (P ≤ 0.05). Interestingly, baseline levels of the cleaved PARP-1, a marker of apoptosis, and PARG, responsible for polymer degradation, were both significantly elevated in old untrained compared with old trained, young trained and young untrained (P ≤ 0.05). Despite this baseline difference in PARG, there was no change in any group following exercise. There was a non-significant statistical trend (P = 0.072) towards increased cleaved-PARP-1 expression post-exercise in younger but not old persons, regardless of training status. Collectively, these results show that exercise slows the progression towards a chronically stressed state but has no impact on the age-related attenuated response to acute exercise. Our findings provide valuable insight into how habitual exercise training could protect skeletal muscle from chronic damage to macromolecules and may reduce sarcopenia in older people.
Cockcroft, Emma J; Williams, Craig A; Tomlinson, Owen W; Vlachopoulos, Dimitris; Jackman, Sarah R; Armstrong, Neil; Barker, Alan R
2015-11-01
High-intensity interval exercise (HIIE) may offer a time efficient means to improve health outcomes compared to moderate-intensity exercise (MIE). This study examined the acute effect of HIIE compared to a work-matched bout of MIE on glucose tolerance, insulin sensitivity (IS), resting fat oxidation and exercise enjoyment in adolescent boys. Within-measures design with counterbalanced experimental conditions. Nine boys (14.2 ± 0.4 years) completed three conditions on separate days in a counterbalanced order: (1) HIIE; (2) work matched MIE, both on a cycle ergometer; and (3) rest (CON). An oral glucose tolerance test (OGTT) was performed after exercise or rest and the area under curve (AUC) responses for plasma [glucose] and [insulin] were calculated, and IS estimated (Cederholm index). Energy expenditure and fat oxidation were measured following the OGTT using indirect calorimetry. Exercise enjoyment was assessed using the Physical Activity Enjoyment Scale. The incremental AUC (iAUC) for plasma [glucose] was reduced following both MIE (-23.9%, P = 0.013, effect size [ES] = -0.64) and HIIE (-28.9%, P=0.008, ES = -0.84) compared to CON. The iAUC for plasma [insulin] was lower for HIIE (-24.2%, P = 0.021, ES = -0.71) and MIE (-29.1%, P = 0.012, ES = -0.79) compared to CON. IS increased by 11.2% after HIIE (P = 0.03, ES = 0.76) and 8.4% after MIE (P = 0.10, ES = 0.58). There was a trend for an increase in fat oxidation following HIIE (P = 0.097, ES = 0.70). Both HIIE and MIE were rated as equally enjoyable (P > 0.05, ES < 0.01). A single bout of time efficient HIIE is an effective alternative to MIE for improving glucose tolerance and IS in adolescent boys immediately after exercise. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Durrer, Cody; Robinson, Emily; Wan, Zhongxiao; Martinez, Nic; Hummel, Michelle L.; Jenkins, Nathan T.; Kilpatrick, Marcus W.; Little, Jonathan P.
2015-01-01
Background An acute bout of exercise can improve endothelial function and insulin sensitivity when measured on the day following exercise. Our aim was to compare acute high-intensity continuous exercise (HICE) to high-intensity interval exercise (HIIE) on circulating endothelial microparticles (EMPs) and insulin sensitivity in overweight/obese men and women. Methods Inactive males (BMI = 30 ± 3, 25 ± 6 yr, n = 6) and females (BMI = 28 ± 2, 21 ± 3 yr, n = 7) participated in three experimental trials in a randomized counterbalanced crossover design: 1) No exercise control (Control); 2) HICE (20 min cycling @ just above ventilatory threshold); 3) HIIE (10 X 1-min @ ∼90% peak aerobic power). Exercise conditions were matched for external work and diet was controlled post-exercise. Fasting blood samples were obtained ∼18 hr after each condition. CD62E+ and CD31+/CD42b- EMPs were assessed by flow cytometry and insulin resistance (IR) was estimated by homeostasis model assessment (HOMA-IR). Results There was a significant sex X exercise interaction for CD62E+ EMPs, CD31+/CD42b- EMPs, and HOMA-IR (all P<0.05). In males, both HICE and HIIE reduced EMPs compared to Control (P≤0.05). In females, HICE increased CD62E+ EMPs (P<0.05 vs. Control) whereas CD31+/CD42b- EMPs were unaltered by either exercise type. There was a significant increase in HOMA-IR in males but a decrease in females following HIIE compared to Control (P<0.05). Conclusions Overweight/obese males and females appear to respond differently to acute bouts of high-intensity exercise. A single session of HICE and HIIE reduced circulating EMPs measured on the morning following exercise in males but in females CD62E+ EMPs were increased following HICE. Next day HOMA-IR paradoxically increased in males but was reduced in females following HIIE. Future research is needed to investigate mechanisms responsible for potential differential responses between males and females. PMID:25710559
Acute Effects of 30 Minutes Resistance and Aerobic Exercise on Cognition in a High School Sample
ERIC Educational Resources Information Center
Harveson, Andrew T.; Hannon, James C.; Brusseau, Timothy A.; Podlog, Leslie; Papadopoulos, Charilaos; Durrant, Lynne H.; Hall, Morgan S.; Kang, Kyoung-doo
2016-01-01
Purpose: The purpose of this study was to determine differences in cognition between acute bouts of resistance exercise, aerobic exercise, and a nonexercise control in an untrained youth sample. Method: Ninety-four participants performed 30 min of aerobic exercise, resistance exercise, or nonexercise separated by 7 days each in a randomized…
Exercise and Type 2 Diabetes: Molecular Mechanisms Regulating Glucose Uptake in Skeletal Muscle
ERIC Educational Resources Information Center
Stanford, Kristin I.; Goodyear, Laurie J.
2014-01-01
Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial…
Francescato, Maria Pia; Stel, Giuliana; Geat, Mario; Cauci, Sabina
2014-01-01
Presently, no clear-cut guidelines are available to suggest the more appropriate physical activity for patients with type 1 diabetes mellitus due to paucity of experimental data obtained under patients' usual life conditions. Accordingly, we explored the oxidative stress levels associated with a prolonged moderate intensity, but fatiguing, exercise performed under usual therapy in patients with type 1 diabetes mellitus and matched healthy controls. Eight patients (4 men, 4 women; 49±11 years; Body Mass Index 25.0±3.2 kg·m(-2); HbA1c 57±10 mmol·mol(-1)) and 14 controls (8 men, 6 women; 47±11 years; Body Mass Index 24.3±3.3 kg·m(-2)) performed a 3-h walk at 30% of their heart rate reserve. Venous blood samples were obtained before and at the end of the exercise for clinical chemistry analysis and antioxidant capacity. Capillary blood samples were taken at the start and thereafter every 30 min to determine lipid peroxidation. Patients showed higher oxidative stress values as compared to controls (95.9±9.7 vs. 74.1±12.2 mg·L(-1) H2O2; p<0.001). In both groups, oxidative stress remained constant throughout the exercise (p = NS), while oxidative defence increased significantly at the end of exercise (p<0.02) from 1.16±0.13 to 1.19±0.10 mmol·L(-1) Trolox in patients and from 1.09±0.21 to 1.22±0.14 mmol·L(-1) Trolox in controls, without any significant difference between the two groups. Oxidative stress was positively correlated to HbA1c (p<0.005) and negatively related with uric acid (p<0.005). In conclusion, we were the first to evaluate the oxidative stress in patients with type 1 diabetes exercising under their usual life conditions (i.e. usual therapy and diet). Specifically, we found that the oxidative stress was not exacerbated due to a single bout of prolonged moderate intensity aerobic exercise, a condition simulating several outdoor leisure time physical activities. Oxidative defence increased in both patients and controls, suggesting beneficial effects of prolonged aerobic fatiguing exercise.
Thum, Jacob S.; Parsons, Gregory; Whittle, Taylor
2017-01-01
Exercise adherence is affected by factors including perceptions of enjoyment, time availability, and intrinsic motivation. Approximately 50% of individuals withdraw from an exercise program within the first 6 mo of initiation, citing lack of time as a main influence. Time efficient exercise such as high intensity interval training (HIIT) may provide an alternative to moderate intensity continuous exercise (MICT) to elicit substantial health benefits. This study examined differences in enjoyment, affect, and perceived exertion between MICT and HIIT. Twelve recreationally active men and women (age = 29.5 ± 10.7 yr, VO2max = 41.4 ± 4.1 mL/kg/min, BMI = 23.1 ± 2.1 kg/m2) initially performed a VO2max test on a cycle ergometer to determine appropriate workloads for subsequent exercise bouts. Each subject returned for two additional exercise trials, performing either HIIT (eight 1 min bouts of cycling at 85% maximal workload (Wmax) with 1 min of active recovery between bouts) or MICT (20 min of cycling at 45% Wmax) in randomized order. During exercise, rating of perceived exertion (RPE), affect, and blood lactate concentration (BLa) were measured. Additionally, the Physical Activity Enjoyment Scale (PACES) was completed after exercise. Results showed higher enjoyment (p = 0.013) in response to HIIT (103.8 ± 9.4) versus MICT (84.2 ± 19.1). Eleven of 12 participants (92%) preferred HIIT to MICT. However, affect was lower (p<0.05) and HR, RPE, and BLa were higher (p<0.05) in HIIT versus MICT. Although HIIT is more physically demanding than MICT, individuals report greater enjoyment due to its time efficiency and constantly changing stimulus. Trial Registration: NCT:02981667. PMID:28076352
Thum, Jacob S; Parsons, Gregory; Whittle, Taylor; Astorino, Todd A
2017-01-01
Exercise adherence is affected by factors including perceptions of enjoyment, time availability, and intrinsic motivation. Approximately 50% of individuals withdraw from an exercise program within the first 6 mo of initiation, citing lack of time as a main influence. Time efficient exercise such as high intensity interval training (HIIT) may provide an alternative to moderate intensity continuous exercise (MICT) to elicit substantial health benefits. This study examined differences in enjoyment, affect, and perceived exertion between MICT and HIIT. Twelve recreationally active men and women (age = 29.5 ± 10.7 yr, VO2max = 41.4 ± 4.1 mL/kg/min, BMI = 23.1 ± 2.1 kg/m2) initially performed a VO2max test on a cycle ergometer to determine appropriate workloads for subsequent exercise bouts. Each subject returned for two additional exercise trials, performing either HIIT (eight 1 min bouts of cycling at 85% maximal workload (Wmax) with 1 min of active recovery between bouts) or MICT (20 min of cycling at 45% Wmax) in randomized order. During exercise, rating of perceived exertion (RPE), affect, and blood lactate concentration (BLa) were measured. Additionally, the Physical Activity Enjoyment Scale (PACES) was completed after exercise. Results showed higher enjoyment (p = 0.013) in response to HIIT (103.8 ± 9.4) versus MICT (84.2 ± 19.1). Eleven of 12 participants (92%) preferred HIIT to MICT. However, affect was lower (p<0.05) and HR, RPE, and BLa were higher (p<0.05) in HIIT versus MICT. Although HIIT is more physically demanding than MICT, individuals report greater enjoyment due to its time efficiency and constantly changing stimulus. NCT:02981667.
Influence of acute exercise on the osmotic stability of the human erythrocyte membrane.
Paraiso, L F; de Freitas, M V; Gonçalves-E-Oliveira, A F M; de Almeida Neto, O P; Pereira, E A; Mascarenhas Netto, R C; Cunha, L M; Bernardino Neto, M; de Agostini, G G; Resende, E S; Penha-Silva, N
2014-12-01
This study evaluated the effects of 2 different types of acute aerobic exercise on the osmotic stability of human erythrocyte membrane and on different hematological and biochemical variables that are associated with this membrane property. The study population consisted of 20 healthy and active men. Participants performed single sessions of 2 types of exercise. The first session consisted of 60 min of moderate-intensity continuous exercise (MICE). The second session, executed a week later, consisted of high-intensity interval exercise (HIIE) until exhaustion. The osmotic stability of the erythrocyte membrane was represented by the inverse of the salt concentration (1/H50) at the midpoint of the sigmoidal curve of dependence between the absorbance of hemoglobin and the NaCl concentration. The values of 1/H50 changed from 2.29±0.1 to 2.33±0.09 after MICE and from 2.30±0.08 to 2.23±0.12 after HIIE. During MICE mean corpuscular volume increased, probably due to in vivo lysis of older erythrocytes, with preservation of cells that were larger and more resistant to in vitro lysis. The study showed that a single bout of acute exercise affected erythrocyte stability, which increased after MICE and decreased after HIIE. © Georg Thieme Verlag KG Stuttgart · New York.
Postaerobic Exercise Blood Pressure Reduction in Very Old Persons With Hypertension.
Oliveira, Joana; Mesquita-Bastos, José; Argel de Melo, Cristina; Ribeiro, Fernando
2016-01-01
A single bout of aerobic exercise acutely decreases blood pressure, even in older adults with hypertension. Nonetheless, blood pressure responses to aerobic exercise in very old adults with hypertension have not yet been documented. Therefore, this study aimed to assess the effect of a single session of aerobic exercise on postexercise blood pressure in very old adults with hypertension. Eighteen older adults with essential hypertension were randomized into exercise (N = 9, age: 83.4 ± 3.2 years old) or control (N = 9, age: 82.7 ± 2.5 years old) groups. The exercise group performed a session of aerobic exercise constituting 2 periods of 10 minutes of walking at an intensity of 40% to 60% of the heart rate reserve. The control group rested for the same period of time. Anthropometric variables and medication status were evaluated at baseline. Heart rate and systolic and diastolic blood pressures were measured at baseline, after exercise, and at 20 and 40 minutes postexercise. Systolic blood pressure showed a significant interaction for group × time (F3,24 = 6.698; P = .002; ηp(2) = 0.153). In the exercise group, the systolic blood pressure at 20 (127.3 ± 20.9 mm Hg) and 40 minutes (123.7 ± 21.0 mm Hg) postexercise was significantly lower in comparison with baseline (135.6 ± 20.6 mm Hg). Diastolic blood pressure did not change. Heart rate was significantly higher after the exercise session. In the control group, no significant differences were observed. A single session of aerobic exercise acutely reduces blood pressure in very old adults with hypertension and may be considered an important nonpharmacological strategy to control hypertension in this age group.
Acute exercise induces biphasic increase in respiratory mRNA in skeletal muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, Shin-ichi; Kizaki, Takako; Haga, Shukoh
2008-04-04
Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1{alpha} and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1{alpha} protein, but the other was not. Administration of SB203580 (SB), an inhibitor ofmore » p38 MAPK, suppressed the increase in PGC-1{alpha} expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1{alpha} and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions.« less
The effect of histamine on changes in mental energy and fatigue after a single bout of exercise.
Loy, Bryan D; O'Connor, Patrick J
2016-01-01
The purpose of this research was to determine if histamine, acting on brain H1 receptors, influences changes in feelings of energy and fatigue or cognitive test performance after acute exercise. Women (n=20) with low vigor and high fatigue were administered the H1 antagonist drug doxepin hydrocholoride (6 mg) in tomato juice and tomato juice alone (placebo) in a randomized, double-blinded, cross-over experiment before performing 30 min of light intensity cycling exercise and completing energy, fatigue, sleepiness, and motivation scales, and cognitive tasks. After exercise, mental fatigue increased for the doxepin condition (p=0.014) but not placebo (p=0.700), while mental energy decreased for both PLA and DOX (p<0.001) and cognitive task performance was unaffected. It is inferred that histamine binding to H1 receptors in the brain has a role in exercise-induced reductions in mental fatigue, but not increases in energy. Copyright © 2015 Elsevier Inc. All rights reserved.
Ludlow, Andrew T; Gratidão, Laila; Ludlow, Lindsay W; Spangenburg, Espen E; Roth, Stephen M
2017-04-01
What is the central question of this study? A positive association between telomere length and exercise training has been shown in cardiac tissue of mice. It is currently unknown how each bout of exercise influences telomere-length-regulating proteins. We sought to determine how a bout of exercise altered the expression of telomere-length-regulating genes and a related signalling pathway in cardiac tissue of mice. What is the main finding and its importance? Acute exercise altered the expression of telomere-length-regulating genes in cardiac tissue and might be related to altered mitogen-activated protein kinase signalling. These findings are important in understanding how exercise provides a cardioprotective phenotype with ageing. Age is the greatest risk factor for cardiovascular disease. Telomere length is shorter in the hearts of aged mice compared with young mice, and short telomere length has been associated with an increased risk of cardiovascular disease. One year of voluntary wheel-running exercise attenuates the age-associated loss of telomere length and results in altered gene expression of telomere-length-maintaining and genome-stabilizing proteins in heart tissue of mice. Understanding the early adaptive response of the heart to an endurance exercise bout is paramount to understanding the impact of endurance exercise on heart tissue and cells. To this end, we studied mice before (BL), immediately after (TP1) and 1 h after a treadmill running bout (TP2). We measured the changes in expression of telomere-related genes (shelterin components), DNA-damage-sensing (p53 and Chk2) and DNA-repair genes (Ku70 and Ku80) and mitogen-activated protein kinase (MAPK) signalling. The TP1 animals had increased TRF1 and TRF2 protein and mRNA levels, greater expression of DNA-repair and -response genes (Chk2 and Ku80) and greater protein content of phosphorylated p38 MAPK compared with both BL and TP2 animals. These data provide insights into how physiological stressors remodel the heart tissue and how an early adaptive response mediated by exercise may be maintaining telomere length and/or stabilizing the heart genome through the upregulation of telomere-protective genes. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Solberg, E E; Ingjer, F; Holen, A; Sundgot-Borgen, J; Nilsson, S; Holme, I
2000-08-01
To compare the efficacy in runners of two relaxation techniques with regard to exercise reactivity and recovery after exercise. Thirty one adult male runners were studied prospectively for six months in three groups practising either meditation (n = 11) or autogenic training (n = 11) or serving as controls (n = 10). Before and after the six months relaxation intervention, indicators of reactivity to exercise and metabolism after exercise (blood lactate concentration, heart rate (HR), and oxygen consumption (VO2)), were tested immediately after and 10 minutes after exercise. Resting HR was also assessed weekly at home during the trial. State anxiety was measured before and after the intervention. After the relaxation training, blood lactate concentration after exercise was significantly (p<0.01) decreased in the meditation group compared with the control group. No difference was observed in lactate responses between the autogenic training group and the control group. There were no significant differences among the groups with regard to HR, VO2, or levels of anxiety. Meditation training may reduce the lactate response to a standardised exercise bout.
The sooner, the better: exercise outcome proximity and intrinsic motivation.
Evans, M Blair; Cooke, Lisa M; Murray, Robyn A; Wilson, Anne E
2014-11-01
Despite evidence that outcomes are highly valued when they are expected sooner rather than further into the future (Ainslie, 1975), limited research effort has been devoted to understanding the role of exercise outcome proximity. The purpose of this study was to examine how temporal proximity to positive outcomes influences exercisers' intrinsic motivation. We expected that focusing people on temporally proximal exercise outcomes would increase intrinsic motivation, especially among low-frequency exercisers. This online experimental study was completed by 135 community exercisers (Mage = 31.11, SD = 10.29; 62% female) who reported an average of 4.86 exercise bouts per week (SD = 2.12). Participants were randomly assigned to a condition that primed temporally proximal positive exercise outcomes (i.e. experienced during or directly following an exercise bout) or temporally distal outcomes (i.e. experienced after days, months, or years of regular exercise). Participants then reported perceptions of behavioral regulation in exercise. As expected, the proximal exercise outcome condition elicited increased intrinsic regulation among those participants who exercised less frequently (i.e. 1 SD below the mean). This study reveals the importance of considering proximity as an important dimension of exercise outcomes-particularly when promoting intrinsic motivation among relatively infrequent exercisers. © 2014 The International Association of Applied Psychology.
A DIGE proteomic analysis for high-intensity exercise-trained rat skeletal muscle.
Yamaguchi, Wataru; Fujimoto, Eri; Higuchi, Mitsuru; Tabata, Izumi
2010-09-01
Exercise training induces various adaptations in skeletal muscles. However, the mechanisms remain unclear. In this study, we conducted 2D-DIGE proteomic analysis, which has not yet been used for elucidating adaptations of skeletal muscle after high-intensity exercise training (HIT). For 5 days, rats performed HIT, which consisted of 14 20-s swimming exercise bouts carrying a weight (14% of the body weight), and 10-s pause between bouts. The 2D-DIGE analysis was conducted on epitrochlearis muscles excised 18 h after the final training exercise. Proteomic profiling revealed that out of 800 detected and matched spots, 13 proteins exhibited changed expression by HIT compared with sedentary rats. All proteins were identified by MALDI-TOF/MS. Furthermore, using western immunoblot analyses, significantly changed expressions of NDUFS1 and parvalbumin (PV) were validated in relation to HIT. In conclusion, the proteomic 2D-DIGE analysis following HIT-identified expressions of NDUFS1 and PV, previously unknown to have functions related to exercise-training adaptations.
Pasiakos, Stefan M; Lieberman, Harris R; McLellan, Tom M
2014-05-01
Protein supplements are frequently consumed by athletes and recreationally-active individuals, although the decision to purchase and consume protein supplements is often based on marketing claims rather than evidence-based research. To provide a systematic and comprehensive analysis of literature examining the hypothesis that protein supplements enhance recovery of muscle function and physical performance by attenuating muscle damage and soreness following a previous bout of exercise. English language articles were searched with PubMed and Google Scholar using protein and supplements together with performance, exercise, competition and muscle, alone or in combination as keywords. Inclusion criteria required studies to recruit healthy adults less than 50 years of age and to evaluate the effects of protein supplements alone or in combination with carbohydrate on performance metrics including time-to-exhaustion, time-trial or isometric or isokinetic muscle strength and markers of muscle damage and soreness. Twenty-seven articles were identified of which 18 dealt exclusively with ingestion of protein supplements to reduce muscle damage and soreness and improve recovery of muscle function following exercise, whereas the remaining 9 articles assessed muscle damage as well as performance metrics during single or repeat bouts of exercise. Papers were evaluated based on experimental design and examined for confounders that explain discrepancies between studies such as dietary control, training state of participants, sample size, direct or surrogate measures of muscle damage, and sensitivity of the performance metric. High quality and consistent data demonstrated there is no apparent relationship between recovery of muscle function and ratings of muscle soreness and surrogate markers of muscle damage when protein supplements are consumed prior to, during or after a bout of endurance or resistance exercise. There also appears to be insufficient experimental data demonstrating ingestion of a protein supplement following a bout of exercise attenuates muscle soreness and/or lowers markers of muscle damage. However, beneficial effects such as reduced muscle soreness and markers of muscle damage become more evident when supplemental protein is consumed after daily training sessions. Furthermore, the data suggest potential ergogenic effects associated with protein supplementation are greatest if participants are in negative nitrogen and/or energy balance. Small sample numbers and lack of dietary control limited the effectiveness of several investigations. In addition, studies did not measure the effects of protein supplementation on direct indices of muscle damage such as myofibrillar disruption and various measures of protein signaling indicative of a change in rates of protein synthesis and degradation. As a result, the interpretation of the data was often limited. Overwhelmingly, studies have consistently demonstrated the acute benefits of protein supplementation on post-exercise muscle anabolism, which, in theory, may facilitate the recovery of muscle function and performance. However, to date, when protein supplements are provided, acute changes in post-exercise protein synthesis and anabolic intracellular signaling have not resulted in measureable reductions in muscle damage and enhanced recovery of muscle function. Limitations in study designs together with the large variability in surrogate markers of muscle damage reduced the strength of the evidence-base.
Single swim sessions in C. elegans induce key features of mammalian exercise.
Laranjeiro, Ricardo; Harinath, Girish; Burke, Daniel; Braeckman, Bart P; Driscoll, Monica
2017-04-10
Exercise exerts remarkably powerful effects on metabolism and health, with anti-disease and anti-aging outcomes. Pharmacological manipulation of exercise benefit circuits might improve the health of the sedentary and the aging populations. Still, how exercised muscle signals to induce system-wide health improvement remains poorly understood. With a long-term interest in interventions that promote animal-wide health improvement, we sought to define exercise options for Caenorhabditis elegans. Here, we report on the impact of single swim sessions on C. elegans physiology. We used microcalorimetry to show that C. elegans swimming has a greater energy cost than crawling. Animals that swam continuously for 90 min specifically consumed muscle fat supplies and exhibited post-swim locomotory fatigue, with both muscle fat depletion and fatigue indicators recovering within 1 hour of exercise cessation. Quantitative polymerase chain reaction (qPCR) transcript analyses also suggested an increase in fat metabolism during the swim, followed by the downregulation of specific carbohydrate metabolism transcripts in the hours post-exercise. During a 90 min swim, muscle mitochondria matrix environments became more oxidized, as visualized by a localized mitochondrial reduction-oxidation-sensitive green fluorescent protein reporter. qPCR data supported specific transcriptional changes in oxidative stress defense genes during and immediately after a swim. Consistent with potential antioxidant defense induction, we found that a single swim session sufficed to confer protection against juglone-induced oxidative stress inflicted 4 hours post-exercise. In addition to showing that even a single swim exercise bout confers physiological changes that increase robustness, our data reveal that acute swimming-induced changes share common features with some acute exercise responses reported in humans. Overall, our data validate an easily implemented swim experience as C. elegans exercise, setting the foundation for exploiting the experimental advantages of this model to genetically or pharmacologically identify the exercise-associated molecules and signaling pathways that confer system-wide health benefits.
Oliveira, L F; de Salles Painelli, V; Nemezio, K; Gonçalves, L S; Yamaguchi, G; Saunders, B; Gualano, B; Artioli, G G
2017-11-01
Since there is conflicting data on the buffering and ergogenic properties of calcium lactate (CL), we investigated the effect of chronic CL supplementation on blood pH, bicarbonate, and high-intensity intermittent exercise performance. Sodium bicarbonate (SB) was used as a positive control. Eighteen athletes participated in this double-blind, placebo-controlled, crossover, fully counterbalanced study. All participants underwent three different treatments: placebo (PL), CL, and SB. The dose was identical in all conditions: 500 mg/kg BM divided into four daily individual doses of 125 mg/kg BM, for five consecutive days, followed by a 2-7-day washout period. On the fifth day of supplementation, individuals undertook four 30-s Wingate bouts for upper body with 3-min recovery between bouts. Total mechanical work (TMW) for the overall protocol and for the initial (1st+2nd) and final (3rd+4th) bouts was determined at each session. Blood pH, bicarbonate, and lactate levels were determined at rest, immediately and 5 min after exercise. CL supplementation did not affect performance (P > 0.05 for the overall TMW as well for initial and final bouts), nor did it affect blood bicarbonate and pH prior to exercise. SB supplementation improved performance by 2.9% for overall TMW (P = 0.02) and 5.9% in the 3rd+4th bouts (P = 0001). Compared to the control session, SB also promoted higher increases in blood bicarbonate than CL and PL (+0.03 ± 0.04 vs +0.009 ± 0.02 and +0.01 ± 0.03, respectively). CL supplementation was not capable of enhancing high-intensity intermittent performance or changing extracellular buffering capacity challenging the notion that this dietary supplement is an effective buffering agent. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Postexercise heart rate variability following treadmill and cycle exercise: a comparison study.
Esco, Michael R; Flatt, Andrew A; Williford, Henry N
2017-05-01
The purpose of this study was to compare postexercise heart rate variability (HRV) immediately following acute bouts of treadmill (T) and cycle (C) exercise at 65% of mode-specific maximal oxygen consumption reserve (65% VO 2 R). Fourteen apparently healthy men participated in this study. On two separate and randomized days, each participant performed 30 min of exercise at 65% VO 2 R on T and C. Supine HRV was evaluated as normalized and log-transformed (ln) high-frequency (HF) and low-frequency (LF) spectral power, as well as the LF:HF ratio in 5-min segments immediately before (PRE) and at 10-15 min (POST1) and 25-30 min (POST2) following each exercise bout. There were no significant differences in the HRV values at PRE between the modalities. Following each exercise bout, lnHF was significantly lower at POST2 following C compared to T. In addition, lnLF and LF:HF were significantly higher at POST1 and POST2 following C compared to T. All HRV metrics returned towards baseline 30 min following T but remained significantly different than PRE values after C. These results suggest that following exercise at 65% of mode-specific VO 2 R, C is associated with a greater delay of postexercise HRV recovery than T in apparently healthy men. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Morning-to-evening differences in oxygen uptake kinetics in short-duration cycling exercise.
Brisswalter, Jeanick; Bieuzen, François; Giacomoni, Magali; Tricot, Véronique; Falgairette, Guy
2007-01-01
This study analyzed diurnal variations in oxygen (O(2)) uptake kinetics and efficiency during a moderate cycle ergometer exercise. Fourteen physically active diurnally active male subjects (age 23+/-5 yrs) not specifically trained at cycling first completed a test to determine their ventilatory threshold (T(vent)) and maximal oxygen consumption (VO(2max)); one week later, they completed four bouts of testing in the morning and evening in a random order, each separated by at least 24 h. For each period of the day (07:00-08:30 h and 19:00-20:30 h), subjects performed two bouts. Each bout was composed of a 5 min cycling exercise at 45 W, followed after 5 min rest by a 10 min cycling exercise at 80% of the power output associated with T(vent). Gas exchanges were analyzed breath-by-breath and fitted using a mono-exponential function. During moderate exercise, the time constant and amplitude of VO(2) kinetics were significantly higher in the morning compared to the evening. The net efficiency increased from the morning to evening (17.3+/-4 vs. 20.5+/-2%; p<0.05), and the variability of cycling cadence was greater during the morning than evening (+34%; p<0.05). These findings suggest that VO(2) responses are affected by the time of day and could be related to variability in muscle activity pattern.
Dominick, Gregory M; Winfree, Kyle N; Pohlig, Ryan T; Papas, Mia A
2016-09-19
Wearable activity monitors such as Fitbit enable users to track various attributes of their physical activity (PA) over time and have the potential to be used in research to promote and measure PA behavior. However, the measurement accuracy of Fitbit in absolute free-living conditions is largely unknown. To examine the measurement congruence between Fitbit Flex and ActiGraph GT3X for quantifying steps, metabolic equivalent tasks (METs), and proportion of time in sedentary activity and light-, moderate-, and vigorous-intensity PA in healthy adults in free-living conditions. A convenience sample of 19 participants (4 men and 15 women), aged 18-37 years, concurrently wore the Fitbit Flex (wrist) and ActiGraph GT3X (waist) for 1- or 2-week observation periods (n=3 and n=16, respectively) that included self-reported bouts of daily exercise. Data were examined for daily activity, averaged over 14 days and for minutes of reported exercise. Average day-level data included steps, METs, and proportion of time in different intensity levels. Minute-level data included steps, METs, and mean intensity score (0 = sedentary, 3 = vigorous) for overall reported exercise bouts (N=120) and by exercise type (walking, n=16; run or sports, n=44; cardio machine, n=20). Measures of steps were similar between devices for average day- and minute-level observations (all P values > .05). Fitbit significantly overestimated METs for average daily activity, for overall minutes of reported exercise bouts, and for walking and run or sports exercises (mean difference 0.70, 1.80, 3.16, and 2.00 METs, respectively; all P values < .001). For average daily activity, Fitbit significantly underestimated the proportion of time in sedentary and light intensity by 20% and 34%, respectively, and overestimated time by 3% in both moderate and vigorous intensity (all P values < .001). Mean intensity scores were not different for overall minutes of exercise or for run or sports and cardio-machine exercises (all P values > .05). Fitbit Flex provides accurate measures of steps for daily activity and minutes of reported exercise, regardless of exercise type. Although the proportion of time in different intensity levels varied between devices, examining the mean intensity score for minute-level bouts across different exercise types enabled interdevice comparisons that revealed similar measures of exercise intensity. Fitbit Flex is shown to have measurement limitations that may affect its potential utility and validity for measuring PA attributes in free-living conditions.
Sebire, Simon J; Standage, Martyn; Vansteenkiste, Maarten
2011-04-01
Grounded in self-determination theory (Deci & Ryan, 2000), the purpose of this work was to examine effects of the content and motivation of adults' exercise goals on objectively assessed moderate-to-vigorous physical activity (MVPA). After reporting the content and motivation of their exercise goals, 101 adult participants (Mage = 38.79 years; SD = 11.5) wore an ActiGraph (GT1M) accelerometer for seven days. Accelerometer data were analyzed to provide estimates of engagement in MVPA and bouts of physical activity. Goal content did not directly predict behavioral engagement; however, mediation analysis revealed that goal content predicted behavior via autonomous exercise motivation. Specifically, intrinsic versus extrinsic goals for exercise had a positive indirect effect on average daily MVPA, average daily MVPA accumulated in 10-min bouts and the number of days on which participants performed 30 or more minutes of MVPA through autonomous motivation. These results support a motivational sequence in which intrinsic versus extrinsic exercise goals influence physical activity behavior because such goals are associated with more autonomous forms of exercise motivation.
Exercise metabolism in human skeletal muscle exposed to prior eccentric exercise
Asp, Sven; Daugaard, Jens R; Kristiansen, Søren; Kiens, Bente; Richter, Erik A
1998-01-01
The effects of unaccustomed eccentric exercise on exercise metabolism during a subsequent bout of graded concentric exercise were investigated in seven healthy male subjects. Arterial and bilateral femoral venous catheters were inserted 2 days after eccentric exercise of one thigh (eccentric thigh) and blood samples were taken before and during graded two-legged concentric knee-extensor exercise. Muscle biopsies were obtained from the eccentric and control vastus lateralis before (rest) and after (post) the concentric exercise bout. Maximal knee-extensor concentric exercise capacity was decreased by an average of 23 % (P < 0.05) in the eccentric compared with the control thigh. The resting muscle glycogen content was lower in the eccentric thigh than in the control thigh (402 ± 30 mmol (kg dry wt)−1vs. 515 ± 26 mmol (kg dry wt)−1, means ± s.e.m., P < 0.05), and following the two-legged concentric exercise this difference substantially increased (190 ± 46 mmol (kg dry wt)−1vs. 379 ± 58 mmol (kg dry wt)−1, P < 0.05) despite identical power and duration of exercise with the two thighs. There was no measurable difference in glucose uptake between the eccentric and control thigh before or during the graded two-legged concentric exercise. Lactate release was higher from the eccentric thigh at rest and, just before termination of the exercise bout, release of lactate decreased from this thigh (suggesting decreased glycogenolysis), whereas no decrease was found from the contralateral control thigh. Lower glycerol release from the eccentric thigh during the first, lighter part of the exercise (P < 0.05) suggested impaired triacylglycerol breakdown. At rest, sarcolemmal GLUT4 glucose transporter content and glucose transport were similar in the two thighs, and concentric exercise increased sarcolemmal GLUT4 content and glucose transport capacity similarly in the two thighs. It is concluded that in muscle exposed to prior eccentric contractions, exercise at a given power output requires a higher relative workload than in undamaged muscle. This increases utilization of the decreased muscle glycogen stores, contributing to decreased endurance. PMID:9547403
Hostler, David; Suyama, Joe; Guyette, Francis X; Moore, Charity G; Pryor, Riana R; Khorana, Priya; McEntire, Serina J; Comer, Diane; Reis, Steven E
2014-01-01
Platelet aggregation is enhanced in firefighters following short bouts of work in thermal protective clothing (TPC). We sought to determine if aspirin therapy before and/or following exertion in TPC prevents platelet activation. In a double-blind, placebo-controlled study, 102 firefighters were randomized to receive daily therapy (81 mg aspirin or placebo) for 14 days before and a single dose (325 mg aspirin or placebo) following exercise in TPC resulting in four potential assignments: aspirin before and after exercise (AA), placebo before and after exercise (PP), aspirin before and placebo after exercise (AP), and placebo before and aspirin after exercise (PA). Platelet closure time (PCT) was measured with a platelet function analyzer before the 2-week treatment, after the 2 week treatment period, immediately after exercise, and 30, 60, and 90 minutes later. Baseline PCT did not differ between groups. PCT changed over time in all four groups (p < 0.001) rising to a median of >300 seconds [IQR 99, 300] in AA and >300 [92, 300] in AP prior to exercise. Following exercise, median PCT decreased to in all groups. Median PCT returned to >300 seconds 30 minutes later in AA and AP and rose to 300 seconds in PA 60 minutes after exercise. Daily aspirin therapy blunts platelet activation during exertional heat stress and single-dose aspirin therapy following exertional heat stress reduces platelet activation within 60 minutes.
Karoly, Hollis C.; Stevens, Courtney J.; Magnan, Renee E.; Harlaar, Nicole; Hutchison, Kent E.; Bryan, Angela D.
2012-01-01
Objective. To determine whether genetic variants suggested by the literature to be associated with physiology and fitness phenotypes predicted differential physiological and subjective responses to a bout of aerobic exercise among inactive but otherwise healthy adults. Method. Participants completed a 30-minute submaximal aerobic exercise session. Measures of physiological and subjective responding were taken before, during, and after exercise. 14 single nucleotide polymorphisms (SNPs) that have been previously associated with various exercise phenotypes were tested for associations with physiological and subjective response to exercise phenotypes. Results. We found that two SNPs in the FTO gene (rs8044769 and rs3751812) were related to positive affect change during exercise. Two SNPs in the CREB1 gene (rs2253206 and 2360969) were related to change in temperature during exercise and with maximal oxygen capacity (VO2 max). The SLIT2 SNP rs1379659 and the FAM5C SNP rs1935881 were associated with norepinephrine change during exercise. Finally, the OPRM1 SNP rs1799971 was related to changes in norepinephrine, lactate, and rate of perceived exertion (RPE) during exercise. Conclusion. Genetic factors influence both physiological and subjective responses to exercise. A better understanding of genetic factors underlying physiological and subjective responses to aerobic exercise has implications for development and potential tailoring of exercise interventions. PMID:22899923
Rogerson, Mike; Barton, Jo
2015-01-01
Green exercise research often reports psychological health outcomes without rigorously controlling exercise. This study examines effects of visual exercise environments on directed attention, perceived exertion and time to exhaustion, whilst measuring and controlling the exercise component. Participants completed three experimental conditions in a randomized counterbalanced order. Conditions varied by video content viewed (nature; built; control) during two consistently-ordered exercise bouts (Exercise 1: 60% VO2peakInt for 15-mins; Exercise 2: 85% VO2peakInt to voluntary exhaustion). In each condition, participants completed modified Backwards Digit Span tests (a measure of directed attention) pre- and post-Exercise 1. Energy expenditure, respiratory exchange ratio and perceived exertion were measured during both exercise bouts. Time to exhaustion in Exercise 2 was also recorded. There was a significant time by condition interaction for Backwards Digit Span scores (F2,22 = 6.267, p = 0.007). Scores significantly improved in the nature condition (p < 0.001) but did not in the built or control conditions. There were no significant differences between conditions for either perceived exertion or physiological measures during either Exercise 1 or Exercise 2, or for time to exhaustion in Exercise 2. This was the first study to demonstrate effects of controlled exercise conducted in different visual environments on post-exercise directed attention. Via psychological mechanisms alone, visual nature facilitates attention restoration during moderate-intensity exercise. PMID:26133125
Rogerson, Mike; Barton, Jo
2015-06-30
Green exercise research often reports psychological health outcomes without rigorously controlling exercise. This study examines effects of visual exercise environments on directed attention, perceived exertion and time to exhaustion, whilst measuring and controlling the exercise component. Participants completed three experimental conditions in a randomized counterbalanced order. Conditions varied by video content viewed (nature; built; control) during two consistently-ordered exercise bouts (Exercise 1: 60% VO2peakInt for 15-mins; Exercise 2: 85% VO2peakInt to voluntary exhaustion). In each condition, participants completed modified Backwards Digit Span tests (a measure of directed attention) pre- and post-Exercise 1. Energy expenditure, respiratory exchange ratio and perceived exertion were measured during both exercise bouts. Time to exhaustion in Exercise 2 was also recorded. There was a significant time by condition interaction for Backwards Digit Span scores (F2,22 = 6.267, p = 0.007). Scores significantly improved in the nature condition (p < 0.001) but did not in the built or control conditions. There were no significant differences between conditions for either perceived exertion or physiological measures during either Exercise 1 or Exercise 2, or for time to exhaustion in Exercise 2. This was the first study to demonstrate effects of controlled exercise conducted in different visual environments on post-exercise directed attention. Via psychological mechanisms alone, visual nature facilitates attention restoration during moderate-intensity exercise.
Effects of Performance Versus Game-Based Mobile Applications on Response to Exercise.
Gillman, Arielle S; Bryan, Angela D
2016-02-01
Given the popularity of mobile applications (apps) designed to increase exercise participation, it is important to understand their effects on psychological predictors of exercise behavior. This study tested a performance feedback-based app compared to a game-based app to examine their effects on aspects of immediate response to an exercise bout. Twenty-eight participants completed a 30-min treadmill run while using one of two randomly assigned mobile running apps: Nike + Running, a performance-monitoring app which theoretically induces an associative, goal-driven state, or Zombies Run!, an app which turns the experience of running into a virtual reality game, theoretically inducing dissociation from primary exercise goals. The two conditions did not differ on primary motivational state outcomes; however, participants reported more associative attentional focus in the performance-monitoring app condition compared to more dissociative focus in the game-based app condition. Game-based and performance-tracking running apps may not have differential effects on goal motivation during exercise. However, game-based apps may help recreational exercisers dissociate from exercise more readily. Increasing the enjoyment of an exercise bout through the development of new and innovative mobile technologies is an important avenue for future research.
Magnan, Renee E; Kwan, Bethany M; Bryan, Angela D
2013-01-01
Affective responses during exercise are often important determinants of exercise initiation and maintenance. Current physical activity may be one individual difference that is associated with the degree to which individuals have positive (or negative) affective experiences during exercise. The objective of this study was to explore physical and cognitive explanations of the relationship between current activity status (more versus less active) and affective response during a 30-minute bout of moderate-intensity exercise. Participants reported their current level of physical activity, exercise self-efficacy and affect during a 30-minute bout of moderate-intensity exercise. More active individuals experienced higher levels of positive affect and tranquillity and lower levels of negative affect and fatigue during exercise. Multivariate models for each affective state indicated separate processes through which physical activity may be associated with changes in affect during exercise. These models indicate that affect experienced during physical activity is related to the current activity level and these relationships can be partially explained by the physical and cognitive factors explored in this study. Recommendations for future research to elucidate whether positive affective response to physical activity improves as a function of becoming more active over time are discussed.
Effect of caffeine ingestion on anaerobic capacity quantified by different methods
Arcoverde, Lucyana; Silveira, Rodrigo; Tomazini, Fabiano; Sansonio, André; Bertuzzi, Romulo; Andrade-Souza, Victor Amorim
2017-01-01
We investigated whether caffeine ingestion before submaximal exercise bouts would affect supramaximal oxygen demand and maximal accumulated oxygen deficit (MAOD), and if caffeine-induced improvement on the anaerobic capacity (AC) could be detected by different methods. Nine men took part in several submaximal and supramaximal exercise bouts one hour after ingesting caffeine (5 mg·kg-1) or placebo. The AC was estimated by MAOD, alternative MAOD, critical power, and gross efficiency methods. Caffeine had no effect on exercise endurance during the supramaximal bout (caffeine: 131.3 ± 21.9 and placebo: 130.8 ± 20.8 s, P = 0.80). Caffeine ingestion before submaximal trials did not affect supramaximal oxygen demand and MAOD compared to placebo (7.88 ± 1.56 L and 65.80 ± 16.06 kJ vs. 7.89 ± 1.30 L and 62.85 ± 13.67 kJ, P = 0.99). Additionally, MAOD was similar between caffeine and placebo when supramaximal oxygen demand was estimated without caffeine effects during submaximal bouts (67.02 ± 16.36 and 62.85 ± 13.67 kJ, P = 0.41) or when estimated by alternative MAOD (56.61 ± 8.49 and 56.87 ± 9.76 kJ, P = 0.91). The AC estimated by gross efficiency was also similar between caffeine and placebo (21.80 ± 3.09 and 20.94 ± 2.67 kJ, P = 0.15), but was lower in caffeine when estimated by critical power method (16.2 ± 2.6 vs. 19.3 ± 3.5 kJ, P = 0.03). In conclusion, caffeine ingestion before submaximal bouts did not affect supramaximal oxygen demand and consequently MAOD. Otherwise, caffeine seems to have no clear positive effect on AC. PMID:28617848
Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance.
Tobias, Gabriel; Benatti, Fabiana Braga; de Salles Painelli, Vitor; Roschel, Hamilton; Gualano, Bruno; Sale, Craig; Harris, Roger C; Lancha, Antonio Herbert; Artioli, Guilherme Gianinni
2013-08-01
We examined the isolated and combined effects of beta-alanine (BA) and sodium bicarbonate (SB) on high-intensity intermittent upper-body performance in judo and jiu-jitsu competitors. 37 athletes were assigned to one of four groups: (1) placebo (PL)+PL; (2) BA+PL; (3) PL+SB or (4) BA+SB. BA or dextrose (placebo) (6.4 g day⁻¹) was ingested for 4 weeks and 500 mg kg⁻¹ BM of SB or calcium carbonate (placebo) was ingested for 7 days during the 4th week. Before and after 4 weeks of supplementation, the athletes completed four 30-s upper-body Wingate tests, separated by 3 min. Blood lactate was determined at rest, immediately after and 5 min after the 4th exercise bout, with perceived exertion reported immediately after the 4th bout. BA and SB alone increased the total work done in +7 and 8 %, respectively. The co-ingestion resulted in an additive effect (+14 %, p < 0.05 vs. BA and SB alone). BA alone significantly improved mean power in the 2nd and 3rd bouts and tended to improve the 4th bout. SB alone significantly improved mean power in the 4th bout and tended to improve in the 2nd and 3rd bouts. BA+SB enhanced mean power in all four bouts. PL+PL did not elicit any alteration on mean and peak power. Post-exercise blood lactate increased with all treatments except with PL+PL. Only BA+SB resulted in lower ratings of perceived exertion (p = 0.05). Chronic BA and SB supplementation alone equally enhanced high-intensity intermittent upper-body performance in well-trained athletes. Combined BA and SB promoted a clear additive ergogenic effect.
Sprouse, Courtney; Gordish-Dressman, Heather; Orkunoglu-Suer, E Funda; Lipof, Jason S; Moeckel-Cole, Stephanie; Patel, Ronak R; Adham, Kasra; Larkin, Justin S; Hubal, Monica J; Kearns, Amy K; Clarkson, Priscilla M; Thompson, Paul D; Angelopoulos, Theodore J; Gordon, Paul M; Moyna, Niall M; Pescatello, Linda S; Visich, Paul S; Zoeller, Robert F; Hoffman, Eric P; Tosi, Laura L; Devaney, Joseph M
2014-01-01
Genome-wide association studies have identified thousands of variants that are associated with numerous phenotypes. One such variant, rs13266634, a nonsynonymous single nucleotide polymorphism in the solute carrier family 30 (zinc transporter) member eight gene, is associated with a 53% increase in the risk of developing type 2 diabetes (T2D). We hypothesized that individuals with the protective allele against T2D would show a positive response to short-term and long-term resistance exercise. Two cohorts of young adults-the Eccentric Muscle Damage (EMD; n = 156) cohort and the Functional Single Nucleotide Polymorphisms Associated with Muscle Size and Strength Study (FAMuSS; n = 874)-were tested for association of the rs13266634 variant with measures of skeletal muscle response to resistance exercise. Our results were sexually dimorphic in both cohorts. Men in the EMD study with two copies of the protective allele showed less post-exercise bout strength loss, less soreness, and lower creatine kinase values. In addition, men in the FAMuSS, homozygous for the protective allele, showed higher pre-exercise strength and larger arm skeletal muscle volume, but did not show a significant difference in skeletal muscle hypertrophy or strength with resistance training.
Post-resistance exercise hypotension in spontaneously hypertensive rats is mediated by nitric oxide.
Lizardo, J H F; Silveira, E A A; Vassallo, D V; Oliveira, E M
2008-07-01
1. Postexercise hypotension (PEH) plays an important role in the non-pharmacological treatment of hypertension. It is characterized by a decrease in blood pressure (BP) after a single bout of exercise in relation to pre-exercise levels. 2. The present study investigated the effect of a single session of resistance exercise, as well as the effect of nitric oxide (NO) and the autonomic nervous system (ANS), in PEH in spontaneously hypertensive rats (SHR). 3. Catheters were inserted into the left carotid artery and left jugular vein of male SHR (n = 37) for the purpose of measuring BP or heart rate (HR) and drug or vehicle administration, respectively. Haemodynamic measurements were made before and after acute resistance exercise. The roles of NO and the ANS were investigated by using N(G)-nitro-L-arginine methyl ester (L-NAME; 15 mg/kg, i.v.) and hexamethonium (20 mg/kg, i.v.) after a session of acute resistance exercise. 4. Acute resistance exercise promoted a pronounced reduction in systolic and diastolic BP (-37 +/- 1 and -8 +/- 1 mmHg, respectively; P < 0.05), which was suppressed after treatment with L-NAME. The reduction in systolic BP caused by exercise (-37 +/- 1 mmHg) was not altered by the administration of hexamethonium (-38 +/- 2 mmHg; P > 0.05). After exercise, the decrease in diastolic BP was greater with hexamethonium (-26 +/- 1 mmHg; P < 0.05) compared with the decrease caused by exercise alone. 5. The results suggest that acute resistance exercise has an important hypotensive effect on SHR and that NO plays a crucial role in this response.
Skurvydas, Albertas; Mamkus, Gediminas; Kamandulis, Sigitas; Dudoniene, Vilma; Valanciene, Dovile; Westerblad, Håkan
2016-12-01
Force production frequently remains depressed for several hours or even days after various types of strenuous physical exercise. We hypothesized that the pattern of force changes during the first hour after exercise can be used to reveal muscular mechanisms likely to underlie the decline in muscle performance during exercise as well as factors involved in the triggering the prolonged force depression after exercise. Nine groups of recreationally active male volunteers performed one of the following types of exercise: single prolonged or repeated short maximum voluntary contractions (MVCs); single or repeated all-out cycling bouts; repeated drop jumps. The isometric force of the right quadriceps muscle was measured during stimulation with brief 20 and 100 Hz trains of electrical pulses given before and at regular intervals for 60 min after exercise. All exercises resulted in a prolonged force depression, which was more marked at 20 Hz than at 100 Hz. Short-lasting (≤2 min) MVC and all-out cycling exercises showed an initial force recovery (peak after ~ 5 min) followed by a secondary force depression. The repeated drop jumps, which involve eccentric contractions, resulted in a stable force depression with the 20 Hz force being markedly more decreased after 100 than 10 jumps. In accordance with our hypothesis, the results propose at least three different mechanisms that influence force production after exercise: (1) a transiently recovering process followed by (2) a prolonged force depression after metabolically demanding exercise, and (3) a stable force depression after mechanically demanding contractions.
Ramirez-Jimenez, M; Morales-Palomo, F; Ortega, J F; Mora-Rodriguez, R
2018-05-17
We studied the blood pressure lowering effects of a bout of exercise and/or antihypertensive medicine with the goal of studying if exercise could substitute or enhance pharmacologic hypertension treatment. Twenty-three hypertensive metabolic syndrome patients chronically medicated with angiotensin II receptor 1 blockade antihypertensive medicine underwent 24-hr monitoring in four separated days in a randomized order; a) after taking their habitual dose of antihypertensive medicine (AHM trial), b) substituting their medicine by placebo medicine (PLAC trial), c) placebo medicine with a morning bout of intense aerobic exercise (PLAC+EXER trial) and d) combining the exercise and antihypertensive medicine (AHM+EXER trial). We found that in trials with AHM subjects had lower plasma aldosterone/renin activity ratio evidencing treatment compliance. Before exercise, the trials with AHM displayed lower systolic (130±16 vs 133±15 mmHg; P=0.018) and mean blood pressures (94±11 vs 96±10 mmHg; P=0.036) than trials with placebo medication. Acutely (i.e., 30 min after treatments) combining AHM+EXER lowered systolic blood pressure (SBP) below the effects of PLAC+EXER (-8.1±1.6 vs -4.9±1.5 mmHg; P=0.015). Twenty-four hour monitoring revealed no differences among trials in body motion. However, PLAC+EXER and AHM lowered SBP below PLAC during the first 10 hours, time at which PLAC+EXER effects faded out (i.e., at 19 PM). Adding exercise to medication (i.e., AHM+EXER) resulted in longer reductions in SBP than with exercise alone (PLAC+EXER). In summary, one bout of intense aerobic exercise in the morning cannot substitute the long-lasting effects of antihypertensive medicine in lowering blood pressure, but their combination is superior to exercise alone. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Validation of a New NIRS Method for Measuring Muscle Oxygenation During Rhythmic Handgrip Exercise
NASA Technical Reports Server (NTRS)
Hagan, R. Donald; Soller, Babs R.; Soyemi, Olusola; Landry, Michelle; Shear, Michael; Wu, Jacqueline
2006-01-01
Near infrared spectroscopy (NIRS) is commonly used to measure muscle oxygenation during exercise and recovery. Current NIRS algorithms do not account for variation in water content and optical pathlength during exercise. The current effort attempts to validate a newly developed NIRS algorithm during rhythmic handgrip exercise and recovery. Six female subjects, aver age 28 +/- 6 yrs, participated in the study. A venous catheter was placed in the retrograde direction in the antecubital space. A NIRS sensor with 30 mm source-detector separation was placed on the flexor digitorum profundus. Subjects performed two 5-min bouts of rhythmic handgrip exercise (2 s contraction/1 s relaxation) at 15% and 30% of maximal voluntary contraction. Venous blood was sampled before each bout, during the last minute of exercise, and after 5 minutes of recovery. Venous oxygen saturation (SvO2) was measured with a I-stat CG-4+ cartridge. Spectra were collected between 700-900 nm. A modified Beer's Law formula was used to calculate the absolute concentration of oxyhemoglobin (HbO2), deoxyhemoglobin (Hb) and water, as well as effective pathlength for each spectrum. Muscle oxygen saturation (SmO2) was calculated from the HbO2 and Hb results. The correlation between SvO2 and SmO2 was determined. Optical pathlength and water varied significantly during each exercise bout, with pathlength increasing approximately 20% and water increasing about 2%. R2 between blood and muscle SO2 was found to be 0.74, the figure shows the relationship over SvO2 values between 22% and 82%. The NIRS measurement was, on average, 6% lower than the blood measurement. It was concluded that pathlength changes during exercise because muscle contraction causes variation in optical scattering. Water concentration also changes, but only slightly. A new NIRS algorithm which accounts for exercise-induced variation in water and pathlength provided an accurate assessment of muscle oxygen saturation before, during and after exercise.
Dobashi, Kohei; Fujii, Naoto; Watanabe, Kazuhito; Tsuji, Bun; Sasaki, Yosuke; Fujimoto, Tomomi; Tanigawa, Satoru; Nishiyasu, Takeshi
2017-08-01
To investigate the effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise. Ten males performed three 30-s bouts of high-intensity cycling [Ex1 and Ex2: constant-workload at 80% of the power output in the Wingate anaerobic test (WAnT), Ex3: WAnT] interspaced with 4-min recovery periods under normoxic (Control), hypocapnic or hypoxic (2500 m) conditions. Hypocapnia was developed through voluntary hyperventilation for 20 min prior to Ex1 and during each recovery period. End-tidal CO 2 pressure was lower before each exercise in the hypocapnia than control trials. Oxygen uptake ([Formula: see text]) was lower in the hypocapnia than control trials (822 ± 235 vs. 1645 ± 245 mL min -1 ; mean ± SD) during Ex1, but not Ex2 or Ex3, without a between-trial difference in the power output during the exercises. Heart rates (HRs) during Ex1 (127 ± 8 vs. 142 ± 10 beats min -1 ) and subsequent post-exercise recovery periods were lower in the hypocapnia than control trials, without differences during or after Ex2, except at 4 min into the second recovery period. [Formula: see text] did not differ between the control and hypoxia trials throughout. These results suggest that during three 30-s bouts of high-intensity intermittent cycling, (1) hypocapnia reduces the aerobic metabolic rate with a compensatory increase in the anaerobic metabolic rate during the first but not subsequent exercises; (2) HRs during the exercise and post-exercise recovery periods are lowered by hypocapnia, but this effect is diminished with repeated exercise bouts, and (3) moderate hypoxia (2500 m) does not affect the metabolic response during exercise.
Guimarães, Giovanna C; Farinatti, Paulo T V; Midgley, Adrian W; Vasconcellos, Fabrício; Vigário, Patrícia; Cunha, Felipe A
2017-06-22
The present study investigated the relationship between percentages of heart rate reserve (%HRR) and oxygen uptake reserve (%VO2R) during a cardiopulmonary exercise test (CPET) and discrete bouts of isocaloric cycling and treadmill running. Thirty men visited the laboratory three times for anthropometrical and resting VO2 assessments, and perform cycling and running CPETs. Ten men visited the laboratory twice more to investigate the validity of the %HRR-%VO2R relationships during isocaloric bouts of cycling and running at 75% VO2R with energy expenditures of 400 kcals. The %HRR was significantly higher than the %VO2R during both CPETs at all exercise intensities (P < 0.001). During isocaloric exercise bouts, mean %HRR-%VO2R differences of 6.5% and 7.0% were observed for cycling and running, respectively (P = 0.007 to P < 0.001). The %HRR and %VO2R increased over time (P < 0.001), the rate of which was influenced by exercise modality (P < 0.001). On average, heart rate was 5 (P = 0.007) and 8 (P < 0.001) beats·min higher than predicted from the second energy expenditure quartile for cycling and running, respectively; however, observed VO2 was lower than predicted during all quartiles for cycling, and the first quartile for running. Consequently, time to achieve the target energy expenditure was greater than predicted (P < 0.01). In conclusion, the %HRR-%VO2R relationship observed during CPET data did not accurately transpose to prolonged isocaloric bouts of cycling and running. Additionally, power outputs and speeds defined by the ACSM equations for cycling and running, respectively, overestimated VO2 and energy expenditure.
Dent, Jessica R; Edge, Johann A; Hawke, Emma; McMahon, Christopher; Mündel, Toby
2015-11-01
The physiological requirements underlying soccer-specific exercise are incomplete and sex-based comparisons are sparse. The aim of this study was to determine the effects of a repeated-sprint protocol on the translational repressor 4E-BP1 and sprint performance in male and female soccer players. Cross-over design involving eight female and seven male university soccer players. Participants performed four bouts of 6 × 30-m maximal sprints spread equally over 40 min. Heart rate, sprint time and sprint decrement were measured for each sprint and during the course of each bout. Venous blood samples and muscle biopsies from the vastus lateralis were taken at rest, at 15 min and 2h post-exercise. While males maintained a faster mean sprint time for each bout (P < 0.05) females exhibited a greater decrement in sprint performance for each bout (P < 0.05), indicating a superior maintenance of sprint performance in males, with no sex differences for heart rate or lactate. Muscle analyses revealed sex differences in resting total (P < 0.05) and phosphorylated (P < 0.05) 4E-BP1 Thr37/46, and 15 min post-exercise the 4E-BP1 Thr37/46 ratio decreased below resting levels in males only (P < 0.05), indicative of a decreased translation initiation following repeated sprints. We show that females have a larger sprint decrement indicating that males have a superior ability to recover sprint performance. Sex differences in resting 4E-BP1 Thr37/46 suggest diversity in the training-induced phenotype of the muscle of males and females competing in equivalent levels of team-sport competition. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
The repeated-bout effect: influence on biceps brachii oxygenation and myoelectrical activity.
Muthalib, Makii; Lee, Hoseong; Millet, Guillaume Y; Ferrari, Marco; Nosaka, Kazunori
2011-05-01
This study investigated biceps brachii oxygenation and myoelectrical activity during and following maximal eccentric exercise to better understand the repeated-bout effect. Ten men performed two bouts of eccentric exercise (ECC1, ECC2), consisting of 10 sets of 6 maximal lengthening contractions of the elbow flexors separated by 4 wk. Tissue oxygenation index minimum amplitude (TOI(min)), mean and maximum total hemoglobin volume by near-infrared spectroscopy, torque, and surface electromyography root mean square (EMG(RMS)) during exercise were compared between ECC1 and ECC2. Changes in maximal voluntary isometric contraction (MVC) torque, range of motion, plasma creatine kinase activity, muscle soreness, TOI(min), and EMG(RMS) during sustained (10-s) and 30-repeated isometric contraction tasks at 30% (same absolute force) and 100% MVC (same relative force) for 4 days postexercise were compared between ECC1 and ECC2. No significant differences between ECC1 and ECC2 were evident for changes in torque, TOI(min), mean total hemoglobin volume, maximum total hemoglobin volume, and EMG(RMS) during exercise. Smaller (P < 0.05) changes and faster recovery of muscle damage markers were evident following ECC2 than ECC1. During 30% MVC tasks, TOI(min) did not change, but EMG(RMS) increased 1-4 days following ECC1 and ECC2. During 100% MVC tasks, EMG(RMS) did not change, but torque and TOI(min) decreased 1-4 days following ECC1 and ECC2. TOI(min) during 100% MVC tasks and EMG(RMS) during 30% MVC tasks recovered faster (P < 0.05) following ECC2 than ECC1. We conclude that the repeated-bout effect cannot be explained by altered muscle activation or metabolic/hemodynamic changes, and the faster recovery in muscle oxygenation and activation was mainly due to faster recovery of force.
Effect of moderate- and high-intensity acute exercise on appetite in obese individuals.
Martins, Catia; Stensvold, Dorthe; Finlayson, Graham; Holst, Jens; Wisloff, Ulrik; Kulseng, Bård; Morgan, Linda; King, Neil A
2015-01-01
The effect of acute exercise, and exercise intensity, on appetite control in obese individuals requires further study. The aim of this study was to compare the effects of acute isocaloric bouts (250 kcal) of high-intensity intermittent cycling (HIIC) and moderate-intensity continuous cycling (MICC) or short-duration HIIC (S-HIIC) (125 kcal) and a resting control condition on the appetite hormone responses, subjective feelings of appetite, energy intake (EI), and food reward in overweight/obese individuals. This study is a randomized crossover study on 12 overweight/obese volunteers. Participants were assigned to the control, MICC, HIIC, and S-HIIC conditions, 1 wk apart, in a counterbalanced order. Exercise was performed 1 h after a standard breakfast. An ad libitum test lunch was served 3 h after breakfast. Fasting/postprandial plasma samples of insulin, acylated ghrelin, polypeptide YY3-36, and glucagon-like peptide 1 and subjective feelings of appetite were measured every 30 min for 3 h. Nutrient and taste preferences were measured at the beginning and end of each condition using the Leeds Food Preference Questionnaire. Insulin levels were significantly reduced, and glucagon-like peptide 1 levels significantly increased during all exercise bouts compared with those during rest. Acylated ghrelin plasma levels were lower in the MICC and HIIC, but not in S-HIIC, compared with those in control. There were no significant differences for polypeptide YY3-36 plasma levels, hunger or fullness ratings, EI, or food reward. Our findings suggest that, in overweight/obese individuals, isocaloric bouts of moderate- or high-intensity exercise lead to a similar appetite response. This strengthens previous findings in normal-weight individuals that acute exercise, even at high intensity, does not induce any known physiological adaptation that would lead to increased EI.
West, Amy D; Cooke, Matthew B; LaBounty, Paul M; Byars, Allyn G; Greenwood, Mike
2014-12-01
The purpose of this study was to compare the effectiveness of 3 treatment modes (Anti-Gravity Treadmill [G-trainer], stationary cycling [CompuTrainer], and static stretching) on the physiological and psychological recovery after an acute bout of exhaustive exercise. In a crossover design, 12 aerobically trained men (21.3 ± 2.3 years, 72.1 ± 8.1 kg, 178.4 ± 6.3 cm, (Equation is included in full-text article.): 53.7 ± 6.3 ml·kg·min) completed a 29-km stationary cycling time trial. Immediately after the time trial, subjects completed 30 minutes of G-trainer or CompuTrainer (40% (Equation is included in full-text article.)) or static stretching exercises. A significant time effect was detected for plasma lactate (p = 0.010) and serum cortisol (p = 0.039) after exercise. No treatment or treatment by time interaction was identified for lactate or cortisol, respectively. No main effects for time, treatment, or treatment by time interaction were identified for interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). No differences were observed among treatments in skeletal muscle peak power output, mean power output, time to peak power, and rate to fatigue at 24 hours postexercise bout. Finally, no significant changes in mood status were observed after exercise and between treatment groups. When compared with stationary cycling and static stretching, exercise recovery performed on the G-trainer was unable to reduce systemic markers of stress and inflammation, blood lactate, or improve anaerobic performance and psychological mood states after an exhaustive bout of endurance exercise. Further research is warranted that includes individualized recovery modalities to create balances between the stresses of training and competition.
Psychophysiological effects of music on acute recovery from high-intensity interval training.
Jones, Leighton; Tiller, Nicholas B; Karageorghis, Costas I
2017-03-01
Numerous studies have examined the multifarious effects of music applied during exercise but few have assessed the efficacy of music as an aid to recovery. Music might facilitate physiological recovery via the entrainment of respiratory rhythms with music tempo. High-intensity exercise training is not typically associated with positive affective responses, and thus ways of assuaging negative affect warrant further exploration. This study assessed the psychophysiological effects of music on acute recovery and prevalence of entrainment in between bouts of high-intensity exercise. Thirteen male runners (M age =20.2±1.9years; BMI=21.7±1.7; V̇O 2 max=61.6±6.1mL·kg·min -1 ) completed three exercise sessions comprising 5×5-min bouts of high-intensity intervals interspersed with 3-min periods of passive recovery. During recovery, participants were administered positively-valenced music of a slow-tempo (55-65bpm), fast-tempo (125-135bpm), or a no-music control. A range of measures including affective responses, RPE, cardiorespiratory indices (gas exchange and pulmonary ventilation), and music tempo-respiratory entrainment were recorded during exercise and recovery. Fast-tempo, positively-valenced music resulted in higher Feeling Scale scores throughout recovery periods (p<0.01, η p 2 =0.38). There were significant differences in HR during initial recovery periods (p<0.05, η p 2 =0.16), but no other music-moderated differences in cardiorespiratory responses. In conclusion, fast-tempo, positively-valenced music applied during recovery periods engenders a more pleasant experience. However, there is limited evidence that music expedites cardiorespiratory recovery in between bouts of high-intensity exercise. These findings have implications for athletic training strategies and individuals seeking to make high-intensity exercise sessions more pleasant. Copyright © 2016 Elsevier Inc. All rights reserved.
Oxidants, Antioxidants, and the Beneficial Roles of Exercise-Induced Production of Reactive Species
Gomes, Elisa Couto; Silva, Albená Nunes; de Oliveira, Marta Rubino
2012-01-01
This review offers an overview of the influence of reactive species produced during exercise and their effect on exercise adaptation. Reactive species and free radicals are unstable molecules that oxidize other molecules in order to become stable. Although they play important roles in our body, they can also lead to oxidative stress impairing diverse cellular functions. During exercise, reactive species can be produced mainly, but not exclusively, by the following mechanisms: electron leak at the mitochondrial electron transport chain, ischemia/reperfusion and activation of endothelial xanthine oxidase, inflammatory response, and autooxidation of catecholamines. Chronic exercise also leads to the upregulation of the body's antioxidant defence mechanism, which helps minimize the oxidative stress that may occur after an acute bout of exercise. Recent studies show a beneficial role of the reactive species, produced during a bout of exercise, that lead to important training adaptations: angiogenesis, mitochondria biogenesis, and muscle hypertrophy. The adaptations occur depending on the mechanic, and consequently biochemical, stimulus within the muscle. This is a new area of study that promises important findings in the sphere of molecular and cellular mechanisms involved in the relationship between oxidative stress and exercise. PMID:22701757
Solberg, E; Ingjer, F; Holen, A; Sundgot-Borgen, J; Nilsson, S; Holme, I
2000-01-01
Objective—To compare the efficacy in runners of two relaxation techniques with regard to exercise reactivity and recovery after exercise. Methods—Thirty one adult male runners were studied prospectively for six months in three groups practising either meditation (n = 11) or autogenic training (n = 11) or serving as controls (n = 10). Before and after the six months relaxation intervention, indicators of reactivity to exercise and metabolism after exercise (blood lactate concentration, heart rate (HR), and oxygen consumption (VO2)), were tested immediately after and 10 minutes after exercise. Resting HR was also assessed weekly at home during the trial. State anxiety was measured before and after the intervention. Results—After the relaxation training, blood lactate concentration after exercise was significantly (p<0.01) decreased in the meditation group compared with the control group. No difference was observed in lactate responses between the autogenic training group and the control group. There were no significant differences among the groups with regard to HR, VO2, or levels of anxiety. Conclusion—Meditation training may reduce the lactate response to a standardised exercise bout. Key Words: autogenic training; lactate; meditation; recovery; relaxation; psychology PMID:10953899
Acute Aerobic Exercise Impacts Selective Attention: An Exceptional Boost in Lower-Income Children
ERIC Educational Resources Information Center
Tine, Michele T.; Butler, Allison G.
2012-01-01
Educational research suggests that lower-income children exhibit poor general executive functioning relative to their higher-income peers. Meanwhile, sports psychology research suggests that an acute bout of aerobic exercise improves executive functioning in children. Yet, it has never been determined if such exercise (1) specifically improves the…
Influence of acute exercise of varying intensity and duration on postprandial oxidative stress.
Canale, Robert E; Farney, Tyler M; McCarthy, Cameron G; Bloomer, Richard J
2014-09-01
Aerobic exercise can reduce postprandial lipemia, and possibly oxidative stress, when performed prior to a lipid-rich meal. To compare the impact of acute exercise on postprandial oxidative stress. We compared aerobic and anaerobic exercise bouts of different intensities and durations on postprandial blood triglycerides (TAG), oxidative stress biomarkers (malondialdehyde, hydrogen peroxide, advanced oxidation protein products), and antioxidant status (trolox equivalent antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase). Twelve trained men (21-35 years) underwent four conditions: (1) No exercise rest; (2) 60-min aerobic exercise at 70% heart rate reserve; (3) five 60-s sprints at 100% max capacity; and (4) ten 15-s sprints at 200% max capacity. All exercise bouts were performed on a cycle ergometer. A high-fat meal was consumed 1 h after exercise cessation. Blood samples were collected pre-meal and 2 and 4 h post-meal and analyzed for TAG, oxidative stress biomarkers, and antioxidant status. No significant interaction or condition effects were noted for any variable (p > 0.05), with acute exercise having little to no effect on the magnitude of postprandial oxidative stress. In a sample of healthy, well-trained men, neither aerobic nor anaerobic exercise attenuates postprandial oxidative stress in response to a high-fat meal.
Brown, Richard A; Prince, Mark A; Minami, Haruka; Abrantes, Ana M
2016-10-01
Aerobic exercise is currently being studied as a relapse prevention strategy for individuals with alcohol use disorders. Negative affect and cravings predict relapse. The acute effects of moderate-intensity exercise have been shown to improve mood and reduce craving. The current study examined the acute effects of exercise on changes in mood, anxiety, and craving from pre- to post-exercise at each week of a 12-week moderate intensity exercise intervention with sedentary alcohol dependent adults. Twenty-six participants in the exercise condition of a larger randomized clinical trial (Brown et al., 2014) exercised in small groups at moderate intensity for 20 to 40 minutes per session. Participants rated mood, anxiety, and cravings in the present moment before and after each exercise session over the course of the 12-week intervention. Data analyses focused on effect size and interval estimation. Joinpoint analysis was used to model longitudinal trends. Increases in mood and decreases in anxiety and craving were apparent at every session. Effect size estimates revealed that average change from pre- to post-exercise was in the small to medium range with some individual sessions reaching the large range. Joinpoint analyses revealed that the pre-post exercise changes in mood increased, anxiety remained stable, and craving diminished across the 12 weeks. This study provides provisional support for a change in mood, anxiety and alcohol cravings for the role of exercise in the early recovery period for alcohol dependence. Acute single bouts of moderate-intensity exercise may help individuals with alcohol dependence manage mood, anxiety, and craving thereby reducing relapse risk, but further research is needed with a more rigorous study design.
Otocka-Kmiecik, Aneta; Lewandowski, Marek; Szkudlarek, Urszula; Nowak, Dariusz; Orlowska-Majdak, Monika
2014-01-01
The aim of the study was to compare the effect of maximal exercise (ME) on paraoxonase (PON) and arylesterase (ARE) activity depending on lifestyle in respect to physical activity. The study was performed on 46 young men divided into two groups: sedentary (S) and physically active (PA). All participants performed ME on a treadmill. PON1 activities, FRAP, uric acid, bilirubin, TBARS, and lipid profile were determined in their blood before, at the bout of, and after ME. No significant differences in PON1 activities were found between S and PA subjects at baseline. Nearly all biochemicals increased at ME in both groups. Both PON and ARE activity increased at the bout of ME in PA subjects and only ARE activity in S subjects. ARE/HDL-C ratio increased at the bout of ME in PA and S subjects. The difference in PON1 activity response to ME between study groups may be a result of adaptation of PA subjects to regular physical activity. We suggest that PON1 activity may be a marker of antioxidant protection at ME and an indicator of adaptation to exercise. PMID:25379522
Otocka-Kmiecik, Aneta; Lewandowski, Marek; Szkudlarek, Urszula; Nowak, Dariusz; Orlowska-Majdak, Monika
2014-01-01
The aim of the study was to compare the effect of maximal exercise (ME) on paraoxonase (PON) and arylesterase (ARE) activity depending on lifestyle in respect to physical activity. The study was performed on 46 young men divided into two groups: sedentary (S) and physically active (PA). All participants performed ME on a treadmill. PON1 activities, FRAP, uric acid, bilirubin, TBARS, and lipid profile were determined in their blood before, at the bout of, and after ME. No significant differences in PON1 activities were found between S and PA subjects at baseline. Nearly all biochemicals increased at ME in both groups. Both PON and ARE activity increased at the bout of ME in PA subjects and only ARE activity in S subjects. ARE/HDL-C ratio increased at the bout of ME in PA and S subjects. The difference in PON1 activity response to ME between study groups may be a result of adaptation of PA subjects to regular physical activity. We suggest that PON1 activity may be a marker of antioxidant protection at ME and an indicator of adaptation to exercise.
Fujii, Naoto; Meade, Robert D.; Alexander, Lacy M.; Akbari, Pegah; Foudil-bey, Imane; Louie, Jeffrey C.; Boulay, Pierre
2015-01-01
Nitric oxide synthase (NOS) contributes to sweating and cutaneous vasodilation during exercise in younger adults. We hypothesized that endothelial NOS (eNOS) and neuronal NOS (nNOS) mediate NOS-dependent sweating, whereas eNOS induces NOS-dependent cutaneous vasodilation in younger adults exercising in the heat. Further, aging may upregulate inducible NOS (iNOS), which may attenuate sweating and cutaneous vasodilator responses. We hypothesized that iNOS inhibition would augment sweating and cutaneous vasodilation in exercising older adults. Physically active younger (n = 12, 23 ± 4 yr) and older (n = 12, 60 ± 6 yr) adults performed two 30-min bouts of cycling at a fixed rate of metabolic heat production (400 W) in the heat (35°C). Sweat rate and cutaneous vascular conductance (CVC) were evaluated at four intradermal microdialysis sites with: 1) lactated Ringer (control), 2) nNOS inhibitor (nNOS-I, NPLA), 3) iNOS inhibitor (iNOS-I, 1400W), or 4) eNOS inhibitor (eNOS-I, LNAA). In younger adults during both exercise bouts, all inhibitors decreased sweating relative to control, albeit a lower sweat rate was observed at iNOS-I compared with eNOS-I and nNOS-I sites (all P < 0.05). CVC at the eNOS-I site was lower than control in younger adults throughout the intermittent exercise protocol (all P < 0.05). In older adults, there were no differences between control and iNOS-I sites for sweating and CVC during both exercise bouts (all P > 0.05). We show that iNOS and eNOS are the main contributors to NOS-dependent sweating and cutaneous vasodilation, respectively, in physically active younger adults exercising in the heat, and that iNOS inhibition does not alter sweating or cutaneous vasodilation in exercising physically active older adults. PMID:26586908
Jäger, Ralf; Shields, Kevin A.; Lowery, Ryan P.; De Souza, Eduardo O.; Partl, Jeremy M.; Hollmer, Chase; Purpura, Martin
2016-01-01
Objective. Probiotics have been reported to support healthy digestive and immune function, aid in protein absorption, and decrease inflammation. Further, a trend to increase vertical jump power has been observed following co-administration of protein and probiotics in resistance-trained subjects. However, to date the potential beneficial effect of probiotics on recovery from high intensity resistance exercise have yet to be explored. Therefore, this study examined the effect of co-administration of protein and probiotics on muscle damage, recovery and performance following a damaging exercise bout. Design. Twenty nine (n = 29) recreationally-trained males (mean ± SD; 21.5 ± 2.8 years; 89.7 ± 28.2 kg; 177.4 ± 8.0 cm) were assigned to consume either 20 g of casein (PRO) or 20 g of casein plus probiotic (1 billion CFU Bacillus coagulans GBI-30, 6086, PROBC) in a crossover, diet-controlled design. After two weeks of supplementation, perceptional measures, athletic performance, and muscle damage were analyzed following a damaging exercise bout. Results. The damaging exercise bout significantly increased muscle soreness, and reduced perceived recovery; however, PROBC significantly increased recovery at 24 and 72 h, and decreased soreness at 72 h post exercise in comparison to PRO. Perceptual measures were confirmed by increases in CK (PRO: +266.8%, p = 0.0002; PROBC: +137.7%, p = 0.01), with PROBC showing a trend towards reduced muscle damage (p = 0.08). The muscle-damaging exercise resulted in significantly increased muscle swelling and Blood Urea Nitrogen levels in both conditions with no difference between groups. The strenuous exercise significantly reduced athletic performance in PRO (Wingate Peak Power; PRO: (−39.8 watts, −5.3%, p = 0.03)), whereas PROBC maintained performance (+10.1 watts, +1.7%). Conclusions. The results provide evidence that probiotic supplementation in combination with protein tended to reduce indices of muscle damage, improves recovery, and maintains physical performance subsequent to damaging exercise. PMID:27547577
Fujii, Naoto; Meade, Robert D; Alexander, Lacy M; Akbari, Pegah; Foudil-Bey, Imane; Louie, Jeffrey C; Boulay, Pierre; Kenny, Glen P
2016-02-01
Nitric oxide synthase (NOS) contributes to sweating and cutaneous vasodilation during exercise in younger adults. We hypothesized that endothelial NOS (eNOS) and neuronal NOS (nNOS) mediate NOS-dependent sweating, whereas eNOS induces NOS-dependent cutaneous vasodilation in younger adults exercising in the heat. Further, aging may upregulate inducible NOS (iNOS), which may attenuate sweating and cutaneous vasodilator responses. We hypothesized that iNOS inhibition would augment sweating and cutaneous vasodilation in exercising older adults. Physically active younger (n = 12, 23 ± 4 yr) and older (n = 12, 60 ± 6 yr) adults performed two 30-min bouts of cycling at a fixed rate of metabolic heat production (400 W) in the heat (35°C). Sweat rate and cutaneous vascular conductance (CVC) were evaluated at four intradermal microdialysis sites with: 1) lactated Ringer (control), 2) nNOS inhibitor (nNOS-I, NPLA), 3) iNOS inhibitor (iNOS-I, 1400W), or 4) eNOS inhibitor (eNOS-I, LNAA). In younger adults during both exercise bouts, all inhibitors decreased sweating relative to control, albeit a lower sweat rate was observed at iNOS-I compared with eNOS-I and nNOS-I sites (all P < 0.05). CVC at the eNOS-I site was lower than control in younger adults throughout the intermittent exercise protocol (all P < 0.05). In older adults, there were no differences between control and iNOS-I sites for sweating and CVC during both exercise bouts (all P > 0.05). We show that iNOS and eNOS are the main contributors to NOS-dependent sweating and cutaneous vasodilation, respectively, in physically active younger adults exercising in the heat, and that iNOS inhibition does not alter sweating or cutaneous vasodilation in exercising physically active older adults. Copyright © 2016 the American Physiological Society.
The prevention and treatment of exercise-induced muscle damage.
Howatson, Glyn; van Someren, Ken A
2008-01-01
Exercise-induced muscle damage (EIMD) can be caused by novel or unaccustomed exercise and results in a temporary decrease in muscle force production, a rise in passive tension, increased muscle soreness and swelling, and an increase in intramuscular proteins in blood. Consequently, EIMD can have a profound effect on the ability to perform subsequent bouts of exercise and therefore adhere to an exercise training programme. A variety of interventions have been used prophylactically and/or therapeutically in an attempt to reduce the negative effects associated with EIMD. This article focuses on some of the most commonly used strategies, including nutritional and pharmacological strategies, electrical and manual therapies and exercise. Long-term supplementation with antioxidants or beta-hydroxy-beta-methylbutyrate appears to provide a prophylactic effect in reducing EIMD, as does the ingestion of protein before and following exercise. Although the administration of high-dose NSAIDs may reduce EIMD and muscle soreness, it also attenuates the adaptive processes and should therefore not be prescribed for long-term treatment of EIMD. Whilst there is some evidence that stretching and massage may reduce muscle soreness, there is little evidence indicating any performance benefits. Electrical therapies and cryotherapy offer limited effect in the treatment of EIMD; however, inconsistencies in the dose and frequency of these and other interventions may account for the lack of consensus regarding their efficacy. Both as a cause and a consequence of this, there are very few evidence-based guidelines for the application of many of these interventions. Conversely, there is unequivocal evidence that prior bouts of eccentric exercise provide a protective effect against subsequent bouts of potentially damaging exercise. Further research is warranted to elucidate the most appropriate dose and frequency of interventions to attenuate EIMD and if these interventions attenuate the adaptation process. This will both clarify the efficacy of such strategies and provide guidelines for evidence-based practice.
Kingsley, J Derek; Mayo, Xián; Tai, Yu Lun; Fennell, Curtis
2016-12-01
Kingsley, JD, Mayo, X, Tai, YL, and Fennell, C. Arterial stiffness and autonomic modulation after free-weight resistance exercises in resistance trained individuals. J Strength Cond Res 30(12): 3373-3380, 2016-We investigated the effects of an acute bout of free-weight, whole-body resistance exercise consisting of the squat, bench press, and deadlift on arterial stiffness and cardiac autonomic modulation in 16 (aged 23 ± 3 years; mean ± SD) resistance-trained individuals. Arterial stiffness, autonomic modulation, and baroreflex sensitivity (BRS) were assessed at rest and after 3 sets of 10 repetitions at 75% 1-repetition maximum on each exercise with 2 minutes of rest between sets and exercises. Arterial stiffness was analyzed using carotid-femoral pulse wave velocity (cf-PWV). Linear heart rate variability (log transformed [ln] absolute and normalized units [nu] of low-frequency [LF] and high-frequency [HF] power) and nonlinear heart rate complexity (Sample Entropy [SampEn], Lempel-Ziv Entropy [LZEn]) were measured to determine autonomic modulation. BRS was measured by the sequence method. A 2 × 2 repeated measures analysis of variance (ANOVA) was used to analyze time (rest, recovery) across condition (acute resistance exercise, control). There were significant increases in cf-PWV (p = 0.05), heart rate (p = 0.0001), normalized LF (LFnu; p = 0.001), and the LF/HF ratio (p = 0.0001). Interactions were also noted for ln HF (p = 0.006), HFnu (p = 0.0001), SampEn (p = 0.001), LZEn (p = 0.005), and BRS (p = 0.0001) such that they significantly decreased during recovery from the resistance exercise compared with rest and the control. There was no effect on ln total power, or ln LF. These data suggest that a bout of resistance exercise using free-weights increases arterial stiffness and reduces vagal activity and BRS in comparison with a control session. Vagal tone may not be fully recovered up to 30 minutes after a resistance exercise bout.
Hip-abduction torque and muscle activation in people with low back pain.
Sutherlin, Mark A; Hart, Joseph M
2015-02-01
Individuals with a history of low back pain (LBP) may present with decreased hip-abduction strength and increased trunk or gluteus maximus (GMax) fatigability. However, the effect of hip-abduction exercise on hip-muscle function has not been previously reported. To compare hip-abduction torque and muscle activation of the hip, thigh, and trunk between individuals with and without a history of LBP during repeated bouts of side-lying hip-abduction exercise. Repeated measures. Clinical laboratory. 12 individuals with a history of LBP and 12 controls. Repeated 30-s hip-abduction contractions. Hip-abduction torque, normalized root-mean-squared (RMS) muscle activation, percent RMS muscle activation, and forward general linear regression. Hip-abduction torque reduced in all participants as a result of exercise (1.57 ± 0.36 Nm/kg, 1.12 ± 0.36 Nm/kg; P < .001), but there were no group differences (F = 0.129, P = .723) or group-by-time interactions (F = 1.098, P = .358). All participants had increased GMax activation during the first bout of exercise (0.96 ± 1.00, 1.18 ± 1.03; P = .038). Individuals with a history of LBP had significantly greater GMax activation at multiple points during repeated exercise (P < .05) and a significantly lower percent of muscle activation for the GMax (P = .050) at the start of the third bout of exercise and for the biceps femoris (P = .039) at the end of exercise. The gluteal muscles best predicted hip-abduction torque in controls, while no consistent muscles were identified for individuals with a history of LBP. Hip-abduction torque decreased in all individuals after hip-abduction exercise, although individuals with a history of LBP had increased GMax activation during exercise. Gluteal muscle activity explained hip-abduction torque in healthy individuals but not in those with a history of LBP. Alterations in hip-muscle function may exist in individuals with a history of LBP.
Windsor, Mark T.; Bailey, Tom G.; Perissiou, Maria; Meital, Lara; Golledge, Jonathan; Russell, Fraser D.; Askew, Christopher D.
2018-01-01
Markers of chronic inflammation increase with aging, and are associated with cardiovascular disease prevalence and mortality. Increases in fitness with exercise training have been associated with lower circulating concentrations of cytokines known to have pro-inflammatory actions (such as interleukin-6 [IL-6]) and higher circulating concentrations of anti-inflammatory cytokines (interleukin-10 [IL-10]). However, the effect of cardiorespiratory fitness on acute cytokine responses to a single bout of exercise in healthy older individuals is unknown. We compared the response of plasma cytokines IL-6, tumor necrosis factor-alpha (TNF-α) and IL-10 to a bout of moderate-intensity continuous and higher-intensity interval exercise between older individuals with higher and lower levels of cardiorespiratory fitness. Sixteen lower-fit (VO2peak: 22.6±2.8 mL.kg−1.min−1) and fourteen higher-fit participants (VO2peak: 37.4±5.9 mL.kg−1.min−1) completed three 24 min experimental protocols in a randomized order: (1) moderate-intensity continuous exercise (40% of peak power output [PPO]); (2) higher-intensity interval exercise (12 × 1 min intervals at 70% PPO separated by 1 min periods at 10% PPO); or (3) non-exercise control. Plasma cytokines were measured at rest, immediately after, and during 90 min of recovery following exercise or control. Plasma IL-6 concentrations at baseline were greater in the higher-fit compared to the lower-fit group (P = 0.02), with no difference in plasma IL-10 or TNF-α concentrations at baseline between groups. Plasma IL-6 and IL-10 concentrations in both groups increased immediately after all protocols (IL-6: P = 0.02, IL-10: P < 0.01). However, there was no difference in the IL-6 and IL-10 response between the exercise and non-exercise (control) protocols. After all protocols, no changes in plasma TNF-α concentrations were observed in either the higher- or lower-fit groups. In this study, basal concentrations of circulating IL-6 were elevated in older individuals with higher levels of cardiorespiratory fitness. However, changes in plasma cytokine concentrations after exercise were not different to changes after non-exercise control in both the lower- and higher-fit groups. PMID:29599722
Palm cooling does not reduce heat strain during exercise in a hot, dry environment.
Amorim, Fabiano T; Yamada, Paulette M; Robergs, Robert A; Schneider, Suzanne M
2010-08-01
To compare the effectiveness of the rapid thermal exchange device (RTX) in slowing the development of hyperthermia and associated symptoms among hand immersed in water bath (WB), water-perfused vest (WPV), and no cooling condition (NC). Ten subjects performed 4 heat stress trials. The protocol consisted of 2 bouts of treadmill walking, separated by a cooling-rehydration period. The times to reach the predetermined rectal temperature in the first (38.5 degrees C) and second bouts (39 degrees C) were not different among RTX, NC, and WB, but was longer for the WPV in both bouts (p<0.05). Heat storage was significantly lower for WPV only in the first bout vs. the other conditions (p<0.05). Heart rate (HR) was not different at 10, 20, and 30 min during the first bout among RTX, NC, and WB, but was lower for WPV (p<0.05). HR was not different among conditions during the second bout. The RTX was not effective in slowing the development of hyperthermia.
Porter, David A; Barnes, Adam F; Rund, Angela M; Kaz, Ari J; Tyndall, James A; Millis, Andrew A
2014-02-01
This is the first study to evaluate the effect of an acute bout of exercise on strength evaluation after Achilles tendon (AT) rupture and repair. Forty patients sustained an acute AT injury and met inclusion criteria for this study. At a minimum of 12 months after operative repair, patients were measured for (1) calf circumference, (2) bilateral isokinetic strength on a Cybex dynamometer before and after 30 minutes of walking at 70% maximal exertion, and (3) subjective evaluation by AAOS lower limb core and foot and ankle modules. Follow-up occurred at a mean of 32.4 ± 20.7 (range, 12-80) months after surgery, and patients were on average 44.4 ± 8.6 (range, 20-62) years old. One-tailed Student's paired t tests analyzed significance for strength and fatigue between the involved and uninvolved ankle (P < .05). The calf circumference of the involved ankle was significantly smaller than the uninvolved ankle by 1.9 cm, or 4.7%. Plantarflexion deficits of the involved ankle ranged from 12% to 18% for peak torque (P < .0001) and from 17% to 25% for work per repetition (P < .0001), but both ankles fatigued at equal proportions as measured after exercise. Dorsiflexion strength of the involved ankle increased 6% to 11% for peak torque (P = .070) and 1% to 25% for peak work (P = .386). Reported AAOS lower limb core and foot and ankle scores averaged 99.8 and 96.0, respectively. After an AT rupture with repair, patients had less plantarflexion strength, and equal dorsiflexion strength in the operative leg compared to the uninvolved, normal leg. However, subjective results indicated near normal pain and function despite mild plantarflexion strength deficits. Dorsiflexion strength was normal after repair and remained normal even after an acute bout of exercise. Plantarflexion strength ratios postexercise remained similar to pre-exercise after acute exercise bouts. Athletes reported a "flat tire" feeling while running, which suggests a probable gait adjustment as cause for long-term plantarflexion strength deficits. Level III, cohort study.
Green Tea, Intermittent Sprinting Exercise, and Fat Oxidation
Gahreman, Daniel; Wang, Rose; Boutcher, Yati; Boutcher, Stephen
2015-01-01
Fat oxidation has been shown to increase after short term green tea extract (GTE) ingestion and after one bout of intermittent sprinting exercise (ISE). Whether combining the two will result in greater fat oxidation after ISE is undetermined. The aim of the current study was to investigate the combined effect of short term GTE and a single session of ISE upon post-exercise fat oxidation. Fourteen women consumed three GTE or placebo capsules the day before and one capsule 90 min before a 20-min ISE cycling protocol followed by 1 h of resting recovery. Fat oxidation was calculated using indirect calorimetry. There was a significant increase in fat oxidation post-exercise compared to at rest in the placebo condition (p < 0.01). After GTE ingestion, however, at rest and post-exercise, fat oxidation was significantly greater (p < 0.05) than that after placebo. Plasma glycerol levels at rest and 15 min during post-exercise were significantly higher (p < 0.05) after GTE consumption compared to placebo. Compared to placebo, plasma catecholamines increased significantly after GTE consumption and 20 min after ISE (p < 0.05). Acute GTE ingestion significantly increased fat oxidation under resting and post-exercise conditions when compared to placebo. PMID:26184298
Larsen, Ryan G; Befroy, Douglas E; Kent-Braun, Jane A
2013-03-01
Mitochondrial ATP production is vital for meeting cellular energy demand at rest and during periods of high ATP turnover. We hypothesized that high-intensity interval training (HIT) would increase ATP flux in resting muscle (VPi→ATP) in response to a single bout of exercise, whereas changes in the capacity for oxidative ATP production (Vmax) would require repeated bouts. Eight untrained men (27 ± 4 yr; peak oxygen uptake = 36 ± 4 ml·kg(-1)·min(-1)) performed six sessions of HIT (4-6 × 30-s bouts of all-out cycling with 4-min recovery). After standardized meals and a 10-h fast, VPi→ATP and Vmax of the vastus lateralis muscle were measured using phosphorus magnetic resonance spectroscopy at 4 Tesla. Measurements were obtained at baseline, 15 h after the first training session, and 15 h after completion of the sixth session. VPi→ATP was determined from the unidirectional flux between Pi and ATP, using the saturation transfer technique. The rate of phosphocreatine recovery (kPCr) following a maximal contraction was used to calculate Vmax. While kPCr and Vmax were unchanged after a single session of HIT, completion of six training sessions resulted in a ∼14% increase in muscle oxidative capacity (P ≤ 0.004). In contrast, neither a single nor six training sessions altered VPi→ATP (P = 0.74). This novel analysis of resting and maximal high-energy phosphate kinetics in vivo in response to HIT provides evidence that distinct aspects of human skeletal muscle metabolism respond differently to this type of training.
Protocols for hyperlactatemia induction in the lactate minimum test adapted to swimming rats.
de Araujo, Gustavo Gomes; Papoti, Marcelo; Manchado, Fúlvia de Barros; de Mello, Maria Alice Rostom; Gobatto, Claudio Alexandre
2007-12-01
The lactate minimum test (LACmin) has been considered an important indicator of endurance exercise capacity and a single session protocol can predict the maximal steady state lactate (MLSS). The objective of this study was to determine the best swimming protocol to induce hyperlactatemia in order to assure the LACmin in rats (Rattus norvegicus), standardized to four different protocols (P) of lactate elevation. The protocols were P1: 6 min of intermittent jumping exercise in water (load of 50% of the body weight - bw); P2: two 13% bw load swimming bouts until exhaustion (tlim); P3: one tlim 13% bw load swimming bout; and P4: two 13% bw load swimming bouts (1st 30 s, 2nd to tlim), separated by a 30 s interval. The incremental phase of LACmin beginning with initial loads of 4% bw, increased in 0.5% at each 5 min. Peak lactate concentration was collected after 5, 7 and 9 min (mmol L(-1)) and differed among the protocols P1 (15.2+/-0.4, 14.9+/-0.7, 14.8+/-0.6) and P2 (14.0+/-0.4, 14.9+/-0.4, 15.5+/-0.5) compared to P3 (5.1+/-0.1, 5.6+/-0.3, 5.6+/-0.3) and P4 (4.7+/-0.2, 6.8+/-0.2, 7.1+/-0.2). The LACmin determination success rates were 58%, 55%, 80% and 91% in P1, P2, P3 and P4 protocols, respectively. The MLSS did not differ from LACmin in any protocol. The LACmin obtained from P4 protocol showed better assurance for the MLSS identification in most of the tested rats.
Santana, Davi A; Poortmans, Jacques R; Dórea, Egidio Lima; Machado, Juliana Bannwart de Andrade; Fernandes, Alan Lins; Sá-Pinto, Ana Lúcia; Gualano, Bruno; Roschel, Hamilton
2017-08-01
Exercise has been overlooked as a potential therapy in chronic kidney disease (CKD), mainly because of a lack of understanding on its safety aspects. Notably, there are no data on renal function after exercise in CKD considering its stages. We investigated the acute effects of a 30-min moderate-intensity aerobic exercise bout on glomerular filtration rate (GFR) and albuminuria in 22 nondialysis CKD patients divided into: CKD stages 1 and 2 (CKD 1-2 ) and CKD stages 3 and 4 (CKD 3-4 ). Eleven body mass index-, age-, and sex-matched healthy individuals served as control (CON). Blood and urine samples were collected before, immediately after, and up to 90 min postexercise for creatinine and albumin assessments. GFR was determined by creatinine clearance (GFR Cr-Cl ). All CKD patients had significantly lower peak oxygen uptake than CON. CKD 1-2 and CKD 3-4 had increasingly higher serum creatinine than CON (9.6 ± 2.6, 25.6 ± 1.01, and 7.5 ± 1.4 mg/l, respectively); however, no within-group changes in serum or urinary creatinine were observed across time. GFR Cr-Cl was decreased in CKD 1-2 and CKD 3-4 compared with CON (91 ± 17 ml·min -1 ·1.73 m -2 ; 34 ± 15 ml·min -1 ·1.73 m -2 ; 122 ± 20 ml·min -1 ·1.73 m -2 , respectively). Most importantly, exercise did not affect GFR Cr-Cl in none of the groups across time. Albuminuria was significantly higher in CKD 3-4 (297 ± 284 µg/min) than in CON (5.4 ± 1.4 µg/min), but no within-group changes were observed after exercise. In conclusion, a single 30-min moderate-intensity aerobic exercise bout does not impair renal function in nondialysis CKD patients, regardless of disease stage, supporting the notion that exercise training can be safe in this disease. Copyright © 2017 the American Physiological Society.
Acute effects of high- and low-intensity exercise bouts on leukocyte counts.
Neves, Pedro Rogério Da Silva; Tenório, Thiago Ricardo Dos Santos; Lins, Tatiana Acioli; Muniz, Maria Tereza Cartaxo; Pithon-Curi, Tânia Cristina; Botero, João Paulo; Do Prado, Wagner Luiz
2015-06-01
It is widely accepted that physical exercise may bring about changes in the immune system. Even acute bouts of exercise can alter the number and function of leukocytes, but the degree of white blood cell trafficking depends on the intensity and duration of exercise. The aim of this study was to analyze the acute and short-term effects of exercise intensity on leukocyte counts and leukocyte subsets. Nine physically healthy, active young males (21.0 ± 1.9 years) underwent three experimental trials: high exercise intensity [80% peak oxygen consumption (VO 2peak )], low exercise intensity (40% VO 2peak ), and the control condition (no exercise). Blood samples were collected prior to exercise, immediately after exercise, and 2 hours after exercise. Two-way analysis of variance for repeated measures was used to evaluate differences between the trials and the time-points, and to compare times within trials. There was a greater increase in the leukocyte count after high-intensity exercise, compared to the control condition ( p < 0.01) and low-intensity exercise ( p < 0.01). This effect was still present 2 hours after passive recovery ( p < 0.01). When the same participants were submitted to different exercise intensities, the acute and short-term effects of exercise on white blood cells were intensity-dependent immediately after exercise (i.e., lymphocytosis and monocytosis) and 2 hours after passive recovery (i.e., neutrophilia).
Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation.
Benatti, Fabiana B; Pedersen, Bente K
2015-02-01
Persistent systemic inflammation, a typical feature of inflammatory rheumatic diseases, is associated with a high cardiovascular risk and predisposes to metabolic disorders and muscle wasting. These disorders can lead to disability and decreased physical activity, exacerbating inflammation and the development of a network of chronic diseases, thus establishing a 'vicious cycle' of chronic inflammation. During the past two decades, advances in research have shed light on the role of exercise as a therapy for rheumatic diseases. One of the most important of these advances is the discovery that skeletal muscle communicates with other organs by secreting proteins called myokines. Some myokines are thought to induce anti-inflammatory responses with each bout of exercise and mediate long-term exercise-induced improvements in cardiovascular risk factors, having an indirect anti-inflammatory effect. Therefore, contrary to fears that physical activity might aggravate inflammatory pathways, exercise is now believed to be a potential treatment for patients with rheumatic diseases. In this Review, we discuss how exercise disrupts the vicious cycle of chronic inflammation directly, after each bout of exercise, and indirectly, by improving comorbidities and cardiovascular risk factors. We also discuss the mechanisms by which some myokines have anti-inflammatory functions in inflammatory rheumatic diseases.
Magnan, Renee E.; Kwan, Bethany M.; Bryan, Angela D.
2012-01-01
Objective Affective responses during exercise are often important determinants of exercise initiation and maintenance. Current physical activity may be one individual difference that is associated with the degree to which individuals have positive (or negative) affective experiences during exercise. The objective of this investigation was to explore physical and cognitive explanations of the relationship between current activity status (more versus less active) and affective response during a 30-minute bout of moderate-intensity exercise. Method Participants reported their current level of physical activity, exercise self-efficacy, and affect during a 30-minute bout of moderate-intensity exercise. Results More active individuals experienced higher levels of positive affect and tranquility and lower levels of negative affect and fatigue during exercise. Multivariate models for each affective state indicated separate processes through which physical activity may be associated with changes in affect during exercise. Conclusions These models indicate that affect experienced during physical activity is related to current activity level and these relationships can be partially explained by the physical and cognitive factors explored in this study. Recommendations for future research to elucidate whether positive affective response to physical activity improves as a function of becoming more active over time are discussed. PMID:23088712
Effect of Aerobic Exercise Training on Mood in People With Traumatic Brain Injury: A Pilot Study.
Weinstein, Ali A; Chin, Lisa M K; Collins, John; Goel, Divya; Keyser, Randall E; Chan, Leighton
Exercise training is associated with elevations in mood in patients with various chronic illnesses and disabilities. However, little is known regarding the effect of exercise training on short and long-term mood changes in those with traumatic brain injury (TBI). The purpose of this study was to examine the time course of mood alterations in response to a vigorous, 12-week aerobic exercise training regimen in ambulatory individuals with chronic TBI (>6 months postinjury). Short and long-term mood changes were measured using the Profile of Mood States-Short Form, before and after specific aerobic exercise bouts performed during the 12-week training regimen. Ten subjects with nonpenetrating TBI (6.6 ± 6.8 years after injury) completed the training regimen. A significant improvement in overall mood was observed following 12 weeks of aerobic exercise training (P = .04), with moderate to large effect sizes observed for short-term mood improvements following individual bouts of exercise. Specific improvements in long-term mood state and short-term mood responses following individual exercise sessions were observed in these individuals with TBI. The largest improvement in overall mood was observed at 12 weeks of exercise training, with improvements emerging as early as 4 weeks into the training regimen.
Gmiat, A; Micielska, K; Kozłowska, M; Flis, D J; Smaruj, M; Kujach, S; Jaworska, J; Lipińska, P; Ziemann, E
2017-10-01
The study aimed to assess effect of a single bout of high-intensity circuit training (HICT) on myokines concentration: interleukin-6 and irisin, inteleukin-10, brain-derived neurotrophic factor (BDNF), heat shock proteins (HSP27, HSP70) and cognitive functions among women participated in HICT. It also attempted evaluating whether vitamin D could have modified the effect of HICT. Fourteen healthy, non-active women participating in the experiment were assigned to a young or middle-aged group. They performed a single session HICT using body weight as a resistance, based on the ACSM recommendations. Blood samples were taken before, one and 24h after training. Cognitive functions were assessed before and 1h after the HICT session. Simple statistics and effects of changes for dependent variables were determined using mixed linear modeling, and evaluated by means of magnitude-based inference (MBI). Following a single session of HICT the young group exhibited improved concentration and spatial memory, whereas in middle-aged women these functions were attenuated. A varied tendency was also observed in the levels of myokine IL-6 and cytokine IL-10. Vitamin D was covariate for changes in cognitive functions and myokines' levels after exercise. Its concentration modified the anti-inflammatory effect of HICT, expressed in decreasing HSP70. Copyright © 2017. Published by Elsevier Inc.
Ludyga, Sebastian; Brand, Serge; Gerber, Markus; Weber, Peter; Brotzmann, Mark; Habibifar, Fahimeh; Pühse, Uwe
2017-12-01
The current body of evidence suggests that an aerobic exercise session has a beneficial effect on inhibitory control, whereas the impact of coordinative exercise on this executive function has not yet been examined in children with ADHD. Therefore, the present study aims to investigate the acute effects of aerobic and coordinative exercise on behavioral performance and the allocation of attentional resources in an inhibitory control task. Using a cross-over design, children with ADHD-combined type and healthy comparisons completed a Flanker task before and after 20min moderately-intense cycling exercise, coordinative exercise and an inactive control condition. During the task, stimulus-locked event-related potentials were recorded with electroencephalography. Both groups showed an increase of P300 amplitude and decrease of reaction time after exercise compared to the control condition. Investigating the effect of exercise modality, aerobic exercise led to greater increases of P300 amplitude and reductions in reaction time than coordinative exercise in children with ADHD. The findings suggest that a single exercise bout improves inhibitory control and the allocation of attentional resources. There were some indications that an aerobic exercise session seems to be more efficient than coordinative exercise in reducing the inhibitory control deficits that persist in children with ADHD. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Fukuoka, Yoshiyuki; Poole, David C; Barstow, Thomas J; Kondo, Narihiko; Nishiwaki, Masato; Okushima, Dai; Koga, Shunsaku
2015-01-01
Novel time-resolved near-infrared spectroscopy (TR-NIRS), with adipose tissue thickness correction, was used to test the hypotheses that heavy priming exercise reduces the V̇O2 slow component (V̇O2SC) (1) by elevating microvascular [Hb] volume at multiple sites within the quadriceps femoris (2) rather than reducing the heterogeneity of muscle deoxygenation kinetics. Twelve subjects completed two 6-min bouts of heavy work rate exercise, separated by 6 min of unloaded cycling. Priming exercise induced faster overall V̇O2 kinetics consequent to a substantial reduction in the V̇O2SC (0.27 ± 0.12 vs. 0.11 ± 0.09 L·min−1, P < 0.05) with an unchanged primary V̇O2 time constant. An increased baseline for the primed bout [total (Hb + Mb)] (197.5 ± 21.6 vs. 210.7 ± 22.5 μmol L−1, P < 0.01), reflecting increased microvascular [Hb] volume, correlated significantly with the V̇O2SC reduction. At multiple sites within the quadriceps femoris, priming exercise reduced the baseline and slowed the increase in [deoxy (Hb + Mb)]. Changes in the intersite coefficient of variation in the time delay and time constant of [deoxy (Hb + Mb)] during the second bout were not correlated with the V̇O2SC reduction. These results support a mechanistic link between priming exercise-induced increase in muscle [Hb] volume and the reduced V̇O2SC that serves to speed overall V̇O2 kinetics. However, reduction in the heterogeneity of muscle deoxygenation kinetics does not appear to be an obligatory feature of the priming response. PMID:26109190
The repeated bout effect of traditional resistance exercises on running performance across 3 bouts.
Doma, Kenji; Schumann, Moritz; Leicht, Anthony Scott; Heilbronn, Brian Edward; Damas, Felipe; Burt, Dean
2017-09-01
This study investigated the repeated bout effect of 3 typical lower body resistance-training sessions on maximal and submaximal effort running performance. Twelve resistance-untrained men (age, 24 ± 4 years; height, 1.81 ± 0.10 m; body mass, 79.3 ± 10.9 kg; peak oxygen uptake, 48.2 ± 6.5 mL·kg -1 ·min -1 ; 6-repetition maximum squat, 71.7 ± 12.2 kg) undertook 3 bouts of resistance-training sessions at 6-repetitions maximum. Countermovement jump (CMJ), lower-body range of motion (ROM), muscle soreness, and creatine kinase (CK) were examined prior to and immediately, 24 h (T24), and 48 h (T48) after each resistance-training bout. Submaximal (i.e., below anaerobic threshold (AT)) and maximal (i.e., above AT) running performances were also conducted at T24 and T48. Most indirect muscle damage markers (i.e., CMJ, ROM, and muscle soreness) and submaximal running performance were significantly improved (P < 0.05; 1.9%) following the third resistance-training bout compared with the second bout. Whilst maximal running performance was also improved following the third bout (P < 0.05; 9.8%) compared with other bouts, the measures were still reduced by 12%-20% versus baseline. However, the increase in CK was attenuated following the second bout (P < 0.05) with no further protection following the third bout (P > 0.05). In conclusion, the initial bout induced the greatest change in CK; however, at least 2 bouts were required to produce protective effects on other indirect muscle damage markers and submaximal running performance measures. This suggests that submaximal running sessions should be avoided for at least 48 h after resistance training until the third bout, although a greater recovery period may be required for maximal running sessions.
Lin, Ming-Ju; Nosaka, Kazunori; Ho, Chih-Chiao; Chen, Hsin-Lian; Tseng, Kuo-Wei; Ratel, Sébastien; Chen, Trevor Chung-Ching
2018-01-01
This study compared changes in indirect muscle damage markers, proprioception and arterial stiffness after elbow flexor eccentric exercise between pre-pubescent (9–10 y), pubescent (14–15 y), and post-pubescent (20–24 y) healthy, untrained females (n = 13/group). The maturation of the participants was confirmed by the hand bone age. All participants performed two bouts of 30 sub-maximal eccentric contractions (EC1, EC2) using a dumbbell set at 60% of pre-exercise maximal voluntary isometric elbow flexion strength at 90°. Changes in maximal voluntary concentric contraction (MVC) torque, muscle soreness (SOR), plasma creatine kinase activity, proprioception (position sense, joint reaction angle) and arterial stiffness (carotid-femoral pulse-wave velocity: cfPWV) before to 5 days after EC1 and EC2 were compared among groups by a mixed-design two-way ANOVA. Pre-exercise MVC torque and cfPWV were smaller (P < 0.05) for the pre-pubescent (MVC: 10.0 ± 0.9 Nm, cfPWV: 903 ± 60 cm/s) and the pubescent (14.3 ± 1.1 Nm, 967 ± 61 cm/s) than the post-pubescent (19.1 ± 1.4 Nm, 1,103 ± 73 cm/s). Changes in all variables after EC1 were smaller (P < 0.05) for the pre-pubescent (e.g., MVC at 1 d post-exercise: −10 ± 6%, peak SOR: 5 ± 2 mm) than the pubescent (−15 ± 9%, 12 ± 6 mm) and the post-pubescent (−25 ± 7%, 19 ± 13 mm). After EC2, changes in all variables were smaller (P < 0.05) than those after EC1 for all groups (e.g., MVC at 1 d post-exercise, pre-pubescent: −4 ± 6%, pubescent: −9 ± 4%, post-pubescent: −14 ± 5%; peak SOR: 3 ± 2, 7 ± 3, 11 ± 6 mm), but the magnitude of the repeated bout effect was not different (P > 0.05) among the groups. These results show that the extents of muscle damage, and proprioception and arterial stiffness changes after eccentric exercise are greater at later stages of maturation, but the repeated bout effect is not affected by maturation. PMID:29354073
Normobaric Hypoxia and Submaximal Exercise Effects on Running Memory and Mood State in Women.
Seo, Yongsuk; Gerhart, Hayden D; Stavres, Jon; Fennell, Curtis; Draper, Shane; Glickman, Ellen L
2017-07-01
An acute bout of exercise can improve cognitive function in normoxic and hypoxic conditions. However, limited research supports the improvement of cognitive function and mood state in women. The purpose of this study was to examine the effects of hypoxia and exercise on working memory and mood state in women. There were 15 healthy women (age = 22 ± 2 yr) who completed the Automated Neuropsychological Assessment Metrics-4th Edition (ANAM), including the Running Memory Continuous Performance Task (RMCPT) and Total Mood Disturbance (TMD) in normoxia (21% O2), at rest in normoxia and hypoxia (12.5% O2), and during cycling exercise at 60% and 40% Vo2max in hypoxia. RMCPT was not significantly impaired at 30 (100.3 ± 17.2) and 60 (96.6 ± 17.3) min rest in hypoxia compared to baseline in normoxia (97.0 ± 17.0). However, RMCPT was significantly improved during exercise (106.7 ± 20.8) at 60% Vo2max compared to 60 min rest in hypoxia. Following 30 (-89.4 ± 48.3) and 60 min of exposure to hypoxia (-79.8 ± 55.9) at rest, TMD was impaired compared with baseline (-107.1 ± 46.2). TMD was significantly improved during exercise (-108.5 ± 42.7) at 40% Vo2max compared with 30 min rest in hypoxia. Also, RMCPT was significantly improved during exercise (104.0 ± 19.1) at 60% Vo2max compared to 60 min rest in hypoxia (96.6 ± 17.3). Hypoxia and an acute bout of exercise partially influence RMCPT and TMD. Furthermore, a moderate-intensity bout of exercise (60%) may be a more potent stimulant for improving cognitive function than low-intensity (40%) exercise. The present data should be considered by aeromedical personnel performing cognitive tasks in hypoxia.Seo Y, Gerhart HD, Stavres J, Fennell C, Draper S, Glickman EL. Normobaric hypoxia and submaximal exercise effects on running memory and mood state in women. Aerosp Med Hum Perform. 2017; 88(7):627-632.
Coen, Paul M; Flynn, Michael G; Markofski, Melissa M; Pence, Brandt D; Hannemann, Robert E
2009-07-01
Statin treatment and exercise training can improve lipid profile when administered separately. The efficacy of exercise and statin treatment combined, and its impact on myalgia and serum creatine kinase (CK) have not been completely addressed. The purpose of this study was to determine the effect of statin treatment and the addition of exercise training on lipid profile, including oxidized low-density lipoprotein (oxLDL), and levels of CK and alanine transaminase. Thirty-one hypercholesterolemic and physically inactive subjects were randomly assigned to rosuvastatin (R) or rosuvastatin/exercise (RE) group. A third group of physically active hypercholesterolemic subjects served as an active control group (AC). The R and RE groups received rosuvastatin treatment (10 mg/d) for 20 weeks. From week 10 to week 20, the RE group also participated in a combined endurance and resistive exercise training program (3 d/wk). Lipid profile was determined for all subjects at week 0 (Pre), week 10 (Mid), and week 20 (Post). The CK and alanine transaminase levels were measured at the same time points in the RE and R groups and 48 hours after the first and fifth exercise bout in the RE group. Each RE subject was formally queried about muscle fatigue, soreness, and stiffness before each training session. Total, LDL, and oxLDL cholesterol was lower in the RE and R groups at Mid and Post time points when compared with Pre. Oxidized LDL was lower in the RE group compared with the R group at the Post time point. When treatment groups (R and RE) were combined, high-density lipoprotein levels were increased and triglycerides decreased across time. Creatine kinase increased in the RE group 48 hours after the first exercise bout, but returned to baseline levels 48 hours after the fifth exercise bout. Rosuvastatin treatment decreased total, LDL, and oxLDL cholesterol. The addition of an exercise training program resulted in a further decrease in oxLDL. There was no abnormal sustained increase in CK or reports of myalgia after the addition of exercise training to rosuvastatin treatment.
Johnson, Ariel M; Kurti, Stephanie P; Smith, Joshua R; Rosenkranz, Sara K; Harms, Craig A
2016-03-01
A high-fat meal (HFM) induces an increase in blood lipids (postprandial lipemia; PPL), systemic inflammation, and acute airway inflammation. While acute exercise has been shown to have anti-inflammatory and lipid-lowering effects, it is unknown whether exercise prior to an HFM will translate to reduced airway inflammation post-HFM. Our purpose was to determine the effects of an acute bout of exercise on airway inflammation post-HFM and to identify whether any protective effect of exercise on airway inflammation was associated with a reduction in PPL or systemic inflammation. In a randomized cross-over study, 12 healthy, 18- to 29-year-old men (age, 23.0 ± 3.2 years; height, 178.9 ± 5.5 cm; weight, 78.5 ± 11.7 kg) consumed an HFM (1 g fat/1 kg body weight) 12 h following exercise (EX; 60 min at 60% maximal oxygen uptake) or without exercise (CON). Fractional exhaled nitric oxide (FENO; measure of airway inflammation), triglycerides (TG), and inflammatory markers (high-sensitivity C-reactive protein, tumor-necrosis factor-alpha, and interleukin-6) were measured while fasted at 2 h and 4 h post-HFM. FENO increased over time (2 h: CON, p = 0.001; EX, p = 0.002, but not by condition (p = 0.991). TG significantly increased 2 and 4 h post-HFM (p < 0.001), but was not significant between conditions (p = 0.256). Inflammatory markers did not significantly increase by time or condition (p > 0.05). There were no relationships between FENO and TG or systemic inflammatory markers for any time point or condition (p > 0.05). In summary, an acute bout of moderate-intensity exercise performed 12 h prior to an HFM did not change postprandial airway inflammation or lipemia in healthy, 18- to 29-year-old men.
Reduced Modulation of Pain in Older Adults After Isometric and Aerobic Exercise.
Naugle, Kelly M; Naugle, Keith E; Riley, Joseph L
2016-06-01
Laboratory-based studies show that acute aerobic and isometric exercise reduces sensitivity to painful stimuli in young healthy individuals, indicative of a hypoalgesic response. However, little is known regarding the effect of aging on exercise-induced hypoalgesia (EIH). The purpose of this study was to examine age differences in EIH after submaximal isometric exercise and moderate and vigorous aerobic exercise. Healthy older and younger adults completed 1 training session and 4 testing sessions consisting of a submaximal isometric handgrip exercise, vigorous or moderate intensity stationary cycling, or quiet rest (control). The following measures were taken before and after exercise/quiet rest: 1) pressure pain thresholds, 2) suprathreshold pressure pain ratings, 3) pain ratings during 30 seconds of prolonged noxious heat stimulation, and 4) temporal summation of heat pain. The results revealed age differences in EIH after isometric and aerobic exercise, with younger adults experiencing greater EIH compared with older adults. The age differences in EIH varied across pain induction techniques and exercise type. These results provide evidence for abnormal pain modulation after acute exercise in older adults. This article enhances our understanding of the influence of a single bout of exercise on pain sensitivity and perception in healthy older compared with younger adults. This knowledge could help clinicians optimize exercise as a method of pain management. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Calé-Benzoor, Maya; Maenhout, Annelies; Arnon, Michal; Tenenbaum, Gershon; Werrin, Mia; Cools, Ann
2017-07-01
The purpose of the study was to evaluate performance quality of shoulder plyometric exercises, and examine the relationship to scapular muscle activation during an intense exercise bout. Observational study. University laboratory. 32 healthy university students (male/female: 14/18) volunteers. Subjects performed 10 plyometric exercises. Surface EMG of upper (UT), middle (MT) and lower (LT) trapezius and serratus anterior (SA) was registered. A quality assessment questionnaire was administered at the beginning and end of the exercise bout. Muscle activation at the beginning and end was evaluated by t-test. Mixed repeated measures ANOVA was conducted to test the effects of criterion-quality, time, muscles, exercises, and their interactions. Increased EMG activation was noted in 34/40 cases, (21/40 significant (p < 0.05) changes). Quality assessment revealed a decline in the ability to maintain initial position (43% of subjects), failure to keep a consistent and symmetrical arc of motion (62% of subjects), and performance with trick movements (48% of subjects). Inability to keep a consistent arc of motion was significant in 4 exercises. The novel questionnaire may aid quality assessment during plyometric exercises. Ability to keep a consistent arc of motion was the most sensitive marker of decline of performance quality. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lima, Frederico D.; Stamm, Daniel N.; Della-Pace, Iuri D.; Dobrachinski, Fernando; de Carvalho, Nélson R.; Royes, Luiz Fernando F.; Soares, Félix A.; Rocha, João B.; González-Gallego, Javier; Bresciani, Guilherme
2013-01-01
Background and Aims Although acute exhaustive exercise is known to increase liver reactive oxygen species (ROS) production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts. Methods Wistar rats were divided into training (n = 14) and control (n = 14) groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7) and control (n = 7) rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed. Results Trained group showed increased reduced glutathione (GSH) content and reduced/oxidized (GSH/GSSG) ratio, higher superoxide dismutase (MnSOD) activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group. Conclusions Swimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance. PMID:23405192
Effect of gender on fatigue and recovery following maximal intensity repeated sprint performance.
Laurent, C M; Green, J M; Bishop, P A; Sjökvist, J; Schumacker, R E; Richardson, M T; Curtner-Smith, M
2010-09-01
This study investigated the effects of gender on repeated, maximal-intensity intermittent sprint exercise following variable day-to-day recovery periods. Sixteen volunteers (8 men, 8 women) performed four trials of high-intensity intermittent sprint exercise consisting of three bouts of eight 30 m sprints (total of 24 sprints). Following completion of the baseline trial, in repeated-measures design, participants were assigned, in counter-balanced order, variable recovery periods of 24, 48, and 72 h whereupon they repeated an identical exercise trial. Results from a series of 4 (trial) x 3 (bout) repeated measures ANOVAs revealed men produced significantly (P < 0.01) faster times throughout all bouts and trials of repeated sprint exercise. Additionally, women exhibited significantly lower (P < 0.05) blood lactate concentration and significantly lower (P < 0.05) decrement in performance, indicating increased resistance to fatigue during repeated exercise sessions. There were no significant differences (P > 0.05) between genders for heart rate or rating of perceived exertion during or following trials. There were no significant differences for overall sprint performance within either gender among trials. These results indicate men, while able to produce higher absolute power outputs (i.e., lower sprint time), demonstrate higher decrement scores within a trial compared to women, thus suggesting women may recover faster and fatigue less. Also, gender differences affecting recovery within in a trial were observed to be diminished between trials (i.e., day-to-day recovery) of maximal intermittent sprint work evidenced by the observed stability of performance between trials following various recovery durations.
Newton, Michael J; Sacco, Paul; Chapman, Dale; Nosaka, Kazunori
2013-03-01
Two common models to investigate the effect of interventions on muscle damage include using two groups in which one group receives an intervention while the other acts as control, and using contralateral limbs of one group. The latter model is based on the assumption that changes in markers of muscle damage are similar between limbs, but this has not been examined systematically. This study compared changes in muscle damage markers between dominant and non-dominant arms following maximal eccentric exercise of the elbow flexors. Eighteen men performed 60 maximal eccentric elbow flexions of each arm separated by 4 weeks with the order of testing between arms randomised. Maximal voluntary isometric torque, range of motion, upper arm circumference, plasma creatine kinase (CK) activity and muscle soreness before and for 7 days following exercise were compared between arms using two-way repeated measures ANOVA. No significant differences between arms were evident for any of the markers, but significant (P<0.05) differences between first and second bouts were evident for changes in strength, circumference and CK with smaller changes following the second bout. A poor correlation was found for the magnitude of changes in the markers between dominant and non-dominant arms, suggesting that responses to eccentric exercise were not necessarily the same between arms. These results show that the order affected the responses of dominant and non-dominant arms to the eccentric exercise; however, the contralateral limb design appears to be usable if bout order is counterbalanced and randomised among participants. Copyright © 2012. Published by Elsevier Ltd.
Performance and energy systems contributions during upper-body sprint interval exercise
Franchini, Emerson; Takito, Monica Yuri; Dal’Molin Kiss, Maria Augusta Peduti
2016-01-01
The main purpose of this study was to investigate the performance and energy systems contribution during four upper-body Wingate tests interspersed by 3-min intervals. Fourteen well-trained male adult Judo athletes voluntarily took part in the present study. These athletes were from state to national level, were in their competitive period, but not engaged in any weight loss procedure. Energy systems contributions were estimated using oxygen uptake and blood lactate measurements. The main results indicated that there was higher glycolytic contribution compared to oxidative (P<0.001) during bout 1, but lower glycolytic contribution was observed compared to the phosphagen system (adenosine triphosphate-creatine phosphate, ATP-PCr) contribution during bout 3 (P<0.001), lower glycolytic contribution compared to oxidative and ATP-PCr (P<0.001 for both comparisons) contributions during bout 4 and lower oxidative compared to ATP-PCr during bout 4 (P=0.040). For the energy system contribution across Wingate bouts, the ATP-PCr contribution during bout 1 was lower than that observed during bout 4 (P=0.005), and the glycolytic system presented higher percentage contribution in the first bout compared to the third and fourth bouts (P<0.001 for both comparisons), and higher percentage participation in the second compared to the fourth bout (P<0.001). These results suggest that absolute oxidative and ATP-PCr participations were kept constant across Wingate tests, but there was an increase in relative participation of ATP-PCr in bout 4 compared to bout 1, probably due to the partial phosphocreatine resynthesis during intervals and to the decreased glycolytic activity. PMID:28119874
Vogiatzis, Ioannis; Andrianopoulos, Vasileios; Louvaris, Zafeiris; Cherouveim, Evgenia; Spetsioti, Stavroula; Vasilopoulou, Maroula; Athanasopoulos, Dimitrios
2011-07-01
In this study, we wished to determine whether the observed reduction in quadriceps muscle oxygen availability, reported during repetitive bouts of isometric exercise in simulated sailing efforts (i.e. hiking), is because of restricted muscle blood flow. Six national-squad Laser sailors initially performed three successive 3-min hiking bouts followed by three successive 3-min cycling tests sustained at constant intensities reproducing the cardiac output recorded during each of the three hiking bouts. The blood flow index (BFI) was determined from assessment of the vastus lateralis using near-infrared spectroscopy in association with the light-absorbing tracer indocyanine green dye, while cardiac output was determined from impedance cardiography. At equivalent cardiac outputs (ranging from 10.3±0.5 to 14.8±0.86 L · min(-1)), the increase from baseline in vastus lateralis BFI across the three hiking bouts (from 1.1±0.2 to 3.1±0.6 nM · s(-1)) was lower (P = 0.036) than that seen during the three cycling bouts (from 1.1±0.2 to 7.2±1.4 nM · s(-1)) (Cohen's d: 3.80 nM · s(-1)), whereas the increase from baseline in deoxygenated haemoglobin (by ∼17.0±2.9 μM) (an index of tissue oxygen extraction) was greater (P = 0.006) during hiking than cycling (by ∼5.3±2.7 μM) (Cohen's d: 4.17 μM). The results suggest that reduced vastus lateralis muscle oxygen availability during hiking arises from restricted muscle blood flow in the isometrically acting quadriceps muscles.
Donath, Lars; Zahner, Lukas; Roth, Ralf; Fricker, Livia; Cordes, Mareike; Hanssen, Henner; Schmidt-Trucksäss, Arno; Faude, Oliver
2013-03-01
Impaired balance and gait performance increase fall-risk in seniors. Acute effects of different exercise bouts on gait and balance were not yet addressed. Therefore, 19 healthy seniors (10 women, 9 men, age: 64.6 ± 3.2 years) were examined on 3 days. After exhaustive treadmill testing, participants randomly completed a 2-km treadmill walking test (76 ± 8 % VO(2max)) and a resting control condition. Standing balance performance (SBALP) was assessed by single limb-eyes opened (SLEO) and double limb-eyes closed (DLEC) stance. Gait parameters were collected at comfortable walking velocity. A condition × time interaction of center of pressure path length (COP(path)) was observed for both balance tasks (p < 0.001). Small (Cohen's d = 0.42, p = 0.05) and large (d = 1.04, p < 0.001) COP(path) increases were found after 2-km and maximal exercise during DLEC. Regarding SLEO, slightly increased COP(path) occurred after 2-km walking (d = 0.29, p = 0.65) and large increases after exhaustive exercise (d = 1.24, p < 0.001). No significant differences were found for gait parameters. Alterations of SBALP after exhaustive exercise might lead to higher fall-risk in seniors. Balance changes upon 2-km testing might be of minor relevance. Gait is not affected during single task walking at given velocities.
Exercise Holds Immediate Benefits for Affect and Cognition in Younger and Older Adults
Hogan, Candice L.; Mata, Jutta; Carstensen, Laura L.
2013-01-01
Physical activity is associated with improved affective experience and enhanced cognitive processing. Potential age differences in the degree of benefit, however, are poorly understood because most studies examine either younger or older adults. The present study examined age differences in cognitive performance and affective experience immediately following a single bout of moderate exercise. Participants (144 community members aged 19 to 93) were randomly assigned to one of two experimental conditions: (a) exercise (15 min of moderate intensity stationary cycling) or (b) control (15 min completing ratings of neutral IAPS images). Before and after the manipulation, participants completed tests of working memory and momentary affect experience was measured. Results suggest that exercise is associated with increased levels of high-arousal positive affect (HAP) and decreased levels of low-arousal positive affect (LAP) relative to control condition. Age moderated the effects of exercise on LAP, such that younger age was associated with a drop in reported LAP postexercise, whereas the effects of exercise on HAP were consistent across age. Exercise also led to faster RTs on a working memory task than the control condition across age. Self-reported negative affect was unchanged. Overall, findings suggest that exercise may hold important benefits for both affective experience and cognitive performance regardless of age. PMID:23795769
NASA Technical Reports Server (NTRS)
Hagan, Ronald Donald; Soller, Babs R.; Shear, Michael; Walz, Matthias; Landry, Michelle; Heard, Stephen
2006-01-01
We evaluated the use of a small, fiber optic sensor to measure pH, PCO2 and PO2 from forearm muscle interstitial fluid (IF) during handgrip dynamometry. PURPOSE: Compare pH, PCO2 and PO2 values obtained from venous blood with those from the IF of the flexor digitorum superficialis (FDS) during three levels of exercise intensity. METHODS: Six subjects (5M/1F), average age 29+/-5 yrs, participated in the study. A venous catheter was placed in the retrograde direction in the antecubital space and a fiber optic sensor (Paratrend, Diametrics Medical, Inc.) was placed through a 22 G catheter into the FDS muscle under ultrasound guidance. After a 45 min rest period, subjects performed three 5-min bouts of repetitive handgrip exercise (2s contraction/1 s relaxation) at attempted levels of 15%, 30% and 45% of maximal voluntary contraction. The order of the exercise bouts was random with the second and third bouts started after blood lactate had returned to baseline. Venous blood was sampled every minute during exercise and analyzed with an I-Stat CG-4+ cartridge, while IF fiber optic sensor measurements were obtained every 2 s. Change from pre-exercise baseline to end of exercise was computed for pH, PCO2 and PO2. Blood and IF values were compared with a paired t-test. RESULTS: Baseline values for pH, PCO2 and PO2 were 7.37+/-0.02, 46+/-4 mm Hg, and 36+/-6 mm Hg respectively in blood and 7.39+/-0.02, 44+/-6 mm Hg, and 35+/-14 mm Hg in IF. Average changes over all exercise levels are noted in the Table below. For each parameter the exercise-induced change was at least twice as great in IF as in blood. In blood and IF, pH and PCO2 increases were directly related to exercise intensity. Change in venous PO2 was unrelated to exercise intensity, while IF PO2 decreased with increases in exercise intensity. CONCLUSIONS: Measurement of IF pH, PCO2 and PO2 is more sensitive to exercise intensity than measurement of the same parameters in venous blood and provides continuous assessment during and after exercise.
NASA Technical Reports Server (NTRS)
Allen, D. L.; Linderman, J. K.; Roy, R. R.; Grindeland, R. E.; Mukku, V.; Edgerton, V. R.
1997-01-01
In the present study of rats, we examined the role, during 2 wk of hindlimb suspension, of growth hormone/insulin-like growth factor I (GH/IGF-I) administration and/or brief bouts of resistance exercise in ameliorating the loss of myonuclei in fibers of the soleus muscle that express type I myosin heavy chain. Hindlimb suspension resulted in a significant decrease in mean soleus wet weight that was attenuated either by exercise alone or by exercise plus GH/IGF-I treatment but was not attenuated by hormonal treatment alone. Both mean myonuclear number and mean fiber cross-sectional area (CSA) of fibers expressing type I myosin heavy chain decreased after 2 wk of suspension compared with control (134 vs. 162 myonuclei/mm and 917 vs. 2,076 micron2, respectively). Neither GH/IGF-I treatment nor exercise alone affected myonuclear number or fiber CSA, but the combination of exercise and growth-factor treatment attenuated the decrease in both variables. A significant correlation was found between mean myonuclear number and mean CSA across all groups. Thus GH/IGF-I administration and brief bouts of muscle loading had an interactive effect in attenuating the loss of myonuclei induced by chronic unloading.
Development of an Elliptical Trainer Physical Fitness Test
2006-04-02
have demonstrated caloric expenditures and ratings of perceived exertion (RPE) similar to those measured during treadmill running (Clay, 2000...elliptical trainer calculates and displays total caloric expenditure and distance for each workout session. Distance is a function of the force phase of the...total caloric expenditure will be the performance measure. Bout duration will be 12 min to make the exercise bout similar to Cooper’s 12-minute run
Karageorghis, Costas I; Priest, David-Lee; Terry, Peter C; Chatzisarantis, Nikos L D; Lane, Andrew M
2006-08-01
In the present study, a measure to assess the motivational qualities of music in exercise was redesigned, extending previous research efforts (Karageorghis et al., 1999). The original measure, the Brunel Music Rating Inventory (BMRI), had shown limitations in its factor structure and its applicability to non-experts in music selection. Redesign of the BMRI used in-depth interviews with eight participants (mean age 31.9 years, s = 8.9 years) to establish the initial item pool, which was examined using a series of confirmatory factor analyses. A single-factor model provided a good fit across three musical selections with different motivational qualities (comparative fit index, CFI: 0.95-0.98; standardized root mean residual, SRMR: 0.03-0.05). The single-factor model also demonstrated acceptable fit across two independent samples and both sexes using one piece of music (CFI: 0.86-1.00; SRMR: 0.04-0.07). The BMRI was designed for experts in selecting music for exercise (e.g. dance aerobic instructors), whereas the BMRI-2 can be used both by exercise instructors and participants. The psychometric properties of the BMRI-2 are stronger than those of the BMRI and it is easier to use. The BMRI-2 provides a valid and internally consistent tool by which music can be selected to accompany a bout of exercise or a training session. Furthermore, the BMRI-2 enables researchers to standardize music in experimental protocols involving exercise-related tasks.
Somatotype-variables related to muscle torque and power output in female volleyball players.
Buśko, Krzysztof; Lewandowska, Joanna; Lipińska, Monika; Michalski, Radosław; Pastuszak, Anna
2013-01-01
The purpose of this study was to investigate the relationship between somatotype, muscle torque, maximal power output and height of rise of the body mass centre measured in akimbo counter movement jump (ACMJ), counter movement jump (CMJ) and spike jump (SPJ), and power output measured in maximal cycle ergometer exercise bouts in female volleyball players. Fourteen players participated in the study. Somatotype was determined using the Heath-Carter method. Maximal muscle torque was measured under static conditions. Power output was measured in 5 maximal cycle ergometer exercise bouts, 10 s each, at increasing external loads equal to 2.5, 5.0, 7.5, 10.0 and 12.5% of body weight (BW). All jump trials (ACMJ, SPJ and CMJ) were performed on a force plate. The mean somatotype of volleyball players was: 4.9-3.5-2.5. The value of the sum of muscle torque of the left upper extremities was significantly correlated only with mesomorphic component. Mesomorphic and ectomorphic components correlated significantly with values of maximal power measured during ACMJ and CMJ. Power output measured in maximal cycle ergometer exercise bouts at increasing external loads equal to 2.5, 5.0 and 7.5% of BW was significantly correlated with endomorphy, mesomorphy and ectomorphy.
Changes in executive function after acute bouts of passive cycling in Parkinson's disease.
Ridgel, Angela L; Kim, Chul-Ho; Fickes, Emily J; Muller, Matthew D; Alberts, Jay L
2011-04-01
Individuals with Parkinson's disease (PD) often experience cognitive declines. Although pharmacologic therapies are helpful in treating motor deficits in PD, they do not appear to be effective for cognitive complications. Acute bouts of moderate aerobic exercise have been shown to improve cognitive function in healthy adults. However, individuals with PD often have difficulty with exercise. This study examined the effects of passive leg cycling on executive function in PD. Executive function was assessed with Trail-Making Test (TMT) A and B before and after passive leg cycling. Significant improvements on the TMT-B test occurred after passive leg cycling. Furthermore, the difference between times to complete the TMT-B and TMT-A significantly decreased from precycling to postcycling. Improved executive function after passive cycling may be a result of increases in cerebral blood flow. These findings suggest that passive exercise could be a concurrent therapy for cognitive decline in PD.
BARNES, ROBERT T.; COOMBES, STEPHEN A.; ARMSTRONG, NICOLE B.; HIGGINS, TORRANCE J.; JANELLE, CHRISTOPHER M.
2011-01-01
A large body of literature advocates exercise as a successful intervention for increasing positive affect while also reducing negative affect and anxiety. Questions concerning the mechanisms driving these effects remain unanswered, particularly considering theorized attentional adaptations that may be elicited by acute exercise bouts. We investigated pre- and post-exercise attentional bias to examine possible attentional explanations that may account for these reported changes in affect. On separate visits to the laboratory, 30 high trait anxious participants completed 30 min of exercise on a cycle ergometer at 70% of their heart rate reserve, or completed a 30-min quiet rest protocol. During each intervention, pre-test and post-test modified dot-probe assessments of attentional bias were completed, as were a series of self-report anxiety and affect questionnaires. Attentional bias scores and reaction times were calculated. Post-exercise dot probe performance did not vary significantly as a function of the affective valence of presented stimuli. As hypothesized, however, positive affect and reaction time improved significantly following exercise compared with the pre- and post-rest conditions and the pre-exercise condition, suggesting that exercise facilitates a broadening of attentional scope. Implications of these findings and future directions are discussed within the context of traditional and contemporary theories of dispositional affect and state-specific emotional responses. PMID:20686994
HEALTHY BOUTS OF ACTIVITY: INTEGRATING GPS AND ACCELEROMETRY FOR MAP-PROMPTED BOUT RECALLS
Brown, Barbara B.; Wilson, Laura; Tribby, Calvin P.; Werner, Carol M.; Wolf, Jean; Miller, Harvey J.; Smith, Ken R.
2015-01-01
Objective Obtaining the “when, where, and why” of healthy bouts of moderate-to-vigorous physical activity (MVPA) provides insights into natural physical activity Design In Salt Lake City, Utah, adults wore accelerometer and GPS loggers for a week in a cross-sectional study to establish baseline travel and activity patterns near a planned Complete Street intervention involving a new rail line, new sidewalks, and a bike path. Results At the end of the week research assistants met with the 918 participants who had at least three 10-hour days of good accelerometer readings. Accelerometer and GPS data were uploaded and integrated within a custom application, and participants were provided with maps and time information for past MVPA bouts of ≥ 3 minutes to help them recall bout details. Participants said that ‘getting someplace” was, on average, a more important motivation for their bouts than leisure or exercise. A series of recall tests showed that participants recalled most bouts they were asked about, regardless of duration of the bout, suggesting that participant perceptions of their shorter lifestyle bouts can be studied with this methodology. Visual prompting with a map depicting where each bout took place yielded more accurate recall than prompting with time cues alone. Conclusion These techniques provide a novel way to understand participant memories of the context and subjective assessments associated with healthy bouts of physical activity. Prompts with time-stamped maps that illustrate places of moderate-to-vigorous physical activity offer an effective method to improve understanding of activity and its supportive socio-physical contexts. PMID:24815545
Meade, Robert D; Fujii, Naoto; Alexander, Lacy M; Paull, Gabrielle; Louie, Jeffrey C; Flouris, Andreas D; Kenny, Glen P
2015-01-01
Abstract Nitric oxide (NO)-dependent cutaneous vasodilatation is reportedly diminished during exercise performed at a high (700 W) relative to moderate (400 W) rate of metabolic heat production. The present study evaluated whether this impairment results from increased oxidative stress associated with an accumuluation of reactive oxygen species (ROS) during high intensity exercise. On two separate days, 11 young (mean ± SD, 24 ± 4 years) males cycled in the heat (35°C) at a moderate (500 W) or high (700 W) rate of metabolic heat production. Each session included two 30 min exercise bouts followed by 20 and 40 min of recovery, respectively. Cutaneous vascular conductance (CVC) was monitored at four forearm skin sites continuously perfused via intradermal microdialysis with: (1) lactated Ringer solution (Control); (2) 10 mm ascorbate (Ascorbate); (3) 10 mm l-NAME; or (4) 10 mm ascorbate + 10 mm l-NAME (Ascorbate + l-NAME). At the end of each 500 W exercise bout, CVC was attenuated with l-NAME (∼35% CVCmax) and Ascorbate + l-NAME (∼43% CVCmax) compared to Control (∼60% CVCmax; all P < 0.04); however, Ascorbate did not modulate CVC during exercise (∼60% CVCmax; both P > 0.87). Conversely, CVC was elevated with Ascorbate (∼72% CVCmax; both P < 0.03) but remained similar to Control (∼59% CVCmax) with l-NAME (∼50% CVCmax) and Ascorbate + l-NAME (∼47% CVCmax; all P > 0.05) at the end of both 700 W exercise bouts. We conclude that oxidative stress associated with an accumulation of ascorbate-sensitive ROS impairs NO-dependent cutaneous vasodilatation during intense exercise. Key points Recent work demonstrates that nitric oxide (NO) contributes to cutaneous vasodilatation during moderate (400 W of metabolic heat production) but not high (700 W of metabolic heat production) intensity exercise bouts performed in the heat (35°C). The present study evaluated whether the impairment in NO-dependent cutaneous vasodilatation was the result of a greater accumulation of reactive oxygen species during high (700 W of metabolic heat production) relative to moderate (500 W of metabolic heat production) intensity exercise. It was shown that local infusion of ascorbate (an anti-oxidant) improves NO-dependent forearm cutaneous vasodilatation during high intensity exercise in the heat. These findings provide novel insight into the physiological mechanisms governing cutaneous blood flow during exercise-induced heat stress and provide direction for future research exploring whether oxidative stress underlies the impairments in heat dissipation that may occur in older adults, as well as in individuals with pathophysiological conditions such as type 2 diabetes. PMID:26110415
Gordon, Brett A; Bird, Stephen R; MacIsaac, Richard J; Benson, Amanda C
2016-10-01
Regular exercise is advocated for individuals with type 2 diabetes, without fully understanding the acute (0-72h post-exercise) glycaemic response. This study assessed post-exercise glycaemic profiles of non-exercising individuals with insulin treated type 2 diabetes, following resistance and aerobic exercise. Randomised cross-over trial. Fourteen individuals with insulin treated type 2 diabetes (9 males, 5 females) aged 58.1±7.1 years (HbA1c: 8.0±0.6%) were allocated to single sessions of resistance (six whole-body exercises, three sets, 8-10 repetitions, 70% 1RM) and aerobic (30min cycling, 60% VO2peak) exercise, 7-days apart, with the day prior to the first exercise day of each intervention being the control condition. Immediately prior to exercise, insulin dosage was halved and breakfast consumed. Continuous glucose monitoring was undertaken to determine area under the curve and glucose excursions. Blood glucose initially increased (0-2h) following both resistance and aerobic exercise (p<0.001), peaking at 12.3±3.4mmolL(-1) and 12.3±3.3mmolL(-1), respectively. Area under the glucose curve was not statistically different over any of the 24h periods (p=0.12), or different in response to resistance (222±41mmolL(-1)24h(-1)) or aerobic (211±40 mmolL(-1)24h(-1)) exercise (p=0.56). Incidence of hyperglycaemia did not differ between exercise modes (p=0.68). Hypoglycaemic events were identified in three and four participants following resistance and aerobic exercise respectively: these did not require treatment. Glycaemic response is not different between exercise modes, although 50% insulin dose reduction prior to exercise impairs the expected improvement. A common clinical recommendation of 50% insulin dose reduction does not appear to cause adverse glycaemic events. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Short bouts of anaerobic exercise increase non-esterified fatty acids release in obesity.
Salvadori, Alberto; Fanari, Paolo; Marzullo, Paolo; Codecasa, Franco; Tovaglieri, Ilaria; Cornacchia, Mauro; Brunani, Amelia; Luzi, Livio; Longhini, Erminio
2014-02-01
It is demonstrated that aerobic exercise plays an important role in weight loss programs for obesity by increasing 24 h metabolic rate. While aerobic exercise can result in health and fitness benefits in obese subjects, also independently of weight loss, not completely clear are the effects of bouts of hard exercise on metabolic outcomes. The aim of this study was to test the hypothesis that short-term aerobic activity with anaerobic bouts might result in a greater improvement in the management of obesity than aerobic activity alone. We studied 16 obese subjects (eight men) during a progressive cycloergometric test up to exhaustion, before and after 4 weeks of two different training schedules (6 days/week). Insulin and glycaemia, non-esterified fatty acids (NEFA) and lactic acid were sampled. Group A (eight subjects, four men) performed an aerobic cycle workout; Group B (eight subjects, four men) performed a 25 min aerobic workout followed by 5 min of anaerobic workout. All the subjects maintained their individual eating habits. The post-training test showed a decrease in AUCs NEFA in Group A (p < 0.05) and an increase in Group B (p < 0.05), together with an increase in lactic acid in Group A and a decrease in Group B (p < 0.01). β-cell function (HOMA2-B) revealed a reduction only in Group A (p < 0.05). Group B achieved a greatest reduction in body fat mass than Group A (p < 0.05). Aerobic plus anaerobic training seem to produce a greater response in lipid metabolism and not significant modifications in glucose indexes; then, in training prescription for obesity, we might suggest at starting weight loss program aerobic with short bouts of anaerobic training to reduce fat mass and subsequently a prolonged aerobic training alone to ameliorate the metabolic profile.
The Effects of Multiple Cold Water Immersions on Indices of Muscle Damage
Goodall, Stuart; Howatson, Glyn
2008-01-01
The aim of this investigation was to elucidate the efficacy of repeated cold water immersions (CWI) in the recovery of exercise induced muscle damage. A randomised group consisting of eighteen males, mean ± s age, height and body mass were 24 ± 5 years, 1.82 ± 0.06 m and 85.7 ± 16.6 kg respectively, completed a bout of 100 drop jumps. Following the bout of damaging exercise, participants were randomly but equally assigned to either a 12 min CWI (15 ± 1 °C; n = 9) group who experienced immersions immediately post-exercise and every 24 h thereafter for the following 3 days, or a control group (no treatment; n = 9). Maximal voluntary contraction (MVC) of the knee extensors, creatine kinase activity (CK), muscle soreness (DOMS), range of motion (ROM) and limb girth were measured pre-exercise and then for the following 96 h at 24 h increments. In addition MVC was also recorded immediately post-exercise. Significant time effects were seen for MVC, CK, DOMS and limb girth (p < 0.05) indicating muscle damage was evident, however there was no group effect or interaction observed showing that CWI did not attenuate any of the dependent variables (p > 0.05). These results suggest that repeated CWI do not enhance recovery from a bout of damaging eccentric contractions. Key pointsCryotherapy, particularly cold water immersions are one of the most common interventions used in order to enhance recovery post-exercise.There is little empirical evidence demonstrating benefits from cold water immersions. Research evidence is equivocal, probably due to methodological inconsistencies.Our results show that the cryotherapy administered did not attenuate any markers of EIMD or enhance the recovery of function.We conclude that repeated cold water immersions are ineffective in the recovery from heavy plyometric exercise and suggest athletes and coaches should use caution before using this intervention as a recovery strategy PMID:24149455
Oxygen radical absorbance capacity (ORAC) and exercise-induced oxidative stress in trotters.
Kinnunen, Susanna; Hyyppä, Seppo; Lehmuskero, Arja; Oksala, Niku; Mäenpää, Pekka; Hänninen, Osmo; Atalay, Mustafa
2005-12-01
Strenuous exercise is a potent inducer of oxidative stress, which has been suggested to be associated with disturbances in muscle homeostasis, fatigue and injury. There is no comprehensive or uniform view of the antioxidant status in horses. We have previously shown that moderate exercise induces protein oxidation in trotters. The aim of this study was to measure the antioxidative capacity of the horse in relation to different antioxidant components and oxidative stress markers after a single bout of moderate exercise to elucidate the mechanisms of antioxidant protection in horses. Eight clinically normal and regularly trained standard-bred trotters were treadmill-exercised for 53 min at moderate intensity. Blood samples were collected prior to and immediately after exercise and at 4 and 24 h of recovery. Muscle biopsies from the middle gluteal muscle were taken before exercise and after 4 h of recovery. Acute induction of oxygen radical absorbance capacity (ORAC) did not prevent exercise-induced oxidative stress, which was demonstrated by increased lipid hydroperoxides (LPO). Pre-exercise ORAC levels were, however, a determinant of total glutathione content of the blood after 4 and 24 h of recovery. Furthermore, baseline ORAC level correlated negatively with 4-h recovery LPO levels. Our results imply that horses are susceptible to oxidative stress, but a stronger antioxidant capacity may improve coping with exercise-induced oxidative stress.
Effects of lifestyle exercise on premenopausal bone health: a randomised controlled trial.
Babatunde, Opeyemi; Forsyth, Jacky
2014-09-01
Osteoporosis, a slowly evolving public health epidemic, often with an insidious presentation is largely preventable but the optimal dimensions of exercise that may be prescribed for enhancing bone-health among premenopausal adults are yet to be elucidated. Hence, the escalating incidence and burden of prevalence of osteoporosis is yet unabated. Considering that exogenous hormones in the form of hormonal contraception are known to modulate bone mass, investigations of their possible influence on the translation of exercise-induced osteogenic stimuli on the mature bone is pertinent. The aim of this study was to examine the effect of specified lifestyle exercise on bone-health of premenopausal women. Premenopausal women (n = 96, mean age: 22.25 ± 3.5 years; mean BMI: 23.43 ± 3.5 kg/m(2)) participated in a 6-month randomised controlled trial involving home-based rest-interspersed bouts of high-impact exercise for the intervention group and sham exercise for the control group. Approximately half (47) of the participants (24-exercise, 23-control) were on hormonal-based contraception while the other half (49: 24-exercise, 25-control) were not on hormonal contraception. The regime led to a significant 3.7 % increase in broadband ultrasound attenuation of exercisers compared to controls; hormonal contraceptive use did not appear to potentiate the osteogenic effects of the lifestyle exercise regime. The research highlights that short, discrete bouts of high-impact exercise may be a potential public health prescription for enhancing premenopausal bone-health regardless of hormonal contraceptive use.
Berzosa, C; Gómez-Trullén, E M; Piedrafita, E; Cebrián, I; Martínez-Ballarín, E; Miana-Mena, F J; Fuentes-Broto, L; García, J J
2011-06-01
Optimal levels of membrane fluidity are essential for numerous cell functions including cell growth, solute transport and signal transduction. Since exercise enhances free radical production, our aim was to evaluate in healthy male subjects the effects of an acute bout of maximal and submaximal exercise on the erythrocyte membrane fluidity and its possible relation to the oxidative damage overproduction due to exercise. Subjects (n = 34) performed three cycloergometric tests: a continuous progressive exercise, a strenuous exercise until exhaustion and an acute bout of exercise at an intensity corresponding to 70% of maximal work capacity for 30 min. Venous blood samples were collected before and immediately after these exercises. Erythrocyte membrane fluidity was assessed by fluorescence spectroscopy. Plasma malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations and carbonyl content of plasmatic proteins were used as an index of lipid and protein oxidation, respectively. Exercise produced a dramatic drop in the erythrocyte membrane fluidity as compared to resting time, but this was not accompanied by significant changes in the plasmatic MDA and 4-HDA concentrations. The highest erythrocyte membrane rigidity was detected immediately after strenuous exercise until exhaustion was performed. Protein carbonyl levels were higher after exhaustive exercises than at rest. Continuous progressive and strenuous exercises until exhaustion, but not submaximal workload, resulted in a significant enhanced accumulation of carbonylated proteins in the plasma. These findings are consistent with the idea that exercise exaggerates oxidative damage, which may contribute, at least partially, to explain the rigidity in the membrane of the erythrocytes due to acute exercise.
Physical activity interventions and children's mental function: An introduction and overview
Tomporowski, Phillip D.; Lambourne, Kate; Okumura, Michelle S.
2011-01-01
Background This review provides a historical overview of physical activity interventions designed by American educators and an evaluation of research that has assessed the effects of exercise on children's mental function. Method Historical descriptions of the emergence of American physical education doctrine throughout the 20th century were evaluated. Prior reviews of studies that assessed the effects of single acute bouts of exercise and the effects of chronic exercise training on children's mental function were examined and the results of recent studies were summarized. Results Physical activity interventions designed for American children have reflected two competing views: activities should promote physical fitness and activities should promote social, emotional, and intellectual development. Research results indicate that exercise fosters the emergence of children's mental function; particularly executive functioning. The route by which physical activity impacts mental functioning is complex and is likely moderated by several variables, including physical fitness level, health status, and numerous psycho-social factors. Conclusion Physical activity interventions for children should be designed to meet multiple objectives; e.g., optimize physical fitness, promote health-related behaviors that offset obesity, and facilitate mental development. PMID:21420981
ERIC Educational Resources Information Center
Andreacci, Joseph L.; Nagle, Trisha; Fitzgerald, Elise; Rawson, Eric S.; Dixon, Curt B.
2013-01-01
Purpose: We examined the impact that cycle ergometry exercise had on percent body fat (%BF) estimates when assessed using either leg-to-leg or segmental bioelectrical impedance analysis (LBIA; SBIA) and whether the intensity of the exercise bout impacts the %BF magnitude of change. Method: Seventy-four college-aged adults participated in this…
Meeusen, R; Piacentini, M F; Busschaert, B; Buyse, L; De Schutter, G; Stray-Gundersen, J
2004-03-01
In overtrained athletes, several signs and symptoms have been associated with the imbalance between training and recovery. However, reliable diagnostic markers for distinguishing between well-trained, overreached (OR) and overtrained (OT) athletes are lacking. A hallmark feature of overtraining syndrome (OTS) is the inability to sustain intense exercise and recover for the next training or competition session. We therefore devised a test protocol utilizing two bouts of maximal work. With this test protocol we tried to establish a difference in hormonal responses between the training status of T and OR athletes. Seven well-trained cyclists participated in this study and were tested before and after a training camp. We also present the data of one OT motocross athlete who was clinically diagnosed as overtrained. All athletes performed two maximal exercise tests separated by 4 h. Blood was analyzed for cortisol, adrenocorticotrophic hormone (ACTH), growth hormone and prolactin (PRL). Performance decreased by 6% between the first and the second exercise test in the OR group and by 11% in the OT subject. Moreover, during the second exercise test there were more marked differences between the T and OR athletes; in particular, the OT subject did not show an increase in some of the hormonal responses. PRL increased only by 14% in the OT subject's second test and there was a 7% decrease in ACTH. The two exercise approach enables us to detect subtle performance decrements that will not be identified by one exercise trigger. The hormonal responses to the second exercise test were different between the T and OR athletes (the increase in the T group was higher than in the OR that was higher than in the OT). The results of the case presentation of an overtrained athlete provide evidence of an altered and dysfunctional hypothalamic-pituitary axis response to two bouts of maximal exercise. These findings can be used to develop markers for diagnosis of OTS and to begin to address the pathologic mechanism operative in the syndrome, as well as providing an outcome measure to evaluate possible therapeutic regimes.
Louie, Jeffrey C; Fujii, Naoto; Meade, Robert D; Kenny, Glen P
2016-11-01
Na + /K + -ATPase has been shown to regulate the sweating and cutaneous vascular responses during exercise; however, similar studies have not been conducted to assess the roles of the Na-K-2Cl co-transporter (NKCC) and K + channels. Additionally, it remains to be determined if these mechanisms underpinning the heat loss responses differ with exercise intensity. Eleven young (24 ± 4 years) males performed three 30-min semirecumbent cycling bouts at low (30% VO 2peak ), moderate (50% VO 2peak ), and high (70% VO 2peak ) intensity, respectively, each separated by 20-min recovery periods. Using intradermal microdialysis, four forearm skin sites were continuously perfused with either: (1) lactated Ringer solution (Control); (2) 6 mmol·L -1 ouabain (Na + /K + -ATPase inhibitor); (3) 10 mmol·L -1 bumetanide (NKCC inhibitor); or (4) 50 mmol·L -1 BaCl 2 (nonspecific K + channel inhibitor); sites at which we assessed local sweat rate (LSR) and cutaneous vascular conductance (CVC). Inhibition of Na + /K + -ATPase attenuated LSR compared to Control during the moderate and high-intensity exercise bouts (both P ˂ 0.01), whereas attenuations with NKCC and K + channel inhibition were only apparent during the high-intensity exercise bout (both P ≤ 0.05). Na + /K + -ATPase inhibition augmented CVC during all exercise intensities (all P ˂ 0.01), whereas CVC was greater with NKCC inhibition during the low-intensity exercise only (P ˂ 0.01) and attenuated with K + channel inhibition during the moderate and high-intensity exercise conditions (both P ˂ 0.01). We show that Na + /K + -ATPase, NKCC and K + channels all contribute to the regulation of sweating and cutaneous blood flow but their influence is dependent on the intensity of dynamic exercise. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle
Goodyear, Laurie J.
2014-01-01
Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial function, increases mitochondrial biogenesis, and increases the expression of glucose transporter proteins and numerous metabolic genes. This review focuses on the molecular mechanisms that mediate the effects of exercise to increase glucose uptake in skeletal muscle. PMID:25434013
Green, Nicole; Wertz, Timothy; LaPorta, Zachary; Mora, Adam; Serbas, Jasmine; Astorino, Todd A
2017-07-19
High intensity interval training (HIIT) elicits similar physiological adaptations as moderate intensity continuous training (MICT) despite less time commitment. However, there is debate whether HIIT is more aversive than MICT. This study compared physiological and perceptual responses between MICT and three regimes of HIIT. Nineteen active adults (age = 24.0 ± 3.3 yr) unfamiliar with HIIT initially performed ramp exercise to exhaustion to measure maximal oxygen uptake (VO2 max) and determine workload for subsequent sessions, whose order was randomized. Sprint interval training (SIT) consisted of six 20 s bouts of "all-out" cycling at 140% of maximum watts (Wmax). Low volume (HIITLV) and high volume HIIT (HIITHV) consisted of eight 60 s bouts at 85% Wmax and six 2 min bouts at 70% Wmax, respectively. MICT consisted of 25 min at 40% Wmax. Across regimes, work was not matched. Heart rate, VO2, blood lactate concentration (BLa), affect, and rating of perceived exertion (RPE) were assessed during exercise. Ten minutes post-exercise, Physical Activity Enjoyment (PACES) was measured via a survey. Results revealed significantly higher (p<0.05) VO2, heart rate, BLa, and RPE in SIT, HIITLV, and HIITHV versus MICT. Despite a decline in affect during exercise (p<0.01) and significantly lower affect (p<0.05) during all HIIT regimes versus MICT at 50, 75, and 100 % of session duration, PACES was similar across regimes (p=0.65) although it was higher in women (p=0.03). Findings from healthy adults unaccustomed to interval training demonstrate that HIIT and SIT are perceived as enjoyable as MICT despite being more aversive.
Effect of exercise intensity on post-exercise oxygen consumption and heart rate recovery.
Mann, Theresa N; Webster, Christopher; Lamberts, Robert P; Lambert, Michael I
2014-09-01
There is some evidence that measures of acute post-exercise recovery are sensitive to the homeostatic stress of the preceding exercise and these measurements warrant further investigation as possible markers of training load. The current study investigated which of four different measures of metabolic and autonomic recovery was most sensitive to changes in exercise intensity. Thirty-eight moderately trained runners completed 20-min bouts of treadmill exercise at 60, 70 and 80% of maximal oxygen uptake (VO2max) and four different recovery measurements were determined: the magnitude of excess post-exercise oxygen consumption (EPOCMAG), the time constant of the oxygen consumption recovery curve (EPOCτ), heart rate recovery within 1 min (HRR60s) and the time constant of the heart rate recovery curve (HRRτ) . Despite significant differences in exercise parameters at each exercise intensity, only EPOCMAG showed significantly slower recovery with each increase in exercise intensity at the group level and in the majority of individuals. EPOCτ was significantly slower at 70 and 80% of VO₂max vs. 60% VO₂max and HRRτ was only significantly slower when comparing the 80 vs. 60% VO₂max exercise bouts. In contrast, HRR60s reflected faster recovery at 70 and 80% of VO₂max than at 60% VO₂max. Of the four recovery measurements investigated, EPOCMAG was the most sensitive to changes in exercise intensity and shows potential to reflect changes in the homeostatic stress of exercise at the group and individual level. Determining EPOCMAG may help to interpret the homeostatic stress of laboratory-based research trials or training sessions.
Disruption of BCAA metabolism in mice impairs exercise metabolism and endurance.
She, Pengxiang; Zhou, Yingsheng; Zhang, Zhiyou; Griffin, Kathleen; Gowda, Kavitha; Lynch, Christopher J
2010-04-01
Exercise enhances branched-chain amino acid (BCAA) catabolism, and BCAA supplementation influences exercise metabolism. However, it remains controversial whether BCAA supplementation improves exercise endurance, and unknown whether the exercise endurance effect of BCAA supplementation requires catabolism of these amino acids. Therefore, we examined exercise capacity and intermediary metabolism in skeletal muscle of knockout (KO) mice of mitochondrial branched-chain aminotransferase (BCATm), which catalyzes the first step of BCAA catabolism. We found that BCATm KO mice were exercise intolerant with markedly decreased endurance to exhaustion. Their plasma lactate and lactate-to-pyruvate ratio in skeletal muscle during exercise and lactate release from hindlimb perfused with high concentrations of insulin and glucose were significantly higher in KO than wild-type (WT) mice. Plasma and muscle ammonia concentrations were also markedly higher in KO than WT mice during a brief bout of exercise. BCATm KO mice exhibited 43-79% declines in the muscle concentration of alanine, glutamine, aspartate, and glutamate at rest and during exercise. In response to exercise, the increments in muscle malate and alpha-ketoglutarate were greater in KO than WT mice. While muscle ATP concentration tended to be lower, muscle IMP concentration was sevenfold higher in KO compared with WT mice after a brief bout of exercise, suggesting elevated ammonia in KO is derived from the purine nucleotide cycle. These data suggest that disruption of BCAA transamination causes impaired malate/aspartate shuttle, thereby resulting in decreased alanine and glutamine formation, as well as increases in lactate-to-pyruvate ratio and ammonia in skeletal muscle. Thus BCAA metabolism may regulate exercise capacity in mice.
The Effects of Acute Physical Exercise on Memory, Peripheral BDNF, and Cortisol in Young Adults
Röder, Brigitte; Schmidt-Kassow, Maren
2016-01-01
In animals, physical activity has been shown to induce functional and structural changes especially in the hippocampus and to improve memory, probably by upregulating the release of neurotrophic factors. In humans, results on the effect of acute exercise on memory are inconsistent so far. Therefore, the aim of the present study was to assess the effects of a single bout of physical exercise on memory consolidation and the underlying neuroendocrinological mechanisms in young adults. Participants encoded a list of German-Polish vocabulary before exercising for 30 minutes with either high intensity or low intensity or before a relaxing phase. Retention of the vocabulary was assessed 20 minutes after the intervention as well as 24 hours later. Serum BDNF and salivary cortisol were measured at baseline, after learning, and after the intervention. The high-intensity exercise group showed an increase in BDNF and cortisol after exercising compared to baseline. Exercise after learning did not enhance the absolute number of recalled words. Participants of the high-intensity exercise group, however, forgot less vocabulary than the relaxing group 24 hours after learning. There was no robust relationship between memory scores and the increase in BDNF and cortisol, respectively, suggesting that further parameters have to be taken into account to explain the effects of exercise on memory in humans. PMID:27437149
Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing
Christiansen, Lasse; Roig, Marc
2016-01-01
High intensity aerobic exercise amplifies offline gains in procedural memory acquired during motor practice. This effect seems to be evident when exercise is placed immediately after acquisition, during the first stages of memory consolidation, but the importance of temporal proximity of the exercise bout used to stimulate improvements in procedural memory is unknown. The effects of three different temporal placements of high intensity exercise were investigated following visuomotor skill acquisition on the retention of motor memory in 48 young (24.0 ± 2.5 yrs), healthy male subjects randomly assigned to one of four groups either performing a high intensity (90% Maximal Power Output) exercise bout at 20 min (EX90), 1 h (EX90+1), 2 h (EX90+2) after acquisition or rested (CON). Retention tests were performed at 1 d (R1) and 7 d (R7). At R1 changes in performance scores after acquisition were greater for EX90 than CON (p < 0.001) and EX90+2 (p = 0.001). At R7 changes in performance scores for EX90, EX90+1, and EX90+2 were higher than CON (p < 0.001, p = 0.008, and p = 0.008, resp.). Changes for EX90 at R7 were greater than EX90+2 (p = 0.049). Exercise-induced improvements in procedural memory diminish as the temporal proximity of exercise from acquisition is increased. Timing of exercise following motor practice is important for motor memory consolidation. PMID:27446616
Lack of effect of exercise time of day on acute energy intake in healthy men.
O'Donoghue K, J M; Fournier, Paul A; Guelfi, Kym J
2010-08-01
Although the manipulation of exercise and dietary intake to achieve successful weight loss has been extensively studied, it is unclear how the time of day that exercise is performed may affect subsequent energy intake. The purpose of the current study was to investigate the effect of an acute bout of exercise performed in the morning compared with an equivalent bout of exercise performed in the afternoon on short-term energy intake. Nine healthy male participants completed 3 trials: morning exercise (AM), afternoon exercise (PM), or control (no exercise; CON) in a randomized counterbalanced design. Exercise consisted of 45 min of treadmill running at 75% VO(2peak). Energy intake was assessed over a 26-hr period with the participants eating ad libitum from a standard assortment of food items of known quantity and composition. There was no significant difference in overall energy intake (M ± SD; CON 23,505 ± 6,938 kJ, AM 24,957 ± 5,607 kJ, PM 24,560 ± 5,988 kJ; p = .590) or macronutrient preferences during the 26-hr period examined between trials. Likewise, no differences in energy intake or macronutrient preferences were observed at any of the specific individual meal periods examined (i.e., breakfast, lunch, dinner) between trials. These results suggest that the time of day that exercise is performed does not significantly affect short-term energy intake in healthy men.
Kurhade, Geeta; Nayak, B Shivananda; Kurhade, Arvind; Unakal, Chandrasekhar; Kurhade, Krutika
2018-01-01
Persistent bouts of extended exercise and heavy training are associated with depressed immune cell function. It has recently been demonstrated that interleukin-6 (IL-6) is produced locally in contracting skeletal muscles and acts on a wide range of tissues. Larger amounts of IL-6 are produced in response to exercise than any other cytokines. Though the majority of existing data obtained following prolonged exercise, it remains to be explained the effect of martial arts training on IL-6 and other immunological parameters and associated changes to the duration of this type of exercise. IL-1α is produced mainly by activated macrophages, as well as neutrophils, epithelial cells, and endothelial cells. It possesses metabolic, physiological, hematopoietic activities, and plays one of the central roles in the regulation of the immune responses. This study aimed to evaluate the effect of martial arts training on IL-6 and other immunological parameters among Trinidadian subjects. Sixteen healthy, non-smoker individuals who have been martial arts practitioners for the last 5-15 years, aged 25.94±7.6.20 years. Blood samples were collected to determine IL-6 and other immunological parameters at pre-exercise, immediately post exercise (0 hours), 1 hour, 2 hour and 52 hours of post exercise). IL-6 and IL-1 was measured using Human IL-6 and IL-1 β ELISA kit, blood cell count was done using automated blood cell counter and CD4, and CD3 count was performed using the automated immunofluorescence analysis by flow cytometer. The mean basal IL-6 level was 71.47±4.3 and reduced to 70.1±21.6 immediately after exercise and then increased to 75.70±8.2 after one hour of exercise bout, returning to basal level after two hours and remained so after 52 hours. The CD4 count was decreased as low as 102.2, (much lower than immune-compromised subjects) after the bout of training but returned to normal range within 2 hours of exercise and increased even more after 52 hours. Similar trends have been observed for hematological parameters such as white blood cells, granulocytes and lymphocytes. The white blood cell count, granulocyte count and lymphocyte count increased immediately after exercise and returned to basal level only after 52 hours of exercise. This study highlights that the martial arts exercise increases key cytokines and other hematological parameters. The magnitude of the martial arts exercise-induced IL-6 response is dependent on intensity and especially duration of the exercise.
Cardiac Ischemia/Reperfusion Injury: The Beneficial Effects of Exercise.
Borges, Juliana Pereira; da Silva Verdoorn, Karine
2017-01-01
Cardiac ischemia reperfusion injury (IRI) occurs when the myocardium is revascularized after an episode of limited or absent blood supply. Many changes, including free radical production, calcium overload, protease activation, altered membrane lipids and leukocyte activation, contribute to IRI-induced myocardium damage. Aerobic exercise is the only countermeasure against IRI that can be sustained on a regular basis in clinical practice. Interestingly, both short-term (3-5 days) and long-term (several weeks) exercise increase myocardial tolerance, reduce infarct size area and arrhythmias induced by IRI. Exercise protects the heart against IRI in a biphasic manner. The early phase of cardioprotection occurs between 30 min and 3 h following an acute exercise bout, whilst the late phase is achieved within 24 h after the exercise bout and persists for several days. As for the exercise intensity, although controversial data exists, it is feasible that the amount of cardioprotection is proportional to exercise intensity and only achieved above a critical threshold. It is known that aerobic exercise produces a cardioprotective phenotype, however the mechanisms responsible for this phenomenon remain unclear. Apparently, aerobic exercise-induced preconditioning is dependent on several factors that work together to protect the heart. Altered nitric oxide (NO) signaling, increased levels of heat shock proteins (HSPs), enhanced function of ATP-sensitive potassium channels, increased activation of opioids system, and enhanced antioxidant capacity may contribute to exercise-induced cardioprotection. Much has been discovered from animal models involving exercise-induced cardioprotection against cardiac IRI, however translating these findings to clinical practice still represents the major challenge in this field.
No Effect of Exercise Intensity on Appetite in Highly-Trained Endurance Women
Howe, Stephanie M.; Hand, Taryn M.; Larson-Meyer, D. Enette; Austin, Kathleen J.; Alexander, Brenda M.; Manore, Melinda M.
2016-01-01
In endurance-trained men, an acute bout of exercise is shown to suppress post-exercise appetite, yet limited research has examined this response in women. The purpose of this study was to investigate the effect of exercise intensity on appetite and gut hormone responses in endurance-trained women. Highly-trained women (n = 15, 18–40 years, 58.4 ± 6.4 kg, VO2MAX = 55.2 ± 4.3 mL/kg/min) completed isocaloric bouts (500 kcals or 2093 kJ) of moderate-intensity (MIE, 60% VO2MAX) and high-intensity (HIE, 85% VO2MAX) treadmill running at the same time of day, following a similar 48-h diet/exercise period, and at least 1-week apart. Blood was drawn pre-exercise (baseline), immediately post-exercise and every 20-min for the next 60-min. Plasma concentrations of acylated ghrelin, PYY3–36, GLP-1 and subjective appetite ratings via visual analog scale (VAS) were assessed at each time point. Acylated ghrelin decreased (p = 0.014) and PYY3–36 and GLP-1 increased (p = 0.036, p < 0.0001) immediately post-exercise, indicating appetite suppression. VAS ratings of hunger and desire to eat decreased immediately post-exercise (p = 0.0012, p = 0.0031, respectively), also indicating appetite suppression. There were no differences between exercise intensities for appetite hormones or VAS. Similar to males, post-exercise appetite regulatory hormones were altered toward suppression in highly-trained women and independent of energy cost of exercise. Results are important for female athletes striving to optimize nutrition for endurance performance. PMID:27096869
ERIC Educational Resources Information Center
Thomas, Tom R.; And Others
1979-01-01
This study, designed to determine the effect of a prolonged running bout on the measurement of percent fat, produced erroneously low readings. It is suggested that previous exercise and state of hydration of subjects should be controlled prior to percent fat determination by hydrostatic weighing or scintillation counting. (MJB)
Using Scatterplots to Teach the Critical Power Concept
ERIC Educational Resources Information Center
Pettitt, Robert W.
2012-01-01
The critical power (CP) concept has received renewed attention and excitement in the academic community. The CP concept was originally conceived as a model derived from a series of exhaustive, constant-load, exercise bouts. All-out exercise testing has made quantification of the parameters for the two-component model easier to arrive at, which may…
Voice Function Differences Following Resting Breathing vs. Submaximal Exercise
Sandage, Mary J.; Connor, Nadine P.; Pascoe, David D.
2013-01-01
Objectives/Hypothesis There is little known about how physical exercise may alter physiological parameters of voice production. In this investigation, vocal function and upper airway temperature were examined following a bout of submaximal exercise and compared with a resting breathing condition. It was hypothesized that phonation threshold pressure and perceived phonatory effort would increase, and pharyngeal temperature would decrease following an exercise bout. Study Design Using a within-participant repeated measures design, 18 consented participants (9 men, 9 women) completed the study. Methods A 20-minute equilibration task was immediately followed by 8 minutes of submaximal exercise on a stationary bike in a thermally neutral environment (25°C/40% RH). At the end of the equilibration trial and the exercise trial measures were taken in the following order: pharyngeal temperature, phonation threshold pressure, and perceived phonatory effort. Data were analyzed using paired t-tests with significance set at α<0.05. Results Significantly increased phonation threshold pressure and perceived phonatory effort and significantly decreased pharyngeal temperature (1.9°C) were found, supporting the initial hypotheses. Conclusions Findings from this investigation support the widely held belief that voice use associated with physical activity requires additional laryngeal effort and closure forces. The effect of the temperature reduction in the upper airway on voice function requires further study. PMID:23849683
The Effect of Recovery Duration on Technical Proficiency during Small Sided Games of Football.
McLean, Scott; Kerhervé, Hugo; Naughton, Mitchell; Lovell, Geoff P; Gorman, Adam D; Solomon, Colin
2016-07-08
The aim of this study was to determine the effect of increasing the duration of the recovery periods separating serial bouts of small sided games (SSG) of football on technical skills (TS). Twelve semi-professional footballers (mean ± SD; age 21 ± 3 years; VO 2peak 64 ± 7 mL∙min∙kg -1 ; playing experience 15 ± 3 years) completed two SSG sessions, consisting of 3 vs. 3 players and 6 bouts of 2 min, separated by either 30 s recovery (REC-30) or 120 s recovery (REC-120). Sixteen TS, including passing, possession, and defensive related variables, and exercise intensity (heart rate, rating of perceived exertion, time motion descriptors) during the bouts were measured. Repeated measures ANOVA were used to determine differences between-conditions, for TS. The number of successful tackles was significantly higher, and the average time each team maintained possession was significantly lower in REC-120 compared to REC-30. There were no significant differences for all other TS variables, or exercise intensity measures between REC-30 and REC-120. Overall, a four-fold increase in the duration of recovery separating SSG bouts did not alter the technical skill execution of players. The experience and skill level of the players, combined with an apparent regulation of effort through pacing, may have assisted in the maintenance of technical skill execution.
Systolic and Diastolic Left Ventricular Mechanics during and after Resistance Exercise.
Stöhr, Eric J; Stembridge, Mike; Shave, Rob; Samuel, T Jake; Stone, Keeron; Esformes, Joseph I
2017-10-01
To improve the current understanding of the impact of resistance exercise on the heart, by examining the acute responses of left ventricular (LV) strain, twist, and untwisting rate ("LV mechanics"). LV echocardiographic images were recorded in systole and diastole before, during and immediately after (7-12 s) double-leg press exercise at two intensities (30% and 60% of maximum strength, one-repetition maximum). Speckle tracking analysis generated LV strain, twist, and untwisting rate data. Additionally, beat-by-beat blood pressure was recorded and systemic vascular resistance (SVR) and LV wall stress were calculated. Responses in both exercise trials were statistically similar (P > 0.05). During effort, stroke volume decreased, whereas SVR and LV wall stress increased (P < 0.05). Immediately after effort, stroke volume returned to baseline, whereas SVR and wall stress decreased (P < 0.05). Similarly, acute exercise was accompanied by a significant decrease in systolic parameters of LV muscle mechanics (P < 0.05). However, diastolic parameters, including LV untwisting rate, were statistically unaltered (P > 0.05). Immediately after exercise, systolic LV mechanics returned to baseline levels (P < 0.05) but LV untwisting rate increased significantly (P < 0.05). A single, acute bout of double-leg press resistance exercise transiently reduces systolic LV mechanics, but increases diastolic mechanics after exercise, suggesting that resistance exercise has a differential impact on systolic and diastolic heart muscle function. The findings may explain why acute resistance exercise has been associated with reduced stroke volume but chronic exercise training may result in increased LV volumes.
Rossow, Lindy; Yan, Huimin; Fahs, Christopher A; Ranadive, Sushant M; Agiovlasitis, Stamatis; Wilund, Kenneth R; Baynard, Tracy; Fernhall, Bo
2010-04-01
The acute effect of high-intensity interval exercise (HI) on blood pressure (BP) is unknown although this type of exercise has similar or greater cardiovascular benefits compared to steady-state aerobic exercise (SS). This study examined postexercise hypotension (PEH) and potential mechanisms of this response in endurance-trained subjects following acute SS and HI. Sex differences were also evaluated. A total of 25 endurance-trained men (n = 15) and women (n = 10) performed a bout of HI and a bout of SS cycling in randomized order on separate days. Before exercise, 30 min postexercise, and 60 min postexercise, we measured brachial and aortic BP. Cardiac output (CO), stroke volume (SV), end diastolic volume (EDV), end systolic volume (ESV), and left ventricular wall-velocities were measured using ultrasonography with tissue Doppler capabilities. Ejection fraction and fractional shortening (FS), total peripheral resistance (TPR), and calf vascular resistance were calculated from the above variables and measures of leg blood flow. BP, ejection fraction, and FS decreased by a similar magnitude following both bouts but changes in CO, heart rate (HR), TPR, and calf vascular resistance were greater in magnitude following HI than following SS. Men and women responded similarly to HI. Although men and women exhibited a similar PEH following SS, they showed differential changes in SV, EDV, and TPR. HI acutely reduces BP similarly to SS. The mechanistic response to HI appears to differ from that of SS, and endurance-trained men and women may exhibit differential mechanisms for PEH following SS but not HI.
IGF-1 colocalizes with muscle satellite cells following acute exercise in humans.
Grubb, Amanda; Joanisse, Sophie; Moore, Daniel R; Bellamy, Leeann M; Mitchell, Cameron J; Phillips, Stuart M; Parise, Gianni
2014-04-01
Insulin-like growth factor-1 (IGF-1) regulates stem cell proliferation and differentiation in vitro. The aim of this study was to quantify the change in satellite cell (SC) specific IGF-1 colocalization following exercise. We observed a significant increase (p < 0.05) in the percentage of SC with IGF-1 colocalization from baseline to 72 h after a bout of resistance exercise. This strongly supports a role for IGF-1 in human SC function following exercise.
The effects of short-term exercise training on peak-torque are time- and fiber-type dependent.
Ureczky, Dóra; Vácz, Gabriella; Costa, Andreas; Kopper, Bence; Lacza, Zsombor; Hortobágyi, Tibor; Tihanyi, József
2014-08-01
We examined the susceptibility of fast and slow twitch muscle fibers in the quadriceps muscle to eccentric exercise-induced muscle damage. Nine healthy men (age: 22.5 ± 1.6 years) performed maximal eccentric quadriceps contractions at 120°·s-1 over a 120° of knee joint range of motion for 6 consecutive days. Biopsies were taken from the vastus lateralis muscle before repeated bouts of eccentric exercise on the third and seventh day. Immunohistochemical procedures were used to determine fiber composition and fibronectin activity. Creatine kinase (CK) and lactate dehydrogenase (LDH) were determined in serum. Average torque was calculated in each day for each subject. Relative to baseline, average torque decreased 37.4% till day 3 and increased 43.0% from the day 3 to day 6 (p < 0.001). Creatine kinase and LDH were 70.6 and 1.5 times higher on day 3 and 75.5 and 1.4 times higher on day 6. Fibronectin was found in fast fibers in subjects with high CK level on day 3 and 7 after exercise, but on day 7, fibronectin seemed in both slow and fast fibers except in muscles of 2 subjects with high fast fiber percentage. Peak torque and muscle fiber-type composition measured at baseline showed a strong positive association on day 3 (r = 0.76, p < 0.02) and strong negative association during recovery between day 3 and day 6 (r = -0.76, p < 0.02), and day 1 and day 6 (r = 0.84, p < 0.001). We conclude that the damage of fast fibers preceded the damage of slow fibers, and muscles with slow fiber dominance were more susceptible to repeated bouts of eccentric exercise than fast fiber dominance muscles. The data suggest that the responses to repeated bouts of eccentric exercise are fiber-type-dependent in the quadriceps muscle, which can be the basis for the design of individualized strength training protocols.
Firefighter Work Duration Influences the Extent of Acute Kidney Injury.
Schlader, Zachary J; Chapman, Christopher L; Sarker, Suman; Russo, Lindsey; Rideout, Todd C; Parker, Mark D; Johnson, Blair D; Hostler, David
2017-08-01
We tested the hypothesis that elevations in biomarkers of acute kidney injury are influenced by the magnitude of hyperthermia and dehydration elicited by two common firefighter work durations. Twenty-nine healthy adults (10 females) wearing firefighter protective clothing completed two randomized trials where they walked at 4.8 km·h, 5% grade in a 38°C, 50% RH environment. In the short trial, subjects completed two 20-min exercise bouts. In the long trial (LONG), subjects completed three 20-min exercise bouts. Each exercise bout was separated by 10 min of standing rest in an ~20°C environment. Venous blood samples were obtained before and immediately after exercise, and after 1 h recovery. Dependent variables included changes in core temperature, body weight, plasma volume, serum creatinine, and plasma neutrophil gelatinase-associated lipocalin, a marker of renal tubule injury. Changes in core temperature (+2.0°C ± 0.7°C vs +1.1°C ± 0.4°C, P < 0.01), body weight (-0.9% ± 0.6% vs -0.5% ± 0.5%, P < 0.01), and plasma volume (-11% ± 5% vs -8% ± 6%, P < 0.01) during exercise were greater in LONG. Increases in creatinine were higher in LONG postexercise (0.18 ± 0.15 vs 0.08 ± 0.07 mg·dL, P < 0.01) and after recovery (0.21 ± 0.16 vs 0.14 ± 0.10 mg·dL, P < 0.01). Increases in neutrophil gelatinase-associated lipocalin were greater in LONG postexercise (27.0 ± 20.5 vs 12.7 ± 18.0 ng·mL, P = 0.01) and after recovery (16.9 ± 15.6 vs 1.5 ± 15.1 ng·mL, P = 0.02). Biomarkers of acute kidney injury are influenced by the magnitude of hyperthermia and hypovolemia elicited by exercise in the heat.
Bouchet, Courtney A; Lloyd, Brian A; Loetz, Esteban C; Farmer, Caroline E; Ostrovskyy, Mykola; Haddad, Natalie; Foright, Rebecca M; Greenwood, Benjamin N
2017-08-01
Fear extinction-based exposure therapy is the most common behavioral therapy for anxiety and trauma-related disorders, but fear extinction memories are labile and fear tends to return even after successful extinction. The relapse of fear contributes to the poor long-term efficacy of exposure therapy. A single session of voluntary exercise can enhance the acquisition and consolidation of fear extinction in male rats, but the effects of exercise on relapse of fear after extinction are not well understood. Here, we characterized the effects of 2 h of voluntary exercise during the consolidation phase of contextual or auditory fear extinction learning on long-term fear extinction memory and renewal in adult, male and female, Long-Evans rats. Results indicate that exercise enhances consolidation of fear extinction memory and reduces fear relapse after extinction in a sex-dependent manner. These data suggest that brief bouts of exercise could be used as an augmentation strategy for exposure therapy, even in previously sedentary subjects. Fear memories of discrete cues, rather than of contextual ones, may be most susceptible to exercise-augmented extinction, especially in males. Additionally, exercise seems to have the biggest impact on fear relapse phenomena, even if fear extinction memories themselves are only minimally enhanced. © 2017 Bouchet et al.; Published by Cold Spring Harbor Laboratory Press.
Individual Muscle use in Hamstring Exercises by Soccer Players Assessed using Functional MRI.
Fernandez-Gonzalo, R; Tesch, P A; Linnehan, R M; Kreider, R B; Di Salvo, V; Suarez-Arrones, L; Alomar, X; Mendez-Villanueva, A; Rodas, G
2016-06-01
This study used functional magnetic resonance imaging (fMRI) to compare individual muscle use in exercises aimed at preventing hamstring injuries. Thirty-six professional soccer players were randomized into 4 groups, each performing either Nordic hamstring, flywheel leg curl, Russian belt or conic-pulley exercise. MRIs were performed before and immediately after a bout of 4 sets of 8 repetitions. Pre-post exercise differences in contrast shift (T2) were analyzed for the long (BFLh) and short head (BFSh) of biceps femoris, semitendinosus (ST), semimembranosus (SM) and gracilis (GR) muscles. Flywheel leg curl increased (P<0.001) T2 of GR (95%), ST (65%), BFSh (51%) and BFLh (14%). After the Nordic hamstring, GR (39%), ST (16%) and BFSh (14%) showed increased T2 (P<0.001). Russian belt and conic-pulley exercise produced subtle (P<0.02) T2 increases of ST (9 and 6%, respectively) and BFLh (7 and 6%, respectively). Russian belt increased T2 of SM (7%). Among exercises examined, flywheel leg curl showed the most substantial hamstring and GR muscle use. However, no single exercise executed was able to increase T2 of all hamstring and synergist muscles analyzed. It is therefore suggested that multiple exercises must be carried out to bring in, and fully activate all knee flexors and hip extensors. © Georg Thieme Verlag KG Stuttgart · New York.
Exercise holds immediate benefits for affect and cognition in younger and older adults.
Hogan, Candice L; Mata, Jutta; Carstensen, Laura L
2013-06-01
Physical activity is associated with improved affective experience and enhanced cognitive processing. Potential age differences in the degree of benefit, however, are poorly understood because most studies examine either younger or older adults. The present study examined age differences in cognitive performance and affective experience immediately following a single bout of moderate exercise. Participants (144 community members aged 19 to 93) were randomly assigned to one of two experimental conditions: (a) exercise (15 min of moderate intensity stationary cycling) or (b) control (15 min completing ratings of neutral IAPS images). Before and after the manipulation, participants completed tests of working memory and momentary affect experience was measured. Results suggest that exercise is associated with increased levels of high-arousal positive affect (HAP) and decreased levels of low-arousal positive affect (LAP) relative to control condition. Age moderated the effects of exercise on LAP, such that younger age was associated with a drop in reported LAP postexercise, whereas the effects of exercise on HAP were consistent across age. Exercise also led to faster RTs on a working memory task than the control condition across age. Self-reported negative affect was unchanged. Overall, findings suggest that exercise may hold important benefits for both affective experience and cognitive performance regardless of age. PsycINFO Database Record (c) 2013 APA, all rights reserved.
The Chronic Effect of Interval Training on Energy Intake: A Systematic Review and Meta-Analysis
Holland, David J.; Coombes, Jeff S.; Leveritt, Michael D.
2018-01-01
Single bouts of acute exercise do not appear to increase subsequent energy intake (EI), even when energy deficit is large. However, studies have shown a compensatory effect on EI following chronic exercise, and it remains unclear whether this is affected by exercise intensity. We investigated the chronic effect of high-intensity interval training (HIIT) and sprint interval training (SIT) on EI when compared with moderate-intensity continuous training (MICT) or no exercise (CON). Databases were searched until 13 March 2017 for studies measuring EI in response to chronic exercise (≥4 weeks of duration) of a high-intensity interval nature. Meta-analysis was conducted for between-group comparisons on EI (kilojoules) and bodyweight (kg). Results showed large heterogeneity, and therefore, metaregression analyses were conducted. There were no significant differences in EI between HIIT/SIT versus MICT (P=0.282), HIIT/SIT versus CON (P=0.398), or MICT versus CON (P=0.329). Although bodyweight was significantly reduced after HIIT/SIT versus CON but not HIIT/SIT versus MICT (in studies measuring EI), this was not clinically meaningful (<2% mean difference). In conclusion, there is no compensatory increase in EI following a period of HIIT/SIT compared to MICT or no exercise. However, this review highlights important methodological considerations for future studies. PMID:29808115
Executive Function and the P300 after Treadmill Exercise and Futsal in College Soccer Players
Won, Junyeon; Wu, Shanshan; Ji, Hongqing; Smith, J. Carson; Park, Jungjun
2017-01-01
(1) Background: Although a body of evidence demonstrates that acute exercise improves executive function, few studies have compared more complex, laboratory-based modes of exercise, such as soccer that involve multiple aspects of the environment. (2) Methods: Twelve experienced soccer players (24.8 ± 2 years) completed three counterbalanced 20 min sessions of (1) seated rest; (2) moderate intensity treadmill exercise; and (3) a game of futsal. Once heart rate returned to within 10% of pre-activity levels, participants completed the Stroop Color Word Conflict Task while reaction time (RT) and P300 event-related potentials were measured. (3) Results: Reaction time during Stroop performance was significantly faster following the futsal game and treadmill exercise compared to the seated rest. The P300 amplitude during Stroop performance was significantly greater following futsal relative to both treadmill and seated-rest conditions. (4) Conclusions: These findings suggest that single bouts of indoor soccer among college-aged soccer players, compared to treadmill and seated-rest conditions, may engender the greatest effect on brain networks controlling attention allocation and classification speed during the performance of an inhibitory control task. Future research is needed to determine if cognitively engaging forms of aerobic exercise may differentially impact executive control processes in less experienced and older adult participants.
The effects of exercise under hypoxia on cognitive function.
Ando, Soichi; Hatamoto, Yoichi; Sudo, Mizuki; Kiyonaga, Akira; Tanaka, Hiroaki; Higaki, Yasuki
2013-01-01
Increasing evidence suggests that cognitive function improves during a single bout of moderate exercise. In contrast, exercise under hypoxia may compromise the availability of oxygen. Given that brain function and tissue integrity are dependent on a continuous and sufficient oxygen supply, exercise under hypoxia may impair cognitive function. However, it remains unclear how exercise under hypoxia affects cognitive function. The purpose of this study was to examine the effects of exercise under different levels of hypoxia on cognitive function. Twelve participants performed a cognitive task at rest and during exercise at various fractions of inspired oxygen (FIO2: 0.209, 0.18, and 0.15). Exercise intensity corresponded to 60% of peak oxygen uptake under normoxia. The participants performed a Go/No-Go task requiring executive control. Cognitive function was evaluated using the speed of response (reaction time) and response accuracy. We monitored pulse oximetric saturation (SpO2) and cerebral oxygenation to assess oxygen availability. SpO2 and cerebral oxygenation progressively decreased during exercise as the FIO2 level decreased. Nevertheless, the reaction time in the Go-trial significantly decreased during moderate exercise. Hypoxia did not affect reaction time. Neither exercise nor difference in FIO2 level affected response accuracy. An additional experiment indicated that cognitive function was not altered without exercise. These results suggest that the improvement in cognitive function is attributable to exercise, and that hypoxia has no effects on cognitive function at least under the present experimental condition. Exercise-cognition interaction should be further investigated under various environmental and exercise conditions.
Fibromyalgia: anti-inflammatory and stress responses after acute moderate exercise.
Bote, Maria Elena; Garcia, Juan Jose; Hinchado, Maria Dolores; Ortega, Eduardo
2013-01-01
Fibromyalgia (FM) is characterized in part by an elevated inflammatory status, and "modified exercise" is currently proposed as being a good therapeutic help for these patients. However, the mechanisms involved in the exercise-induced benefits are still poorly understood. The objective was to evaluate the effect of a single bout of moderate cycling (45 min at 55% VO2 max) on the inflammatory (serum IL-8; chemotaxis and O2 (-) production by neutrophils; and IL-1β, TNF-α, IL-6, IL-10, and IL-18 release by monocytes) and stress (cortisol; NA; and eHsp72) responses in women diagnosed with FM compared with an aged-matched control group of healthy women (HW). IL-8, NA, and eHsp72 were determined by ELISA. Cytokines released by monocytes were determined by Bio-Plex® system (LUMINEX). Cortisol was determined by electrochemoluminiscence, chemotaxis was evaluated in Boyden chambers and O2 (-) production by NBT reduction. In the FM patients, the exercise induced a decrease in the systemic concentration of IL-8, cortisol, NA, and eHsp72; as well as in the neutrophil's chemotaxis and O2 (-) production and in the inflammatory cytokine release by monocytes. This was contrary to the completely expected exercise-induced increase in all those biomarkers in HW. In conclusion, single sessions of moderate cycling can improve the inflammatory status in FM patients, reaching values close to the situation of aged-matched HW at their basal status. The neuroendocrine mechanism seems to be an exercise-induced decrease in the stress response of these patients.
Protective role of alpha-actinin-3 in the response to an acute eccentric exercise bout.
Vincent, Barbara; Windelinckx, An; Nielens, Henri; Ramaekers, Monique; Van Leemputte, Marc; Hespel, Peter; Thomis, Martine A
2010-08-01
The ACTN3 gene encodes for the alpha-actinin-3 protein, which has an important structural function in the Z line of the sarcomere in fast muscle fibers. A premature stop codon (R577X) polymorphism in the ACTN3 gene causes a complete loss of the protein in XX homozygotes. This study investigates a possible role for the alpha-actinin-3 protein in protecting the fast fiber from eccentric damage and studies repair mechanisms after a single eccentric exercise bout. Nineteen healthy young men (10 XX, 9 RR) performed 4 series of 20 maximal eccentric knee extensions with both legs. Blood (creatine kinase; CK) and muscle biopsy samples were taken to study differential expression of several anabolic (MyoD1, myogenin, MRF4, Myf5, IGF-1), catabolic (myostatin, MAFbx, and MURF-1), and contraction-induced muscle damage marker genes [cysteine- and glycine-rich protein 3 (CSRP3), CARP, HSP70, and IL-6] as well as a calcineurin signaling pathway marker (RCAN1). Baseline mRNA content of CSRP3 and MyoD1 was 49 + or - 12 and 67 + or - 25% higher in the XX compared with the RR group (P = 0.01-0.045). However, satellite cell number was not different between XX and RR individuals. After eccentric exercise, XX individuals tended to have higher serum CK activity (P = 0.10) and had higher pain scores than RR individuals. However, CSRP3 (P = 0.058) and MyoD1 (P = 0.08) mRNA expression tended to be higher after training in RR individuals compared with XX alpha-actinin-3-deficient subjects. This study suggests a protective role of alpha-actinin-3 protein in muscle damage after eccentric training and an improved stress-sensor signaling, although effects are small.
Mukaimoto, Takahiro; Ohno, Makoto
2012-01-01
The purpose of this study was to examine oxygen consumption (VO(2)) during and after a single bout of low-intensity resistance exercise with slow movement. Eleven healthy men performed the following three types of circuit resistance exercise on separate days: (1) low-intensity resistance exercise with slow movement: 50% of one-repetition maximum (1-RM) and 4 s each of lifting and lowering phases; (2) high-intensity resistance exercise with normal movement: 80% of 1-RM and 1 s each of lifting and lowering phases; and (3) low-intensity resistance exercise with normal movement: 50% of 1-RM and 1 s each of lifting and lowering phases. These three resistance exercise trials were performed for three sets in a circuit pattern with four exercises, and the participants performed each set until exhaustion. Oxygen consumption was monitored continuously during exercise and for 180 min after exercise. Average VO(2) throughout the exercise session was significantly higher with high- and low-intensity resistance exercise with normal movement than with low-intensity resistance exercise with slow movement (P < 0.05); however, total VO(2) was significantly greater in low-intensity resistance exercise with slow movement than in the other trials. In contrast, there were no significant differences in the total excess post-exercise oxygen consumption among the three exercise trials. The results of this study suggest that low-intensity resistance exercise with slow movement induces much greater energy expenditure than resistance exercise with normal movement of high or low intensity, and is followed by the same total excess post-exercise oxygen consumption for 180 min after exercise.
Mota, Marcelo Mendonça; Silva, Tharciano Luiz Teixeira Braga da; Macedo, Fabricio Nunes; Mesquita, Thássio Ricardo Ribeiro; Quintans, Lucindo José; Santana-Filho, Valter Joviniano de; Lauton-Santos, Sandra; Santos, Márcio Roberto Viana
2017-05-01
Resistance exercise (RE) has been recommended for patients with cardiovascular diseases. Recently, a few studies have demonstrated that the intensity of a single bout of RE has an effect on endothelial adaptations to exercise. However, there is no data about the effects of different volumes of RE on endothelium function. The aim of the study was to evaluate the effects of different volumes of RE in a single bout on endothelium-dependent vasodilatation and nitric oxide (NO) synthesis in the mesenteric artery of healthy animals. Male Wistar rats were divided into three groups: Control (Ct); low-volume RE (LV, 5 sets x 10 repetitions) and high-volume RE (HV, 15 sets x 10 repetitions). The established intensity was 70% of the maximal repetition test. After the exercise protocol, rings of mesenteric artery were used for assessment of vascular reactivity, and other mesenteric arteries were prepared for detection of measure NO production by DAF-FM fluorescence. Insulin responsiveness on NO synthesis was evaluated by stimulating the vascular rings with insulin (10 nM). The maximal relaxation response to insulin increased in the HV group only as compared with the Ct group. Moreover, the inhibition of nitric oxide synthesis (L-NAME) completely abolished the insulin-induced vasorelaxation in exercised rats. NO production showed a volume-dependent increase in the endothelial and smooth muscle layer. In endothelial layer, only Ct and LV groups showed a significant increase in NO synthesis when compared to their respective group under basal condition. On the other hand, in smooth muscle layer, NO fluorescence increased in all groups when compared to their respective group under basal condition. Our results suggest that a single bout of RE promotes vascular endothelium changes in a volume-dependent manner. The 15 sets x 10 repetitions exercise plan induced the greatest levels of NO synthesis. O exercício resistido (ER) tem sido recomendado para pacientes com doenças cardiovasculares. Recentemente, alguns estudos demonstraram que a intensidade de uma sessão de ER exerce um efeito sobre a disfunção endotelial. No entanto, não há dados sobre os efeitos de diferentes volumes de ER sobre a função endotelial. O objetivo deste estudo foi avaliar os efeitos de diferentes volumes de ER, realizados em uma única sessão, sobre a vasodilatação dependente do endotélio e síntese de óxido nítrico (NO) em artéria mesentérica de animais saudáveis. Ratos Wistar machos foram divididos em três grupos: Controle (Ct); baixo volume (BV, 5 séries x 10 repetições) e alto volume de ER (AV, 15 séries x 10 repetições). Foi estabelecida a intensidade de 70% do teste de repetição máxima. Após o protocolo de exercício, anéis de artéria mesentérica foram utilizados na avaliação da reatividade vascular, e outras artérias mesentéricas foram preparadas para a detecção da produção de NO por fluorescência com para do DAF-FM. A resposta à insulina pela síntese de NO foi avaliada estimulando-se os anéis vasculares com insulina (10nM). A resposta máxima do relaxamento induzido por insulina foi aumentada somente no grupo AV em comparação ao grupo Ct. Além disso, a inibição da síntese do NO (L-NAME), aboliu completamente o relaxamento vascular induzido por insulina em ratos exercitados. A produção de NO mostrou um aumento dependente do volume no endotélio e no músculo liso. No endotélio, apenas os grupos Ct e BV mostraram aumento significativo na síntese de NO quando comparado aos seus respectivos grupos sob condição basal. No entanto, no músculo liso, a fluorescência foi aumentada em todos os grupos quando comparados aos seus respectivos grupos sob a condição basal. Nossos resultados sugerem que uma única sessão de ER foi capaz de promover adaptações no endotélio vascular. Além disso, nós observamos que este efeito é volume-dependente e o volume de 15 séries x10 repetições induziu o maior aumento na síntese de NO.
Sacco, Guillaume; Caillaud, Corinne; Ben Sadoun, Gregory; Robert, Philippe; David, Renaud; Brisswalter, Jeanick
2016-01-01
Epidemiological studies highlight the relevance of regular exercise interventions to enhance or maintain neurocognitive function in subjects with cognitive impairments. The aim of this study was to ascertain the effect of aerobic exercise associated with cognitive enrichment on cognitive performance in subjects with mild cognitive impairment (MCI). Eight participants with MCI (72 ± 2 years) were enrolled in a 9-month study that consisted of two 3-months experimental interventions separated by a training cessation period of 3 months. The interventions included either aerobic exercise alone or aerobic exercise combined with cognitive enrichment. The exercise program involved two 20-min cycling exercise bouts per week at an intensity corresponding to 60% of the heart rate reserve. Cognitive performance was assessed using a task of single reaction time (SRT) and an inhibition task (Go-no-Go) before, immediately after, and 1 month after each intervention. The exercise intervention improved the speed of responses during the Go-no-Go task without any increase in errors. This improvement was enhanced by cognitive enrichment (6 ± 1% ; p > 0.05), when compared with exercise alone (4 ± 0.5% ,). Following exercise cessation, this positive effect disappeared. No effect was observed on SRT performance. Regular aerobic exercise improved cognitive performance in MCI subjects and the addition of cognitive tasks during exercise potentiated this effect. However, the influence of aerobic exercise on cognitive performance did not persist after cessation of training. Studies involving a larger number of subjects are necessary to confirm these results.
Koh, Ho-Jin; Hirshman, Michael F.; He, Huamei; Li, Yangfeng; Manabe, Yasuko; Balschi, James A.; Goodyear, Laurie J.
2007-01-01
Exercise increases AMPK (AMP-activated protein kinase) activity in human and rat adipocytes, but the underlying molecular mechanisms and functional consequences of this activation are not known. Since adrenaline (epinephrine) concentrations increase with exercise, in the present study we hypothesized that adrenaline activates AMPK in adipocytes. We show that a single bout of exercise increases AMPKα1 and α2 activities and ACC (acetyl-CoA carboxylase) Ser79 phosphorylation in rat adipocytes. Similarly to exercise, adrenaline treatment in vivo increased AMPK activities and ACC phosphorylation. Pre-treatment of rats with the β-blocker propranolol fully blocked exercise-induced AMPK activation. Increased AMPK activity with exercise and adrenaline treatment in vivo was accompanied by an increased AMP/ATP ratio. Adrenaline incubation of isolated adipocytes also increased the AMP/ATP ratio and AMPK activities, an effect blocked by propranolol. Adrenaline incubation increased lipolysis in isolated adipocytes, and Compound C, an AMPK inhibitor, attenuated this effect. Finally, a potential role for AMPK in the decreased adiposity associated with chronic exercise was suggested by marked increases in AMPKα1 and α2 activities in adipocytes from rats trained for 6 weeks. In conclusion, both acute and chronic exercise are significant regulators of AMPK activity in rat adipocytes. Our findings suggest that adrenaline plays a critical role in exercise-stimulated AMPKα1 and α2 activities in adipocytes, and that AMPK can function in the regulation of lipolysis. PMID:17253964
Figueiredo, Vandré C; Roberts, Llion A; Markworth, James F; Barnett, Matthew P G; Coombes, Jeff S; Raastad, Truls; Peake, Jonathan M; Cameron-Smith, David
2016-02-01
Muscle hypertrophy occurs following increased protein synthesis, which requires activation of the ribosomal complex. Additionally, increased translational capacity via elevated ribosomal RNA (rRNA) synthesis has also been implicated in resistance training-induced skeletal muscle hypertrophy. The time course of ribosome biogenesis following resistance exercise (RE) and the impact exerted by differing recovery strategies remains unknown. In the present study, the activation of transcriptional regulators, the expression levels of pre-rRNA, and mature rRNA components were measured through 48 h after a single-bout RE. In addition, the effects of either low-intensity cycling (active recovery, ACT) or a cold-water immersion (CWI) recovery strategy were compared. Nine male subjects performed two bouts of high-load RE randomized to be followed by 10 min of either ACT or CWI. Muscle biopsies were collected before RE and at 2, 24, and 48 h after RE. RE increased the phosphorylation of the p38-MNK1-eIF4E axis, an effect only evident with ACT recovery. Downstream, cyclin D1 protein, total eIF4E, upstream binding factor 1 (UBF1), and c-Myc proteins were all increased only after RE with ACT. This corresponded with elevated abundance of the pre-rRNAs (45S, ITS-28S, ITS-5.8S, and ETS-18S) from 24 h after RE with ACT. In conclusion, coordinated upstream signaling and activation of transcriptional factors stimulated pre-rRNA expression after RE. CWI, as a recovery strategy, markedly blunted these events, suggesting that suppressed ribosome biogenesis may be one factor contributing to the impaired hypertrophic response observed when CWI is used regularly after exercise. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Resistance exercise load does not determine training-mediated hypertrophic gains in young men
Mitchell, Cameron J.; Churchward-Venne, Tyler A.; West, Daniel W. D.; Burd, Nicholas A.; Breen, Leigh; Baker, Steven K.
2012-01-01
We have reported that the acute postexercise increases in muscle protein synthesis rates, with differing nutritional support, are predictive of longer-term training-induced muscle hypertrophy. Here, we aimed to test whether the same was true with acute exercise-mediated changes in muscle protein synthesis. Eighteen men (21 ± 1 yr, 22.6 ± 2.1 kg/m2; means ± SE) had their legs randomly assigned to two of three training conditions that differed in contraction intensity [% of maximal strength (1 repetition maximum)] or contraction volume (1 or 3 sets of repetitions): 30%-3, 80%-1, and 80%-3. Subjects trained each leg with their assigned regime for a period of 10 wk, 3 times/wk. We made pre- and posttraining measures of strength, muscle volume by magnetic resonance (MR) scans, as well as pre- and posttraining biopsies of the vastus lateralis, and a single postexercise (1 h) biopsy following the first bout of exercise, to measure signaling proteins. Training-induced increases in MR-measured muscle volume were significant (P < 0.01), with no difference between groups: 30%-3 = 6.8 ± 1.8%, 80%-1 = 3.2 ± 0.8%, and 80%-3= 7.2 ± 1.9%, P = 0.18. Isotonic maximal strength gains were not different between 80%-1 and 80%-3, but were greater than 30%-3 (P = 0.04), whereas training-induced isometric strength gains were significant but not different between conditions (P = 0.92). Biopsies taken 1 h following the initial resistance exercise bout showed increased phosphorylation (P < 0.05) of p70S6K only in the 80%-1 and 80%-3 conditions. There was no correlation between phosphorylation of any signaling protein and hypertrophy. In accordance with our previous acute measurements of muscle protein synthetic rates a lower load lifted to failure resulted in similar hypertrophy as a heavy load lifted to failure. PMID:22518835
Doma, Kenji; Schumann, Moritz; Sinclair, Wade H; Leicht, Anthony S; Deakin, Glen B; Häkkinen, Keijo
2015-08-01
This study examined the effects of two typical strength training sessions performed 1 week apart (i.e. repeated bout effect) on sub-maximal running performance and hormonal. Fourteen resistance-untrained men (age 24.0 ± 3.9 years; height 1.83 ± 0.11 m; body mass 77.4 ± 14.0 kg; VOpeak 48.1 ± 6.1 M kg(-1) min(-1)) undertook two bouts of high-intensity strength training sessions (i.e. six-repetition maximum). Creatine kinase (CK), delayed-onset muscle soreness (DOMS), counter-movement jump (CMJ) as well as concentrations of serum testosterone, cortisol and testosterone/cortisol ratio (T/C) were examined prior to and immediately post, 24 (T24) and 48 (T48) h post each strength training bout. Sub-maximal running performance was also conducted at T24 and T48 of each bout. When measures were compared between bouts at T48, the degree of elevation in CK (-58.4 ± 55.6 %) and DOMS (-31.43 ± 42.9 %) and acute reduction in CMJ measures (4.1 ± 5.4 %) were attenuated (p < 0.05) following the second bout. Cortisol was increased until T24 (p < 0.05) although there were no differences between bouts and no differences were found for testosterone and T/C ratio (p > 0.05). Sub-maximal running performance was impaired until T24, although changes were not attenuated following the second bout. The initial bout appeared to provide protection against a number of muscle damage indicators suggesting a greater need for recovery following the initial session of typical lower body resistance exercises in resistance-untrained men although sub-maximal running should be avoided following the first two sessions.
Frith, Emily; Loprinzi, Paul D.
2018-01-01
Background: We evaluated the differential influence of preferred versus imposed media selections on distinct hedonic responses to an acute bout of treadmill walking. Methods: Twenty university students were recruited for this [160 person-visit] laboratory experiment, which employed a within-subject, counter-balanced design. Participants were exposed to 8 experimental conditions, including (1) Exercise Only, (2) Texting Only, (3) Preferred Phone Call, (4) Imposed Phone Call, (5) Preferred Music Playlist, (6) Imposed Music Playlist, (7)Preferred Video and (8) Imposed Video. During each visit (except Texting Only), participants completed a 10-minute bout of walking on the treadmill at a self-selected pace. Walking speed was identical for all experimental conditions. Before, at the midpoint of exercise, and post-exercise, participants completed the Feeling Scale (FS) and the Felt Arousal Scale (FAS) to measure acute hedonic response. The Affective Circumplex Scale was administered pre-exercise and post-exercise. Results: Significant pre-post change scores were observed for happy (Imposed Call: P=0.05;Preferred Music: P=0.02; Imposed Video: P=0.03), excited (Exercise Only: P=0.001; PreferredVideo: P=0.01; Imposed Video: P=0.03), sad (Preferred Music: P=0.05), anxious (ExerciseOnly: P=0.05; Preferred Video: P=0.01), and fatigue (Exercise Only: P=0.03; Imposed Video:P=0.002). For the FS all change scores were statistically significant from pre-to-mid and pre-topost (P<0.05). Conclusion: This experiment provides strong evidence that entertaining media platforms substantively influences hedonic responses to exercise. Implications of these findings are discussed. PMID:29744306
Frith, Emily; Loprinzi, Paul D
2018-01-01
Background: We evaluated the differential influence of preferred versus imposed media selections on distinct hedonic responses to an acute bout of treadmill walking. Methods: Twenty university students were recruited for this [160 person-visit] laboratory experiment, which employed a within-subject, counter-balanced design. Participants were exposed to 8 experimental conditions, including (1) Exercise Only, (2) Texting Only, (3) Preferred Phone Call, (4) Imposed Phone Call, (5) Preferred Music Playlist, (6) Imposed Music Playlist, (7)Preferred Video and (8) Imposed Video. During each visit (except Texting Only), participants completed a 10-minute bout of walking on the treadmill at a self-selected pace. Walking speed was identical for all experimental conditions. Before, at the midpoint of exercise, and post-exercise, participants completed the Feeling Scale (FS) and the Felt Arousal Scale (FAS) to measure acute hedonic response. The Affective Circumplex Scale was administered pre-exercise and post-exercise. Results: Significant pre-post change scores were observed for happy (Imposed Call: P=0.05;Preferred Music: P=0.02; Imposed Video: P=0.03), excited (Exercise Only: P=0.001; PreferredVideo: P=0.01; Imposed Video: P=0.03), sad (Preferred Music: P=0.05), anxious (ExerciseOnly: P=0.05; Preferred Video: P=0.01), and fatigue (Exercise Only: P=0.03; Imposed Video:P=0.002). For the FS all change scores were statistically significant from pre-to-mid and pre-topost (P<0.05). Conclusion: This experiment provides strong evidence that entertaining media platforms substantively influences hedonic responses to exercise. Implications of these findings are discussed.
Brazaitis, Marius; Kamandulis, Sigitas; Skurvydas, Albertas; Daniusevičiūtė, Laura
2010-12-01
The aim of this study was to investigate the physiological and psychological responses during and after high-intensity exercise in a warm and humid environment in subjects wearing shirts of different fabrics. Eight healthy men exercised on two separate occasions, in random order, wearing two types of long-sleeve T-shirt: one made of polyester (PES) and the other of cotton fabric (CT). They performed three 20 min exercise bouts, with 5 min rest between each, and then rested in a chair for 60 min to recover. The ambient temperature was 25 °C and relative humidity was 60%. The exercise comprised of treadmill running at 8 km/h at 1° grade. Rectal temperature, skin temperatures at eight sites, heart rate, T-shirt mass and ratings of thermal, clothing wettedness, and shivering/sweating sensation were measured before the experiment, during the 5 min rest period after each exercise bout, and during recovery. Nude body mass was measured before the experiment and during recovery. The physiological stress index showed that the exercise produced a state of very high heat stress. Compared with exercise wearing the CT shirt, exercise wearing the PES fabric produced a greater sweating efficiency and less clothing regain (i.e., less sweat retention), but thermophysiological and subjective sensations during the intermittent high-intensity exercise were similar for both fabrics. However, skin temperature returned to the pre-exercise level faster, and the thermal and rating of shivering/sweating sensation were lower after exercise in the warm and humid environment in subjects wearing PES than when wearing the more traditional CT fabric. Copyright © 2010 Elsevier Ltd. All rights reserved.
Cullen, Tom; Thomas, Andrew W; Webb, Richard; Hughes, Michael G
2016-08-01
Acute increases in interleukin (IL)-6 following prolonged exercise are associated with the induction of a transient anti-inflammatory state (e.g., increases in IL-10) that is partly responsible for the health benefits of regular exercise. The purposes of this study were to investigate the IL-6-related inflammatory response to high-intensity interval exercise (HIIE) and to determine the impact of exercise intensity and volume on this response. Ten participants (5 males and 5 females) completed 3 exercise bouts of contrasting intensity and volume (LOW, MOD, and HIGH). The HIGH protocol was based upon standard HIIE protocols, while the MOD and LOW protocols were designed to enable a comparison of exercise intensity and volume with a fixed duration. Inflammatory cytokine concentrations were measured in plasma (IL-6, IL-10) and also determined the level of gene expression (IL-6, IL-10, and IL-4R) in peripheral blood. The plasma IL-6 response to exercise (reported as fold changes) was significantly greater in HIGH (2.70 ± 1.51) than LOW (1.40 ± 0.32) (P = 0.04) and was also positively correlated to the mean exercise oxygen uptake (r = 0.54, P < 0.01). However, there was no change in anti-inflammatory IL-10 or IL-4R responses in plasma or at the level of gene expression. HIIE caused a significant increase in IL-6 and was greater than that seen in low-intensity exercise of the same duration. The increases in IL-6 were relatively small in magnitude, and appear to have been insufficient to induce the acute systemic anti-inflammatory effects, which are evident following longer duration exercise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, R.A.; Bryden, N.A.; Polansky, M.M.
1986-03-05
To determine if degree of training effects urinary Cr losses, Cr excretion of 8 adult trained and 5 untrained runners was determined on rest days and following exercise at 90% of maximal oxygen uptake on a treadmill to exhaustion with 30 second exercise and 30 second rest periods. Subjects were fed a constant daily diet containing 9 ..mu..g of Cr per 1000 calories to minimize changes due to diet. Maximal oxygen consumption of the trained runners was in the good or above range based upon their age and that of the untrained runners was average or below. While consuming themore » control diet, basal urinary Cr excretion of subjects who exercise regularly was significantly lower than that of the sedentary control subjects, 0.09 +/- 0.01 and 0.21 +/- 0.03 ..mu..g/day (mean +/- SEM), respectively. Daily urinary Cr excretion of trained subjects was significantly higher on the day of a single exercise bout at 90% of maximal oxygen consumption compared to nonexercise days, 0.12 +/- 0.02 and 0.09 +/- 0.01 ..mu..g/day, respectively. Urinary Cr excretion of 5 untrained subjects was not altered following controlled exercise. These data demonstrate that basal urinary Cr excretion and excretion in response to exercise are related to maximal oxygen consumption and therefore degree of fitness.« less
Effects of GI meals on intermittent exercise.
Hulton, A T; Gregson, W; Maclaren, D; Doran, D A
2012-09-01
Pre-exercise meals or single foods containing low glycaemic index (LGI) carbohydrates (CHO) have been shown to enhance performance prior to prolonged steady state exercise compared to high glycaemic index (HGI) CHO. This study investigated the impact of HGI and LGI pre-exercise meals on intermittent high intensity exercise. Nine male recreational football players performed a football specific protocol followed by a 1 km time trial 3.5 h after ingesting 1 of 2 isoenergetic test meals (HGI: 870.3 kcal, LGI: 889.5 kcal), which were either HGI (GI: 80) or LGI (GI: 44). Blood glucose, fatty acids (FA), glycerol, β-hydroxybutyrate, lactate and insulin were assessed before, during, and after the exercise bout, whilst rates of CHO and fat oxidation were determined at 4 time points during the protocol. No significant differences were found for the 1 km time trial (LGI: 210.2 ± 19.1 s: HGI: 215.8 ± 22.6 s) (mean ± SD), nor for any of the other variables measured (P>0.05) apart from a significant condition effect with FA and significant interaction effects observed for glucose, β-hydroxybutyrate and lactate (P<0.05). These findings suggest that the type of CHO ingested in a pre-match meal has no significant impact on performance or metabolic responses during 90 min of intermittent high intensity exercise. © Georg Thieme Verlag KG Stuttgart · New York.
2014-01-01
Background Muscle glycogen has been well established as the primary metabolic energy substrate during physical exercise of moderate- to high-intensity and has accordingly been implicated as a limiting factor when such activity is sustained for a prolonged duration. However, the role of this substrate during repeated exercise after limited recovery is less clear, with ongoing debate regarding how recovery processes can best be supported via nutritional intervention. The aim of this project is to examine the causes of fatigue during repeated exercise bouts via manipulation of glycogen availability through nutritional intervention, thus simultaneously informing aspects of the optimal feeding strategy for recovery from prolonged exercise. Methods/Design The project involves two phases with each involving two treatment arms administered in a repeated measures design. For each treatment, participants will be required to exercise to the point of volitional exhaustion on a motorised treadmill at 70% of previously determined maximal oxygen uptake, before a four hour recovery period in which participants will be prescribed solutions providing 1.2 grams of sucrose per kilogram of body mass per hour of recovery (g.kg-1.h-1) relative to either a lower rate of sucrose ingestion (that is, 0.3 g.kg-1. h-1; Phase I) or a moderate dose (that is, 0.8 g.kg-1.h-1) rendered isocaloric via the addition of 0.4 g.kg-1.h-1 whey protein hydrolysate (Phase II); the latter administered in a double blind manner as part of a randomised and counterbalanced design. Muscle biopsies will be sampled at the beginning and end of recovery for determination of muscle glycogen resynthesis rates, with further biopsies taken following a second bout of exhaustive exercise to determine differences in substrate availability relative to the initial sample taken following the first exercise bout. Discussion Phase I will inform whether a dose–response relationship exists between carbohydrate ingestion rate and muscle glycogen availability and/or the subsequent capacity for physical exercise. Phase II will determine whether such effects are dependent on glycogen availability per se or energy intake, potentially via protein mediated mechanisms. Trial registration ISRCTN87937960. PMID:24670140
Effects of prior exercise on the action of insulin-like growth factor I in skeletal muscle
NASA Technical Reports Server (NTRS)
Henriksen, E. J.; Louters, L. L.; Stump, C. S.; Tipton, C. M.
1992-01-01
Prior exercise increases insulin sensitivity for glucose and system A neutral amino acid transport activities in skeletal muscle. Insulin-like growth factor I (IGF-I) also activates these transport processes in resting muscle. It is not known, however, whether prior exercise increases IGF-I action in muscle. Therefore we determined the effect of a single exhausting bout of swim exercise on IGF-I-stimulated glucose transport activity [assessed by 2-deoxy-D-glucose (2-DG) uptake] and system A activity [assessed by alpha-(methylamino)isobutyric acid (MeAIB) uptake] in the isolated rat epitrochlearis muscle. When measured 3.5 h after exercise, the responses to a submaximal concentration (0.2 nM), but not a maximal concentration (13.3 nM), of insulin for activation of 2-DG uptake and MeAIB uptake were enhanced. In contrast, prior exercise increased markedly both the submaximal (5 nM) and maximal (20 nM) responses to IGF-I for activation of 2-DG uptake, whereas only the submaximal response to IGF-I (3 nM) for MeAIB uptake was enhanced after exercise. We conclude that 1) prior exercise significantly enhances the response to a submaximal concentration of IGF-I for activation of the glucose transport and system A neutral amino acid transport systems in skeletal muscle and 2) the enhanced maximal response for IGF-I action after exercise is restricted to the signaling pathway for activation of the glucose transport system.
Oliveira, Getúlio P; Porto, William F; Palu, Cintia C; Pereira, Lydyane M; Petriz, Bernardo; Almeida, Jeeser A; Viana, Juliane; Filho, Nezio N A; Franco, Octavio L; Pereira, Rinaldo W
2018-01-01
Physical exercise stimulates organs, mainly the skeletal muscle, to release a broad range of molecules, recently dubbed exerkines. Among them, RNAs, such as miRNAs, piRNAs, and tRNAs loaded in extracellular vesicles (EVs) have the potential to play a significant role in the way muscle and other organs communicate to translate exercise into health. Low, moderate and high intensity treadmill protocols were applied to rat groups, aiming to investigate the impact of exercise on serum EVs and their associated small RNA molecules. Transmission electron microscopy, resistive pulse sensing, and western blotting were used to investigate EVs morphology, size distribution, concentration and EVs marker proteins. Small RNA libraries from EVs RNA were sequenced. Exercise did not change EVs size, while increased EVs concentration. Twelve miRNAs were found differentially expressed after exercise: rno-miR-128-3p, 103-3p, 330-5p, 148a-3p, 191a-5p, 10b-5p, 93-5p, 25-3p, 142-5p, 3068-3p, 142-3p, and 410-3p. No piRNA was found differentially expressed, and one tRNA, trna8336, was found down-regulated after exercise. The differentially expressed miRNAs were predicted to target genes involved in the MAPK pathway. A single bout of exercise impacts EVs and their small RNA load, reinforcing the need for a more detailed investigation into EVs and their load as mediators of health-promoting exercise.
The acute effect of moderate intensity aquatic exercise on coagulation factors in haemophiliacs.
Beltrame, Luis Gustavo Normanton; Abreu, Laurinda; Almeida, Jussara; Boullosa, Daniel Alexandre
2015-05-01
The objective of this cross-sectional study was to analyse the acute effect of aquatic exercise on haemostasis in persons with haemophilia. Ten adult haemophiliacs (8 type A, 2 type B) familiarized with aquatic training performed a 20-min exercise session in a swimming pool at an intensity of ~70% maximum heart rate (HR). Blood samples were collected immediately after the training session. The haemostatic parameters selected for analyses were factor VIII (FVIII), prothrombin time (PT), activated partial thromboplastin time (APTT) and fibrinogen. There were unclear effects of the exercise bout on FVIII and APTT, with a possibly beneficial effect on PT (-11·4%; 90% confidence interval: -26·1;3·3%), and a trivial change on fibrinogen levels. It was found an association between the mean rise in HR during exercise and the decrement in PT after exercise (r = 0·729; P = 0·026). The greater changes were observed in the patients diagnosed with a moderate level of haemophilia. It is concluded that a short bout of moderate intensity of aquatic exercise may have a positive influence on PT in adults with haemophilia with greater changes in those individuals exhibiting a greater rise in HR during exercise. This may be an important issue to the haemostatic control of haemophiliacs in clinical settings. Further studies are warranted for testing the influence of different aquatic exercise intensities on haemostasis. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Effect of high-intensity interval exercise on lipid oxidation during postexercise recovery.
Malatesta, Davide; Werlen, Catherine; Bulfaro, Stefano; Chenevière, Xavier; Borrani, Fabio
2009-02-01
The aim of this study was to examine whether lipid oxidation predominates during 3 h of postexercise recovery in high-intensity interval exercise as compared with moderate-intensity continuous exercise on a cycle ergometer in fit young men (n = 12; 24.6 +/- 0.6 yr). The energy substrate partitioning was evaluated during and after high-intensity submaximal interval exercise (INT, 1-min intervals at 80% of maximal aerobic power output [Wmax] with an intervening 1 min of active recovery at 40% Wmax) and 60-min moderate-intensity continuous exercise at 45% of maximal oxygen uptake (C45%) as well as a time-matched resting control trial (CON). Exercise bouts were matched for mechanical work output. During exercise, a significantly greater contribution of CHO and a lower contribution of lipid to energy expenditure were found in INT (512.7 +/- 26.6 and 41.0 +/- 14.0 kcal, respectively) than in C45% (406.3 +/- 21.2 and 170.3 +/- 24.0 kcal, respectively; P < 0.001) despite similar overall energy expenditure in both exercise trials (P = 0.13). During recovery, there were no significant differences between INT and C45% in substrate turnover and oxidation (P > 0.05). On the other hand, the mean contribution of lipids to energy yield was significantly higher after exercise trials (C45% = 61.3 +/- 4.2 kcal; INT = 66.7 +/- 4.7 kcal) than after CON (51.5 +/- 3.4 kcal; P < 0.05). These findings show that lipid oxidation during postexercise recovery was increased by a similar amount on two isoenergetic exercise bouts of different forms and intensities compared with the time-matched no-exercise control trial.
Resistance and aerobic exercise have similar effects on 24-h nutrient oxidation.
Melanson, Edward L; Sharp, Teresa A; Seagle, Helen M; Donahoo, William T; Grunwald, Gary K; Peters, John C; Hamilton, Jere T; Hill, James O
2002-11-01
Whether resistance exercise is as effective as aerobic exercise for body-weight management is debated. To compare 24-h energy expenditure (EE) and macronutrient oxidation elicited by comparable bouts of stationary cycling (BK) and weightlifting (WTS). 24-h EE and macronutrient oxidation were measured in 10 nonobese male subjects on three occasions using whole-room indirect calorimetry. BK and WTS days were compared with a nonexercise control day (Con). During BK, subjects exercised for 49 +/- 7 min (mean +/- SEM) at 70% of OV(2max) and expended 546 +/- 16 kcal. During WTS, subjects performed a 70-min circuit consisting of four sets of 10 different exercises at 70% of exercise-specific 1-repetition maximum and expended 448 +/- 21 kcal (P < 0.001 vs BK). 24-h EE on BK and WTS days (2,787 +/- 76 kcal x d(-1), 2,730 +/- 106 kcal x d(-1), respectively, P > 0.05) was elevated compared with Con (2,260 +/- 96 kcal x d(-1), P < 0.001), but 24-h respiratory exchange ratio (RER) was not different. 24-h carbohydrate oxidation was significantly elevated on the exercise days (BK = 370 +/- 18 g x d(-1), WTS = 349 +/- 23 g x d(-1), P > 0.05) compared with Con (249 +/- 29 g x d(-1), P = 0.04). 24-h fat and protein oxidation were the same on BK, WTS, and Con days. EE and macronutrient oxidation in the periods after exercise also did not differ across conditions. In men, resistance exercise has a similar effect on 24-h EE and macronutrient oxidation as a comparable bout of aerobic exercise. Neither exercise produced an increase in 24-h fat oxidation above that observed on a nonexercise control day.
Sprick, Justin D; Rickards, Caroline A
2017-11-01
Remote ischemic preconditioning (RIPC) is characterized by the cyclical application of limb blood flow restriction and reperfusion and has been shown to protect vital organs during a subsequent ischemic insult. Blood flow restriction exercise (BFRE) similarly combines bouts of blood flow restriction with low-intensity exercise and thus could potentially emulate the protection demonstrated by RIPC. One concern with BFRE, however, is the potential for an augmented rise in sympathetic outflow due to greater activation of the exercise pressor reflex. Because of the use of lower workloads, however, we hypothesized that BFRE would elicit an attenuated increase in sympathetic outflow [assessed via plasma norepinephrine (NE) and mean arterial pressure (MAP)] and middle cerebral artery velocity (MCAv) when compared with conventional exercise (CE). Fifteen subjects underwent two leg press exercise interventions: 1 ) BFRE-220 mmHg bilateral thigh occlusion at 20% 1 rep-max (1RM), and 2 ) CE-65% 1RM without occlusion. Each condition consisted of 4 × 5-min cycles of exercise, with 3 × 10-reps in each cycle. Five minutes of rest and reperfusion (for BFRE) followed each cycle. MAP increased with exercise ( P < 0.001) and was 4-5 mmHg higher with CE versus BFRE ( P ≤ 0.09). Mean MCAv also increased with exercise ( P < 0.001) and was higher with CE compared with BFRE during the first bout of exercise only ( P = 0.07). Plasma NE concentration increased with CE only ( P < 0.001) and was higher than BFRE throughout exercise ( P ≤ 0.02). The attenuated sympathetic response, combined with similar cerebrovascular responses, suggest that cyclical BFRE could be explored as an alternative to CE in the clinical setting. Copyright © 2017 the American Physiological Society.
Effect of Yoga Practice on Levels of Inflammatory Markers After Moderate and Strenuous Exercise
Doreswamy, Venkatesh; Narasipur, Omkar Subbaramajois; Kunnavil, Radhika; Srinivasamurthy, Nandagudi
2015-01-01
Background and Objectives To evaluate the effect of yoga practice and exercise challenge on Tumour Necrosis Factor alpha (TNF-α), Interleukin-6 (IL-6) levels and lipid profile. Materials and Methods Two hundred and eighteen subjects participated in the study. One hundred and nine volunteers (51 males and 58 females) in the age group of 20 to 60 years, who practiced yoga regularly for over five years for a period of one hour daily, performed a bout of moderate exercise and a bout of strenuous exercise as per Standardized Shuttle Walk test protocol. Anthropometrically matched, age matched and gender matched subjects, who did not practice yoga (non-yoga group) were chosen as controls (non-yoga, n=109). The non-yoga group also performed similar exercises. The blood samples of both the groups were collected before and after the exercises. TNF-α and IL-6 was analysed before and after the exercise by Sandwich ELISA (Enzyme Linked Immunosorbent Assay). Results Resting plasma TNF-α concentration was significantly higher in non-yoga group when compared to yoga group (p<0.05). There was an increase in TNF-α levels in both the groups in response to strenuous exercise. There was no gender difference in TNF-α and IL-6 levels before and after exercise in yoga and non-yoga groups. Conclusion Regular practice of yoga lowers basal TNF-α and IL-6 levels. It also reduces the extent of increase of TNF-α and IL-6 to a physical challenge of moderate exercise and strenuous exercise. There is no significant gender difference in the TNF-α and IL-6 levels. Regular practice of yoga can protect the individual against inflammatory diseases by favourably altering pro-inflammatory cytokine levels. PMID:26266115
Knudsen, Jakob G; Gudiksen, Anders; Bertholdt, Lærke; Overby, Peter; Villesen, Ida; Schwartz, Camilla L; Pilegaard, Henriette
2017-01-01
An acute bout of exercise imposes a major challenge on whole-body metabolism and metabolic adjustments are needed in multiple tissues during recovery to reestablish metabolic homeostasis. It is currently unresolved how this regulation is orchestrated between tissues. This study was undertaken to clarify the role of skeletal muscle derived interleukin 6 (IL-6) in the coordination of the metabolic responses during recovery from acute exercise. Skeletal muscle specific IL-6 knockout (IL-6 MKO) and littermate Control mice were rested or ran on a treadmill for 2h. Plasma, skeletal muscle, liver and adipose tissue were obtained after 6 and 10h of recovery. Non-exercised IL-6 MKO mice had higher plasma lactate and lower plasma non-esterified fatty acids than Controls. The activity of pyruvate dehydrogenase in the active form was, in skeletal muscle, higher in IL-6 MKO mice than Controls in non-exercised mice and 6h after exercise. IL-6 MKO mice had lower glucose transporter 4 protein content in inguinal adipose tissue (WAT) than Control in non-exercised mice and 10h after treadmill running. Epididymal WAT hormone sensitive lipase phosphorylation and inguinal WAT mitogen activated kinase P38 phosphorylation were higher in IL-6 MKO than Control mice 6h after exercise. These findings indicate that skeletal muscle IL-6 may play an important role in the regulation of substrate utilization in skeletal muscle, basal and exercise-induced adaptations in adipose tissue glucose uptake and lipolysis during recovery from exercise. Together this indicates that skeletal muscle IL-6 contributes to reestablishing metabolic homeostasis during recovery from exercise by regulating WAT and skeletal muscle metabolism.
2015-01-01
Objective To compare the acute effects of a cycling intervention on carotid arterial hemodynamics between basketball athletes and sedentary controls. Methods Ten young long-term trained male basketball athletes (BA) and nine age-matched male sedentary controls (SC) successively underwent four bouts of exercise on a bicycle ergometer at the same workload. Hemodynamic variables at right common carotid artery were determined at rest and immediately following each bout of exercise. An ANCOVA was used to compare differences between the BA and SC groups at rest and immediately following the cycling intervention. The repeated ANOVA was used to assess differences between baseline and each bout of exercise within the BA or SC group. Results In both groups, carotid hemodynamic variables showed significant differences at rest and immediately after the cycling intervention. At rest, carotid arterial stiffness was significantly decreased and carotid arterial diameter was significantly increased in the BA group as compared to the SC group. Immediately following the cycling intervention, carotid arterial stiffness showed no obvious changes in the BA group but significantly increased in the SC group. It is worth noting that while arterial stiffness was lower in the BA group than in the SC group, the oscillatory shear index (OSI) was significantly higher in the BA group than in the SC group both at rest and immediately following the cycling intervention. Conclusion Long-term basketball exercise had a significant impact on common carotid arterial hemodynamic variables not only at rest but also after a cycling intervention. The role of OSI in the remodeling of arterial structure and function in the BA group at rest and after cycling requires clarification. PMID:25602805
Effect of contrast water therapy duration on recovery of cycling performance: a dose-response study.
Versey, Nathan; Halson, Shona; Dawson, Brian
2011-01-01
This study investigated whether contrast water therapy (CWT) has a dose-response effect on recovery from high-intensity cycling. Eleven trained male cyclists completed four trials, each commencing with a 75-min cycling protocol containing six sets of five 15-s sprints and three 5-min time-trials in thermoneutral conditions. Ten minutes post-exercise, participants performed one of four recovery protocols: CWT for 6 min (CWT6), 12 min (CWT12), or 18 min (CWT18) duration, or a seated rest control trial. The CWT commenced in hot water (38.4 ± 0.6°C) and alternated between hot and cold water (14.6 ± 0.3°C) every minute with a 5-s changeover. The cycling protocol was repeated 2 h after completion of exercise bout one. Prior to exercise bout two, core temperature was lower in CWT12 (-0.19 ± 0.14°C, mean ± 90% CL) and CWT18 (-0.21 ± 0.10°C) than control. Compared with control, CWT6 substantially improved time-trial (1.5 ± 2.1%) and sprint performance (3.0 ± 3.1%), and CWT12 substantially improved sprint total work (4.3 ± 3.4%) and peak power (2.7 ± 3.8%) in exercise bout two. All CWT conditions generally improved thermal sensation, whole body fatigue and muscle soreness compared with control, but no differences existed between conditions in heart rate or rating of perceived exertion. In conclusion, CWT duration did not have a dose-response effect on recovery from high-intensity cycling; however, CWT for up to 12 min assisted recovery of cycling performance.
An Acute Bout of Barefoot Running Alters Lower-limb Muscle Activation for Minimalist Shoe Users.
Snow, N J; Basset, F A; Byrne, J
2016-05-01
Despite the abundance of barefoot running-related research, there have been no electromyography studies evaluating the effects of this mode of exercise on habitual users of minimalist footwear. The present study investigated differences in muscle activation during acute bouts of barefoot and shod running, in minimalist shoe users. 8 male participants ran on a motorized treadmill for 10 min under both conditions, at 70% maximal aerobic speed. Electromyographic data were sampled from the biceps femoris, gluteus maximus, gastrocnemius medialis, tibialis anterior, and vastus lateralis during both swing and stance. Root-mean-square analysis of electromyographic data was conducted to compare muscle activation between conditions. During stance, barefoot running resulted in greater muscle activity in gastrocnemius medialis and gluteus maximus, and lower muscle activity in tibialis anterior. During swing, barefoot running resulted in increased muscle activity in vastus lateralis and gastrocnemius medialus. These results indicate that, for minimalist shoe users, an acute bout of barefoot running results in significantly different lower-limb muscle activity. Increased activation in the above muscles presents a possible mechanism for injury, which should be considered during exercise prescription. © Georg Thieme Verlag KG Stuttgart · New York.
Ludyga, Sebastian; Gerber, Markus; Brand, Serge; Pühse, Uwe; Colledge, Flora
2018-06-01
Acute benefits of aerobic exercise on executive functioning have been reported frequently under laboratory conditions. However, to date, a beneficial effect on long-term memory has been less well supported and no data are available regarding nonlaboratory conditions in young adults. The aim of the current study was to investigate acute effects of aerobic exercise on cognitive functioning in a university classroom setting. Using a cross-over design, 51 participants performed a bout of moderately intense running (RUN) and read an article while seated (CON). Afterwards, they completed free-recall tests, followed by a Flanker task and an n-back task. Participants in the RUN condition compared with those in the CON condition showed shorter reaction time on the inhibition task, F(1, 50) = 5.59, p = .022, η 2 = .101, and recalled more words in the immediate- and delayed-recall tests, F(1, 50) = 8.40, p = .006, η 2 = .144. The present findings suggest that a moderately intense bout of aerobic exercise benefits verbal short-term and long-term memory as well as inhibitory control among students in a classroom setting.
Lizamore, C A; Kathiravel, Y; Elliott, J; Hellemans, J; Hamlin, M J
2016-03-01
While the effects of instantaneous, single-bout exposure to hypoxia have been well researched, little is known about the autonomic response during, or as an adaptation to, repeated intermittent hypoxic exposure (IHE) in a sedentary population. Resting heart rate variability (HRV) and exercise capacity was assessed in 16 participants (8 receiving IHE, [Hyp] and 8 receiving a placebo treatment [C]) before and after a 4-week IHE intervention. Heart rate variability was also measured during an IHE session in the last week of the intervention. Post-intervention, the root mean squared successive difference (rMSSD) increased substantially in Hyp (71.6 ± 52.5%, mean change ± 90% confidence limits) compared to C suggesting an increase in vagal outflow. However, aside from a likely decrease in submaximal exercise heart rate in the Hyp group (-5.0 ± 6.4%) there was little evidence of improved exercise capacity. During the week 4 IHE measurement, HRV decreased during the hypoxic exposure (reduced R-R interval: -7.5 ± 3.2%; and rMSSD: -24.7 ± 17.3%) suggesting a decrease in the relative contribution of vagal activity. In summary, while 4 weeks of IHE is unlikely to improve maximal exercise capacity, it may be a useful means of increasing HRV in people unable to exercise.
Effects of whole-body cryotherapy on recovery after hamstring damaging exercise: a crossover study.
Fonda, B; Sarabon, N
2013-10-01
The purpose of this study was to examine the effects of whole-body cryotherapy (WBC) on biochemical, pain, and performance parameters during the 5-day recovery period after damaging exercise for hamstrings. Participants completed a bout of damaging exercise for the hamstring muscles on two separate occasions (control and experimental condition) separated by 10 weeks. During the control condition, subjects received no treatment after the damaging exercise. The experimental condition consisted of WBC everyday during the recovery period. WBC included single 3-min daily exposures to low temperatures (-140 to -19 °C) in the cryo-cabin. During the recovery period, subjects were tested for biochemical markers, perceived pain sensation, and physical performance (squat jump, counter movement jump, maximal isometric torque production, and maximally explosive isometric torque production). Majority of the observed variables showed statistically significant time effects (P < 0.05) in control group, which indicates the presence of muscle damage. Significant interaction between the control and WBC condition was evident for the rate of torque development (P < 0.05). Pain measures substantially differed between the WBC and the control condition after the exercise. Results of this study are not completely supportive of the use of WBC for recovery enhancement after strenuous training. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Sharma, Sourabh Kumar; Raza, Shahid; Moiz, Jamal Ali; Verma, Shalini; Naqvi, Irshad Husain; Anwer, Shahnawaz; Alghadir, Ahmad H
2018-01-01
Postactivation potentiation is referred to as an acute and temporary enhancement of muscle performance resulting from previous muscle contraction. The purpose of this study was to compare the acute effect of plyometric exercise (PLY) and heavy-resistance exercise (RES) on the blood lactate level (BLa) and physical performance. Fourteen male collegiate soccer players were randomized to perform either RES or PLY first and then crossed over to perform the opposite intervention. PLY consisted of 40 jumps, whereas RES comprised ten single repetitions at 90% of one repetition maximum. BLa and physical performance (countermovement jump height and 20-m sprint) were measured before and at 1 and 10 min following the exercise. No significant difference was observed in the BLa for both exercises (PLY and RES). Relative to baseline, countermovement jump (CMJ) height was significantly better for the PLY group after 1 min ( P = 0.004) and after 10 min ( P = 0.001) compared to that of the RES group. The 20-m sprint time was significantly better for PLY at 10 min ( P = 0.003) compared to that of RES. The present study concluded that, compared to RES, PLY causes greater potentiation, which leads to improved physical performance. This trial is registered with NCT03150277.
Gudiksen, Anders; Schwartz, Camilla Lindgren; Bertholdt, Lærke; Joensen, Ella; Knudsen, Jakob G; Pilegaard, Henriette
2016-01-01
Pyruvate dehydrogenase (PDH) plays a key role in the regulation of skeletal muscle substrate utilization. IL-6 is produced in skeletal muscle during exercise in a duration dependent manner and has been reported to increase whole body fatty acid oxidation, muscle glucose uptake and decrease PDHa activity in skeletal muscle of fed mice. The aim of the present study was to examine whether muscle IL-6 contributes to exercise-induced PDH regulation in skeletal muscle. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) completed a single bout of treadmill exercise for 10, 60 or 120 min, with rested mice of each genotype serving as basal controls. The respiratory exchange ratio (RER) was overall higher (P<0.05) in IL-6 MKO than control mice during the 120 min of treadmill exercise, while RER decreased during exercise independent of genotype. AMPK and ACC phosphorylation also increased with exercise independent of genotype. PDHa activity was in control mice higher (P<0.05) at 10 and 60 min of exercise than at rest but remained unchanged in IL-6 MKO mice. In addition, PDHa activity was higher (P<0.05) in IL-6 MKO than control mice at rest and 60 min of exercise. Neither PDH phosphorylation nor acetylation could explain the genotype differences in PDHa activity. Together, this provides evidence that skeletal muscle IL-6 contributes to the regulation of PDH at rest and during prolonged exercise and suggests that muscle IL-6 normally dampens carbohydrate utilization during prolonged exercise via effects on PDH.
Brown, Barbara B; Wilson, Laura; Tribby, Calvin P; Werner, Carol M; Wolf, Jean; Miller, Harvey J; Smith, Ken R
2014-07-01
Obtaining the 'when, where and why' of healthy bouts of moderate-to-vigorous physical activity (MVPA) provides insights into natural PA. In Salt Lake City, Utah, adults wore accelerometer and Global Positioning System (GPS) loggers for a week in a cross-sectional study to establish baseline travel and activity patterns near a planned Complete Street intervention involving a new rail line, new sidewalks and a bike path. At the end of the week, research assistants met with the 918 participants who had at least three 10 h days of good accelerometer readings. Accelerometer and GPS data were uploaded and integrated within a custom application, and participants were provided with maps and time information for past MVPA bouts of ≥3 min to help them recall bout details. Participants said that 'getting someplace' was, on average, a more important motivation for their bouts than leisure or exercise. A series of recall tests showed that participants recalled most bouts they were asked about, regardless of the duration of the bout, suggesting that participant perceptions of their shorter lifestyle bouts can be studied with this methodology. Visual prompting with a map depicting where each bout took place yielded more accurate recall than prompting with time cues alone. These techniques provide a novel way to understand participant memories of the context and subjective assessments associated with healthy bouts of PA. Prompts with time-stamped maps that illustrate places of MVPA offer an effective method to improve understanding of activity and its supportive sociophysical contexts. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Russell, A P; Wallace, M A; Kalanon, M; Zacharewicz, E; Della Gatta, P A; Garnham, A; Lamon, S
2017-06-01
The striated muscle activator of Rho signalling (STARS) is a muscle-specific actin-binding protein. The STARS signalling pathway is activated by resistance exercise and is anticipated to play a role in signal mechanotransduction. Animal studies have reported a negative regulation of STARS signalling with age, but such regulation has not been investigated in humans. Ten young (18-30 years) and 10 older (60-75 years) subjects completed an acute bout of resistance exercise. Gene and protein expression of members of the STARS signalling pathway and miRNA expression of a subset of miRNAs, predicted or known to target members of STARS signalling pathway, were measured in muscle biopsies collected pre-exercise and 2 h post-exercise. For the first time, we report a significant downregulation of the STARS protein in older subjects. However, there was no effect of age on the magnitude of STARS activation in response to an acute bout of exercise. Finally, we established that miR-628-5p, a miRNA regulated by age and exercise, binds to the STARS 3'UTR to directly downregulate its transcription. This study describes for the first time the resistance exercise-induced regulation of STARS signalling in skeletal muscle from older humans and identifies a new miRNA involved in the transcriptional control of STARS. © 2016 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.
Chang, Yu-Kai; Pesce, Caterina; Chiang, Yi-Te; Kuo, Cheng-Yuh; Fong, Dong-Yang
2015-01-01
The purpose of this study was to investigate the after-effects of an acute bout of moderate intensity aerobic cycling exercise on neuroelectric and behavioral indices of efficiency of three attentional networks: alerting, orienting, and executive (conflict) control. Thirty young, highly fit amateur basketball players performed a multifunctional attentional reaction time task, the attention network test (ANT), with a two-group randomized experimental design after an acute bout of moderate intensity spinning wheel exercise or without antecedent exercise. The ANT combined warning signals prior to targets, spatial cueing of potential target locations and target stimuli surrounded by congruent or incongruent flankers, which were provided to assess three attentional networks. Event-related brain potentials and task performance were measured during the ANT. Exercise resulted in a larger P3 amplitude in the alerting and executive control subtasks across frontal, central and parietal midline sites that was paralleled by an enhanced reaction speed only on trials with incongruent flankers of the executive control network. The P3 latency and response accuracy were not affected by exercise. These findings suggest that after spinning, more resources are allocated to task-relevant stimuli in tasks that rely on the alerting and executive control networks. However, the improvement in performance was observed in only the executively challenging conflict condition, suggesting that whether the brain resources that are rendered available immediately after acute exercise translate into better attention performance depends on the cognitive task complexity. PMID:25914634
Retamoso, Leandro T; Silveira, Mauro E P; Lima, Frederico D; Busanello, Guilherme L; Bresciani, Guilherme; Ribeiro, Leandro R; Chagas, Pietro M; Nogueira, Cristina W; Braga, Ana Claudia M; Furian, Ana Flávia; Oliveira, Mauro S; Fighera, Michele R; Royes, Luiz Fernando F
2016-05-01
It is well-known that unaccustomed exercise, especially eccentric exercise, is associated to delayed onset muscle soreness (DOMS). Whether DOMS is associated with reactive oxygen species (ROS) and the transient receptor potential vanilloid 1 (TRPV1) is still an open question. Thus, the aim of this study was to investigate the association between TRPV1 and xanthine oxidase-related ROS production in muscle and DOMS after a bout of eccentric exercise. Male Wistar rats performed a downhill running exercise on a treadmill at a -16° tilt and a constant speed for 90min (5min/bout separated by 2min of rest). Mechanical allodynia and grip force tests were performed before and 1, 3, 6, 9, 12, 24, 48 and 72h after the downhill running. Biochemical assays probing oxidative stress, purine degradation, xanthine oxidase activity, Ca(2+) ATPase activity and TRPV1 protein content were performed in gastrocnemius muscle at 12, 24, and 48h after the downhill running. Our statistical analysis showed an increase in mechanical allodynia and a loss of strength after the downhill running. Similarly, an increase in carbonyl, xanthine oxidase activity, uric acid levels and TRPV1 immunoreactivity were found 12h post-exercise. On the other hand, Ca(2+) ATPase activity decreased in all analyzed times. Our results suggest that a possible relationship between xanthine oxidase-related ROS and TRPV1 may exist during the events preceding eccentric exercise-related DOMS. Copyright © 2016 Elsevier Inc. All rights reserved.
The effect of exercise mode on the acute response of satellite cells in old men.
Nederveen, J P; Joanisse, S; Séguin, C M L; Bell, K E; Baker, S K; Phillips, S M; Parise, G
2015-12-01
A dysregulation of satellite cells may contribute to the progressive loss of muscle mass that occurs with age; however, older adults retain the ability to activate and expand their satellite cell pool in response to exercise. The modality of exercise capable of inducing the greatest acute response is unknown. We sought to characterize the acute satellite cell response following different modes of exercise in older adults. Sedentary older men (n = 22; 67 ± 4 years; 27 ± 2.6 kg*m(-2) ) were randomly assigned to complete an acute bout of either resistance exercise, high-intensity interval exercise on a cycle ergometer or moderate-intensity aerobic exercise. Muscle biopsies were obtained before, 24 and 48 h following each exercise bout. The satellite cell response was analysed using immunofluorescent microscopy of muscle cross sections. Satellite cell expansion associated with type I fibres was observed 24 and 48 h following resistance exercise only (P ˂ 0.05), while no expansion of type II-associated satellite cells was observed in any group. There was a greater number of activated satellite cells 24 h following resistance exercise (pre: 1.3 ± 0.1, 24 h: 4.8 ± 0.5 Pax7 + /MyoD+cells/100 fibres) and high-intensity interval exercise (pre: 0.7 ± 0.3, 24 h: 3.1 ± 0.3 Pax7 + /MyoD+cells/100 fibres) (P ˂ 0.05). The percentage of type I-associated SC co-expressing MSTN was reduced only in the RE group 24 h following exercise (pre: 87 ± 4, 24 h: 57 ± 5%MSTN+ type I SC) (P < 0.001). Although resistance exercise is the most potent exercise type to induce satellite cell pool expansion, high-intensity interval exercise was also more potent than moderate-intensity aerobic exercise in inducing satellite cell activity. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Alaca, Nuray; Uslu, Serap; Gulec Suyen, Guldal; Ince, Umit; Serteser, Mustafa; Kurtel, Hızır
2018-01-01
Exercise training is known to have multiple beneficial effects on type 2 diabetes mellitus (T2DM). The aim of this study was to explore the effects of aerobic exercise frequency on diabetic parameters, the histopathological structure of skeletal muscle, diabetic myopathy, and mitochondrial enzyme activity in an experimental model of T2DM. Sprague-Dawley rats (n = 35) were rendered diabetic by injection of nicotinamide (110 mg/kg) and streptozotocin (65 mg/kg). Rats with blood glucose concentrations between 7 and 17 mmol/L were used. Diabetic rats were randomly allocated to one of the following groups: (i) control sedentary; (ii) diabetic sedentary; (iii) diabetic with continuous exercise (30 min/day, 5 days/week); (iv) diabetic with short bouts of exercise (3 × 10 min/day, 5 days/week); and (v) diabetic rats as "weekend warriors" (35 + 40 min/day, 2 days/week). After 6 weeks swimming exercise (total duration 150 min/week), biochemical tests were performed to measure insulin, glucose, cytokines, serum and muscle myeloperoxidase (MPO), and malondialdehyde (MDA) levels. Histologic analysis (histomorphometric and mitochondrial enzyme analysis) was also performed. Compared with diabetic sedentary rats, significant improvements were observed in all exercise groups in terms of glucose levels, weight loss, tissue MPO and MDA levels, muscular connective tissue, muscle atrophy, mitochondrial enzyme, and all histomorphometric analyses. The results of the study emphasize the effects of training on inflammation, increased oxidative stress, myopathy, and mitochondrial damage in a rat model of T2DM, and demonstrate that there is no major difference between exercise modalities provided that the total duration of exercise remains the same. © 2017 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.
Kriel, Yuri; Kerhervé, Hugo A; Askew, Christopher D; Solomon, Colin
High intensity interval training (HIIT) has been proposed as a time-efficient format of exercise to reduce the chronic disease burden associated with sedentary behaviour. Changes in oxygen utilisation at the local tissue level during an acute session of HIIT could be the primary stimulus for the health benefits associated with this format of exercise. The recovery periods of HIIT effect the physiological responses that occur during the session. It was hypothesised that in sedentary individuals, local and systemic oxygen utilisation would be higher during HIIT interspersed with active recovery periods, when compared to passive recovery periods. Twelve sedentary males (mean ± SD; age 23 ± 3 yr) completed three conditions on a cycle ergometer: 1) HIIT with passive recovery periods between four bouts (HIITPASS) 2) HIIT with active recovery periods between four bouts (HIITACT) 3) HIITACT with four HIIT bouts replaced with passive periods (REC). Deoxygenated haemoglobin (HHb) in the vastus lateralis (VL) and gastrocnemius (GN) muscles and the pre-frontal cortex (FH), oxygen consumption (VO2), power output and heart rate (HR) were measured continuously during the three conditions. There was a significant increase in HHb at VL during bouts 2 (p = 0.017), 3 (p = 0.035) and 4 (p = 0.035) in HIITACT, compared to HIITPASS. Mean power output was significantly lower in HIITACT, compared to HIITPASS (p < 0.001). There was a significant main effect for site in both HIITPASS (p = 0.029) and HIITACT (p = 0.005). There were no significant differences in VO2 and HR between HIITPASS and HIITACT. The increase in HHb at VL and the lower mean power output during HIITACT could indicate that a higher level of deoxygenation contributes to decreased mechanical power in sedentary participants. The significant differences in HHb between sites indicates the specificity of oxygen utilisation.
FKBP12 deficiency reduces strength deficits after eccentric contraction-induced muscle injury
Corona, Benjamin T.; Rouviere, Clement; Hamilton, Susan L.; Ingalls, Christopher P.
2008-01-01
Strength deficits associated with eccentric contraction-induced muscle injury stem, in part, from excitation-contraction uncoupling. FKBP12 is a 12-kDa binding protein known to bind to the skeletal muscle sarcoplasmic reticulum Ca2+ release channel [ryanodine receptor (RyR1)] and plays an important role in excitation-contraction coupling. To assess the effects of FKBP12 deficiency on muscle injury and recovery, we measured anterior crural muscle (tibialis anterior and extensor digitorum longus muscles) strength in skeletal muscle-specific FKBP12-deficient and wild-type (WT) mice before and after a single bout of 150 eccentric contractions, as well as before and after the performance of six injury bouts. Histological damage of the tibialis anterior muscle was assessed after injury. Body weight and peak isometric and eccentric torques were lower in FKBP12-deficient mice compared with WT mice. There were no differences between FKBP12-deficient and WT mice in preinjury peak isometric and eccentric torques when normalized to body weight, and no differences in the relative decreases in eccentric torque with a single or multiple injury bouts. After a single injury bout, FKBP12-deficient mice had less initial strength deficits and recovered faster (especially females) than WT mice, despite no differences in the degree of histological damage. After multiple injury bouts, FKBP12-deficient mice recovered muscle strength faster than WT mice and exhibited significantly less histological muscle damage than WT mice. In summary, FKBP12 deficiency results in less initial strength deficits and enhanced recovery from single (especially females) and repeated bouts of injury than WT mice. PMID:18511525
Matsunaga, Yutaka; Sakata, Yasuyuki; Yago, Takumi; Nakamura, Hirohiko; Shimizu, Takashi; Takeda, Yasuhiro
2018-06-11
Numerous studies have reported that post-exercise ingestion of carbohydrates with protein supplementation can enhance glycogen recovery. However, few reports have focused on the degrees of degradation of the ingested proteins due to post-exercise glycogen resynthesis. Accordingly, the aim of this study was to clarify the effects of differences in protein degradation on muscle glycogen recovery. Male seven-week-old C57BL/6J mice performed a single bout of 60-min treadmill running exercise and were then orally administered glucose (Glu; 1.5 mg/g body weight (BW)), glucose with casein peptide (Glu + Pep; 1.5 + 0.5 mg/g BW) or its constituent amino acid mixture (Glu + AA; 1.5 + 0.5 mg/g BW). At 120 min after supplementation, the soleus muscle glycogen content in the Glu and Glu + AA groups was significantly higher than that immediately after exercise; however, no such difference was observed in the Glu + Pep group. Blood substrate concentration and insulin signaling did not differ among the three groups. Furthermore, energy expenditure during the recovery period in the Glu + Pep group was significantly higher than that in the Glu and Glu + AA groups. These findings suggest that post-exercise co-ingestion of glucose and casein peptide might delay glycogen resynthesis, at least in part through increased energy expenditure caused by casein peptide ingestion.
Lalia, Antigoni Z; Dasari, Surendra; Robinson, Matthew M; Abid, Hinnah; Morse, Dawn M; Klaus, Katherine A; Lanza, Ian R
2017-04-01
Omega-3 polyunsaturated fatty acids (n3-PUFA) are recognized for their anti-inflammatory effects and may be beneficial in the context of sarcopenia. We determined the influence of n3-PUFA on muscle mitochondrial physiology and protein metabolism in older adults. Twelve young (18-35 years) and older (65-85 years) men and women were studied at baseline. Older adults were studied again following n3-PUFA supplementation (3.9g/day, 16 weeks). Muscle biopsies were used to evaluate respiratory capacity (high resolution respirometry) and oxidant emissions (spectrofluorometry) in isolated mitochondria. Maximal respiration was significantly lower in older compared to young. n3-PUFA did not change respiration, but significantly reduced oxidant emissions. Participants performed a single bout of resistance exercise, followed by biopsies at 15 and 18 hours post exercise. Several genes involved in muscle protein turnover were significantly altered in older adults at baseline and following exercise, yet muscle protein synthesis was similar between age groups under both conditions. Following n3-PUFA supplementation, mixed muscle, mitochondrial, and sarcoplasmic protein synthesis rates were increased in older adults before exercise. n3-PUFA increased post-exercise mitochondrial and myofibrillar protein synthesis in older adults. These results demonstrate that n3-PUFA reduce mitochondrial oxidant emissions, increase postabsorptive muscle protein synthesis, and enhance anabolic responses to exercise in older adults.
Lalia, Antigoni Z.; Dasari, Surendra; Robinson, Matthew M.; Abid, Hinnah; Morse, Dawn M.; Klaus, Katherine A.; Lanza, Ian R.
2017-01-01
Omega-3 polyunsaturated fatty acids (n3-PUFA) are recognized for their anti-inflammatory effects and may be beneficial in the context of sarcopenia. We determined the influence of n3-PUFA on muscle mitochondrial physiology and protein metabolism in older adults. Twelve young (18-35 years) and older (65-85 years) men and women were studied at baseline. Older adults were studied again following n3-PUFA supplementation (3.9g/day, 16 weeks). Muscle biopsies were used to evaluate respiratory capacity (high resolution respirometry) and oxidant emissions (spectrofluorometry) in isolated mitochondria. Maximal respiration was significantly lower in older compared to young. n3-PUFA did not change respiration, but significantly reduced oxidant emissions. Participants performed a single bout of resistance exercise, followed by biopsies at 15 and 18 hours post exercise. Several genes involved in muscle protein turnover were significantly altered in older adults at baseline and following exercise, yet muscle protein synthesis was similar between age groups under both conditions. Following n3-PUFA supplementation, mixed muscle, mitochondrial, and sarcoplasmic protein synthesis rates were increased in older adults before exercise. n3-PUFA increased post-exercise mitochondrial and myofibrillar protein synthesis in older adults. These results demonstrate that n3-PUFA reduce mitochondrial oxidant emissions, increase postabsorptive muscle protein synthesis, and enhance anabolic responses to exercise in older adults. PMID:28379838
Buker, Daniel Bueno; Oyarce, Cristóbal Castillo; Plaza, Raúl Smith
2018-01-01
Background: Spinal cord injury (SCI) above T6 is followed by a loss of sympathetic supraspinal control of the heart, disturbing the autonomic balance and increasing cardiovascular risk. Heart rate variability (HRV) is a widely used tool for assessing the cardiac autonomic nervous system and positive adaptations after regular exercise in able-bodied subjects. However, adaptations in SCI subjects are not well known. Objectives: To compare HRV between able-bodied and SCI subjects and analyze the effects of chronic and acute exercise on HRV in the SCI group. Methods: We searched MEDLINE, Embase, Web of Science, SciELO, and Google Scholar databases to July 2016. We selected English and Spanish observational or experimental studies reporting HRV after training or acute exercise in SCI patients. We also included studies comparing HRV in SCI individuals with able-bodied subjects. Animal studies and nontraumatic SCI studies were excluded. We screened 279 articles by title and abstract; of these, we fully reviewed 29 articles. Eighteen articles fulfilled criteria for inclusion in this study. Results: SCI individuals showed lower HRV values in the low frequency band compared to able-bodied subjects. Regular exercise improved HRV in SCI subjects, however time and intensity data were lacking. HRV decreases after an acute bout of exercise on SCI subjects, but recovery kinetics are unknown. Conclusion: HRV is affected following SCI. Able-bodied subjects and SCI individuals have different values of HRV. Acute bouts of exercise change HRV temporarily, and chronic exercise might improve autonomic balance in SCI.
Docosahexaenoic acid affects markers of inflammation and muscle damage after eccentric exercise.
DiLorenzo, Frank M; Drager, Christopher J; Rankin, Janet W
2014-10-01
The effect of docosahexaenoic acid (DHA) on inflammatory and muscle damage response to acute eccentric exercise and to the subsequent initiation of a resistance training program was studied in 41 untrained men. Subjects consumed either 2 g·d of either DHA or placebo (PL) for 28 days before a 17-day exercise phase (day 1 to day 17) that began with an eccentric exercise bout of the elbow flexors (day 1). For analysis, the exercise period was further divided into an acute response phase (day 1-4). Isometric muscle strength (STR), range of motion (ROM), and delayed onset muscle soreness (DOMS) were measured on days 1, 2, 3, 4, 7, 12, and 17. Fasted blood was measured for interleukin 6 (IL-6), interleukin 1 receptor antagonist, C-reactive protein (CRP), and creatine kinase (CK) on days 1, 2, and 4. Serum CK and CRP were also measured in blood collected on days 7, 12, and 17. In the acute phase, DHA significantly reduced the serum CK (12.5%) and the IL-6 response (32%) but did not affect STR or DOMS. Over the entire 17-day resistance exercise period, DOMS area under the curve was 183.2 ± 96.2 for DHA and 203.2 ± 120.9 for PL (p = 0.054) and the CK response was numerically lower for DHA (p = 0.093). Docosahexaenoic acid supplementation reduced some but not all indicators of muscle damage and inflammation in the 4 days after an acute eccentric exercise bout but did not significantly affect the response to initiation of resistance exercise.
Butterfield, Timothy A; Herzog, Walter
2006-02-01
It is generally accepted that eccentric exercise, when performed by a muscle that is unaccustomed to that type of contraction, results in a delayed onset of muscle soreness (DOMS). A prolonged exposure to eccentric exercise leads to the disappearance of the signs and symptoms associated with DOMS, which has been referred to as the repeated bout effect (RBE). Although the mechanisms underlying the RBE remain unclear, several mechanisms have been proposed, including the serial sarcomere number addition following exercise induced muscle damage. In the traditional DOMS and RBE protocols, muscle injury has been treated as a global parameter, with muscle force and strain assumed to be uniform throughout the muscle. To assess the effects of muscle-tendon unit strain, fiber strain, torque and injury on serial sarcomere number adaptations, three groups of New Zealand White (NZW) rabbits were subjected to chronic repetitive eccentric exercise bouts of the ankle dorsiflexors for 6 weeks. These eccentric exercise protocols consisted of identical muscle tendon unit (MTU) strain, but other mechanical factors were systematically altered. Following chronic eccentric exercise, serial sarcomere number adaptations were not identical between the three eccentric exercise protocols, and serial sarcomere number adaptations were not uniform across all regions of the muscle. Peak torque and relaxation fiber strain were the best predictors of serial sarcomere number across all three protocols. Therefore, MTU strain does not appear to be the primary cause for sarcomerogenesis, and differential adaptations within the muscle may be explained by the nonuniform architecture of the muscle, resulting in differential local fiber strains.
Goodin, Burel R; McGuire, Lynanne M; Stapleton, Laura M; Quinn, Noel B; Fabian, Lacy A; Haythornthwaite, Jennifer A; Edwards, Robert R
2009-11-01
To investigate the cross-sectional associations among self-reported weekly strenuous exercise bouts, anxiety sensitivity, and their interaction with pain catastrophizing and pain responses to the cold pressor task (CPT) in healthy, ethnically diverse young adults (n = 79). Exercise involvement has been shown to have hypoalgesic effects and cognitive factors may partially explain this effect. Particularly, alterations in pain catastrophizing have been found to mediate the positive pain outcomes of multidisciplinary treatments incorporating exercise. Further, recent evidence suggests that exercise involvement and anxiety sensitivity may act together, as interacting factors, to exert an effect on catastrophizing and pain outcomes; however, further research is needed to clarify the nature of this interaction. Before the CPT, participants were asked to complete the Godin Leisure-Time Exercise Questionnaire, the Beck Depression Inventory, and the Anxiety Sensitivity Index. After the CPT, participants completed a modified version of the Pain Catastrophizing Scale and the Short Form-McGill Pain Questionnaire. At a high level of anxiety sensitivity, controlling for depressive symptoms, CPT immersion time, and sex differences, a bias-corrected (BC), bootstrapped confidence interval revealed that pain catastrophizing significantly mediated the relationship between self-reported weekly strenuous exercise bouts and pain response (95% BC Confidence Interval = -9.558, -0.800 with 1000 resamples). At intermediate and low levels of anxiety sensitivity, no significant mediation effects were found. These findings support that, for pain catastrophizing to mediate the strenuous exercise-pain response relation, individuals must possess a high level of anxiety sensitivity.
Infant acceptance of breast milk after maternal exercise.
Wright, Kc S; Quinn, Timothy J; Carey, Gale B
2002-04-01
Previous research reported that breast milk lactic acid (LA) levels increase after lactating women complete a bout of exhaustive exercise, resulting in poor infant acceptance of the postexercise breast milk. This highly publicized finding may not apply to more practical, everyday exercise conditions of lactating women. The purpose of the present study was to reexamine the composition and infant acceptance of postexercise breast milk while controlling maternal diet, exercise intensity, and the method, timing, and assessment of infant feeding. Twenty-four women, 2 to 4 months' postpartum, completed 3 test sessions: a maximal oxygen uptake test, a 30-minute bout of moderate exercise, and a resting control session. One hour before and 1 hour after each session, participants fully expressed their milk, placed it in a bottle familiar to the infant, fed their infant, and rated their infant's acceptance of the milk. Each feeding was videotaped and viewed individually by 3 lactation consultants who rated infant acceptance; consultants were blinded to the test sessions. Milk was analyzed for LA and infant milk consumption was measured. There were no differences in presession versus postsession values for maternal skin temperature, breast milk temperature, and infant milk acceptance as judged by either the mothers or lactation consultants. These results prevailed despite a small but significant increase in breast milk LA premaximal versus postmaximal exercise (0.09 vs 0.21 mM, respectively); there was no difference in milk LA premoderate versus postmoderate exercise, or prerest versus postrest. These data support the hypothesis that moderate or even high-intensity exercise during lactation does not impede infant acceptance of breast milk consumed 1 hour postexercise.
Place, Nicolas; Ivarsson, Niklas; Venckunas, Tomas; Neyroud, Daria; Brazaitis, Marius; Cheng, Arthur J.; Ochala, Julien; Kamandulis, Sigitas; Girard, Sebastien; Volungevičius, Gintautas; Paužas, Henrikas; Mekideche, Abdelhafid; Kayser, Bengt; Martinez-Redondo, Vicente; Bruton, Joseph; Truffert, Andre; Lanner, Johanna T.; Skurvydas, Albertas; Westerblad, Håkan
2015-01-01
High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) Ca2+ release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR Ca2+ leak at rest, and depressed force production due to impaired SR Ca2+ release upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber Ca2+-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group. PMID:26575622
Translation of incremental talk test responses to steady-state exercise training intensity.
Lyon, Ellen; Menke, Miranda; Foster, Carl; Porcari, John P; Gibson, Mark; Bubbers, Terresa
2014-01-01
The Talk Test (TT) is a submaximal, incremental exercise test that has been shown to be useful in prescribing exercise training intensity. It is based on a subject's ability to speak comfortably during exercise. This study defined the amount of reduction in absolute workload intensity from an incremental exercise test using the TT to give appropriate absolute training intensity for cardiac rehabilitation patients. Patients in an outpatient rehabilitation program (N = 30) performed an incremental exercise test with the TT given every 2-minute stage. Patients rated their speech comfort after reciting a standardized paragraph. Anything other than a "yes" response was considered the "equivocal" stage, while all preceding stages were "positive" stages. The last stage with the unequivocally positive ability to speak was the Last Positive (LP), and the preceding stages were (LP-1 and LP-2). Subsequently, three 20-minute steady-state training bouts were performed in random order at the absolute workload at the LP, LP-1, and LP-2 stages of the incremental test. Speech comfort, heart rate (HR), and rating of perceived exertion (RPE) were recorded every 5 minutes. The 20-minute exercise training bout was completed fully by LP (n = 19), LP-1 (n = 28), and LP-2 (n = 30). Heart rate, RPE, and speech comfort were similar through the LP-1 and LP-2 tests, but the LP stage was markedly more difficult. Steady-state exercise training intensity was easily and appropriately prescribed at intensity associated with the LP-1 and LP-2 stages of the TT. The LP stage may be too difficult for patients in a cardiac rehabilitation program.
Place, Nicolas; Ivarsson, Niklas; Venckunas, Tomas; Neyroud, Daria; Brazaitis, Marius; Cheng, Arthur J; Ochala, Julien; Kamandulis, Sigitas; Girard, Sebastien; Volungevičius, Gintautas; Paužas, Henrikas; Mekideche, Abdelhafid; Kayser, Bengt; Martinez-Redondo, Vicente; Ruas, Jorge L; Bruton, Joseph; Truffert, Andre; Lanner, Johanna T; Skurvydas, Albertas; Westerblad, Håkan
2015-12-15
High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) Ca(2+) release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR Ca(2+) leak at rest, and depressed force production due to impaired SR Ca(2+) release upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber Ca(2+)-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group.
Carnitine supplementation and depletion: tissue carnitines and enzymes in fatty acid oxidation.
Negrao, C E; Ji, L L; Schauer, J E; Nagle, F J; Lardy, H A
1987-07-01
Sixty-two male rats were randomly assigned into a 3 X 2 X 2 factorial design containing 12 groups according to carnitine treatment, exercise training (treadmill, 1 h, 5 times/wk, 8 wk, 26.8 m/min, 15% grade), and physical activity [rested for 60 h before they were killed or with an acute bout of exercise (1 h, 26.8 m/min, 15% grade) immediately before they were killed]. Isotonic saline was injected intraperitoneally 5 times/wk in the controls, whereas 750 mg/kg of L- or D-carnitine, respectively, were injected in the supplemented and depleted treatment groups. A significant increase in free and short-chain acyl carnitine concentration in skeletal muscle and heart was observed in L-carnitine supplemented rats, whereas a significant reduction in skeletal muscle, heart, and liver occurred in rats depleted of L-carnitine. Long-chain acyl carnitine in all tissues was not altered by carnitine treatment; training increased plasma and liver concentrations, whereas acute exercise decreased skeletal muscle and increased liver concentrations. An acute bout of exercise significantly increased short-chain acylcarnitine in liver, regardless of carnitine and/or training effects. beta-Hydroxyacyl-CoA dehydrogenase activity in skeletal muscle was induced by training but reduced by depletion. Carnitine acetyltransferase (CAT) was significantly increased in heart by L-carnitine supplementation, whereas it was reduced by depletion in skeletal muscle. Exercise training significantly increased CAT activity in skeletal muscle but not in heart, whereas acute exercise significantly increased activity in both tissues. Carnitine palmitoyltransferase activity was increased by acute exercise in the heart in only the supplemented and exercise-trained rats.
Nemet, Dan; Eliakim, Alon
2010-01-01
Physical activity plays an important role in tissue anabolism, growth and development, but the mechanisms that link patterns of exercise with tissue anabolism are not completely understood. The effectiveness of physical training depends on the training load and on the individual ability to tolerate it, and an imbalance between the two may lead to under or over-training. Therefore, many efforts have been made to find objective parameters to quantify the balance between training load and the athlete's tolerance. One of the unique features of exercise is that it leads to a simultaneous increase of antagonistic mediators. On the one hand, exercise stimulates anabolic components of the growth hormone (GH) → IGF-1 (insulin-like growth factor-1) axis. On the other hand, exercise elevates catabolic pro-inflammatory cytokines such as interleukin-6 (IL-6), IL-1 and tumor necrosis factor-α (TNF-α). This emphasizes probably the importance of optimal adaptation to exercise in particularly during adolescence. The very fine balance between the anabolic and inflammatory/catabolic response to exercise will determine the effectiveness of exercise training and the health consequences of exercise. If the anabolic response is stronger, exercise will probably lead ultimately to increased muscle mass and improved fitness. A greater catabolic response, in particularly if persists for long duration, may lead to overtraining. Therefore, changes in the anabolic-catabolic hormonal balance and in circulating inflammatory cytokines can be used by adolescent athletes and/or their coaches to gauge the training intensity in individual and team sports. Copyright © 2010 S. Karger AG, Basel.
Sun, Yingwei; Pan, Shinong; Chen, Zhian; Zhao, Heng; Ma, Ying; Zheng, Liqiang; Li, Qi; Deng, Chunbo; Fu, Xihu; Lu, Zaiming; Guo, Qiyong
2014-01-01
Little is known about the value of (31)P-magnetic resonance spectroscopy ((31)P-MRS) in in vivo assessment of exhaustive exercise-induced injury in skeletal muscle. We aimed to evaluate the value of a (31)P-MRS study using the quadriceps femoris after a single bout of acute exhaustive swimming in rats, and the correlation between (31)P-MRS and histological changes. Sixty male Sprague-Dawley rats were randomly assigned to control, half-exhaustive, and exhaustive exercise groups. (31)P-MRS of the quadriceps femoris of the right lower limb was performed immediately after swimming exercise to detect Pi, PCr, and β-ATP. The Pi/PCr, Pi/β-ATP, PCr/β-ATP, and PCr/(PCr+Pi) were calculated and pH measured. Areas under the receiver operating characteristic curve (AUCs) were calculated to evaluate the diagnostic potential of (31)P-MRS in identifying and distinguishing the three groups. HE staining, electron microscopy and desmin immunostaining after imaging of the muscle were used as a reference standard. The correlation between (31)P-MRS and the mean absorbance (A value) of desmin staining were analyzed with the Pearson correlation test. Pi, PCr, Pi/PCr, and PCr/(PCr+Pi) showed statistically significant intergroup differences (P < 0.05). AUCs of Pi, PCr, Pi/PCr, and PCr/(PCr+Pi) were 0.905, 0.848, 0.930, and 0.930 for the control and half-exhaustive groups, while sensitivity and specificity were 90%/85%, 95%/55%, 95%/80%, and 90%/85%, respectively. The AUCs of Pi, PCr, Pi/PCr and PCr/(PCr+Pi) were 0.995, 0.980, 1.000, and 1.000 for the control and exhaustive groups, while sensitivity and specificity were 95%/90%, 100%/90%, 100%/95%, and 100%/95%, respectively. The AUCs of Pi, PCr, Pi/PCr, and PCr/(PCr+Pi) were 0.735, 0.865, 0.903, and 0.903 for the half-exhaustive and exhaustive groups, while sensitivity and specificity were 80%/60%, 90%/75%, 95%/65%, and 95%/70%, respectively. In the half-exhaustive group, some muscle fibers exhibited edema in HE staining, and the unclear Z-discs and the mitochondria with vacuolar degeneration under electron microscopy. Compared with the half-exhaustive group, muscle fiber edema was increased in the exhaustive group, and the Z-discs were broken and the mitochondria exhibited marked vacuolar degeneration under electron microscopy. There were significant difference in A values of desmin staining in the right vastus lateralis among the control, half-exhaustive, and exhaustive groups with 0.58 ± 0.06, 0.30 ± 0.04, and 0.21 ± 0.02, respectively (P < 0.05). Histological examination also showed injury-induced changes in the vastus lateralis among the different intensities groups. Statistically a moderate correlation between (31)P-MRS and desmin was observed, the correlation coefficients of Pi, PCr, Pi/PCr, and PCr/(PCr+Pi) were -0.706, 0.709, -0.726, and 0.791, respectively (P < 0.01). (31)P-MRS can effectively reflect the changes in energy metabolism in the skeletal muscle after a single bout of acute exhaustive swimming in rats. Based on the significant correlation between (31)P-MRS parameters and histological changes, the changes of Pi, PCr, Pi/PCr, and PCr/(PCr+Pi) can indirectly reflect the degree of exercise-induced injury.
Deresz, L F; Sprinz, E; Kramer, A S; Cunha, G; de Oliveira, A R; Sporleder, H; de Freitas, D R J; Lazzarotto, A R; Dall'Ago, P
2010-11-01
Human immunodeficiency virus (HIV)-infected subjects have increased levels of oxidative stress which could impair immunological function and therefore contribute to the progression of AIDS. These characteristics are usually evaluated at rest and responses to exercise have yet to be evaluated. The aim of the present study was to assess the effect of a bout of aerobic exercise followed by resistance exercises on antioxidant system in HIV-infected and non-HIV subjects. There were included 14 cases (HIV-positive) and 14 controls (HIV-negative). The exercise protocol consisted of a single session of 20 minutes on a cycloergometer followed by a set of six resistance exercises. The activity of glutathione S-transferase (GST) and catalase were measured in plasma samples, total glutathione (TGSH) and thiobarbituric acid reactive substances (TBARS) were measured in erythrocytes. T CD4+ cells, T CD8+, viral load, complete blood count, and white blood count were also assessed. All measurements were performed at three times: baseline, after aerobic exercise, and after resistance exercises. At baseline, the HIV group had lower GST activity than controls, but after the exercise session GST values were similar in both groups. Compared to the control group TGSH was significantly lower in the HIV group at baseline, after aerobic and resistance exercises. The control group presented higher TBARS values after aerobic exercise compared to the HIV group. The neutrophil count was lower in the HIV group after aerobic and resistance exercises. These data indicate that HIV-infected subjects had lower antioxidant activity at rest. Physical exercise stimulated the enzymatic activity similarly in both groups.
ERIC Educational Resources Information Center
Greer, Beau Kjerulf; Sirithienthad, Prawee; Moffatt, Robert J.; Marcello, Richard T.; Panton, Lynn B.
2015-01-01
Purpose: Excess postexercise oxygen consumption (EPOC) is dependent on intensity, duration, and mode of exercise. The purpose of this study was to compare the effect of both exercise mode and intensity on EPOC while controlling for caloric expenditure and duration. Method: Ten low to moderately physically active men (22 ± 2 yrs) performed 3…
Carriker, Colin R; Mermier, Christine M; Van Dusseldorp, Trisha A; Johnson, Kelly E; Beltz, Nicholas M; Vaughan, Roger A; McCormick, James J; Cole, Nathan H; Witt, Christopher C; Gibson, Ann L
2016-08-01
Reduced partial pressure of oxygen impairs exercise performance at altitude. Acute nitrate supplementation, at sea level, may reduce oxygen cost during submaximal exercise in hypobaric hypoxia. Therefore, we investigated the metabolic response during exercise at altitude following acute nitrate consumption. Ten well-trained (61.0 ± 7.4 ml/kg/min) males (age 28 ± 7 yr) completed 3 experimental trials (T1, T2, T3). T1 included baseline demographics, a maximal aerobic capacity test (VO2max) and five submaximal intensity cycling determination bouts at an elevation of 1600 m. A 4-day dietary washout, minimizing consumption of nitrate-rich foods, preceded T2 and T3. In a randomized, double-blind, placebo-controlled, crossover fashion, subjects consumed either a nitrate-depleted beetroot juice (PL) or ~12.8 mmol nitrate rich (NR) beverage 2.5 hr before T2 and T3. Exercise at 3500 m (T2 and T3) via hypobaric hypoxia consisted of a 5-min warm-up (25% of normobaric VO2max) and four 5-min cycling bouts (40, 50, 60, 70% of normobaric VO2max) each separated by a 4-min rest period. Cycling RPM and watts for each submaximal bout during T2 and T3 were determined during T1. Preexercise plasma nitrite was elevated following NR consumption compared with PL (1.4 ± 1.2 and 0.7 ± 0.3 uM respectively; p < .05). There was no difference in oxygen consumption (-0.5 ± 1.8, 0.1 ± 1.7, 0.7 ± 2.1, and 1.0 ± 3.0 ml/kg/min) at any intensity (40, 50, 60, 70% of VO2max, respectively) between NR and PL. Further, respiratory exchange ratio, oxygen saturation, heart rate and rating of perceived exertion were not different at any submaximal intensity between NR and PL either. Blood lactate, however, was reduced following NR consumption compared with PL at 40 and 60% of VO2max (p < .0.05). Our findings suggest that acute nitrate supplementation before exercise at 3500 m does not reduce oxygen cost but may reduce blood lactate accumulation at lower intensity workloads.
Autism and exergaming: effects on repetitive behaviors and cognition.
Anderson-Hanley, Cay; Tureck, Kimberly; Schneiderman, Robyn L
2011-01-01
Autism is a neurodevelopmental disorder that leads to impairment in social skills and delay in language development, and results in repetitive behaviors and restricted interests that impede academic and social involvement. Physical exercise has been shown to decrease repetitive behaviors in autistic children and improve cognitive function across the life-span. Exergaming combines physical and mental exercise simultaneously by linking physical activity movements to video game control and may yield better compliance with exercise. In this investigation, two pilot studies explored the potential behavioral and cognitive benefits of exergaming. In Pilot I, twelve children with autism spectrum disorders completed a control task and an acute bout of Dance Dance Revolution (DDR); in Pilot II, ten additional youths completed an acute bout of cyber cycling. Repetitive behaviors and executive function were measured before and after each activity. Repetitive behaviors significantly decreased, while performance on Digits Backwards improved following the exergaming conditions compared with the control condition. Additional research is needed to replicate these findings, and to explore the application of exergaming for the management of behavioral disturbance and to increase cognitive control in children on the autism spectrum.
Autism and exergaming: effects on repetitive behaviors and cognition
Anderson-Hanley, Cay; Tureck, Kimberly; Schneiderman, Robyn L
2011-01-01
Autism is a neurodevelopmental disorder that leads to impairment in social skills and delay in language development, and results in repetitive behaviors and restricted interests that impede academic and social involvement. Physical exercise has been shown to decrease repetitive behaviors in autistic children and improve cognitive function across the life-span. Exergaming combines physical and mental exercise simultaneously by linking physical activity movements to video game control and may yield better compliance with exercise. In this investigation, two pilot studies explored the potential behavioral and cognitive benefits of exergaming. In Pilot I, twelve children with autism spectrum disorders completed a control task and an acute bout of Dance Dance Revolution (DDR); in Pilot II, ten additional youths completed an acute bout of cyber cycling. Repetitive behaviors and executive function were measured before and after each activity. Repetitive behaviors significantly decreased, while performance on Digits Backwards improved following the exergaming conditions compared with the control condition. Additional research is needed to replicate these findings, and to explore the application of exergaming for the management of behavioral disturbance and to increase cognitive control in children on the autism spectrum. PMID:22114543
McLean, Scott; Kerhervé, Hugo; Lovell, Geoff P; Gorman, Adam D; Solomon, Colin
2016-01-01
Small sided games (SSG) of football are an effective and efficient format to simultaneously train the physiological, technical, and tactical components of football. The duration of the recovery period between bouts of SSG will affect the physiological response to subsequent bouts. It was hypothesised that decreasing the duration of recovery periods separating serial SSG bouts would increase physiological, and perceptual responses, and decrease high speed running, and distance during SSG bouts. Twelve experienced footballers (mean ± SD; age 21 ± 3 yrs; VO2peak 64 ± 7 ml·min·kg-1; playing experience 15 ± 3 yrs) completed two SSG sessions. Each SSG consisted of 3 vs. 3 players and 6 bouts of 2 min duration, with bouts separated by either 30 s recovery (REC-30) or 120 s recovery (REC-120). Deoxygenated haemoglobin (HHb) in the vastus lateralis (VL) (using near infrared spectroscopy), heart rate (HR) and time motion descriptors (TMD) (speed and distance) were measured continuously during the SSG sessions and perceived exertion (RPE) was measured for each bout. During the recovery periods, in REC-30 compared to REC-120, there was a significant (p < 0.05) main effect of a higher HHb and HR. During the bouts, in REC-30 compared to REC-120, there were no significant differences in HHb, HR, RPE, or TMD, but within both REC-30 and REC-120 there were significant increases as a function of bout number in RPE. Although a four-fold increase in recovery period allowed a significant increase in the recovery of HHb and HR, this did not increase the physiological, and perceptual responses, or time motion descriptors during the bouts. These results could have been due to the regulation of effort (pacing), in these experienced players performing an exercise task to which they were well adapted.
McLean, Scott; Kerhervé, Hugo; Lovell, Geoff P.; Gorman, Adam D.; Solomon, Colin
2016-01-01
Purpose Small sided games (SSG) of football are an effective and efficient format to simultaneously train the physiological, technical, and tactical components of football. The duration of the recovery period between bouts of SSG will affect the physiological response to subsequent bouts. It was hypothesised that decreasing the duration of recovery periods separating serial SSG bouts would increase physiological, and perceptual responses, and decrease high speed running, and distance during SSG bouts. Methods Twelve experienced footballers (mean ± SD; age 21 ± 3 yrs; VO2peak 64 ± 7 ml·min·kg−1; playing experience 15 ± 3 yrs) completed two SSG sessions. Each SSG consisted of 3 vs. 3 players and 6 bouts of 2 min duration, with bouts separated by either 30 s recovery (REC-30) or 120 s recovery (REC-120). Deoxygenated haemoglobin (HHb) in the vastus lateralis (VL) (using near infrared spectroscopy), heart rate (HR) and time motion descriptors (TMD) (speed and distance) were measured continuously during the SSG sessions and perceived exertion (RPE) was measured for each bout. Results During the recovery periods, in REC-30 compared to REC-120, there was a significant (p < 0.05) main effect of a higher HHb and HR. During the bouts, in REC-30 compared to REC-120, there were no significant differences in HHb, HR, RPE, or TMD, but within both REC-30 and REC-120 there were significant increases as a function of bout number in RPE. Conclusions Although a four-fold increase in recovery period allowed a significant increase in the recovery of HHb and HR, this did not increase the physiological, and perceptual responses, or time motion descriptors during the bouts. These results could have been due to the regulation of effort (pacing), in these experienced players performing an exercise task to which they were well adapted. PMID:26919064
Exercise following Mental Work Prevented Overeating.
Neumeier, William H; Goodner, Emily; Biasini, Fred; Dhurandhar, Emily J; Menear, Kristi S; Turan, Bulent; Hunter, Gary R
2016-09-01
Mental work may promote caloric intake, whereas exercise may offset positive energy balance by decreasing energy intake and increasing energy expenditure. This study aimed to replicate previous findings that mental work increases caloric intake compared with a rest condition and assess whether exercise after mental work can offset this effect. Thirty-eight male and female university students were randomly assigned to mental work + rest (MW + R) or mental work + exercise (MW + E). Participants also completed a baseline rest (BR) visit consisting of no mental work or exercise. Visit order was counterbalanced. During the MW + R or MW + E visit, participants completed a 20-min mental task and either a 15-min rest (MW + R) or a 15-min interval exercise (MW + E). Each visit ended with an ad libitum pizza lunch. A two-way repeated-measures ANOVA was used to compare eating behavior between groups. Participants in the MW + R condition consumed an average of 100 more kilocalories compared with BR (633.3 ± 72.9 and 533.9 ± 67.7, respectively, P = 0.02), and participants in MW + E consumed an average of 25 kcal less compared with BR (432.3 ± 69.2 and 456.5 ± 64.2, respectively, P > 0.05). When including the estimated energy expenditure of exercise in the MW + E conditions, participants were in negative energy balance by an average of 98.5 ± 41.5 kcal, resulting in a significant difference in energy balance between the two groups (P = 0.001). An acute bout of interval exercise after mental work resulted in significantly decreased food consumption compared with a nonexercise condition. These results suggest that an acute bout of exercise may be used to offset positive energy balance induced by mental tasks.
Jiménez-Pavón, David; Cervantes-Borunda, Mónica Sofía; Díaz, Ligia Esperanza; Marcos, Ascensión; Castillo, Manuel J
2015-01-01
Exercise in the heat causes important water and electrolytes losses through perspiration. Optimal rehydration is crucial to facilitate the recuperation process after exercise. The aim of our study was to examine whether a moderate beer intake as part of the rehydration has any negative effect protocol after a short but dehydrating bout of exercise in the heat. Sixteen active male (VO2max, 56 ± 4 mL/kg/min), were included in a crossover study and performed a dehydrating exercise (≤1 h running, 60 %VO2max) twice and 3 weeks apart, in a hot laboratory setting (35 ± 1 °C, humidity 60 ± 2 %). During the two hours following the exercise bouts participants consumed either mineral water ad-libitum (W) or up to 660 ml regular beer followed by water ad-libitum (BW). Body composition, hematological and serum parameters, fluid balance and urine excretion were assessed before, after exercise and after rehydration. Body mass (BM) decreased (both ~ 2.4%) after exercise in both trials. After rehydration, BM and fat free mass significantly increased although BM did not return to baseline levels (BM, 72.6 ± 6.7 to 73.6 ± 6.9; fat free mass, 56.9 ± 4.7 to 57.5 ± 4.5, no differences BW vs W). Beer intake did not adversely affect any measured parameter. Fluid balance and urine excretion values did not differ between the rehydration strategies. After exercise and subsequent water losses, a moderate beer (regular) intake has no deleterious effects on markers of hydration in active individuals.
Lauber, Benedikt; Franke, Steffen; Taube, Wolfgang; Gollhofer, Albert
2017-04-07
Increasing evidence suggests that cardiovascular exercise has positive effects on motor memory consolidation. In this study, we investigated whether a single session of high-intensity interval training (HIIT) mitigates the effects of practicing an interfering motor task. Furthermore, learning and interference effects were assessed in the actively trained and untrained limb as it is known that unilateral motor learning can cause bilateral adaptations. Subjects performed a ballistic training and then the HIIT either before (HIIT_before) or after (HIIT_after) practicing an interfering accuracy task (AT). The control group (No_HIIT) did not participate in the HIIT but rested instead. Performance in the ballistic task (BT) was tested before and after the ballistic training, after the exercise and practice of the AT and 24h later. After ballistic training, all groups showed comparable increases in performance in the trained and untrained limb. Despite the practice of the AT, HIIT_before maintained their BT performance after the high-intensity interval training whereas HIIT_after (trend) & No_HIIT showed prominent interference effects. After 24h, HIIT_before still did not show any interference effects but further improved ballistic motor performance. HIIT_after counteracted the interference resulting in a comparable BT performance after 24h than directly after the ballistic training while No_HIIT had a significantly lower BT performance in the retention test. The results were similar in the trained and untrained limb. The current results imply that a single session of cardiovascular exercise can prevent motor interference in the trained and untrained hemisphere. Overall learning was best, and interference least, when HIIT was performed before the interfering motor task. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Bertholdt, Lærke; Gudiksen, Anders; Schwartz, Camilla L; Knudsen, Jakob G; Pilegaard, Henriette
2017-04-01
The liver is essential in maintaining and regulating glucose homeostasis during prolonged exercise. IL-6 has been shown to be secreted from skeletal muscle during exercise and has been suggested to signal to the liver. Therefore, the aim of this study was to investigate the role of skeletal muscle IL-6 on hepatic glucose regulation and substrate choice during prolonged exercise. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice (age, 12-14 wk) and littermate lox/lox (Control) mice were either rested (Rest) or completed a single bout of exercise for 10, 60, or 120 min, and the liver was quickly obtained. Hepatic IL-6 mRNA was higher at 60 min of exercise, and hepatic signal transducer and activator of transcription 3 was higher at 120 min of exercise than at rest in both genotypes. Hepatic glycogen was higher in IL-6 MKO mice than control mice at rest, but decreased similarly during exercise in the two genotypes, and hepatic glucose content was lower in IL-6 MKO than control mice at 120 min of exercise. Hepatic phosphoenolpyruvate carboxykinase mRNA and protein increased in both genotypes at 120 min of exercise, whereas hepatic glucose 6 phosphatase protein remained unchanged. Furthermore, IL-6 MKO mice had higher hepatic pyruvate dehydrogenase (PDH) Ser232 and PDH Ser300 phosphorylation than control mice at rest. In conclusion, hepatic gluconeogenic capacity in mice is increased during prolonged exercise independent of muscle IL-6. Furthermore, Skeletal muscle IL-6 influences hepatic substrate regulation at rest and hepatic glucose metabolism during prolonged exercise, seemingly independent of IL-6 signaling in the liver. Copyright © 2017 the American Physiological Society.
Effects of caffeine and menthol on cognition and mood during simulated firefighting in the heat.
Zhang, Yang; Balilionis, Gytis; Casaru, Catalina; Geary, Colleen; Schumacker, Randall E; Neggers, Yasmin H; Curtner-Smith, Matthew D; Richardson, Mark T; Bishop, Phillip A; Green, James M
2014-05-01
This study examined the separate effects of caffeine and menthol on cognition and mood during simulated firefighting in the heat. Participants (N = 10) performed three trials in a counterbalanced order, either with 400 mg caffeine, menthol lozenges, or placebo. The simulated firefighting consisted of 2 bouts of 20-min treadmill exercise and one bout of 20-min stepping exercise in the heat with two brief 15-min rest periods between each exercise phase. Exercise induced significant dehydration (>3%) and elevated rectal temperature (>38.9 °C), for all three conditions. Neither caffeine nor menthol reduced perceived exertion compared to placebo (p > 0.05). Mood ratings (i.e., alertness, hedonic tone, tension) significantly deteriorated over time (p < 0.05), but there was no difference among the three conditions. Simple reaction time, short-term memory, and retrieval memory did not alter with treatments or repeated evaluations. Reaction accuracy from a math test remained unchanged throughout the experimental period; reaction time from the math test was significantly faster after exposure to the heat (p < 0.05). It is concluded that, exhaustive exercise in the heat severely impacted mood, but minimally impacted cognition. These treatments failed to show ergogenic benefits in a simulated firefighting paradigm in a hot environment. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Time perception, pacing and exercise intensity: maximal exercise distorts the perception of time.
Edwards, A M; McCormick, A
2017-10-15
Currently there are no data examining the impact of exercise on the perception of time, which is surprising as optimal competitive performance is dependent on accurate pacing using knowledge of time elapsed. With institutional ethics approval, 12 recreationally active adult participants (f=7, m=5) undertook both 30s Wingate cycles and 20min (1200s) rowing ergometer bouts as short and long duration self-paced exercise trials, in each of three conditions on separate occasions: 1) light exertion: RPE 11, 2) heavy exertion: RPE 15, 3) maximal exertion: RPE 20. Participants were unaware of exercise duration and were required to verbally indicate when they perceived (subjective time) 1) 25%, 2) 50%, 3) 75% and 4) 100% of each bout's measured (chronological) time had elapsed. In response to the Wingate task, there was no difference between durations of subjective time at the 25%, nor at the 50% interval. However, at the 75% and 100% intervals, the estimate for the RPE 20 condition was shortest (P<0.01). In response to rowing, there were no differences at the 25% interval, but there was some evidence that the RPE 20 condition was perceived shorter at 50%. At 75% and 100%, the RPE 20 condition was perceived to be shorter than both RPE 15 (P=0.04) and RPE 11 (P=0.008) conditions. This study is the first to empirically demonstrate that exercise intensity distorts time perception, particularly during maximal exercise. Consequently external feedback of chronological time may be an important factor for athletes undertaking maximal effort tasks or competitions. Copyright © 2017 Elsevier Inc. All rights reserved.
Stephens, Francis B; Roig, Marc; Armstrong, Gerald; Greenhaff, Paul L
2008-01-15
The aim of the present study was to determine the effect of post-exercise ingestion of a unique, high molecular weight glucose polymer solution, known to augment gastric emptying and post-exercise muscle glycogen re-synthesis, on performance during a subsequent bout of intense exercise. On three randomized visits, eight healthy men cycled to exhaustion at 73.0% (s = 1.3) maximal oxygen uptake (90 min, s = 15). Immediately after this, participants consumed a one-litre solution containing sugar-free flavoured water (control), 100 g of a low molecular weight glucose polymer or 100 g of a very high molecular weight glucose polymer, and rested on a bed for 2 h. After recovery, a 15-min time-trial was performed on a cycle ergometer, during which work output was determined. Post-exercise ingestion of the very high molecular weight glucose polymer solution resulted in faster and greater increases in blood glucose (P < 0.001) and serum insulin (P < 0.01) concentrations than the low molecular weight glucose polymer solution, and greater work output during the 15-min time-trial (164.1 kJ, s = 21.1) than both the sugar-free flavoured water (137.5 kJ, s = 24.2; P < 0.05) and the low molecular weight glucose polymer (149.4 kJ, s = 21.8; P < 0.05) solutions. These findings could be of practical importance for athletes wishing to optimize performance by facilitating rapid re-synthesis of the muscle glycogen store during recovery following prolonged sub-maximal exercise.
Tulchin-Francis, Kirsten; Stevens, Wilshaw; Jeans, Kelly A
2014-11-01
Assessment of physical, ambulatory, activity using accelerometer-based devices has been reported in healthy individuals across a wide range of ages, as well as in multiple patient populations. Many researchers who utilize the StepWatch Activity Monitor (SAM) rely on the default settings for data collection and analysis. A comparison was made between the standard output from the SAM software, and a novel method to evaluate all walking bouts using an Intensity-Duration-Volume (I-D-V) model in healthy children aged 7-13. 105 children without impairment wore the SAM for a total of 1691 d. Statistically significant differences were seen between 7-8-9 year olds and 10-11-12 year olds using the I-D-V model that were not seen using the standard SAM software default output. The increased sensitivity of this technique could be critical for observing the effect of various interventions on patients who experience physical limitations. This new analytical model also allows researchers to monitor activity and exercise-type behavior in a way which coincides with exercise prescription by assessing intensity, duration and volume of activity bouts.
Behavioral profiles of the captive juvenile whooping crane as an indicator of post-release survival
Kreger, M.D.; Hatfield, J.S.; Estevez, I.; Gee, G.F.; Clugston, D.A.
2006-01-01
Predation by bobcats (Lynx rufus) is the major cause of mortality in captive-reared whooping cranes (Grus americana) released into the wild to establish a nonmigratory flock in Florida. This study investigated whether rearing methods (parent-rearing, hand-rearing, or hand-rearing with exercise) of cranes, and behaviors observed in birds either before or shortly after release in the wild, are associated with survival after release. Rearing methods did not affect survival first year post-release, which was 55 ? 8% in 2 yr (1999 and 2000). Logistic regression revealed, however, that foraging bouts (+), walking bouts (-), and body weight (-) before release, and nonvigilant bouts (-) after release were significantly associated with survival. These results suggest that post-release survival of whooping cranes might be increased by rearing techniques that promote foraging.
Acute response of high-intensity and traditional resistance exercise on anaerobic power.
Austad, Mark A; Gay, Chip R; Murray, Steven R; Pettitt, Robert W
2013-09-01
Quantifying the maximal work capacity (W') above the aerobic critical power (CP) has emerged as a method for estimating anaerobic work capacity. Slower cadence, lower-load resistance training (RT), colloquially referred to as high-intensity training (HIT), is purported to be a better metabolic stressor than faster cadence higher-load RT, but to date, this belief has not been supported by research. We compared the acute effects of HIT and traditional RT bouts on average power within a 150-second time period (P(150 s)), CP, and W', as measured from a 3-minute all-out exercise test using cycling ergometry (3 MT). Eight recreationally active male subjects (mean ± SD: age 22 ± 2 years, body mass 85 ± 14 kg, and height 18 ± 9 cm) completed a baseline 3 MT 10 repetition maximum testing on leg press and leg extension machines, and post-bout 3 MTs after an HIT (4:2 second cadence) or a traditional RT bout (1:1 second cadence). Measurements of CP from the 3 MTs were similar between the baseline, post-HIT (α = 0.96), and post-traditional RT bouts (α = 0.98). Neither HIT (269.2 ± 51.3 W) nor traditional RT (275.1 ± 51.3 W) evoked depreciations (p > 0.05) in P(150 s) from the baseline (275.1 ± 45.4 W). Moreover, estimates of W' at the baseline (8.3 ± 3.2 kJ) were unaffected (p > 0.05) either by the HIT (7.6 ± 2.3 kJ) or by the traditional RT (8.3 ± 1.3 kJ) bouts. These data indicate that the 4:2 cadence is insufficient to exhaust a person's capacity for high-intensity work. Longer RT durations, either by slower cadences or by multiple sets, are necessary to evoke substantive declines on W' and should be investigated.
Heart rate variability in stroke patients submitted to an acute bout of aerobic exercise.
Raimundo, Rodrigo Daminello; de Abreu, Luiz Carlos; Adami, Fernando; Vanderlei, Franciele Marques; de Carvalho, Tatiana Dias; Moreno, Isadora Lessa; Pereira, Valdelias Xavier; Valenti, Vitor Engracia; Sato, Monica Akemi
2013-10-01
Stroke has been associated with cardiac autonomic impairment due to damage in central nervous system. Dysfunction in heart rate variability (HRV) may reflect dysfunction of the autonomic nervous system. Aerobic training has been used in the rehabilitation procedure of patients, due to improvement of aerobic function and other beneficial effects as increased recruitment of motor units, favoring the development of muscle fibers. The purpose of this study was to evaluate the cardiac autonomic modulation in patients with stroke before, during, and after an acute bout of aerobic exercise. The heart rate of 38 stroke patients was recorded using a heart rate (HR) monitor and the data were used to assess cardiac autonomic modulation through HRV analysis. The patients were in supine position and remained at resting condition (R) for 10 min before starting the experiment. Afterwards, they were submitted to walking exercise (E) on a treadmill until achieve 50-70% of maximum heart rate. After 30 min of aerobic exercise, the subjects were advised to remain in supine position for additional 30 min in order to record the HR during the recovery (RC) period. The recordings were divided in three periods: RC1, immediately after the end of exercise bout, RC2, between 12 and 17 min of recovery, and RC3, at the final 5 min of recovery. A significant decrease was observed during exercise in the MeanRR index (577.3±92 vs. 861.1+109), RRtri (5.1±2 vs. 9.1±3), high frequency component (11.2±4 vs. 167±135 ms) and SD1 (5.7±2 vs. 16.9±7 ms) compared to resting values. The SDNN index reduced during E (27.6±19) and RC1 (29.9±11), RC2 (27.9±9) and RC3 (32.4±13) compared to resting values (42.4±19). The low frequency component increased during E (545±82), but decreased during RC1 (166.3±129), RC2 (206.9±152), and RC3 (249.5±236) compared to R levels (394.6±315). These findings suggest that stroke patients showed a reduced HRV during and at least 30 min after exercise, due to an autonomic imbalance reflected by increased indexes that represent the sympathetic nervous system.
Effect of task familiarisation on distribution of energy during a 2000 m cycling time trial.
Corbett, J; Barwood, M J; Parkhouse, K
2009-10-01
To investigate the effect of task familiarisation on the spontaneous pattern of energy expenditure during a series of 2000 m cycling time trials (TTs). Nine trained males completed three 2000 m TTs on a Velotron cycling ergometer. To examine pacing strategy, the data were assigned to 250 m "bins," with the pattern of aerobic and anaerobic energy expenditure calculated from total work accomplished and gas-exchange data. There were no significant differences between trials in performance times (191.4 (SD 4.3), 189.4 (4.6), 190.1 (5.6) s), total aerobic (58.3 (2.7), 58.4 (3.1), 58.0 (3.4) kJ) and total anaerobic energy expenditure (16.4 (3.3), 17.3 (2.8), 16.5 (3.1) kJ). Pacing strategy in the second and third TT differed from the first TT in that a lower power output was adopted during the first 500 m, enabling a higher power output during the final 750 m of the TT. This adjustment in the pattern of energy expenditure was mediated by an alteration in the pattern of anaerobic energy expenditure, which paralleled changes in total energy expenditure. Furthermore, participants retained an anaerobic energy "reserve" enabling an end-spurt during the second and third trials. Small modifications to the pacing strategy are made following a single bout of exercise, primarily by altering the rate of anaerobic energy expenditure. This may have served to prevent critical metabolic disturbances. The alteration in pacing strategy following the first exercise bout is compatible with a complex intelligent regulatory system.
Helm, Erin E; Matt, Kathleen S; Kirschner, Kenneth F; Pohlig, Ryan T; Kohl, Dave; Reisman, Darcy S
2017-10-01
Brain-derived neurotrophic factor (BDNF) has been directly related to exercise-enhanced motor performance in the neurologically injured animal model; however literature concerning the role of BDNF in the enhancement of motor learning in the human population is limited. Previous studies in healthy subjects have examined the relationship between intensity of an acute bout of exercise, increases in peripheral BDNF and motor learning of a simple isometric upper extremity task. The current study examined the role of high intensity exercise on upregulation of peripheral BDNF levels as well as the role of high intensity exercise in mediation of motor learning and retention of a novel locomotor task in neurologically intact adults. In addition, the impact of a single nucleotide polymorphism in the BDNF gene (Val66Met) in moderating the relationship between exercise and motor learning was explored. It was hypothesized that participation in high intensity exercise prior to practicing a novel walking task (split-belt treadmill walking) would elicit increases in peripheral BDNF as well as promote an increased rate and magnitude of within session learning and retention on a second day of exposure to the walking task. Within session learning and retention would be moderated by the presence or absence of Val66Met polymorphism. Fifty-four neurologically intact participants participated in two sessions of split-belt treadmill walking. Step length and limb phase were measured to assess learning of spatial and temporal parameters of walking. Serum BDNF was collected prior to and immediately following either high intensity exercise or 5min of quiet rest. The results demonstrated that high intensity exercise provides limited additional benefit to learning of a novel locomotor pattern in neurologically intact adults, despite increases in circulating BDNF. In addition, presence of a single nucleotide polymorphism on the BDNF gene did not moderate the magnitude of serum BDNF increases with high intensity exercise, nor did it moderate the relationship between high intensity exercise and locomotor learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of exercise on energy-regulating hormones and appetite in men and women
Hagobian, Todd A.; Sharoff, Carrie G.; Stephens, Brooke R.; Wade, George N.; Silva, J. Enrique; Chipkin, Stuart R.; Braun, Barry
2009-01-01
When previously sedentary men and women follow exercise training programs with ad libitum feeding, men lose body fat, but women do not. The purpose of this study was to evaluate whether this observation could be related to sex differences in the way energy-regulating hormones and appetite perception respond to exercise. Eighteen (9 men, 9 women) overweight/obese individuals completed four bouts of exercise with energy added to the baseline diet to maintain energy balance (BAL), and four bouts without energy added to induce energy deficit (DEF). Concentrations of acylated ghrelin, insulin, and leptin, as well as appetite ratings were measured in response to a meal after a no-exercise baseline and both exercise conditions. In men, acylated ghrelin area under the curve (AUC) was not different between conditions. In women, acylated ghrelin AUC was higher after DEF (+32%) and BAL (+25%), and the change from baseline was higher than men (P < 0.05). In men, insulin AUC was reduced (−17%) after DEF (P < 0.05), but not BAL. In women, insulin AUC was lower (P < 0.05) after DEF (−28%) and BAL (−15%). Leptin concentrations were not different across conditions in either sex. In men, but not in women, appetite was inhibited after BAL relative to DEF. The results indicate that, in women, exercise altered energy-regulating hormones in a direction expected to stimulate energy intake, regardless of energy status. In men, the response to exercise was abolished when energy balance was maintained. The data are consistent with the paradigm that mechanisms to maintain body fat are more effective in women. PMID:19073905
Macgregor, Lewis J; Hunter, Angus M
2018-01-01
Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p <0.001) and rate of torque development (495.7 ± 136.9 Nm.s-1 vs. 163.4 ± 163.7 Nm.s-1; p <0.001) 48h post-exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p <0.01) in high-threshold motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; p< 0.001) 48h post-exercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures.
Mohr, Magni; Nordsborg, Nikolai; Nielsen, Jens Jung; Pedersen, Lasse Danneman; Fischer, Christian; Krustrup, Peter; Bangsbo, Jens
2004-07-01
Accumulation of K+ in skeletal muscle interstitium during intense exercise has been suggested to cause fatigue in humans. The present study examined interstitial K+ kinetics and fatigue during repeated, intense, exhaustive exercise in human skeletal muscle. Ten subjects performed three repeated, intense (61.6+/-4.1 W; mean+/-SEM), one-legged knee extension exercise bouts (EX1, EX2 and EX3) to exhaustion separated by 10-min recovery periods. Interstitial [K+] ([K+]interst) in the vastus lateralis muscle were determined using microdialysis. Time-to-fatigue decreased progressively (P<0.05) during the protocol (5.1+/-0.4, 4.2+/-0.3 and 3.2+/-0.2 min for EX1, EX2 and EX3 respectively). Prior to these bouts, [K+]interst was 4.1+/-0.2, 4.8+/-0.2 and 5.2+/-0.2 mM, respectively. During the initial 1.5 min of exercise the accumulation rate of interstitial K+ was 85% greater (P<0.05) in EX1 than in EX3. At exhaustion [K+]interst was 11.4+/-0.8 mM in EX1, which was not different from that in EX2 (10.4+/-0.8 mM), but higher (P<0.05) than in EX3 (9.1+/-0.3 mM). The study demonstrated that the rate of accumulation of K+ in the muscle interstitium declines during intense repetitive exercise. Furthermore, whilst [K+]interst at exhaustion reached levels high enough to impair performance, the concentration decreased with repeated exercise, suggesting that accumulation of interstitial K+ per se does not cause fatigue when intense exercise is repeated.
Reduction in body temperature using hand cooling versus passive rest after exercise in the heat.
Adams, William M; Hosokawa, Yuri; Adams, Elizabeth L; Belval, Luke N; Huggins, Robert A; Casa, Douglas J
2016-11-01
To examine the effects of hydration and hand cooling on lowering body temperature after exercise in the heat. Randomized cross-over design. Nine recreationally active male participants (mean±SD; age, 24±4; height, 177.3±9.9cm; body mass, 76.7±11.6kg; body fat, 14.7±5.8%) completed a bout of treadmill exercise in a hot environment. After completion of exercise, participants were assigned to the following trials for post-exercise cooling: (1) hydrated with passive rest (HY), (2) hydrated with hand cooling on both hands (HY+2HC), (3) dehydrated with passive rest (DY), and (4) dehydrated with hand cooling on both hands (DY+2HC). Within subject differences were assessed using a three-way (Hydration×Condition×Time) repeated measures ANOVA with Tukey's post hoc analysis if significant interactions were found. Irrespective of hydration status, hand cooling on both hands resulted in significantly greater reductions in T REC than passive cooling at minute 20 (0.27°C [0.05, 0.49], ES=2.08, p=0.017) (Fig. 1). The reduction in T REC at minute 18 trended towards statistical significance (0.21°C [.003, .42], ES=1.59, p=0.053). Hydration status alone and when differentiated among modes of cooling showed no differences on changes of T REC or heart rate across all conditions during post exercise recovery (p>0.05). Hand cooling on both hands reduced T REC more than passive cooling, however, the cooling rates observed render hand cooling a poor option for cooling. Greater reductions in T REC after exercise or between bouts of exercise may enhance recovery and subsequent performance. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Macgregor, Lewis J.
2018-01-01
Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p <0.001) and rate of torque development (495.7 ± 136.9 Nm.s-1 vs. 163.4 ± 163.7 Nm.s-1; p <0.001) 48h post-exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p <0.01) in high-threshold motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; p< 0.001) 48h post-exercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures. PMID:29630622
NASA Technical Reports Server (NTRS)
Linderman, Jon K.; Whittall, Justen B.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Booth, Frank W.; Grindeland, Richard E.
1995-01-01
The objective of this study was to determine the ability of a single bout of resistance exercise alone or in combination with recombinant human growth hormone (rhGH) to stimulate myofibrillar protein synthesis (Ks) in hindlimb suspended (HLS) adult female rats. Plantar flexor muscles were stimulated with resistance exercise, consisting of 10 repetitions of ladder climbing on a 1 m grid (85 deg.), carrying an additional 50% of their body weight attached to their tails. Saline or rhGH (1 mg/kg) was administered 30' prior to exercise, and Ks was determined with a constant infusion of H-3-Leucine at 15', 60', 180', and 360' following exercise. Three days of HLS depressed Ks is approx. equal to 65% and 30-40% in the soleus and gastrocnemius muscles, respectively (p is less than or equal to 0.05). Exercise increased soleus Ks in saline-treated rats 149% 60' following exercise (p less than or equal to 0.05), decaying to that of non-exercised animals during the next 5 hours. Relative to suspended, non-exercised rats rhGH + exercise increased soleus Ks 84%, 108%, and 72% at 15', 60' and 360' following exercise (p is less than or equal to 0.05). Gastrocnemius Ks was not significantly increased by exercise or the combination of rhGH and exercise up to 360' post-exercise. Results from this study indicate that resistance exercise stimulated Ks 60' post-exercise in the soleus of HLS rats, with no apparent effect of rhGH to enhance or prolong exercise-induced stimulation. Results suggests that exercise frequency may be important to maintenance of the slow-twitch soleus during non-weightbearing, but that the ability of resistance exercise to maintain myofibrillar protein content in the gastrocnemius of hindlimb suspended rats cannot be explained by acute stimulation of synthesis.
Regulation of skeletal muscle capillary growth in exercise and disease.
Haas, Tara L; Nwadozi, Emmanuel
2015-12-01
Capillaries, which are the smallest and most abundant type of blood vessel, form the primary site of gas, nutrient, and waste transfer between the vascular and tissue compartments. Skeletal muscle exhibits the capacity to generate new capillaries (angiogenesis) as an adaptation to exercise training, thus ensuring that the heightened metabolic demand of the active muscle is matched by an improved capacity for distribution of gases, nutrients, and waste products. This review summarizes the current understanding of the regulation of skeletal muscle capillary growth. The multi-step process of angiogenesis is coordinated through the integration of a diverse array of signals associated with hypoxic, metabolic, hemodynamic, and mechanical stresses within the active muscle. The contributions of metabolic and mechanical factors to the modulation of key pro- and anti-angiogenic molecules are discussed within the context of responses to a single aerobic exercise bout and short-term and long-term training. Finally, the paradoxical lack of angiogenesis in peripheral artery disease and diabetes and the implications for disease progression and muscle health are discussed. Future studies that emphasize an integrated analysis of the mechanisms that control skeletal muscle capillary growth will enable development of targeted exercise programs that effectively promote angiogenesis in healthy individuals and in patient populations.
Rendi, Mária; Szabo, Attila; Szabó, Tamás; Velenczei, Attila; Kovács, Arpád
2008-03-01
Eighty volunteers were tested in their natural exercise environment consisting of a fitness centre they regularly attended. Half of the sample exercised on a stationary bicycle, the other half on a treadmill. All participants filled in the Exercise-Induced Feeling Inventory before and after their 20 min of exercise that was performed at self-selected workload. The results revealed that exercise intensity and the other parallel measures like heart rate, perceived exercise intensity and estimates of burned calories were higher in participants who ran in contrast to those who cycled. There were no differences in self-reports of enjoyment of the exercise sessions and in the psychological improvements from pre- to post-exercise between the groups. It is concluded that significant psychological improvements occur even after a 20-min bout of exercise and these changes are independent of the workload or exercise intensity.
McDonald, Matthew W; Murray, Michael R; Hall, Katharine E; Noble, Earl G; Melling, C W James
2014-01-01
Regular exercise has been shown to improve many complications of Type 1 diabetes mellitus (T1DM) including enhanced glucose tolerance and increased cardiac function. While exercise training has been shown to increase insulin content in pancreatic islets of rats with T1DM, experimental models were severely hyperglycemic and not undergoing insulin treatment. Further, research to date has yet to determine how exercise training alters glucagon content in pancreatic islets. The purpose of the present investigation was to determine the impact of a 10-week aerobic training program on pancreatic islet composition in insulin-treated rats with T1DM. Second, it was determined whether the acute, exercise-mediated reduction in blood glucose experienced in rats with T1DM would become larger in magnitude following aerobic exercise training. Diabetes was induced in male Sprague-Dawley rats by multiple low dose injections of streptozotocin (20mg/kg i.p.) and moderate intensity aerobic exercise training was performed on a motorized treadmill for one hour per day for a total of 10 weeks. Rats with T1DM demonstrated significantly less islet insulin, and significantly more islet glucagon hormone content compared with non-T1DM rats, which did not significantly change following aerobic training. The reduction in blood glucose in response to a single exercise bout was similar across 10 weeks of training. Results also support the view that different subpopulations of islets exist, as small islets (<50 μm diameter) had significantly more insulin and glucagon in rats with and without T1DM.
The effect of lactate concentration on the handgrip strength during judo bouts.
Bonitch-Góngora, Juan G; Bonitch-Domínguez, Juan G; Padial, Paulino; Feriche, Belen
2012-07-01
Judo is a combat sport in which the athletes attempt to hold and control their adversary through gripping techniques (kumi-kata) to apply opportune throwing techniques (nage-waza). Twelve male judo athletes, representing national teams, were recruited to investigate the changes in the maximal isometric strength in both hands before (pre) and after (post) 4 judo bouts and its relationship with the maximal blood lactic acid concentration. The subjects performed a maximal isometric contraction with each hand immediately before and after each bout. A blood sample was taken at 1, 3, and 14 minutes after each bout, and the lactic acid concentration was determined. An overall effect of the successive bouts on the maximal isometric handgrip strength of prebouts was observed for both hands (p < 0.05) but not in that of postbouts (p > 0.05). The dominant hand showed an overall decrease in the maximal isometric strength because of the bout, with the decrease being significant for the first, third, and fourth bouts (p < 0.05). The nondominant hand only showed a significant decrease in the first prebout and postbout (p < 0.05). We observed an inverse relationship between the maximal isometric handgrip strength of postbouts and maximum lactic acid concentration (Lacmax), and between the maximal isometric handgrip strength of postbouts and the lactic acid concentration at minute 14 of the recovery period (Lac14) (p < 0.05). These results show that successive judo bouts significantly reduce the maximal isometric strength of both hands and may suggest that fatigue of each hand depends on different factors. An enhanced understanding of the behavior of the isometric handgrip strength, and the factors that affect grip fatigue during judo bouts in the dominant and nondominant hands, can aid coaches in developing optimal training and exercise interventions that are aimed at mitigating decreases in the capacity of judo athletes to perform a grip.
Verification of BOUT++ by the method of manufactured solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudson, B. D., E-mail: benjamin.dudson@york.ac.uk; Hill, P.; Madsen, J.
2016-06-15
BOUT++ is a software package designed for solving plasma fluid models. It has been used to simulate a wide range of plasma phenomena ranging from linear stability analysis to 3D plasma turbulence and is capable of simulating a wide range of drift-reduced plasma fluid and gyro-fluid models. A verification exercise has been performed as part of a EUROfusion Enabling Research project, to rigorously test the correctness of the algorithms implemented in BOUT++, by testing order-of-accuracy convergence rates using the Method of Manufactured Solutions (MMS). We present tests of individual components including time-integration and advection schemes, non-orthogonal toroidal field-aligned coordinate systemsmore » and the shifted metric procedure which is used to handle highly sheared grids. The flux coordinate independent approach to differencing along magnetic field-lines has been implemented in BOUT++ and is here verified using the MMS in a sheared slab configuration. Finally, we show tests of three complete models: 2-field Hasegawa-Wakatani in 2D slab, 3-field reduced magnetohydrodynamics (MHD) in 3D field-aligned toroidal coordinates, and 5-field reduced MHD in slab geometry.« less
Role of fat metabolism in exercise.
Askew, E W
1984-07-01
Fat and carbohydrate are the two major energy sources used during exercise. Either source can predominate, depending upon the duration and intensity of exercise, degree of prior physical conditioning, and the composition of the diet consumed in the days prior to a bout of exercise. Fatty acid oxidation can contribute 50 to 60 per cent of the energy expenditure during a bout of low intensity exercise of long duration. Strenuous submaximal exercise requiring 65 to 80 per cent of VO2 max will utilize less fat (10 to 45 per cent of the energy expended). Exercise training is accompanied by metabolic adaptations that occur in skeletal muscle and adipose tissue and that facilitate a greater delivery and oxidation of fatty acids during exercise. The trained state is characterized by an increased flux of fatty acids through smaller pools of adipose tissue energy. This is reflected by smaller, more metabolically active adipose cells in smaller adipose tissue depots. Peak blood concentrations of free fatty acids and ketone bodies are lower during and following exercise in trained individuals, probably due to increased capacity of the skeletal musculature to oxidize these energy sources. Trained individuals oxidize more fat and less carbohydrate than untrained subjects when performing submaximal work of the same absolute intensity. This increased capacity to utilize energy from fat conserves crucial muscle and liver glycogen stores and can contribute to increased endurance. Further benefits of the enhanced lipid metabolism accompanying chronic aerobic exercise training are decreased cardiac risk factors. Exercise training results in lower blood cholesterol and triglycerides and increased high density lipoprotein cholesterol. High-fat diets are not recommended because of their association with atherosclerotic heart disease. Recent evidence suggests that low-fat high-carbohydrate diets may increase blood triglycerides and reduce high density lipoproteins. This suggests that the chronic ingestion of diets that are extreme in their composition of either fat or carbohydrate should be approached with caution in health-conscious athletes, as well as in sedentary individuals.
Does post-exercise massage treatment reduce delayed onset muscle soreness? A systematic review
Ernst, E.
1998-01-01
BACKGROUND: Delayed onset muscle soreness (DOMS) is a frequent problem after unaccustomed exercise. No universally accepted treatment exists. Massage therapy is often recommended for this condition but uncertainty exists about its effectiveness. AIM: To determine whether post-exercise massage alleviates the symptoms of DOMS after a bout of strenuous exercise. METHOD: Various computerised literature searches were carried out and located seven controlled trials. RESULTS: Most of the trials were burdened with serious methodological flaws, and their results are far from uniform. However, most suggest that post-exercise massage may alleviate symptoms of DOMS. CONCLUSIONS: Massage therapy may be a promising treatment for DOMS. Definitive studies are warranted. PMID:9773168
Vissing, Kristian; Rahbek, Stine K; Lamon, Severine; Farup, Jean; Stefanetti, Renae J; Wallace, Marita A; Vendelbo, Mikkel H; Russell, Aaron
2013-08-01
The striated muscle activator of Rho signalling (STARS) pathway is suggested to provide a link between external stress responses and transcriptional regulation in muscle. However, the sensitivity of STARS signalling to different mechanical stresses has not been investigated. In a comparative study, we examined the regulation of the STARS signalling pathway in response to unilateral resistance exercise performed as either eccentric (ECC) or concentric (CONC) contractions as well as prolonged training; with and without whey protein supplementation. Skeletal muscle STARS, myocardian-related transcription factor-A (MRTF-A) and serum response factor (SRF) mRNA and protein, as well as muscle cross-sectional area and maximal voluntary contraction, were measured. A single-bout of exercise produced increases in STARS and SRF mRNA and decreases in MRTF-A mRNA with both ECC and CONC exercise, but with an enhanced response occurring following ECC exercise. A 31% increase in STARS protein was observed exclusively after CONC exercise (P < 0.001), while pSRF protein levels increased similarly by 48% with both CONC and ECC exercise (P < 0.001). Prolonged ECC and CONC training equally stimulated muscle hypertrophy and produced increases in MRTF-A protein of 125% and 99%, respectively (P < 0.001). No changes occurred for total SRF protein. There was no effect of whey protein supplementation. These results show that resistance exercise provides an acute stimulation of the STARS pathway that is contraction mode dependent. The responses to acute exercise were more pronounced than responses to accumulated training, suggesting that STARS signalling is primarily involved in the initial phase of exercise-induced muscle adaptations.
Individual Variation in Hunger, Energy Intake, and Ghrelin Responses to Acute Exercise.
King, James A; Deighton, Kevin; Broom, David R; Wasse, Lucy K; Douglas, Jessica A; Burns, Stephen F; Cordery, Philip A; Petherick, Emily S; Batterham, Rachel L; Goltz, Fernanda R; Thackray, Alice E; Yates, Thomas; Stensel, David J
2017-06-01
This study aimed to characterize the immediate and extended effect of acute exercise on hunger, energy intake, and circulating acylated ghrelin concentrations using a large data set of homogenous experimental trials and to describe the variation in responses between individuals. Data from 17 of our group's experimental crossover trials were aggregated yielding a total sample of 192 young, healthy males. In these studies, single bouts of moderate to high-intensity aerobic exercise (69% ± 5% V˙O2 peak; mean ± SD) were completed with detailed participant assessments occurring during and for several hours postexercise. Mean hunger ratings were determined during (n = 178) and after (n = 118) exercise from visual analog scales completed at 30-min intervals, whereas ad libitum energy intake was measured within the first hour after exercise (n = 60) and at multiple meals (n = 128) during the remainder of trials. Venous concentrations of acylated ghrelin were determined at strategic time points during (n = 118) and after (n = 89) exercise. At group level, exercise transiently suppressed hunger (P < 0.010, Cohen's d = 0.77) but did not affect energy intake. Acylated ghrelin was suppressed during exercise (P < 0.001, Cohen's d = 0.10) and remained significantly lower than control (no exercise) afterward (P < 0.024, Cohen's d = 0.61). Between participants, there were notable differences in responses; however, a large proportion of this spread lay within the boundaries of normal variation associated with biological and technical assessment error. In young men, acute exercise suppresses hunger and circulating acylated ghrelin concentrations with notable diversity between individuals. Care must be taken to distinguish true interindividual variation from random differences within normal limits.
Gee, Thomas I; French, Duncan N; Howatson, Glyn; Payton, Stephen J; Berger, Nicolas J; Thompson, Kevin G
2011-11-01
Rowers regularly undertake rowing training within 24 h of performing bouts of strength training; however, the effect of this practice has not been investigated. This study evaluated the impact of a bout of high-intensity strength training on 2,000 m rowing ergometer performance and rowing-specific maximal power. Eight highly trained male club rowers performed baseline measures of five separate, static squat jumps (SSJ) and countermovement jumps (CMJ), maximal rowing ergometer power strokes (PS) and a single 2,000 m rowing ergometer test (2,000 m). Subsequently, participants performed a high-intensity strength training session consisting of various multi-joint barbell exercises. The 2,000 m test was repeated at 24 and 48 h post-ST, in addition SSJ, CMJ and PS tests were performed at these time points and also at 2 h post-ST. Muscle soreness, serum creatine kinase (CK) and lactate dehydrogenase (LDH) were assessed pre-ST and 2, 24 and 48 h post-ST. Following the ST, there were significant elevations in muscle soreness (2 and 24 h, P < 0.01), CK (2, 24 and 48 h, P < 0.01), and LDH (2 h, P < 0.05) in comparison to baseline values. There were significant decrements across all time points for SSJ, CMJ and PS, which ranged between 3 and 10% (P < 0.05). However, 2,000 m performance and related measurements of heart rate and blood lactate were not significantly affected by ST. In summary, a bout of high-intensity strength training resulted in symptoms of muscle damage and decrements in rowing-specific maximal power, but this did not affect 2,000 m rowing ergometer performance in highly trained rowers.
Maffeis, C; Bonadonna, R; Maschio, M; Aiello, G; Tommasi, M; Marigliano, M; Fornari, E; Morandi, A
2013-07-01
To investigate the relationship between postprandial nutrient balance, satiety and hormone changes induced by two different meals taken after a moderate intensity exercise bout. Ten prepubertal obese children participated in the study. The experiment was designed as a cross-over study for repeated measures. Each test period lasted five consecutive hours during which the children were under medical supervision. The effects of two isocaloric meals were compared after a moderate intensity exercise (4 multiples of resting metabolic rate, 30 min, cycling): a low-fat/high-carbohydrate meal (meal A) and a high-fat/low-carbohydrate meal (meal B). Pre and postprandial (3 h) substrate oxidation, biochemical parameters, gastrointestinal hormone concentrations and appetite were measured. The main results were: (i) higher fat balance (5.1±5.0 vs -5.0±6.6 g, P=0.001) and lower carbohydrate balance after meal B than A (-9.7±13.3 vs 11.3±18.3 g, P<0.01); (ii) higher energy balance after meal B than after meal A (5.9±21.5 vs -13.9±20.2 kcal, P<0.05); (iii) higher plasma triglyceride concentrations (area under the curve) after meal B than after meal A (2962.5±2095.8 mg*180 min/dl vs -169.5±1633.7 mg*180 min/dl, P<0.01); (iv) higher serum glucagon-like peptide-1 concentrations after meal B than after meal A (1101.5±873.0 pmol*180 min/l vs 478.8±638.3 pmol*180 min/l, P<0.05). After a bout of moderate intensity exercise, a meal with a high-fat/low-carbohydrate ratio had a less favorable metabolic impact than an isoenergetic, isoproteic low-fat/high-carbohydrate meal.
The effect of short-term isometric training on core/torso stiffness.
Lee, Benjamin; McGill, Stuart
2017-09-01
"Core" exercise is a basic part of many physical training regimens with goals ranging from rehabilitation of spine and knee injuries to improving athletic performance. Core stiffness has been proposed to perform several functions including reducing pain by minimising joint micro-movements, and enhancing strength and speed performance. This study probes the links between a training approach and immediate but temporary changes in stiffness. Passive and active stiffness was measured on 24 participants; 12 having little to no experience in core training (inexperienced), and the other 12 being athletes experienced to core training methods; before and after a 15 min bout of isometric core exercises. Passive stiffness was assessed on a "frictionless" bending apparatus and active stiffness assessed via a quick release mechanism. Short-term isometric core training increased passive and active stiffness in most directions for both inexperienced and experienced participants, passive left lateral bend among experienced participants being the exception (P < 0.05). There was no difference between the inexperienced and experienced groups. The results confirm that the specific isometric training exercise approach tested here can induce immediate changes in core stiffness, in this case following a single session. This may influence performance and injury resilience for a brief period.
Cağlar, Ertunga; Sabuncuoğlu, Hakan; Keskin, Tülay; Isikli, Sedat; Keskil, Semih; Korkusuz, Feza
2005-01-01
Our aim was to disclose whether the positive psychological changes observed after a single bout of aerobic exercise have a biochemical correlate that can be visualized by proton magnetic resonance spectroscopy (MRS) of the human brain. Right-handed male volunteers underwent psychological testing and MRS of the frontal lobe of the left hemisphere, both before and after 20 minutes of jogging at about 70% of their maximal aerobic capacity. Although there was a significant decrease on the postexercise anxiety test scores (z = -2.201, P < .05), there was no significant difference between the preexercise and postexercise scores of positive and negative affect. Considering both "amplitude" and "area under the curve" values calculated for the peaks of metabolites N-acetylaspartate (NAA), creatine, and choline, none were found to be significantly changed (P > .05) after the exercise. This is, to our knowledge, the first study to report on a functional application of MRS to mood states. Because it offers the ability to directly measure metabolic changes in the brain during neuronal activation, "functional MRS" may be a potential new tool that may be used as an adjunct to functional magnetic resonance imaging.
Design and baseline characteristics of the Short bouTs of Exercise for Preschoolers (STEP) study.
Alhassan, Sofiya; Nwaokelemeh, Ogechi; Mendoza, Albert; Shitole, Sanyog; Whitt-Glover, Melicia C; Yancey, Antronette K
2012-08-01
Most preschool centers provide two 30-min sessions of gross-motor/outdoor playtime per preschool day. Within this time frame, children accumulate most of their activity within the first 10 min. This paper describes the design and baseline participant characteristics of the Short bouTs of Exercise for Preschoolers (STEP) study. The STEP study is a cluster randomized controlled study designed to examine the effects of short bouts of structured physical activity (SBS-PA) implemented within the classroom setting as part of designated gross-motor playtime on during-school physical activity (PA) in preschoolers. Ten preschool centers serving low-income families were randomized into SBS-PA versus unstructured PA (UPA). SBS-PA schools were asked to implement age-appropriate 10 min structured PA routines within the classroom setting, twice daily, followed by 20 min of usual unstructured playtime. UPA intervention consisted of 30 min of supervised unstructured free playtime twice daily. Interventions were implemented during the morning and afternoon designated gross-motor playtime for 30 min/session, five days/week for six months. Outcome measures were between group difference in during-preschool PA (accelerometers and direct observation) over six-months. Ten preschool centers, representing 34 classrooms and 315 children, enrolled in the study. The average age and BMI percentile for the participants was 4.1 ± 0.8 years and 69th percentile, respectively. Participants spent 74% and 6% of their preschool day engaged in sedentary and MVPA, respectively. Results from the STEP intervention could provide evidence that a PA policy that exposes preschoolers to shorter bouts of structured PA throughout the preschool day could potentially increase preschoolers' PA levels.
Design and baseline characteristics of the Short bouTs of Exercise for Preschoolers (STEP) study
2012-01-01
Background Most preschool centers provide two 30-min sessions of gross-motor/outdoor playtime per preschool day. Within this time frame, children accumulate most of their activity within the first 10 min. This paper describes the design and baseline participant characteristics of the Short bouTs of Exercise for Preschoolers (STEP) study. The STEP study is a cluster randomized controlled study designed to examine the effects of short bouts of structured physical activity (SBS-PA) implemented within the classroom setting as part of designated gross-motor playtime on during-school physical activity (PA) in preschoolers. Methods/Design Ten preschool centers serving low-income families were randomized into SBS-PA versus unstructured PA (UPA). SBS-PA schools were asked to implement age-appropriate 10 min structured PA routines within the classroom setting, twice daily, followed by 20 min of usual unstructured playtime. UPA intervention consisted of 30 min of supervised unstructured free playtime twice daily. Interventions were implemented during the morning and afternoon designated gross-motor playtime for 30 min/session, five days/week for six months. Outcome measures were between group difference in during-preschool PA (accelerometers and direct observation) over six-months. Ten preschool centers, representing 34 classrooms and 315 children, enrolled in the study. The average age and BMI percentile for the participants was 4.1 ± 0.8 years and 69th percentile, respectively. Participants spent 74% and 6% of their preschool day engaged in sedentary and MVPA, respectively. Discussion Results from the STEP intervention could provide evidence that a PA policy that exposes preschoolers to shorter bouts of structured PA throughout the preschool day could potentially increase preschoolers’ PA levels. Trial registration Clinicaltrials.gov, NCT01588392 PMID:22853642
Hinde, Katrina; Lloyd, Ray; Low, Chris; Cooke, Carlton
2017-03-01
The purpose of this experiment was to evaluate the effect of load carriage in a range of temperatures to establish the interaction between cold exposure, the magnitude of change from unloaded to loaded walking and gradient. Eleven participants (19-27 years) provided written informed consent before performing six randomly ordered walking trials in six temperatures (20, 10, 5, 0, -5, and -10 °C). Trials involved two unloaded walking bouts before and after loaded walking (18.2 kg) at 4 km · h -1 , on 0 and 10% gradients in 4 min bouts. The change in absolute oxygen consumption (V̇O 2 ) from the first unloaded bout to loaded walking was similar across all six temperatures. When repeating the second unloaded bout, V̇O 2 at both -5 and -10 °C was greater compared to the first. At -10 °C, V̇O 2 was increased from 1.60 ± 0.30 to 1.89 ± 0.51 L · min -1 . Regardless of temperature, gradient had a greater effect on V̇O 2 and heart rate (HR) than backpack load. HR was unaffected by temperature. Stride length (SL) decreased with decreasing temperature, but trunk forward lean was greater during cold exposure. Decreased ambient temperature did not influence the magnitude of change in V̇O 2 from unloaded to loaded walking. However, in cold temperatures, V̇O 2 was significantly higher than in warm conditions. The increased V̇O 2 in colder temperatures at the same exercise intensity is predicted to ultimately lead to earlier onset of fatigue and cessation of exercise. These results highlight the need to consider both appropriate clothing and fitness during cold exposure.
Alghannam, Abdullah F.; Betts, James A.
2018-01-01
The importance of post-exercise recovery nutrition has been well described in recent years, leading to its incorporation as an integral part of training regimes in both athletes and active individuals. Muscle glycogen depletion during an initial prolonged exercise bout is a main factor in the onset of fatigue and so the replenishment of glycogen stores may be important for recovery of functional capacity. Nevertheless, nutritional considerations for optimal short-term (3–6 h) recovery remain incompletely elucidated, particularly surrounding the precise amount of specific types of nutrients required. Current nutritional guidelines to maximise muscle glycogen availability within limited recovery are provided under the assumption that similar fatigue mechanisms (i.e., muscle glycogen depletion) are involved during a repeated exercise bout. Indeed, recent data support the notion that muscle glycogen availability is a determinant of subsequent endurance capacity following limited recovery. Thus, carbohydrate ingestion can be utilised to influence the restoration of endurance capacity following exhaustive exercise. One strategy with the potential to accelerate muscle glycogen resynthesis and/or functional capacity beyond merely ingesting adequate carbohydrate is the co-ingestion of added protein. While numerous studies have been instigated, a consensus that is related to the influence of carbohydrate-protein ingestion in maximising muscle glycogen during short-term recovery and repeated exercise capacity has not been established. When considered collectively, carbohydrate intake during limited recovery appears to primarily determine muscle glycogen resynthesis and repeated exercise capacity. Thus, when the goal is to optimise repeated exercise capacity following short-term recovery, ingesting carbohydrate at an amount of ≥1.2 g kg body mass−1·h−1 can maximise muscle glycogen repletion. The addition of protein to carbohydrate during post-exercise recovery may be beneficial under circumstances when carbohydrate ingestion is sub-optimal (≤0.8 g kg body mass−1·h−1) for effective restoration of muscle glycogen and repeated exercise capacity. PMID:29473893
Frederico, Éric Heleno Freire Ferreira; de Sá-Caputo, Danúbia da Cunha; Moreira-Marconi, Eloá; Guimarães, Carlos Alberto Sampaio; Cardoso, André Luiz Bandeira Dionísio; Dionello, Carla da Fontoura; Morel, Danielle Soares; Sousa-Gonçalves, Cintia Renata; Paineiras-Domingos, Laisa Liana; Cavalcanti, Rebeca Graça Costa; Asad, Nasser Ribeiro; Marin, Pedro Jesus; Bernardo-Filho, Mario
2017-01-01
Whole body vibration (WBV) exercise has been used in health sciences. Authors have reported that changes on the concentration of plasma biomarkers could be associated with the WBV effects. The aim of this investigation is to assess the consequences of exposition of 25 Hz mechanical vibration generated in oscillating/vibratory platform (OVP) on the concentration of some plasma biomarkers and on the weight of rats. Wistar rats were divided into two groups. The animals of the Experimental Group (EG) were submitted to vibration (25 Hz) generated in an OVP with four bouts of 30 seconds with rest time of 60 seconds between the bouts. This procedure was performed daily for 12 days. The animals of the control group (CG) were not exposed to vibration. Our findings show that the WBV exercise at 25 Hz was not capable to alter significantly ( p <0.05) the weight of the rats. A significant alteration in the concentrations of amylase was found. Our results indicate a modulation of the WBV exercise with vibration of 25 Hz of frequency (i) in the pathways related to the weight and (ii) in the concentration of some biomarkers, such as amylase.
Kaya, F.; Bicer, B.; Erzeybek, M.S.; Cotuk, H.B.
2012-01-01
In this study we assessed the influence of the three different recovery interventions massage (MSG), electrical muscle stimulation (EMS), and passive rest (PR) on lactate disappearance and muscle recovery after exhausting exercise bouts. Twelve healthy male sport students participated in the study. They attended the laboratory on five test days. After measurement of V.O2max and a baseline Wingate test (WGb), the three recovery interventions were tested in random counterbalanced order. High intensity exercise, which consisted of six exhausting exercise bouts (interspersed with active recovery), was followed by MSG, EMS or PR application (24 minutes); then the final Wingate test (WGf) was performed. Lactate, heart rate, peak and mean power, rating of perceived exertion (RPE), and total quality of recovery (TQR) were recorded. In WGf mean power was significantly higher than in WGb for all three recovery modalities (MSG 6.29%, EMS 5.33%, PR 4.84% increase, p < 0.05), but no significant differences in mean and peak power were observed between the three recovery modes (p > 0.05). The heart rate response and the changes in blood lactate concentration were identical in all three interventions during the entire protocol (p = 0.817, p = 0.493, respectively). RPE and TQR scores were also not different among the three interventions (p > 0.05). These results provide further evidence that MSG and EMS are not more effective than PR in the process of recovery from high intensity exercise. PMID:24868117
Alves, Christiano R R; Tessaro, Victor H; Teixeira, Luis A C; Murakava, Karina; Roschel, Hamilton; Gualano, Bruno; Takito, Monica Y
2014-02-01
Acute moderate intensity continuous aerobic exercise can improve specific cognitive functions, such as short-term memory and selective attention. Moreover, high-intensity interval training (HIT) has been recently proposed as a time-efficient alternative to traditional cardiorespiratory exercise. However, considering previous speculations that the exercise intensity affects cognition in a U-shaped fashion, it was hypothesized that a HIT session may impair cognitive performance. Therefore, this study assessed the effects of an acute HIT session on selective attention and short-term memory tasks. 22 healthy middle-aged individuals (M age = 53.7 yr.) engaged in both (1) a HIT session, 10 1 min. cycling bouts at the intensity corresponding to 80% of the reserve heart rate interspersed by 1 min. active pauses cycling at 60% of the reserve heart rate and (2) a control session, consisting of an active condition with low-intensity active stretching exercise. Before and after each experimental session, cognitive performance was assessed by the Victoria Version of the Stroop test (a selective attention test) and the Digit Span test (a short-term memory test). Following the HIT session, the time to complete the Stroop "Color word" test was significantly lower when compared with that of the control session. The performances in the other subtasks of the Stroop test as well as in the Digit Span test were not significantly different. A HIT session can improve cognitive function.
Evaluation of immune response after moderate and overtraining exercise in wistar rat
Gholamnezhad, Zahra; Boskabady, Mohammad Hossein; Hosseini, Mahmoud; Sankian, Mojtaba; Khajavi Rad, Abolfazl
2014-01-01
Objective(s): The effect of prolonged overtraining on cytokine kinetics was compared with moderate exercise in the present study. Materials and Methods: Male Wistar rats were randomly divided into control sedentary (C), moderate trained (MT), (V=20 m/min, 30 min/day for 6 days a week, 8 weeks), overtrained (OT) (V=25 m/min, 60min/day for 6 days a week, 11 weeks) and recovered overtrained (OR) (OT plus 2 weeks recovery) groups, (n=6 for each group). Immediately, 24 hr and 2 weeks (in OR) after last bout of exercise blood samples were obtained. The plasma concentrations of TNFα, IL-6, IL-10, IL-4 and IFN were measured by ELISA method. Results: Immediately after last bout of exercise the following findings were observed; IL-6, IL-10 and TNFα concentrations increased in OT and OR groups compared with control (P<0.05–P<0.001). Serum level of IL-4 decreased (P<0.01) but IFN increased (P<0.05) in MT group vs. control. In addition, circulatory levels of TNFα, IL-6, IL-10 and IL-4 were higher but the IFN concentrations were lower in OT and OR groups than MT group (P<0.05-P<0.01). The IFN-γ/IL4 ratio was significantly increased in MT (P<0.01) while it decreased in OT group. There were not statistical differences in TNFα, IL-6, and IFN levels between different time intervals after exercise in MT, OT and OR groups. Conclusion: These data confirm a positive effect of moderate exercise on immune function and a decrease in susceptibility to viral infection by inducing Th1 cytokine profile shift. However, prolonged and overtraining exercise causes numerous changes in immunity that possibly reflects physiological stress and immune suppression. PMID:24592300
AbouAssi, Hiba; Slentz, Cris A; Mikus, Catherine R; Tanner, Charles J; Bateman, Lori A; Willis, Leslie H; Shields, A Tamlyn; Piner, Lucy W; Penry, Lorrie E; Kraus, Erik A; Huffman, Kim M; Bales, Connie W; Houmard, Joseph A; Kraus, William E
2015-06-15
Most health organizations recommend a combination of aerobic training (AT) and resistance training (RT), yet few studies have compared their acute (within 24 h of the last exercise bout) and sustained (after 14 days of no exercise training) effects alone and in combination on glucose metabolism. The present study (Studies Targeting Risk Reduction Interventions through Defined Exercise-Aerobic Training and/or Resistance Training) compared the effects of AT, RT, and the combination (AT/RT) on insulin action at both acute and sustained phases. Subjects (N = 196) were 18-70 yr old (mean age = 50 yr), overweight (mean body mass index = 30 kg/m2), sedentary with moderate dyslipidemia, and were randomized into one of three 8-mo exercise groups: 1) RT: 3 days/wk, 8 exercises, 3 sets/exercise, 8-12 repetitions/set; 2) AT: equivalent to ∼19.2 km/wk (12 miles/wk) at 75% peak O2 consumption; 3) AT/RT: the combination of AT and RT. One hundred forty-four subjects completed the intervention. Eighty-eight subjects completed all pre- and postintervention testing visits. Insulin sensitivity, glucose effectiveness, and disposition index were measured via a frequently sampled intravenous glucose tolerance test with subsequent minimal model analyses. AT/RT resulted in greater improvements in insulin sensitivity, β-cell function (disposition index), and glucose effectiveness than either AT or RT alone (all P < 0.05). Approximately 52% of the improvement in insulin sensitivity by AT/RT was retained 14 days after the last exercise training bout. Neither AT or RT led to acute or chronic improvement in sensitivity index. In summary, only AT/RT (which required twice as much time as either alone) led to significant acute and sustained benefits in insulin sensitivity
Terink, Rieneke; Balvers, Michiel G J; Hopman, Maria T; Witkamp, Renger F; Mensink, Marco; Gunnewiek, Jacqueline M T Klein
2017-06-01
Magnesium is essential for optimal sport performance, generating an interest to monitor its status in athletes. However, before measuring magnesium status in blood could become routine, more insight into its diurnal fluctuations and effects of exercise itself is necessary. Therefore, we measured the effect of an acute bout of exercise on ionized (iMg) and total plasma magnesium (tMg) in blood obtained from 18 healthy well-trained endurance athletes (age, 31.1 ± 8.1 yr.; VO 2max , 50.9 ± 7.5 ml/kg/min) at multiple time points, and compared this with a resting situation. At both days, 7 blood samples were taken at set time points (8:30 fasted, 11:00, 12:30, 13:30, 15:00, 16:00, 18:30). The control day was included to correct for a putative diurnal fluctuation of magnesium. During the exercise day, athletes performed a 90 min bicycle ergometer test (70% VO 2max ) between 11:00 and 12:30. Whole blood samples were analyzed for iMg and plasma for tMg concentrations. Both concentrations decreased significantly after exercise (0.52 ± 0.04-0.45 ± 0.03 mmol/L and 0.81 ± 0.07-0.73 ± 0.06 mmol/L, respectively, p < .001) while no significant decline was observed during that time-interval on control days. Both, iMg and tMg, returned to baseline, on average, 2.5 hr after exercise. These findings suggest that timing of blood sampling to analyze Mg status is important. Additional research is needed to establish the recovery time after different types of exercise to come to a general advice regarding the timing of magnesium status assessment in practice.
Music enhances performance and perceived enjoyment of sprint interval exercise.
Stork, Matthew J; Kwan, Matthew Y W; Gibala, Martin J; Martin Ginis, Kathleen A
2015-05-01
Interval exercise training can elicit physiological adaptations similar to those of traditional endurance training, but with reduced time. However, the intense nature of specific protocols, particularly the "all-out" efforts characteristic of sprint interval training (SIT), may be perceived as being aversive. The purpose of this study was to determine whether listening to self-selected music can reduce the potential aversiveness of an acute session of SIT by improving affect, motivation, and enjoyment, and to examine the effects of music on performance. Twenty moderately active adults (22 ± 4 yr) unfamiliar with interval exercise completed an acute session of SIT under two different conditions: music and no music. The exercise consisted of four 30-s "all-out" Wingate Anaerobic Test bouts on a cycle ergometer, separated by 4 min of rest. Peak and mean power output, RPE, affect, task motivation, and perceived enjoyment of the exercise were measured. Mixed-effects models were used to evaluate changes in dependent measures over time and between the two conditions. Peak and mean power over the course of the exercise session were higher in the music condition (coefficient = 49.72 [SE = 13.55] and coefficient = 23.65 [SE = 11.30]; P < 0.05). A significant time by condition effect emerged for peak power (coefficient = -12.31 [SE = 4.95]; P < 0.05). There were no between-condition differences in RPE, affect, or task motivation. Perceived enjoyment increased over time and was consistently higher in the music condition (coefficient = 7.00 [SE = 3.05]; P < 0.05). Music enhances in-task performance and enjoyment of an acute bout of SIT. Listening to music during intense interval exercise may be an effective strategy for facilitating participation in, and adherence to, this form of training.
Rynders, Corey A.; Weltman, Judy Y.; Jiang, Boyi; Breton, Marc; Patrie, James; Barrett, Eugene J.
2014-01-01
Background: A single bout of exercise improves postprandial glycemia and insulin sensitivity in prediabetic patients; however, the impact of exercise intensity is not well understood. The present study compared the effects of acute isocaloric moderate (MIE) and high-intensity (HIE) exercise on glucose disposal and insulin sensitivity in prediabetic adults. Methods: Subjects (n = 18; age 49 ± 14 y; fasting glucose 105 ± 11 mg/dL; 2 h glucose 170 ± 32 mg/dL) completed a peak O2 consumption/lactate threshold (LT) protocol plus three randomly assigned conditions: 1) control, 1 hour of seated rest, 2) MIE (at LT), and 3) HIE (75% of difference between LT and peak O2 consumption). One hour after exercise, subjects received an oral glucose tolerance test (OGTT). Plasma glucose, insulin, and C-peptide concentrations were sampled at 5- to 10-minute intervals at baseline, during exercise, after exercise, and for 3 hours after glucose ingestion. Total, early-phase, and late-phase area under the glucose and insulin response curves were compared between conditions. Indices of insulin sensitivity (SI) were derived from OGTT data using the oral minimal model. Results: Compared with control, SI improved by 51% (P = .02) and 85% (P < .001) on the MIE and HIE days, respectively. No differences in SI were observed between the exercise conditions (P = .62). Improvements in SI corresponded to significant reductions in the glucose, insulin, and C-peptide area under the curve values during the late phase of the OGTT after HIE (P < .05), with only a trend for reductions after MIE. Conclusion: These results suggest that in prediabetic adults, acute exercise has an immediate and intensity-dependent effect on improving postprandial glycemia and insulin sensitivity. PMID:24243632
Cheng, Tsung-Lin; Lin, Yi-Yuan; Su, Chia-Ting; Hu, Chun-Che; Yang, Ai-Lun
2016-06-30
Postmenopause is associated with the development of cardiovascular disease, such as hypertension. However, limited information is available regarding effects of exercise on cardiovascular responses and its underlying mechanisms in the simultaneous postmenopausal and hypertensive status. We aimed to investigate whether acute exercise could enhance vasodilation mediated by acetylcholine (ACh) and sodium nitroprusside (SNP) in ovariectomized hypertensive rats. The fifteen-week-old female spontaneously hypertensive rats (SHR) were bilaterally ovariectomized, at the age of twenty-four weeks, and randomly divided into sedentary (SHR-O) and acute exercise (SHR-OE) groups. Age-matched WKY rats were used as the normotensive control group. The SHR-OE group ran on a motor-driven treadmill at a speed of 24 m/min for one hour in a moderate-intensity program. Following a single bout of exercise, rat aortas were isolated for the evaluation of the endothelium-dependent (ACh-induced) and endothelium-independent (SNP-induced) vasodilation by the organ bath system. Also, the serum levels of oxidative stress and antioxidant activities, including malondialdehyde (MDA), superoxide dismutase (SOD), and catalase, were measured after acute exercise among the three groups. We found that acute exercise significantly enhanced the ACh-induced vasodilation, but not the SNP-induced vasodilation, in ovariectomized hypertensive rats. This increased vasodilation was eliminated after the inhibition of nitric oxide synthase (NOS). Also, the activities of SOD and catalase were significantly increased after acute exercise, whereas the level of MDA was comparable among the three groups. These results indicated that acute exercise improved the endothelium-dependent vasodilating response to ACh through the NOS-related pathway in ovariectomized hypertensive rats, which might be associated with increased serum antioxidant activities.
Dedova, Irina V
2016-01-01
Background Sustained cardiac rehabilitation is the key intervention in the prevention and treatment of many human diseases. However, implementation of exercise programs can be challenging because of early fatigability in patients with chronic diseases, overweight individuals, and aged people. Current methods of fatigability assessment are based on subjective self-reporting such as rating of perceived exertion or require specialized laboratory conditions and sophisticated equipment. A practical approach allowing objective measurement of exercise-induced fatigue would be useful for the optimization of sustained delivery of cardiac rehabilitation to improve patient outcomes. Objectives The objective of this study is to develop and validate an innovative approach, allowing for the objective assessment of exercise-induced fatigue using the Web-enabled leg rehabilitation system. Methods MedExercise training devices were equipped with wireless temperature sensors in order to monitor their usage by temperature rise in the resistance unit (Δt°). Since Δt° correlated with the intensity and duration of exercise, this parameter was used to characterize participants’ leg work output (LWO). Personal smart devices such as laptop computers with wireless gateways and relevant software were used for monitoring of self-control training. Connection of smart devices to the Internet and cloud-based software allowed remote monitoring of LWO in participants training at home. Heart rates (HRs) were measured by fingertip pulse oximeters simultaneously with Δt° in 7 healthy volunteers. Results Exercise-induced fatigue manifested as the decline of LWO and/or rising HR, which could be observed in real-time. Conversely, training at the steady-state LWO and HR for the entire duration of exercise bout was considered as fatigue-free. The amounts of recommended daily physical activity were expressed as the individual Δt° values reached during 30-minute fatigue-free exercise of moderate intensity resulting in a mean of 8.1°C (SD 1.5°C, N=7). These Δt° values were applied as the thresholds for sending automatic notifications upon taking the personalized LWO doses by self-control training at home. While the mean time of taking LWO doses was 30.3 (SD 4.1) minutes (n=25), analysis of times required to reach the same Δt° by the same participant revealed that longer durations were due to fatigability, manifesting as reduced LWO at the later stages of training bouts. Typically, exercising in the afternoons associated with no fatigue, although longer durations of evening sessions suggested a diurnal fatigability pattern. Conclusions This pilot study demonstrated the feasibility of objective monitoring of fatigue development in real-time and online as well as retrospective fatigability quantification by the duration of training bouts to reach the same exercise dose. This simple method of leg training at home accompanied by routine fatigue monitoring might be useful for the optimization of exercise interventions in primary care and special populations. PMID:27549345
Stepto, Nigel K.; Benziane, Boubacar; Wadley, Glenn D.; Chibalin, Alexander V.; Canny, Benedict J.; Eynon, Nir; McConell, Glenn K.
2012-01-01
Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training. Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training. These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training. PMID:23285255
Shima, Takeru; Matsui, Takashi; Jesmin, Subrina; Okamoto, Masahiro; Soya, Mariko; Inoue, Koshiro; Liu, Yu-Fan; Torres-Aleman, Ignacio; McEwen, Bruce S; Soya, Hideaki
2017-03-01
Type 2 diabetes is likely to be an independent risk factor for hippocampal-based memory dysfunction, although this complication has yet to be investigated in detail. As dysregulated glycometabolism in peripheral tissues is a key symptom of type 2 diabetes, it is hypothesised that diabetes-mediated memory dysfunction is also caused by hippocampal glycometabolic dysfunction. If so, such dysfunction should also be ameliorated with moderate exercise by normalising hippocampal glycometabolism, since 4 weeks of moderate exercise enhances memory function and local hippocampal glycogen levels in normal animals. The hippocampal glycometabolism in OLETF rats (model of human type 2 diabetes) was assessed and, subsequently, the effects of exercise on memory function and hippocampal glycometabolism were investigated. OLETF rats, which have memory dysfunction, exhibited higher levels of glycogen in the hippocampus than did control rats, and breakdown of hippocampal glycogen with a single bout of exercise remained unimpaired. However, OLETF rats expressed lower levels of hippocampal monocarboxylate transporter 2 (MCT2, a transporter for lactate to neurons). Four weeks of moderate exercise improved spatial memory accompanied by further increase in hippocampal glycogen levels and restoration of MCT2 expression independent of neurotrophic factor and clinical symptoms in OLETF rats. Our findings are the first to describe detailed profiles of glycometabolism in the type 2 diabetic hippocampus and to show that 4 weeks of moderate exercise improves memory dysfunction in type 2 diabetes via amelioration of dysregulated hippocampal glycometabolism. Dysregulated hippocampal lactate-transport-related glycometabolism is a possible aetiology of type-2-diabetes-mediated memory dysfunction.
Somatotype variables related to strength and power output in male basketball players.
Buśko, Krzysztof; Pastuszak, Anna; Lipińska, Monika; Lipińska, Marta; Gryko, Karol
2017-01-01
The purpose of this study was to investigate the relationship between somatotype, muscular strength, power output measured in maximal cycle ergometer exercise bouts, and maximal power output and height of rise of the body mass centre (jump height) measured in akimbo counter movement jump (ACMJ), counter movement jump (CMJ) and spike jump (SPJ), in male basketball players. Thirteen male basketball players (second division, age 19.4 ± 0.8 years, body height 192.9 ± 5.6 cm, body mass 88.8 ± 8.6 kg, training experience 9.3 ± 0.8 years) participated in the study. Somatotype was determined using the Heath-Carter method. Maximal joint torques were measured under static conditions. Power output was measured in 2 maximal cycle ergometer exercise bouts, 10 seconds each, with increasing external loads equal to 7.5 and 10.0% of the body weight (BW). All jump trials (ACMJ, CMJ and SPJ) were performed on a force plate. The mean somatotype of basketball players amounted to: 2.8-4.2-3.2. The sum of the joint torques for left and right lower extremities (0.613), trunk (0.631) and all six measured muscle groups (0.647) were significantly correlated (p < 0.05) with the mesomorphic component. Endomorphic, mesomorphic and ectomorphic components were correlated insignificantly with values of maximal power and height of jump during ACMJ, CMJ and SPJ trials. The power output measured in maximal cycle ergometer exercise bouts with increasing external loads was significantly correlated (p < 0.05) with mesomorphy and ectomorphy. It can be assumed that basketball players' anthropometric characteristics can influence their level of performance but it is not a decisive factor.
Exercise and the heart--the harm of too little and too much.
Lavie, Carl J; O'Keefe, James H; Sallis, Robert E
2015-01-01
Physical activity and exercise training are underutilized by much of Westernized society, and physical inactivity may be the greatest threat to health in the 21st century. Many studies have shown a linear relationship between one's activity level and heart health, leading to the conclusion that "if some exercise is good, more must be better." However, there is evolving evidence that high levels of exercise may produce similar or less overall cardiovascular (CV) benefits compared with those produced by lower doses of exercise. Very high doses of exercise may be associated with increased risk of atrial fibrillation, coronary artery disease, and malignant ventricular arrhythmias. These acute bouts of excessive exercise may lead to cardiac dilatation, cardiac dysfunction, and release of troponin and brain natriuretic peptide. The effects of too little and too much exercise on the heart are reviewed in this article, along with recommendations to optimize the dose of exercise to achieve heart health.
Burley, Simon D; Whittingham-Dowd, Jayde; Allen, Jeremy; Grosset, Jean-Francois; Onambele-Pearson, Gladys L
2016-01-01
Substantial gains in muscle strength and hypertrophy are clearly associated with the routine performance of resistance training. What is less evident is the optimal timing of the resistance training stimulus to elicit these significant functional and structural skeletal muscle changes. Therefore, this investigation determined the impact of a single bout of resistance training performed either in the morning or evening upon acute anabolic signalling (insulin-like growth factor-binding protein-3 (IGFBP-3), myogenic index and differentiation) and catabolic processes (cortisol). Twenty-four male participants (age 21.4±1.9yrs, mass 83.7±13.7kg) with no sustained resistance training experience were allocated to a resistance exercise group (REP). Sixteen of the 24 participants were randomly selected to perform an additional non-exercising control group (CP) protocol. REP performed two bouts of resistance exercise (80% 1RM) in the morning (AM: 0800 hrs) and evening (PM: 1800 hrs), with the sessions separated by a minimum of 72 hours. Venous blood was collected immediately prior to, and 5 min after, each resistance exercise and control sessions. Serum cortisol and IGFBP-3 levels, myogenic index, myotube width, were determined at each sampling period. All data are reported as mean ± SEM, statistical significance was set at P≤0.05. As expected a significant reduction in evening cortisol concentration was observed at pre (AM: 98.4±10.5, PM: 49.8±4.4 ng/ml, P<0.001) and post (AM: 98.0±9.0, PM: 52.7±6.0 ng/ml, P<0.001) exercise. Interestingly, individual cortisol differences pre vs post exercise indicate a time-of-day effect (AM difference: -2±2.6%, PM difference: 14.0±6.7%, P = 0.03). A time-of-day related elevation in serum IGFBP-3 (AM: 3274.9 ± 345.2, PM: 3605.1 ± 367.5, p = 0.032) was also evident. Pre exercise myogenic index (AM: 8.0±0.6%, PM: 16.8±1.1%) and myotube width (AM: 48.0±3.0, PM: 71.6±1.9 μm) were significantly elevated (P<0.001) in the evening. Post exercise myogenic index was greater AM (11.5±1.6%) compared with PM (4.6±0.9%). No difference was observed in myotube width (AM: 48.5±1.5, PM: 47.8±1.8 μm) (P>0.05). Timing of resistance training regimen in the evening appears to augment some markers of hypertrophic potential, with elevated IGFBP-3, suppressed cortisol and a superior cellular environment. Further investigation, to further elucidate the time course of peak anabolic signalling in morning vs evening training conditions, are timely.
Quadriceps oxygenation during isometric exercise in sailing.
Vogiatzis, I; Tzineris, D; Athanasopoulos, D; Georgiadou, O; Geladas, N
2008-01-01
The aim of the present study was to investigate why blood lactate after prolonged quadriceps contraction during hiking is only marginally increased. Eight sailors performed five 3-min hiking bouts interspersed with 5-s recovery periods. Whole body oxygen uptake, heart rate and lactate were recorded, along with continuous-wave near-infrared spectroscopy measures of quadriceps oxygenation. The time for 50% re-oxygenation was also assessed as an indication of the degree of localized oxygen delivery stress. Hiking elicited a significant (p = 0.001) increase in mean (+/- SD) heart rate (124 +/- 10 beats . min (-1)) which was accompanied by a disproportionately low oxygen uptake (12 +/- 2 ml.kg(-1).min(-1)). Lactate was significantly (p = 0.001) increased throughout hiking manoeuvres, though post-exercise it remained low (3.2 +/- 0.9 mmol.l(-1)). During the hiking bouts mean quadriceps oxygenation was significantly (p = 0.001) reduced compared to baseline (by 33 +/- 5%), indicating an imbalance between muscle oxygen accessibility and oxygen demand. During rest intervals quadriceps oxygenation was partially restored. After the end of the final bout the time for 50 % re-oxygenation was only 8 +/- 2 s, whereas recovery of quadriceps oxygenation and oxygen uptake was completed within 3 min. We conclude that the observed low lactate could be attributed to the small oxygen and energy deficits during hiking as the muscles' oxygen accessibility is presumably partially restored during the brief rest intervals.
America's Cup yacht racing: race analysis and physical characteristics of the athletes.
Neville, Vernon; Calefato, Julian; Pérez-Encinas, Cristina; Rodilla-Sala, Enrique; Rada-Ruiz, Sergio; Dorochenko, Paul; Folland, Jonathan P
2009-07-01
The America's Cup is the oldest competing trophy in sport, yet little is known of the nature and intensity of racing or the physical characteristics of the athletes. In this study, aspects of the physical demands of America's Cup yacht racing were analysed, including the intensity of exercise and activity pattern of "grinding". Anthropometric data were collected from 92 professional male America's Cup sailors, and fitness data from a top-4 and a lower-7 ranking team during the 32nd America's Cup. Over the 135 races, mean race duration was 82 min (s = 9), with 20 tacks (s = 10) and 8 gybes (s = 3) per race. Grinding bouts were 5.5 s (s = 5.4; range: 2.2-66.3) long, with 143 exercise bouts per race and an exercise-to-rest ratio of 1:6. Mean and peak heart rate was 64% and 92% of maximum for all positions, with bowmen highest (71% and 96%). Grinders were taller, heavier, and stronger than all other positions. Body fat was similar between positions (13%, s = 4). The higher-standard team was stronger and had greater strength endurance, which probably contributed to their quicker manoeuvres. Intensity of exercise was dependent on the similarity of competing boats and the role of the athlete. The short duration and intermittent nature of grinding is indicative of predominantly anaerobic energy provision.