NASA Astrophysics Data System (ADS)
Ifergan, Y.; Dadon, S.; Israelashvili, I.; Osovizky, A.; Gonen, E.; Yehuda-Zada, Y.; Smadja, D.; Knafo, Y.; Ginzburg, D.; Kadmon, Y.; Cohen, Y.; Mazor, T.
2015-06-01
Low level radioactive surface contamination measurements require lightweight, large area and high efficiency detector. In most existing scintillation detectors there is a tradeoff between effective area and scintillation light collection. By using wavelength shifting (WLS) fibers the scintillation light may be collected efficiently also in a large area detector. In this study, WLS fibers were coupled to a beta sensitive plastic scintillator layer and to a alpha sensitive silver-activated zinc sulfide ZnS(Ag) layer for detecting both alpha and beta particles. The WLS fibers collect the scintillation light from the whole detector and transfer it to a single PMT. This first prototype unique configuration enables monitoring radioactive contaminated surfaces by both sides of the detector and provides high gamma rejection. In this paper, the detector structure, as well as the detector's measured linear response, will be described. The measured detection efficiency of 238Pu alpha particles (5.5 MeV) is 63%. The measured detection efficiency for beta particles is 89% for 90Sr-90Y (average energy of 195.8 keV, 934.8 keV), 50% for 36Cl (average energy of 251.3 keV), and 35% for 137Cs (average energy of 156.8 keV).
Inouye, Hideyo; Bond, Jeremy E; Deverin, Sean P; Lim, Amareth; Costello, Catherine E; Kirschner, Daniel A
2002-01-01
Betabellin is a 32-residue peptide engineered to fold into a four-stranded antiparallel beta-sheet protein. Upon air oxidation, the betabellin peptides can fold and assemble into a disulfide-bridged homodimer, or beta-sandwich, of 64 residues. Recent biophysical and ultrastructural studies indicate that betabellin 15D (B15D) (a homodimer of HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, where p = DPro, k = DLys, and h = DHis) forms unbranched, 35-A wide assemblies that resemble the protofilaments of amyloid fibers. In the present study, we have analyzed in detail the X-ray diffraction patterns of B15D prepared from acetonitrile. The fiber diffraction analysis indicated that the B15D fibril was composed of a double helix defined by the selection rule l = n + 7m (where l is even, and n and m are any integers), and having a 199-A period and pitch, 28-A rise per unit, and 10-A radius. This helical model is equivalent to a reverse-handed, single helix with half the period and defined by the selection rule l = -3n + 7m (where l is any integer). The asymmetric unit is the single B15D beta-sandwich molecule. These results suggest that the betabellin assembly that models the protofilaments of amyloid fibers is made up of discrete subunits on a helical array. Multiple intersheet hydrogen bonds in the axial direction and intersandwich polar interactions in the lateral direction stabilize the array. PMID:12202394
Technique for quantitative RT-PCR analysis directly from single muscle fibers.
Wacker, Michael J; Tehel, Michelle M; Gallagher, Philip M
2008-07-01
The use of single-cell quantitative RT-PCR has greatly aided the study of gene expression in fields such as muscle physiology. For this study, we hypothesized that single muscle fibers from a biopsy can be placed directly into the reverse transcription buffer and that gene expression data can be obtained without having to first extract the RNA. To test this hypothesis, biopsies were taken from the vastus lateralis of five male subjects. Single muscle fibers were isolated and underwent RNA isolation (technique 1) or placed directly into reverse transcription buffer (technique 2). After cDNA conversion, individual fiber cDNA was pooled and quantitative PCR was performed using primer-probes for beta(2)-microglobulin, glyceraldehyde-3-phosphate dehydrogenase, insulin-like growth factor I receptor, and glucose transporter subtype 4. The no RNA extraction method provided similar quantitative PCR data as that of the RNA extraction method. A third technique was also tested in which we used one-quarter of an individual fiber's cDNA for PCR (not pooled) and the average coefficient of variation between fibers was <8% (cycle threshold value) for all genes studied. The no RNA extraction technique was tested on isolated muscle fibers using a gene known to increase after exercise (pyruvate dehydrogenase kinase 4). We observed a 13.9-fold change in expression after resistance exercise, which is consistent with what has been previously observed. These results demonstrate a successful method for gene expression analysis directly from single muscle fibers.
Mu-opiate receptor and Beta-endorphin expression in nerve endings and keratinocytes in human skin.
Bigliardi-Qi, M; Sumanovski, L T; Büchner, S; Rufli, T; Bigliardi, P L
2004-01-01
We have previously shown that human epidermal keratinocytes express a functionally active micro-opiate receptor, which adds a new dimension to the recently developed research in neuroimmunodermatology and neurogenic inflammation in skin diseases. Human keratinocytes specifically bind and also produce beta-endorphin, the endogenous micro-opiate receptor ligand. Using confocal imaging microscopy, we could now demonstrate that micro-opiate receptors are not only expressed in keratinocytes, but also on unmyelinated peripheral nerve fibers in the dermis and epidermis. Some of the peripheral nerve fibers also express the ligand beta-endorphin. The keratinocytes positive for beta-endorphin staining are clustered around the terminal ends of the unmyelinated nerve fibers. Therefore the opiate receptor system seems to be crucial in the direct communication between nerves and skin. The keratinocytes can influence the unmyelinated nerve fibers in the epidermis directly via secreting beta-endorphin. On the other hand, nerve fibers can also secrete beta-endorphin and influence the migration, differentiation and probably also the cytokine production pattern of keratinocytes.
Development and application of nonflammable, high-temperature beta fibers
NASA Technical Reports Server (NTRS)
Dawn, Frederic S.
1989-01-01
Recent advances in fiber technology have contributed to the success of the U.S. space program. The inorganic fiber Beta, developed as a result of efforts begun in the early 1960's and heightened following the January 27, 1967 Apollo fire is unique among inorganic and organic fibers. It has been developed into woven, nonwoven, knitted, braided, coated and printed structures. All of these were used extensively for the Apollo, Skylab, Apollo-Soyuz test project, space shuttle, Spacelab, and satellite programs. In addition to being used successfully in the space program, Beta fibers are being used commercially as firesafe fabrics in homes, hospitals, institutions, public buildings, aircraft, and public transportation, wherever total nonflammability is required. One of the most unique applications of the Beta composite structure is the roofing material for the 80,000-seat Detroit Lion's Silverdome and 5 square miles of the Jeddah International Airport in Saudi Arabia. This fiber has been successfully incorporated into 165 major public construction projects around the globe. The United States alone has used more than 12 million square yards of the material. Beta fiber has been used successfully to date and has a promising future with unlimited potential for both space and commercial application. Efforts are currently underway to improve Beta fiber to meet the requirements of extended service life for the Space Station Freedom, lunar outpost, and Mars exploration missions.
Manoj, G; Thampi, B S; Leelamma, S; Menon, P V
2001-01-01
The effects of fiber isolated from black gram (Phaseolus mungo) and coconut (Cocos nucifera) kernel on the metabolic activity of intestinal and fecal beta glucuronidase activity during 1,2-dimethylhydrazine induced colon carcinogenesis were studied. The results indicated that the inclusion of fiber from black gram and coconut kernel generally supported lower specific activities and less fecal output of beta-glucuronidase than did the fiber free diet. This study suggests that the fibers isolated from coconut or black gram may potentially play a role in preventing the formation of colon tumors induced by the carcinogen 1,2-dimethylhydrazine by reducing the activity of the intestinal as well as fecal beta-glucuronidase.
Liu, Xiao; Chen, Jun; Gilmore, Kerry J; Higgins, Michael J; Liu, Yong; Wallace, Gordon G
2010-09-15
The purpose of this work was to investigate the potential biomedical application of novel aligned electrospun polypyrrole (PPy)/poly(styrene-beta-isobutylene-beta-styrene) (SIBS) fibers. After successfully aligning the electroactive PPy/SIBS fibers based on our modified electrospinning method, we demonstrated that neurite outgrowth from PC12 cells could be highly orientated parallel to the aligned PPy/SIBS fibers. Physical interactions between the nerve cells and PPy/SIBS fibers through filopodia "sensing" were observed using atomic force microscopy. These observations indicate a role of contact guidance as a mechanism for the observed alignment. This work highlights the capacity for electroactive PPy/SIBS fibers to support and guide nerve cell differentiation through topographic cues, which is a highly desirable characteristic in medical implants for neurological applications. (c) 2010 Wiley Periodicals, Inc.
Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta(2)-receptor agonist
NASA Technical Reports Server (NTRS)
Zeman, Richard J.; Ludemann, Robert; Easton, Thomas G.; Etlinger, Joseph D.
1988-01-01
The effects of a beta(2)-receptor agonist, clenbuterol, and a beta(2) antagonist, butoxamine, on the skeletal muscle fibers of rats were investigated. It was found that chronic treatment of rats with clenbuterol caused hypertrophy of histochemically identified fast-twitch, but not slow-twitch, fibers within the soleus, while in the extensor digitorum longus the mean areas of both fiber types were increased; in both muscles, the ratio of the number of fast-twitch to slow-twitch fibers was increased. In contrast, a treatment with butoxamine caused a reduction of the fast-twitch fiber size in both muscles, and the ratio of the fast-twitch to slow-twitch fibers was decreased.
Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation.
Zhao, Haotian; Yang, Tianyu; Madakashira, Bhavani P; Thiels, Cornelius A; Bechtle, Chad A; Garcia, Claudia M; Zhang, Huiming; Yu, Kai; Ornitz, David M; Beebe, David C; Robinson, Michael L
2008-06-15
The vertebrate lens provides an excellent model to study the mechanisms that regulate terminal differentiation. Although fibroblast growth factors (FGFs) are thought to be important for lens cell differentiation, it is unclear which FGF receptors mediate these processes during different stages of lens development. Deletion of three FGF receptors (Fgfr1-3) early in lens development demonstrated that expression of only a single allele of Fgfr2 or Fgfr3 was sufficient for grossly normal lens development, while mice possessing only a single Fgfr1 allele developed cataracts and microphthalmia. Profound defects were observed in lenses lacking all three Fgfrs. These included lack of fiber cell elongation, abnormal proliferation in prospective lens fiber cells, reduced expression of the cell cycle inhibitors p27(kip1) and p57(kip2), increased apoptosis and aberrant or reduced expression of Prox1, Pax6, c-Maf, E-cadherin and alpha-, beta- and gamma-crystallins. Therefore, while signaling by FGF receptors is essential for lens fiber differentiation, different FGF receptors function redundantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, S.A.; Senf, S.M.; Cornwell, E.W.
Research highlights: {yields} Independent inhibition of Foxo, IKK{alpha} and IKK{beta} activities does not alter muscle fiber size in weight bearing muscles. {yields} Inhibition of Foxo activity plus IKK{alpha} or IKK{beta} activities increases muscle fiber size. {yields} Independent inhibition of Foxo and IKK{beta} activities attenuates cast immobilization-induced muscle fiber atrophy. {yields} Disuse muscle fiber atrophy is abolished by inhibition of Foxo activity plus IKK{alpha} or IKK{beta} activities. -- Abstract: Two transcription factor families that are activated during multiple conditions of skeletal muscle wasting are nuclear factor {kappa}B (NF-{kappa}B) and forkhead box O (Foxo). There is clear evidence that both NF-{kappa}B andmore » Foxo activation are sufficient to cause muscle fiber atrophy and they are individually required for at least half of the fiber atrophy during muscle disuse, but there is no work determining the combined effect of inhibiting these factors during a physiological condition of muscle atrophy. Here, we determined whether inhibition of Foxo activation plus inhibition of NF-{kappa}B activation, the latter by blocking the upstream inhibitor of kappaB kinases (IKK{alpha} and IKK{beta}), would prevent muscle atrophy induced by 7 days of cast immobilization. Results were based on measurements of mean fiber cross-sectional area (CSA) from 72 muscles transfected with 5 different mutant expression plasmids or plasmid combinations. Immobilization caused a 47% decrease in fiber CSA in muscles injected with control plasmids. Fibers from immobilized muscles transfected with dominant negative (d.n.) IKK{alpha}-EGFP, d.n. IKK{beta}-EGFP or d.n. Foxo-DsRed showed a 22%, 57%, and 76% inhibition of atrophy, respectively. Co-expression of d.n. IKK{alpha}-EGFP and d.n. Foxo-DsRed significantly inhibited 89% of the immobilization-induced fiber atrophy. Similarly, co-expression of d.n. IKK{beta}-EGFP and d.n. Foxo-DsRed inhibited the immobilization-induced fiber atrophy by 95%. These findings demonstrate that the combined effects of inhibiting immobilization-induced NF-{kappa}B and Foxo transcriptional activity has an additive effect on preventing immobilization-induced atrophy, indicating that NF-{kappa}B and Foxo have a cumulative effect on atrophy signaling and/or atrophy gene expression.« less
Kuzuhara, Akio; Fujiwara, Nobuki; Hori, Teruo
To investigate the internal structure changes in virgin black human hair keratin fibers due to aging, the structure of cross-sections at various depths of virgin black human hair (sections of new growth hair: 2 mm from the scalp) from a group of eight Japanese females in their twenties and another group of eight Japanese females in their fifties were analyzed using Raman spectroscopy. For the first time, we have succeeded in recording the Raman spectra of virgin black human hair, which had been impossible due to high melanin granule content. The key points of this method are to cross-section hair samples to a thickness of 1.50-microm, to select points at various depths of the cortex with the fewest possible melanin granules, and to optimize laser power, cross slit width as well as total acquisition time. The reproducibility of the Raman bands, namely the alpha-helix (alpha) content, the beta-sheet and/or random coil (beta/R) content, the disulfide (--SS--) content, and random coil content of two adjoining cross-sections of a single hair keratin fiber was clearly good. The --SS-- content of virgin black human hair from the Japanese females in their fifties for the cortex region decreased compared with that of the Japanese females in their twenties. On the other hand, the beta/R and alpha contents of the cortex region did not change.
Intravascular probe for detection of vulnerable plaque
NASA Astrophysics Data System (ADS)
Patt, Bradley E.; Iwanczyk, Jan S.; MacDonald, Lawrence R.; Yamaguchi, Yuko; Tull, Carolyn R.; Janecek, Martin; Hoffman, Edward J.; Strauss, H. William; Tsugita, Ross; Ghazarossian, Vartan
2001-12-01
Coronary angiography is unable to define the status of the atheroma, and only measures the luminal dimensions of the blood vessel, without providing information about plaque content. Up to 70% of heart attacks are caused by minimally obstructive vulnerable plaques, which are too small to be detected adequately by angiography. We have developed an intravascular imaging detector to identify vulnerable coronary artery plaques. The detector works by sensing beta or conversion electron radiotracer emissions from plaque-binding radiotracers. The device overcomes the technical constraints of size, sensitivity and conformance to the intravascular environment. The detector at the distal end of the catheter uses six 7mm long by 0.5mm diameter scintillation fibers coupled to 1.5m long plastic fibers. The fibers are offset from each other longitudinally by 6mm and arranged spirally around a guide wire in the catheter. At the proximal end of the catheter the optical fibers are coupled to an interface box with a snap on connector. The interface box contains a position sensitive photomultiplier tube (PSPMT) to decode the individual fibers. The whole detector assembly fits into an 8-French (2.7 mm in diameter) catheter. The PSPMT image is further decoded with software to give a linear image, the total instantaneous count rate and an audio output whose tone corresponds to the count rate. The device was tested with F-18 and Tl-204 sources. Spectrometric response, spatial resolution, sensitivity and beta to background ratio were measured. System resolution is 6 mm and the sensitivity is >500 cps / micrometers Ci when the source is 1 mm from the detector. The beta to background ratio was 11.2 for F-18 measured on a single fiber. The current device will lead to a system allowing imaging of labeled vulnerable plaque in coronary arteries. This type of signature is expected to enable targeted and cost effective therapies to prevent acute coronary artery diseases such as: unstable angina, acute myocardial infarction, and sudden cardiac death.
... saturated fat. For each gram of soluble fiber (beta-glucan) consumed, total cholesterol decreases by about 1.42 ... total cholesterol than foods containing oat bran plus beta-glucan soluble fiber. The FDA recommends that approximately 3 ...
NASA Astrophysics Data System (ADS)
Jones, B. J. P.; McDonald, A. D.; Nygren, D. R.
2016-12-01
Background rejection is key to success for future neutrinoless double beta decay experiments. To achieve sensitivity to effective Majorana lifetimes of ~ 1028 years, backgrounds must be controlled to better than 0.1 count per ton per year, beyond the reach of any present technology. In this paper we propose a new method to identify the birth of the barium daughter ion in the neutrinoless double beta decay of 136Xe. The method adapts Single Molecule Fluorescent Imaging, a technique from biochemistry research with demonstrated single ion sensitivity. We explore possible SMFI dyes suitable for the problem of barium ion detection in high pressure xenon gas, and develop a fiber-coupled sensing system with which we can detect the presence of bulk Ba++ ions remotely. We show that our sensor produces signal-to-background ratios as high as 85 in response to Ba++ ions when operated in aqueous solution. We then describe the next stage of this R&D program, which will be to demonstrate chelation and fluorescence in xenon gas. If a successful barium ion tag can be developed using SMFI adapted for high pressure xenon gas detectors, the first essentially zero background, ton-scale neutrinoless double beta decay technology could be realized.
Behall, Kay M; Scholfield, Daniel J; Hallfrisch, Judith G; Liljeberg-Elmståhl, Helena G M
2006-05-01
Consumption of a meal high in resistant starch or soluble fiber (beta-glucan) decreases peak insulin and glucose concentrations and areas under the curve (AUCs). The objective was to determine whether the effects of soluble fiber and resistant starch on glycemic variables are additive. Ten normal-weight (43.5 years of age, BMI 22.0 kg/m2) and 10 overweight women (43.3 years of age, BMI 30.4 kg/m2) consumed 10 tolerance meals in a Latin square design. Meals (1 g carbohydrate/kg body wt) were glucose alone or muffins made with different levels of soluble fiber (0.26, 0.68, or 2.3 g beta-glucan/100 g muffin) and three levels of resistant starch (0.71, 2.57, or 5.06 g/100 g muffin). Overweight subjects had plasma insulin concentrations higher than those of normal-weight subjects but maintained similar plasma glucose levels. Compared with low beta-glucan-low resistant starch muffins, glucose and insulin AUC decreased when beta-glucan (17 and 33%, respectively) or resistant starch (24 and 38%, respectively) content was increased. The greatest AUC reduction occurred after meals containing both high beta-glucan-high resistant starch (33 and 59% lower AUC for glucose and insulin, respectively). Overweight women were somewhat more insulin resistant than control women. Soluble fiber appears to have a greater effect on postprandial insulin response while glucose reduction is greater after resistant starch from high-amylose cornstarch. The reduction in glycemic response was enhanced by combining resistant starch and soluble fiber. Consumption of foods containing moderate amounts of these fibers may improve glucose metabolism in both normal and overweight women.
Time-dependent fiber bundles with local load sharing. II. General Weibull fibers.
Phoenix, S Leigh; Newman, William I
2009-12-01
Fiber bundle models (FBMs) are useful tools in understanding failure processes in a variety of material systems. While the fibers and load sharing assumptions are easily described, FBM analysis is typically difficult. Monte Carlo methods are also hampered by the severe computational demands of large bundle sizes, which overwhelm just as behavior relevant to real materials starts to emerge. For large size scales, interest continues in idealized FBMs that assume either equal load sharing (ELS) or local load sharing (LLS) among fibers, rules that reflect features of real load redistribution in elastic lattices. The present work focuses on a one-dimensional bundle of N fibers under LLS where life consumption in a fiber follows a power law in its load, with exponent rho , and integrated over time. This life consumption function is further embodied in a functional form resulting in a Weibull distribution for lifetime under constant fiber stress and with Weibull exponent, beta. Thus the failure rate of a fiber depends on its past load history, except for beta=1 . We develop asymptotic results validated by Monte Carlo simulation using a computational algorithm developed in our previous work [Phys. Rev. E 63, 021507 (2001)] that greatly increases the size, N , of treatable bundles (e.g., 10(6) fibers in 10(3) realizations). In particular, our algorithm is O(N ln N) in contrast with former algorithms which were O(N2) making this investigation possible. Regimes are found for (beta,rho) pairs that yield contrasting behavior for large N. For rho>1 and large N, brittle weakest volume behavior emerges in terms of characteristic elements (groupings of fibers) derived from critical cluster formation, and the lifetime eventually goes to zero as N-->infinity , unlike ELS, which yields a finite limiting mean. For 1/2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pande, Priyadarshini; Mosleh, Tariq A.; Aust, Ann E.
Crocidolite, containing 27% iron by weight, is the most carcinogenic form of asbestos. Crocidolite fibers are endocytized by {alpha}{sub v}{beta}{sub 5} integrin receptors in rabbit pleural mesothelial cells. We show here that crocidolite fibers are endocytized in human lung epithelial (A549) cells and in primary small airway epithelial (SAEC) cells. Presence of the integrin {alpha}{sub v}{beta}{sub 5} blocking antibody, P1F6, significantly reduced the uptake of crocidolite fibers in A549 cells. Thus, the integrin {alpha}{sub v}{beta}{sub 5} receptor is involved in endocytosis of crocidolite fibers in A549 cells as well. Previously, it has been observed that asbestos fibers lead to changesmore » in the intracellular redox environment, i.e. a marked decrease in intracellular glutathione concentrations and an increase in the extracellular glutathione in A549 cells. In addition, the decrease in intracellular glutathione was found to be largely independent of iron present on the surface of the fiber. A549 cells were treated with crocidolite in the presence of endocytosis inhibitor cytochalasin D. Our data indicate that, upon preventing endocytosis, we were able to reverse the decrease in total intracellular glutathione. The decrease in total intracellular glutathione could also be prevented in the presence of the monoclonal antibody P1F6. Thus, we observed that endocytosis of crocidolite fibers via integrin {alpha}{sub v}{beta}{sub 5} receptor is linked to the marked decrease in total intracellular glutathione in A549 cells.« less
NASA Technical Reports Server (NTRS)
Lysakowski, A.; Minor, L. B.; Fernandez, C.; Goldberg, J. M.
1995-01-01
1. Semicircular-canal afferents in the squirrel monkey were characterized by their resting discharge, discharge regularity, sensitivity to galvanic currents delivered to the ear (beta *), the gain (g2Hz), and phase lead (phi 2Hz) of their response to 2-Hz sinusoidal head rotations, and their antidromic conduction velocity. Discharge regularity was measured by a normalized coefficient of variation (CV*); the higher the CV*, the more irregular the discharge. g2Hz and phi 2Hz were expressed relative to angular head velocity. 2. These physiological measures were used in an attempt to discern the discharge properties of the three morphological classes of afferents innervating the crista. Presumed bouton (B) fibers were identified as slowly conducting afferents. Presumed calyx (C) fibers were recognized by their irregular discharge and low rotational gains. The remaining fibers were considered to be dimorphic (D) units. Single letters (B, C, and D) are used to emphasize that the classification is based on circumstantial evidence and may be wrong for individual fibers. Of the 125 identified fibers, 13 (10%) were B units, 36 (29%) were C units, and 76 (61%) were D units. 3. B units were regularly discharging D units ranged from regularly to irregularly discharging. C units were the most irregularly discharging afferents encountered. The mean resting discharge for the entire sample was 74 spikes/s. Resting rates were similar for regularly discharging B and D units and higher than those for irregularly discharging C and D units. 4. Except for their lower conduction velocities, the discharge properties of B units are indistinguishable from those of regularly discharging D units. Many of the discharge properties of B and D units vary with discharge regularity. There is a strong, positive relation when beta *, g2Hz, or phi 2Hz is plotted against CV*. For beta * or phi 2Hz, C units conform to the relation for B and D units. In contrast, values of g2Hz for C units are three to four times lower than predicted from the relation for the other two classes. 5. Internal (axon) diameters (dp) of peripheral vestibular-nerve fibers were estimated from central antidromic conduction velocities. Thick fibers (dp > or = 49 microns) were irregularly discharging, mostly C units. Medium-sized fibers (dp = 1.5-4 microns) included regular, intermediate, and irregular D units, as well as C units. Thin fibers (dp < or = 1.5 microns) were defined as B units.(ABSTRACT TRUNCATED AT 400 WORDS).
Corn fiber gum and milk protein conjugates with improved emulsion stability
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG), an alkaline hydrogen peroxide extract of the corn kernel milling by-product “corn fiber” was covalently conjugated with Beta-lactoglobulin (Beta-LG) and whey protein isolate (WPI). Covalent coupling of CFG to protein was achieved by dry heating reaction (Maillard-type) of CFG ...
Bourdon, I; Yokoyama, W; Davis, P; Hudson, C; Backus, R; Richter, D; Knuckles, B; Schneeman, B O
1999-01-01
Fiber regulates the rate and site of lipid and carbohydrate digestion and absorption and thus can modify the alimentary responses to a meal. When fiber sources containing viscous polysaccharides are included in a meal, a slower rate of carbohydrate and lipid absorption will modify the alimentary hormone and lipid responses. We investigated in 11 healthy men the response of insulin, glucose, cholecystokinin, and lipid to 2 test meals containing beta-glucan. One of the meals was high in fiber (15.7 g) and the other meal was low in fiber (5.0 g). The low-fiber meal contained pasta made with wheat flour. The high-fiber meals contained pasta prepared by replacing 40% of the wheat with 2 types of barley flour: barley naturally high in beta-glucan and the other a flour enriched in beta-glucan during processing. Plasma glucose and insulin concentrations increased significantly after all meals but the insulin response was more blunted after the barley-containing meals. The test meals were low in fat (25% of energy) but elicited an increase in plasma triacylglycerol and cholecystokinin. Cholecystokinin remained elevated for a longer time after the barley-containing meals. After the low-fiber meal, plasma cholesterol concentrations did not change significantly; however, 4 h after the barley-containing meals, the cholesterol concentration dropped below the fasting concentration and was significantly lower than that after the low-fiber meal. Carbohydrate was more slowly absorbed from the 2 high-fiber meals. Consumption of the barley-containing meals appeared to stimulate reverse cholesterol transport, which may contribute to the cholesterol-lowering ability of barley.
Wakayama, Y.; Shibuya, S.; Takeda, A.; Jimi, T.; Nakamura, Y.; Oniki, H.
1995-01-01
We used single and double immunogold labeling electron microscopy to investigate ultrastructural localization of the C terminus of the 43-kd dystrophin-associated glycoprotein (43-DAG) and its relationship to dystrophin in normal murine skeletal myofibers. Single immunolabeling localized the antibody against the C terminus of 43-DAG to the inside surface of the muscle plasma membrane and the sarcoplasmic side of plasma membrane invaginations. Double immunolabeling co-localized antibodies against dystrophin and the C terminus of 43-DAG to the same site noted in the single immunolabeling localization of 43-DAG. In particular, dystrophin and the C-terminal 43-DAG antibody signals were often observed as doublets separated by less than 30 nm. We compared these results with those obtained from double immunogold labeling with anti-dystrophin and anti-beta-spectrin, as well as anti-C-terminal 43-DAG and anti-beta-spectrin antibodies. The antibodies against dystrophin and beta-spectrin, or beta-spectrin and 43-DAG, also co-localized to similar sites in skeletal muscle fibers. Signals of doublet formations were noted but their frequency was significantly lower than the doublet frequency of antidystrophin and anti-43-DAG antibodies. The results support the presence of dystrophin and 43-DAG linkage at the inside surface of the murine skeletal muscle plasma membrane. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7856727
Capmany, J; Gasulla, Ivana
2007-08-20
Although a considerable number of multimode fiber (MMF) links operate in a wavelength region around 850 nm where chromatic dispersion of a given modal group mu is described adequately by the second derivative beta(mu) (2) of the propagation constant beta(mu)(omega), there is also an increasing interest in MMF links transmitting in the second spectral window (@1300nm) where this second derivative vanishes being thus necessary to consider the third derivative beta(mu) (3) in the evaluation of the transfer function of the multimode fiber link. We present in this paper, for the first time to our knowledge, an analytical model for the transfer function of a multimode fiber (MMF) optic link taken into account the impact of third-order dispersion. The model extends the operation of a previously reported one for second-order dispersion. Our results show that the performance of broadband radio over fiber transmission through middle-reach distances can be improved by working at the minimum-dispersion wavelength as long as low-linewidth lasers are employed.
Research, development and application of noncombustible Beta fiber structures. [for Apollo
NASA Technical Reports Server (NTRS)
Dillon, J. J.; Cobb, E. S.
1975-01-01
Beta fiber was selected as the primary material for flexible fibrous structures used in spacecraft and crew systems applications in the Apollo program because it was noncombustible in a 100 percent oxygen atmosphere up to 16.5 psia. It met NASA criteria for outgassing, toxicity, odor, and crew comfort, and possessed sufficient durability to last through the mission. Topics discussed include: study of spacecraft applications; design of Beta fiber textile structures to meet the requirements; selection of surface treatments (finishes, coatings, and printing systems) to impart the required durability and special functional use to the textile structures; development of sewing and fabrication techniques; and testing and evaluation programs, and development of production sources.
Papanikolopoulou, Katerina; Schoehn, Guy; Forge, Vincent; Forsyth, V Trevor; Riekel, Christian; Hernandez, Jean-François; Ruigrok, Rob W H; Mitraki, Anna
2005-01-28
Amyloid fibrils are fibrous beta-structures that derive from abnormal folding and assembly of peptides and proteins. Despite a wealth of structural studies on amyloids, the nature of the amyloid structure remains elusive; possible connections to natural, beta-structured fibrous motifs have been suggested. In this work we focus on understanding amyloid structure and formation from sequences of a natural, beta-structured fibrous protein. We show that short peptides (25 to 6 amino acids) corresponding to repetitive sequences from the adenovirus fiber shaft have an intrinsic capacity to form amyloid fibrils as judged by electron microscopy, Congo Red binding, infrared spectroscopy, and x-ray fiber diffraction. In the presence of the globular C-terminal domain of the protein that acts as a trimerization motif, the shaft sequences adopt a triple-stranded, beta-fibrous motif. We discuss the possible structure and arrangement of these sequences within the amyloid fibril, as compared with the one adopted within the native structure. A 6-amino acid peptide, corresponding to the last beta-strand of the shaft, was found to be sufficient to form amyloid fibrils. Structural analysis of these amyloid fibrils suggests that perpendicular stacking of beta-strand repeat units is an underlying common feature of amyloid formation.
Insulin-like growth factor I in inclusion-body myositis and human muscle cultures.
Broccolini, Aldobrando; Ricci, Enzo; Pescatori, Mario; Papacci, Manuela; Gliubizzi, Carla; D'Amico, Adele; Servidei, Serenella; Tonali, Pietro; Mirabella, Massimiliano
2004-06-01
Possible pathogenic mechanisms of sporadic inclusion-body myositis (sIBM) include abnormal production and accumulation of amyloid beta (A beta), muscle aging, and increased oxidative stress. Insulin-like growth factor I (IGF-I), an endocrine and autocrine/paracrine trophic factor, provides resistance against A beta toxicity and oxidative stress in vitro and promotes cell survival. In this study we analyzed the IGF-I signaling pathway in sIBM muscle and found that 16.2% +/- 2.5% of nonregenerating fibers showed increased expression of IGF-I, phosphatidylinositide 3'OH-kinase, and Akt. In the majority of sIBM abnormal muscle fibers, increased IGF-I mRNA and protein correlated with the presence of A beta cytoplasmic inclusions. To investigate a possible relationship between A beta toxicity and IGF-I upregulation, normal primary muscle cultures were stimulated for 24 hours with the A beta(25-35) peptide corresponding to the biologically active domain of A beta. This induced an increase of IGF-I mRNA and protein in myotubes at 6 hours, followed by a gradual reduction thereafter. The level of phosphorylated Akt showed similar changes. We suggest that in sIBM. IGF-I overexpression represents a reactive response to A beta toxicity, possibly providing trophic support to vulnerable fibers. Understanding the signaling pathways activated by IGF-I in sIBM may lead to novel therapeutic strategies for the disease.
NASA Astrophysics Data System (ADS)
Schilk, A. J.; Abel, K. H.; Brown, D. P.; Thompson, R. C.; Knopf, M. A.; Hubbard, C. W.
1994-04-01
A novel scintillating-fiber sensor for detecting high-energy beta particles has been designed and built at the Pacific Northwest Laboratory to characterize U-238 and Sr-90 in surface soils. High-energy betas generate unique signals as they pass through multiple layers of scintillating fibers that make up the active region of the detector. Lower-energy beta particles, gamma rays, and cosmic-ray-generated particles comprise the majority of the background interferences. The resulting signals produced by these latter phenomena are effectively discriminated against due to the combination of the sensor's multilayer configuration and its interlayer coincidence/anticoincidence circuitry.
Natural triple beta-stranded fibrous folds.
Mitraki, Anna; Papanikolopoulou, Katerina; Van Raaij, Mark J
2006-01-01
A distinctive family of beta-structured folds has recently been described for fibrous proteins from viruses. Virus fibers are usually involved in specific host-cell recognition. They are asymmetric homotrimeric proteins consisting of an N-terminal virus-binding tail, a central shaft or stalk domain, and a C-terminal globular receptor-binding domain. Often they are entirely or nearly entirely composed of beta-structure. Apart from their biological relevance and possible gene therapy applications, their shape, stability, and rigidity suggest they may be useful as blueprints for biomechanical design. Folding and unfolding studies suggest their globular C-terminal domain may fold first, followed by a "zipping-up" of the shaft domains. The C-terminal domains appear to be important for registration because peptides corresponding to shaft domains alone aggregate into nonnative fibers and/or amyloid structures. C-terminal domains can be exchanged between different fibers and the resulting chimeric proteins are useful as a way to solve structures of unknown parts of the shaft domains. The following natural triple beta-stranded fibrous folds have been discovered by X-ray crystallography: the triple beta-spiral, triple beta-helix, and T4 short tail fiber fold. All have a central longitudinal hydrophobic core and extensive intermonomer polar and nonpolar interactions. Now that a reasonable body of structural and folding knowledge has been assembled about these fibrous proteins, the next challenge and opportunity is to start using this information in medical and industrial applications such as gene therapy and nanotechnology.
NASA Astrophysics Data System (ADS)
Manas, David; Manas, Miroslav; Gajzlerova, Lenka; Ovsik, Martin; Kratky, Petr; Senkerik, Vojtěch; Skrobak, Adam; Danek, Michal; Manas, Martin
2015-09-01
The influence of beta radiation on the changes in the structure and selected properties (mechanical and thermal) was proved. Using low doses of beta radiation for 25% glass fiber filled polypropylene and its influence on the changes of micromechanical properties of surface layer has not been studied in detail so far. The specimens of 25% glass fiber filled PP were made by injection molding technology and irradiated by low doses of beta radiation (0, 15 and 33 kGy). The changes in the microstructure and micromechanical properties of surface layer were evaluated using FTIR, SEM, WAXS and instrumented microhardness test. The results of the measurements showed considerable increase in micromechanical properties (indentation hardness, indentation elastic modulus) when low doses of beta radiation are used.
Papanikolopoulou, Katerina; Forge, Vincent; Goeltz, Pierrette; Mitraki, Anna
2004-03-05
The folding of beta-structured, fibrous proteins is a largely unexplored area. A class of such proteins is used by viruses as adhesins, and recent studies revealed novel beta-structured motifs for them. We have been studying the folding and assembly of adenovirus fibers that consist of a globular C-terminal domain, a central fibrous shaft, and an N-terminal part that attaches to the viral capsid. The globular C-terminal, or "head" domain, has been postulated to be necessary for the trimerization of the fiber and might act as a registration signal that directs its correct folding and assembly. In this work, we replaced the head of the fiber by the trimerization domain of the bacteriophage T4 fibritin, termed "foldon." Two chimeric proteins, comprising the foldon domain connected at the C-terminal end of four fiber shaft repeats with or without the use of a natural linker sequence, fold into highly stable, SDS-resistant trimers. The structural signatures of the chimeric proteins as seen by CD and infrared spectroscopy are reported. The results suggest that the foldon domain can successfully replace the fiber head domain in ensuring correct trimerization of the shaft sequences. Biological implications and implications for engineering highly stable, beta-structured nanorods are discussed.
Associations of serum adiponectin with skeletal muscle morphology and insulin sensitivity.
Ingelsson, Erik; Arnlöv, Johan; Zethelius, Björn; Vasan, Ramachandran S; Flyvbjerg, Allan; Frystyk, Jan; Berne, Christian; Hänni, Arvo; Lind, Lars; Sundström, Johan
2009-03-01
Skeletal muscle morphology and function are strongly associated with insulin sensitivity. The objective of the study was to test the hypothesis that circulating adiponectin is associated with skeletal muscle morphology and that adiponectin mediates the relation of muscle morphology to insulin sensitivity. This was a cross-sectional investigation of 461 men aged 71 yr, participants of the community-based Uppsala Longitudinal Study of Adult Men study. Measures included serum adiponectin, insulin sensitivity measured with euglycemic insulin clamp technique, and capillary density and muscle fiber composition determined from vastus lateralis muscle biopsies. In multivariable linear regression models (adjusting for age, physical activity, fasting glucose, and pharmacological treatment for diabetes), serum adiponectin levels rose with increasing capillary density (beta, 0.30 per 50 capillaries per square millimeter increase; P = 0.041) and higher proportion of type I muscle fibers (beta, 0.27 per 10% increase; P = 0.036) but declined with a higher proportion of type IIb fibers (beta, -0.39 per 10% increase; P = 0.014). Using bootstrap methods to examine the potential role of adiponectin in associations between muscle morphology and insulin sensitivity and the associations of capillary density (beta difference, 0.041; 95% confidence interval 0.001, 0.085) and proportion of type IIb muscle fibers (beta difference, -0.053; 95% confidence interval -0.107, -0.002) with insulin sensitivity were significantly attenuated when adiponectin was included in the models. Circulating adiponectin concentrations were higher with increasing skeletal muscle capillary density and in individuals with higher proportion of slow oxidative muscle fibers. Furthermore, our results indicate that adiponectin could be a partial mediator of the relations between skeletal muscle morphology and insulin sensitivity.
Towards a Pharmacophore for Amyloid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.
2011-09-16
Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of {beta}-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine sidemore » chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. The devastating and incurable dementia known as Alzheimer's disease affects the thinking, memory, and behavior of dozens of millions of people worldwide. Although amyloid fibers and oligomers of two proteins, tau and amyloid-{beta}, have been identified in association with this disease, the development of diagnostics and therapeutics has proceeded to date in a near vacuum of information about their structures. Here we report the first atomic structures of small molecules bound to amyloid. These are of the dye orange-G, the natural compound curcumin, and the Alzheimer's diagnostic compound DDNP bound to amyloid-like segments of tau and amyloid-{beta}. The structures reveal the molecular framework of small-molecule binding, within cylindrical cavities running along the {beta}-spines of the fibers. Negatively charged orange-G wedges into a specific binding site between two sheets of the fiber, combining apolar binding with electrostatic interactions, whereas uncharged compounds slide along the cavity. We observed that different amyloid polymorphs bind different small molecules, revealing that a cocktail of compounds may be required for future amyloid therapies. The structures described here start to define the amyloid pharmacophore, opening the way to structure-based design of improved diagnostics and therapeutics.« less
To improve the flame resistance of spandex elastic elastomeric fiber
NASA Technical Reports Server (NTRS)
1972-01-01
Strength characteristics of fibers were improved to pass the 70% oxygen/30% nitrogen specification. Spinning techniques and information about incorporating these fibers in fabric structures using wrapping materials of Beta Fiberglas, Nomex, and PBI were developed.
Structure-based discovery of fiber-binding compounds that reduce the cytotoxicity of amyloid beta
Jiang, Lin; Liu, Cong; Leibly, David; ...
2013-07-16
Amyloid protein aggregates are associated with dozens of devastating diseases including Alzheimer’s, Parkinson’s, ALS, and diabetes type 2. While structure-based discovery of compounds has been effective in combating numerous infectious and metabolic diseases, ignorance of amyloid structure has hindered similar approaches to amyloid disease. Here we show that knowledge of the atomic structure of one of the adhesive, steric-zipper segments of the amyloid-beta (Aβ) protein of Alzheimer’s disease, when coupled with computational methods, identifies eight diverse but mainly flat compounds and three compound derivatives that reduce Aβ cytotoxicity against mammalian cells by up to 90%. Although these compounds bind tomore » Aβ fibers, they do not reduce fiber formation of Aβ. Structure-activity relationship studies of the fiber-binding compounds and their derivatives suggest that compound binding increases fiber stability and decreases fiber toxicity, perhaps by shifting the equilibrium of Aβ from oligomers to fibers.« less
McGuire, Michael K; Scheyer, Todd; Nevins, Myron; Schupbach, Peter
2009-02-01
The current study examined the histologic and microcomputed tomographic (micro CT) outcomes of the treatment of gingival recession defects with either a subepithelial connective tissue graft (CTG) or 0.3 mg/mL recombinant human platelet-derived growth factor (rhPDGF-BB) on a beta tricalcium phosphate (beta-TCP) matrix. Gingival recession defects were surgically created in six premolar teeth with no more than 3 mm of keratinized marginal tissue, an osseous crest 2 to 3 mm apical to the newly created gingival margin, and recession depth of at least 3 mm. The defects were left untouched for 2 months; then, four defects were grafted with rhPDGF-BB + beta-TCP + a wound healing dressing, and two defects received CTGs. A coronally advanced flap covered each grafted site. Nine months later, sections were obtained for examination. All four sites treated with rhPDGF-BB + beta-TCP showed connective tissue fibers (Sharpey fibers) perpendicularly inserting into newly formed cementum and alveolar bone. In the two sites treated with CTGs, a long junctional epithelium was seen coronal to the osseous crest and connective tissue fibers ran parallel to the adjacent root surfaces, with no evidence of insertion into cementum or bone. There was no evidence of regeneration of cementum, inserting connective tissue fibers, or supporting alveolar bone. Regeneration of the periodontium in gingival recession defects is possible through growth factor-mediated therapy.
A Native to Amyloidogenic Transition Regulated by a Backbone Trigger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eakin,C.; Berman, A.; Miranker, A.
2006-01-01
Many polypeptides can self-associate into linear, aggregated assemblies termed amyloid fibers. High-resolution structural insights into the mechanism of fibrillogenesis are elusive owing to the transient and mixed oligomeric nature of assembly intermediates. Here, we report the conformational changes that initiate fiber formation by beta-2-microglobulin (beta2m) in dialysis-related amyloidosis. Access of beta2m to amyloidogenic conformations is catalyzed by selective binding of divalent cations. The chemical basis of this process was determined to be backbone isomerization of a conserved proline. On the basis of this finding, we designed a beta2m variant that closely adopts this intermediate state. The variant has kinetic, thermodynamicmore » and catalytic properties consistent with its being a fibrillogenic intermediate of wild-type beta2m. Furthermore, it is stable and folded, enabling us to unambiguously determine the initiating conformational changes for amyloid assembly at atomic resolution.« less
Pest resistant MoSi2-based materials containing in-situ grown .beta.-Si3N4whiskers
NASA Technical Reports Server (NTRS)
Hebsur, Mohan G. (Inventor)
2001-01-01
A MoSi.sub.2 pest resistant material includes in-situ grown .beta.-Si.sub.3 N.sub.4 whiskers. In addition to excellent pest resistance, the material provides a lower coefficient of thermal expansion for better match with continuous reinforcing fibers such as SiC fibers. A two stage heating and pressing production technique enables lower temperature processing with substantially full densification.
Pest resistant MoSi2-based materials containing in-situ grown .beta.-Si3N4 whiskers
NASA Technical Reports Server (NTRS)
Hebsur, Mohan G. (Inventor)
2002-01-01
A MoSi.sub.2 pest resistant material includes in-situ grown .beta.-Si.sub.3 N.sub.4 whiskers. In addition to excellent pest resistance, the material provides a lower coefficient of thermal expansion for better match with continuous reinforcing fibers such as SiC fibers. A two stage heating and pressing production technique enables lower temperature processing with substantially full densification.
Structure of the bacteriophage T4 long tail fiber receptor-binding tip
Bartual, Sergio G.; Otero, José M.; Garcia-Doval, Carmela; Llamas-Saiz, Antonio L.; Kahn, Richard; Fox, Gavin C.; van Raaij, Mark J.
2010-01-01
Bacteriophages are the most numerous organisms in the biosphere. In spite of their biological significance and the spectrum of potential applications, little high-resolution structural detail is available on their receptor-binding fibers. Here we present the crystal structure of the receptor-binding tip of the bacteriophage T4 long tail fiber, which is highly homologous to the tip of the bacteriophage lambda side tail fibers. This structure reveals an unusual elongated six-stranded antiparallel beta-strand needle domain containing seven iron ions coordinated by histidine residues arranged colinearly along the core of the biological unit. At the end of the tip, the three chains intertwine forming a broader head domain, which contains the putative receptor interaction site. The structure reveals a previously unknown beta-structured fibrous fold, provides insights into the remarkable stability of the fiber, and suggests a framework for mutations to expand or modulate receptor-binding specificity. PMID:21041684
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira, Flavia E.; Coffin, J. Douglas; Beall, Howard D.
2007-04-15
Arsenic exposure has been shown to exacerbate atherosclerosis, beginning with activation of the endothelium that lines the vessel wall. Endothelial barrier integrity is maintained by proteins of the adherens junction (AJ) such as vascular endothelial cadherin (VE-cadherin) and {beta}-catenin and their association with the actin cytoskeleton. In the present study, human aortic endothelial cells (HAECs) were exposed to 1, 5 and 10 {mu}M sodium arsenite [As(III)] for 1, 6, 12 and 24 h, and the effects on endothelial barrier integrity were determined. Immunofluorescence studies revealed formation of actin stress fibers and non-uniform VE-cadherin and {beta}-catenin staining at cell-cell junctions thatmore » were concentration- and time-dependent. Intercellular gaps were observed with a measured increase in endothelial permeability. In addition, concentration-dependent increases in tyrosine phosphorylation (PY) of {beta}-catenin and activation of protein kinase C{alpha} (PKC{alpha}) were observed. Inhibition of PKC{alpha} restored VE-cadherin and {beta}-catenin staining at cell-cell junctions and abolished the As(III)-induced formation of actin stress fibers and intercellular gaps. Endothelial permeability and PY of {beta}-catenin were also reduced to basal levels. These results demonstrate that As(III) induces activation of PKC{alpha}, which leads to increased PY of {beta}-catenin downstream of PKC{alpha} activation. Phosphorylation of {beta}-catenin plausibly severs the association of VE-cadherin and {beta}-catenin, which along with formation of actin stress fibers, results in intercellular gap formation and increased endothelial permeability. To the best of our knowledge, this is the first report demonstrating that As(III) causes a loss of endothelial monolayer integrity, which potentially could contribute to the development of atherosclerosis.« less
Application of cellular mechanisms to growth and development of food producing animals.
Chung, K Y; Johnson, B J
2008-04-01
Postnatal skeletal muscle growth is a result of hypertrophy of existing skeletal muscle fibers in food producing animals. Accumulation of additional nuclei, as a source of DNA, to the multinucleated skeletal muscle fiber aids in fiber hypertrophy during periods of rapid skeletal muscle growth. Muscle satellite cells are recognized as the source of nuclei to support muscle hypertrophy. Exogenous growth-enhancing compounds have been used to modulate growth rate and efficiency in meat animals for over a half century. In cattle, these compounds enhance efficiency of growth by preferentially stimulating skeletal muscle growth compared with adipose tissue. There are 2 main classes of compounds approved for use in cattle in the United States, anabolic steroids and beta-adrenergic agonists (beta-AA). Administration of both trenbolone acetate and estradiol-17beta, as implants, increased carcass protein accumulation 8 to 10% in yearling steers. Muscle satellite cells isolated from steers implanted with trenbolone acetate/ estradiol-17beta had a shorter lag phase in culture compared with satellite cells isolated from control steers. Collectively, these data indicate that activation, increased proliferation, and subsequent fusion of satellite cells in muscles of implanted cattle may be an important mechanism by which anabolic steroids enhance muscle hypertrophy. Oral administration of beta-AA to ruminants does not alter DNA accumulation in skeletal muscle over a typical feeding period (28 to 42 d). Enhanced muscle hypertrophy observed due to beta-AA feeding occurs by direct, receptor-mediated changes in protein synthesis and degradation rates of skeletal muscle tissue. Proper timing of anabolic steroid administration when coupled with beta-AA feeding could result in a synergistic response in skeletal muscle growth due to the effects of anabolic steroids at increasing satellite cell activity, which then can support the rapid hypertrophic changes of the muscle fiber when exposed to beta-AA. At the same time each of these classes of compounds are stimulating lean tissue deposition, they appear to repress adipogenesis in meat animals. Increased knowledge of the mechanism by which growth promoters regulate lean tissue deposition and adipogenesis in meat animals will allow for effective application of these techniques to optimize lean tissue growth and minimize the negative effects on meat quality.
Sudmeyer, Thomas; Imai, Yutaka; Masuda, Hisashi; Eguchi, Naoya; Saito, Masaki; Kubota, Shigeo
2008-02-04
We demonstrate efficient cavity-enhanced second and fourth harmonic generation of an air-cooled, continuous-wave (cw), single-frequency 1064 nm fiber-amplifier system. The second harmonic generator achieves up to 88% total external conversion efficiency, generating more than 20-W power at 532 nm wavelength in a diffraction-limited beam (M(2) < 1.05). The nonlinear medium is a critically phase-matched, 20-mm long, anti-reflection (AR) coated LBO crystal operated at 25 degrees C. The fourth harmonic generator is based on an AR-coated, Czochralski-grown beta-BaB(2)O(4) (BBO) crystal optimized for low loss and high damage threshold. Up to 12.2 W of 266-nm deep-UV (DUV) output is obtained using a 6-mm long critically phase-matched BBO operated at 40 degrees C. This power level is more than two times higher than previously reported for cw 266-nm generation. The total external conversion efficiency from the fundamental at 1064 nm to the fourth harmonic at 266 nm is >50%.
Ryall, James G; Gregorevic, Paul; Plant, David R; Sillence, Martin N; Lynch, Gordon S
2002-12-01
Potential treatments for skeletal muscle wasting and weakness ideally possess both anabolic and ergogenic properties. Although the beta(2)-adrenoceptor agonist clenbuterol has well-characterized effects on skeletal muscle, less is known about the therapeutic potential of the related beta(2)-adrenoceptor agonist fenoterol. We administered an equimolar dose of either clenbuterol or fenoterol to rats for 4 wk to compare their effects on skeletal muscle and tested the hypothesis that fenoterol would produce more powerful anabolic and ergogenic effects. Clenbuterol treatment increased fiber cross-sectional area (CSA) by 6% and maximal isometric force (P(o)) by 20% in extensor digitorum longus (EDL) muscles, whereas fiber CSA in soleus muscles decreased by 3% and P(o) was unchanged, compared with untreated controls. In the EDL muscles, fenoterol treatment increased fiber CSA by 20% and increased P(o) by 12% above values achieved after clenbuterol treatment. Soleus muscles of fenoterol-treated rats exhibited a 13% increase in fiber CSA and a 17% increase in P(o) above that of clenbuterol-treated rats. These data indicate that fenoterol has greater effects on the functional properties of rat skeletal muscles than clenbuterol.
Protein-induced Photophysical Changes to the Amyloid Indicator Dye Thioflavin T
DOE Office of Scientific and Technical Information (OSTI.GOV)
L Wolfe; M Calabrese; A Nath
2011-12-31
The small molecule thioflavin T (ThT) is a defining probe for the identification and mechanistic study of amyloid fiber formation. As such, ThT is fundamental to investigations of serious diseases such as Alzheimer's disease, Parkinson disease, and type II diabetes. For each disease, a different protein undergoes conformational conversion to a {beta}-sheet rich fiber. The fluorescence of ThT exhibits an increase in quantum yield upon binding these fibers. Despite its widespread use, the structural basis for binding specificity and for the changes to the photophysical properties of ThT remain poorly understood. Here, we report the co-crystal structures of ThT withmore » two alternative states of {beta}-2 microglobulin ({beta}2m); one monomeric, the other an amyloid-like oligomer. In the latter, the dye intercalates between {beta}-sheets orthogonal to the {beta}-strands. Importantly, the fluorophore is bound in such a manner that a photophysically relevant torsion is limited to a range of angles generally associated with low, not high, quantum yield. Quantum mechanical assessment of the fluorophore shows the electronic distribution to be strongly stabilized by aromatic interactions with the protein. Monomeric {beta}2m gives little increase in ThT fluorescence despite showing three fluorophores, at two binding sites, in configurations generally associated with high quantum yield. Our efforts fundamentally extend existing understanding about the origins of amyloid-induced photophysical changes. Specifically, the {beta}-sheet interface that characterizes amyloid acts both sterically and electronically to stabilize the fluorophore's ground state electronic distribution. By preventing the fluorophore from adopting its preferred excited state configuration, nonradiative relaxation pathways are minimized and quantum yield is increased.« less
Protein-induced photophysical changes to the amyloid indicator dye thioflavin T
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, Leslie S.; Calabrese, Matthew F.; Nath, Abhinav
2010-10-04
The small molecule thioflavin T (ThT) is a defining probe for the identification and mechanistic study of amyloid fiber formation. As such, ThT is fundamental to investigations of serious diseases such as Alzheimer's disease, Parkinson disease, and type II diabetes. For each disease, a different protein undergoes conformational conversion to a {beta}-sheet rich fiber. The fluorescence of ThT exhibits an increase in quantum yield upon binding these fibers. Despite its widespread use, the structural basis for binding specificity and for the changes to the photophysical properties of ThT remain poorly understood. Here, we report the co-crystal structures of ThT withmore » two alternative states of {beta}-2 microglobulin ({beta}2m); one monomeric, the other an amyloid-like oligomer. In the latter, the dye intercalates between {beta}-sheets orthogonal to the {beta}-strands. Importantly, the fluorophore is bound in such a manner that a photophysically relevant torsion is limited to a range of angles generally associated with low, not high, quantum yield. Quantum mechanical assessment of the fluorophore shows the electronic distribution to be strongly stabilized by aromatic interactions with the protein. Monomeric {beta}2m gives little increase in ThT fluorescence despite showing three fluorophores, at two binding sites, in configurations generally associated with high quantum yield. Our efforts fundamentally extend existing understanding about the origins of amyloid-induced photophysical changes. Specifically, the {beta}-sheet interface that characterizes amyloid acts both sterically and electronically to stabilize the fluorophore's ground state electronic distribution. By preventing the fluorophore from adopting its preferred excited state configuration, nonradiative relaxation pathways are minimized and quantum yield is increased.« less
Possible Role of Non-Muscle Alpha-Actinins in Muscle Cell Mechanosensitivity
Ogneva, Irina V.; Biryukov, Nikolay S.; Leinsoo, Toomas A.; Larina, Irina M.
2014-01-01
The main hypothesis suggested that changes in the external mechanical load would lead to different deformations of the submembranous cytoskeleton and, as a result, dissociation of different proteins from its structure (induced by increased/decreased mechanical stress). The study subjects were fibers of the soleus muscle and cardiomyocytes of Wistar rats. Changes in external mechanical conditions were reconstructed by means of antiorthostatic suspension of the animals by their tails for 6, 12, 18, 24 and 72 hours. Transversal stiffness was measured by atomic force microscopy imaging; beta-, gamma-actin, alpha-actinin 1 and alpha-actinin 4 levels in membranous and cytoplasmic fractions were quantified by Western blot analysis; expression rates of the corresponding genes were studied using RT-PCR. Results: In 6 hours, alpha-actinin 1 and alpha-actinin 4 levels decreased in the membranous fraction of proteins of cardiomyocytes and soleus muscle fibers, respectively, but increased in the cytoplasmic fraction of the abovementioned cells. After 6–12 hours of suspension, the expression rates of beta-, gamma-actin, alpha-actinin 1 and alpha-actinin 4 were elevated in the soleus muscle fibers, but the alpha-actinin 1 expression rate returned to the reference level in 72 hours. After 18–24 hours, the expression rates of beta-actin and alpha-actinin 4 increased in cardiomyocytes, while the alpha-actinin 1 expression rate decreased in soleus muscle fibers. After 12 hours, the beta- and gamma-actin content dropped in the membranous fraction and increased in the cytoplasmic protein fractions from both cardiomyocytes and soleus muscle fibers. The stiffness of both cell types decreased after the same period of time. Further, during the unloading period the concentration of nonmuscle actin and different isoforms of alpha-actinins increased in the membranous fraction from cardiomyocytes. At the same time, the concentration of the abovementioned proteins decreased in the soleus muscle fibers. PMID:24780915
Auger analysis of a fiber/matrix interface in a ceramic matrix composite
NASA Technical Reports Server (NTRS)
Honecy, Frank S.; Pepper, Stephen V.
1988-01-01
Auger electron spectroscopy (AES) depth profiling was used to characterize the fiber/matrix interface of an SiC fiber, reaction bonded Si3N4 matrix composite. Depth profiles of the as received double coated fiber revealed concentration oscillations which disappeared after annealing the fiber in the environment used to fabricate the composite. After the composite was fractured, the Auger depth profiles showed that failure occurred in neither the Beta-SiC fiber body nor in the Si3N4 matrix but, concurrently, at the fiber coating/matrix interface and within the fiber coating itself.
Clenbuterol, a beta(2)-agonist, retards atrophy in denervated muscles
NASA Technical Reports Server (NTRS)
Zeman, Richard J.; Ludemann, Robert; Etlinger, Joseph D.
1987-01-01
The effects of a beta(2) agonist, clenbuterol, on the protein content as well as on the contractile strength and the muscle fiber cross-sectional area of various denervated muscles from rats were investigated. It was found that denervated soleus, anterior tibialis, and gastrocnemius muscles, but not the extensor digitorum longus, of rats treated for 2-3 weeks with clenbuterol contained 95-110 percent more protein than denervated controls. The twofold difference in the protein content of denervated solei was paralleled by similar changes in contractile strength and muscle fiber cross-sectional area.
Myosin storage myopathy associated with a heterozygous missense mutation in MYH7.
Tajsharghi, Homa; Thornell, Lars-Eric; Lindberg, Christopher; Lindvall, Björn; Henriksson, Karl-Gösta; Oldfors, Anders
2003-10-01
Myosin constitutes the major part of the thick filaments in the contractile apparatus of striated muscle. MYH7 encodes the slow/beta-cardiac myosin heavy chain (MyHC), which is the main MyHC isoform in slow, oxidative, type 1 muscle fibers of skeletal muscle. It is also the major MyHC isoform of cardiac ventricles. Numerous missense mutations in the globular head of slow/beta-cardiac MyHC are associated with familial hypertrophic cardiomyopathy. We identified a missense mutation, Arg1845Trp, in the rod region of slow/beta-cardiac MyHC in patients with a skeletal myopathy from two different families. The myopathy was characterized by muscle weakness and wasting with onset in childhood and slow progression, but no overt cardiomyopathy. Slow, oxidative, type 1 muscle fibers showed large inclusions consisting of slow/beta-cardiac MyHC. The features were similar to a previously described entity: hyaline body myopathy. Our findings indicate that the mutated residue of slow/beta-cardiac MyHC is essential for the assembly of thick filaments in skeletal muscle. We propose the term myosin storage myopathy for this disease.
Viscosity as related to dietary fiber: a review.
Dikeman, Cheryl L; Fahey, George C
2006-01-01
Viscosity is a physicochemical property associated with dietary fibers, particularly soluble dietary fibers. Viscous dietary fibers thicken when mixed with fluids and include polysaccharides such as gums, pectins, psyllium, and beta-glucans. Although insoluble fiber particles may affect viscosity measurement, viscosity is not an issue regards insoluble dietary fibers. Viscous fibers have been credited for beneficial physiological responses in human, animal, and animal-alternative in vitro models. The following article provides a review of viscosity as related to dietary fiber including definitions and instrumentation, factors affecting viscosity of solutions, and effects of viscous polysaccharides on glycemic response, blood lipid attenuation, intestinal enzymatic activity, digestibility, and laxation.
Glutamate-induced excitation and sensitization of nociceptors in rat glabrous skin.
Du, J; Koltzenburg, M; Carlton, S M
2001-01-01
Anatomical studies demonstrate the presence of glutamate receptors on unmyelinated axons in peripheral cutaneous nerves. Pharmacological studies show that intraplantar injection of glutamate or glutamate agonists in the glabrous skin results in nociceptive behaviors. The present study describes a novel in vitro skin-nerve preparation using the glabrous skin from the rat hindpaw. In the first series of experiments, recordings were obtained from 141 fibers that responded to a strong mechanical search stimulus. Based on their conduction velocity they were classified as C (27%), A delta (28%) and A beta (45%) fibers. The C and A delta fibers typically exhibited sustained firing during suprathreshold mechanical stimuli whereas both rapidly (66%) and slowly (34%) adapting responses were obtained from A beta fibers. Noxious heat excited 46% of the C fibers but only 12% of the A delta units. In another series of experiments application of an ascending series of glutamate concentrations (10, 100, 300, and 1000 microM) to A delta (n=14) and C (n=19) nociceptors resulted in a significant excitation of 43% (6/14) A delta fibers and 68% (13/19) C fibers. At these concentrations, there was no excitation of A beta units (n=13). Superfusion of the receptive fields of either mechanoheat-sensitive A (AMH, n=10) or C fibers (CMH, n=12) for 2 min with 300 microM glutamate resulted in sensitization of 90% (9/10) AMH and 92% (11/12) CMH fibers to subsequent thermal stimulation. This was evidenced by a significant (1) decrease in thermal threshold for activation, (2) increase in discharge rate, and (3) increase in peak instantaneous frequencies during the second heat trial. Glutamate-induced sensitization to heat occurred in the absence of either a glutamate-induced excitation or an initial heat response. Exposure of A delta or C fibers to glutamate did not result in a decrease in von Frey thresholds. These data provide a physiological basis for the nociceptive behaviors that arise following intraplantar injection of glutamate or glutamate agonists. Furthermore, demonstration of glutamate-induced excitation and heat sensitization of nociceptors indicates that local or topical administration of glutamate receptor antagonists may have therapeutic potential for the treatment of pain.
Silsesquioxane-derived ceramic fibres
NASA Technical Reports Server (NTRS)
Hurwitz, F. I.; Farmer, S. C.; Terepka, F. M.; Leonhardt, T. A.
1991-01-01
Fibers formed from blends of silsesquioxane polymers were characterized to study the pyrolytic conversion of these precursors to ceramics. The morphology of fibers pyrolyzed to 1400 C revealed primarily amorphous glasses whose conversion to beta-SiC is a function of both blend composition and pyrolysis conditions. Formation of beta-SiC crystallites within the glassy phase is favored by higher than stoichiometric C/Si ratios, while carbothermal reduction of Si-O bonds to form SiC with loss of SiO and CO occurs at higher methyl/phenylpropyl silsesquioxane (lower C/Si) ratios. As the carbothermal reduction is assumed to be diffusion controlled, the fibers can serve as model systems to gain understanding of the silsesquioxane pyrolysis behavior, and therefore are useful in the development of polysilsesquioxane-derived ceramic matrices and coatings as well.
Filonova, Lada; Kallas, Asa M; Greffe, Lionel; Johansson, Gunnar; Teeri, Tuula T; Daniel, Geoffrey
2007-01-01
Carbohydrate binding modules (CBMs) are noncatalytic substrate binding domains of many enzymes involved in carbohydrate metabolism. Here we used fluorescent labeled recombinant CBMs specific for crystalline cellulose (CBM1(HjCel7A)) and mannans (CBM27(TmMan5) and CBM35(CjMan5C)) to analyze the complex surfaces of wood tissues and pulp fibers. The crystalline cellulose CBM1(HjCel7A) was found as a reliable marker of both bacterially produced and plant G-layer cellulose, and labeling of spruce pulp fibers with CBM1(HjCel7A) revealed a signal that increased with degree of fiber damage. The mannan-specific CBM27(TmMan5) and CBM35(CjMan5C) CBMs were found to be more specific reagents than a monoclonal antibody specific for (1-->4)-beta-mannan/galacto-(1-->4)-beta-mannan for mapping carbohydrates on native substrates. We have developed a quantitative fluorometric method for analysis of crystalline cellulose accumulation on fiber surfaces and shown a quantitative difference in crystalline cellulose binding sites in differently processed pulp fibers. Our results indicated that CBMs provide useful, novel tools for monitoring changes in carbohydrate content of nonuniform substrate surfaces, for example, during wood or pulping processes and possibly fiber biosynthesis.
NASA Astrophysics Data System (ADS)
Carlson, Kimberly Ann Trabbic
1999-09-01
Nature has shown that silks are sophisticated structural materials with remarkable mechanical properties; however, they are produced using far milder conditions than high-performance synthetic polymer fibers. While recent advances in molecular biotechnology have taken great strides toward the production of proteinaceous biopolymers, little is known about the processing conditions needed to spin fibers with the correct microstructures and mechanical properties. It is the purpose of this research to gain a fundamental understanding about how processing conditions affect the molecular structure of a model protein biopolymer, Bombyx mori silkworm fibroin, the structural protein of cocoon silk. Fibers of B. mori fibroin were wet spun from 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) into a methanol coagulation bath. X-ray fiber diffraction and quantitative Raman spectroscopy were used to determine that both naturally- and synthetically-spun fibers contain a high degree of beta-sheet (~50%). Fibers subjected to a post-spinning draw exhibited a preferential molecular alignment parallel to the fiber axis resulting in increased strength, stiffness, and extensibility. Fibers with microstructures and mechanical properties most similar to those of naturally-spun fibers were reproduced in synthetically-spun fibers with a draw ratio of 3.5. The transformation of helical fibroin in HFIP to beta-sheet sheet fibroin in synthetically-spun fibers was determined to be caused by the methanol coagulation bath. The kinetics beta-sheet fibroin crystallization from aqueous solution was investigated by monitoring the sigmoidal progression of gel formation using turbidity and Raman spectroscopy. Gelation kinetics were evaluated by measuring lag time, maximum gelation rate, and optical density to determine the effects of protein concentration, detergent concentration (nucleating agent), headgroup chemistry, ionic strength, pH, and temperature. An optimal molar ratio between SDS and fibroin (100:1) was found to produce gels with minimum lag times and maximum gelation rates. Fluorescence spectroscopy and a two-step denaturation and aggregation model for gelation were used to explore the mechanism of fibroin gelation. Conditions that lead to fibroin expansion (dilute fibroin, low ionic strength, highly charged fibroin, or increased temperature) result in decreased lag times. The results presented in this dissertation should aid in developing biomimetic spinning techniques for proteinaceous, biopolymers through the use of amphiphilic sheet nucleating agents.
Multimode fiber devices with single-mode performance
NASA Astrophysics Data System (ADS)
Leon-Saval, S. G.; Birks, T. A.; Bland-Hawthorn, J.; Englund, M.
2005-10-01
A taper transition can couple light between a multimode fiber and several single-mode fibers. If the number of single-mode fibers matches the number of spatial modes in the multimode fiber, the transition can have low loss in both directions. This enables the high performance of single-mode fiber devices to be attained in multimode fibers. We report an experimental proof of concept by using photonic crystal fiber techniques to make the transitions, demonstrating a multimode fiber filter with the transmission spectrum of a single-mode fiber grating.
NASA Astrophysics Data System (ADS)
Gong, Liang
Bacterially produced poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (PHBHx) is a new type of bioplastic which not only inherits the excellent biodegradability and biocompatibility of its parent homopolymer, polyhydroxybutyrate (PHB), but also overcomes PHB’s brittleness and stiffness with the incorporation of 3-hydroxyhexanoate (Hx) comonomer units with medium-chain-length (mcl) side chains. The tough and ductile PHBHx, with a much lower crystallinity and melting temperature, is well-suited for many practical applications. Efforts have been made to broaden the application range of PHBHx by introducing the beta-form crystalline structure, where the molecular chains adopt a planar zig-zag conformation. However, it is extremely difficult to produce this beta-form in PHBHx due to its much lower crystallinity and much more flexible molecular chains. In this study, we report an approach using the technique of electrospinning. The strain-induced metastable β-form crystalline structure was successfully introduced in PHBHx by collecting the macroscopically aligned electrospun PHBHx nanofibers across the air gap on a piece of aluminum foil and on the tapered edge of a high-speed rotary disk. The presence of the β-form crystal structure in electrospun fiber mats was confirmed by wide-angle X-ray diffraction (WAXD) and Fourier transform infrared spectroscopy (FTIR), with molecular orientation of the polymer chains along the fiber axis revealed by polarized FTIR. Selected area electron diffraction (SAED) and AFM-IR were utilized to investigate the morphological and structural details of individual PHBHx nanofibers. The results demonstrated a coexistence of the thermodynamically stable α-form crystalline structure, where molecular chains adopt a left-handed 21 helical conformation, and the β-form in single fibers. The molecular orientation level and the relative amounts of the two crystalline polymorphs were found to be highly dependent on fiber collection methods and fiber diameter. Moreover, the α and β-form were revealed to be spatially distributed as a core-shell structure consisting of an α-form-rich core and a β-form-rich shell, with the thickness of the shell remaining constant despite the variation of fiber diameter. According to these observations, a possible mechanism for the generation of the β-form was proposed. The effects of electrospinning parameters on the formation of the beta-form were systematically investigated. The results indicated that more β-crystals can be produced when 1) a higher fiber take-up is used, so that the polymer chains are further stretched before fiber solidification; 2) an optimal solution concentration is chosen, so that a balance between polymer chain deformation and relaxation is maintained throughout the whole electrospinning process; and 3) a more volatile solvent is used, so that more planar zig-zag chains are kinetically frozen in the fibers without being converted to the helical conformation as the fibers solidify. These experimental results indicate that the β-content in PHBHx nanofibers can be easily regulated by modifying the electrospinning conditions. Finally, the influence of the presence of the β-form on the piezoelectric response of the electrospun PHBHx nanofibers was studied. It was observed that the fibers containing the β-form exhibited an obvious piezoelectric response to the applied pressure, possibly due to the planar zig-zag conformation of the chains which gives rise to a significant dipole moment change when subjected to mechanical deformation. In addition, the sensitivity of the piezoelectric PHBHx nanofibers to mechanical pressure was measured to be 7.46 mV/kPa. These preliminary investigations indicate that the piezoelectric performance of PHBHx can be largely improved by increasing the concentration of the piezoelectric-active β-form crystalline structure. The piezoelectric PHBHx distinguishes itself from all the other piezoelectric polymers with its excellent biodegradability and biocompatibility, environmental-friendliness and most importantly, low manufacturing cost. It is a promising piezoelectric polymer which can be applied in advanced areas including portable/foldable electronic devices, artificial electronic skins and implantable sensors.
1992-01-01
Pulse-labeling studies demonstrate that tubulin synthesized in the neuron cell body (soma) moves somatofugally within the axon (at a rate of several millimeters per day) as a well-defined wave corresponding to the slow component of axonal transport. A major goal of the present study was to determine what proportion of the tubulin in mature motor axons is transported in this wave. Lumbar motor neurons in 9-wk-old rats were labeled by injecting [35S]methionine into the spinal cord 2 wk after motor axons were injured (axotomized) by crushing the sciatic nerve. Immunoprecipitation with mAbs which recognize either class II or III beta-tubulin were used to analyze the distributions of radioactivity in these isotypes in intact and axotomized motor fibers 5 d after labeling. We found that both isotypes were associated with the slow component wave, and that the leading edge of this wave was enriched in the class III isotype. Axotomy resulted in significant increases in the labeling and transport rates of both isotypes. Immunohistochemical examination of peripheral nerve fibers demonstrated that nearly all of the class II and III beta-tubulin in nerve fibers is located within axons. Although the amounts of radioactivity per millimeter of nerve in class II and III beta-tubulin were significantly greater in axotomized than in control nerves (with increases of +160% and +58%, respectively), immunoassay revealed no differences in the amounts of these isotypes in axotomized and control motor fibers. We consider several explanations for this paradox; these include the possibility that the total tubulin content is relatively insensitive to changes in the amount of tubulin transported in the slow component wave because this wave represents the movement of only a small fraction of the tubulin in these motor fibers. PMID:1383234
Chevalier, Christophe; Al Bazzal, Ali; Vidic, Jasmina; Février, Vincent; Bourdieu, Christiane; Bouguyon, Edwige; Le Goffic, Ronan; Vautherot, Jean-François; Bernard, Julie; Moudjou, Mohammed; Noinville, Sylvie; Chich, Jean-François; Da Costa, Bruno; Rezaei, Human; Delmas, Bernard
2010-04-23
The influenza A virus PB1-F2 protein, encoded by an alternative reading frame in the PB1 polymerase gene, displays a high sequence polymorphism and is reported to contribute to viral pathogenesis in a sequence-specific manner. To gain insights into the functions of PB1-F2, the molecular structure of several PB1-F2 variants produced in Escherichia coli was investigated in different environments. Circular dichroism spectroscopy shows that all variants have a random coil secondary structure in aqueous solution. When incubated in trifluoroethanol polar solvent, all PB1-F2 variants adopt an alpha-helix-rich structure, whereas incubated in acetonitrile, a solvent of medium polarity mimicking the membrane environment, they display beta-sheet secondary structures. Incubated with asolectin liposomes and SDS micelles, PB1-F2 variants also acquire a beta-sheet structure. Dynamic light scattering revealed that the presence of beta-sheets is correlated with an oligomerization/aggregation of PB1-F2. Electron microscopy showed that PB1-F2 forms amorphous aggregates in acetonitrile. In contrast, at low concentrations of SDS, PB1-F2 variants exhibited various abilities to form fibers that were evidenced as amyloid fibers in a thioflavin T assay. Using a recombinant virus and its PB1-F2 knock-out mutant, we show that PB1-F2 also forms amyloid structures in infected cells. Functional membrane permeabilization assays revealed that the PB1-F2 variants can perforate membranes at nanomolar concentrations but with activities found to be sequence-dependent and not obviously correlated with their differential ability to form amyloid fibers. All of these observations suggest that PB1-F2 could be involved in physiological processes through different pathways, permeabilization of cellular membranes, and amyloid fiber formation.
Andrade, Eric Francelino; Lima, Andressa Ribeiro Veiga; Nunes, Ingrid Edwiges; Orlando, Débora Ribeiro; Gondim, Paula Novato; Zangeronimo, Márcio Gilberto; Alves, Fernando Henrique Ferrari; Pereira, Luciano José
2016-01-01
Physical activity and the ingestion of dietary fiber are non-drug alternatives commonly used as adjuvants to glycemic control in diabetic individuals. Among these fibers, we can highlight beta-glucans. However, few studies have compared isolated and synergic effects of physical exercise and beta-glucan ingestion, especially in type 2 diabetic rats. Therefore, we evaluated the effects beta-glucan (Saccharomyces cerevisiae) consumption, associated or not to exercise, on metabolic parameters of diabetic Wistar rats. The diabetes mellitus (DM) was induced by high-fat diet (HFD) associated with a low dose of streptozotocin (STZ—35 mg/kg). Trained groups were submitted to eight weeks of exercise in aquatic environment. In the last 28 days of experiment, animals received 30 mg/kg/day of beta-glucan by gavage. Isolated use of beta-glucan decreased glucose levels in fasting, Glycated hemoglobin (HbA1c), triglycerides (TAG), total cholesterol (TC), low-density lipoprotein (LDL-C), the atherogenic index of plasma. Exercise alone also decreased blood glucose levels, HbA1c, and renal lesions. An additive effect for reducing the atherogenic index of plasma and renal lesions was observed when both treatments were combined. It was concluded that both beta-glucan and exercise improved metabolic parameters in type 2 (HFD/STZ) diabetic rats. PMID:27999319
Beta Glucan: Health Benefits in Obesity and Metabolic Syndrome
El Khoury, D.; Cuda, C.; Luhovyy, B. L.; Anderson, G. H.
2012-01-01
Despite the lack of international agreement regarding the definition and classification of fiber, there is established evidence on the role of dietary fibers in obesity and metabolic syndrome. Beta glucan (β-glucan) is a soluble fiber readily available from oat and barley grains that has been gaining interest due to its multiple functional and bioactive properties. Its beneficial role in insulin resistance, dyslipidemia, hypertension, and obesity is being continuously documented. The fermentability of β-glucans and their ability to form highly viscous solutions in the human gut may constitute the basis of their health benefits. Consequently, the applicability of β-glucan as a food ingredient is being widely considered with the dual purposes of increasing the fiber content of food products and enhancing their health properties. Therefore, this paper explores the role of β-glucans in the prevention and treatment of characteristics of the metabolic syndrome, their underlying mechanisms of action, and their potential in food applications. PMID:22187640
Ceramic Fiber Coatings Development and Demonstration
1993-05-28
from polycar- bosilane polymer . The fiber is mostly amorphous with some microcrystalline beta- SiC . A typical elemental composition (wt %) is 57... preceramic polymers yielded improvements mainly for oxide coatings and proved particularly promising for low cost processing. A schematic for this...deposition. COMPOSITE FABRICATION AND EVALUATION Coated fiber tows were infiltrated with Si 3N4 matrix by chemical vapor deposition in order to study
Tessari, Paolo; Lante, Anna
2017-01-01
Design: Functional foods may be useful for people with diabetes. The soluble fibers beta glucans can modify starch digestion and improve postprandial glucose response. We analyzed the metabolic effects of a specifically designed ‘functional’ bread, low in starch, rich in fibers (7 g/100 g), with a beta glucan/starch ratio of (7.6:100, g/g), in people with type 2 diabetes mellitus. Methods: Clinical and metabolic data from two groups of age-, sex- and glycated hemoglobin-matched diabetic subjects, taking either the functional bread or regular white bread, over a roughly six-month observation period, were retrieved. Results: Bread intake did not change during the trial. The functional bread reduced glycated hemoglobin by ~0.5% (absolute units) vs. pre-treatment values (p = 0.028), and by ~0.6% vs. the control group (p = 0.027). Post-prandial and mean plasma glucose was decreased in the treatment group too. Body weight, blood pressure and plasma lipids did not change. The acceptance of the functional bread was good in the majority of subjects, except for taste. Conclusions: A starch-restricted, fiber-rich functional bread, with an increased beta glucan/starch ratio, improved long term metabolic control, and may be indicated in the dietary treatment of type 2 diabetes. PMID:28304350
Microscopic observations during longitudinal compression loading of single pulp fibers
Irving B. Sachs
1986-01-01
Paperboard components (linerboard adn corrugating medium) fail in edgewise compression because of failure of single fibers, as well as fiber-to-fiber bonds. While fiber-to-fiber-bond failure has been studied extensively, little is known about the longitudinal compression failure of a single fiber. In this study, surface alterations on single loblolly pine kraft pulp...
Wang, H X; Ng, T B
1999-01-01
This article reviews compounds of botanical origin which are capable of lowering plasma levels of glucose and cholesterol and blood pressure, as well as compounds inhibiting atherosclerosis and thrombosis. Hypoglycemic natural products comprise flavonoids, xanthones, triterpenoids, alkaloids, glycosides, alkyldisulfides, aminobutyric acid derivatives, guanidine, polysaccharides and peptides. Hypotensive compounds include flavonoids, diterpenes, alkaloids, glycosides, polysaccharides and proteins. Among natural products with hypocholesterolemic activity are beta-carotene, lycopene, cycloartenol, beta-sitosterol, sitostanol, saponin, soybean protein, indoles, dietary fiber, propionate, mevinolin (beta-hydroxy-beta-methylglutaryl coenzyme A reductase inhibitor) and polysaccharides. Heparins, flavonoids, tocotrienols, beta-hydroxy-beta-methylglutaryl coenzyme A reductase inhibitors (statins), garlic compounds and fungal proteases exert antithrombotic action. Statins and garlic compounds also possess antiatherosclerotic activity.
de Fraga, Rogerio; Dambros, Miriam; Miyaoka, Ricardo; Riccetto, Cássio Luís Zanettini; Palma, Paulo César Rodrigues
2007-10-01
The authors quantified the type IV collagen fibers volumetric density in the basement membrane of bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old) randomly divided in 4 groups: group 1, remained intact (control); group 2, submitted to bilateral oophorectomy and daily replacement 4 weeks later of 17 beta-estradiol for 12 weeks; group 3, sham operated and daily replacement 4 weeks later of sesame oil for 12 weeks; and group 4, submitted to bilateral oophorectomy and killed after 12 weeks. It was used in immunohistochemistry evaluation using type IV collagen polyclonal antibody to stain the fibers on paraffin rat bladder sections. The M-42 stereological grid system was used to analyze the fibers. Ovariectomy had an increase effect on the volumetric density of the type IV collagen fibers in the basement membrane of rat bladder wall. Estradiol replacement in castrated animals demonstrated a significative difference in the stereological parameters when compared to the castrated group without hormonal replacement. Surgical castration performed on rats induced an increasing volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall and the estradiol treatment had a significant effect in keeping a low volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall.
Effect of salbutamol on innervated and denervated rat soleus muscle.
Soić-Vranić, T; Bobinac, D; Bajek, S; Jerković, R; Malnar-Dragojević, D; Nikolić, M
2005-12-01
The objective of the present investigation was to perform a 14-day time-course study of treatment with salbutamol, a beta2 adrenoceptor agonist, on rat soleus muscle in order to assess fiber type selectivity in the hypertrophic response and fiber type composition. Male Wistar rats were divided into four groups: control (N = 10), treated with salbutamol (N = 30), denervated (N = 30), and treated with salbutamol after denervation (N = 30). Salbutamol was injected intraperitoneally in the rats of the 2nd and 4th groups at a concentration of 0.3 mg/kg twice a day for 2 weeks. The muscles were denervated using the crush method with pean. The animals were sacrificed 3, 6, 9, 12, and 14 days after treatment. Frozen cross-sections of soleus muscle were stained for myosin ATPase, pH 9.4. Cross-sectional area and percent of muscle fibers were analyzed morphometrically by computerized image analysis. Treatment with salbutamol induced hypertrophy of all fiber types and a higher percentage of type II fibers (21%) in the healthy rat soleus muscle. Denervation caused marked atrophy of all fibers and conversion from type I to type II muscle fibers. Denervated muscles treated with salbutamol showed a significantly larger cross-sectional area of type I muscle fibers, 28.2% compared to the denervated untreated muscle. Moreover, the number of type I fibers was increased. These results indicate that administration of salbutamol is able to induce changes in cross-sectional area and fiber type distribution in the early phase of treatment. Since denervation-induced atrophy and conversion from type I to type II fibers were improved by salbutamol treatment we propose that salbutamol, like other beta2 adrenoceptor agonists, may have a therapeutic potential in improving the condition of skeletal muscle after denervation.
New type of nonflammable paper
NASA Technical Reports Server (NTRS)
Armstrong, G. K.
1970-01-01
Nonflammable paper is made from fibers of chrysotile asbestos, beta-glass fibers, glass microfibers, and a little nonflammable organic binder. It does not propagate flame in an atmosphere of 16.5-psig oxygen, and it is resistant to rot and mold, making it acceptable as wrapping material and for stored documents.
Functional beverage products using caseinate–omega-3 oil-oat beta glucan emulsions
USDA-ARS?s Scientific Manuscript database
Beverages with soluble dietary fiber and Omega 3 oil are highly desired by health conscious consumers. However, Omega 3 oil is prone to oxidation and accompanying deterioration of sensory profiles; there is an issue to incorporate soluble fiber into beverage products that will not interfere with oxi...
[Method for concentration determination of mineral-oil fog in the air of workplace].
Xu, Min; Zhang, Yu-Zeng; Liu, Shi-Feng
2008-05-01
To study the method of concentration determination of mineral-oil fog in the air of workplace. Four filter films such as synthetic fabric filter film, beta glass fiber filter film, chronic filter paper and microporous film were used in this study. Two kinds of dust samplers were used to collect the sample, one sampling at fast flow rate in a short time and the other sampling at slow flow rate with long duration. Subsequently, the filter membrane was weighed with electronic analytical balance. According to sampling efficiency and incremental size, the adsorbent ability of four different filter membranes was compared. When the flow rate was between 10 approximately 20 L/min and the sampling time was between 10 approximately 15 min, the average sampling efficiency of synthetic fabric filter film was 95.61% and the increased weight ranged from 0.87 to 2.60 mg. When the flow rate was between 10 approximately 20 L/min and sampling time was between 10 approximately 15 min, the average sampling efficiency of beta glass fiber filter film was 97.57% and the increased weight was 0.75 approximately 2.47 mg. When the flow rate was between 5 approximately 10 L/min and the sampling time between 10 approximately 20 min, the average sampling efficiency of chronic filter paper and microporous film was 48.94% and 63.15%, respectively and the increased weight was 0.75 approximately 2.15 mg and 0.23 approximately 0.85 mg, respectively. When the flow rate was 3.5 L/min and the sampling time was between 100 approximately 166 min, the average sampling efficiency of filter film were 94.44% and 93.45%, respectively and the average increased weight was 1.28 mg for beta glass fiber filter film and 0.78 mg for beta glass fiber filter film and synthetic fabric synthetic fabric filter film. The average sampling efficiency of chronic filter paper and microporous film were 37.65% and 88.21%, respectively. The average increased weight was 4.30 mg and 1.23 mg, respectively. Sampling with synthetic fabric filter film and beta glass fiber filter film is credible, accurate, simple and feasible for determination of the concentration of mineral-oil fog in workplaces.
Preparation of silicon carbide fibers
Wei, G.C.
1983-10-12
Silicon carbide fibers suitable for use in the fabrication of dense, high-strength, high-toughness SiC composites or as thermal insulating materials in oxidizing environments are fabricated by a new, simplified method wherein a mixture of short-length rayon fibers and colloidal silica is homogenized in a water slurry. Water is removed from the mixture by drying in air at 120/sup 0/C and the fibers are carbonized by (pyrolysis) heating the mixture to 800 to 1000/sup 0/C in argon. The mixture is subsequently reacted at 1550 to 1900/sup 0/C in argon to yield pure ..beta..-SiC fibers.
Howie, B J; Shultz, T D
1985-07-01
The relationship between dietary nutrients and plasma testosterone, 5 alpha-dihydrotestosterone, estradiol-17 beta, luteinizing hormone, and prolactin levels was investigated in 12 Seventh-Day Adventist (SDA) vegetarian (SV), 10 SDA nonvegetarian (SNV), and 8 non-SDA nonvegetarian (NV) men. Fasting blood samples and 3-day dietary intake information were obtained from each subject. The SV subjects consumed significantly more crude and dietary fiber than the SNV and NV subjects, respectively. Plasma levels of testosterone and estradiol-17 beta were significantly lower in the SV than in the omnivores. Additionally, the plasma levels of testosterone and estradiol-17 beta of the combined groups (SV, SNV, and NV) revealed a significant negative relationship with their crude and dietary fiber intakes. These subjects hormonal milieu was related to specific dietary constituents, possibly leading to a decreased plasma concentration of androgen and estrogen in vegetarians. Implications include the possible modification of prostate cancer risk through dietary intervention.
Theuwissen, Elke; Mensink, Ronald P
2007-03-01
Intake of food products rich in water-soluble fiber beta-glucan and products enriched with plant stanol esters lower serum cholesterol. Combining 2 functional food ingredients into one food product may achieve additional reductions of serum cholesterol. Our objective was to investigate the effects of a simultaneous intake of beta-glucan plus plant stanol esters on lipid metabolism in mildly hypercholesterolemic volunteers. In a randomized, controlled, 3-period crossover study, 40 mildly hypercholesterolemic men and women received muesli in random order twice a day for 4 wk, which provided, in total, 5 g control fiber from wheat (control muesli), 5 g oat beta-glucan (beta-glucan muesli), or 5 g oat beta-glucan plus 1.5 g plant stanols (combination muesli). beta-Glucan muesli decreased serum LDL cholesterol by 5.0% compared with control muesli (P = 0.013). Combination muesli reduced LDL cholesterol by 9.6% compared with control muesli (P < 0.001), and by 4.4% compared with beta-glucan muesli (P = 0.036). Serum HDL cholesterol and triacylglycerol concentrations did not differ after the 3 treatments. Compared with control muesli, beta-glucan muesli increased bile acid synthesis (P = 0.043) and decreased cholesterol absorption (P = 0.011). Addition of plant stanols did not influence bile acid synthesis but decreased cholesterol absorption (P < 0.001) and raised cholesterol synthesis (P = 0.016) compared with control muesli, and the plant stanols decreased cholesterol absorption compared with beta-glucan muesli (P = 0.004). The combination muesli decreased serum concentrations of sitostanol compared with control muesli (P = 0.010). Plasma concentrations of lipid-soluble antioxidants did not differ after the 3 treatments. beta-Glucan muesli effectively lowered serum LDL cholesterol concentrations. The addition of plant stanol esters to beta-glucan-enriched muesli further lowered serum LDL cholesterol, although effects were slightly less than predicted.
Mechanical, Chemical and Microstructural Characterization of Monazite-Coated Silicon Carbide Fibers
NASA Technical Reports Server (NTRS)
Bansal, N. P.; Wheeler, D. R.; Chen, Y. L.
2000-01-01
Tensile strengths of as-received Hi-Nicalon and Sylramic fibers and those having monazite surface coatings, deposited by atmospheric pressure chemical vapor deposition, were measured at room temperature and the Weibull statistical parameters determined. The average tensile strengths of uncoated Hi-Nicalon and Sylramic fibers were 3.19 +/- 0.73 and 2.78 +/- 0.53 GPa with a Weibull modulus of 5.41 and 5.52, respectively. The monazite-coated Hi-Nicalon and Sylramic fibers showed strength loss of approx. 10 and 15 percent, respectively, compared with the as-received fibers. The elemental compositions of the fibers and the coatings were analyzed using scanning Auger microprobe and energy dispersive X-ray spectroscopy. The LaPO4 coating on Hi-Nicalon fibers was approximately stoichiometric and about 50 nm thick. The coating on the Sylramic fibers extended to a depth of about 100 to 150 nm. The coating may have been stoichiometric LaPO4 in the first 30 to 40 nm of the layer. However, the surface roughness of Sylramic fiber made this profile somewhat difficult to interpret. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction. Hi-Nicalon fiber consists of fine beta-SiC nanocrystals ranging in size from 1 to 30 mn embedded in an amorphous matrix. Sylramic is a polycrystalline stoichiometric silicon carbide fiber consisting of submicron beta-SiC crystallites ranging from 100 to 300 nm. Small amount of TiB2 nanocrystallites (approx. 50 nm) are also present. The LaPO4 coating on Hi-Nicalon fibers consisted of a chain of peanut shape particles having monazite-(La) structure. The coating on Sylramic fibers consisted of two layers. The inner layer was a chain of peanut shape particles having monazite-(La) structure. The outer layer was comprised of much smaller particles with a microcrystalline structure.
Inouye, Hideyo; Gleason, Katherine A; Zhang, Dong; Decatur, Sean M; Kirschner, Daniel A
2010-08-01
The sequence KLVFFAE (A beta 16-22) in Alzheimer's beta-amyloid is thought to be a core beta-structure that could act as a template for folding other parts of the polypeptide or molecules into fibrillar assemblies rich in beta-sheet. To elucidate the mechanism of the initial folding process, we undertook combined X-ray fiber/powder diffraction and infrared (IR) spectroscopy to analyze lyophilized A beta 16-22 and solubilized/dried peptide containing nitrile probes at F19 and/or F20. Solubilized/dried wild-type (WT) A beta 16-22 and the peptide containing cyanophenylalanine at F19 (19CN) or at F20 (20CN) gave fiber patterns consistent with slab-like beta-crystallites that were cylindrically averaged around the axis parallel to the polypeptide chain direction. The WT and 19CN assemblies showed 30-A period arrays arising from the stacking of the slabs along the peptide chain direction, whereas the 20CN assemblies lacked any such stacking. The electron density projection along the peptide chain direction indicated similar side-chain dispositions for WT and 20CN, but not for 19CN. These X-ray results and modeling imply that in the assembly of WT A beta 16-22 the F19 side chain is localized within the intersheet space and is involved in hydrophobic contact with amino acids across the intersheet space, whereas the F20 side chain localized near the slab surface is less important for the intersheet interaction, but involved in slab stacking. IR observations for the same peptides in dilute solution showed a greater degree of hydrogen bonding for the nitrile groups in 20CN than in 19CN, supporting this interpretation. (c) 2010 Wiley-Liss, Inc.
Exercise promotes alpha7 integrin gene transcription and protection of skeletal muscle.
Boppart, Marni D; Volker, Sonja E; Alexander, Nicole; Burkin, Dean J; Kaufman, Stephen J
2008-11-01
The alpha7beta1 integrin is increased in skeletal muscle in response to injury-producing exercise, and transgenic overexpression of this integrin in mice protects against exercise-induced muscle damage. The present study investigates whether the increase in the alpha7beta1 integrin observed in wild-type mice in response to exercise is due to transcriptional regulation and examines whether mobilization of the integrin at the myotendinous junction (MTJ) is a key determinant in its protection against damage. A single bout of downhill running exercise selectively increased transcription of the alpha7 integrin gene in 5-wk-old wild-type mice 3 h postexercise, and an increased alpha7 chain was detected in muscle sarcolemma adjacent to tendinous tissue immediately following exercise. The alpha7B, but not alpha7A isoform, was found concentrated and colocalized with tenascin-C in muscle fibers lining the MTJ. To further validate the importance of the integrin in the protection against muscle damage following exercise, muscle injury was quantified in alpha7(-/-) mice. Muscle damage was extensive in alpha7(-/-) mice in response to both a single and repeated bouts of exercise and was largely restricted to areas of high MTJ concentration and high mechanical force near the Achilles tendon. These results suggest that exercise-induced muscle injury selectively increases transcription of the alpha7 integrin gene and promotes a rapid change in the alpha7beta integrin at the MTJ. These combined molecular and cellular alterations are likely responsible for integrin-mediated attenuation of exercise-induced muscle damage.
Ogneva, I V; Maximova, M V; Larina, I M
2014-05-15
The aim of the work was to analyze changes in the organization of the cortical cytoskeleton in fibers of the mouse soleus muscle, tibialis anterior muscle and left ventricular cardiomyocytes after completion of a 30-day space flight on board the BION-M1 biosatellite (Russia, 2013). The transversal stiffness of the cortical cytoskeleton of the cardiomyocytes and fibers of the skeletal muscles did not differ significantly within the study groups compared with the vivarium control group. The content of beta- and gamma-actin in the membranous fraction of proteins in the left ventricular cardiomyocytes did not differ significantly within all study groups and correlated with the transversal stiffness. A similar situation was revealed in fibers of the soleus muscle and tibialis anterior muscle. At the same time, the content of beta-actin in the cytoplasmic fraction of proteins was found to be decreased in all types of studied tissues compared with the control levels in the postflight group, with lowered beta-actin gene expression rates in the postflight group. After completion of the space flight, the content of alpha-actinin-4 was found to be reduced in the membranous fraction of proteins from the mouse cardiomyocytes, while its content in the cytoplasmic fraction of proteins did not change significantly. Furthermore, gene expression rates of this protein were decreased at the time of dissection (it was started after 13 h after landing). At the same time, the content of alpha-actinin-1 decreased in the membranous fraction and increased in the cytoplasmic fraction of proteins from the soleus muscle fibers. Copyright © 2014 the American Physiological Society.
USDA-ARS?s Scientific Manuscript database
Asians and other non-caucasians are generally more susceptible to obesity related chronic diseases such as type 2 diabetes and cardiovascular disease. Viscous soluble dietary fibers such as cereal beta-glucans and psyllium reduce plasma cholesterol and postprandial glycemia in humans. We have stud...
Würsch, P; Pi-Sunyer, F X
1997-11-01
Recent recommendations for the dietary management of diabetes mellitus state that diet needs to be individualized so that there is improved glucose and lipid control in the patient. In a majority of individuals with diabetes, this is best done with a diet that is low in fat and high in carbohydrate, particularly that of cereal origin. However, symptoms of hyper- and hypoglycemia must be averted. Most cereal products, however, tend to have a high glycemic index Cereals such as Prowashonupana barley or fractions of oat bran are particularly high in the soluble fiber beta-glucan, which when taken with a meal increases the viscosity of the meal bolus once it has reached the small intestine, where the absorption of nutrients occurs. This high viscosity delays absorption. A 50% reduction in glycemic peak can be achieved with a concentration of 10% beta-glucan in a cereal food. A significant lowering of plasma LDL cholesterol concentrations can also be anticipated with the daily consumption of > or = 3 g of beta-glucan. Diabetic individuals can benefit from diets that are high in beta-glucan, which, as a component of oats and barley, can be incorporated into breakfast cereals and other products.
NASA Technical Reports Server (NTRS)
Stormont, R. W.; Morrison, A.
1974-01-01
Single crystal a- and c-axis tubes and ribbons of sodium beta-alumina and sodium magnesium beta-alumina were grown from sodium oxide rich melts. Additional experiments grew ribbon crystals containing sodium magnesium beta, beta double prime, beta triple prime, and beta quadruple prime. A high pressure crystal growth chamber, sodium oxide rich melts, and iridium for all surfaces in contact with the melt were combined with the edge-defined, film-fed growth technique to grow the single crystal beta-alumina tubes and ribbons. The crystals were characterized using metallographic and X-ray diffraction techniques, and wet chemical analysis was used to determine the sodium, magnesium, and aluminum content of the grown crystals.
Li, L.; Drake, R. R.; Clement, S.; Brown, R. M.
1993-01-01
Using differential product entrapment and photolabeling under specifying conditions, we identifIed a 37-kD polypeptide as the best candidate among the UDP-glucose-binding polypeptides for the catalytic subunit of cotton (Gossypium hirsutum) cellulose synthase. This polypeptide is enriched by entrapment under conditions favoring [beta]-1,4-glucan synthesis, and it is magnesium dependent and sensitive to unlabeled UDP-glucose. A 52-kD polypeptide was identified as the most likely candidate for the catalytic subunit of [beta]-1,3-glucan synthase because this polypeptide is the most abundant protein in the entrapment fraction obtained under conditions favoring [beta]-1,3-glucan synthesis, is coincident with [beta]-1,3-glucan synthase activity, and is calcium dependent. The possible involvement of other polypeptides in the synthesis of [beta]-1,3-glucan is discussed. PMID:12231766
Silk from crickets: a new twist on spinning.
Walker, Andrew A; Weisman, Sarah; Church, Jeffrey S; Merritt, David J; Mudie, Stephen T; Sutherland, Tara D
2012-01-01
Raspy crickets (Orthoptera: Gryllacrididae) are unique among the orthopterans in producing silk, which is used to build shelters. This work studied the material composition and the fabrication of cricket silk for the first time. We examined silk-webs produced in captivity, which comprised cylindrical fibers and flat films. Spectra obtained from micro-Raman experiments indicated that the silk is composed of protein, primarily in a beta-sheet conformation, and that fibers and films are almost identical in terms of amino acid composition and secondary structure. The primary sequences of four silk proteins were identified through a mass spectrometry/cDNA library approach. The most abundant silk protein was large in size (300 and 220 kDa variants), rich in alanine, glycine and serine, and contained repetitive sequence motifs; these are features which are shared with several known beta-sheet forming silk proteins. Convergent evolution at the molecular level contrasts with development by crickets of a novel mechanism for silk fabrication. After secretion of cricket silk proteins by the labial glands they are fabricated into mature silk by the labium-hypopharynx, which is modified to allow the controlled formation of either fibers or films. Protein folding into beta-sheet structure during silk fabrication is not driven by shear forces, as is reported for other silks.
Zhu, Jie; Zhu, Yihan; Zhu, Liangkui; Rigutto, Marcello; van der Made, Alexander; Yang, Chengguang; Pan, Shuxiang; Wang, Liang; Zhu, Longfeng; Jin, Yinying; Sun, Qi; Wu, Qinming; Meng, Xiangju; Zhang, Daliang; Han, Yu; Li, Jixue; Chu, Yueying; Zheng, Anmin; Qiu, Shilun; Zheng, Xiaoming; Xiao, Feng-Shou
2014-02-12
Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules.
1990-01-01
Receptive fields and responsiveness of single fibers of the glossopharyngeal (IXth) nerve were investigated using electrical, gustatory (NaCl, quinine HCl, acetic acid, water, sucrose, and CaCl2), thermal, and mechanical stimulation of the single fungiform papillae distributed on the dorsal tongue surface in frogs. 172 single fibers were isolated. 58% of these fibers (99/172) were responsive to at least one of the gustatory stimuli (taste fibers), and the remaining 42% (73/172) were responsive only to touch (touch fibers). The number of papillae innervated by a single fiber (receptive field) was between 1 and 17 for taste fibers and between 1 and 10 for touch fibers. The mean receptive field of taste fibers (X = 6.6, n = 99) was significantly larger than that of touch fibers (X = 3.6, n = 73) (two-tailed t test, P less than 0.001). In experiments with natural stimulation of single fungiform papillae, it was found that every branch of a single fiber has a similar responsiveness. Taste fibers were classified into 14 types (Type N, Q, A, NA, NCa, NCaA, NCaW, NCaAW, NCaWS, NQ, NQA, NQAS, NQWarm, Multiple) on the basis of their responses to gustatory and thermal stimuli. The time course of the response in taste fibers was found to be characteristic of their types. For example, the fibers belonging to Type NQA showed phasic responses, those in Type NCa showed tonic responses, etc. These results indicate that there are several groups of fibers in the frog IXth nerve and that every branch of an individual fiber has a similar responsiveness to the parent fiber. PMID:2374001
Phase shift of TE and TM modes in an optical fiber due to axial strain (exact solution)
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1992-01-01
Axial strain may be determined by monitoring the phase shift of modes of a variety of optical fiber sensors. In this paper, the exact solution of a circular optical fiber is used to calculate the phase shift of the TE and TM modes. Whenever an optical fiber is stressed, the optical path length, the index of refraction, and the propagation constants of each fiber mode change. In consequence, the modal phase term, beta(ln)z, of the fields is shifted by an amount Delta phi. In certain cases, it is desirable to control the phase shift term in order to make the fiber either more or less sensitive to certain kinds of strain. It is shown that it can be accomplished by choosing appropriate fiber parameters.
Stretching single fibrin fibers hampers their lysis.
Li, Wei; Lucioni, Tomas; Li, Rongzhong; Bonin, Keith; Cho, Samuel S; Guthold, Martin
2017-09-15
Blood clots, whose main structural component is a mesh of microscopic fibrin fibers, experience mechanical strain from blood flow, clot retraction and interactions with platelets and other cells. We developed a transparent, striated and highly stretchable substrate made from fugitive glue (a styrenic block copolymer) to investigate how mechanical strain affects lysis of single, suspended fibrin fibers. In this suspended fiber assay, lysis manifested itself by fiber elongation, thickening (disassembly), fraying and collapse. Stretching single fibrin fibers significantly hampered their lysis. This effect was seen in uncrosslinked and crosslinked fibers. Crosslinking (without stretching) also hampered single fiber lysis. Our data suggest that strain is a novel mechanosensitive factor that regulates blood clot dissolution (fibrinolysis) at the single fiber level. At the molecular level of single fibrin molecules, strain may distort, or hinder access to, plasmin cleavage sites and thereby hamper lysis. Fibrin fibers are the major structural component of a blood clot. We developed a highly stretchable substrate made from fugitive glue and a suspended fibrin fiber lysis assay to investigate the effect of stretching on single fibrin fibers lysis. The key findings from our experiments are: 1) Fibers thicken and elongate upon lysis; 2) stretching strongly reduces lysis; 3) this effect is more pronounced for uncrosslinked fibers; and 4) stretching fibers has a similar effect on reducing lysis as crosslinking fibers. At the molecular level, strain may distort plasmin cleavage sites, or restrict access to those sites. Our results suggest that strain may be a novel mechanobiological factor that regulates fibrinolysis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Single-mode fiber laser based on core-cladding mode conversion.
Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N
2008-02-15
A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.
Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.
Liu, Zhihai; Wang, Lei; Liang, Peibo; Zhang, Yu; Yang, Jun; Yuan, Libo
2013-07-15
We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of ~3 μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.
Conformational analysis of (1. -->. 4)-. beta. -D-mannan triacetate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deslandes, Y.; Marchessault, R.H.; Bluhm, T.L.
1983-01-01
In wood, algae, and tubers, glucomannans have varying mannose-to-glucose ratios (M/G). Since diffraction on glucomannans of widely varying M/G do not show significant change in unit-cell base plane dimensions, the authors have suggested that isomorphous replacement may occur in glucomannans. To further investigate this point, it has been undertaken conformational analysis of glucomannan triacetate in which the X-ray fiber diagram suggests that two nonequivalent residues make up the asymmetric unit. X-ray fiber diagrams of the triacetate of glucomannan from Tubera salep show twofold symmetry along the chain axis with a fiber repeat of 1.6 nm. This implies that the asymmetricmore » unit is composed of two pyranose rings since the virtual bond length of a single pyranose ring cannot be greater than approximately 0.54 nm. By using empirical potential functions, it could be shown that the minimum internal energy of a mannan triacetate chain corresponds to a state where contiguous mannose triacetate units are not conformationally equivalent. This supports the hypothesis of mannobiose hexaacetate as the asymmetric unit. Furthermore, introduction of glucose triacetate into the backbone did not change the minimum energy conformation, thereby lending support to the isomorphous replacement concept in crystalline glucomannans. 19 references, 13 figures, 2 tables.« less
NASA Technical Reports Server (NTRS)
Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian
2000-01-01
Part 1 of this two part series described the fabrication and calibration of Bragg gratings written into a single mode optical fiber for use in strain and temperature monitoring. Part 2 of the series describes the use of identical fibers and additional multimode fibers, both with and without Bragg gratings, to perform near infrared spectroscopy. The demodulation system being developed at NASA Langley Research Center currently requires the use of a single mode optical fiber. Attempts to use this single mode fiber for spectroscopic analysis are problematic given its small core diameter, resulting in low signal intensity. Nonetheless, we have conducted a preliminary investigation using a single mode fiber in conjunction with an infrared spectrometer to obtain spectra of a high-performance epoxy resin system. Spectra were obtained using single mode fibers that contained Bragg gratings; however, the peaks of interest were barely discernible above the noise. The goal of this research is to provide a multipurpose sensor in a single optical fiber capable of measuring a variety of chemical and physical properties.
Nichols, Michael R; Moss, Melissa A; Reed, Dana Kim; Hoh, Jan H; Rosenberry, Terrone L
2005-07-01
The deposition of aggregated amyloid-beta (Abeta) peptides in the brain as senile plaques is a pathological hallmark of Alzheimer's disease (AD). Several lines of evidence indicate that fibrillar and, in particular, soluble aggregates of these 40- and 42-residue peptides are important in the etiology of AD. Recent studies also stress that amyloid aggregates are polymorphic and that a single polypeptide can fold into multiple amyloid conformations. Here we review our recent reports that Abeta(1-40) in vitro can form soluble aggregates with predominant beta-structures that differ in stability and morphology. One class of aggregates involved soluble Abeta protofibrils, prepared by vigorous overnight agitation of monomeric Abeta(1-40) in low ionic strength buffers. These aggregates were quite stable and disaggregated to only a limited extent on dilution. A second class of soluble Abeta aggregates was generated at polar-nonpolar interfaces. Aggregation in a two-phase system of buffer over chloroform occurred more rapidly than in buffer alone. In buffered 2% hexafluoroisopropanol (HFIP), microdroplets of HFIP were formed and the half-time for aggregation was less than 10 minutes. Like Abeta protofibrils, these interfacial aggregates showed increased thioflavin T fluorescence and were rich in beta-structure by circular dichroism. However, electron microscopy and atomic force microscopy revealed very different morphologies. The HFIP aggregates formed initial globular clusters that progressed over several days to soluble fibrous aggregates. When diluted out of HFIP these aggregates initially were very unstable and disaggregated completely within 2 minutes. However, their stability increased as they progressed to fibers. It is important to determine whether similar interfacial Abeta aggregates are produced in vivo.
Gross beta determination in drinking water using scintillating fiber array detector.
Lv, Wen-Hui; Yi, Hong-Chang; Liu, Tong-Qing; Zeng, Zhi; Li, Jun-Li; Zhang, Hui; Ma, Hao
2018-04-04
A scintillating fiber array detector for measuring gross beta counting is developed to monitor the real-time radioactivity in drinking water. The detector, placed in a stainless-steel tank, consists of 1096 scintillating fibers, both sides of which are connected to a photomultiplier tube. The detector parameters, including working voltage, background counting rate and stability, are tested, and the detection efficiency is calibrated using standard potassium chloride solution. Water samples are measured with the detector and the results are compared with those by evaporation method. The results show consistency with those by evaporation method. The background counting rate of the detector is 38.131 ± 0.005 cps, and the detection efficiency for β particles is 0.37 ± 0.01 cps/(Bq/l). The MDAC of this system can be less than 1.0 Bq/l for β particles in 120 min without pre-concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.
Single fiber temperature probe configuration using anti-Stokes luminescence from Cr:GdAlO3
NASA Astrophysics Data System (ADS)
Eldridge, Jeffrey I.
2018-06-01
Single-photon excitation of anti-Stokes-shifted emission from a thermographic phosphor allows operation of a luminescence decay-based single fiber temperature probe with negligible interference from background fiber-generated Raman scattering. While single fiber probe configurations for luminescence-based fiber optic thermometers offer advantages of simple design, compactness, and superior emission light collection efficiency, their effective use has been limited by interference from Raman scattering in the fiber probe and excitation delivery fiber that produces distortion of the luminescence decay that follows the excitation pulse. The near elimination of interference by background fiber-generated Raman scattering was demonstrated by incorporating a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor as the sensing element at the end of a single fiber luminescence decay-based thermometer and detecting anti-Stokes-shifted luminescence centered at 542 or 593 nm produced by 695 nm excitation. Measurements were performed using both silica (up to 1150 °C) and single-crystal YAG (up to 1200 °C) fiber-based thermometers. Selection of emission detection centered at 542 nm greatly benefited the YAG fiber probe measurements by practically eliminating detection of otherwise significant luminescence from Cr3+ impurities in the YAG fiber. For both the silica and YAG fiber probes, the relative benefit of adopting single-photon excitation of anti-Stokes-shifted luminescence was evaluated by comparison with results obtained by conventional 532 nm excitation of Stokes-shifted luminescence.
Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers
Meng, He; Andresen, Kurt; van Noort, John
2015-01-01
Single-molecule techniques allow for picoNewton manipulation and nanometer accuracy measurements of single chromatin fibers. However, the complexity of the data, the heterogeneity of the composition of individual fibers and the relatively large fluctuations in extension of the fibers complicate a structural interpretation of such force-extension curves. Here we introduce a statistical mechanics model that quantitatively describes the extension of individual fibers in response to force on a per nucleosome basis. Four nucleosome conformations can be distinguished when pulling a chromatin fiber apart. A novel, transient conformation is introduced that coexists with single wrapped nucleosomes between 3 and 7 pN. Comparison of force-extension curves between single nucleosomes and chromatin fibers shows that embedding nucleosomes in a fiber stabilizes the nucleosome by 10 kBT. Chromatin fibers with 20- and 50-bp linker DNA follow a different unfolding pathway. These results have implications for accessibility of DNA in fully folded and partially unwrapped chromatin fibers and are vital for understanding force unfolding experiments on nucleosome arrays. PMID:25779043
Triiodothyronine, beta-adrenergic receptors, agonist responses, and exercise capacity.
Martin, W H
1993-07-01
Although thyroid hormone excess results in increased beta-adrenergic receptor density or agonist responses in some cells of experimental animals, the role of these effects in contributing to clinical manifestations of hyperthyroidism in human subjects is unclear. To shed further light on this issue, we characterized the effect of 2 weeks of excess triiodothyronine administration on cardiac and metabolic responses to graded-dose isoproterenol infusion, skeletal muscle beta-adrenergic receptor density, and physiologic determinants of exercise capacity in young healthy subjects. The slope of the heart rate response to isoproterenol was 36% greater (p < 0.05) after triiodothyronine administration. In addition, beta-adrenergic receptor density was increased (p < 0.01) in all types of skeletal muscle fibers. Maximal oxygen uptake during treadmill exercise declined 5% (p < 0.001) after triiodothyronine administration because of a decrease in the arteriovenous oxygen difference (p < 0.05). The plasma lactate response to submaximal exercise was 25% greater (p < 0.01) in the hyperthyroid state. These effects were paralleled by a decrement in skeletal muscle oxidative capacity and a decrease in cross-sectional area of type 2A skeletal myocytes. Thus, thyroid hormone excess enhances cardiac beta-adrenergic sensitivity under in vivo conditions in human subjects. Nevertheless, exercise capacity is diminished in the hyperthyroid state, an effect that may be related to reduced skeletal muscle oxidative capacity and type 2A fiber atrophy.
Long distance transmission in few-mode fibers.
Yaman, Fatih; Bai, Neng; Zhu, Benyuan; Wang, Ting; Li, Guifang
2010-06-07
Using multimode fibers for long-haul transmission is proposed and demonstrated experimentally. In particular few-mode fibers (FMFs) are demonstrated as a good compromise since they are sufficiently resistant to mode coupling compared to standard multimode fibers but they still can have large core diameters compared to single-mode fibers. As a result these fibers can have significantly less nonlinearity and at the same time they can have the same performance as single-mode fibers in terms of dispersion and loss. In the absence of mode coupling it is possible to use these fibers in the single-mode operation where all the data is carried in only one of the spatial modes throughout the fiber. It is shown experimentally that the single-mode operation is achieved simply by splicing single-mode fibers to both ends of a 35-km-long dual-mode fiber at 1310 nm. After 35 km of transmission, no modal dispersion or excess loss was observed. Finally the same fiber is placed in a recirculating loop and 3 WDM channels each carrying 6 Gb/s BPSK data were transmitted through 1050 km of the few-mode fiber without modal dispersion.
Single crystal fibers for high power lasers
NASA Astrophysics Data System (ADS)
Kim, W.; Florea, C.; Baker, C.; Gibson, D.; Shaw, L. B.; Bowman, S.; O'Connor, S.; Villalobos, G.; Bayya, S.; Aggarwal, I. D.; Sanghera, J. S.
2012-11-01
In this paper, we present our recent results in developing cladded-single crystal fibers for high power single frequency fiber lasers significantly exceeding the capabilities of existing silica fiber based lasers. This fiber laser would not only exploit the advantages of crystals, namely their high temperature stability, high thermal conductivity, superior environmental ruggedness, high propensity for rare earth ion doping and low nonlinearity, but will also provide the benefits from an optical fiber geometry to enable better thermal management thereby enabling the potential for high laser power output in short lengths. Single crystal fiber cores with diameters as small as 35μm have been drawn using high purity rare earth doped ceramic or single crystal feed rods by Laser Heated Pedestal Growth (LHPG) process. The mechanical, optical and morphological properties of these fibers have been characterized. The fibers are very flexible and show good overall uniformity. We also measured the optical loss as well as the non-radiative loss of the doped crystal fibers and the results show that the fibers have excellent optical and morphological quality. The gain coefficient of the crystal fiber matches the low quantum defect laser model and it is a good indication of the high quality of the fibers.
Development of a Cerenkov radiation sensor to detect low-energy beta-particles.
Yoo, Wook Jae; Han, Ki-Tek; Shin, Sang Hun; Seo, Jeong Ki; Jeon, Dayeong; Lee, Bongsoo
2013-11-01
We fabricated a novel fiber-optic Cerenkov radiation sensor using a Cerenkov radiator for measuring beta-particles. Instead of employing a scintillator, transparent liquids having various refractive indices were used as a Cerenkov radiator to serve as a sensing material. The experimental results showed that the amount of Cerenkov radiation due to the interaction with beta-particles increased as the refractive index of the Cerenkov radiator was increased as a results of a decrease of the Cerenkov threshold energy for electrons. © 2013 Elsevier Ltd. All rights reserved.
Single-frequency gain-switched Ho-doped fiber laser
NASA Astrophysics Data System (ADS)
Geng, Jihong; Wang, Q.; Luo, T.; Case, B.; Jiang, S.; Amzajerdian, Farzin; Yu, Jirong
2012-10-01
We demonstrate a single-frequency gain-switched Ho-doped fiber laser based on heavily doped silicate glass fiber fabricated in house. A Q-switched Tm-doped fiber laser at 1.95μm was used to gain-switch the Ho-doped fiber laser via in-band pumping. Output power of the single-frequency gain-switched pulses has been amplified in a cladding-pumped Tm-Ho-codoped fiber amplifier with 1.2m active fiber pumped at 803nm. Two different nonlinear effects, i.e., modulation instability and stimulated Brillouin scattering, could be seen in the 10μm-core fiber amplifier when the peak power exceeds 3kW. The single-frequency gain-switched fiber laser was operated at 2.05μm, a popular laser wavelength for Doppler lidar application. This is the first demonstration of this kind of fiber laser.
Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete
NASA Astrophysics Data System (ADS)
He, Dongqing; Wu, Min; Jie, Pengyu
2017-12-01
Several common high elastic modulus fibers (steel fibers, basalt fibers, polyvinyl alcohol fibers) and low elastic modulus fibers (polypropylene fiber) are incorporated into the concrete, and its cube compressive strength, splitting tensile strength and flexural strength are studied. The test result and analysis demonstrate that single fiber and hybrid fiber will improve the integrity of the concrete at failure. The mechanical properties of hybrid steel fiber-polypropylene fiber reinforced concrete are excellent, and the cube compressive strength, splitting tensile strength and flexural strength respectively increase than plain concrete by 6.4%, 3.7%, 11.4%. Doped single basalt fiber or polypropylene fiber and basalt fibers hybrid has little effect on the mechanical properties of concrete. Polyvinyl alcohol fiber and polypropylene fiber hybrid exhibit ‘negative confounding effect’ on concrete, its splitting tensile and flexural strength respectively are reduced by 17.8% and 12.9% than the single-doped polyvinyl alcohol fiber concrete.
Lynch, Gordon S; Faulkner, John A; Brooks, Susan V
2008-07-01
The deficit in force generation is a measure of the magnitude of damage to sarcomeres caused by lengthening contractions of either single fibers or whole muscles. In addition, permeabilized single fibers may suffer breakages. Our goal was to understand the interaction between breakages and force deficits in "young" and "old" permeabilized single fibers from control muscles of young and old rats and "conditioned" fibers from muscles that completed a 6-wk program of in vivo lengthening contractions. Following single lengthening contractions of old-control fibers compared with young-control fibers, the twofold greater force deficits at a 10% strain support the concept of an age-related increase in the susceptibility of fibers to mechanical damage. In addition, the much higher breakage rates for old fibers at all strains tested indicate an increase with aging in the number of fibers at risk of being severely injured during any given stretch. Following the 6-wk program of lengthening contractions, young-conditioned fibers and old-conditioned fibers were not different with respect to force deficit or the frequency of breakages. A potential mechanism for the increased resistance to stretch-induced damage of old-conditioned fibers is that, through intracellular damage and subsequent degeneration and regeneration, weaker sarcomeres were replaced by stronger sarcomeres. These data indicate that, despite the association of high fiber breakage rates and large force deficits with aging, the detrimental characteristics of old fibers were improved by a conditioning program that altered both sarcomeric characteristics as well as the overall structural integrity of the fibers.
NASA Technical Reports Server (NTRS)
di Maso, N. A.; Caiozzo, V. J.; Baldwin, K. M.
2000-01-01
The primary objective of this study was to follow the developmental time course of myosin heavy chain (MHC) isoform transitions in single fibers of the rodent plantaris muscle. Hypothyroidism was used in conjunction with single-fiber analyses to better describe a possible linkage between the neonatal and fast type IIB MHC isoforms during development. In contrast to the general concept that developmental MHC isoform transitions give rise to muscle fibers that express only a single MHC isoform, the single-fiber analyses revealed a very high degree of MHC polymorphism throughout postnatal development. In the adult state, MHC polymorphism was so pervasive that the rodent plantaris muscles contained approximately 12-15 different pools of fibers (i.e., fiber types). The degree of polymorphism observed at the single-fiber level made it difficult to determine specific developmental schemes analogous to those observed previously for the rodent soleus muscle. However, hypothyroidism was useful in that it confirmed a possible link between the developmental regulation of the neonatal and fast type IIB MHC isoforms.
Fiber-Coupled Cavity-QED Source of Identical Single Photons
NASA Astrophysics Data System (ADS)
Snijders, H.; Frey, J. A.; Norman, J.; Post, V. P.; Gossard, A. C.; Bowers, J. E.; van Exter, M. P.; Löffler, W.; Bouwmeester, D.
2018-03-01
We present a fully fiber-coupled source of high-fidelity single photons. An (In,Ga)As semiconductor quantum dot is embedded in an optical Fabry-Perot microcavity with a robust design and rigidly attached single-mode fibers, which enables through-fiber cross-polarized resonant laser excitation and photon extraction. Even without spectral filtering, we observe that the incident coherent light pulses are transformed into a stream of single photons with high purity (97%) and indistinguishability (90%), which is measured at an in-fiber brightness of 5% with an excellent cavity-mode-to-fiber coupling efficiency of 85%. Our results pave the way for fully fiber-integrated photonic quantum networks. Furthermore, our method is equally applicable to fiber-coupled solid-state cavity-QED-based photonic quantum gates.
Method of making single crystal fibers
NASA Technical Reports Server (NTRS)
Westfall, Leonard J. (Inventor)
1990-01-01
Single crystal fibers are made from miniature extruded ceramic feed rods. A decomposable binder is mixed with powders to inform a slurry which is extruded into a small rod which may be sintered, either in air or in vacuum, or it may be used in the extruded and dried condition. A pair of laser beams focuses onto the tip of the rod to melt it thereby forming a liquid portion. A single crystal seed fiber of the same material as the feed rod contacts this liquid portion to establish a zone of liquid material between the feed rod and the single crystal seed fiber. The feed rod and the single crystal feed fiber are moved at a predetermined speed to solidify the molten zone onto the seed fiber while simultaneously melting additional feed rod. In this manner a single crystal fiber is formed from the liquid portion.
Weigt, Carmen; Hertrampf, Torsten; Flenker, Ulrich; Hülsemann, Frank; Kurnaz, Pinar; Fritzemeier, Karl Heinrich; Diel, Patrick
2015-11-01
The leptin resistant Zucker diabetic fatty (ZDF) rats are hyperphagic and become obese, but whereas the males develop type 2 diabetes mellitus (T2DM), the females remain euglycaemic. As estrogen deficiency is known to increase the risk of developing T2DM, we evaluated the role of ER subtypes alpha and beta in the development of glucose tolerance in leptin resistant ovariectomized (OVX) ZDF rats. At least six rats per group were treated with either vehicle (OVX), 17β-estradiol (E2), ER subtype-selective agonists (Alpha and Beta), or genistein (Gen) for 17 weeks. At the end of the treatment period a glucose tolerance assay was performed and the metabolic flux of (13)C-glucose for the E2 group was investigated. OVX ZDF rats treated with E2, Alpha, Beta, and Gen tolerated the glucose significantly better than untreated controls. E2 treatment increased absorbance/flux of (13)C-glucose to metabolic relevant tissues such liver, adipose tissue, gastrocnemius, and soleus muscle. Moreover, whereas Alpha treatment markedly increased mRNA expression of GLUT4 in gastrocnemius muscle, Beta treatment resulted in the largest fiber sizes of the soleus muscle. Treatment with Gen increased both the mRNA expression of GLUT 4 and the fiber sizes in the skeletal muscle. In addition, E2 and Alpha treatment decreased food intake and body weight gain. In summary, estrogen-improved glucose absorption is mediated via different molecular mechanisms: while activation of ER alpha seems to stimulate muscular GLUT4 functionality, activation of ER beta results in a hypertrophy of muscle fibers. In addition, selective activation of ER alpha decreased food intake and body weight gain. Our data further indicate that ER subtype-selective agonists and genistein improve systemic glucose tolerance also in the absence of a functional leptin signaling pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.
All fiber passively Q-switched laser
Soh, Daniel B. S.; Bisson, Scott E
2015-05-12
Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.
In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers
Zhu, Tao; Wu, Di; Liu, Min; Duan, De-Wen
2012-01-01
In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It's known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented. PMID:23112608
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedu, E.; Desplanches, D.; Pequignot, J.
2007-06-15
The peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of most of the pathways linked to lipid metabolism. PPAR{alpha} and PPAR{beta} isotypes are known to regulate muscle fatty acid oxidation and a reciprocal compensation of their function has been proposed. Herein, we investigated muscle contractile and metabolic phenotypes in PPAR{alpha}-/-, PPAR{beta}-/-, and double PPAR{alpha}-/- {beta}-/- mice. Heart and soleus muscle analyses show that the deletion of PPAR{alpha} induces a decrease of the HAD activity ({beta}-oxidation) while soleus contractile phenotype remains unchanged. A PPAR{beta} deletion alone has no effect. However, these mild phenotypes are not due to a reciprocal compensationmore » of PPAR{beta} and PPAR{alpha} functions since double gene deletion PPAR{alpha}-PPAR{beta} mostly reproduces the null PPAR{alpha}-mediated reduced {beta}-oxidation, in addition to a shift from fast to slow fibers. In conclusion, PPAR{beta} is not required for maintaining skeletal muscle metabolic activity and does not compensate the lack of PPAR{alpha} in PPAR{alpha} null mice.« less
Omnidirectional fiber optic tiltmeter
Benjamin, B.C.; Miller, H.M.
1983-06-30
A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.
Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures
NASA Technical Reports Server (NTRS)
Zimmerman, Richard S.; Adams, Donald F.
1989-01-01
Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber; Nippon Carbon, Ltd., (Dow Corning) nicalon NLM-102 silicon carbide fiber; and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 C to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.
Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures
NASA Technical Reports Server (NTRS)
Zimmerman, Richard S.; Adams, Donald F.
1988-01-01
Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber, Nippon Carbon, Ltd., (Dow Corning) Nicalon NLM-102 silicon carbide fiber, and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.
An SMS (single mode - multi mode - single mode) fiber structure for vibration sensing
NASA Astrophysics Data System (ADS)
Waluyo, T. B.; Bayuwati, D.
2017-04-01
We describe an SMS (single mode - multi mode - single mode) fiber structure to be used in a vibration sensing system. The fiber structure was fabricated by splicing a section (about 300 mm in length) of a step index multi mode fiber between two single mode fibers obtained from a communication grade fiber patchcord. Interference between higher order modes occurs while light from a narrow band light source travels along the multi mode fiber. When the multi mode fiber vibrates, the refractive index profile is changed because of the photo-elastics effect and the amplitude of the interference pattern is changed accordingly. To simulate a vibrating structure we used a loudspeaker to vibrate a wooden table. By using a digital oscilloscope, we recorded and analysed the vibrating signals obtained from the SMS fiber structure as well as from a GS-32CT geophone for referencing. We observed that this SMS fiber structure was potential to be used in a vibration sensing system with a measurement range from 30 to 180 Hz with inherent optical fiber sensor advantages such as light weight, immune to electromagnetic interference, and no electricity in the sensing part.
NASA Astrophysics Data System (ADS)
Lesnikova, Yu I.; Smetannikov, O. Yu; Trufanov, A. N.; Trufanov, N. A.
2017-02-01
The impact of contact transverse forces on the birefringence of the single-mode polarization-maintaining Panda-type fiber is numerically modeled. It has been established that with a single-row power winding on a cylindrical mandrel, the fiber tension at winding is the principal factor that influences birefringence. When coiling the fiber based on the local defect microbending, the birefringence at the microbending point differs from that of the free fiber by 1.3%.
Marcucci, Lorenzo; Reggiani, Carlo; Natali, Arturo N; Pavan, Piero G
2017-12-01
Muscles exhibit highly complex, multi-scale architecture with thousands of muscle fibers, each with different properties, interacting with each other and surrounding connective structures. Consequently, the results of single-fiber experiments are scarcely linked to the macroscopic or whole muscle behavior. This is especially true for human muscles where it would be important to understand of how skeletal muscles disorders affect patients' life. In this work, we developed a mathematical model to study how fast and slow muscle fibers, well characterized in single-fiber experiments, work and generate together force and displacement in muscle bundles. We characterized the parameters of a Hill-type model, using experimental data on fast and slow single human muscle fibers, and comparing experimental data with numerical simulations obtained from finite element (FE) models of single fibers. Then, we developed a FE model of a bundle of 19 fibers, based on an immunohistochemically stained cross section of human diaphragm and including the corresponding properties of each slow or fast fiber. Simulations of isotonic contractions of the bundle model allowed the generation of its apparent force-velocity relationship. Although close to the average of the force-velocity curves of fast and slow fibers, the bundle curve deviates substantially toward the fast fibers at low loads. We believe that the present model and the characterization of the force-velocity curve of a fiber bundle represents the starting point to link the single-fiber properties to those of whole muscle with FE application in phenomenological models of human muscles.
Nd- And Er-Doped Phosphate Glass For Fiber Laser.
NASA Astrophysics Data System (ADS)
Yamashita, Toshiharu T.
1990-02-01
Laser fibers prepared from Nd- and Er-doped phosphate glass possessing a large stimulated emission cross section have been investigated both in a single fiber and in a fiber bundle. In the single fiber, continuous wave oscillations were successfully obtained at 1.054 p.m and 1.366 µm on a high Nd-doped single-mode fiber of 10 mm in length and also at 1.535 pm in a Er-doped single-mode fiber, sensitized by Nd, Yb. Especially, a low threshold of 1 mw and a high slope-efficiency of 50% were achieved in 1.054 pm laser oscillation on a Nd-doped fiber, end-pumped with a laser diode. A fiber bundle of phosphate glass doped with 8 wt% Nd2O3 yielded an average output power of 100 W at 50 pps where the bundle was 4.6 mm in diameter and was side-pumped with flash lamps.
Splechtna, Barbara; Petzelbauer, Inge; Kuhn, Bernhard; Kulbe, Klaus D; Nidetzky, Bernd
2002-01-01
Recombinant beta-glycosidase CelB from the hyperthermophilic archaeon Pyrococcusfuriosus was produced through expression of the plasmid-encoded gene in Escherichia coli. Bioreactor cultivations of E. coli in the presence of the inductor isopropyl-1-thio-beta-D-galactoside (0.1 mM) gave approx 100,000 U of enzyme activity/L of culture medium after 8 h of growth. A technical-grade enzyme for the hydrolysis of lactose was prepared by precipitating the mesophilic protein at 80 degrees C. A hollow-fiber membrane reactor was developed, and its performance during continuous processing of ultrahigh temperature-treated (UHT) skim milk at 70 degrees C was analyzed regarding long-term stability, productivity, and diffusional limitation thereof. CelB was covalently attached onto Eupergit C in yields of 80%, and a packed-bed immobilized enzyme reactor was used for the continuous hydrolysis of lactose in UHT skim milk at 70 degrees C. The packed-bed reactor was approximately 10-fold more stable and gave about the same productivity at 80% substrate conversion as the hollow-fiber reactor at 60% substrate conversion. The marked difference in the stability of free and immobilized CelB seems to reflect mainly binding of the soluble enzyme to the membrane surface of the hollow-fiber module. Under these bound conditions, CelB is essentially inactive. CelB is essentially inactive. Microbial contamination of the reactors did not occur during reaction times of up to 39 d, given that UHT skim milk and not pasteurized skim milk was used as the substrate.
Single-Fiber Optical Link For Video And Control
NASA Technical Reports Server (NTRS)
Galloway, F. Houston
1993-01-01
Single optical fiber carries control signals to remote television cameras and video signals from cameras. Fiber replaces multiconductor copper cable, with consequent reduction in size. Repeaters not needed. System works with either multimode- or single-mode fiber types. Nonmetallic fiber provides immunity to electromagnetic interference at suboptical frequencies and much less vulnerable to electronic eavesdropping and lightning strikes. Multigigahertz bandwidth more than adequate for high-resolution television signals.
Multi-kW single fiber laser based on an extra large mode area fiber design
NASA Astrophysics Data System (ADS)
Langner, Andreas; Such, Mario; Schötz, Gerhard; Just, Florian; Leich, Martin; Schwuchow, Anka; Grimm, Stephan; Zimer, Hagen; Kozak, Marcin; Wedel, Björn; Rehmann, Georg; Bachert, Charley; Krause, Volker
2012-02-01
The quality of Yb-doped fused bulk silica produced by sintering of Yb-doped fused silica granulates has improved greatly in the past five years [1 - 4]. In particular, the refractive index and doping level homogeneity of such materials are excellent and we achieved excellent background fiber attenuation of the active core material down to about 20 dB/km at 1200 nm. The improvement of the Yb-doped fused bulk silica has enabled the development of multi-kW fiber laser systems based on a single extra large multimode laser fiber (XLMA fiber). When a single active fiber is used in combination with the XLMA multimode fiber of 1200 μm diameter simple and robust high power fiber laser setups without complex fiber coupling and fiber combiner systems become possible. In this papper, we will discuss in detail the development of the core material based on Yb-doped bulk silica and the characterization of Yb-doped fibers with different core compositions. We will also report on the excellent performance of a 4 kW fiber laser based on a single XLMA-fiber and show the first experimental welding results of steel sheets achieved with such a laser.
Single-mode fiber systems for deep space communication network
NASA Technical Reports Server (NTRS)
Lutes, G.
1982-01-01
The present investigation is concerned with the development of single-mode optical fiber distribution systems. It is pointed out that single-mode fibers represent potentially a superior medium for the distribution of frequency and timing reference signals and wideband (400 MHz) IF signals. In this connection, single-mode fibers have the potential to improve the capability and precision of NASA's Deep Space Network (DSN). Attention is given to problems related to precise time synchronization throughout the DSN, questions regarding the selection of a transmission medium, and the function of the distribution systems, taking into account specific improvements possible by an employment of single-mode fibers.
Creep of chemically vapor deposited SiC fibers
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.
1984-01-01
The creep, thermal expansion, and elastic modulus properties for chemically vapor deposited SiC fibers were measured between 1000 and 1500 C. Creep strain was observed to increase logarithmically with time, monotonically with temperature, and linearly with tensile stress up to 600 MPa. The controlling activation energy was 480 + or - 20 kJ/mole. Thermal pretreatments near 1200 and 1450 C were found to significantly reduce fiber creep. These results coupled with creep recovery observations indicate that below 1400 C fiber creep is anelastic with neglible plastic component. This allowed a simple predictive method to be developed for describing fiber total deformation as a function of time, temperature, and stress. Mechanistic analysis of the property data suggests that fiber creep is the result of beta-SiC grain boundary sliding controlled by a small percent of free silicon in the grain boundaries.
Darnige, L; Legallais, C; Arvieux, J; Pitiot, O; Vijayalakshmi, M A
1999-09-01
It is of considerable interest to ascertain whether a hollow fiber cartridge containing histidine immobilized on polyethylenevinyl alcohol membrane (His-PEVA) is able to retain specific autoantibodies involved in antiphospholipid syndrome. To this end diluted patient pathogenic plasma containing high levels of anti-beta2-glycoprotein I (anti-beta2GPI) and antiprothrombin antibodies was processed through the functionalized cartridge. The adsorbed material was then eluted under mild conditions and analyzed; an enrichment of the eluted fractions in total IgG and more specifically in IgG2 subclass was observed, compared with the injected sample. Enzyme-linked immunosorbent assay tests showed a higher specific binding of antiprothrombin and anti-beta2GPI in these fractions. This was in accordance with the concomitant higher anticoagulant activity measured on the same fractions. All in vitro results clearly demonstrated the ability of the His-PEVA cartridge to preferentially adsorb these autoantibodies. Hence the functionalized cartridge represents a potential tool for the treatment of antiphospholipid syndrome by selective extracorporeal removal of IgG.
Measuring shear modulus of individual fibers
NASA Astrophysics Data System (ADS)
Behlow, Herbert; Saini, Deepika; Oliviera, Luciana; Skove, Malcolm; Rao, Apparao
2014-03-01
Fiber technology has advanced to new heights enabling tailored mechanical properties. For reliable fiber applications their mechanical properties must be well characterized at the individual fiber level. Unlike the tensile modulus, which can be well studied in a single fiber, the present indirect and dynamic methods of measuring the shear properties of fibers suffer from various disadvantages such as the interaction between fibers and the influence of damping. In this talk, we introduce a quasi-static method to directly measure the shear modulus of a single micron-sized fiber. Our simple and inexpensive setup yields a shear modulus of 16 and 2 GPa for a single IM7 carbon fiber and a Kevlar fiber, respectively. Furthermore, our setup is also capable of measuring the creep, hysteresis and the torsion coefficient, and examples of these will be presented.
Laser-Heated Floating Zone Production of Single-Crystal Fibers
NASA Technical Reports Server (NTRS)
Ritzert, Frank; Westfall, Leonard
1996-01-01
This report describes how a laser-heated floating zone apparatus can be used to investigate single-crystal fibers of various compositions. A feedrod with a stoichiometric composition of high-purity powders was connected to a pedestal and fed into a laser scan where it combined with a single-crystal fiber seed. A molten zone was formed at this junction. As the feedrod was continuously fed into the laser scan, a single-crystal fiber of a prescribed orientation was withdrawn from the melt. The resultant fibers, whose diameters ranged from 100 to 250 gm, could then be evaluated on the basis of their growth behavior, physical properties, mechanical properties, and fiber perfection.
Single-Frequency Narrow Linewidth 2 Micron Fiber Laser
NASA Technical Reports Server (NTRS)
Jiang, Shibin (Inventor); Spiegelberg, Christine (Inventor); Luo, Tao (Inventor)
2006-01-01
A compact single frequency, single-mode 2 .mu.m fiber laser with narrow linewidth, <100 kHz and preferably <100 kHz, is formed with a low phonon energy glass doped with triply ionized rare-earth thulium and/or holmium oxide and fiber gratings formed in sections of passive silica fiber and fused thereto. Formation of the gratings in passive silica fiber both facilitates splicing to other optical components and reduces noise thus improving linewidth. An increased doping concentration of 0.5 to 15 wt. % for thulium, holmium or mixtures thereof produces adequate gain, hence output power levels for fiber lengths less than 5 cm and preferably less than 3 cm to enable single-frequency operation.
Rapid amyloid fiber formation from the fast-folding WW domain FBP28.
Ferguson, Neil; Berriman, John; Petrovich, Miriana; Sharpe, Timothy D; Finch, John T; Fersht, Alan R
2003-08-19
The WW domains are small proteins that contain a three-stranded, antiparallel beta-sheet. The 40-residue murine FBP28 WW domain rapidly formed twirling ribbon-like fibrils at physiological temperature and pH, with morphology typical of amyloid fibrils. These ribbons were unusually wide and well ordered, making them highly suitable for structural studies. Their x-ray and electron-diffraction patterns displayed the characteristic amyloid fiber 0.47-nm reflection of the cross-beta diffraction signature. Both conventional and electron cryomicroscopy showed clearly that the ribbons were composed of many 2.5-nm-wide subfilaments that ran parallel to the long axis of the fiber. There was a region of lower density along the center of each filament. Lateral association of these filaments generated twisted, often interlinked, sheets up to 40 nm wide and many microns in length. The pitch of the helix varied from 60 to 320 nm, depending on the width of the ribbon. The wild-type FBP28 fibers were formed under conditions in which multiexponential folding kinetics is observed in other studies and which was attributed to a change in the mechanism of folding. It is more likely that those phases result from initial events in the off-pathway aggregation observed here.
Effects of fiber, matrix, and interphase on carbon fiber composite compression strength
NASA Technical Reports Server (NTRS)
Nairn, John A.; Harper, Sheila I.; Bascom, Willard D.
1994-01-01
The major goal of this project was to obtain basic information on compression failure properties of carbon fiber composites. To do this, we investigated fiber effects, matrix effects, and fiber/matrix interface effects. Using each of nine fiber types, we prepared embedded single-fiber specimens, single-ply specimens, and full laminates. From the single-fiber specimens, in addition to the standard fragmentation test analysis, we were able to use the low crack density data to provide information about the distribution of fiber flaws. The single-ply specimens provided evidence of a correlation between the size of kink band zones and the quality of the interface. Results of the laminate compression experiments mostly agreed with the results from single-ply experiments, although the ultimate compression strengths of laminates were higher. Generally, these experiments showed a strong effect of interfacial properties. Matrix effects were examined using laminates subjected to precracking under mixed-mode loading conditions. A large effect of precracking conditions on the mode 1 toughness of the laminates was found. In order to control the properties of the fiber/matrix interface, we prepared composites of carbon fiber and polycarbonate and subjected these to annealing. The changes in interfacial properties directly correlated with changes in compression strength.
7 CFR 1755.404 - Fiber optic cable telecommunications plant measurements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... performed on each optical fiber within the cable. (2) Method of measurement. For single mode fibers, the end... on each optical fiber within the cable. (2) Method of measurement. For single mode fibers, the end-to...) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE TELECOMMUNICATIONS POLICIES ON SPECIFICATIONS...
7 CFR 1755.404 - Fiber optic cable telecommunications plant measurements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... performed on each optical fiber within the cable. (2) Method of measurement. For single mode fibers, the end... on each optical fiber within the cable. (2) Method of measurement. For single mode fibers, the end-to...) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE TELECOMMUNICATIONS POLICIES ON SPECIFICATIONS...
Wong, Ka-Hing; Cheung, Peter C K
2005-11-30
Preparation of three novel dietary fibers (DFs) from mushroom sclerotia, namely, Pleurotus tuberregium, Polyporous rhinocerus, and Wolfiporia cocos, by a scale-up modified AOAC procedure using industrial enzymes was investigated. A remarkably high level of total dietary fiber (TDF) ranging from 81.7 to 96.3% sample dry matter (DM), in which a content of nonstarch polysaccharide (NSP) ranging from 86.6 to 94.3% sclerotial TDF DM, was obtained from the three sclerotia. All sclerotial DFs were rich in beta-glucan (the glucose residue ranged from 89.7 to 94.5% NSP DM) with a very low level of resistant glycogen (ranged from 3.77 to 3.94% sclerotial TDF DM). All three novel sclerotial DFs also exhibited similar, if not better, physicochemical and functional properties (pH, color, water binding capacity, oil holding capacity, and emulsifying properties) as those of barely DF control and commercial DF-rich ingredients. The potential use of the three mushroom sclerotial DFs as a new beta-glucan type DF-rich ingredient in the food industry was discussed.
NASA Astrophysics Data System (ADS)
Chen, Gongdai; Deng, Hongchang; Yuan, Libo
2018-07-01
We aim at a more compact, flexible, and simpler core-to-fiber coupling approach, optimal combinations of two graded refractive index (GRIN) lenses have been demonstrated for the interconnection between a twin-core single-mode fiber and two single-core single-mode fibers. The optimal two-lens combinations achieve an efficient core-to-fiber separating coupling and allow the fibers and lenses to coaxially assemble. Finally, axial deviations and transverse displacements of the components are discussed, and the latter increases the coupling loss more significantly. The gap length between the two lenses is designed to be fine-tuned to compensate for the transverse displacement, and the good linear compensation relationship contributes to the device manufacturing. This approach has potential applications in low coupling loss and low crosstalk devices without sophisticated alignment and adjustment, and enables the channel separating for multicore fibers.
Fiber cavities with integrated mode matching optics.
Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias
2017-07-17
In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.
A nanodiamond-tapered fiber system with high single-mode coupling efficiency.
Schröder, Tim; Fujiwara, Masazumi; Noda, Tetsuya; Zhao, Hong-Quan; Benson, Oliver; Takeuchi, Shigeki
2012-05-07
We present a fiber-coupled diamond-based single photon system. Single nanodiamonds containing nitrogen vacancy defect centers are deposited on a tapered fiber of 273 nanometer in diameter providing a record-high number of 689,000 single photons per second from a defect center in a single-mode fiber. The system can be cooled to cryogenic temperatures and coupled evanescently to other nanophotonic structures, such as microresonators. The system is suitable for integrated quantum transmission experiments, two-photon interference, quantum-random-number generation and nano-magnetometry.
NASA Astrophysics Data System (ADS)
Peng, Zhaozhuang; Wang, Li; Yan, Huanhuan
2016-11-01
Application of high temperature fiber sensing system is very extensive. It can be mainly used in high temperature test aerospace, such as, materials, chemicals, and energy. In recent years, various on-line optical fiber interferometric sensors based on modular interference of single-mode-multimode-single-mode(SMS) fiber have been largely explored in high temperature fiber sensor. In this paper we use the special fiber of a polyimide coating, its sensor head is composed of a section of multimode fiber spliced in the middle of Single-mode fiber. When the light is launched into the multimode fiber(MMF) through the lead-in single-mode fiber(SMF), the core mode and cladding modes are excited and propagate in the MMF respectively. Then, at the MMF-SMF spliced point, the excited cladding modes coupled back into the core of lead-out SMF interfere with SMF core mode. And the wavelength of the interference dip would shift differently with the variation of the temperature. By this mean, we can achieve the measurement of temperature. The experimental results also show that the fiber sensor based on SMS structure has a highly temperature sensitivity. From 30° to 300°, with the temperature increasing, the interference dip slightly shifts toward longer wavelength and the temperature sensitivity coefficient is 0.0115nm/°. With high sensitivity, simple structure, immunity to electromagnetic interferences and a good linearity of the experimental results, the structure has an excellent application prospect in engineering field.
Single-crystal silicon optical fiber by direct laser crystallization
Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying; ...
2016-12-05
Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less
Fu, Yijun; Xie, Qixue; Lao, Jihong; Wang, Lu
2016-01-01
Fiber shedding is a critical problem in biomedical textile debridement materials, which leads to infection and impairs wound healing. In this work, single fiber pull-out test was proposed as an in vitro evaluation for the fiber shedding property of a textile pile debridement material. Samples with different structural design (pile densities, numbers of ground yarns and coating times) were prepared and estimated under this testing method. Results show that single fiber pull-out test offers an appropriate in vitro evaluation for the fiber shedding property of textile pile debridement materials. Pull-out force for samples without back-coating exhibited a slight escalating trend with the supplement in pile density and number of ground yarn plies, while back-coating process significantly raised the single fiber pull-out force. For fiber shedding mechanism analysis, typical pull-out behavior and failure modes of the single fiber pull-out test were analyzed in detail. Three failure modes were found in this study, i.e., fiber slippage, coating point rupture and fiber breakage. In summary, to obtain samples with desirable fiber shedding property, fabric structural design, preparation process and raw materials selection should be taken into full consideration. PMID:28773428
Single-mode annular chirally-coupled core fibers for fiber lasers
NASA Astrophysics Data System (ADS)
Zhang, Haitao; Hao, He; He, Linlu; Gong, Mali
2018-03-01
Chirally-coupled core (CCC) fiber can transmit single fundamental mode and effectively suppresses higher-order mode (HOM) propagation, thus improve the beam quality. However, the manufacture of CCC fiber is complicated due to its small side core. To decrease the manufacture difficulty in China, a novel fiber structure is presented, defined as annular chirally-coupled core (ACCC) fiber, replacing the small side core by a larger side annulus. In this paper, we designed the fiber parameters of this new structure, and demonstrated that the new structure has a similar property of single mode with traditional CCC fiber. Helical coordinate system was introduced into the finite element method (FEM) to analyze the mode field in the fiber, and the beam propagation method (BPM) was employed to analyze the influence of the fiber parameters on the mode loss. Based on the result above, the fiber structure was optimized for efficient single-mode transmission, in which the core diameter is 35 μm with beam quality M2 value of 1.04 and an optical to optical conversion efficiency of 84%. In this fiber, fundamental mode propagates in an acceptable loss, while the HOMs decay rapidly.
Zannetti, Antonella; Del Vecchio, Silvana; Iommelli, Francesca; Del Gatto, Annarita; De Luca, Stefania; Zaccaro, Laura; Papaccioli, Angela; Sommella, Jvana; Panico, Mariarosaria; Speranza, Antonio; Grieco, Paolo; Novellino, Ettore; Saviano, Michele; Pedone, Carlo; Salvatore, Marco
2009-08-15
To test whether a novel bifunctional chimeric peptide comprising a cyclic Arg-Gly-Asp pentapeptide covalently bound to an echistatin domain can discriminate alpha(v)beta(3) from alpha(v)beta(5) integrin, thus allowing the in vivo selective visualization of alpha(v)beta(3) expression by single-photon and positron emission tomography (PET) imaging. The chimeric peptide was preliminarily tested for inhibition of alpha(v)beta(3)-dependent cell adhesion and competition of 125I-echistatin binding to membrane of stably transfected K562 cells expressing alpha(v)beta(3) (Kalpha(v)beta(3)) or alpha(v)beta(5) (Kalpha(v)beta(5)) integrin. The chimeric peptide was then conjugated with diethylenetriaminepentaacetic acid and labeled with 111In for single-photon imaging, whereas a one-step procedure was used for labeling the full-length peptide and a truncated derivative, lacking the last five C-terminal amino acids, with 18F for PET imaging. Nude mice bearing tumors from Kalpha(v)beta(3), Kalpha(v)beta(5), U87MG human glioblastoma, and A431 human epidermoid cells were subjected to single-photon and PET imaging. Adhesion and competitive binding assays showed that the novel chimeric peptide selectively binds to alpha(v)beta(3) integrin and does not cross-react with alpha(v)beta(5). In agreement with in vitro findings, single-photon and PET imaging studies showed that the radiolabeled chimeric peptide selectively localizes in tumor xenografts expressing alphavbeta3 and fails to accumulate in those expressing alpha(v)beta(5) integrin. When 18F-labeled truncated derivative was used for PET imaging, alphavbeta3- and alpha(v)beta(5)-expressing tumors were visualized, indicating that the five C-terminal amino acids are required to differentially bind the two integrins. Our findings indicate that the novel chimeric Arg-Gly-Asp peptide, having no cross-reaction with alphavbeta5 integrin, allows highly selective alphavbeta3 expression imaging and monitoring.
NASA Astrophysics Data System (ADS)
Grobnic, Dan; Mihailov, Stephen J.; Ding, H.; Bilodeau, F.; Smelser, Christopher W.
2005-05-01
Multimode sapphire fiber Bragg gratings (SFBG) made with an IR femtosecond laser and a phase mask were probed using tapered single mode fibers of different taper diameters producing single and low order mode reflection/transmission responses. A configuration made of an input single mode tapered fiber and multimode silica fiber used for output coupling was also tested and has delivered a filtered multimode transmission spectrum. The tapered coupling improved the spectral resolution of the SFBG as compared to its multimode responses previously reported. Such improvements facilitate the utilization of the SFBG as a high temperature sensor. Wavelength shifts of the single mode response were monitored as a function of temperature up to 1500 °C and were consistent with the measurement obtained from the multimode response published previously.
Monitoring Fiber Stress During Curing of Single Fiber Glass- and Graphite-Epoxy Composites
NASA Technical Reports Server (NTRS)
Madhukar, Madhu S.; Kosuri, Ranga P.; Bowles, Kenneth J.
1994-01-01
The difference in thermal expansion characteristics of epoxy matrices and graphite fibers can produce significant residual stresses in the fibers during curing of composite materials. Tests on single fiber glass-epoxy and graphite-epoxy composite specimens were conducted in which the glass and graphite fibers were preloaded in tension, and the epoxy matrix was cast around the fibers. The fiber tension was monitored while the matrix was placed around the fiber and subjected to the temperature-time curing cycle. Two mechanisms responsible for producing stress in embedded fibers were identified as matrix thermal expansion and contraction and matrix cure shrinkage. A simple analysis based on the change in fiber tension during the curing cycle was conducted to estimate the produced stresses. Experimental results on single fiber glass- and graphite-epoxy composites show that the fiber was subjected to significant tensile stresses when the temperature was raised from the first to the second dwell period. When initial fiber pretension is about 60 percent of the fiber failure load, these curing-induced stresses can cause tensile fracture of the embedded fiber.
Mid-IR supercontinuum generation and applications: a review
NASA Astrophysics Data System (ADS)
Yin, Shizhuo; Ruffin, Paul; Brantley, Christina; Edwards, Eugene; Luo, Claire
2014-09-01
In this paper, a review on mid-IR supercontinuum generation (SCG) and its applications is presented. First, the physical mechanism of the supercontinuum generation in IR crystal fiber is introduced. Second, the recent progress on IR single crystal fiber, in particular ultrathin core double cladding IR single crystal fiber is described. Third, the transmission characteristics of mid-IR crystal fiber is illustrated. Fourth, the mid-IR supercontinuum generation in IR single crystal fiber is presented. Finally, the application of IR supercontinuum for smart target recognition is illustrated
Photonic lantern adaptive spatial mode control in LMA fiber amplifiers.
Montoya, Juan; Aleshire, Chris; Hwang, Christopher; Fontaine, Nicolas K; Velázquez-Benítez, Amado; Martz, Dale H; Fan, T Y; Ripin, Dan
2016-02-22
We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.
7 CFR 1755.404 - Fiber optic cable telecommunications plant measurements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... performed on each optical fiber within the cable. (2) Method of measurement. For single mode fibers, the end-to-end attenuation measurements of each optical fiber at 1310 and/or 1550 nanometers in each...-end attenuation of each single mode optical fiber at 1310 and/or 1550 nanometers shall not exceed the...
7 CFR 1755.404 - Fiber optic cable telecommunications plant measurements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... performed on each optical fiber within the cable. (2) Method of measurement. For single mode fibers, the end-to-end attenuation measurements of each optical fiber at 1310 and/or 1550 nanometers in each...-end attenuation of each single mode optical fiber at 1310 and/or 1550 nanometers shall not exceed the...
7 CFR 1755.404 - Fiber optic cable telecommunications plant measurements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... performed on each optical fiber within the cable. (2) Method of measurement. For single mode fibers, the end-to-end attenuation measurements of each optical fiber at 1310 and/or 1550 nanometers in each...-end attenuation of each single mode optical fiber at 1310 and/or 1550 nanometers shall not exceed the...
Growth of rare-earth doped single crystal yttrium aluminum garnet fibers
NASA Astrophysics Data System (ADS)
Bera, Subhabrata; Nie, Craig D.; Harrington, James A.; Cheng, Long; Rand, Stephen C.; Li, Yuan; Johnson, Eric G.
2018-02-01
Rare-earth doped single crystal (SC) yttrium aluminum garnet (YAG) fibers have great potential as high-power laser gain media. SC fibers combine the superior material properties of crystals with the advantages of a fiber geometry. Improving processing techniques, growth of low-loss YAG SC fibers have been reported. A low-cost technique that allows for the growth of optical quality Ho:YAG single crystal (SC) fibers with different dopant concentrations have been developed and discussed. This technique is a low-cost sol-gel based method which offers greater flexibility in terms of dopant concentration. Self-segregation of Nd ions in YAG SC fibers have been observed. Such a phenomenon can be utilized to fabricate monolithic SC fibers with graded index.
NASA Astrophysics Data System (ADS)
Gillooly, A.; Webb, A. S.; Favero, F. C.; Bouchan, T.; Cooper, L. J.; Read, D.; Hill, M.
2017-02-01
An ytterbium (Yb) doped polarizing fiber is demonstrated. The fiber offers the opportunity to build all-fiber lasers with single polarization output and without the need for free-space polarizing components. Traditional single polarization fiber lasers utilize polarization-maintaining (PM) gain fiber with a single polarization stimulation signal. Whilst this results in an approximation to a single polarization laser, the spontaneous emission from the unstimulated polarization state limits the polarization extinction ratio (PER). The PER is further limited as the stimulated signal is prone to crosstalk. Furthermore, controlling amplitude modulation of the stimulated signal is critical for maximizing the peak power of an optical pulse, particularly for high energy lasers. If light is allowed to leak in to the unstimulated axis it will travel at a different velocity to the stimulated axis and can cross-couple back into the signal axis, creating an interference effect which leads to amplitude modulation on the signal pulse. Single-polarization Yb-doped fiber ensures that light on the fast axis is constantly attenuated; ensuring that light on the unstimulated axis cannot propagate and thus cannot degrade the PER or create amplitude modulation. In this paper we report on, to the best of our knowledge, the first demonstration of a single polarization Yb-doped bowtie optical fiber manufactured using a combination of Modified Chemical Vapor Deposition (MCVD) and rare-earth solution doping technology. The fiber has a single-polarization window of 80nm at the operating wavelength of 1060nm and a PER of >18dB. The fabrication and characterization of the fiber is reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Lin; Liu, Cong; Leibly, David
Amyloid protein aggregates are associated with dozens of devastating diseases including Alzheimer’s, Parkinson’s, ALS, and diabetes type 2. While structure-based discovery of compounds has been effective in combating numerous infectious and metabolic diseases, ignorance of amyloid structure has hindered similar approaches to amyloid disease. Here we show that knowledge of the atomic structure of one of the adhesive, steric-zipper segments of the amyloid-beta (Aβ) protein of Alzheimer’s disease, when coupled with computational methods, identifies eight diverse but mainly flat compounds and three compound derivatives that reduce Aβ cytotoxicity against mammalian cells by up to 90%. Although these compounds bind tomore » Aβ fibers, they do not reduce fiber formation of Aβ. Structure-activity relationship studies of the fiber-binding compounds and their derivatives suggest that compound binding increases fiber stability and decreases fiber toxicity, perhaps by shifting the equilibrium of Aβ from oligomers to fibers.« less
Response properties of mechanoreceptors and nociceptors in mouse glabrous skin: an in vivo study.
Cain, D M; Khasabov, S G; Simone, D A
2001-04-01
The increasing use of transgenic mice for the study of pain mechanisms necessitates comprehensive understanding of the murine somatosensory system. Using an in vivo mouse preparation, we studied response properties of tibial nerve afferent fibers innervating glabrous skin. Recordings were obtained from 225 fibers identified by mechanical stimulation of the skin. Of these, 106 were classed as A beta mechanoreceptors, 51 as A delta fibers, and 68 as C fibers. A beta mechanoreceptors had a mean conduction velocity of 22.2 +/- 0.7 (SE) m/s (13.8--40.0 m/s) and a median mechanical threshold of 2.1 mN (0.4--56.6 mN) and were subclassed as rapidly adapting (RA, n = 75) or slowly adapting (SA, n = 31) based on responses to constant force mechanical stimuli. Conduction velocities ranged from 1.4 to 13.6 m/s (mean 7.1 +/- 0.6 m/s) for A delta fibers and 0.21 to 1.3 m/s (0.7 +/- 0.1 m/s) for C fibers. Median mechanical thresholds were 10.4 and 24.4 mN for A delta and C fibers, respectively. Responses of A delta and C fibers evoked by heat (35--51 degrees C) and by cold (28 to -12 degrees C) stimuli were determined. Mean response thresholds of A delta fibers were 42.0 +/- 3.1 degrees C for heat and 7.6 +/- 3.8 degrees C for cold, whereas mean response thresholds of C fibers were 40.3 +/- 0.4 degrees C for heat and 10.1 +/- 1.9 degrees C for cold. Responses evoked by heat and cold stimuli increased monotonically with stimulus intensity. Although only 12% of tested A delta fibers were heat sensitive, 50% responded to cold. Only one A delta nociceptor responded to both heat and cold stimuli. In addition, 40% of A delta fibers were only mechanosensitive since they responded neither to heat nor to cold stimuli. Thermal stimuli evoked responses from the majority of C fibers: 82% were heat sensitive, while 77% of C fibers were excited by cold, and 68% were excited by both heat and cold stimuli. Only 11% of C fibers were insensitive to heat and/or cold. This in vivo study provides an analysis of mouse primary afferent fibers innervating glabrous skin including new information on encoding of noxious thermal stimuli within the peripheral somatosensory system of the mouse. These results will be useful for future comparative studies with transgenic mice.
Emerging technology in fiber optic sensors
NASA Astrophysics Data System (ADS)
Dyott, Richard B.
1991-03-01
Some recent innovations in interferoinetric fiber optic sensors include special fibers new components and sensor systems. Many of the concepts have precedents in microwaves. 1. GENERAL PRINCIPLES The application of optical fibers to sensors is diffuse compared with their application to optical communications which is essentially focused on the single problem of how to get information from A to B. A fiber sensor is viable when it can do something not possible with better than more cheaply than any existing method. The probability of the emergence of a new sensor depends on the length of time that a need for the sensor and the possibility of meeting that need have co-existed regardless of whether the need or the possibility has appeared first. 2. TYPES OF SENSOR Fiber sensors can be divided into: a) Multimode fiber sensors which depend on amplitude effects b) Single mode (single path) fiber sensors which depend on phase effects. Since multimode fiber has existed for many decades the emergence of a new multimode sensor depends mostly on the discovery of a new need for such a sensor. On the other hand single mode/single path (i. e. polarization maintaining) fiber is relatively new and so is still being applied to existing needs. This is particularly so of recent innovations in fibers and components. SPIE Vol. 1396 Applications of Optical Engineering Proceedings of OE/Midwest ''90 / 709
Cartee, Gregory D; Arias, Edward B; Yu, Carmen S; Pataky, Mark W
2016-11-01
One exercise session can induce subsequently elevated insulin sensitivity that is largely attributable to greater insulin-stimulated glucose uptake by skeletal muscle. Because skeletal muscle is a heterogeneous tissue comprised of diverse fiber types, our primary aim was to determine exercise effects on insulin-independent and insulin-dependent glucose uptake by single fibers of different fiber types. We hypothesized that each fiber type featuring elevated insulin-independent glucose uptake immediately postexercise (IPEX) would be characterized by increased insulin-dependent glucose uptake at 3.5 h postexercise (3.5hPEX). Rat epitrochlearis muscles were isolated and incubated with 2-[ 3 H]deoxyglucose. Muscles from IPEX and sedentary (SED) controls were incubated without insulin. Muscles from 3.5hPEX and SED controls were incubated ± insulin. Glucose uptake (2-[ 3 H]deoxyglucose accumulation) and fiber type (myosin heavy chain isoform expression) were determined for single fibers dissected from the muscles. Major new findings included the following: 1) insulin-independent glucose uptake was increased IPEX in single fibers of each fiber type (types I, IIA, IIB, IIBX, and IIX), 2) glucose uptake values from insulin-stimulated type I and IIA fibers exceeded the values for the other fiber types, 3) insulin-stimulated glucose uptake for type IIX exceeded IIB fibers, and 4) the 3.5hPEX group vs. SED had greater insulin-stimulated glucose uptake in type I, IIA, IIB, and IIBX but not type IIX fibers. Insulin-dependent glucose uptake was increased at 3.5hPEX in each fiber type except for IIX fibers, although insulin-independent glucose uptake was increased IPEX in all fiber types (including type IIX). Single fiber analysis enabled the discovery of this fiber type-related difference for postexercise, insulin-stimulated glucose uptake. Copyright © 2016 the American Physiological Society.
Solute effects on deformation and fracture of beta brass
NASA Technical Reports Server (NTRS)
Shea, M. M.; Stoloff, N. S.
1973-01-01
It is shown that the ductility of several ternary beta brass alloys in air and in several liquid metals can be related to the operative slip and grain boundary relaxation processes. Nickel and manganese were chosen as alloying elements because they are expected to respectively enhance and suppress cross slip in beta brass. Single-phase binary and ternary beta brass alloys were used in both polycrystalline and single crystal form.
Wide spectral range confocal microscope based on endlessly single-mode fiber.
Hubbard, R; Ovchinnikov, Yu B; Hayes, J; Richardson, D J; Fu, Y J; Lin, S D; See, P; Sinclair, A G
2010-08-30
We report an endlessly single mode, fiber-optic confocal microscope, based on a large mode area photonic crystal fiber. The microscope confines a very broad spectral range of excitation and emission wavelengths to a single spatial mode in the fiber. Single-mode operation over an optical octave is feasible. At a magnification of 10 and λ = 900 nm, its resolution was measured to be 1.0 μm (lateral) and 2.5 μm (axial). The microscope's use is demonstrated by imaging single photons emitted by individual InAs quantum dots in a pillar microcavity.
Toward a compact fibered squeezing parametric source.
Brieussel, Alexandre; Ott, Konstantin; Joos, Maxime; Treps, Nicolas; Fabre, Claude
2018-03-15
In this work, we investigate three different compact fibered systems generating vacuum squeezing that involve optical cavities limited by the end surface of a fiber and by a curved mirror and containing a thin parametric crystal. These systems have the advantage to couple squeezed states directly to a fiber, allowing the user to benefit from the flexibility of fibers in the use of squeezing. Three types of fibers are investigated: standard single-mode fibers, photonic-crystal large-mode-area single-mode fibers, and short multimode fibers taped to a single-mode fiber. The observed squeezing is modest (-0.56 dB, -0.9 dB, -1 dB), but these experiments open the way for miniaturized squeezing devices that could be a very interesting advantage in scaling up quantum systems for quantum processing, opening new perspectives in the domain of integrated quantum optics.
Concentric core optical fiber with multiple-mode signal transmission
Muhs, J.D.
1997-05-06
A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion. 3 figs.
Concentric core optical fiber with multiple-mode signal transmission
Muhs, Jeffrey D.
1997-01-01
A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion.
Spectrally tailored supercontinuum generation from single-mode-fiber amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Qiang; Guo, Zhengru; Zhang, Qingshan
Spectral filtering of an all-normal-dispersion Yb-doped fiber laser was demonstrated effective for broadband supercontinuum generation in the picosecond time region. The picosecond pump pulses were tailored in spectrum with 1 nm band-pass filter installed between two single-mode fiber amplifiers. By tuning the spectral filter around 1028 nm, four-wave mixing was initiated in a photonic crystal fiber spliced with single-mode fiber, as manifested by the simultaneous generation of Stokes wave at 1076 nm and anti-Stokes wave at 984 nm. Four-wave mixing took place in cascade with the influence of stimulated Raman scattering and eventually extended the output spectrum more than 900 nm of 10 dB bandwidth.more » This technique allows smooth octave supercontinuum generation by using simple single-mode fiber amplifiers rather than complicated multistage large-mode-area fiber amplifiers.« less
Smith, Nicola L; Taylor, Edward J; Lindsay, Anna-Marie; Charnock, Simon J; Turkenburg, Johan P; Dodson, Eleanor J; Davies, Gideon J; Black, Gary W
2005-12-06
Streptococcus pyogenes (group A Streptococcus) causes severe invasive infections including scarlet fever, pharyngitis (streptococcal sore throat), skin infections, necrotizing fasciitis (flesh-eating disease), septicemia, erysipelas, cellulitis, acute rheumatic fever, and toxic shock. The conversion from nonpathogenic to toxigenic strains of S. pyogenes is frequently mediated by bacteriophage infection. One of the key bacteriophage-encoded virulence factors is a putative "hyaluronidase," HylP1, a phage tail-fiber protein responsible for the digestion of the S. pyogenes hyaluronan capsule during phage infection. Here we demonstrate that HylP1 is a hyaluronate lyase. The 3D structure, at 1.8-angstroms resolution, reveals an unusual triple-stranded beta-helical structure and provides insight into the structural basis for phage tail assembly and the role of phage tail proteins in virulence. Unlike the triple-stranded beta-helix assemblies of the bacteriophage T4 injection machinery and the tailspike endosialidase of the Escherichia coli K1 bacteriophage K1F, HylP1 possesses three copies of the active center on the triple-helical fiber itself without the need for an accessory catalytic domain. The triple-stranded beta-helix is not simply a structural scaffold, as previously envisaged; it is harnessed to provide a 200-angstroms-long substrate-binding groove for the optimal reduction in hyaluronan viscosity to aid phage penetration of the capsule.
Self-Assembly of Large Amyloid Fibers
NASA Astrophysics Data System (ADS)
Ridgley, Devin M.
Functional amyloids found throughout nature have demonstrated that amyloid fibers are potential industrial biomaterials. This work introduces a new "template plus adder" cooperative mechanism for the spontaneous self-assembly of micrometer sized amyloid fibers. A short hydrophobic template peptide induces a conformation change within a highly alpha-helical adder protein to form beta-sheets that continue to assemble into micrometer sized amyloid fibers. This study utilizes a variety of proteins that have template or adder characteristics which suggests that this mechanism may be employed throughout nature. Depending on the amino acid composition of the proteins used the mixtures form amyloid fibers of a cylindrical ( 10 mum diameter, 2 GPa Young's modulus) or tape (5- 10 mum height, 10-20 mum width and 100-200 MPa Young's modulus) morphology. Processing conditions are altered to manipulate the morphology and structural characteristics of the fibers. Spectroscopy is utilized to identify certain amino acid groups that contribute to the self-assembly process. Aliphatic amino acids (A, I, V and L) are responsible for initiating conformation change of the adder proteins to assemble into amyloid tapes. Additional polyglutamine segments (Q-blocks) within the protein mixtures will form Q hydrogen bonds to reinforce the amyloid structure and form a cylindrical fiber of higher modulus. Atomic force microscopy is utilized to delineate the self-assembly of amyloid tapes and cylindrical fibers from protofibrils (15-30 nm width) to fibers (10-20 mum width) spanning three orders of magnitude. The aliphatic amino acid content of the adder proteins' alpha-helices is a good predictor of high density beta-sheet formation within the protein mixture. Thus, it is possible to predict the propensity of a protein to undergo conformation change into amyloid structures. Finally, Escherichia coli is genetically engineered to express a template protein which self-assembles into large amyloid fibers when combined with extracellular myoglobin, an adder protein. The goal of this thesis is to produce, manipulate and characterize the self-assembly of large amyloid fibers for their potential industrial biomaterial applications. The techniques used throughout this study outline various methods to design and engineer amyloid fibers of a tailored modulus and morphology. Furthermore, the mechanisms described here may offer some insight into naturally occurring amyloid forming systems.
Pragadheesh, Vppalayam Shanmugam; Yadav, Anju; Chanotiya, Chandan Singh; Rout, Prasanta Kumar; Uniyal, Girish Chandra
2011-09-01
Solid-phase micro-extraction (SPME) was studied as a solvent free alternative method for the extraction and characterization of volatile compounds in intact and plucked flowers of Jasminum sambac at different day time intervals using gas chromatography (GC-FID) and gas chromatography-quadrupole mass spectrometry. The analytes identified included alcohols, esters, phenolic compounds, and terpenoids. The main constituents identified in the flower aroma using different fibers were cis-3-hexenyl acetate, (E)-beta-ocimene, linalool, benzyl acetate, and (E,E)-alpha-farnesene. The benzyl acetate proportion decreased from morning to afternoon and then increased in evening collections. PDMS fiber showed a high proportion of (E,E)-alpha-farnesene in jasmine floral aroma. Among other constituents identified, cis-3-hexenyl acetate, linalool, and benzyl acetate were major aroma contributors in plucked and living flowers extracts using PDMS/DVB, Carboxen/PDMS, and DVB/Carboxen/PDMS fibers. PDMS/DVB recorded the highest emission for benzyl acetate while the (E)-beta-ocimene proportion was highest in DVB/Carboxen/PDMS when compared with the rest. The highest linalool content, with increasing proportion from morning to noon, was found using mixed coating fibers. Almost negligible volatile adsorption was recorded for the polyacrylate fiber for intact flower aroma, whereas it was most effective for benzyl acetate, followed by indole under plucked conditions. Moreover, the highest amounts extracted, evaluated from the sum of peak areas, were achieved using Carboxen/PDMS, and DVB/Carboxen/PDMS. Introduction of a rapid, and solvent free SPME method for the analysis of multicomponent volatiles can be successfully employed to monitor the extraction and characterization of flower aroma constituents.
Beitzel, Felice; Gregorevic, Paul; Ryall, James G; Plant, David R; Sillence, Martin N; Lynch, Gordon S
2004-04-01
Beta(2)-adrenoceptor agonists such as fenoterol are anabolic in skeletal muscle, and because they promote hypertrophy and improve force-producing capacity, they have potential application for enhancing muscle repair after injury. No previous studies have measured the beta(2)-adrenoceptor population in regenerating skeletal muscle or determined whether fenoterol can improve functional recovery in regenerating muscle after myotoxic injury. In the present study, the extensor digitorum longus (EDL) muscle of the right hindlimb of deeply anesthetized rats was injected with bupivacaine hydrochloride, which caused complete degeneration of all muscle fibers. The EDL muscle of the left hindlimb served as the uninjured control. Rats received either fenoterol (1.4 mg x kg(-1) x day(-1)) or an equal volume of saline for 2, 7, 14, or 21 days. Radioligand binding assays identified a approximately 3.5-fold increase in beta(2)-adrenoceptor density in regenerating muscle at 2 days postinjury. Isometric contractile properties of rat EDL muscles were measured in vitro. At 14 and 21 days postinjury, maximum force production (P(o)) of injured muscles from fenoterol-treated rats was 19 and 18% greater than from saline-treated rats, respectively, indicating more rapid restoration of function after injury. The increase in P(o) in fenoterol-treated rats was due to increases in muscle mass, fiber cross-sectional area, and protein content. These findings suggest a physiological role for beta(2)-adrenoceptor-mediated mechanisms in muscle regeneration and show clearly that fenoterol hastens recovery after injury, indicating its potential therapeutic application.
Multi-fiber strains measured by micro-Raman spectroscopy: Principles and experiments
NASA Astrophysics Data System (ADS)
Lei, Zhenkun; Wang, Yunfeng; Qin, Fuyong; Qiu, Wei; Bai, Ruixiang; Chen, Xiaogang
2016-02-01
Based on widely used axial strain measurement method of Kevlar single fiber, an original theoretical model and measurement principle of application of micro-Raman spectroscopy to multi-fiber strains in a fiber bundle were established. The relationship between the nominal Raman shift of fiber bundle and the multi-fiber strains was deduced. The proposed principle for multi-fiber strains measurement is consistent with two special cases: single fiber deformation and multi-fiber deformation under equal strain. It is found experimentally that the distribution of Raman scattering intensity of a Kevlar 49 fiber as a function of distance between a fiber and the laser spot center follows a Gaussian function. Combining the Raman-shift/strain relationship of the Kevlar 49 single fiber and the uniaxial tension measured by micro-Raman spectroscopy, the Raman shift as a function of strain was obtained. Then the Raman peak at 1610 cm-1 for the Kevlar 49 fiber was fitted to a Lorentzian function and the FWHM showed a quadratic increase with the fiber strain. Finally, a dual-fiber tensile experiment was performed to verify the adequacy of the Raman technique for the measurement of multi-fiber strains.
Infrared spectroscopic investigations on the distribution of residual grease on textiles
NASA Astrophysics Data System (ADS)
Siedler, J.; Schumacher-Hamedat, Ursula; Hoecker, Hartwig
1992-03-01
Surface modification of textile materials is of major importance in the modern textile industry. Several methods are commonly applied to produce a broad range of coated materials. The adhesion between the coating polymers and the textile fibers often determines the quality. Improved adhesion of the coating is achieved by a chemical bonding (covalent or ionic) between the coating materials and the textile. The efficiency,however, is dependent on the orientation of the functional groups of the outmost molecular layers of the fibers. Therefore, we have used surface sensitive methods to analyze the surface structure of proteinaceous fibers. Homopoly(aminoacid) films like poly(-(gamma) -benzyl-L-glutamate) and poly(- (Beta) -benzyl-L-aspartate) have been chosen as models for natural fibers like wool.
Kittrell, W. Carter; Wang, Yuhuang; Kim, Myung Jong; Hauge, Robert H.; Smalley, Richard E.; Marek leg, Irene Morin
2010-06-01
The present invention is directed to fibers of epitaxially grown single-wall carbon nanotubes (SWNTs) and methods of making same. Such methods generally comprise the steps of: (a) providing a spun SWNT fiber; (b) cutting the fiber substantially perpendicular to the fiber axis to yield a cut fiber; (c) etching the cut fiber at its end with a plasma to yield an etched cut fiber; (d) depositing metal catalyst on the etched cut fiber end to form a continuous SWNT fiber precursor; and (e) introducing feedstock gases under SWNT growth conditions to grow the continuous SWNT fiber precursor into a continuous SWNT fiber.
[Dietary fibers: current trends and health benefits in the metabolic syndrome and type 2 diabetes].
Mello, Vanessa D de; Laaksonen, David E
2009-07-01
Dietary fiber may contribute to both the prevention and treatment of type 2 diabetes mellitus (T2DM). In epidemiological studies the intake of insoluble fiber, but not the intake of soluble fiber, has been inversely associated with the incidence of T2DM. In contrast, in postprandial studies, meals containing sufficiently quantities of beta-glucan, psyllium, or guar gum have decreased insulin and glucose responses in both healthy individuals and patients with T2DM. Diets enriched sufficiently in soluble fiber may also improve overall glycemic control in T2DM. Insoluble fiber has little effect on postprandial insulin and glucose responses. Fiber increases satiety. In some studies, insoluble fiber has been associated with less weight gain over time. Limited cross-sectional evidence suggests an inverse relationship between intake of cereal fiber and whole-grains and the prevalence of the metabolic syndrome. Although long-term data from trials focusing on specifically dietary fiber are lacking, meeting current recommendations for a minimum fiber intake of 25 g/d based on a diet rich in whole grains, fruits and legumes will probably decrease the risk of obesity, the metabolic syndrome and T2DM.
Design and analysis of large-core single-mode windmill single crystal sapphire optical fiber
Cheng, Yujie; Hill, Cary; Liu, Bo; ...
2016-06-01
We present a large-core single-mode “windmill” single crystal sapphire optical fiber (SCSF) design, which exhibits single-mode operation by stripping off the higher-order modes (HOMs) while maintaining the fundamental mode. The “windmill” SCSF design was analyzed using the finite element analysis method, in which all the HOMs are leaky. The numerical simulation results show single-mode operation in the spectral range from 0.4 to 2 μm in the windmill SCSF, with an effective core diameter as large as 14 μm. Such fiber is expected to improve the performance of many of the current sapphire fiber optic sensor structures.
Single mode fiber and twin-core fiber connection technique for in-fiber integrated interferometer
NASA Astrophysics Data System (ADS)
Yuan, Tingting; Zhang, Xiaotong; Guan, Chunying; Yang, Xinghua; Yuan, Libo
2015-09-01
A novel twin-core fiber connector has been made by two side-polished fibers. By using side polishing technique, we present a connector based on the twin-core fiber (TCF) and two D-shaped single-core fibers. After simple alignment and splicing, all fiber miniaturizing connector can be obtained. Two cores can operate independently and are non-interfering. The coupling loss of this connector is low and the fabrication technologies are mature. The connector device could be used for sensors or particle trapping.
The Effect of Weaving on the Strength of Kevlar KM2 Single Fibers at Different Loading Rates
2012-12-01
The Effect of Weaving on the Strength of Kevlar KM2 Single Fibers at Different Loading Rates by Brett Sanborn, Nicole Racine, and Tusit...Ground, MD 21005-5069 ARL-TR-6280 December 2012 The Effect of Weaving on the Strength of Kevlar KM2 Single Fibers at Different Loading Rates...Effect of Weaving on the Strength of Kevlar KM2 Single Fibers at Different Loading Rates 5a. CONTRACT NUMBER 1120-1120-99 5b. GRANT NUMBER 5c
Erbium Distribution in Single Crystal YAG Fibers Grown by Laser-Heated Pedestal Growth Technique
2015-08-28
single crystal YAG fibers grown by laser - heated pedestal growth technique Single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) as a host...inserted into a SC YAG tube. This rod-in-tube was used as a preform in our laser -heated pedestal growth (LHPG) apparatus to grow a fiber with a radial...fibers grown by laser -heated pedestal growth technique Report Title Single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) as a host material has
Single curved fiber sedimentation under gravity
Xiaoying Rong; Dewei Qi; Junyong Zhu
2005-01-01
Dynamics of single curved fiber sedimentation under the gravity are simulated by using lattice Boltzmann method. The results of migration and rotation of the curved fiber at different Reynolds numbers are reported. The results show that the rotation and migration processes are sensitive to the curvature of the fiber.
Single curved fiber sedimentation under gravity
Xiaoying Rong; Dewei Qi; Guowei He; Jun Yong Zhu; Tim Scott
2008-01-01
Dynamics of single curved fiber sedimentation under gravity are simulated by using the lattice Boltzmann method. The results of migration and rotation of the curved fiber at different Reynolds numbers are reported. The results show that the rotation and migration processes are sensitive to the curvature of the fiber.
Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser
Wen, Xin; Tang, Guowu; Yang, Qi; Chen, Xiaodong; Qian, Qi; Zhang, Qinyuan; Yang, Zhongmin
2016-01-01
Highly Tm3+ doped optical fibers are urgently desirable for 2.0 μm compact single-frequency fiber laser and high-repetition-rate mode-locked fiber laser. Here, we systematically investigated the optical parameters, energy transfer processes and thermal properties of Tm3+ doped barium gallo-germanate (BGG) glasses. Highly Tm3+ doped BGG glass single mode (SM) fibers were fabricated by the rod-in-tube technique. The Tm3+ doping concentration reaches 7.6 × 1020 ions/cm3, being the reported highest level in Tm3+ doped BGG SM fibers. Using ultra short (1.6 cm) as-drawn highly Tm3+ doped BGG SM fiber, a single-frequency fiber laser at 1.95 μm has been demonstrated with a maximum output power of 35 mW when in-band pumped by a home-made 1568 nm fiber laser. Additionally, a multilongitudinal-mode fiber laser at 1.95 μm has also been achieved in a 10 cm long as-drawn active fiber, yielding a maximum laser output power of 165 mW and a slope efficiency of 17%. The results confirm that the as-drawn highly Tm3+ doped BGG SM fibers are promising in applications that require high gain and high power from a short piece of active optical fiber. PMID:26828920
High-mechanical-strength single-pulse draw tower gratings
NASA Astrophysics Data System (ADS)
Rothhardt, Manfred W.; Chojetzki, Christoph; Mueller, Hans Rainer
2004-11-01
The inscription of fiber Bragg gratings during the drawing process is a very useful method to realize sensor arrays with high numbers of gratings and excellent mechanical strength and also type II gratings with high temperature stability. Results of single pulse grating arrays with numbers up to 100 and definite wavelengths and positions for sensor applications were achieved at 1550 nm and 830 nm using new photosensitive fibers developed in IPHT. Single pulse type I gratings at 1550 nm with more than 30% reflectivity were shown first time to our knowledge. The mechanical strength of this fiber with an Ormocer coating with those single pulse gratings is the same like standard telecom fibers. Weibull plots of fiber tests will be shown. At 830 nm we reached more than 10% reflectivity with single pulse writing during the fiber drawing in photosensitive fibers with less than 16 dB/km transmission loss. These gratings are useful for stress and vibration sensing applications. Type II gratings with reflectivity near 100% and smooth spectral shape and spectral width of about 1 nm are temperature stable up to 1200 K for short time. They are also realized in the fiber drawing process. These gratings are useful for temperature sensor applications.
Single Mode Air-Clad Single Crystal Sapphire Optical Fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Cary; Homa, Dan; Yu, Zhihao
The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber withmore » high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications.« less
Single Mode Air-Clad Single Crystal Sapphire Optical Fiber
Hill, Cary; Homa, Dan; Yu, Zhihao; ...
2017-05-03
The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber withmore » high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications.« less
Nichols, Michael R; Moss, Melissa A; Reed, Dana Kim; Cratic-McDaniel, Stephanie; Hoh, Jan H; Rosenberry, Terrone L
2005-01-28
The brains of Alzheimer's disease (AD) patients contain large numbers of amyloid plaques that are rich in fibrils composed of 40- and 42-residue amyloid-beta (Abeta) peptides. Several lines of evidence indicate that fibrillar Abeta and especially soluble Abeta aggregates are important in the etiology of AD. Recent reports also stress that amyloid aggregates are polymorphic and that a single polypeptide can fold into multiple amyloid conformations. Here we demonstrate that Abeta-(1-40) can form soluble aggregates with predominant beta-structures that differ in stability and morphology. One class of aggregates involved soluble Abeta protofibrils, prepared by vigorous overnight agitation of monomeric Abeta-(1-40) at low ionic strength. Dilution of these aggregation reactions induced disaggregation to monomers as measured by size exclusion chromatography. Protofibril concentrations monitored by thioflavin T fluorescence decreased in at least two kinetic phases, with initial disaggregation (rate constant approximately 1 h(-1)) followed by a much slower secondary phase. Incubation of the reactions without agitation resulted in less disaggregation at slower rates, indicating that the protofibrils became progressively more stable over time. In fact, protofibrils isolated by size exclusion chromatography were completely stable and gave no disaggregation. A second class of soluble Abeta aggregates was generated rapidly (<10 min) in buffered 2% hexafluoroisopropanol (HFIP). These aggregates showed increased thioflavin T fluorescence and were rich in beta-structure by circular dichroism. Electron microscopy and atomic force microscopy revealed initial globular clusters that progressed over several days to soluble fibrous aggregates. When diluted out of HFIP, these aggregates initially were very unstable and disaggregated completely within 2 min. However, their stability increased as they progressed to fibers. Relative to Abeta protofibrils, the HFIP-induced aggregates seeded elongation by Abeta monomer deposition very poorly. The techniques used to distinguish these two classes of soluble Abeta aggregates may be useful in characterizing Abeta aggregates formed in vivo.
Studies on Pentoxifylline and Tocopherol Combination for Radiation-Induced Heart Disease in Rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Hui; Department of Radiotherapy, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong; Xiong Mai
Purpose: To investigate whether the application of pentoxifylline (PTX) and tocopherol l (Vit. E) could modify the development of radiation-induced heart disease and downregulate the expression of transforming growth factor (TGF)-{beta}1mRNA in rats. Methods and Materials: A total of 120 Sprague-Dawley rats were separated into four groups: control group, irradiated group, experimental group 1, and experiment group 2. Supplementation was started 3 days before irradiation; in experimental group 1, injection of PTX (15 mg/kg/d) and Vit. E (5.5 mg/kg/d) continued till the 12th week postirradiation, whereas in experimental group 2 it was continued until the 24th week postirradiation. All ratsmore » were administrated a single dose of 20 Gy irradiation to the heart except the control group. Histopathologic evaluation was performed at various time points (Days 1, 2, 4, 8, and 12 and 24th week) up to 24 weeks after irradiation. Changes of levels of TGF-{beta}1 mRNA expression were also investigated at the same time points using competitive polymerase chain reaction. Results: Compared with the irradiated group, levels of TGF-{beta}1 mRNA of the rat hearts were relatively low in the two experimental groups on the 12th week postirradiation. In experimental group 1, there was a rebound expression of TGF-{beta}1 mRNA on the 24th week postirradiation, whereas that of the experimental group 2 remained low (p < 0.05). The proportions of collagen fibers of the two experimental groups were lower than that of irradiated group (p < 0.05). A rebound could be observed in the experimental group 1. Conclusion: PTX and Vit. E downregulated the expression of TGF-{beta}1 mRNA. The irradiated rat hearts showed a marked pathologic response to the drugs. The withdrawal of drugs in the 12th week postirradiation could cause rebound effects of the development of fibrosis.« less
Measurements With a Split-Fiber Probe in Complex Unsteady Flows
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan
2004-01-01
A split-fiber probe was used to acquire unsteady data in a research compressor. A calibration method was devised for a split-fiber probe, and a new algorithm was developed to decompose split-fiber probe signals into velocity magnitude and direction. The algorithm is based on the minimum value of a merit function that is built over the entire range of flow velocities for which the probe was calibrated. The split-fiber probe performance and signal decomposition was first verified in a free-jet facility by comparing the data from three thermo-anemometric probes, namely a single-wire, a single-fiber, and the split-fiber probe. All three probes performed extremely well as far as the velocity magnitude was concerned. However, there are differences in the peak values of measured velocity unsteadiness in the jet shear layer. The single-wire probe indicates the highest unsteadiness level, followed closely by the split-fiber probe. The single-fiber probe indicates a noticeably lower level of velocity unsteadiness. Experiments in the NASA Low Speed Axial Compressor facility revealed similar results. The mean velocities agreed well, and differences in the velocity unsteadiness are similar to the case of a free jet. A reason for these discrepancies is in the different frequency response characteristics of probes used. It follows that the single-fiber probe has the slowest frequency response. In summary, the split-fiber probe worked reliably during the entire program. The acquired data averaged in time followed closely data acquired by conventional pneumatic probes.
High power, high signal-to-noise ratio single-frequency 1μm Brillouin all-fiber laser
NASA Astrophysics Data System (ADS)
Wang, Jing; Hou, Yubin; Zhang, Qian; Jin, Dongchen; Sun, Ruoyu; Shi, Hongxing; Liu, Jiang; Wang, Pu
2016-03-01
We demonstrate a high-power, high signal-to-noise ratio single-frequency 1 μm Brillouin all-fiber laser with high slope efficiency. The Brillouin laser system consists of a high-power single-frequency fiber laser and a single-pass Brillouin ring cavity. The high-power single-frequency fiber laser is one-stage master-oscillator power amplifier with the maximum output power of 10.33 W, the signal-to-noise ratio of 50 dB and the slope efficiency of 46%. The Brillouin fiber laser is pumped by the amplified laser with a linewidth of 33 kHz and an output power of 2.61 W limited by the damage threshold of the optical isolator. By optimizing the length of the Brillouin ring cavity to 10 m, stable singlefrequency Brillouin fiber laser is obtained with 3 kHz linewidth owing to the linewidth narrowing effect. At the launched pump power of 2.15 W, the Brillouin fiber laser generates maximum output power of 1.4 W with a slope efficiency of 79% and the optical signal-to-noise ratio of 77 dB.
Varona, Omar de; Steinke, Michael; Neumann, Jörg; Kracht, Dietmar
2018-06-01
Emerging applications, such as gravitational wave astronomy, demand single-frequency lasers with diffraction-limited emission at 1.5 μm. Fiber amplifiers have greatly evolved to fulfill these requirements. Hundreds of watts are feasible using large-mode-area and specialty fibers. However, their application in a few watts to tens of watts in monolithic systems is unnecessarily complex due to the poor commercial availability of fiber components and standard integration procedures. In this Letter we propose and experimentally demonstrate a novel and simple method to amplify single-frequency signals at 1.5 μm up to tens of watts by core-pumping single-mode Er 3+ :Yb 3+ fiber amplifiers at 1018 nm. The proof-of-principle system is tested with different active fibers, lengths, and seed power levels. Over 11 W with an efficiency of more than 48% versus launched power is achieved. Additionally, performance degradation during operation was observed for which photodarkening due to P1 defects might be an explanation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying
Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less
McDonald, A D; Jones, B J P; Nygren, D R; Adams, C; Álvarez, V; Azevedo, C D R; Benlloch-Rodríguez, J M; Borges, F I G M; Botas, A; Cárcel, S; Carrión, J V; Cebrián, S; Conde, C A N; Díaz, J; Diesburg, M; Escada, J; Esteve, R; Felkai, R; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Goldschmidt, A; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Guenette, R; Hafidi, K; Hauptman, J; Henriques, C A O; Hernandez, A I; Hernando Morata, J A; Herrero, V; Johnston, S; Labarga, L; Laing, A; Lebrun, P; Liubarsky, I; López-March, N; Losada, M; Martín-Albo, J; Martínez-Lema, G; Martínez, A; Monrabal, F; Monteiro, C M B; Mora, F J; Moutinho, L M; Muñoz Vidal, J; Musti, M; Nebot-Guinot, M; Novella, P; Palmeiro, B; Para, A; Pérez, J; Querol, M; Repond, J; Renner, J; Riordan, S; Ripoll, L; Rodríguez, J; Rogers, L; Santos, F P; Dos Santos, J M F; Simón, A; Sofka, C; Sorel, M; Stiegler, T; Toledo, J F; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Webb, R; White, J T; Yahlali, N
2018-03-30
A new method to tag the barium daughter in the double-beta decay of ^{136}Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba^{++}) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (∼2 nm), and detected with a statistical significance of 12.9σ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.
NASA Astrophysics Data System (ADS)
McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; NEXT Collaboration
2018-03-01
A new method to tag the barium daughter in the double-beta decay of
Structural comparison of arabinoxylans from two barley side-stream fractions.
Pitkänen, Leena; Tuomainen, Päivi; Virkki, Liisa; Aseyev, Vladimir; Tenkanen, Maija
2008-07-09
The structures of barley ( Hordeum vulgare) arabinoxylans isolated from two industrial side fractions, barley husks (BH) and barley fiber (BF), were characterized. Arabinoxylans were extracted with saturated barium hydroxide after enzymatic pretreatment. Barium hydroxide was selective toward arabinoxylans, and only a minor amount of glucose-containing material was coextracted. Acid methanolysis followed by gas chromatography, 1H NMR spectroscopy, and specific enzymatic treatments followed by anion exchange chromatography with pulse amperometric detection (HPAEC-PAD) revealed that the chemical structure of barley husk arabinoxylan (BHAX) clearly differed from that of barley fiber arabinoxylan (BFAX). BFAX was more branched, containing more beta-D-xylopyranosyl (beta-D-Xylp) residues carrying alpha-L-arabinofuranosyl (alpha-L-Araf) units at both O-2 and O-3 positions. BHAX, on the other hand, contained more 2-O-beta-D-Xyl p-alpha-L-Ara f substituents than BFAX. BHAX and BFAX also differed with respect to the hydrodynamic properties investigated with multidetector size exclusion chromatography. BFAX had a higher weight-average molar mass and larger hydrodynamic volume, the latter indicating less dense conformation than BHAX. Mn, Mw /Mn, Rh, and the Mark-Houwink a value were also determined for both arabinoxylans.
Optimization of an innovative hollow-fiber process to produce lactose-reduced skim milk.
Neuhaus, Winfried; Novalin, Senad; Klimacek, Mario; Splechtna, Barbara; Petzelbauer, Inge; Szivak, Alexander; Kulbe, Klaus D
2006-07-01
The research field for applications of lactose hydrolysis has been investigated for several decades. Lactose intolerance, improvement for technical processing of solutions containing lactose, and utilization of lactose in whey are the main topics for development of biotechnological processes. We report here the optimization of a hollow-fiber membrane reactor process for enzymatic lactose hydrolysis. Lactase was circulated abluminally during luminal flow of skim milk. The main problem, the growth of microorganisms in the enzyme solution, was minimized by sterile filtration, ultraviolet irradiation, and temperature adjustment. Based on previous experiments at 23 +/- 2 degrees C, further characterization was carried out at 8 +/- 2 degrees C, 15 +/- 2 degrees C (beta-galactosidase), and 58 +/- 2 degrees C (thermostable beta-glycosidase) varying enzyme activity and flow rates. For a cost-effective process, the parameters 15 +/- 2 degrees C, 240 U/mL of beta-galactosidase, an enzyme solution flow rate of 25 L/h, and a skim milk flow rate of about 9 L/h should be used in order to achieve an aimed productivity of 360 g/(L x h) and to run at conditions for the highest process long-term stability.
Dinand, E; Excoffier, G; Liénart, Y; Vignon, M R
1997-01-01
Water extraction of semi-retted flax (Linum usitatissimum L.) fiber bundles yielded a mixture of pectic oligosaccharides and two acidic rhamnogalacturonide tetrasaccharides that were separated by size-exclusion chromatography. One- and two-dimensional nuclear magnetic resonance studies and fast atom bombardment-mass spectrometry experiments indicated that the two tetrasaccharides have a common primary structure, i.e. alpha-D-delta GalpA(1-->2)-alpha-L- Rhap(1-->4)-alpha-D-GalpA-(1-->2)-L-alpha,beta-Rhap, with a rhamnopyranose as terminal reducing end, and a 4-deoxy-beta-L-threo-hex-4-enopyranosiduronic acid at the nonreducing end. However, the two tetrasaccharides differ by an acetyl group located at the O-3 position of the internal galacturonic acid residue. These two tetrasaccharides induce the activation of D-glycohydrolases of Rubus fructicosus L. cells or protoplasts within minutes. PMID:9342877
Ogneva, I. V.
2011-01-01
The aim of the work was to analyze the structural changes in different parts of the sarcolemma and contractile apparatus of muscle fibers by measuring their transversal stiffness by atomic force microscopy in a three-day reloading after a 14-day gravity disuse, which was carried out by hind-limbs suspension. The object of the study was the soleus muscle of the Wistar rat. It was shown that after 14 days of disuse, there was a reduction of transversal stiffness of all points of the sarcolemma and contractile apparatus. Readaptation for 3 days leads to complete recovery of the values of the transversal stiffness of the sarcolemma and to partial value recovery of the contractile apparatus. The changes in transversal stiffness of sarcolemma correlate with beta-actin and alpha-actinin-4 in membrane protein fractions. PMID:21941432
Ogneva, I V
2011-01-01
The aim of the work was to analyze the structural changes in different parts of the sarcolemma and contractile apparatus of muscle fibers by measuring their transversal stiffness by atomic force microscopy in a three-day reloading after a 14-day gravity disuse, which was carried out by hind-limbs suspension. The object of the study was the soleus muscle of the Wistar rat. It was shown that after 14 days of disuse, there was a reduction of transversal stiffness of all points of the sarcolemma and contractile apparatus. Readaptation for 3 days leads to complete recovery of the values of the transversal stiffness of the sarcolemma and to partial value recovery of the contractile apparatus. The changes in transversal stiffness of sarcolemma correlate with beta-actin and alpha-actinin-4 in membrane protein fractions.
NASA Astrophysics Data System (ADS)
Ikoma, S.; Nguyen, H. K.; Kashiwagi, M.; Uchiyama, K.; Shima, K.; Tanaka, D.
2017-02-01
A 3 kW single stage all-fiber Yb-doped single-mode fiber laser with bi-directional pumping configuration has been demonstrated. Our newly developed high-power LD modules are employed for a high available pump power of 4.9 kW. The length of the delivery fiber is 20 m which is long enough to be used in most of laser processing machines. An output power of 3 kW was achieved at a pump power of 4.23 kW. The slope efficiency was 70%. SRS was able to be suppressed at the same output power by increasing ratio of backward pump power. The SRS level was improved by 5dB when 57% backward pump ratio was adopted compared with the case of 50%. SRS was 35dB below the laser power at the output power of 3 kW even with a 20-m delivery fiber. The M-squared factor was 1.3. Single-mode beam quality was obtained. To evaluate practical utility of the 3 kW single-mode fiber laser, a Bead-on-Plate (BoP) test onto a pure copper plate was executed. The BoP test onto a copper plate was made without stopping or damaging the laser system. That indicates our high power single-mode fiber lasers can be used practically in processing of materials with high reflectivity and high thermal conductivity.
Single-longitudinal mode distributed-feedback fiber laser with low-threshold and high-efficiency
NASA Astrophysics Data System (ADS)
Jiang, Man; Zhou, Pu; Gu, Xijia
2018-01-01
Single-frequency fiber laser has attracted a lot of interest in recent years due to its numerous application potentials in telecommunications, LIDAR, high resolution sensing, atom frequency standard, etc. Phosphate glass fiber is one of the candidates for building compact high gain fiber lasers because of its capability of high-concentration of rare-earth ions doping in fiber core. Nevertheless, it is challenging for the integration of UV-written intra-core fiber Bragg gratings into the fiber laser cavity due to the low photosensitivity of phosphate glass fiber. The research presented in this paper will focus on demonstration of UV-written Bragg gratings in phosphate glass fiber and its application in direct-written short monolithic single-frequency fiber lasers. Strong π-phase shift Bragg grating structure is direct-inscribed into the Er/Yb co-doped gain fiber using an excimer laser, and a 5-cm-long phase mask is used to inscribe a laser cavity into the Er/Yb co-doped phosphate glass fibers. The phase mask is a uniform mask with a 50 μm gap in the middle. The fiber laser device emits output power of 10.44 mW with a slope efficiency of 21.5% and the threshold power is about 42.8 mW. Single-longitudinal mode operation is validated by radio frequency spectrum measurement. Moreover, the output spectrum at the highest power shows an excellent optical signal to noise ratio of about 70 dB. These results, to the best of our knowledge, show the lowest power threshold and highest efficiency among the reports that using the same structure to achieve single-longitudinal mode laser output.
Two kinds of novel tunable Thulium-doped fiber laser
NASA Astrophysics Data System (ADS)
Ma, Xiaowei; Chen, Daru; Feng, Gaofeng; Yang, Junyong
2014-11-01
Two kinds of tunable Thulium-doped fiber laser (TDFL) respectively using a Sagnac loop mirror and a novel tunable multimode interference (MMI) fiber filter are experimentally demonstrated. The TDFL with the Sagnac loop mirror made by a 145.5-cm polarization-maintaining fiber (PMF) can operate with stable dual-wavelength lasing or tunable single-wavelength lasing around 1860nm. Both stable dual-wavelength and tunable single-wavelength lasing are achieved by adjusting a polarization controller in the Sagnac loop mirror. The TDFL with a novel tunable MMI fiber filter formed by splicing a segment of a special no-core fiber that is an all silica fiber without fiber core to single mode fibers can achieve tuning range from 1813.52 nm to 1858.70 nm. The no-core fiber with a large diameter of 200 μm is gradually vertically covered by refractive index matching liquid, which leads to a wavelength tuning of the transmission peak of the MMI fiber filter. The relationship between the refractive index of the refractive index matching liquid and the peak wavelength shift of the MMI fiber filter is also discussed. Using the MMI fiber filter, a Thulium-doped fiber laser with a tuning range of 45.18 nm is demonstrated.
Skeleton-based tracing of curved fibers from 3D X-ray microtomographic imaging
NASA Astrophysics Data System (ADS)
Huang, Xiang; Wen, Donghui; Zhao, Yanwei; Wang, Qinghui; Zhou, Wei; Deng, Daxiang
A skeleton-based fiber tracing algorithm is described and applied on a specific fibrous material, porous metal fiber sintered sheet (PMFSS), featuring high porosity and curved fibers. The skeleton segments are firstly categorized according to the connectivity of the skeleton paths. Spurious segments like fiber bonds are detected making extensive use of the distance transform (DT) values. Single fibers are then traced and reconstructed by consecutively choosing the connecting skeleton segment pairs that show the most similar orientations and radius. Moreover, to reduce the misconnection due to the tracing orders, a multilevel tracing strategy is proposed. The fibrous network is finally reconstructed by dilating single fibers according to the DT values. Based on the traced single fibers, various morphology information regarding fiber length, radius, orientation, and tortuosity are quantitatively analyzed and compared with our previous results (Wang et al., 2013). Moreover, the number of bonds per fibers are firstly accessed. The methodology described in this paper can be expanded to other fibrous materials with adapted parameters.
Investigation of a SiC/Ti-24Al-11Nb composite
NASA Technical Reports Server (NTRS)
Brindley, P. K.; Bartolotta, P. A.; Klima, S. J.
1988-01-01
A summary of ongoing research on the characterization of a continuous fiber reinforced SiC/Ti-24Al-11Nb (at percent) composite is presented. The powder metallurgy fabrication technique is described as are the nondestructive evaluation results of the as-fabricated composite plates. Tensile properties of the SiC fiber, the matrix material, and the 0-deg SiC/Ti-24Al-11Nb composite (fibers oriented unidirectionally, parallel to the loading axis) from room temperature to 1100 C are presented and discussed with regard to the resultant fractography. The as-fabricated fiber-matrix interface has been examined by scanning transmission electron microscopy and the compounds present in the reaction zone have been identified. Fiber-matrix interaction and stability of the matrix near the fiber is characterized at 815, 985, and 1200 C from 1 to 500 hr. Measurements of the fiber-matrix reaction, the loss of C-rich coating from the surface of the SiC fiber, and the growth of the Beta depleted zone in the matrix adjacent to the fiber are presented. These data and the difference in coefficient of thermal expansion between the fiber and the matrix are discussed in terms of their likely effects on mechanical properties.
Theoretical Studies of Low-Loss Optical Fibers.
1980-09-15
on the fiber surface. Single-mode fiber operation is of interest in communications. Marcuse has shown that surface imperfections are a strong source...0.01 very small value of a : 8A at X = 1 vim Marcuse single mode 2.7 typical value of a = 1 jim, A : 10.6 vm, af = 37 Pim surface imperfections 55...Braunstein, "Scattering Losses in Single and Polycrystalline Materials for Infrared Fiber Applications," unpublished. 5. D. Marcuse , "Mode Conversion
Himei, Yusuke; Qiu, Jianrong; Nakajima, Sotohiro; Sakamoto, Akihiko; Hirao, Kazuyuki
2004-12-01
Novel optical attenuation fibers were fabricated by the irradiation of a focused infrared femtosecond pulsed laser onto the core of a silica glass single-mode optical fiber. Optical attenuation at a wavelength of 1.55 microm proportionally increased with increasing numbers of irradiation points and was controllable under laser irradiation conditions. The single-mode property of the waveguide and the mode-field diameter of the optical fiber were maintained after irradiation of the femtosecond laser. It is suggested that the attenuation results from optical scattering at photoinduced spots formed inside the fiber core.
Thermomechanical Characterization of SiC Fiber Tows and Implications for CMC
NASA Technical Reports Server (NTRS)
Yun, H. M.; DiCarlo, J. A.
1999-01-01
In order to better understand SiC fiber behavior within CMC microstructures, mechanical tests were performed on multifilament tows consisting of different types of as produced and pretreated fibers. Tensile strengths of tows and single fibers were measured at room temperature for nonstoichiometric Hi-Nicalon and ZMI fibers and for stoichiometric Hi-Nicalon-S, Tyranno SA. and Sylramic fibers. Based on simple bundle theory, measured strengths for as-produced and sized tows were in general agreement with the single fiber results. However, after sizing removal under inert conditions, tow strengths for the coarser grained stoichiometric fibers were typically lower than those predicted from individual fiber data. This effect is attributed to enhanced fiber-fiber mechanical interaction caused by sizing removal from the rough surfaces of these fibers. In support of this, tow strengths remained high for those fiber types with fine grains or excess surface carbon; and, when re-coated with a BN interphase coating, tow strengths for the coarser grained fibers returned to their as-produced values. When the tows were pretreated in air at intermediate temperatures, tow strengths decreased in a manner that could be correlated with the oxidation characteristics of each fiber type as measured by thermogravimetric analysis. The creep and rupture properties of Hi-Nicalon and Sylramic tows were also measured in air and argon from 1200 to 1400 C. Although displaying transient and environmental effects similar to single fibers, the tows crept faster at short times and slower at long times. This resulted in the tow rupture strengths at long time being much greater than the rupture strengths of single fibers. The CMC implications of the tow results are discussed, as well as the benefits and limitations of tow testing.
Laothanachareon, Thanaporn; Khonzue, Parichart; Rattanaphan, Nakul; Tinnasulanon, Phungjai; Apawasin, Saowanee; Paemanee, Atchara; Ruanglek, Vasimon; Tanapongpipat, Sutipa; Champreda, Verawat; Eurwilaichitr, Lily
2011-01-01
Enzymatic modification of pulp is receiving increasing interest for energy reduction at the refining step of the paper-making process. In this study, the production of a multi-fiber modifying enzyme from Mamillisphaeria sp. BCC8893 was optimized in submerged fermentation using a response-surface methodology. Maximal production was obtained in a complex medium comprising wheat bran, soybean, and rice bran supplemented with yeast extract at pH 6.0 and a harvest time of 7 d, resulting in 9.2 IU/mL of carboxymethyl cellulase (CMCase), 14.9 IU/mL of filter paper activity (FPase), and 242.7 IU/mL of xylanase. Treatment of old corrugated container pulp at 0.2-0.3 IU of CMCase/g of pulp led to reductions in refining energy of 8.5-14.8%. The major physical properties were retained, including tensile and compression strength. Proteomic analysis showed that the enzyme was a complex composite of endo-glucanases, cellobiohydrolases, beta-1,4-xylanases, and beta-glucanases belonging to various glycosyl hydrolase families, suggestive of cooperative enzyme action in fiber modification, providing the basis for refining efficiency.
2011-09-15
actively Q-switching all-fiber lasers include mag- netostriction modulation of fiber Bragg gratings ( FBGs ), stretching of FBGs with piezoelectric...report an all- fiber single-frequency actively Q-switched laser operat- ing at ∼1920 nm by using a piezo to press the fiber in the FBG cavity based on...fusion-spliced between two FBGs as shown in Fig. 1. One FBG has a high reflectivity (HR) grating imprinted on a non-PM silica fiber. The other FBG
Compact passively Q-switched single-frequency Er3+/Yb3+ codoped phosphate fiber laser
NASA Astrophysics Data System (ADS)
Zhang, Yuanfei; Wang, Simin; Lin, Wei; Mo, Shupei; Zhao, Qilai; Yang, Changsheng; Feng, Zhouming; Deng, Huaqiu; Peng, Mingying; Yang, Zhongmin; Xu, Shanhui
2017-05-01
We present a compact passively Q-switched single-frequency fiber laser based on a 12-mm-long laboratory-built highly Er3+/Yb3+ codoped phosphate fiber (EYDPF) and a semiconductor saturable absorber mirror (SESAM). An effective cavity length of less than 20 mm ensures the stable single-frequency operation of the Q-switched fiber laser. By employing a SESAM for Q-switching, a single-pulse energy of more than 34.4 nJ is realized with the narrowest pulse duration of 95 ns, and the repetition rate of the Q-switched fiber laser reaches over 600 kHz. In addition, the optical signal-to-noise ratio of the output laser is as high as 68.0 dB.
Single-Crystal Germanium Core Optoelectronic Fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Xiaoyu; Page, Ryan L.; Chaudhuri, Subhasis
Synthesis and fabrication of high-quality, small-core single-crystal germanium fibers that are photosensitive at the near-infrared and have low optical losses ≈1 dB cm-1 at 2 μm are reported. These fibers have potential applications in fiber-based spectroscopic imaging, nonlinear optical devices, and photodetection at the telecommunication wavelengths.
Single mode fibers with antireflective surface structures for high power laser applications
NASA Astrophysics Data System (ADS)
Busse, Lynda E.; Florea, Catalin M.; Shaw, L. Brandon; Aggarwal, Ishwar D.; Sanghera, Jasbinder S.
2014-03-01
We present results for increased transmission of ~99.5% in the near-IR through the end faces of silica single mode fibers by creating a random antireflective microstructure etched into the end face of the fiber. We demonstrate high laser damage thresholds for these fibers with AR structured surfaces.
Sadick, N S; Prieto, V G; Shea, C R; Nicholson, J; McCaffrey, T
2001-05-01
The goal of sclerotherapy, laser therapy, and intense pulsed-light therapy is to produce long-term, cosmetically significant elimination of disfiguring leg veins. This study examines the histologic and clinical effects of using a 1064-nm Nd:YAG laser system on lower extremity vessels. A single treatment using the following parameters: wavelength, 1064 nm (multiple synchronized pulsing); spot size, 6 mm; pulse duration, 14 milliseconds (single pulse); and fluence, 130 J/cm(2). Private dermatology practice. Thirteen women (mean age, 38.5 years) with blue venulectasia, 0.5 to 1.5 mm in diameter (class 2), and reticular veins, 1.5 to 3.0 mm in diameter (class 3), on the thighs. Examination of treated and untreated areas by 2 masked observers using macrophotography (1, 2, 3, and 6 months after treatment), Doppler, and optical chromatographic changes. Findings from three 2-mm punch biopsies from treated (immediately and 4 weeks after treatment) and untreated sites. Routine histologic examination; special stains (for elastic and connective tissue and for mucopolysaccharides); and immunohistochemical analysis for expression of the heat shock protein hsp70, tie2 (an endothelial cell-specific receptor tyrosine kinase), and transforming growth factors beta1 and beta2. Eight patients (62%) manifested 75% to 100% clearing of treated vessel surface area. Treated areas revealed perivascular hemorrhage, thrombi, fragmentation and homogenization of elastic fibers, and eosinophilia of vessel walls. Expression of hsp70 and transforming growth factor beta was increased in treated vessels. Our data confirm the effectiveness of 1064-nm Nd:YAG laser treatment in clearing dilated lower extremity veins, probably by heat-induced vessel damage and subsequent fibrosis. Maintenance of clearing was achieved for up to 6 months. However, the presence of recanalized thrombi in some of the specimens suggests the potential for long-term vessel reappearance.
Beta-globin LCR and intron elements cooperate and direct spatial reorganization for gene therapy.
Buzina, Alla; Lo, Mandy Y M; Moffett, Angela; Hotta, Akitsu; Fussner, Eden; Bharadwaj, Rikki R; Pasceri, Peter; Garcia-Martinez, J Victor; Bazett-Jones, David P; Ellis, James
2008-04-11
The Locus Control Region (LCR) requires intronic elements within beta-globin transgenes to direct high level expression at all ectopic integration sites. However, these essential intronic elements cannot be transmitted through retrovirus vectors and their deletion may compromise the therapeutic potential for gene therapy. Here, we systematically regenerate functional beta-globin intron 2 elements that rescue LCR activity directed by 5'HS3. Evaluation in transgenic mice demonstrates that an Oct-1 binding site and an enhancer in the intron cooperate to increase expression levels from LCR globin transgenes. Replacement of the intronic AT-rich region with the Igmu 3'MAR rescues LCR activity in single copy transgenic mice. Importantly, a combination of the Oct-1 site, Igmu 3'MAR and intronic enhancer in the BGT158 cassette directs more consistent levels of expression in transgenic mice. By introducing intron-modified transgenes into the same genomic integration site in erythroid cells, we show that BGT158 has the greatest transcriptional induction. 3D DNA FISH establishes that induction stimulates this small 5'HS3 containing transgene and the endogenous locus to spatially reorganize towards more central locations in erythroid nuclei. Electron Spectroscopic Imaging (ESI) of chromatin fibers demonstrates that ultrastructural heterochromatin is primarily perinuclear and does not reorganize. Finally, we transmit intron-modified globin transgenes through insulated self-inactivating (SIN) lentivirus vectors into erythroid cells. We show efficient transfer and robust mRNA and protein expression by the BGT158 vector, and virus titer improvements mediated by the modified intron 2 in the presence of an LCR cassette composed of 5'HS2-4. Our results have important implications for the mechanism of LCR activity at ectopic integration sites. The modified transgenes are the first to transfer intronic elements that potentiate LCR activity and are designed to facilitate correction of hemoglobinopathies using single copy vectors.
Growth of single-crystal YAG fiber optics.
Nie, Craig D; Bera, Subhabrata; Harrington, James A
2016-07-11
Single-crystal YAG (Y3Al5O12) fibers have been grown by the laser heated pedestal growth technique with losses as low as 0.3 dB/m at 1.06 μm. These YAG fibers are as long as about 60 cm with diameters around 330 μm. The early fibers were grown from unoriented YAG seed fibers and these fibers exhibited facet steps or ridges on the surface of the fiber. However, recently we have grown fibers using an oriented seed to grow step-free fibers. Scattering losses made on the fibers indicate that the scattering losses are equal to about 30% of the total loss.
Sun, Nina N; Wong, Simon S; Keith, Ingegerd; Witten, Mark L
2004-09-01
To evaluate the role of substance P (SP)-containing C-fiber nerves in the development of the inflammatory responses to sidestream cigarette smoke (SSCS), female Fischer 344 rats were randomly assigned into vehicle and capsaicin groups, respectively. Then, half the number in each group (N = 24) was nose-only exposed to air or 0.4 mg/m3 total particulate matter of SSCS for 4 h/day for 7 days. Exposure of the vehicle rats to SSCS induced obvious pulmonary neurogenic inflammation as indicated by elevations in plasma extravasation and proinflammatory cytokine secretions [interieukin (IL)-1beta and IL-12]. In addition, except for SP release, SSCS exposure significantly induced the tachykininergic toxicities at the gene level: upregulation of beta-preprotachykinin-I (beta-PPT-I) mRNA. However, neither SSCS exposure nor capsaicin pretreatment affects the immunolabeling density of neurokinin-1 receptor (NK-1R) in airway epithelium. SSCS also significantly inactivated pulmonary neutral endopeptidase (NEP) in lung tissue. Moreover, pretreatment with capsaicin significantly exacerbated the SSCS-induced inflammatory responses mentioned above as well as the release of plasma protein. Considering that capsaicin did not affect the normal control baselines of these parameters except for a decrease in NK-1R mRNA, we conclude that the degree of SSCS-induced inflammatory response was exacerbated because of the depletion of stored SP and/or inactivation of capsaicin-sensitive C-fiber nerves. Our data suggest the loss of afferent tachykinin SP signaling may lead to dysfunction of the sensory C-fiber nerve reflexes during exposure to SSCS, suggesting that SP serves a protective role.
NASA Astrophysics Data System (ADS)
Smith, P. R.; Graves, J. A.; Rhodes, Cg.
1994-06-01
The attributes of an orthorhombic Ti aluminide alloy, Ti-21Al-22Nb (at. pct), and an alpha-two Ti aluminide alloy, Ti-24Al-11Nb (at. pct), for use as a matrix with continuous SiC (SCS-6) fiber reinforcement have been compared. Foil-fiber-foil processing was used to produce both unreinforced (“neat”) and unidirectional “SCS-6” reinforced panels. Microstructure of the Ti-24A1-11Nb matrix consisted of ordered Ti3Al ( α 2) + disordered beta (β), while the Ti-21 Al-22Nb matrix contained three phases: α2, ordered beta ( β 0), and ordered orthorhombic (O). Fiber/ matrix interface reaction zone growth kinetics at 982 °C were examined for each composite system. Although both systems exhibited similar interface reaction products (i.e., mixed Ti carbides, silicides, and Ti-Al carbides), growth kinetics in the α 2 + β matrix composite were much more rapid than in the O + β 0 + α 2 matrix composite. Additionally, interfacial reaction in the α 2 + β} composite resulted in a relatively large brittle matrix zone, depleted of beta phase, which was not present in the O + β 0+ α 2 matrix composite. Mechanical property measurements included room and elevated temperature tensile, thermal stability, thermal fatigue, thermo-mechanical fatigue (TMF), and creep. The three-phase orthorhombic-based alloy outperformed the α2+ β alloy in all of these mechanical behavioral areas, on both an absolute and a specific (i.e., density corrected) basis.
Multimode and single-mode fibers for data center and high-performance computing applications
NASA Astrophysics Data System (ADS)
Bickham, Scott R.
2016-03-01
Data center (DC) and high performance computing (HPC) applications have traditionally used a combination of copper, multimode fiber and single-mode fiber interconnects with relative percentages that depend on factors such as the line rate, reach and connectivity costs. The balance between these transmission media has increasingly shifted towards optical fiber due to the reach constraints of copper at data rates of 10 Gb/s and higher. The percentage of single-mode fiber deployed in the DC has also grown slightly since 2014, coinciding with the emergence of mega DCs with extended distance needs beyond 100 m. This trend will likely continue in the next few years as DCs expand their capacity from 100G to 400G, increase the physical size of their facilities and begin to utilize silicon-photonics transceiver technology. However there is a still a need for the low-cost and high-density connectivity, and this is sustaining the deployment of multimode fiber for links <= 100 m. In this paper, we discuss options for single-mode and multimode fibers in DCs and HPCs and introduce a reduced diameter multimode fiber concept which provides intra-and inter-rack connectivity as well as compatibility with silicon-photonic transceivers operating at 1310 nm. We also discuss the trade-offs between single-mode fiber attributes such as bend-insensitivity, attenuation and mode field diameter and their roles in capacity and connectivity in data centers.
Crystal fibers for high power lasers
NASA Astrophysics Data System (ADS)
Kim, W.; Florea, C.; Gibson, D.; Peele, J.; Askins, C.; Shaw, B.; Bowman, S.; O'Connor, S.; Bayya, S.; Aggarwal, I.; Sanghera, J. S.
2013-02-01
In this paper, we present our recent progress in developing single crystal fibers for high power single frequency fiber lasers. The optical, spectral and morphological properties as well as the loss and gain measured from these crystal fibers drawn by Laser Heated Pedestal Growth (LHPG) system are also discussed. Results on application of various cladding materials on the crystal core and the methods of fiber end-face polishing are also presented.
Field Comparison of the Sampling Efficacy of Two Smear Media: Cotton Fiber and Kraft Paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogue, M.G.
Two materials were compared in field tests at the Defense Waste Processing Facility: kraft paper (a strong, brown paper made from wood pulp prepared with a sodium sulfate solution) and cotton fiber. Based on a sampling of forty-six pairs of smears, the cotton fiber smears provide a greater sensitivity. The cotton fiber smears collected an average of forty-four percent more beta activity than the kraft paper smears and twenty-nine percent more alpha activity. Results show a greater sensitivity with cotton fiber over kraft paper at the 95 percent confidence level. Regulatory requirements for smear materials are vague. The data demonstratemore » that the difference in sensitivity of smear materials could lead to a large difference in reported results that are subsequently used for meeting shipping regulations or evaluating workplace contamination levels.« less
NASA Astrophysics Data System (ADS)
Beier, Franz; Proske, Fritz; Hupel, Christian; Kuhn, Stefan; Hein, Sigrun; Sattler, Bettina; Nold, Johannes; Haarlammert, Nicoletta; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas
2017-03-01
Fiber amplifiers are representing one of the most promising solid state laser concepts, due to the compact setup size, a simple thermal management and furthermore excellent beam quality. In this contribution, we report on the latest results from a low-NA, large mode area single mode fiber with a single mode output power beyond 4 kW without any indication of mode instabilities or nonlinear effects and high slope efficiency. Furthermore, we quantify the influence of the bending diameter of our manufactured low NA fiber on the average core loss by an OFDR measurement and determine the optimal bending diameter in comparison to a second fiber with a slightly changed NA. The fibers used in the experiments were fabricated by MCVD technology combined with the solution doping technique. The investigation indicates the limitation of the step index fiber design and its influence on the use in high power fiber amplifiers. We demonstrate, that even a slightly change in the core NA crucially influences the minimum bending diameter of the fiber and has to be taken into account in applications. The measured output power represents to the best of our knowledge the highest single mode output power of an amplifier fiber ever reported on.
Random fiber laser based on artificially controlled backscattering fibers.
Wang, Xiaoliang; Chen, Daru; Li, Haitao; She, Lijuan; Wu, Qiong
2018-01-10
The random fiber laser (RFL), which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previously reported RFLs are based on distributed feedback of Rayleigh scattering amplified through the stimulated Raman-Brillouin scattering effect in single-mode fibers, which require long-distance (tens of kilometers) single-mode fibers and high threshold, up to watt level, due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open-cavity RFL based on a segment of an artificially controlled backscattering single-mode fiber with a length of 210 m, 310 m, or 390 m. A fiber Bragg grating with a central wavelength of 1530 nm and a segment of artificially controlled backscattering single-mode fiber fabricated by using a femtosecond laser form the half-open cavity. The proposed RFL achieves thresholds of 25 mW, 30 mW, and 30 mW, respectively. Random lasing at a wavelength of 1530 nm and extinction ratio of 50 dB is achieved when a segment of 5 m erbium-doped fiber is pumped by a 980 nm laser diode in the RFL. A novel RFL with many short cavities has been achieved with low threshold.
Measurement of Maximum Isometric Force Generated by Permeabilized Skeletal Muscle Fibers.
Roche, Stuart M; Gumucio, Jonathan P; Brooks, Susan V; Mendias, Christopher L; Claflin, Dennis R
2015-06-16
Analysis of the contractile properties of chemically skinned, or permeabilized, skeletal muscle fibers offers a powerful means by which to assess muscle function at the level of the single muscle cell. Single muscle fiber studies are useful in both basic science and clinical studies. For basic studies, single muscle fiber contractility measurements allow investigation of fundamental mechanisms of force production, and analysis of muscle function in the context of genetic manipulations. Clinically, single muscle fiber studies provide useful insight into the impact of injury and disease on muscle function, and may be used to guide the understanding of muscular pathologies. In this video article we outline the steps required to prepare and isolate an individual skeletal muscle fiber segment, attach it to force-measuring apparatus, activate it to produce maximum isometric force, and estimate its cross-sectional area for the purpose of normalizing the force produced.
Brotto, Marco A; Biesiadecki, Brandon J; Brotto, Leticia S; Nosek, Thomas M; Jin, Jian-Ping
2006-02-01
Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.
BROTTO, MARCO A.; BIESIADECKI, BRANDON J.; BROTTO, LETICIA S.; NOSEK, THOMAS M; JIN, J.-P.
2005-01-01
(Summary) Brotto, Marco A., Brandon J. Biesiadecki, Leticia S. Brotto, Thomas M. Nosek, and J.-P. Jin. Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca2+ via the troponin complex. Slow and fast twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin and troponin T (TnT) and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton skinned single fibers from soleus, diaphragm, gastrocnemius and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of TnT and TnI isoform to investigate their role in determining contractility. Type IIa, IIx and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca2+ sensitivity than that of the fast troponin fibers, while fibers containing fast troponin showed a higher cooperativity of Ca2+ activation than that of the slow troponin fibers. The results demonstrate distinctive, but coordinated, regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties. PMID:16192301
Crucibleless crystal growth and Radioluminescence study of calcium tungstate single crystal fiber
NASA Astrophysics Data System (ADS)
Silva, M. S.; Jesus, L. M.; Barbosa, L. B.; Ardila, D. R.; Andreeta, J. P.; Silva, R. S.
2014-11-01
In this article, single phase and high optical quality scheelite calcium tungstate single crystal fibers were grown by using the crucibleless laser heated pedestal growth technique. The as-synthesized calcium tungstate powders used for shaping seed and feed rods were investigated by X-ray diffraction technique. As-grown crystals were studied by Raman spectroscopy and Radioluminescence measurements. The results indicate that in both two cases, calcined powder and single crystal fiber, only the expected scheelite CaWO4 phase was observed. It was verified large homogeneity in the crystal composition, without the presence of secondary phases. The Radioluminescence spectra of the as-grown single crystal fibers are in agreement with that present in Literature for bulk single crystals, presented a single emission band centered at 420 nm when irradiated with β-rays.
P38 Mitogen-Activated Protein Kinase in Metastasis Associated With Transforming Growth Factor Beta
2005-06-01
36, 2001. Shin I, Bakin AV, Rodeck U, Brunet A, Arteaga CL. TGFbeta enhances epithelial cell survival via Akt - dependent regulation of FKHRLI. Mol Biol... Akt mediates cell-cycle progression by phosphorylation of p27Kip’ at threonine 157 and modulation of its cellular localization. Nat Med 8:1145-1152...stress fibers. Ectopic- expression and siRNA experiments show that Smad3 and Smad4 mediate up-regulation of tropomyosins and stress fiber formation
McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; ...
2018-03-26
A new method to tag the barium daughter in the double beta decay ofmore » $$^{136}$$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$$^{++}$$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($$\\sim$$2~nm), and detected with a statistical significance of 12.9~$$\\sigma$$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.« less
Apparatus and method for combining light from two or more fibers into a single fiber
Klingsporn, Paul Edward
2007-02-20
An apparatus and method for combining light signals carried on a plurality of input fibers onto a single receiving fiber with a high degree of efficiency. The apparatus broadly comprises the receiving fiber and a plurality of input fiber-lens assemblies, with each fiber lens assembly including an input fiber; a collimating lens interposed between the input fiber and the receiving fiber and adapted to collimate the light signal; and a focusing lens interposed between the collimating lens and the receiving fiber and adapted to focus the collimated light signal onto the face of the receiving fiber. The components of each fiber-lens assembly are oriented along an optic axis that is inclined relative to the receiving fiber, with the inclination angle depending at least in part on the input fiber's numerical aperture and the focal lengths and diameters of the collimating and focusing lenses.
Apparatus and method for combining light from two or more fibers into a single fiber
Klingsporn, Paul Edward
2006-03-14
An apparatus and method for combining light signals carried on a plurality of input fibers onto a single receiving fiber with a high degree of efficiency. The apparatus broadly comprises the receiving fiber and a plurality of input fiber-lens assemblies, with each fiber lens assembly including an input fiber; a collimating lens interposed between the input fiber and the receiving fiber and adapted to collimate the light signal; and a focusing lens interposed between the collimating lens and the receiving fiber and adapted to focus the collimated light signal onto the face of the receiving fiber. The components of each fiber-lens assembly are oriented along an optic axis that is inclined relative to the receiving fiber, with the inclination angle depending at least in part on the input fiber's numerical aperture and the focal lengths and diameters of the collimating and focusing lenses.
200-W single frequency laser based on short active double clad tapered fiber
NASA Astrophysics Data System (ADS)
Pierre, Christophe; Guiraud, Germain; Yehouessi, Jean-Paul; Santarelli, Giorgio; Boullet, Johan; Traynor, Nicholas; Vincont, Cyril
2018-02-01
High power single frequency lasers are very attractive for a wide range of applications such as nonlinear conversion, gravitational wave sensing or atom trapping. Power scaling in single frequency regime is a challenging domain of research. In fact, nonlinear effect as stimulated Brillouin scattering (SBS) is the primary power limitation in single frequency amplifiers. To mitigate SBS, different well-known techniques has been improved. These techniques allow generation of several hundred of watts [1]. Large mode area (LMA) fibers, transverse acoustically tailored fibers [2], coherent beam combining and also tapered fiber [3] seem to be serious candidates to continue the power scaling. We have demonstrated the generation of stable 200W output power with nearly diffraction limited output, and narrow linewidth (Δν<30kHz) by using a tapered Yb-doped fiber which allow an adiabatic transition from a small purely single mode input to a large core output.
Nucleation and growth of a bacterial functional amyloid at single fiber resolution
Feuillie, Cécile; Jonckheere, Wim; Valotteau, Claire; Dufrêne, Yves F.; Remaut, Han
2017-01-01
Curli are functional amyloids produced by proteobacteria like Escherichia coli, as part of the extracellular matrix that holds cells together into biofilms. The molecular events during curli nucleation and fiber extension remain largely unknown. Combining observations from curli amyloidogenesis in bulk solutions with real-time in situ nanoscopic imaging at the single fiber level, we show that curli display polar growth, and detect two kinetic regimes of fiber elongation. Single fibers exhibit stop-and-go dynamics characterized by bursts of steady-state growth alternated with periods of stagnation. At high subunit concentrations fibers show constant, unperturbed burst growth. Curli follow a one-step nucleation process, where monomers contemporaneously fold and oligomerize into minimal fiber units that have growth characteristics identical to the mature fibrils. Kinetic data and interaction studies of curli fibrillation in the presence of the natural inhibitor CsgC show the inhibitor binds curli fibers and predominantly acts at the level of fiber elongation. PMID:28628096
Single-mode SOA-based 1kHz-linewidth dual-wavelength random fiber laser.
Xu, Yanping; Zhang, Liang; Chen, Liang; Bao, Xiaoyi
2017-07-10
Narrow-linewidth multi-wavelength fiber lasers are of significant interests for fiber-optic sensors, spectroscopy, optical communications, and microwave generation. A novel narrow-linewidth dual-wavelength random fiber laser with single-mode operation, based on the semiconductor optical amplifier (SOA) gain, is achieved in this work for the first time, to the best of our knowledge. A simplified theoretical model is established to characterize such kind of random fiber laser. The inhomogeneous gain in SOA mitigates the mode competition significantly and alleviates the laser instability, which are frequently encountered in multi-wavelength fiber lasers with Erbium-doped fiber gain. The enhanced random distributed feedback from a 5km non-uniform fiber provides coherent feedback, acting as mode selection element to ensure single-mode operation with narrow linewidth of ~1kHz. The laser noises are also comprehensively investigated and studied, showing the improvements of the proposed random fiber laser with suppressed intensity and frequency noises.
All-fiber bandpass filter based on asymmetrical modes exciting and coupling
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Zhu, Tao; Shi, Leilei; Liu, Min
2013-01-01
A low cost all-fiber bandpass filter is demonstrated by fabricating an asymmetric long-period fiber grating (LPFG) in an off-set splicing fiber structure of two single mode fibers in this paper. The main principle of the filter is that the asymmetric LPFG written by single-side CO2 laser irradiation is used to couple the asymmetric cladding modes excited by the offset-coupling of the splicing point between the single mode fiber and the grating, and the left core mode of the splicing point cannot be coupled to the right fiber core, hence the interference effect is avoided. So the bandpass characteristics in the transmission spectrum are achieved. The designed filter exhibits a pass band at a central wavelength of 1565.0 nm with a full-width at half-maximum bandwidth of 12.3 nm.
Wu, Hao; Wang, Ruoxu; Liu, Deming; Fu, Songnian; Zhao, Can; Wei, Huifeng; Tong, Weijun; Shum, Perry Ping; Tang, Ming
2016-04-01
We proposed and demonstrated a few-mode fiber (FMF) based optical-fiber sensor for distributed curvature measurement through quasi-single-mode Brillouin frequency shift (BFS). By central-alignment splicing FMF and single-mode fiber (SMF) with a fusion taper, a SMF-components-compatible distributed curvature sensor based on FMF is realized using the conventional Brillouin optical time-domain analysis system. The distributed BFS change induced by bending in FMF has been theoretically and experimentally investigated. The precise BFS response to the curvature along the fiber link has been calibrated. A proof-of-concept experiment is implemented to validate its effectiveness in distributed curvature measurement.
Single frequency 1083nm ytterbium doped fiber master oscillator power amplifier laser.
Huang, Shenghong; Qin, Guanshi; Shirakawa, Akira; Musha, Mitsuru; Ueda, Ken-Ichi
2005-09-05
Single frequency 1083nm ytterbium fiber master oscillator power amplifier system was demonstrated. The oscillator was a linear fiber cavity with loop mirror filter and polarization controller. The loop mirror with unpumped ytterbium fiber as a narrow bandwidth filter discriminated and selected laser longitudinal modes efficiently. Spatial hole burning effect was restrained by adjusting polarization controller appropriately in the linear cavity. The amplifier was 5 m ytterbium doped fiber pumped by 976nm pigtail coupled laser diode. The linewidth of the single frequency laser was about 2 KHz. Output power up to 177 mW was produced under the launched pump power of 332 mW.
Design of a family of ring-core fibers for OAM transmission studies.
Brunet, Charles; Ung, Bora; Wang, Lixian; Messaddeq, Younès; LaRochelle, Sophie; Rusch, Leslie A
2015-04-20
We propose a family of ring-core fibers, designed for the transmission of OAM modes, that can be fabricated by drawing five different fibers from a single preform. This novel technique allows us to experimentally sweep design parameters and speed up the fiber design optimization process. Such a family of fibers could be used to examine system performance, but also facilitate understanding of parameter impact in the transition from design to fabrication. We present design parameters characterizing our fiber, and enumerate criteria to be satisfied. We determine targeted fiber dimensions and explain our strategy for examining a design family rather than a single fiber design. We simulate modal properties of the designed fibers, and compare the results with measurements performed on fabricated fibers.
Solid-Core Photonic Bandgap Fibers for Cladding-Pumped Raman Amplification
2011-06-03
L. Leick, J. Broeng, and S. Selleri, “Single-mode analysis of Yb- doped double-cladding distributed spectral filtering photonic crystal fibers ,” Opt... fiber amplifiers are analyzed theoretically as possible candidates for power scaling. An example fiber design with a mode field diameter of 46 µm and... doped fiber laser with true single-mode output using W-type structure,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2006
A New Three-Dimensional High-Accuracy Automatic Alignment System For Single-Mode Fibers
NASA Astrophysics Data System (ADS)
Yun-jiang, Rao; Shang-lian, Huang; Ping, Li; Yu-mei, Wen; Jun, Tang
1990-02-01
In order to achieve the low-loss splices of single-mode fibers, a new three-dimension high-accuracy automatic alignment system for single -mode fibers has been developed, which includes a new-type three-dimension high-resolution microdisplacement servo stage driven by piezoelectric elements, a new high-accuracy measurement system for the misalignment error of the fiber core-axis, and a special single chip microcomputer processing system. The experimental results show that alignment accuracy of ±0.1 pin with a movable stroke of -±20μm has been obtained. This new system has more advantages than that reported.
NASA Astrophysics Data System (ADS)
Shen, Xinglai; Zhang, Haitao; Hao, He; Li, Dan; Li, Qinghua; Yan, Ping; Gong, Mali
2015-06-01
We report the construction of a cascaded fiber amplifier where a 40-μm-core-diameter photonic crystal fiber is utilized in the main amplifier stage. Single-transverse-mode, linearly-polarized, 7.5 ns pulses with 1.5 mJ energy, 123 kW peak power and 10 nm spectral bandwidth centered at 1062 nm are generated. To our knowledge, the pulse energy we obtain is the highest from 40-μm-core-diameter photonic crystal fibers, and also the highest for long pulses (>1 ns) with linear polarization and single transverse mode.
NASA Technical Reports Server (NTRS)
Bouillie, Remy (Editor)
1986-01-01
Papers are presented on outside vapor deposition, the plasma activated CVD process for large scale production of telecommunication fibers, axial lateral plasma deposition technology from plastic clad silica, coatings for optical fibers, primary coating characterization, and radiation-induced time dependent attenuation in a fiber. Topics discussed include fibers with high tensile strength, the characteristics and specifications of airborne fiber optic components, the baseband frequency response of multimode fibers, and fibers for local and broadband networks. Consideration is given to industrial measurements for single mode and multimode fibers, the characterization of source power distribution in a multimode fiber by a splice offset technique, the measurement of chromatic dispersion in a single mode optical, and the effect of temperature on the refracted near-field optical fiber profiling technique.
Wang, Haiyan; Arias, Edward B; Yu, Carmen S; Verkerke, Anthony R P; Cartee, Gregory D
2017-11-09
Calorie restriction (CR; reducing calorie intake by ~40% below ad libitum) can increase glucose uptake by insulin-stimulated muscle. Because skeletal muscle is comprised of multiple, heterogeneous fiber types, our primary aim was to determine the effects of CR (initiated at 14 weeks old) and fiber type on insulin-stimulated glucose uptake by single fibers of diverse fiber types in 23-26-month-old rats. Isolated epitrochlearis muscles from AL and CR rats were incubated with [3H]-2-deoxyglucose ± insulin. Glucose uptake and fiber type were determined for single fibers dissected from the muscles. We also determined CR-effects on abundance of several key metabolic proteins in single fibers. CR resulted in: (a) significantly (p < .05 to .001) greater glucose uptake by insulin-stimulated type I, IIA, IIB, IIBX, and IIX fibers; (b) significantly (p < .05 to .001) reduced abundance of several mitochondrial electron transport chain (ETC) and oxidative phosphorylation (OxPhos) proteins in type I, IIA, and IIBX but not IIB and IIX fibers; and (c) unaltered hexokinase II abundance in each fiber type. These results demonstrate that CR can enhance glucose uptake in each fiber type of rat skeletal muscle in the absence of upregulation of the abundance of hexokinase II or key mitochondrial ETC and OxPhos proteins. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
1995-01-01
The role of the latent TGF-beta binding protein (LTBP) is unclear. In cultures of fetal rat calvarial cells, which form mineralized bonelike nodules, both LTBP and the TGF-beta 1 precursor localized to large fibrillar structures in the extracellular matrix. The appearance of these fibrillar structures preceded the appearance of type I collagen fibers. Plasmin treatment abolished the fibrillar staining pattern for LTBP and released a complex containing both LTBP and TGF-beta. Antibodies and antisense oligonucleotides against LTBP inhibited the formation of mineralized bonelike nodules in long-term fetal rat calvarial cultures. Immunohistochemistry of fetal and adult rat bone confirmed a fibrillar staining pattern for LTBP in vivo. These findings, together with the known homology of LTBP to the fibrillin family of proteins, suggest a novel function for LTBP, in addition to its role in matrix storage of latent TGF-beta, as a structural matrix protein that may play a role in bone formation. PMID:7593177
Parallel Information Processing (Image Transmission Via Fiber Bundle and Multimode Fiber
NASA Technical Reports Server (NTRS)
Kukhtarev, Nicholai
2003-01-01
Growing demand for visual, user-friendly representation of information inspires search for the new methods of image transmission. Currently used in-series (sequential) methods of information processing are inherently slow and are designed mainly for transmission of one or two dimensional arrays of data. Conventional transmission of data by fibers requires many fibers with array of laser diodes and photodetectors. In practice, fiber bundles are also used for transmission of images. Image is formed on the fiber-optic bundle entrance surface and each fiber transmits the incident image to the exit surface. Since the fibers do not preserve phase, only 2D intensity distribution can be transmitted in this way. Each single mode fiber transmit only one pixel of an image. Multimode fibers may be also used, so that each mode represent different pixel element. Direct transmission of image through multimode fiber is hindered by the mode scrambling and phase randomization. To overcome these obstacles wavelength and time-division multiplexing have been used, with each pixel transmitted on a separate wavelength or time interval. Phase-conjugate techniques also was tested in, but only in the unpractical scheme when reconstructed image return back to the fiber input end. Another method of three-dimensional imaging over single mode fibers was demonstrated in, using laser light of reduced spatial coherence. Coherence encoding, needed for a transmission of images by this methods, was realized with grating interferometer or with the help of an acousto-optic deflector. We suggest simple practical holographic method of image transmission over single multimode fiber or over fiber bundle with coherent light using filtering by holographic optical elements. Originally this method was successfully tested for the single multimode fiber. In this research we have modified holographic method for transmission of laser illuminated images over commercially available fiber bundle (fiber endoscope, or fiberscope).
Buckeridge, M S; Vergara, C E; Carpita, N C
2001-08-01
Synthases of cellulose, chitin, hyaluronan, and all other polymers containing (1-->4)beta-linked glucosyl, mannosyl and xylosyl units have overcome a substrate orientation problem in catalysis because the (1-->4)beta-linkage requires that each of these sugar units be inverted nearly 180 degrees with respect to its neighbors. We and others have proposed that this problem is solved by two modes of glycosyl transfer within a single catalytic subunit to generate disaccharide units, which, when linked processively, maintain the proper orientation without rotation or re-orientation of the synthetic machinery in 3-dimensional space. A variant of the strict (1-->4)beta-D-linkage structure is the mixed-linkage (1-->3),(1-->4)beta-D-glucan, a growth-specific cell wall polysaccharide found in grasses and cereals. beta-Glucan is composed primarily of cellotriosyl and cellotetraosyl units linked by single (1-->3)beta-D-linkages. In reactions in vitro at high substrate concentration, a polymer composed of almost entirely cellotriosyl and cellopentosyl units is made. These results support a model in which three modes of glycosyl transfer occur within the synthase complex instead of just two. The generation of odd numbered units demands that they are connected by (1-->3)beta-linkages and not (1-->4)beta-. In this short review of beta-glucan synthesis in maize, we show how such a model not only provides simple mechanisms of synthesis for all (1-->4)beta-D-glycans but also explains how the synthesis of callose, or strictly (1-->3)beta-D-glucans, occurs upon loss of the multiple modes of glycosyl transfer to a single one.
Transverse compression of PPTA fibers
NASA Astrophysics Data System (ADS)
Singletary, James
2000-07-01
Results of single transverse compression testing of PPTA and PIPD fibers, using a novel test device, are presented and discussed. In the tests, short lengths of single fibers are compressed between two parallel, stiff platens. The fiber elastic deformation is analyzed as a Hertzian contact problem. The inelastic deformation is analyzed by elastic-plastic FE simulation and by laser-scanning confocal microscopy of the compressed fibers ex post facto. The results obtained are compared to those in the literature and to the theoretical predictions of PPTA fiber transverse elasticity based on PPTA crystal elasticity.
NASA Astrophysics Data System (ADS)
Gonschior, C. P.; Klein, K.-F.; Sun, T.; Grattan, K. T. V.
2012-04-01
As the demand for high power fiber-coupled violet laser systems increases existing problems remain. The typical power of commercially available diode lasers around 400 nm is in the order of 100 to 300 mW, depending on the type of laser. But in combination with the small core of single-mode fibers reduced spot sizes are needed for good coupling efficiencies, leading to power densities in the MW/cm2 range. We investigated the influence of 405 nm laser light irradiation on different fused silica fibers and differently treated end-faces. The effect of glued-and-polished, cleaved-and-clamped and of cleaved-and-fusion-arc-treated fiber end-faces on the damage rate and behavior are presented. In addition, effects in the deep ultra-violet were determined spectrally using newest spectrometer technology, allowing the measurement of color centers around 200 nm in small core fibers. Periodic surface structures were found on the proximal end-faces and were investigated concerning generation control parameters and composition. The used fiber types range from low-mode fiber to single-mode and polarization-maintaining fiber. For this investigation 405 nm single-mode or multi-mode diode lasers with 150 mW or 300 mW, respectively, were employed.
Real-time x-ray diffraction measurements of shocked polycrystalline tin and aluminum.
Morgan, Dane V; Macy, Don; Stevens, Gerald
2008-11-01
A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35 ns pulse. The characteristic K(alpha) lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic K(beta) line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3 x 6 mm(2) spot and 1 degrees full width half maximum angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5 degrees . A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device camera through a coherent fiber-optic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1 mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic aluminum lattice with no phase transformation.
Infrared fibers in the 1.5um to 18um range: availability and measured properties
NASA Astrophysics Data System (ADS)
Felkel, Robert; Leeb, Walter
2017-11-01
With a view towards the application in space-borne optical instruments, we first performed a world-wide market survey of infrared fibers designed for the wavelength range of 1.5 μm to 18 μm. Fiber samples purchased and tested comprise fluoride fibers, chalcogenide fibers, a germanate fiber and a silver-halide fiber, as well as hollow fibers. While the majority of infrared fibers offered are of the multi-mode type, three of the fluoride fibers are single-mode. We report on the polarization degrading effect of a single-mode fiber and present a possible solution to achieve polarization maintainance by twisting the fiber. Secondly we report on measurements of numerical aperture, output beam profile, and attenuation of a hollow fiber. The measurements were performed at the wavelengths of λ= 3.39 μm and λ= 10.6 μm.
High-energy 100-ns single-frequency all-fiber laser at 1064 nm
NASA Astrophysics Data System (ADS)
Fu, Shijie; Shi, Wei; Tang, Zhao; Shi, Chaodu; Bai, Xiaolei; Sheng, Quan; Chavez-Pirson, Arturo; Peyghambarian, N.; Yao, Jianquan
2018-02-01
A high-energy, single-frequency fiber laser with long pulse duration of 100 ns has been experimentally investigated in an all-fiber architecture. Only 34-cm long heavily Yb-doped phosphate fiber was employed in power scaling stage to efficiently suppress the Stimulated Brillouin effect (SBS). In the experiment, 0.47 mJ single pulse energy was achieved in power scaling stage at the pump power of 16 W. The pre-shaped pulse was gradually broadened from 103 to 140 ns during the amplification without shape distortion.
Fiber optic SERS-based plasmonics nanobiosensing in single living cells
NASA Astrophysics Data System (ADS)
Scaffidi, Jonathan P.; Gregas, Molly K.; Seewaldt, Victoria; Vo-Dinh, Tuan
2009-05-01
We describe the development of small molecule-sensitive plasmonics-active fiber-optic nanoprobes suitable for intracellular bioanalysis in single living human cells using surface-enhanced Raman scattering (SERS) detection. The practical utility of SERS-based fiber-optic nanoprobes is illustrated by measurements of intracellular pH in HMEC- 15/hTERT immortalized "normal" human mammary epithelial cells and PC-3 human prostate cancer cells. The results indicate that fiber-optic nanoprobe insertion and interrogation provide a sensitive and selective means to monitor biologically-relevant small molecules at the single cell level.
Szlavik, Robert B
2016-02-01
The characterization of peripheral nerve fiber distributions, in terms of diameter or velocity, is of clinical significance because information associated with these distributions can be utilized in the differential diagnosis of peripheral neuropathies. Electro-diagnostic techniques can be applied to the investigation of peripheral neuropathies and can yield valuable diagnostic information while being minimally invasive. Nerve conduction velocity studies are single parameter tests that yield no detailed information regarding the characteristics of the population of nerve fibers that contribute to the compound-evoked potential. Decomposition of the compound-evoked potential, such that the velocity or diameter distribution of the contributing nerve fibers may be determined, is necessary if information regarding the population of contributing nerve fibers is to be ascertained from the electro-diagnostic study. In this work, a perturbation-based decomposition of compound-evoked potentials is proposed that facilitates determination of the fiber diameter distribution associated with the compound-evoked potential. The decomposition is based on representing the single fiber-evoked potential, associated with each diameter class, as being perturbed by contributions, of varying degree, from all the other diameter class single fiber-evoked potentials. The resultant estimator of the contributing nerve fiber diameter distribution is valid for relatively large separations in diameter classes. It is also useful in situations where the separation between diameter classes is small and the concomitant single fiber-evoked potentials are not orthogonal.
Repeated high-intensity exercise modulates Ca(2+) sensitivity of human skeletal muscle fibers.
Gejl, K D; Hvid, L G; Willis, S J; Andersson, E; Holmberg, H-C; Jensen, R; Frandsen, U; Hansen, J; Plomgaard, P; Ørtenblad, N
2016-05-01
The effects of short-term high-intensity exercise on single fiber contractile function in humans are unknown. Therefore, the purposes of this study were: (a) to access the acute effects of repeated high-intensity exercise on human single muscle fiber contractile function; and (b) to examine whether contractile function was affected by alterations in the redox balance. Eleven elite cross-country skiers performed four maximal bouts of 1300 m treadmill skiing with 45 min recovery. Contractile function of chemically skinned single fibers from triceps brachii was examined before the first and following the fourth sprint with respect to Ca(2+) sensitivity and maximal Ca(2+) -activated force. To investigate the oxidative effects of exercise on single fiber contractile function, a subset of fibers was incubated with dithiothreitol (DTT) before analysis. Ca(2+) sensitivity was enhanced by exercise in both MHC I (17%, P < 0.05) and MHC II (15%, P < 0.05) fibers. This potentiation was not present after incubation of fibers with DTT. Specific force of both MHC I and MHC II fibers was unaffected by exercise. In conclusion, repeated high-intensity exercise increased Ca(2+) sensitivity in both MHC I and MHC II fibers. This effect was not observed in a reducing environment indicative of an exercise-induced oxidation of the human contractile apparatus. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Baselt, Tobias; Popp, Tobias; Nelsen, Bryan; Lasagni, Andrés. Fabián.; Hartmann, Peter
2017-05-01
Endlessly single-mode fibers, which enable single mode guidance over a wide spectral range, are indispensable in the field of fiber technology. A two-dimensional photonic crystal with a silica central core and a micrometer-spaced hexagonal array of air holes is an established method to achieve endless single-mode guidance. There are two possible ways to determine the dispersion: measurement and calculation. We calculate the group velocity dispersion GVD based on the measurement of the fiber structure parameters, the hole diameter and the pitch of a presumed homogeneous hexagonal array and compare the calculation with two methods to measure the wavelength-dependent time delay. We measure the time delay on a three hundred meter test fiber with a homemade supercontinuum light source, a set of bandpass filters and a fast detector and compare the results with a white light interferometric setup. To measure the dispersion of optical fibers with high accuracy, a time-frequency-domain setup based on a Mach-Zehnder interferometer is used. The experimental setup allows the determination of the wavelength dependent differential group delay of light travelling through a thirty centimeter piece of test fiber in the wavelength range from VIS to NIR. The determination of the GVD using different methods enables the evaluation of the individual methods for characterizing the endlessly single-mode fiber.
Tunable all-fiber dissipative-soliton laser with a multimode interference filter.
Zhang, Lei; Hu, Jinmeng; Wang, Jianhua; Feng, Yan
2012-09-15
We report on a tunable all-fiber dissipative-soliton laser with a multimode interference filter that consists of a multimode fiber spliced between two single-mode fibers. By carefully selecting the fiber parameters, a filter with a central wavelength at 1032 nm and a bandwidth of 7.6 nm is constructed and used for spectral filtering in an all-normal-dispersion mode-locked ytterbium-doped fiber laser based on nonlinear polarization evolution. The laser delivers 31 mW of average output power with positively chirped 7 ps pulses. The repetition rate of the pulses is 15.3 MHz, and pulse energy is 2.1 nJ. Tunable dissipative-soliton over 12 nm is achieved by applying tension to the single-mode-multimode-single-mode filter.
NASA Astrophysics Data System (ADS)
Belov, A. V.; Kurkov, Andrei S.; Chikolini, A. V.
1990-08-01
An offset method is modified to allow an analysis of the distribution of fields in a single-mode fiber waveguide without recourse to the Gaussian approximation. A new approximation for the field is obtained for fiber waveguides with a step refractive index profile and a special analysis employing the Hankel transformation is applied to waveguides with a distributed refractive index. The field distributions determined by this method are compared with the corresponding distributions calculated from the refractive index of a preform from which the fibers are drawn. It is shown that these new approaches can be used to determine the dimensions of a mode spot defined in different ways and to forecast the dispersion characteristics of single-mode fiber waveguides.
Zhang, Z X; Xu, Z W; Zhang, L
2012-11-19
We report the generation of tunable single- and dual-wavelength dissipative solitons in an all-normal-dispersion mode-locked Yb-doped fiber laser, to the best of our knowledge, for the first time. Besides single-wavelength mode-locking, dual-wavelength mode-locking was achieved using an in-line birefringence fiber filter with periodic multiple passbands, which not only allows multiple wavelengths to oscillate simultaneously but also performs spectrum modulation on highly chirped dissipative pulse. Furthermore, taking advantage of the tunability of the birefringence fiber filter, wavelength tuning for both single- and dual-wavelength dissipative soliton mode-locking was realized. The dual-wavelength operation is also switchable. The all-fiber dissipative laser with flexible outputs can meet diverse application needs.
Zhang, Yu; Tang, Xiaoyun; Zhang, Yaxun; Su, Wenjie; Liu, Zhihai; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Oh, Kyunghwan; Yuan, Libo
2018-06-15
We proposed and experimentally demonstrated 3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam. The Bessel beam was produced by concatenating single-mode fiber and a step index multimode fiber, which was then focused by a high refractive index glass microsphere integrated on the fiber end facet. The focused Bessel beam provided two dark fields along the axial direction, where stable trapping of low refractive index bio-cells was realized in a high refractive index liquid bath. The all-fiber and seamlessly integrated structure of the proposed scheme can find ample potential as a micro-optical probe in in situ characterization and manipulation of multiple bio-cells with refractive indices lower than that of the liquid bath.
Evaluation of a new 240-μm single-use holmium:YAG optical fiber for flexible ureteroscopy.
Khemees, Tariq A; Shore, David M; Antiporda, Michael; Teichman, Joel M H; Knudsen, Bodo E
2013-04-01
Numerous holmium:yttrium-aluminum-garnet laser fibers are available for flexible ureteroscopy. Performance and durability of fibers can vary widely among different manufacturers and their product lines with differences within a single product line have been reported. We sought to evaluate a newly developed nontapered, single-use 240-μm fiber, Flexiva™ 200 (Boston Scientific, Natick, MA), during clinical use and in a bench-testing model. A total of 100 new fibers were tested after their use in 100 consecutive flexible ureteroscopic lithotripsy procedures by a single surgeon (B.K.). Prospectively recorded clinical parameters were laser pulse energy and frequency settings, total energy delivered and fibers failure. Subsequently, each fiber was bench-tested using an established protocol. Parameters evaluated for were fibers true diameter, flexibility, tip degradation, energy transmission in straight and 180° bend configuration and fibers failure threshold with stress testing. The mean total energy delivered was 2.20 kJ (range 0-18.24 kJ) and most common laser settings used were 0.8 J at 8 Hz, 0.2 J at 50 Hz, and 1.0 J at 10 Hz, respectively. No fiber fractured during clinical procedures. The true fiber diameter was 450 μm. Fiber tips burnt back an average of 1.664 mm, but were highly variable. With laser setting of 400 mJ at 5 Hz, the mean energy transmitted was 451 and 441 mJ in straight and 180° bend configuration, respectively. Thirteen percent of fibers fractured at the bend radius of 0.5 cm with a positive correlation to the total energy transmitted during clinical use identified. Fiber performance was consistent in terms of energy transmission and resistance to fracture when activated in bent configuration. Fiber failure during stress testing showed significant correlation with the total energy delivered during the clinical procedure. The lack of fiber fracture during clinical use may reduce the risk of flexible endoscope damage due to fiber failure.
Dynamic Modulus and Damping of Boron, Silicon Carbide, and Alumina Fibers
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.; Williams, W.
1980-01-01
The dynamic modulus and damping capacity for boron, silicon carbide, and silicon carbide coated boron fibers were measured from-190 to 800 C. The single fiber vibration test also allowed measurement of transverse thermal conductivity for the silicon carbide fibers. Temperature dependent damping capacity data for alumina fibers were calculated from axial damping results for alumina-aluminum composites. The dynamics fiber data indicate essentially elastic behavior for both the silicon carbide and alumina fibers. In contrast, the boron based fibers are strongly anelastic, displaying frequency dependent moduli and very high microstructural damping. Ths single fiber damping results were compared with composite damping data in order to investigate the practical and basic effects of employing the four fiber types as reinforcement for aluminum and titanium matrices.
Single linearly polarized, widely and freely tunable two wavelengths Yb3+-doped fiber laser
NASA Astrophysics Data System (ADS)
Liu, Dongfeng; Wang, Chinhua
2010-01-01
We report a novel single linearly polarized, widely, freely and continuously tunable two wavelengths Yb3+-doped fiber laser. The laser generates stable arbitrary two wavelengths output between 1003.1 and 1080.7 nm peak wavelengths simultaneously with a 346.0 mW CW power by using polarization beam splitting (PBS) for separation of two wavelengths. Each lasing line shows a single polarization with a polarization extinction ratio of >20 dB under different pump levels. The central and the interval of the two wavelengths can be tuned smoothly and independently in the entire gain region of >70 nm of PM Yb3+-doped single mode fiber. Strongly enhanced polarization-hole burning (PHB) phenomena in polarization maintain (PM) Yb3+-doped fiber was observed in the tunable two wavelengths Yb3+-doped fiber laser.
Crincoli, Christine M; Garcia-Campayo, Vicenta; Rihner, Marisa O; Nikiforov, Andrey I; Liska, DeAnn; van de Ligt, Jennifer L G
2016-11-01
Two independent clinical studies were conducted to compare the gastrointestinal (GI) tolerability of corn starch fiber, a novel dietary fiber, at up to 50 g/day (single-dose study) or 90 g/day (multiple-serving study) with a negative control (no fiber) and a positive control (50 or 90 g polydextrose, for single- and multiple-serving studies, respectively) in generally healthy study volunteers. Flatulence and borborygmus were the primary symptoms reported at the higher doses of corn starch fiber and for the positive control interventions. Bowel movements were increased over 48 h with corn starch fiber at 90 g. Thresholds for mild GI effects were established at 30 g as a single dose and 60 g as multiple servings spread over the day. Other than moderate abdominal pain and mild increased appetite in one subject at 90-g corn starch fiber, no test article-related adverse events were reported.
NASA Astrophysics Data System (ADS)
Wolf, Alexey; Dostovalov, Alexandr; Skvortsov, Mikhail; Raspopin, Kirill; Parygin, Alexandr; Babin, Sergey
2018-05-01
In this work, long high-quality fiber Bragg gratings with phase shifts in the structure are inscribed directly in the optical fiber by point-by-point technique using femtosecond laser pulses. Phase shifts are introduced during the inscription process with a piezoelectric actuator, which rapidly shifts the fiber along the direction of its movement in a chosen point of the grating with a chosen shift value. As examples, single and double π phase shifts are introduced in fiber Bragg gratings with a length up to 34 mm in passive fibers, which provide corresponding transmission peaks with bandwidth less than 1 pm. It is shown that 37 mm π -phase-shifted grating inscribed in an active Er-doped fiber forms high-quality DFB laser cavity generating single-frequency radiation at 1550 nm with bandwidth of 20 kHz and signal-to-noise ratio of >70 dB. The inscription technique has a high degree of performance and flexibility and can be easily implemented in fibers of various types.
Coilable single crystal fibers of doped-YAG for high power laser applications
NASA Astrophysics Data System (ADS)
Maxwell, Gisele; Soleimani, Nazila; Ponting, Bennett; Gebremichael, Eminet
2013-05-01
Single crystal fibers are an intermediate between laser crystals and doped glass fibers. They can combine the advantages of both by guiding laser light and matching the efficiencies found in bulk crystals, making them ideal candidates for high-power laser and fiber laser applications. In particular, a very interesting feature of single crystal fiber is that they can generate high power in the eye-safe range (Er:YAG) with a high efficiency, opening new possibilities for portable directed energy weapons. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc…) that will exhibit good waveguiding properties. Direct growth or a combination of growth and cladding experiments are described. We have, to date, demonstrated the growth of a flexible foot long 45 microns doped YAG fiber. Scattering loss measurements at visible wavelengths along with dopant profile characterization are also presented. Laser characterization for these fibers is in progress.
Ethanol Exposure Causes Muscle Degeneration in Zebrafish
Coffey, Elizabeth C.; Pasquarella, Maggie E.; Goody, Michelle F.
2018-01-01
Alcoholic myopathies are characterized by neuromusculoskeletal symptoms such as compromised movement and weakness. Although these symptoms have been attributed to neurological damage, EtOH may also target skeletal muscle. EtOH exposure during zebrafish primary muscle development or adulthood results in smaller muscle fibers. However, the effects of EtOH exposure on skeletal muscle during the growth period that follows primary muscle development are not well understood. We determined the effects of EtOH exposure on muscle during this phase of development. Strikingly, muscle fibers at this stage are acutely sensitive to EtOH treatment: EtOH induces muscle degeneration. The severity of EtOH-induced muscle damage varies but muscle becomes more refractory to EtOH as muscle develops. NF-kB induction in muscle indicates that EtOH triggers a pro-inflammatory response. EtOH-induced muscle damage is p53-independent. Uptake of Evans blue dye shows that EtOH treatment causes sarcolemmal instability before muscle fiber detachment. Dystrophin-null sapje mutant zebrafish also exhibit sarcolemmal instability. We tested whether Trichostatin A (TSA), which reduces muscle degeneration in sapje mutants, would affect EtOH-treated zebrafish. We found that TSA and EtOH are a lethal combination. EtOH does, however, exacerbate muscle degeneration in sapje mutants. EtOH also disrupts adhesion of muscle fibers to their extracellular matrix at the myotendinous junction: some detached muscle fibers retain beta-Dystroglycan indicating failure of muscle end attachments. Overexpression of Paxillin, which reduces muscle degeneration in zebrafish deficient for beta-Dystroglycan, is not sufficient to rescue degeneration. Taken together, our results suggest that EtOH exposure has pleiotropic deleterious effects on skeletal muscle. PMID:29615556
Free-space to few-mode-fiber coupling under atmospheric turbulence.
Zheng, Donghao; Li, Yan; Chen, Erhu; Li, Beibei; Kong, Deming; Li, Wei; Wu, Jian
2016-08-08
High speed free space optical communication (FSOC) has taken advantages of components developed for fiber-optic communication systems. Recently, with the rapid development of few-mode-fiber based fiber communication systems, few-mode-fiber components might further promote their applications in FSOC system. The coupling efficiency between free space optical beam and few-mode fibers under atmospheric turbulence effect are investigated in this paper. Both simulation and experimental results show that, compared with single-mode fiber, the coupling efficiencies for a 2-mode fiber and a 4-mode fiber are improved by ~4 dB and ~7 dB respectively in the presence of medium moderate and strong turbulence. Compared with single-mode fiber, the relative standard deviation of received power is restrained by 51% and 66% respectively with a 4-mode and 2-mode fiber.
Alcohol sensor based on single-mode-multimode-single-mode fiber structure
NASA Astrophysics Data System (ADS)
Mefina Yulias, R.; Hatta, A. M.; Sekartedjo, Sekartedjo
2016-11-01
Alcohol sensor based on Single-mode -Multimode-Single-mode (SMS) fiber structure is being proposed to sense alcohol concentration in alcohol-water mixtures. This proposed sensor uses refractive index sensing as its sensing principle. Fabricated SMS fiber structure had 40 m of multimode length. With power input -6 dBm and wavelength 1550 nm, the proposed sensor showed good response with sensitivity 1,983 dB per % v/v with measurement range 05 % v/v and measurement span 0,5% v/v.
Single-shot polarimetry imaging of multicore fiber.
Sivankutty, Siddharth; Andresen, Esben Ravn; Bouwmans, Géraud; Brown, Thomas G; Alonso, Miguel A; Rigneault, Hervé
2016-05-01
We report an experimental test of single-shot polarimetry applied to the problem of real-time monitoring of the output polarization states in each core within a multicore fiber bundle. The technique uses a stress-engineered optical element, together with an analyzer, and provides a point spread function whose shape unambiguously reveals the polarization state of a point source. We implement this technique to monitor, simultaneously and in real time, the output polarization states of up to 180 single-mode fiber cores in both conventional and polarization-maintaining fiber bundles. We demonstrate also that the technique can be used to fully characterize the polarization properties of each individual fiber core, including eigen-polarization states, phase delay, and diattenuation.
Brightness-enhanced high-efficiency single emitters for fiber laser pumping
NASA Astrophysics Data System (ADS)
Yanson, Dan; Rappaport, Noam; Shamay, Moshe; Cohen, Shalom; Berk, Yuri; Klumel, Genadi; Don, Yaroslav; Peleg, Ophir; Levy, Moshe
2013-02-01
Reliable single emitters delivering <10W in the 9xx nm spectral range, are common energy sources for fiber laser pumps. The brightness (radiance) of a single emitter, which connotes the angular concentration of the emitted energy, is just as important a parameter as the output power alone for fiber coupling applications. We report on the development of high-brightness single emitters that demonstrate <12W output with 60% wall-plug efficiency and a lateral emission angle that is compatible with coupling into 0.15 NA delivery fiber. Using a purpose developed active laser model, simulation of far-field patterns in the lateral (slow) axis can be performed for different epitaxial wafer structures. By optimizing both the wafer and chip designs, we have both increased the device efficiency and improved the slow-axis divergence in high-current operation. Device reliability data are presented. The next-generation emitters will be integrated in SCD's NEON fiber pump modules to upgrade the pump output towards higher ex-fiber powers with high efficiency.
Conversion of muscle fiber types in regenerating chicken muscles following cross-reinnervation.
Kikuchi, T; Akiba, T; Ashmore, C R
1986-01-01
Slow-tonic anterior latissimus dorsi (ALD) and fast-twitch posterior latissimus dorsi (PLD) muscles of 7 to 10-day-old White Leghorn chickens were crushed and allowed to be reinnervated by their own nerve, or crushed and transplanted to the other side and allowed to be reinnervated by the nerve of the side to which they were transplanted. Following transplantation, changes in the weight of the muscle, fiber-type composition and innervation pattern during regeneration were investigated. Normal growth rate of PLD was about twice that of ALD. Regenerating PLD, however, atrophied rapidly after crushing and denervation whether innervated by its own nerve or the other nerve type, whereas ALD reinnervated by its own nerve showed marked hypertrophy. PLD fibers transformed rapidly to fast-twitch alpha or slow-tonic (ST) fibers when they were reinnervated by PLD or ALD nerve, respectively. When ALD fibers were reinnervated by their own nerve, they differentiated into ST fibers that were surrounded by smaller immature fibers. ALD fibers were, however, resistant to complete control by fast-twitch PLD nerve and contained a large number of slow fibers (ST and beta) long after transplantation. Slow fibers in regenerates were initially multiply innervated, but later transformed into fast-twitch alpha fibers that were focally innervated. The mode of differentiation and innervation pattern of different muscle fiber types in regenerating muscles are discussed.
A multicore optical fiber for distributed sensing
NASA Astrophysics Data System (ADS)
Sun, Xiaoguang; Li, Jie; Burgess, David T.; Hines, Mike; Zhu, Beyuan
2014-06-01
With advancements in optical fiber technology, the incorporation of multiple sensing functionalities within a single fiber structure opens the possibility to deploy dielectric, fully distributed, long-length optical sensors in an extremely small cross section. To illustrate the concept, we designed and manufactured a multicore optical fiber with three graded-index (GI) multimode (MM) cores and one single mode (SM) core. The fiber was coated with both a silicone primary layer and an ETFE buffer for high temperature applications. The fiber properties such as geometry, crosstalk and attenuation are described. A method for coupling the signal from the individual cores into separate optical fibers is also presented.
Electrically tunable liquid crystal photonic bandgap fiber laser
NASA Astrophysics Data System (ADS)
Olausson, Christina B.; Scolari, Lara; Wei, Lei; Noordegraaf, Danny; Weirich, Johannes; Alkeskjold, Thomas T.; Hansen, Kim P.; Bjarklev, Anders
2010-02-01
We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040- 1065 nm by applying an electric field to the silicon assembly.
3D nanometer images of biological fibers by directed motion of gold nanoparticles.
Estrada, Laura C; Gratton, Enrico
2011-11-09
Using near-infrared femtosecond pulses, we move single gold nanoparticles (AuNPs) along biological fibers, such as collagen and actin filaments. While the AuNP is sliding on the fiber, its trajectory is measured in three dimensions (3D) with nanometer resolution providing a high-resolution image of the fiber. Here, we systematically moved a single AuNP along nanometer-size collagen fibers and actin filament inside chinese hamster ovary K1 living cells, mapping their 3D topography with high fidelity.
Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.
Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference mapmore » of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.« less
Efficient Single-Frequency Thulium Doped Fiber Laser Near 2-micrometers
NASA Technical Reports Server (NTRS)
Geng, Jihong; Wu, Jianfeng; Jiang, Shibin; Yu, Jirong
2007-01-01
We demonstrate highly efficient diode-pumped single-frequency fiber laser with 35% slope efficiency and 50mW output power operating near 2 micrometers, which generated from a 2-cm long piece of highly Tm(3+)-doped germanate glass fiber pumped at 800nm.
High brightness fiber laser pump sources based on single emitters and multiple single emitters
NASA Astrophysics Data System (ADS)
Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas
2008-02-01
Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.
Propagating modes in gain-guided optical fibers.
Siegman, A E
2003-08-01
Optical fibers in which gain-guiding effects are significant or even dominant compared with conventional index guiding may become of practical interest for future high-power single-mode fiber lasers. I derive the propagation characteristics of symmetrical slab waveguides and cylindrical optical fibers having arbitrary amounts of mixed gain and index guiding, assuming a single uniform transverse profile for both the gain and the refractive-index steps. Optical fibers of this type are best characterized by using a complex-valued v-squared parameter in place of the real-valued v parameter commonly used to describe conventional index-guided optical fibers.
Studies of fiber-matrix adhesion on compression strength
NASA Technical Reports Server (NTRS)
Bascom, Willard D.; Nairn, John A.; Boll, D. J.
1991-01-01
A study was initiated on the effect of the matrix polymer and the fiber matrix bond strength of carbon fiber polymer matrix composites. The work includes tests with micro-composites, single ply composites, laminates, and multi-axial loaded cylinders. The results obtained thus far indicate that weak fiber-matrix adhesion dramatically reduces 0 degree compression strength. Evidence is also presented that the flaws in the carbon fiber that govern compression strength differ from those that determine fiber tensile strength. Examination of post-failure damage in the single ply tests indicates kink banding at the crack tip.
Acharya, Amitabha; Ramanujam, Balaji; Mitra, Atanu; Rao, Chebrolu P
2010-07-27
This paper deals with the self-assembly of the 1:1 complex of two different amphiphiles, namely, a glucosyl-salicyl-imino conjugate (L) and phenylalanine (Phe), forming nanofibers over a period of time through pi...pi interactions. Significant enhancement observed in the fluorescence intensity of L at approximately 423 nm band and the significant decrease observed in the absorbance of the approximately 215 nm band are some characteristics of this self-assembly. Matrix-assisted laser desorption ionization/time of flight titration carried out at different time intervals supports the formation of higher aggregates. Atomic force microscopy (AFM), transmission electron microscopy, and scanning electron miscroscopy results showed the formation of nanofibers for the solutions of L with phenylalanine. In dynamic light scattering measurements, the distribution of the particles extends to a higher diameter range over time, indicating a slow kinetic process of assembly. Similar spectral and microscopy studies carried out with the control molecules support the role of the amino acid moiety over the simple -COOH moiety as well as the side chain phenyl moiety in association with the amino acid, in the formation of these fibers. All these observations support the presence of pi...pi interactions between the initially formed 1:1 complexes leading to the fiber formation. The aggregation of 1:1 complexes leading to fibers followed by the formation of bundles has been modeled by molecular mechanics studies. Thus the fiber formation with L is limited to phenylalanine and not to any other naturally occurring amino acid and hence a polymer composed of two different biocompatible amphiphiles. AFM studies carried out between the fiber forming mixture and proteins resulted in the observation that only BSA selectively adheres to the fiber among the three alpha-helical and two beta-sheet proteins studied and hence may be of use in some medical applications.
High speed demodulation systems for fiber optic grating sensors
NASA Technical Reports Server (NTRS)
Udd, Eric (Inventor); Weisshaar, Andreas (Inventor)
2002-01-01
Fiber optic grating sensor demodulation systems are described that offer high speed and multiplexing options for both single and multiple parameter fiber optic grating sensors. To attain very high speeds for single parameter fiber grating sensors ratio techniques are used that allow a series of sensors to be placed in a single fiber while retaining high speed capability. These methods can be extended to multiparameter fiber grating sensors. Optimization of speeds can be obtained by minimizing the number of spectral peaks that must be processed and it is shown that two or three spectral peak measurements may in specific multiparameter applications offer comparable or better performance than processing four spectral peaks. Combining the ratio methods with minimization of peak measurements allows very high speed measurement of such important environmental effects as transverse strain and pressure.
Wu, Z-X; Satterfield, B E; Fedan, J S; Dey, R D
2002-11-01
Interleukin (IL)-1beta causes airway inflammation, enhances airway smooth muscle responsiveness, and alters neurotransmitter expression in sensory, sympathetic, and myenteric neurons. This study examines the role of intrinsic airway neurons in airway hyperresponsiveness (AHR) induced by IL-1beta. Ferrets were instilled intratracheally with IL-1beta (0.3 microg/0.3 ml) or saline (0.3 ml) once daily for 5 days. Tracheal smooth muscle contractility in vitro and substance P (SP) expression in tracheal neurons were assessed. Tracheal smooth muscle reactivity to acetylcholine (ACh) and methacholine (MCh) and smooth muscle contractions to electric field stimulation (EFS) both increased after IL-1beta. The IL-1beta-induced AHR was maintained in tracheal segments cultured for 24 h, a procedure that depletes SP from sensory nerves while maintaining viability of intrinsic airway neurons. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the IL-1beta-induced hyperreactivity to ACh and MCh and to EFS in cultured tracheal segments. SP-containing neurons in longitudinal trunk, SP innervation of superficial muscular plexus neurons, and SP nerve fiber density in tracheal smooth muscle all increased after treatment with IL-1beta. These results show that IL-1beta-enhanced cholinergic airway smooth muscle contractile responses are mediated by the actions of SP released from intrinsic airway neurons.
Zhang, Yanhao; Zhong, Fohua; Xia, Siqing; Wang, Xuejiang; Li, Jixiang
2009-10-15
A hollow fiber membrane biofilm reactor (MBfR) using polyvinyl chloride (PVC) hollow fiber was evaluated in removing nitrate form contaminated drinking water. During a 279-day operation period, the denitrification rate increased gradually with the increase of influent nitrate loading. The denitrification rate reached a maximum value of 414.72 g N/m(3)d (1.50 g N/m(2)d) at an influent NO(3)(-)-N concentration of 10mg/L and a hydraulic residence time of 37.5 min, and the influent nitrate was completely reduced. At the same time, the effluent quality analysis showed the headspace hydrogen content (3.0%) was lower enough to preclude having an explosive air. Under the condition of the influent nitrate surface loading of 1.04 g N/m(2)d, over 90% removal efficiencies of the total nitrogen and nitrate were achieved at the hydrogen pressure above 0.04 MPa. The results of denaturing gel gradient electrophoresis (DGGE), 16S rDNA gene sequence analysis, and hierarchical cluster analysis showed that the microbial community structures in MBfR were of low diversity, simple and stable at mature stages; and the beta-Proteobacteria, including Rhodocyclus, Hydrogenophaga, and beta-Proteobacteria HTCC379, probably play an important role in autohydrogenotrophic denitrification.
Nd3+-doped soft glass double-clad fibers with a hexagonal inner cladding
NASA Astrophysics Data System (ADS)
Wang, Longfei; He, Dongbing; Hu, Lili; Chen, Danping
2015-04-01
The stack-and-draw technique was used to fabricate Nd3+-doped silicate and phosphate glass double-clad step-index fibers with a non-circular inner cladding. For the silicate fiber, a maximum output power of 7.7 W was obtained from a 94 cm fiber. An output power of 1.25 W was also realized with a short length fiber of 8 cm, confirming the application potential of this fiber in single frequency lasers and pulsed amplifiers where an efficient rare-earth-doped fiber with short length is desirable. For the phosphate fiber, a maximum output power of 2.78 W was obtained from a single-mode fiber with a core diameter of up to 35 μm.
Studies on low-loss coupling of non-node anti-resonant hollow-core fiber and tapered fiber
NASA Astrophysics Data System (ADS)
Zhang, Naiqian; Wang, Zefeng; Liu, Wenbo; Xi, Xiaoming
2017-10-01
Up to now, near almost optical fiber gas lasers employ/adopt the scheme of free-space coupling, which increases the difficulty to adjust the optical path, and has poor stability. All-fiber structure fiber-gas lasers are important development directions in the future. We established the numerical model of SMF-28 type tapered single-mode fiber and non-node hollow-core fiber. When the SMF-28 type single-mode fiber has a waist diameter of 40μm when the light source is LP01 fundamental mode with 1550nm wavelength, the mode field diameter is the largest. Meanwhile, we simulated that the equivalent mode field diameter of non-node anti-resonant hollow-core fiber is about 75μm at the same 1550nm wavelength light source. Then, we use different waist diameters of SMF-28 type tapered fibers injected to the non-node anti-resonant hollow-core fiber in simulation and experiments. In the scheme of the single-ended low-loss coupling, the simulation results indicate that the best waist diameter of tapered fiber is 40μm, and the calculated maximum coupling efficiency is 83.55%. Meanwhile, the experimental result of maximum coupling efficiency is 80.74% when the best waist diameter of tapered fiber is also 40μm. As for the double-ended low-loss coupling, the calculated maximum coupling efficiency is near 83.38%.
NASA Astrophysics Data System (ADS)
Zhang, Haiwei; Shi, Wei; Bai, Xiaolei; Sheng, Quan; Xue, Lifang; Yao, Jianquan
2018-02-01
We obtain a switchable and tunable dual-wavelength single-frequency Er-doped ring fiber laser. In order to realize single-longitudinal output, two saturable-absorber-based tracking narrow-band filters are formed in 3- meter-long unpumped Er-doped fiber to narrow the linewidth via using the PM-FBG as a reflection filter. The maximum output power is 2.11 mW centered at 1550.16 nm and 1550.54 nm when the fiber laser operates in dual-wavelength mode. The corresponding linewidths of those two wavelengths are measured to be 769 Hz and 673 Hz, respectively. When the temperature around the PM-FBG is changed from 15 °C to 55 °C, the dual-wavelength single-frequency fiber laser can be tuned from 1550.12 nm to 1550.52 nm and from 1550.49 nm to 1550.82 nm, respectively.
Statistical behavior of the tensile property of heated cotton fiber
USDA-ARS?s Scientific Manuscript database
The temperature dependence of the tensile property of single cotton fiber was studied in the range of 160-300°C using Favimat test, and its statistical behavior was interpreted in terms of structural changes. The tenacity of control cotton fiber was well described by the single Weibull distribution,...
Muñoz-Matutano, G.; Barrera, D.; Fernández-Pousa, C.R.; Chulia-Jordan, R.; Seravalli, L.; Trevisi, G.; Frigeri, P.; Sales, S.; Martínez-Pastor, J.
2016-01-01
New optical fiber based spectroscopic tools open the possibility to develop more robust and efficient characterization experiments. Spectral filtering and light reflection have been used to produce compact and versatile fiber based optical cavities and sensors. Moreover, these technologies would be also suitable to study N-photon correlations, where high collection efficiency and frequency tunability is desirable. We demonstrated single photon emission of a single quantum dot emitting at 1300 nm, using a Fiber Bragg Grating for wavelength filtering and InGaAs Avalanche Photodiodes operated in Geiger mode for single photon detection. As we do not observe any significant fine structure splitting for the neutral exciton transition within our spectral resolution (46 μeV), metamorphic QD single photon emission studied with our all-fiber Hanbury Brown & Twiss interferometer could lead to a more efficient analysis of entangled photon sources at telecom wavelength. This all-optical fiber scheme opens the door to new first and second order interferometers to study photon indistinguishability, entangled photon and photon cross correlation in the more interesting telecom wavelengths. PMID:27257122
Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide
DAVEAU, RAPHAËL S.; BALRAM, KRISHNA C.; PREGNOLATO, TOMMASO; LIU, JIN; LEE, EUN H.; SONG, JIN D.; VERMA, VARUN; MIRIN, RICHARD; NAM, SAE WOO; MIDOLO, LEONARDO; STOBBE, SØREN; SRINIVASAN, KARTIK; LODAHL, PETER
2017-01-01
Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80 %. The detailed characterization of a high-efficiency photonic-crystal waveguide extended with a tapered out-coupling section is then performed. The corresponding overall single-photon source efficiency is 10.9 % ± 2.3 %, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied out-coupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources. PMID:28584859
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-01
Accurate measurements of radioactivity in soils contaminated with Strontium-90 (Sr-90) or Uranium-238 (U-238) are essential for many DOE site remediation programs. These crucial measurements determine if excavation and soil removal is necessary, where remediation efforts should be focused, and/or if a site has reached closure. Measuring soil contamination by standard EPA laboratory methods typically takes a week (accelerated analytical test turnaround) or a month (standard analytical test turnaround). The time delay extends to operations involving heavy excavation equipment and associated personnel which are the main costs of remediation. This report describes an application of the BetaScint{trademark} fiber-optic sensor that measuresmore » Sr-90 or U-238 contamination in soil samples on site in about 20 minutes, at a much lower cost than time-consuming laboratory methods, to greatly facilitate remediation. This report describes the technology, its performance, its uses, cost, regulatory and policy issues, and lessons learned.« less
Feedback Information and Analysis for Microprocessor Controlled Muscle Stimulation.
1981-12-01
muscle into fiberous tissue (Guyton, 1976) is not inevitable. The contractile power can be preserved and fiberous build-up reduced by electrical... isometric tension, velocity of contraction and coordination of movement, all with minimally induced muscle fatigue. The work of Petrofsky and Phillips... muscle . Each muscle fiber is innervated by only a single nerve, but a single motor nerve fiber branches to as many as thousands of different muscle
Single mode variable-sensitivity fiber optic sensors
NASA Technical Reports Server (NTRS)
Murphy, K. A.; Fogg, B. R.; Gunther, M. F.; Claus, R. O.
1992-01-01
We review spatially-weighted optical fiber sensors that filter specific vibration modes from one dimensional beams placed in clamped-free and clamped-clamped configurations. The sensitivity of the sensor is varied along the length of the fiber by tapering circular-core, dual-mode optical fibers. Selective vibration mode suppression on the order of 10 dB was obtained. We describe experimental results and propose future extensions to single mode sensor applications.
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2012-01-01
We have developed a linearly polarized Ytterbium-doped fiber ring laser with a single longitudinal mode output at 1064 run. A fiber-coupled intracavity phase modulator ensured mode-hop free operation and allowed fast frequency tuning. The fiber laser was locked with high stability to an iodine-stabilized laser, showing a frequency noise suppression of a factor approx 10 (exp 5) at 1 mHz
NASA Astrophysics Data System (ADS)
Tan, Jianchang; Feng, Guoying; Zhang, Shulin; Liang, Jingchuan; Li, Wei; Luo, Yun
2018-07-01
A dual spherical single-mode-multimode-single-mode (DSSMS) optical fiber temperature sensor based on a Mach–Zehnder interferometer (MZI) was designed and implemented in this paper. Theoretical and experimental results indicated that the LP01 mode in the core and the LP09 mode excited by the spherical structure were maintained and transmitted via multimode fiber and interfered at the second spherical structure, resulting in the interference spectrum. An increase or decrease in temperature can cause significant red-shift or blue-shift of the spectrum, respectively. The linearity of the spectral shift due to the temperature change is ~0.999, the sensitivity at 30 °C–540 °C is ~37.372 pm °C‑3, and at ‑25 °C–25 °C is ~37.28 pm °C‑1. The reproducibility error of this all-fiber temperature sensor at 30 °C–540 °C is less than 0.15%. Compared with the optical fiber sensor with a tapered structure and fiber core offset structure, this MZI-based DSSMS optical fiber temperature sensor has higher mechanical strength. Moreover, benefiting from low-cost and environmentally friendly materials, it is expected to be a novel micro-nano all-fiber sensor.
Iwata, Takanori; Yamato, Masayuki; Tsuchioka, Hiroaki; Takagi, Ryo; Mukobata, Shigeki; Washio, Kaoru; Okano, Teruo; Ishikawa, Isao
2009-05-01
Periodontal regeneration has been challenged with chemical reagents and/or biological approaches, however, there is still no sufficient technique that can regenerate complete periodontium, including alveolar bone, cementum, and well-oriented collagen fibers. The purpose of this study was to examine multi-layered sheets of periodontal ligament (PDL)-derived cells for periodontal regeneration. Canine PDL cells were isolated enzymatically and expanded in vitro. The cell population contained cells capable of making single cell-derived colonies at an approximately 20% frequency. Expression of mRNA of periodontal marker genes, S100 calcium binding protein A4 and periostin, was observed. Alkaline phosphatase activity and gene expression of both osteoblastic/cementoblastic and periodontal markers were upregulated by osteoinductive medium. Then, three-layered PDL cell sheets supported with woven polyglycolic acid were transplanted to dental root surfaces having three-wall periodontal defects in an autologous manner, and bone defects were filled with porous beta-tricalcium phosphate. Cell sheet transplantation regenerated both new bone and cementum connecting with well-oriented collagen fibers, while only limited bone regeneration was observed in control group where cell sheet transplantation was eliminated. These results suggest that PDL cells have multiple differentiation properties to regenerate periodontal tissues comprising hard and soft tissues. PDL cell sheet transplantation should prove useful for periodontal regeneration in clinical settings.
Cell Migration in 1D and 2D Nanofiber Microenvironments.
Estabridis, Horacio M; Jana, Aniket; Nain, Amrinder; Odde, David J
2018-03-01
Understanding how cells migrate in fibrous environments is important in wound healing, immune function, and cancer progression. A key question is how fiber orientation and network geometry influence cell movement. Here we describe a quantitative, modeling-based approach toward identifying the mechanisms by which cells migrate in fibrous geometries having well controlled orientation. Specifically, U251 glioblastoma cells were seeded onto non-electrospinning Spinneret based tunable engineering parameters fiber substrates that consist of networks of suspended 400 nm diameter nanofibers. Cells were classified based on the local fiber geometry and cell migration dynamics observed by light microscopy. Cells were found in three distinct geometries: adhering two a single fiber, adhering to two parallel fibers, and adhering to a network of orthogonal fibers. Cells adhering to a single fiber or two parallel fibers can only move in one dimension along the fiber axis, whereas cells on a network of orthogonal fibers can move in two dimensions. We found that cells move faster and more persistently in 1D geometries than in 2D, with cell migration being faster on parallel fibers than on single fibers. To explain these behaviors mechanistically, we simulated cell migration in the three different geometries using a motor-clutch based model for cell traction forces. Using nearly identical parameter sets for each of the three cases, we found that the simulated cells naturally replicated the reduced migration in 2D relative to 1D geometries. In addition, the modestly faster 1D migration on parallel fibers relative to single fibers was captured using a correspondingly modest increase in the number of clutches to reflect increased surface area of adhesion on parallel fibers. Overall, the integrated modeling and experimental analysis shows that cell migration in response to varying fibrous geometries can be explained by a simple mechanical readout of geometry via a motor-clutch mechanism.
Gireesh, T; Nair, P P; Sudhakaran, P R
2004-08-01
The possibility of using exfoliated colonic epithelial cells for assessing the bioavailability of beta-carotene was examined. Analysis of exfoliated colonic epithelial cells showed the presence of beta-carotene and vitamin A. The beta-carotene content was significantly lower in cells from stool samples of subjects on a beta-carotene-poor diet than those receiving a single dose of a beta-carotene supplement. Colonic epithelial cells isolated from stool samples collected daily during a wash-out period while the subjects were on a beta-carotene-poor diet showed a steady decrease in beta-carotene content, reaching the lowest value on day 7. Kinetic analysis showed that a single dose of a beta-carotene supplement in the form of spirulina (Spirulina platensis) or agathi (Sesbania grandiflora) after the wash-out period caused an increase in the beta-carotene content after a lag period of 5-7 d, but the vitamin A levels during these periods were not significantly affected. Analysis of plasma beta-carotene concentration also showed similar changes, which correlated with those of exfoliated colonic cells. A relationship between the beta-carotene content of the diet and that of the colonic epithelial cells suggests that analysis of the beta-carotene content in exfoliated human colonic epithelial cells is a useful non-invasive method to assess the bioavailability of provitamin A beta-carotene.
A High-Resolution Endoscope of Small Diameter Using Electromagnetically Vibration of Single Fiber
NASA Astrophysics Data System (ADS)
Matsunaga, Tadao; Hino, Ryunosuke; Makishi, Wataru; Esashi, Masayoshi; Haga, Yoichi
For high resolution visual inspection in the narrow space of the human body, small diameter endoscope has been developed which utilize electromagnetically vibration of single fiber. Thin endoscopes are effective for inspection in the narrow space of the human body, for example, in the blood vessel, lactiferous duct for detection infiltration of breast cancer, and periodontal gap between gingiva and tooth. This endoscope consists of single optical fiber and photofabricated driving coils. A collimator lens and a cylindrical permanent magnet are fixed on the optical fiber, and the tilted driving coils have been patterned on a 1.08 mm outer diameter thin tube. The fiber is positioned at the center of the tube which is patterned the coils. When an electrical alternating current at the resonance frequency is supplied to the coils, the permanent magnet which is fixed to the fiber is vibrated electromagnetically and scanned one or two dimensionally. This paper reports small diameter endoscope by using electromagnetically vibration of single fiber. Optical coherence tomography imaging has also been carried out with the fabricated endoscope and cross-section image of sub-surface skin of thumb was observed.
Single-mode fibers to single-mode waveguides coupling with minimum Fresnel back-reflection
NASA Astrophysics Data System (ADS)
Sneh, Anat; Ruschin, Shlomo; Marom, Emanuel
1991-04-01
Slantly polished fibers and waveguides coupling as a means for achieving both low optical power reflection and efficient power transmission is proposed. Return losses exceeding -70 dB can be obtained in fiber-to-Lithium Niobate waveguides operating at ) = 0.633 jm and ) = 1.3 pm by polishing the fiber at an angle of 6°. A phase matching condition between the propagation constants ,8 and the polishing angles in the fiber and the waveguide: fl(fiber)sincx(fiber) = fl(waveguide)sina(waveguide) must be fulifiled in order to enable efficient power coupling. Polishing angle tolerances of approximately lO are allowed for a maximum of 1 dB decrease in the coupling efficiency.
NASA Astrophysics Data System (ADS)
Chen, W. G.; Lou, S. Q.; Feng, S. C.; Wang, L. W.; Li, H. L.; Guo, T. Y.; Jian, S. S.
2009-11-01
Switchable multi-wavelength fiber ring laser with an in-fiber Mach-Zehnder interferometer incorporated into the ring cavity serving as wavelength-selective filter at room temperature is demonstrated. The filter is formed by splicing a section of few-mode photonic crystal fiber (PCF) and two segments of single mode fiber (SMF) with the air-holes on the both sides of PCF intentionally collapsed in the vicinity of the splices. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-, dual- and triple-wavelength lasing operations by exploiting polarization hole burning (PHB) effect.
Switchable narrow linewidth fiber laser with LP11 transverse mode output
NASA Astrophysics Data System (ADS)
Shen, Ya; Ren, Guobin; Yang, Yuguang; Yao, Shuzhi; Wu, Yue; Jiang, Youchao; Xu, Yao; Jin, Wenxing; Zhu, Bofeng; Jian, Shuisheng
2018-01-01
We experimentally demonstrate a switchable narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser with LP11 transverse mode output. The laser is based on a mode selective all-fiber fused coupler which is composed of a single-mode fiber (SMF) and a two-mode fiber (TMF). By controlling the polarization state of the output light, the laser can provide narrow linewidth SLM output with LP11 transverse mode at two specific wavelengths, which correspond to two transmission peaks of the chirped moiré fiber grating (CMFBG). The 20 dB linewidth of the fiber laser for each wavelength is approximately 7.2 and 6.4 kHz.
Extremely small-core photonic crystal fiber fusion splicing with a single-mode fiber
NASA Astrophysics Data System (ADS)
Tiburcio, Bruno D.; Fernandes, Gil M.; Pinto, Armando N.
2013-11-01
We present a low-loss fusion splicing of a non-linear photonic-crystal fiber (NL-PCF) with a single-mode fiber (SMF), helped by an intermediate fiber, using a electric-arc splicer. We also analysed the splice loss between SMF and intermediate fiber, as a function of the electrical discharge duration, to achieve a low-loss transition between SMF and intermediate fiber, through a thermally expanded core splice (TEC). The NL-PCF has a external cladding diameter of 105 μm, a core diameter of 1.7 μm and mode-field diameter (MFD) of 1.5 μm. We also performed mechanical strength tests to verify the robustness of the splice joints obtained.
Fiber Laser Development for LISA
NASA Technical Reports Server (NTRS)
Numata, Kenji; Chen, Jeffrey R.
2009-01-01
We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable.
1540-nm single frequency single-mode pulsed all fiber laser for coherent Doppler lidar
NASA Astrophysics Data System (ADS)
Zhang, Xin; Diao, Weifeng; Liu, Yuan; Liu, Jiqiao; Hou, Xia; Chen, Weibiao
2015-02-01
A single-mode single frequency eye-safe pulsed all fiber laser based on master oscillator power amplification structure is presented. This laser is composed of a narrow linewidth distributed laser diode seed laser and two-stage cascade amplifiers. 0.8 m longitudinally gradient strained erbium/ytterbium co-doped polarization-maintaining fiber with a core diameter of 10 μm is used as the gain fiber and two acoustic-optics modulators are adopted to enhance pulse extinction ratio. A peak power of 160 W and a pulse width of 200 ns at 10 kHz repetition rate are achieved with transform-limited linewidth and diffraction-limited beam quality. This laser will be employed in a compact short range coherent Doppler wind lidar.
Exposed-core chalcogenide microstructured optical fibers for chemical sensing
NASA Astrophysics Data System (ADS)
Troles, Johann; Toupin, Perrine; Brilland, Laurent; Boussard-Plédel, Catherine; Bureau, Bruno; Cui, Shuo; Mechin, David; Adam, Jean-Luc
2013-05-01
Chemical bonds of most of the molecules vibrate at a frequency corresponding to the near or mid infrared field. It is thus of a great interest to develop sensitive and portable devices for the detection of specific chemicals and biomolecules for various applications in health, the environment, national security and so on. Optical fibers define practical sensing tools. Chalcogenide glasses are known for their transparency in the infrared optical range and their ability to be drawn as fibers. They are consequently good candidates to be used in biological/chemical sensing. For that matter, in the past decade, chalcogenide glass fibers have been successfully implemented in evanescent wave spectroscopy experiments, for the detection of bio-chemical species in various fields of applications including microbiology and medicine, water pollution and CO2 detection. Different types of fiber can be used: single index fibers or microstructured fibers. Besides, in recent years a new configuration of microstructured fibers has been developed: microstructured exposed-core fibers. This design consists of an optical fiber with a suspended micron-scale core that is partially exposed to the external environment. This configuration has been chosen to elaborate, using the molding method, a chalcogenide fiber for chemical species detection. The sensitivity of this fiber to detect molecules such as propan-2-ol and acetone has been compared with those of single index fibers. Although evanescent wave absorption is inversely proportional to the fiber diameter, the result shows that an exposed-core fiber is much more sensitive than a single index fiber having a twice smaller external diameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Kaijun; Wong, Y.C.; Wang Xianghong
Id-1 (inhibitor of differentiation or DNA binding-1) has been positively associated with cell proliferation, cell cycle progression, and invasiveness during tumorigenesis. In addition, Id-1 has been shown to modulate cellular sensitivity to TGF-{beta}1 (transforming growth factor {beta}1). Here we demonstrate a novel role of Id-1 in promoting TGF-{beta}1-induced cell motility in a non-malignant prostate epithelial cell line, NPTX. We found that Id-1 promoted F-actin stress fiber formation in response to TGF-{beta}1, which was associated with increased cell-substrate adhesion and cell migration in NPTX cells. In addition, this positive effect of Id-1 on TGF-{beta}1-induced cell motility was mediated through activation ofmore » MEK-ERK signaling pathway and subsequent phosphorylation of HSP27 (heat shock protein 27). Furthermore, Id-1 disrupted the adherens junction complex in TGF-{beta}1-treated cells through down-regulation of E-cadherin, redistribution of {beta}-catenin, along with up-regulation of N-cadherin. These lines of evidence reveal a novel tumorigenic role of Id-1 through reorganization of actin cytoskeleton and disassembly of cell-cell adhesion in response to TGF-{beta}1 in human prostate epithelial cells, and suggest that intracellular Id-1 levels might be a determining factor for switching TGF-{beta}1 from a growth inhibitor to a tumor promoter during prostate carcinogenesis.« less
Light diffraction studies of single muscle fibers as a function of fiber rotation.
Gilliar, W G; Bickel, W S; Bailey, W F
1984-01-01
Light diffraction patterns from single glycerinated frog semitendinosus muscle fibers were examined photographically and photoelectrically as a function of diffraction angle and fiber rotation. The total intensity diffraction pattern indicates that the order maxima change both position and intensity periodically as a function of rotation angle. The total diffracted light, light diffracted above and below the zero-order plane, and light diffracted into individual orders gives information about the fiber's longitudinal and rotational structure and its noncylindrical symmetry. Images FIGURE 2 PMID:6611174
Self-healing in single and multiple fiber(s) reinforced polymer composites
NASA Astrophysics Data System (ADS)
Woldesenbet, E.
2010-06-01
You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.
Wideband fiber optic communications link
NASA Astrophysics Data System (ADS)
Bray, J. R.
1984-12-01
This thesis examined the feasibility of upgrading a nine port fiber optic bundle telecommunications system to a single strand fiber optic system. Usable pieces of equipment were identified and new Light Emitting Diodes (LED), Photodetectors and single strand SMA styled fiber optic connectors were ordered. Background research was conducted in the area of fiber optic power launching, fiber losses, connector losses and efficiencies. A new modulation/demodulation circuit was designed and constructed using parts from unused equipment. A new front panel was constructed to house the components, switches and connectors. A 2-m piece of optical fiber was terminated with the new connectors and tested for connector loss, numeric aperture and attenuation. The new LED was characterized by its emission radiation pattern and the entire system was tested for functional operation, frequency response and bandwidth of operation. An operations manual was prepared to ensure proper use in the future. The result was a two piece, single strand, fiber optic communications systems fully TTL compatible, capable of transmitting digital signals from 80 Kbit/sec to 20 Mbit/sec. The system was tested in a half duplex mode using both baseband and carrier modulated signals.
NASA Astrophysics Data System (ADS)
Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.
2018-03-01
A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.
Post-inscription tuning of multicore fiber Bragg gratings
NASA Astrophysics Data System (ADS)
Lindley, Emma Y.; Min, Seong-sik; Leon-Saval, Sergio G.; Bland-Hawthorn, Joss
2016-07-01
Fiber Bragg gratings are used in astronomy for their ability to suppress narrow atmospheric emission lines of temporally varying brightness before the light is dispersed. These gratings can only operate in a single-mode fiber as the suppressed wavelength depends on mode velocity in the core. Recent experiments with fibers containing multiple single-moded cores have demonstrated the potential for inscribing identical gratings across all cores in a single pass. We have already improved the uniformity of gratings in 7-core fibers via modifications to the writing process; further progress can be achieved by tuning the gratings of the outer and inner cores relative to one another. Our eventual goal is to make the entire fiber suppress one wavelength to a depth of 30 dB or greater. By coating the fiber in a heat-conductive material with a high expansion coefficient, we can examine the effects of temperature and strain on the spectral response of each core. In this paper we present methods and results from experiments concerning the post-write tuning of gratings in multicore fibers.
Enhanced Pulse Compression in Nonlinear Fiber by a WDM Optical Pulse
NASA Technical Reports Server (NTRS)
Yeh, C.; Bergman, L.
1997-01-01
A new way to compress an optical pulse in a single-mode fiber is presented in this paper. By the use of the cross phase modulation (CPM) effect caused by the nonlinearity of the optical fiber, a shepherd pulse propagating on a different wavelength beam in a wavelength division multiplexed (WDM) single-mode fiber system can be used to enhance the pulse compression of a co-propagating primary pulse.
Raman microprobe analysis of single ramie fiber during mercerization
Akira Isogai; Umesh P. Agarwal; Rajai H. Atalla
2003-01-01
The Raman microprobe technique was applied to structural analysis of single ramie fibers during mercerization. Polarized laser beam was irradiated on a ramie fiber in 0-30 % NaOD/D2O with the electric vector at 0 or 90° to the fiber axis, and Raman spectra thus obtained were studied in relation to the concentration of NaOD in D2O. Conversion of -OH to -OD in ramie...
NASA Astrophysics Data System (ADS)
Li, Xiang; Luo, Ming; Qiu, Ying; Alphones, Arokiaswami; Zhong, Wen-De; Yu, Changyuan; Yang, Qi
2018-02-01
In this paper, channel equalization techniques for coherent optical fiber transmission systems based on independent component analysis (ICA) are reviewed. The principle of ICA for blind source separation is introduced. The ICA based channel equalization after both single-mode fiber and few-mode fiber transmission for single-carrier and orthogonal frequency division multiplexing (OFDM) modulation formats are investigated, respectively. The performance comparisons with conventional channel equalization techniques are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Yao; Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714; Chu, Jin
2016-05-23
Graphene nanowalls (GNWs) were grown directly on carbon fibers using a chemical vapor deposition technique which is simple and catalyst-free. We found that there is very strong π-π stacking which is a benefit for the GNWs/carbon fiber interface. This single modified filament then was embedded into an epoxy matrix to be a single-fiber composite in which was formed a “tenon-mortise” structure. Such a “tenon-mortise” model provides a simple, stable, and powerful connection between carbon fiber and the epoxy matrix. In addition, it was demonstrated that the epoxy matrix can be well embedded into GNWs through a field emission scanning electronmore » microscope. The results of the single-fiber composite tests indicated that the interfacial strength of the composites was immensely improved by 173% compared to those specimens without GNWs.« less
Pradhan, Somarpita; Chaudhuri, Partha Roy
2015-07-10
We experimentally demonstrate single-mode optical-fiber-beam-deflection configuration for weak magnetic-field-detection using an optimized (low coercive-field) composition of cobalt-doped nickel ferrite nanoparticles. Devising a fiber-double-slit type experiment, we measure the surrounding magnetic field through precisely measuring interference-fringe yielding a minimum detectable field ∼100 mT and we procure magnetization data of the sample that fairly predicts SQUID measurement. To improve sensitivity, we incorporate etched single-mode fiber in double-slit arrangement and recorded a minimum detectable field, ∼30 mT. To further improve, we redefine the experiment as modulating fiber-to-fiber light-transmission and demonstrate the minimum field as 2.0 mT. The device will be uniquely suited for electrical or otherwise hazardous environments.
NASA Astrophysics Data System (ADS)
Tao, R.; Ma, Y.; Si, L.; Dong, X.; Zhou, P.; Liu, Z.
2011-11-01
We present a theoretical and experimental study of a target-in-the-loop (TIL) high-power adaptive phase-locked fiber laser array. The system configuration of the TIL adaptive phase-locked fiber laser array is introduced, and the fundamental theory for TIL based on the single-dithering technique is deduced for the first time. Two 10-W-level high-power fiber amplifiers are set up and adaptive phase locking of the two fiber amplifiers is accomplished successfully by implementing a single-dithering algorithm on a signal processor. The experimental results demonstrate that the optical phase noise for each beam channel can be effectively compensated by the TIL adaptive optics system under high-power applications and the fringe contrast on a remotely located extended target is advanced from 12% to 74% for the two 10-W-level fiber amplifiers.
Signal to noise ratio calculation for fiber optics links
NASA Technical Reports Server (NTRS)
Lau, K. Y.
1980-01-01
The signal to noise ratio (SNR) effect upon the maximum transmission length of a fiberoptic system is discussed. The relationships of different system parameters are discussed. A general formula to obtain the SNR of a single mode fiberoptic system is derived. The SNR attainable with single mode and multimode fiber optics links was calculated from fundamental noise considerations. It was found that for single mode fibers, laser noise dominates the noise contributions for links less than 30 km long, while thermal noise dominates for longer links. Multimode fibers degrade SNR for long links because of intermode dispersion. For frequency standard transmission, as long as the baseband modulation signals are within the bandwidth of the fibers, respectable SNR can be attained with low loss fibers (approximately 1 dB/km) for links as long as 70 km. For wideband transmission SNR is decreased by a factor equal to the ratio of the bandwidth.
An accelerated gamma irradiation test of low dose rate for a single mode fiber
NASA Astrophysics Data System (ADS)
Chiou, Chung-An; Peng, Tz-Shiuan; Liu, Ren-Young
2017-09-01
Conventional single mode fiber (SMF), due to its electromagnetic interference immunity, light weight, physical flexibility and broad bandwidth for data transmission, has been well employed in space, such as optical communication [1], structural health monitoring of spacecraft [2], and attitude determining applications, e.g. interferometric fiber optic gyroscope (IFOG).
Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng
2014-09-22
A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.
Recent advancements in transparent ceramics and crystal fibers for high power lasers
NASA Astrophysics Data System (ADS)
Kim, W.; Baker, C.; Villalobos, G.; Florea, C.; Gibson, D.; Shaw, L. B.; Bowman, S.; Bayya, S.; Sadowski, B.; Hunt, M.; Askins, C.; Peele, J.; Aggarwal, I. D.; Sanghera, J. S.
2013-05-01
In this paper, we present our recent progress in the development of rare-earth (Yb3+ or Ho3+) doped Lu2O3 and Y2O3 sesquioxides for high power solid state lasers. We have fabricated high quality transparent ceramics using nano-powders synthesized by a co-precipitation method. This was accomplished by developments in high purity powder synthesis and low temperature scalable sintering technology developed at NRL. The optical, spectral and morphological properties as well as the lasing performance from our highly transparent ceramics are presented. In the second part of the paper, we discuss our recent research effort in developing cladded-single crystal fibers for high power single frequency fiber lasers has the potential to significantly exceed the capabilities of existing silica fiber based lasers. Single crystal fiber cores with diameters as small as 35μm have been drawn using high purity rare earth doped ceramic or single crystal feed rods by the Laser Heated Pedestal Growth (LHPG) process. Our recent results on the development of suitable claddings on the crystal fiber core are discussed.
Novel high-brightness fiber coupled diode laser device
NASA Astrophysics Data System (ADS)
Haag, Matthias; Köhler, Bernd; Biesenbach, Jens; Brand, Thomas
2007-02-01
High brightness becomes more and more important in diode laser applications for fiber laser pumping and materials processing. For OEM customers fiber coupled devices have great advantages over direct beam modules: the fiber exit is a standardized interface, beam guiding is easy with nearly unlimited flexibility. In addition to the transport function the fiber serves as homogenizer: the beam profile of the laser radiation emitted from a fiber is symmetrical with highly repeatable beam quality and pointing stability. However, efficient fiber coupling requires an adaption of the slow-axis beam quality to the fiber requirements. Diode laser systems based on standard 10mm bars usually employ beam transformation systems to rearrange the highly asymmetrical beam of the laser bar or laser stack. These beam transformation systems (prism arrays, lens arrays, fiber bundles etc.) are expensive and become inefficient with increasing complexity. This is especially true for high power devices with small fiber diameters. On the other hand, systems based on single emitters are claimed to have good potential in cost reduction. Brightness of the inevitable fiber bundles, though, is limited due to inherent fill-factor losses. At DILAS a novel diode laser device has been developed combining the advantages of diode bars and single emitters: high brightness at high reliability with single emitter cost structure. Heart of the device is a specially tailored laser bar (T-Bar), which epitaxial and lateral structure was designed such that only standard fast- and slow-axis collimator lenses are required to couple the beam into a 200μm fiber. Up to 30 of these T-Bars of one wavelength can be combined to reach a total of > 500W ex fiber in the first step. Going to a power level of today's single emitter diodes even 1kW ex 200μm fiber can be expected.
NASA Astrophysics Data System (ADS)
Lee, Hui Jing; Abdullah, Fairuz; Ismail, Aiman
2017-11-01
This paper presents finite numerical modelling on the cross-sectional region of tapered single mode fiber and graphene-clad tapered fiber. Surface acoustic wave propagation across the tapered surface region on tapered single mode fiber has a high threshold power at 61.87 W which is challenging to overcome by the incident pump wave. Surface acoustic wave propagation of fiber surface however made tapered wave plausible in the optical sensor application. This research introduces graphene as the cladding layer on tapered fiber, acoustic confinement occurs due to the graphene cladding which lowers the threshold power from 61.87 W to 2.17 W.
New method for path-length equalization of long single-mode fibers for interferometry
NASA Astrophysics Data System (ADS)
Anderson, M.; Monnier, J. D.; Ozdowy, K.; Woillez, J.; Perrin, G.
2014-07-01
The ability to use single mode (SM) fibers for beam transport in optical interferometry offers practical advantages over conventional long vacuum pipes. One challenge facing fiber transport is maintaining constant differential path length in an environment where environmental thermal variations can lead to cm-level variations from day to night. We have fabricated three composite cables of length 470 m, each containing 4 copper wires and 3 SM fibers that operate at the astronomical H band (1500-1800 nm). Multiple fibers allow us to test performance of a circular core fiber (SMF28), a panda-style polarization-maintaining (PM) fiber, and a lastly a specialty dispersion-compensated PM fiber. We will present experimental results using precision electrical resistance measurements of the of a composite cable beam transport system. We find that the application of 1200 W over a 470 m cable causes the optical path difference in air to change by 75 mm (+/- 2 mm) and the resistance to change from 5.36 to 5.50Ω. Additionally, we show control of the dispersion of 470 m of fiber in a single polarization using white light interference fringes (λc=1575 nm, Δλ=75 nm) using our method.
Compressive Failure of Fiber Composites under Multi-Axial Loading
NASA Technical Reports Server (NTRS)
Basu, Shiladitya; Waas, Anthony M.; Ambur, Damodar R.
2006-01-01
This paper examines the compressive strength of a fiber reinforced lamina under multi-axial stress states. An equilibrium analysis is carried out in which a kinked band of rotated fibers, described by two angles, is sandwiched between two regions in which the fibers are nominally straight. Proportional multi-axial stress states are examined. The analysis includes the possibility of bifurcation from the current equilibrium state. The compressive strength of the lamina is contingent upon either attaining a load maximum in the equilibrium response or satisfaction of a bifurcation condition, whichever occurs first. The results show that for uniaxial loading a non-zero kink band angle beta produces the minimum limit load. For multi-axial loading, different proportional loading paths show regimes of bifurcation dominated and limit load dominated behavior. The present results are able to capture the beneficial effect of transverse compression in raising the composite compressive strength as observed in experiments.
Dipolar resonances in conductive carbon micro-fibers probed by near-field terahertz spectroscopy
Khromova, I.; Navarro-Cia, M.; Brener, I.; ...
2015-07-13
In this study, we observe dipole resonances in thin conductive carbon micro-fibers by detecting an enhanced electric field in the near-field of a single fiber at terahertz (THz) frequencies. Time-domain analysis of the electric field shows that each fiber sustains resonant current oscillations at the frequency defined by the fiber's length. Strong dependence of the observed resonance frequency and degree of field enhancement on the fibers' conductive properties enable direct non-contact probing of the THz conductivity in single carbon micro-fibers. We find the conductivity of the fibers to be within the range of 1– 5∙10 4 S/m. This approach ismore » suitable for experimental characterization of individual doped semiconductor resonators for THz metamaterials and devices.« less
Optical characteristics of modified fiber tips in single fiber, laser Doppler flowmetry
NASA Astrophysics Data System (ADS)
Oberg, P. Ake; Cai, Hongming; Rohman, Hakan; Larsson, Sven-Erik
1994-02-01
Percutaneous laser Doppler flowmetry (LDF) and bipolar surface electromyography (EMG) were used simultaneously for measurement of skeletal muscle (trapezius) perfusion in relation to static load and fatigue. On-line computer (386 SX) processing of the LDF- and EMG- signals made possible interpretation of the relationship between the perfusion and the activity of the muscle. The single fiber laser Doppler technique was used in order to minimize the trauma. A ray-tracing program was developed in the C language by which the optical properties of the fiber and fiber ends could be simulated. Isoirradiance graphs were calculated for three fiber end types and the radiance characteristics were measured for each fiber end. The three types of fiber-tips were evaluated and compared in flow model measurements.
Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate.
Yamamoto, Seiichi; Kamada, Kei; Yoshikawa, Akira
2018-02-16
High resolution imaging of radiation is required for such radioisotope distribution measurements as alpha particle detection in nuclear facilities or high energy physics experiments. For this purpose, we developed an ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. We used a ~1-μm diameter fiber structured GdAlO 3 :Ce (GAP) /α-Al 2 O 3 scintillator plate to reduce the light spread. The fiber structured scintillator plate was optically coupled to a tapered optical fiber plate to magnify the image and combined with a lens-based high sensitivity CCD camera. We observed the images of alpha particles with a spatial resolution of ~25 μm. For the beta particles, the images had various shapes, and the trajectories of the electrons were clearly observed in the images. For the gamma photons, the images also had various shapes, and the trajectories of the secondary electrons were observed in some of the images. These results show that combining an optical fiber structure scintillator plate with a tapered optical fiber plate and a high sensitivity CCD camera achieved ultrahigh resolution and is a promising method to observe the images of the interactions of radiation in a scintillator.
Wilson, Thomas A; Nicolosi, Robert J; Delaney, Bryan; Chadwell, Kim; Moolchandani, Vikas; Kotyla, Timothy; Ponduru, Sridevi; Zheng, Guo-Hua; Hess, Richard; Knutson, Nathan; Curry, Leslie; Kolberg, Lore; Goulson, Melanie; Ostergren, Karen
2004-10-01
Consumption of concentrated barley beta-glucan lowers plasma cholesterol because of its soluble dietary fiber nature. The role of molecular weight (MW) in lowering serum cholesterol is not well established. Prior studies showed that enzymatic degradation of beta-glucan eliminates the cholesterol-lowering activity; however, these studies did not evaluate the MW of the beta-glucan. The current study was conducted to evaluate whether barley beta-glucan concentrates, partially hydrolyzed to reduce MW, possess cholesterol-lowering and antiatherogenic activities. The reduced MW fraction was compared with a high MW beta-glucan concentrate from the same barley flour. Concentrated beta-glucan preparations were evaluated in Syrian Golden F(1)B hamsters fed a hypercholesterolemic diet (HCD) with cholesterol, hydrogenated coconut oil, and cellulose. After 2 wk, hamsters were fed HCD or diets that contained high or reduced MW beta-glucan at a concentration of 8 g/100 g at the expense of cellulose. Decreases in plasma total cholesterol (TC) and non-HDL-cholesterol (non-HDL-C) concentrations occurred in the hamsters fed reduced MW and high MW beta-glucan diets. Plasma HDL-C concentrations did not differ. HCD-fed hamsters had higher plasma triglyceride concentrations. Liver TC, free cholesterol, and cholesterol ester concentrations did not differ. Aortic cholesterol ester concentrations were lower in the reduced MW beta-glucan-fed hamsters. Consumption of either high or reduced MW beta-glucan increased concentrations of fecal total neutral sterols and coprostanol, a cholesterol derivative. Fecal excretion of cholesterol was greater than in HCD-fed hamsters only in those fed the reduced MW beta-glucan. Study results demonstrate that the cholesterol-lowering activity of barley beta-glucan may occur at both lower and higher MW.
Glycation induces formation of amyloid cross-beta structure in albumin.
Bouma, Barend; Kroon-Batenburg, Loes M J; Wu, Ya-Ping; Brünjes, Bettina; Posthuma, George; Kranenburg, Onno; de Groot, Philip G; Voest, Emile E; Gebbink, Martijn F B G
2003-10-24
Amyloid fibrils are components of proteinaceous plaques that are associated with conformational diseases such as Alzheimer's disease, transmissible spongiform encephalopathies, and familial amyloidosis. Amyloid polypeptides share a specific quarternary structure element known as cross-beta structure. Commonly, fibrillar aggregates are modified by advanced glycation end products (AGE). In addition, AGE formation itself induces protein aggregation. Both amyloid proteins and protein-AGE adducts bind multiligand receptors, such as receptor for AGE, CD36, and scavenger receptors A and B type I, and the serine protease tissue-type plasminogen activator (tPA). Based on these observations, we hypothesized that glycation induces refolding of globular proteins, accompanied by formation of cross-beta structure. Using transmission electron microscopy, we demonstrate here that glycated albumin condensates into fibrous or amorphous aggregates. These aggregates bind to amyloid-specific dyes Congo red and thioflavin T and to tPA. In contrast to globular albumin, glycated albumin contains amino acid residues in beta-sheet conformation, as measured with circular dichroism spectropolarimetry. Moreover, it displays cross-beta structure, as determined with x-ray fiber diffraction. We conclude that glycation induces refolding of initially globular albumin into amyloid fibrils comprising cross-beta structure. This would explain how glycated ligands and amyloid ligands can bind to the same multiligand "cross-beta structure" receptors and to tPA.
NASA Technical Reports Server (NTRS)
Giger, J. M.; Haddad, F.; Qin, A. X.; Baldwin, K. M.
2000-01-01
In the weight-bearing hindlimb soleus muscle of the rat, approximately 90% of muscle fibers express the beta-myosin heavy chain (beta-MHC) isoform protein. Hindlimb suspension (HS) causes the MHC isoform population to shift from beta toward the fast MHC isoforms. Our aim was to establish a model to test the hypothesis that this shift in expression is transcriptionally regulated through specific cis elements of the beta-MHC promoter. With the use of a direct gene transfer approach, we determined the activity of different length beta-MHC promoter fragments, linked to a firefly luciferase reporter gene, in soleus muscle of control and HS rats. In weight-bearing rats, the relative luciferase activity of the longest beta-promoter fragment (-3500 bp) was threefold higher than the shorter promoter constructs, which suggests that an enhancer sequence is present in the upstream promoter region. After 1 wk of HS, the reporter activities of the -3500-, -914-, and -408-bp promoter constructs were significantly reduced ( approximately 40%), compared with the control muscles. However, using the -215-bp construct, no differences in promoter activity were observed between HS and control muscles, which indicates that the response to HS in the rodent appears to be regulated within the -408 and -215 bp of the promoter.
NASA Technical Reports Server (NTRS)
Gadi, Jagannath; Yalamanchili, Raj; Shahid, Mohammad
1995-01-01
The need for high efficiency components has grown significantly due to the expanding role of fiber optic communications for various applications. Integrated optics is in a state of metamorphosis and there are many problems awaiting solutions. One of the main problems being the lack of a simple and efficient method of coupling single-mode fibers to thin-film devices for integrated optics. In this paper, optical coupling between a single-mode fiber and a uniform and tapered thin-film waveguide is theoretically modeled and analyzed. A novel tapered structure presented in this paper is shown to produce perfect match for power transfer.
High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique
NASA Astrophysics Data System (ADS)
Didierjean, Julien; Castaing, Marc; Balembois, François; Georges, Patrick; Perrodin, Didier; Fourmigué, Jean Marie; Lebbou, Kherreddine; Brenier, Alain; Tillement, Olivier
2006-12-01
We present optical characterization and laser results achieved with single-crystal fibers directly grown by the micro-pulling-down technique. We investigate the spectroscopic and optical quality of the fiber, and we present the first laser results. We achieved a cw laser power of 10 W at 1064 nm for an incident pump power of 60 W at 808 nm and 360 kW peak power for 12 ns pulses at 1 kHz in the Q-switched regime. It is, to the best of our knowledge, the highest laser power ever achieved with directly grown single-crystal fibers.
Rule, Michael E.; Vargas-Irwin, Carlos E.; Donoghue, John P.
2017-01-01
Determining the relationship between single-neuron spiking and transient (20 Hz) β-local field potential (β-LFP) oscillations is an important step for understanding the role of these oscillations in motor cortex. We show that whereas motor cortex firing rates and beta spiking rhythmicity remain sustained during steady-state movement preparation periods, β-LFP oscillations emerge, in contrast, as short transient events. Single-neuron mean firing rates within and outside transient β-LFP events showed no differences, and no consistent correlation was found between the beta oscillation amplitude and firing rates, as was the case for movement- and visual cue-related β-LFP suppression. Importantly, well-isolated single units featuring beta-rhythmic spiking (43%, 125/292) showed no apparent or only weak phase coupling with the transient β-LFP oscillations. Similar results were obtained for the population spiking. These findings were common in triple microelectrode array recordings from primary motor (M1), ventral (PMv), and dorsal premotor (PMd) cortices in nonhuman primates during movement preparation. Although beta spiking rhythmicity indicates strong membrane potential fluctuations in the beta band, it does not imply strong phase coupling with β-LFP oscillations. The observed dissociation points to two different sources of variation in motor cortex β-LFPs: one that impacts single-neuron spiking dynamics and another related to the generation of mesoscopic β-LFP signals. Furthermore, our findings indicate that rhythmic spiking and diverse neuronal firing rates, which encode planned actions during movement preparation, may naturally limit the ability of different neuronal populations to strongly phase-couple to a single dominant oscillation frequency, leading to the observed spiking and β-LFP dissociation. NEW & NOTEWORTHY We show that whereas motor cortex spiking rates and beta (~20 Hz) spiking rhythmicity remain sustained during steady-state movement preparation periods, β-local field potential (β-LFP) oscillations emerge, in contrast, as transient events. Furthermore, the β-LFP phase at which neurons spike drifts: phase coupling is typically weak or absent. This dissociation points to two sources of variation in the level of motor cortex beta: one that impacts single-neuron spiking and another related to the generation of measured mesoscopic β-LFPs. PMID:28100654
NASA Astrophysics Data System (ADS)
Ohira, Yoshinobu; Kawano, Fuminori; Goto, Katsumasa; Terada, Masahiro; Ohira, Takashi; Nakai, Naoya; Higo, Yoko; Yoshioka, Toshitada
2008-06-01
Effects of gravitational loading or unloading on the gain of the characteristics in soleus muscle fibers were studied in rats. The tail suspension was performed in newborn rats from the postnatal day 4 to month 3 and the reloading was allowed for 3 months in some rats. Single expression of type I myosin heavy chain (MHC) was observed in ~82% fibers in 3month old controls, but fibers expressing multiple MHC iso-forms were noted in the unloaded rats. Responses of fast or slow MHC protein expression to growth and/or unloading were not directly related to mRNA expression. Although 97% fibers in 3month old controls had a single neuromuscular junction at the central region of fiber, fibers with multiple nerve endplates were seen in the unloaded group. Faster contraction speed and lower maximal tension development, even after normalization with fiber size, were observed in the unloaded pure type I MHC fibers. These parameters generally returned to the age-matched control levels after reloading. It was suggested that antigravity-related tonic activity plays an important role in the gain of single neural innervation and of slow contractile properties and phenotype in soleus muscle fibers, which are not directly related to gene expression.
Monolithic all-fiber repetition-rate tunable gain-switched single-frequency Yb-doped fiber laser.
Hou, Yubin; Zhang, Qian; Qi, Shuxian; Feng, Xian; Wang, Pu
2016-12-12
We report a monolithic gain-switched single-frequency Yb-doped fiber laser with widely tunable repetition rate. The single-frequency laser operation is realized by using an Yb-doped distributed Bragg reflection (DBR) fiber cavity, which is pumped by a commercial-available laser diode (LD) at 974 nm. The LD is electronically modulated by the driving current and the diode output contains both continuous wave (CW) and pulsed components. The CW component is set just below the threshold of the single-frequency fiber laser for reducing the requirement of the pump pulse energy. Above the threshold, the gain-switched oscillation is trigged by the pulsed component of the diode. Single-frequency pulsed laser output is achieved at 1.063 μm with a pulse duration of ~150 ns and a linewidth of 14 MHz. The repetition rate of the laser output can be tuned between 10 kHz and 400 kHz by tuning the electronic trigger signal. This kind of lasers shows potential for the applications in the area of coherent LIDAR etc.
NASA Astrophysics Data System (ADS)
Belov, A. V.; Kurkov, Andrei S.; Musatov, A. G.; Semenov, V. A.
1990-12-01
Experimental and theoretical investigations were made of the influence of external thermal effects on the dispersive characteristics of single-mode fiber waveguides with different shapes and parameters of the refractive index profile. The temperature coefficients of the group delay were determined. The temperature dependences of the dispersion coefficient (dD/dT = 1.6 × 10-3 and 4.3 × 10-3 ps.nm-1 km-1 K-1, respectively) and of the zero-dispersion wavelength (dλ0/dT = 1.9 × 10-2 and 8.5 × 10-2 nm/K, respectively) were determined at two working wavelengths of 1.3 and 1.55 μm for single-mode fiber waveguides with typical parameters.
Ma, Lin; Hanzawa, Nobutomo; Tsujikawa, Kyozo; Azuma, Yuji
2012-10-22
We demonstrated ultra-wideband wavelength division multiplexing (WDM) transmission from 850 to 1550 nm in graded-index multi-mode fiber (GI-MMF) using endlessly single-mode photonic crystal fiber (ESM-PCF) as a launch device. Effective single-mode guidance is obtained in multi-mode fiber at all wavelengths by splicing cm-order length ESM-PCF to the transmission fiber. We achieved 3 × 10 Gbit/s WDM transmission in a 1 km-long 50-μm-core GI-MMF. We also realized penalty free 10 Gbit/s data transmission at a wavelength of 850 nm by optimizing the PCF structure. This method has the potential to achieve greater total transmission capacity for MMF systems by the addition of more wavelength channels.
Feng, Jinxia; Wan, Zhenju; Li, Yuanji; Zhang, Kuanshou
2017-09-01
The distribution of continuous variable (CV) Einstein-Podolsky-Rosen (EPR)-entangled beams at a telecommunication wavelength of 1550 nm over single-mode fibers is investigated. EPR-entangled beams with quantum entanglement of 8.3 dB are generated using a single nondegenerate optical parametric amplifier based on a type-II periodically poled KTiOPO 4 crystal. When one beam of the generated EPR-entangled beams is distributed over 20 km of single-mode fiber, 1.02 dB quantum entanglement can still be measured. The degradation of CV quantum entanglement in a noisy fiber channel is theoretically analyzed considering the effect of depolarized guided acoustic wave Brillouin scattering in optical fibers. The theoretical prediction is in good agreement with the experimental results.
Toward efficient fiber-based quantum interface (Conference Presentation)
NASA Astrophysics Data System (ADS)
Soshenko, Vladimir; Vorobyov, Vadim V.; Bolshedvorsky, Stepan; Lebedev, Nikolay; Akimov, Alexey V.; Sorokin, Vadim; Smolyaninov, Andrey
2016-04-01
NV center in diamond is attracting a lot of attention in quantum information processing community [1]. Been spin system in clean and well-controlled environment of diamond it shows outstanding performance as quantum memory even at room temperature, spin control with single shot optical readout and possibility to build up quantum registers even on single NV center. Moreover, NV centers could be used as high-resolution sensitive elements of detectors of magnetic or electric field, temperature, tension, force or rotation. For all of these applications collection of the light emitted by NV center is crucial point. There were number of approaches suggested to address this issue, proposing use of surface plasmoms [2], manufacturing structures in diamond [3] etc. One of the key feature of any practically important interface is compatibility with the fiber technology. Several groups attacking this problem using various approaches. One of them is placing of nanodiamonds in the holes of photonic crystal fiber [4], another is utilization of AFM to pick and place nanodiamond on the tapered fiber[5]. We have developed a novel technique of placing a nanodiamond with single NV center on the tapered fiber by controlled transfer of a nanodiamond from one "donor" tapered fiber to the "target" clean tapered fiber. We verify our ability to transfer only single color centers by means of measurement of second order correlation function. With this technique, we were able to double collection efficiency of confocal microscope. The majority of the factors limiting the collection of photons via optical fiber are technical and may be removed allowing order of magnitude improved in collection. We also discuss number of extensions of this technique to all fiber excitation and integration with nanostructures. References: [1] Marcus W. Doherty, Neil B. Manson, Paul Delaney, Fedor Jelezko, Jörg Wrachtrup, Lloyd C.L. Hollenberg , " The nitrogen-vacancy colour centre in diamond," Physics Reports, vol. 528, no. 1, p. 1-45, 2013. [2] A.V. Akimov, A. Mukherjee, C.L. Yu, D.E. Chang, A.S. Zibrov, P.R. Hemmer, H. Park and M.D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature, vol. 450, p. 402-406, 2007. [3] Michael J. Burek , Yiwen Chu, Madelaine S.Z. Liddy, Parth Patel, Jake Rochman , Srujan Meesala, Wooyoung Hong, Qimin Quan, Mikhail D. Lukin and Marko Loncar High quality-factor optical nanocavities in bulk single-crystal diamond, Nature communications 6718 (2014) [4] Tim Schroder, Andreas W. Schell, Gunter Kewes, Thomas Aichele, and Oliver Benson Fiber-Integrated Diamond-Based Single Photon Source, Nano Lett. 2011, 11, 198-202 [5]Lars Liebermeister, et. al. "Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center", Appl. Phys. Lett. 104, 031101 (2014)
1.8 mJ, 3.5 kW single-frequency optical pulses at 1572 nm generated from an all-fiber MOPA system.
Lee, Wangkuen; Geng, Jihong; Jiang, Shibin; Yu, Anthony W
2018-05-15
High-energy single-frequency optical pulses at 1572 nm were generated from an all-fiber MOPA system for atmospheric CO 2 LIDAR system application. We report the experimental demonstration of 1.8 mJ, a peak power of 3.5 kW at the pulse repetition of 2.5 kHz, as well as 1.3 mJ, a peak power of 2.5 kW at the pulse repetition of 7.5 kHz single-frequency optical pulses at 1572 nm using single-mode large-core polarization-maintaining Er-Yb co-doped silicate glass fiber amplifiers pumped at 976 nm. To the best of our knowledge, this is the highest pulse energy of single frequency at 1572 nm from an all-fiber amplifier system.
A novel optical imaging system for investigating sarcomere dynamics in single skeletal muscle fibers
NASA Astrophysics Data System (ADS)
Panchangam, Appaji; Witte, Russell S.; Claflin, Dennis R.; O'Donnell, Matthew; Faulkner, John A.
2006-02-01
The protein substructure of skeletal muscle fibers forms a diffraction grating with repeating units, termed 'sarcomeres'. A laser scanning system is described that maps the lengths of sarcomeres (SL) and the widths of the first-order diffraction lines (DLW) of permeabilized single fibers in real-time. The apparatus translates a laser beam (λ = 670 nm and w 0 = ~75 μm) along the length of a fiber segment through 20 contiguous regions per sweep at 500 sweeps/s. The fiber segments (~1 mm long) were obtained from vastus lateralis muscles of humans by needle biopsy. During both passive stretches and maximum fixed-end activations, the mappings of SL and DLW of the fibers were extracted from the diffraction spectra. Heterogeneity of SLs was evaluated by computing the standard deviation ( σ SL) of the 20 SLs measured during a single sweep. Compared with the σ SL before a passive stretch, the increase of 5+/-0.5% in σ SL after the passive stretch, indicated differences in passive length-tension relationships along the fiber. In contrast, no change, ~0.5+/-0.1%, was observed in DLW. Within 10s after the fiber was returned to its initial length, the shape of the SL profile returned close to pre-stretch conditions ( σ SL = 1+/- 0.2%). Following maximum Ca 2+ - activation of the fiber, the heterogeneity of the steady state SLs increased greatly (DLW up by ~300% and σ SL up by ~100%). The scanning system provided high resolution tracking of sarcomere behavior single muscle fibers. Potential applications are for studies of the mechanisms of muscle fiber injury and injury propagation.
High-brightness 800nm fiber-coupled laser diodes
NASA Astrophysics Data System (ADS)
Berk, Yuri; Levy, Moshe; Rappaport, Noam; Tessler, Renana; Peleg, Ophir; Shamay, Moshe; Yanson, Dan; Klumel, Genadi; Dahan, Nir; Baskin, Ilya; Shkedi, Lior
2014-03-01
Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. Single emitters offer reliable multi-watt output power from a 100 m lateral emission aperture. By their combination and fiber coupling, pump powers up to 100 W can be achieved from a low-NA fiber pigtail. Whilst in the 9xx nm spectral range the single emitter technology is very mature with <10W output per chip, at 800nm the reliable output power from a single emitter is limited to 4 W - 5 W. Consequently, commercially available fiber coupled modules only deliver 5W - 15W at around 800nm, almost an order of magnitude down from the 9xx range pumps. To bridge this gap, we report our advancement in the brightness and reliability of 800nm single emitters. By optimizing the wafer structure, laser cavity and facet passivation process we have demonstrated QCW device operation up to 19W limited by catastrophic optical damage to the 100 μm aperture. In CW operation, the devices reach 14 W output followed by a reversible thermal rollover and a complete device shutdown at high currents, with the performance fully rebounded after cooling. We also report the beam properties of our 800nm single emitters and provide a comparative analysis with the 9xx nm single emitter family. Pump modules integrating several of these emitters with a 105 μm / 0.15 NA delivery fiber reach 35W in CW at 808 nm. We discuss the key opto-mechanical parameters that will enable further brightness scaling of multi-emitter pump modules.
Localization of beta and gamma subunits of ENaC in sensory nerve endings in the rat foot pad.
Drummond, H A; Abboud, F M; Welsh, M J
2000-11-24
The molecular mechanisms underlying mechanoelectrical transduction and the receptors that detect light touch remain uncertain. Studies in Caenorhabditis elegans suggest that members of the DEG/ENaC cation channel family may be mechanoreceptors. Therefore, we tested the hypothesis that subunits of the mammalian epithelial Na(+) channel (ENaC) family are expressed in touch receptors in rat hairless skin. We detected betaENaC and gammaENaC, but not alphaENaC transcripts in cervical and lumbar dorsal root ganglia (DRG). Using immunofluorescence, we found betaENaC and gammaENaC expressed in medium to large lumbar DRG neurons. Moreover, we detected these two subunits in Merkel cell-neurite complexes, Meissner-like corpuscles, and small lamellated corpuscles, specialized mechanosensory structures of the skin. Within these structures, betaENaC and gammaENaC were localized in the nerve fibers believed to contain the sensors responsive to mechanical stress. Thus beta and gammaENaC subunits are good candidates as components of the molecular sensor that detects touch.
DiRaimondo, C R; Pollak, V E
1989-05-01
beta 2-Microglobulin (beta 2M) forms synovial and bony amyloid deposits in long-term hemodialysis patients. To define the kinetics of beta 2M during hemodialysis and the effects of dialyzer reprocessing, we measured serum beta 2M, plasma C3a, and neutrophil counts immediately predialysis; 15, 90, and 180 minutes after beginning dialysis; and 15 minutes postdialysis in ten chronic hemodialysis patients. The studies were performed during first and third uses of cuprammonium rayon and polysulfone dialyzers processed by rinsing with water, then bleach, in an automated system (Seratronics DRS 4) and then packed in 1.5% formaldehyde. Mean serum beta 2M (corrected for ultrafiltration) decreased by 16.6% +/- 18.1% with new cuprammonium dialyzers and 57.1% +/- 12.8% with new polysulfone dialyzers. Dialyzer reprocessing had no significant effect on this decline. Predialysis serum beta 2M decreased by 30.4% +/- 15.5% 1 month after switching from cuprammonium to polysulfone dialyzers; these levels remained stable after 3 months of dialysis with polysulfone. Complement activation and neutropenia during dialysis were significantly more marked with cuprammonium, but were not affected by reprocessing of either dialyzer. In vitro adsorption of 124I-beta 2M to polysulfone fibers was greater than to cuprammonium; adsorption was not influenced by dialyzer reprocessing.
Fibrinogen variant B[beta]D432A has normal polymerization but does not bind knob 'B'
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowley, Sheryl R.; Lord, Susan T.; UNC)
2009-10-23
Fibrinogen residue B{beta}432Asp is part of hole 'b' that interacts with knob 'B,' whose sequence starts with Gly-His-Arg-Pro-amide (GHRP). Because previous studies showed B{beta}D432A has normal polymerization, we hypothesized that B{beta}432Asp is not critical for knob 'B' binding and that new knob-hole interactions would compensate for the loss of this Asp residue. To test this hypothesis, we solved the crystal structure of fragment D from B{beta}D432A. Surprisingly, the structure (rfD-B{beta}D432A+GH) showed the peptide GHRP was not bound to hole 'b.' We then re-evaluated the polymerization of this variant by examining clot turbidity, clot structure, and the rate of FXIIIa cross-linking.more » The turbidity and the rate of - dimer formation for B{beta}D432A were indistinguishable compared with normal fibrinogen. Scanning electron microscopy showed no significant differences between the clots of B{beta}D432A and normal, but the thrombin-derived clots had thicker fibers than clots obtained from batroxobin, suggesting that cleavage of FpB is more important than 'B:b' interactions. We conclude that hole 'b' and 'B:b' knob-hole binding per se have no influence on fibrin polymerization.« less
2014-02-26
through RF filtering . Subsequently, this modulated signal is used in a cutback experiment with a passive fiber . Studies describing enhancement factors...to filter out higher order modes [3]. However, in order to maintain single-mode (diffraction limited) operation, conventional step-index fiber core...Letters 36, 2686-2688 (2011). [3] J. P. Koplaw, D. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Optics Letters
NASA Astrophysics Data System (ADS)
Narayanan, Ananthakrishnan
In this research, structural, electrical and nonlinear optical characteristics of: (a) single crystal films involving a noncentrosymmetric molecule DAST and a laser dye IR125 and (b) specific nonconjugated conducting polymers including poly(beta-pinene) and polynorbornene have been studied. 4'-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) is a well known second order nonlinear optical material. This material has exceptionally high electro-optic coefficients, high thermal stability and ultrafast response time. In this work single crystal films involving a combination of DAST and IR125 have been prepared using modified shear method and the films have been characterized using polarized optical microscopy, X-ray diffraction, polarization dependent optical absorption and photoluminescence spectroscopy. The electro-optic coefficient of these films measured at 633nm was found to be 300pm/V. Since IR-125 has a strong absorption band from 500nm to 800nm, these films are promising for various applications in nonlinear optics at longer wavelength and for light emission. Nonconjugated conducting polymers are a class of polymers that have at least one double bond in their repeat units. 1,4-cis polyisoprene, polyalloocimene, styrene butadiene rubber, poly(ethylenepyrrolediyl) derivatives, and poly(beta-pinene) are some of the well known examples of nonconjugated conducting polymers. In this work, polynorborne, a new addition to the class of nonconjugated conducting polymers is discussed. Like other polymers in this class, polynorbornene exhibits increase in electrical conductivity by many orders of magnitude upon doping with iodine. The maximum electrical conductivity of this material is 0.01 S/cm. As shown by using FTIR microscopy, the C=C bonds are transformed into cation radicals when polynorborne is doped. This is due to the charge-transfer from the double bond to the dopant (iodine). These materials like other nonconjugated conducting polymers have significant applications in electro-optics and photonics. Electron paramagnetic resonance measurements on poly(beta-pinene) before and after doping with iodine are reported in this work. The EPR signal of this polymer increases proportionally with the iodine concentration due to the formation of cation radicals upon doping and charge-transfer. The results agree well with the doping mechanism of nonconjugated conducting polymers discussed earlier in literature. Hyperfine splitting in heavily doped polymers is observed due to the reduced distance between the cation radical and the iodine anion. Off-resonant electro-optic measurements in doped poly(beta-pinene) at 790nm, 800nm, 810nm and 1.55microm using field-induced birefringence technique have been studied. The results show that this material exhibits the highest cubic nonlinearities of all known materials. The Kerr coefficient measured at 1.55microm is 1.6x10-10 m/V2 which is about 30 times higher than that of conjugated polymers. Results of two photon measurements in this doped polymer using pump-probe technique with a pulsed, mode-locked (150 fs pulses) beam from a Ti-Sapphire laser are reported. The measured value of alpha2 at 790 nm and 795 nm were found to be 2.28+/-0.1 cm/MW and 2.5+/-0.1 cm/MW respectively. The data confirms that the nonlinearity in this material is ultrafast and electronic in nature. Such large nonlinearities in these materials are attributed the charge confinement in these materials in a sub-nanometer domain (upon doping) resulting in a metal-like quantum dot structure. Photovoltaic measurements in a composite involving poly(beta-pinene) and C60 are discussed. This is the first time a nonconjugated conducting polymer based photovoltaic cell has been fabricated. A composite involving 4% C60 by weight produced a photovoltage of 280mV for an incident light intensity of 6mW/sq.cm. These low cost devices have applications in solar cells, photodetectors etc. A nonlinear optical waveguide was prepared by casting a thin film of poly(beta-pinene) on bare multi-mode optical fiber and doping it with iodine. The doped fibers were of excellent optical quality. Two-photon absorption experiments were conducted using these waveguides and large changes in transmission upto 28% was observed in 15cm long fiber. More work needs to be done to confirm this result. This is a significant step in the direction of making these materials a viable choice for ultrafast (femtosecond time-scale) optical devices. To summarize, these works included detailed investigations of structural, electrical and nonlinear optical characteristics of specific molecular crystal films and nonconjugated conducting polymers.
High-Reliability Pump Module for Non-Planar Ring Oscillator Laser
NASA Technical Reports Server (NTRS)
Liu, Duncan T.; Qiu, Yueming; Wilson, Daniel W.; Dubovitsky, Serge; Forouhar, Siamak
2007-01-01
We propose and have demonstrated a prototype high-reliability pump module for pumping a Non-Planar Ring Oscillator (NPRO) laser suitable for space missions. The pump module consists of multiple fiber-coupled single-mode laser diodes and a fiber array micro-lens array based fiber combiner. The reported Single-Mode laser diode combiner laser pump module (LPM) provides a higher normalized brightness at the combined beam than multimode laser diode based LPMs. A higher brightness from the pump source is essential for efficient NPRO laser pumping and leads to higher reliability because higher efficiency requires a lower operating power for the laser diodes, which in turn increases the reliability and lifetime of the laser diodes. Single-mode laser diodes with Fiber Bragg Grating (FBG) stabilized wavelength permit the pump module to be operated without a thermal electric cooler (TEC) and this further improves the overall reliability of the pump module. The single-mode laser diode LPM is scalable in terms of the number of pump diodes and is capable of combining hundreds of fiber-coupled laser diodes. In the proof-of-concept demonstration, an e-beam written diffractive micro lens array, a custom fiber array, commercial 808nm single mode laser diodes, and a custom NPRO laser head are used. The reliability of the proposed LPM is discussed.
Room temperature single photon source using fiber-integrated hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Vogl, Tobias; Lu, Yuerui; Lam, Ping Koy
2017-07-01
Single photons are a key resource for quantum optics and optical quantum information processing. The integration of scalable room temperature quantum emitters into photonic circuits remains to be a technical challenge. Here we utilize a defect center in hexagonal boron nitride (hBN) attached by Van der Waals force onto a multimode fiber as a single photon source. We perform an optical characterization of the source in terms of spectrum, state lifetime, power saturation and photostability. A special feature of our source is that it allows for easy switching between fiber-coupled and free space single photon generation modes. In order to prove the quantum nature of the emission we measure the second-order correlation function {{g}(2)}≤ft(τ \\right) . For both fiber-coupled and free space emission, the {{g}(2)}≤ft(τ \\right) dips below 0.5 indicating operation in the single photon regime. The results so far demonstrate the feasibility of 2D material single photon sources for scalable photonic quantum information processing.
Yu, Marcia M L; Sandercock, P Mark L
2012-01-01
During the forensic examination of textile fibers, fibers are usually mounted on glass slides for visual inspection and identification under the microscope. One method that has the capability to accurately identify single textile fibers without subsequent demounting is Raman microspectroscopy. The effect of the mountant Entellan New on the Raman spectra of fibers was investigated to determine if it is suitable for fiber analysis. Raman spectra of synthetic fibers mounted in three different ways were collected and subjected to multivariate analysis. Principal component analysis score plots revealed that while spectra from different fiber classes formed distinct groups, fibers of the same class formed a single group regardless of the mounting method. The spectra of bare fibers and those mounted in Entellan New were found to be statistically indistinguishable by analysis of variance calculations. These results demonstrate that fibers mounted in Entellan New may be identified directly by Raman microspectroscopy without further sample preparation. © 2011 American Academy of Forensic Sciences.
Design of fiber optic probes for laser light scattering
NASA Technical Reports Server (NTRS)
Dhadwal, Harbans S.; Chu, Benjamin
1989-01-01
A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.
Remote Spectroscopy in the Visible Using Fibers on the Optical Internet Network
ERIC Educational Resources Information Center
Ribeiro, Rafael A. S.; de Oliveira, Anderson R.; Zilio, Sergio C.
2010-01-01
The work presented here demonstrates the feasibility of using the single-mode fibers of an optical Internet network to deliver visible light between separate laboratories as a way to perform remote spectroscopy in the visible for teaching purposes. The coupling of a broadband light source into the single-mode fiber (SMF) and the characterization…
Recovery of C-fiber-induced extravasation following peripheral nerve injury in the rat.
Bester, H; Allchorne, A J; Woolf, C J
1998-12-01
Peripheral nerve injury leads to substantial alterations in injured sensory neurons. These include cell death, phenotypic modifications, and regeneration. Primary sensory neurons have recently been shown not to die until a time beyond 4 months following a nerve crush or ligation and this loss is, moreover, limited to cells with unmyelinated axons, the C-fibers. The late loss of C-fibers may be due to a lack of target reinnervation during the regenerative phase. In order to investigate this, we have used a particular peripheral function, unique to C-fibers, as a measure of peripheral reinnervation: an increase in capillary permeability on antidromic activation of C-fibers, i.e., neurogenic extravasation. This was investigated in rats that had received a nerve crush injury 1 to 50 weeks earlier. Some recovery of the capacity of C-fibers to generate extravasation was detected at 8-10 weeks, which increased further at 12-14 weeks, and then plateaued at this level with no further recovery at 30 or 50 weeks. In intact and damaged sciatic nerves, A beta-fibers never induced extravasation. These findings are compatible with the hypothesis that those C-fibers which make it back to their peripheral targets do not subsequently die and those that do not, may die. Copyright 1998 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizell, Steve A.; Shadel, Craig A.
Airborne particulates are collected at U.S. Department of Energy sites that exhibit radiological contamination on the soil surface to help assess the potential for wind to transport radionuclides from the contamination sites. Collecting these samples was originally accomplished by drawing air through a cellulose-fiber filter. These filters were replaced with glass-fiber filters in March 2011. Airborne particulates were collected side by side on the two filter materials between May 2013 and May 2014. Comparisons of the sample mass and the radioactivity determinations for the side-by-side samples were undertaken to determine if the change in the filter medium produced significant results.more » The differences in the results obtained using the two filter types were assessed visually by evaluating the time series and correlation plots and statistically by conducting a nonparametric matched-pair sign test. Generally, the glass-fiber filters collect larger samples of particulates and produce higher radioactivity values for the gross alpha, gross beta, and gamma spectroscopy analyses. However, the correlation between the radioanalytical results for the glass-fiber filters and the cellulose-fiber filters was not strong enough to generate a linear regression function to estimate the glass-fiber filter sample results from the cellulose-fiber filter sample results.« less
Water-soluble dietary fibers and cardiovascular disease.
Theuwissen, Elke; Mensink, Ronald P
2008-05-23
One well-established way to reduce the risk of developing cardiovascular disease (CVD) is to lower serum LDL cholesterol levels by reducing saturated fat intake. However, the importance of other dietary approaches, such as increasing the intake of water-soluble dietary fibers is increasingly recognized. Well-controlled intervention studies have now shown that four major water-soluble fiber types-beta-glucan, psyllium, pectin and guar gum-effectively lower serum LDL cholesterol concentrations, without affecting HDL cholesterol or triacylglycerol concentrations. It is estimated that for each additional gram of water-soluble fiber in the diet serum total and LDL cholesterol concentrations decrease by -0.028 mmol/L and -0.029 mmol/L, respectively. Despite large differences in molecular structure, no major differences existed between the different types of water-soluble fiber, suggesting a common underlying mechanism. In this respect, it is most likely that water-soluble fibers lower the (re)absorption of in particular bile acids. As a result hepatic conversion of cholesterol into bile acids increases, which will ultimately lead to increased LDL uptake by the liver. Additionally, epidemiological studies suggest that a diet high in water-soluble fiber is inversely associated with the risk of CVD. These findings underlie current dietary recommendations to increase water-soluble fiber intake.
USDA-ARS?s Scientific Manuscript database
Nutrim-10 is a newly developed food product containing the dietary of soluble fiber ß-glucan. The micro-structural heterogeneities of Nutrim-10 suspensions were investigated by monitoring the thermally driven displacements of well-dispersed microspheres via video fluorescence microscopy. By comparin...
[Association between polymorphism in DVWA and IL-1beta and Kashin-Beck disease].
Y U, Min; Guo, Xiong; Gao, Xiao-Yun; Lai, Jiang-Hua; Tu, Qian-Qian
2010-07-01
To investigate the association between IL-1beta and DVWA gene and Kashin-Beck disease (KBD). Peripheral genomic DNA were extracted from 105 patients with KBD and 98 healthy controls. PCR-RFLP were performed to detect SNP loci of IL-1beta gene and DVWA gene. The patients with KBD had significantly higher frequency of rs16944 (IL-1beta) locus (chi2 = 24.28, P < 0.001) and single allele frequency of rs16944 (chi2 = 5.683, P = 0.0171) than the healthy controls. There were no significant differences in genotype frequencies,single allele frequencies and haplotypes in rs4685241 and rs1143627 between the patients with KBD and the healthy controls. rs16944 (IL-1beta) is associated with KBD.
A 980 nm pseudomorphic single quantum well laser for pumping erbium-doped optical fiber amplifiers
NASA Technical Reports Server (NTRS)
Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.
1990-01-01
The authors have fabricated ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs GRIN-SCH SQW (graded-index separate-confinement-heterostructure single-quantum-well) lasers, emitting at 980 nm, with a maximum output power of 240 mW from one facet and a 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. These lasers satisfy the requirements on efficient and compact pump sources for Er3+-doped fiber amplifiers.
Design and fabrication of N x N optical couplers based on organic polymer optical waveguides
NASA Astrophysics Data System (ADS)
Krchnavek, Robert R.; Rode, Daniel L.
1994-08-01
In this report, we examine the design and fabrication of a planar, 10x10 optical coupler utilizing photopolymerizable organic polymers. Background information on the theory of operation of the coupler culminating in a set of design equations is presented. The details of the material processing are described, including the preparation of monomer mixtures that result in single-mode polymer waveguides (lambda = 1300 nm) that have core dimensions approximately equal to those of single-mode fiber. This is necessary to insure high coupling efficiency between the planar device and optical fiber. A unique method of aligning and attaching optical fibers to the coupler is demonstrated. This method relies on patterned alignment ways, a transcision cut, and single-mode D-fiber. A theoretical analysis of the in situ monitoring technique used to fabricate the single-mode D-fiber is presented and compared favorably with the experimental results. Finally, the 10x10 coupler is characterized. We have measured an excess loss of approximately 8 dB.
NASA Astrophysics Data System (ADS)
Wan, Hongdan; Liu, Linqian; Ding, Zuoqin; Wang, Jie; Xiao, Yu; Zhang, Zuxing
2018-06-01
This paper proposes and demonstrates a single-longitudinal-mode, narrow bandwidth fiber laser, using an ultra-high roundness microsphere resonator (MSR) with a stabilized package as the single-longitudinal-mode selector inside a double-ring fiber cavity. By improving the heating technology and surface cleaning process, MSR with high Q factor are obtained. With the optimized coupling condition, light polarization state and fiber taper diameter, we achieve whispering gallery mode (WGM) spectra with a high extinction ratio of 23 dB, coupling efficiency of 99.5%, a 3 dB bandwidth of 1 pm and a side-mode-suppression-ratio of 14.5 dB. The proposed fiber laser produces single-longitudinal-mode laser output with a 20-dB frequency linewidth of about 340 kHz, a signal-to-background ratio of 54 dB and a high long-term stability without mode-hopping, which is potential for optical communication and sensing applications.
Jain, D; Alam, S; Codemard, C; Jung, Y; Zervas, M N; Sahu, J K
2015-09-01
We experimentally demonstrate an all-solid Yb-doped 30 μm core diameter single trench fiber. Measurements ensure a robust effective single-mode operation without the need of tight coiling as required for conventional fibers thanks to the ultralow NA (∼0.038) and resonant ring surrounding the core. All-solid and cylindrical design ensures the suitability for mass scale production with the added benefit of all-fiberized device structure. A compact master oscillator power amplifier (MOPA) has been built using this fiber delivering ∼23.5 ps pulses at 13.5 MHz repetition rate delivering up to ∼52 W of average output power corresponding to a pulse energy of ∼3.8 μJ and peak power of >160 kW, while maintaining ∼76% slope efficiency. The output beam exhibits a polarization extinction ratio of more than 15 dB and a M2 less than 1.15.
Sukegawa, T
1983-08-01
Immobilization muscule atrophy was experimentally induced by fixing one ankle joint with a K-wire in an extended position in rats. The animals were sacrificed at designated intervals to obtain the soleus muscle from the fixed (or disused) side and the free side; the muscles were weighed wet, evaluated (musculo) physiologically using a single-skinned muscle fiber method, and further examined histochemically and electron-microscopically. The wet weight of the disused soleus muscle was reduced to 54% of that of the healthy (used) muscle. According to classification by types of muscle fibers stained for ATPase, conversion of muscle fiber type, i.e., conversions of type 1 (red muscle) into type 2 (white muscle) was noted on the disused side, and similar findings were also observed by examination using a single skinned muscle fiber method. The maximal tension developed by the disused single muscle fiber was lower. This may be attributable to structural changes in the myofilament arrangement observed under an electron microscope. No abnormalities were found in calcium ion uptake by the sarcoplasmic reticulum. Under the present experimental conditions, it was clarified that the disuse atrophy of skeletal muscle induces not only reduction of muscle fibers in diameter but also their dedifferentiation and redifferentiation.
High-Sensitivity Fiber-Optic Ultrasound Sensors for Medical Imaging Applications
Wen, H.; Wiesler, D.G.; Tveten, A.; Danver, B.; Dandridge, A.
2010-01-01
This paper presents several designs of high-sensitivity, compact fiber-optic ultrasound sensors that may be used for medical imaging applications. These sensors translate ultrasonic pulses into strains in single-mode optical fibers, which are measured with fiber-based laser interferometers at high precision. The sensors are simpler and less expensive to make than piezoelectric sensors, and are not susceptible to electromagnetic interference. It is possible to make focal sensors with these designs, and several schemes are discussed. Because of the minimum bending radius of optical fibers, the designs are suitable for single element sensors rather than for arrays. PMID:9691368
Analysis and design of fiber-coupled high-power laser diode array
NASA Astrophysics Data System (ADS)
Zhou, Chongxi; Liu, Yinhui; Xie, Weimin; Du, Chunlei
2003-11-01
A conclusion that a single conventional optical system could not realize fiber coupled high-power laser diode array is drawn based on the BPP of laser beam. According to the parameters of coupled fiber, a method to couple LDA beams into a single multi-mode fiber including beams collimating, shaping, focusing and coupling is present. The divergence angles after collimating are calculated and analyzed; the shape equation of the collimating micro-lenses array is deprived. The focusing lens is designed. A fiber coupled LDA result with the core diameter of 800 um and numeric aperture of 0.37 is gotten.
Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber.
Jung, Yongmin; Jeong, Yoonchan; Brambilla, Gilberto; Richardson, David J
2009-08-01
We propose a simple and effective method to selectively excite the fundamental mode of a multimode fiber by adiabatically tapering a fusion splice to a single-mode fiber. We experimentally demonstrate the method by adiabatically tapering splice (taper waist=15 microm, uniform length=40 mm) between single-mode and multimode fiber and show that it provides a successful mode conversion/connection and allows for almost perfect fundamental mode excitation in the multimode fiber. Excellent beam quality (M(2) approximately 1.08) was achieved with low loss and high environmental stability.
75 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nm.
Kotov, L V; Likhachev, M E; Bubnov, M M; Medvedkov, O I; Yashkov, M V; Guryanov, A N; Lhermite, J; Février, S; Cormier, E
2013-07-01
Optimization of Yb-free Er-doped fiber for lasers and amplifiers cladding pumped at 976 nm was performed in this Letter. The single-mode fiber design includes an increased core diameter of 34 μm and properly chosen erbium and co-dopant concentrations. We demonstrate an all-fiber high power laser and power amplifier based on this fiber with the record slope efficiency of 40%. To the best of our knowledge, the achieved output power of 75 W is the highest power reported for such lasers.
Splicing Efficiently Couples Optical Fibers
NASA Technical Reports Server (NTRS)
Lutes, G. F.
1985-01-01
Method of splicing single-mode optical fibers results in very low transmission losses through joined fiber ends. Coupling losses between joined optical-fiber ends only 0.1 dB. Method needs no special operator training.
NASA Astrophysics Data System (ADS)
Aleshkina, Svetlana S.; Lipatov, Denis S.; Levchenko, Andrei E.; Medvedkov, Oleg I.; Bobkov, Konstantin K.; Bubnov, Mikhail M.; Guryanov, Alexei N.; Likhachev, Mikhail E.
2018-02-01
Monolithic 976 nm laser design based on a newly developed saddle-shaped Yb-doped fiber has been proposed. The fiber has central single-mode part with core diameter of about 12 μm and ultra-thin square-shaped clad with side of about 42x42 μm. At the both ends of the saddle-shaped fiber the core and the clad sizes were adiabatically increased up to 20/(70x70) μm and the fiber could be spliced with standard (80..125 μm clad) passive fibers using commercially available equipment. Single-mode laser at 976 nm based on the developed fiber has been fabricated and photodarkening-free operation with output power of 10.6 W, which is the record high for all-fiber laser schemes, has been demonstrated.
1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks.
Xiao, Y; Brunet, F; Kanskar, M; Faucher, M; Wetter, A; Holehouse, N
2012-01-30
We have demonstrated a monolithic cladding-pumped ytterbium-doped single all-fiber laser oscillator generating 1 kW of CW signal power at 1080 nm with 71% slope efficiency and near diffraction-limited beam quality. Fiber components were highly integrated on "spliceless" passive fibers to promote laser efficiency and alleviate non-linear effects. The laser was pumped through a 7:1 pump combiner with seven 200-W 91x nm fiber-pigtailed wavelength-beam-combined diode-stack modules. The signal power of such a single all-fiber laser oscillator showed no evidence of roll-over, and the highest output was limited only by available pump power.
Maximizing power output from continuous-wave single-frequency fiber amplifiers.
Ward, Benjamin G
2015-02-15
This Letter reports on a method of maximizing the power output from highly saturated cladding-pumped continuous-wave single-frequency fiber amplifiers simultaneously, taking into account the stimulated Brillouin scattering and transverse modal instability thresholds. This results in a design figure of merit depending on the fundamental mode overlap with the doping profile, the peak Brillouin gain coefficient, and the peak mode coupling gain coefficient. This figure of merit is then numerically analyzed for three candidate fiber designs including standard, segmented acoustically tailored, and micro-segmented acoustically tailored photonic-crystal fibers. It is found that each of the latter two fibers should enable a 50% higher output power than standard photonic crystal fiber.
Effect of crosstalk on QBER in QKD in urban telecommunication fiber lines
NASA Astrophysics Data System (ADS)
Kurochkin, Vladimir L.; Kurochkin, Yuriy V.; Miller, Alexander V.; Sokolov, Alexander S.; Kanapin, Alan A.
2016-12-01
Quantum key distribution (QKD) as a technology is being actively implemented into existing urban telecommunication networks. QKD devices are commercially available products. While sending single photons through optical fiber, adjacent fibers, which are used to transfer classical information, might influence the amount of registrations of single photon detectors. This influence is registered, since it directly introduces a higher quantum bit error rate (QBER) into the final key [1-3]. Our report presents the results of the first tests of the QKD device, developed in the Russian Quantum Center. These tests were conducted in Moscow, and are the first of such a device in Russia in urban optical fiber telecommunication networks. The device in question is based on a two-pass auto-compensating optical scheme, which provides stable single photon transfer through urban optical fiber telecommunication networks [4,5]. The single photon detectors ID230 by ID Quantique were used. They operate in free-running mode, and with a quantum effectiveness of 10 % have a dark count 10 Hz. The background signal level in the dedicated fiber was no less than 5.6•10-14 W, which corresponds to 4.4•104 detector clicks per second. The single mode fiber length in Moscow was 30.6 km, the total attenuation equal to 11.7 dB. The sifted quantum key bit rate reached values of 1.9 kbit/s with the QBER level equal to 5.1 %. Methods of lowering the influence of crosstalk on the QBER are considered.
Intramuscular renin-angiotensin system is activated in human muscular dystrophy.
Sun, Guilian; Haginoya, Kazuhiro; Dai, Hongmei; Chiba, Yoko; Uematsu, Mitsugu; Hino-Fukuyo, Naomi; Onuma, Akira; Iinuma, Kazuie; Tsuchiya, Shigeru
2009-05-15
To investigate the role of the muscular renin-angiotensin system (RAS) in human muscular dystrophy, we used immunohistochemistry and Western blotting to examine the cellular localization of angiotensin-converting enzyme (ACE), the angiotensin II type 1 receptor (AT1) and the angiotensin II type 2 receptor (AT2) in muscle biopsies from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and congenital muscular dystrophy (CMD). In normal muscle, ACE was expressed in vascular endothelial cells and neuromuscular junctions (NMJs), whereas AT1 was immunolocalized to the smooth muscle cells of blood vessels and intramuscular nerve twigs. AT2 was immunolocalized in the smooth muscle cells of blood vessels. These findings suggest that the RAS has a functional role in peripheral nerves and NMJs. ACE and AT1, but AT2 immunoreactivity were increased markedly in dystrophic muscle as compared to controls. ACE and the AT1 were strongly expressed in the cytoplasm and nuclei of regenerating muscle fibers, fibroblasts, and in macrophages infiltrating necrotic fibers. Double immunolabeling revealed that activated fibroblasts in the endomysium and perimysium of DMD and CMD muscle were positive for ACE and AT1. Triple immunolabeling demonstrated that transforming growth factor-beta1 (TGF-beta1) and ACE were colocalized on the cytoplasm of activated fibroblasts in dystrophic muscle. Furthermore, Western blotting showed increases in the expression of AT1 and TGF-beta1 protein in dystrophic muscle, which coincided with our immunohistochemical results. The overexpression of ACE and AT1 in dystrophic muscle would likely result in the increased production of Ang II, which may act on these cells in an autocrine manner via AT1. The activation of AT1 may induce fibrous tissue formation through overexpression of TGF-beta1, which potently activates fibrogenesis and suppresses regeneration. In conclusion, our results imply that the intramuscular RAS-TGF-beta1 pathway is activated in human muscular dystrophy and plays a role at least partly in the pathophysiology of this disease.
Transmission Electron Microscopy of Bombyx Mori Silk Fibers
NASA Astrophysics Data System (ADS)
Shen, Y.; Martin, D. C.
1997-03-01
The microstructure of B. Mori silk fibers before and after degumming was examined by TEM, selected area electron diffraction (SAED), WAXS and low voltage SEM. SEM micrographs of the neat cocoon revealed a network of pairs of twisting filaments. After degumming, there were only individual filaments showing a surface texture consistent with an oriented fibrillar structure in the fiber interior. WAXS patterns confirmed the oriented beta-sheet crystal structure common to silkworm and spider silks. Low dose SAED results were fully consistent with the WAXS data, and revealed that the crystallographic texture did not vary significantly across the fiber diameter. TEM observations of microtomed fiber cross sections indicated a somewhat irregular shape, and also revealed a 0.5-2 micron sericin coating which was removed by the degumming process. TEM observations of the degummed silk fiber showed banded features with a characteristic spacing of nominally 600 nm along the fiber axis. These bands were oriented in a roughly parabolic or V-shape pointing along one axis within a given fiber. We hypothesize that this orientation is induced by the extrusion during the spinning process. Equatorial DF images revealed that axial and lateral sizes of the β-sheet crystallites in silk fibroin ranged from 20 to 170 nm and from 1 to 24 nm, respectively. Crazes developed in the degummed silk fiber parallel to the fiber direction. The formation of these crazes suggests that there are significant lateral interactions between fibrils in silk fibers.
Design of single-polarization wavelength splitter based on photonic crystal fiber.
Zhang, Shanshan; Zhang, Weigang; Geng, Pengcheng; Li, Xiaolan; Ruan, Juan
2011-12-20
A new single-polarization wavelength splitter based on the photonic crystal fiber (PCF) has been proposed. The full-vector finite-element method (FEM) is applied to analyze the single-polarization single-mode guiding properties. Splitting of two different wavelengths is realized by adjusting the structural parameters. The semi-vector three-dimensional beam propagation method is employed to confirm the wavelength splitting characteristics of the PCF. Numerical simulations show that the wavelengths of 1.3 μm and 1.55 μm are split for a fiber length of 10.7 mm with single-polarization guiding in each core. The crosstalk between the two cores is low over appreciable optical bandwidths.
A Novel, High-Resolution, High-Speed Fiber-Optic Temperature Sensor for Oceanographic Applications
2015-05-11
attached to the endface of a cleaved single-mode fiber using UV curable glue . A novel signal processing method has also been developed for the...thick Si wafer was bonded onto the tip of a single mode optical fiber using UV -curable glue . In addition to the sensor shown in Fig. 1(b), sensor...we developed a process to introduce much thicker silicon pieces onto the optical fiber tip. UV curable glue was first attached to the endface of
NASA Astrophysics Data System (ADS)
Ruan, Juan; Zhang, Wei-Gang; Zhang, Hao; Geng, Peng-Cheng; Bai, Zhi-Yong
2013-06-01
A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated. The filter tunability is achieved by rotating the polarization controller. The spectral shift is dependent on rotation direction and the position of the polarization controller. In addition, the adjustable range achieved by rotating the half-wave-plate polarization controller is twice higher than that of the quarter-wave-plate one.
Fabrication of longitudinally arbitrary shaped fiber tapers
NASA Astrophysics Data System (ADS)
Nold, J.; Plötner, M.; Böhme, S.; Sattler, B.; deVries, O.; Schreiber, T.; Eberhardt, R.; Tünnermann, A.
2018-02-01
We present our current results on the fabrication of arbitrary shaped fiber tapers on our tapering rig using a CO2-laser as heat source. Single mode excitation of multimode fibers as well as changing the fiber geometry in an LPG-like fashion is presented. It is shown that this setup allows for reproducible fabrication of single-mode excitation tapers to extract the fundamental mode (M2 < 1.1) from a 30 μm core having an NA of 0.09.
Chiral photonic crystal fibers with single mode and single polarization
NASA Astrophysics Data System (ADS)
Li, She; Li, Junqing
2015-12-01
Chiral photonic crystal fiber (PCF) with a solid core is numerically investigated by a modified chiral plane-wave expansion method. The effects of structural parameters and chirality strength are analyzed on single-polarization single-mode range and polarization states of guided modes. The simulation demonstrates that the chiral photonic crystal fiber compared to its achiral counterpart possesses another single-circular-polarization operation range, which is located in the short-wavelength region. The original single-polarization operation range in the long-wavelength region extends to the short wavelength caused by introducing chirality. Then this range becomes a broadened one with elliptical polarization from linear polarization. With increase of chirality, the two single-polarization single-mode ranges may fuse together. By optimizing the structure, an ultra-wide single-circular-polarization operation range from 0.5 μm to 1.67 μm for chiral PCF can be realized with moderate chirality strength.
Hanes, Michael C; Weinzweig, Jeffrey; Kuzon, William M; Panter, Kip E; Buchman, Steven R; Faulkner, John A; Yu, Deborah; Cederna, Paul S; Larkin, Lisa M
2007-05-01
Analysis of the composition of muscle fibers constituent to a cleft palate could provide significant insight into the cause of velopharyngeal inadequacy. The authors hypothesized that levator veli palatini muscle dysfunction inherent to cleft palates could affect the timing and outcome of cleft palate repair. Single, permeabilized muscle fibers from levator veli palatini muscles of three normal (n = 19 fibers) and three chemically induced congenital cleft palates (n = 21 fibers) of 14-month-old goats were isolated, and contractile properties were evaluated. The maximum isometric force and rate constants of tension redevelopment (ktr) were measured, and the specific force and normalized power were calculated for each fiber. The ktr measures indicate that cleft fibers are predominantly fast-fatigable; normal fibers are slow fatigue-resistant: after a 10-minute isometric contraction, fibers from cleft palates had a loss of force 16 percent greater than that from normal palates (p = 0.0001). The cross-sectional areas of the fibers from cleft palates (2750 +/- 209 microm2) were greater (p = 0.05) than those from normal palates (2226 +/- 143 microm2). Specific forces did not differ between the two groups. Maximum normalized power of fibers from cleft palates (11.05 +/- 1.82 W/l) was greater (p = 0.0001) than fibers from normal palates (1.60 +/- 0.12 W/l). There are clear physiologic differences in single muscle fibers from cleft palates and normal palates: cleft palate fibers are physiologically fast, have greater fatigability, and have greater power production. Detection of functional and/or fiber type differences in muscles of cleft palates may provide preoperative identification of a patient's susceptibility to velopharyngeal inadequacy and permit early surgical intervention to correct this clinical condition.
Wheeldon, N M; McDevitt, D G; Lipworth, B J
1994-08-01
1. The aim of the present study was to evaluate the relative beta 1/beta 2 antagonist selectivity of the beta-adrenoceptor blocker nadolol, in lower than conventional clinical doses. 2. Eight normal volunteers received single oral doses of either placebo (PL), nadolol 5 mg (N5), 20 mg (N20) or 80 mg (N80) in a single-blind, randomised crossover design. beta 1-adrenoceptor antagonism was assessed by attenuation of exercise tachycardia, and beta 2-adrenoceptor blockade by effects on salbutamol-induced chronotropic, hypokalaemic and finger tremor responses. The relative percentage attenuation of beta 2 and beta 1-mediated responses was calculated and expressed as beta 2:beta 1 selectivity ratios. 3. Nadolol produced dose-related reductions in exercise tachycardia in keeping with increasing beta 1-adrenoceptor blockade; mean % reduction (95% CI) compared with placebo: N5 10.7 (6.6 to 14.8), N20 21.4 (17.3 to 25.4), N80 38.9 (34.8 to 42.9). However, even the lowest dose of nadolol (5 mg) produced almost complete blunting of beta 2-mediated effects and significantly increase exercise hyperkalaemia; peak exercise hyperkalaemia (mmol l-1) (means and 95% CI): PL 4.88 (4.68 to 5.07), N5 5.36 (5.17 to 5.55), N20 5.48 (5.28 to 5.67), N80 5.42 (5.22 to 5.61). beta 2:beta 1 selectivity ratios significantly increased as the dose of nadolol was reduced. 4. These data suggest that whereas in the clinical dose range nadolol behaves as a non-selective beta-adrenoceptor antagonist, as the dose is reduced this drug demonstrates an increasing degree of selectivity for the beta 2-adrenoceptor.(ABSTRACT TRUNCATED AT 250 WORDS)
Thacker, Bryan E.; Tomiya, Akihito; Hulst, Jonah B.; Suzuki, Kentaro P.; Bremner, Shannon N.; Gastwirt, Randy F.; Greaser, Marion L.; Lieber, Richard L.; Ward, Samuel R.
2011-01-01
Summary The effects of botulinum neurotoxin A on the passive mechanical properties of skeletal muscle have not been investigated, but may have significant impact in the treatment of neuromuscular disorders including spasticity. Single fiber and fiber bundle passive mechanical testing was performed on rat muscles treated with botulinum neurotoxin A. Myosin heavy chain and titin composition of single fibers was determined by gel electrophoresis. Muscle collagen content was determined using a hydroxyproline assay. Neurotoxin-treated single fiber passive elastic modulus was reduced compared to control fibers (53.00 kPa versus 63.43 kPa). Fiber stiffness and slack sarcomere length were also reduced compared to control fibers and myosin heavy chain composition shifted from faster to slower isoforms. Average titin molecular weight increased 1.77% after treatment. Fiber bundle passive elastic modulus increased following treatment (168.83 kPa versus 75.14 kPa). Bundle stiffness also increased while collagen content per mass of muscle tissue increased 38%. Injection of botulinum neurotoxin A produces an effect on the passive mechanical properties of normal muscle that is opposite to the changes observed in spastic muscles. PMID:21853457
Thacker, Bryan E; Tomiya, Akihito; Hulst, Jonah B; Suzuki, Kentaro P; Bremner, Shannon N; Gastwirt, Randy F; Greaser, Marion L; Lieber, Richard L; Ward, Samuel R
2012-03-01
The effects of botulinum neurotoxin A on the passive mechanical properties of skeletal muscle have not been investigated, but may have significant impact in the treatment of neuromuscular disorders including spasticity. Single fiber and fiber bundle passive mechanical testing was performed on rat muscles treated with botulinum neurotoxin A. Myosin heavy chain and titin composition of single fibers was determined by gel electrophoresis. Muscle collagen content was determined using a hydroxyproline assay. Neurotoxin-treated single fiber passive elastic modulus was reduced compared to control fibers (53.00 kPa vs. 63.43 kPa). Fiber stiffness and slack sarcomere length were also reduced compared to control fibers and myosin heavy chain composition shifted from faster to slower isoforms. Average titin molecular weight increased 1.77% after treatment. Fiber bundle passive elastic modulus increased following treatment (168.83 kPa vs. 75.14 kPa). Bundle stiffness also increased while collagen content per mass of muscle tissue increased 38%. Injection of botulinum neurotoxin A produces an effect on the passive mechanical properties of normal muscle that is opposite to the changes observed in spastic muscles. Copyright © 2011 Orthopaedic Research Society.
High-sensitivity bend angle measurements using optical fiber gratings.
Rauf, Abdul; Zhao, Jianlin; Jiang, Biqiang
2013-07-20
We present a high-sensitivity and more flexible bend measurement method, which is based on the coupling of core mode to the cladding modes at the bending region in concatenation with optical fiber grating serving as band reflector. The characteristics of a bend sensing arm composed of bending region and optical fiber grating is examined for different configurations including single fiber Bragg grating (FBG), chirped FBG (CFBG), and double FBGs. The bend loss curves for coated, stripped, and etched sections of fiber in the bending region with FBG, CFBG, and double FBG are obtained experimentally. The effect of separation between bending region and optical fiber grating on loss is measured. The loss responses for single FBG and CFBG configurations are compared to discover the effectiveness for practical applications. It is demonstrated that the sensitivity of the double FBG scheme is twice that of the single FBG and CFBG configurations, and hence acts as sensitivity multiplier. The bend loss response for different fiber diameters obtained through etching in 40% hydrofluoric acid, is measured in double FBG scheme that resulted in a significant increase in the sensitivity, and reduction of dead-zone.
A One-Step Immunostaining Method to Visualize Rodent Muscle Fiber Type within a Single Specimen
Sawano, Shoko; Komiya, Yusuke; Ichitsubo, Riho; Ohkawa, Yasuyuki; Nakamura, Mako; Tatsumi, Ryuichi; Ikeuchi, Yoshihide; Mizunoya, Wataru
2016-01-01
In this study, we present a quadruple immunostaining method for rapid muscle fiber typing of mice and rats using antibodies specific to the adult myosin heavy chain (MyHC) isoforms MyHC1, 2A, 2X, and 2B, which are common marker proteins of distinct muscle fiber types. We developed rat monoclonal antibodies specific to each MyHC isoform and conjugated these four antibodies to fluorophores with distinct excitation and emission wavelengths. By mixing the four types of conjugated antibodies, MyHC1, 2A, 2X, and 2B could be distinguished within a single specimen allowing for facile delineation of skeletal muscle fiber types. Furthermore, we could observe hybrid fibers expressing MyHC2X and MyHC2B together in single longitudinal muscle sections from mice and rats, that was not attained in previous techniques. This staining method is expected to be applied to study muscle fiber type transition in response to environmental factors, and to ultimately develop techniques to regulate animal muscle fiber types. PMID:27814384
Shi, Jie; Xiao, Shilin; Yi, Lilin; Bi, Meihua
2012-01-01
A sensitivity-enhanced fiber-optic refractive index (RI) sensor based on a tapered single-mode thin-core diameter fiber is proposed and experimentally demonstrated. The sensor head is formed by splicing a section of tapered thin-core diameter fiber (TCF) between two sections of single-mode fibers (SMFs). The cladding modes are excited at the first SMF-TCF interface, and then interfere with the core mode at the second interface, thus forming an inter-modal interferometer (IMI). An abrupt taper (tens of micrometers long) made by the electric-arc-heating method is utilized, and plays an important role in improving sensing sensitivity. The whole manufacture process only involves fiber splicing and tapering, and all the fabrication process can be achieved by a commercial fiber fusion splicer. Using glycerol and water mixture solution as an example, the experimental results show that the refractive index sensitivity is measured to be 0.591 nm for 1% change of surrounding RI. The proposed sensor structure features simple structure, low cost, easy fabrication, and high sensitivity.
Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès
2017-03-03
In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO 3 -WO 3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO 3 -WO 3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10 -3 and 10 -1 S·cm -1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording.
Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès
2017-01-01
In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO3-WO3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO3-WO3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10−3 and 10−1 S·cm−1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording. PMID:28256608
Growth and lasing of single crystal YAG fibers with different Ho3+ concentrations
NASA Astrophysics Data System (ADS)
Bera, Subhabrata; Nie, Craig D.; Soskind, Michael G.; Li, Yuan; Harrington, James A.; Johnson, Eric G.
2018-01-01
A method to grow single crystal (SC) yttrium aluminum garnet (YAG) fibers with varied rare-earth ion dopant concentration has been proposed. Crystalline holmium aluminum garnet (HoAG), prepared via sol-gel process, was dip-coated on to previously grown SC YAG fibers. The HoAG coated SC YAG fiber preforms were re-grown to a smaller diameter using the laser heated pedestal growth (LHPG) technique. The final dopant concentration of the re-grown SC fiber was varied by changing the number of HoAG coatings on the preform. 120 μm diameter SC Ho:YAG fibers with four different dopant concentrations were grown. Lasing was demonstrated at 2.09 μm for these fibers. A maximum of 58.5% optical-to-optical slope efficiency was obtained.
NASA Technical Reports Server (NTRS)
Rawat, Banmali
2000-01-01
The multimode fiber bandwidth enhancement techniques to meet the Gigabit Ethernet standards for local area networks (LAN) of the Kennedy Space Center and other NASA centers have been discussed. Connector with lateral offset coupling between single mode launch fiber cable and the multimode fiber cable has been thoroughly investigated. An optimization of connector position offset for 8 km long optical fiber link at 1300 nm with 9 micrometer diameter single mode fiber (SMF) and 50 micrometer diameter multimode fiber (MMF) coupling has been obtained. The optimization is done in terms of bandwidth, eye-pattern, and bit pattern measurements. It is simpler, is a highly practical approach and is cheaper as no additional cost to manufacture the offset type of connectors is involved.
Kishi, Masashi; Kummer, Terrance T; Eglen, Stephen J; Sanes, Joshua R
2005-04-25
In both neurons and muscle fibers, specific mRNAs are concentrated beneath and locally translated at synaptic sites. At the skeletal neuromuscular junction, all synaptic RNAs identified to date encode synaptic components. Using microarrays, we compared RNAs in synapse-rich and -free regions of muscles, thereby identifying transcripts that are enriched near synapses and that encode soluble membrane and nuclear proteins. One gene product, LL5beta, binds to both phosphoinositides and a cytoskeletal protein, filamin, one form of which is concentrated at synaptic sites. LL5beta is itself associated with the cytoplasmic face of the postsynaptic membrane; its highest levels border regions of highest acetylcholine receptor (AChR) density, which suggests a role in "corraling" AChRs. Consistent with this idea, perturbing LL5beta expression in myotubes inhibits AChR aggregation. Thus, a strategy designed to identify novel synaptic components led to identification of a protein required for assembly of the postsynaptic apparatus.
Xu, Hui; Jia, Li
2009-01-01
A capillary liquid chromatography (CLC) system with UV/vis detection was coupled with an in-tube solid-phase microextraction (SPME) device for the analysis of fat-soluble vitamins and beta-carotene. A monolithic silica-ODS column was used as the extraction medium. An optical-fiber flow cell with a long light path in the UV/vis detector was utilized to further enhance the detection sensitivity. In the in-tube SPME/CLC system, the pre-condition of the extraction column and the effect of the injection volume were investigated. The detection limits (LOD) for the fat-soluble vitamins and beta-carotene were in the range from 1.9 to 173 ng/mL based on the signal-to-noise ratio of 3 (S/N=3). The relative standard deviations of migration time and peak area for each analyte were less than 5.0%. The method was applied to the analysis of fat-soluble vitamins and beta-carotene contents in corns.
Mechanical behavior of high strength ceramic fibers at high temperatures
NASA Technical Reports Server (NTRS)
Tressler, R. E.; Pysher, D. J.
1991-01-01
The mechanical behavior of commercially available and developmental ceramic fibers, both oxide and nonoxide, has been experimentally studied at expected use temperatures. In addition, these properties have been compared to results from the literature. Tensile strengths were measured for three SiC-based and three oxide ceramic fibers for temperatures from 25 C to 1400 C. The SiC-based fibers were stronger but less stiff than the oxide fibers at room temperature and retained more of both strength and stiffness to high temperatures. Extensive creep and creep-rupture experiments have been performed on those fibers from this group which had the best strengths above 1200 C in both single filament tests and tests of fiber bundles. The creep rates for the oxides are on the order of two orders of magnitude faster than the polymer derived nonoxide fibers. The most creep resistant filaments available are single crystal c-axis sapphire filaments. Large diameter CVD fabricated SiC fibers are the most creep and rupture resistant nonoxide polycrystalline fibers tested to date.
Analysis of trace fibers by IR-MALDESI imaging coupled with high resolving power MS
Cochran, Kristin H.; Barry, Jeremy A.; Robichaud, Guillaume
2016-01-01
Trace evidence is a significant portion of forensic cases. Textile fibers are a common form of trace evidence that are gaining importance in criminal cases. Currently, qualitative techniques that do not yield structural information are primarily used for fiber analysis, but mass spectrometry is gaining an increasing role in this field. Mass spectrometry yields more quantitative structural information about the dye and polymer that can be used for more conclusive comparisons. Matrix-assisted laser desorption electrospray ionization (MALDESI) is a hybrid ambient ionization source being investigated for use in mass spectrometric fiber analysis. In this manuscript, IR-MALDESI was used as a source for mass spectrometry imaging (MSI) of a dyed nylon fiber cluster and single fiber. Information about the fiber polymer as well as the dye were obtained from a single fiber which was on the order of 10 μm in diameter. These experiments were performed directly from the surface of a tape lift of the fiber with a background of extraneous fibers. PMID:25081013
Analysis of trace fibers by IR-MALDESI imaging coupled with high resolving power MS.
Cochran, Kristin H; Barry, Jeremy A; Robichaud, Guillaume; Muddiman, David C
2015-01-01
Trace evidence is a significant portion of forensic cases. Textile fibers are a common form of trace evidence that are gaining importance in criminal cases. Currently, qualitative techniques that do not yield structural information are primarily used for fiber analysis, but mass spectrometry is gaining an increasing role in this field. Mass spectrometry yields more quantitative structural information about the dye and polymer that can be used for more conclusive comparisons. Matrix-assisted laser desorption electrospray ionization (MALDESI) is a hybrid ambient ionization source being investigated for use in mass spectrometric fiber analysis. In this manuscript, IR-MALDESI was used as a source for mass spectrometry imaging (MSI) of a dyed nylon fiber cluster and single fiber. Information about the fiber polymer as well as the dye were obtained from a single fiber which was on the order of 10 μm in diameter. These experiments were performed directly from the surface of a tape lift of the fiber with a background of extraneous fibers.
Yin, Guolu; Saxena, Bhavaye; Bao, Xiaoyi
2011-12-19
A tunable and single longitudinal mode Er-doped fiber ring laser (SLM-EDFRL) is proposed and demonstrated based on Rayleigh backscattering (RBS) in single mode fiber-28e (SMF-28e). Theory and experimental study on formation of SLM from normal multi-mode ring laser is demonstrated. The RBS feedback in 660 m SMF-28e is the key to ensure SLM laser oscillation. This tunable SLM laser can be tuned over 1549.7-1550.18 nm with a linewidth of 2.5-3.0 kHz and a side mode suppression ratio (SMSR) of ~72 dB for electrical signal power. The tuning range is determined by the bandpass filter and gain medium used in the experiment. The laser is able to operate at S+C+L band.
Zhang, Chongfu; Zhang, Qiongli; Chen, Chen; Jiang, Ning; Liu, Deming; Qiu, Kun; Liu, Shuang; Wu, Baojian
2013-01-28
We propose and demonstrate a novel optical orthogonal frequency-division multiple access (OFDMA)-based metro-access integrated network with dynamic resource allocation. It consists of a single fiber OFDMA ring and many single fiber OFDMA trees, which transparently integrates metropolitan area networks with optical access networks. The single fiber OFDMA ring connects the core network and the central nodes (CNs), the CNs are on demand reconfigurable and use multiple orthogonal sub-carriers to realize parallel data transmission and dynamic resource allocation, meanwhile, they can also implement flexible power distribution. The remote nodes (RNs) distributed in the user side are connected by the single fiber OFDMA trees with the corresponding CN. The obtained results indicate that our proposed metro-access integrated network is feasible and the power distribution is agile.
NASA Technical Reports Server (NTRS)
Wilson, R. Gale
1994-01-01
The potential capabilities and limitations of single ball lenses for coupling laser diode radiation to single-mode optical fibers have been analyzed; parameters important to optical communications were specifically considered. These parameters included coupling efficiency, effective numerical apertures, lens radius, lens refractive index, wavelength, magnification in imaging the laser diode on the fiber, and defocus to counterbalance spherical aberration of the lens. Limiting numerical apertures in object and image space were determined under the constraint that the lens perform to the Rayleigh criterion of 0.25-wavelength (Strehl ratio = 0.80). The spherical aberration-defocus balance to provide an optical path difference of 0.25 wavelength units was shown to define a constant coupling efficiency (i.e., 0.56). The relative numerical aperture capabilities of the ball lens were determined for a set of wavelengths and associated fiber-core diameters of particular interest for single-mode fiber-optic communication. The results support general continuing efforts in the optical fiber communications industry to improve coupling links within such systems with emphasis on manufacturing simplicity, system packaging flexibility, relaxation of assembly alignment tolerances, cost reduction of opto-electronic components and long term reliability and stability.
Fibrous filter efficiency and pressure drop in the viscous-inertial transition flow regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Andres L.; Brockmann, John E.; Dellinger, Jennifer Gwynne
2011-10-01
Fibrous filter pressure drop and aerosol collection efficiency were measured at low air pressures (0.2 to 0.8 atm) and high face velocities (5 to 20 meters per second) to give fiber Reynolds numbers in the viscous-inertial transition flow regime (1 to 16). In this regime, contemporary filtration theory based on Kuwabara's viscous flow through an ensemble of fibers under-predicts single fiber impaction by several orders of magnitude. Streamline curvature increases substantially as inertial forces become dominant. Dimensionless pressure drop measurements followed the viscous-inertial theory of Robinson and Franklin rather than Darcy's linear pressure-velocity relationship (1972). Sodium chloride and iron nano-agglomeratemore » test aerosols were used to evaluate the effects of particle density and shape factor. Total filter efficiency collapsed when plotted against the particle Stokes and fiber Reynolds numbers. Efficiencies were then fitted with an impactor type equation where the cutpoint Stokes number and a steepness parameter described data well in the sharply increasing portion of the curve (20% to 80% efficiency). The cutpoint Stokes number was a linearly decreasing function of fiber Reynolds number. Single fiber efficiencies were calculated from total filter efficiencies and compared to contemporary viscous flow impaction theory (Stechkina et al. 1969), and numerical simulations from the literature. Existing theories under-predicted measured single fiber efficiencies although the assumption of uniform flow conditions for each successive layer of fibers is questionable; the common exponential relationship between single fiber efficiency and total filter efficiency may not be appropriate in this regime.« less
Single Mode Fiber Optic Transceiver Using Short Wavelength Active Devices In Long Wavelength Fiber
NASA Astrophysics Data System (ADS)
Gillham, Frederick J.; Campbell, Daniel R.; Corke, Michael; Stowe, David W.
1990-01-01
Presently, single mode optical fiber technology is being utilized in systems to supply telephone service to the subscriber. However, in an attempt to be competitive with copper based systems, there are many development programs underway to determine the most cost effective solution while still providing a service that will either satisfy or be upgradeable to satisfy the demands of the consumer for the next 10 to 20 years. One such approach is to combine low cost laser transmitters and silicon receivers, which have been developed for the "compact disc" industry, with fiber that operates in the single mode regime at 1300 nm. In this paper, an optical transceiver will be presented, consisting of a compact disc laser, a silicon detector and a single mode coupler at 1300 nm. A possible system layout is presented which operates at 780 nm bi-directionally for POTS and upgradeable to 1300 nm for video services. There are several important design criteria that have to be considered in the development of such a system which will be addressed. These include: 1. Optimization of coupled power from laser to fiber while maintaining stable launched conditions over a wide range of environmental conditions. 2. Consideration of the multimode operation of the 1300 nm single mode fiber while operating in the 780 nm wavelength region. 3. Development of a low cost pseudo-wavelength division multiplexer for 1300 nm single mode/780 nm multimode operation and a low cost dual mode 50/50, 780 nm splitter using 1300 nm fiber. Details will be given of the design criteria and solution in terms of optimized design. Results of the performance of several prototype devices will be given with indications of the merits of this approach and where further development effort should be applied.
Micro-pulling-down furnace modification and single crystal fibers growth
NASA Astrophysics Data System (ADS)
Yuan, Dongsheng; Jia, Zhitai; Li, Yang; Wu, Baiyi; Tao, Xutang
2016-03-01
Single crystal fiber (SCF) combines the excellent instinct properties of conventional bulk laser crystals, and the special geometry advantage of active optical fibers. YAG and LuAG are proper host candidates for single crystal fiber laser with high thermal conductivity. Despite a lower thermal conductivity for pure crystal than YAG, LuAG crystal is easier to obtain homogeneous optical quality, and has a thermal conductivity nearly independent from the doping level. Micropulling- down (μ-PD) has relatively small thermal gradient, and here we use μ-PD to carry out high quality SCFs. Through the μ-PD furnace manufactured by ourselves, crystal fibers with different diameters have been grown successfully. We designed and fabricated a method to adjust the thermal distribution, and with the favor of pulling-down rate, the specific diameter can be controlled perfectly. The crystalline quality and homogeneity along the whole fiber were investigated, and LuAG SCF was confirmed to have a fine crystal quality for laser.
A multi-core fiber based interferometer for high temperature sensing
NASA Astrophysics Data System (ADS)
Zhou, Song; Huang, Bo; Shu, Xuewen
2017-04-01
In this paper, we have verified and implemented a Mach-Zehnder interferometer based on seven-core fiber for high temperature sensing application. This proposed structure is based on a multi-mode-multi-core-multi-mode fiber structure sandwiched by a single mode fiber. Between the single-mode and multi-core fiber, a 3 mm long multi-mode fiber is formed for lead-in and lead-out light. The basic operation principle of this device is the use of multi-core modes, single-mode and multi-mode interference coupling is also utilized. Experimental results indicate that this interferometer sensor is capable of accurate measurements of temperatures up to 800 °C, and the temperature sensitivity of the proposed sensor is as high as 170.2 pm/°C, which is much higher than the current existing MZI based temperature sensors (109 pm/°C). This type of sensor is promising for practical high temperature applications due to its advantages including high sensitivity, simple fabrication process, low cost and compactness.
Fiber-based laser MOPA transmitter packaging for space environment
NASA Astrophysics Data System (ADS)
Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Numata, Kenji; Wu, Stewart; Gonzales, Brayler; Han, Lawrence; Fahey, Molly; Plants, Michael; Rodriguez, Michael; Allan, Graham; Abshire, James; Nicholson, Jeffrey; Hariharan, Anand; Mamakos, William; Bean, Brian
2018-02-01
NASA's Goddard Space Flight Center has been developing lidar to remotely measure CO2 and CH4 in the Earth's atmosphere. The ultimate goal is to make space-based satellite measurements with global coverage. We are working on maturing the technology readiness of a fiber-based, 1.57-micron wavelength laser transmitter designed for use in atmospheric CO2 remote-sensing. To this end, we are building a ruggedized prototype to demonstrate the required power and performance and survive the required environment. We are building a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture. The laser is a wavelength-locked, single frequency, externally modulated DBR operating at 1.57-micron followed by erbium-doped fiber amplifiers. The last amplifier stage is a polarization-maintaining, very-large-mode-area fiber with 1000 μm2 effective area pumped by a Raman fiber laser. The optical output is single-frequency, one microsecond pulses with >450 μJ pulse energy, 7.5 KHz repetition rate, single spatial mode, and < 20 dB polarization extinction.
Mechanical response of silk crystalline units from force-distribution analysis.
Xiao, Senbo; Stacklies, Wolfram; Cetinkaya, Murat; Markert, Bernd; Gräter, Frauke
2009-05-20
The outstanding mechanical toughness of silk fibers is thought to be caused by embedded crystalline units acting as cross links of silk proteins in the fiber. Here, we examine the robustness of these highly ordered beta-sheet structures by molecular dynamics simulations and finite element analysis. Structural parameters and stress-strain relationships of four different models, from spider and Bombyx mori silk peptides, in antiparallel and parallel arrangement, were determined and found to be in good agreement with x-ray diffraction data. Rupture forces exceed those of any previously examined globular protein many times over, with spider silk (poly-alanine) slightly outperforming Bombyx mori silk ((Gly-Ala)(n)). All-atom force distribution analysis reveals both intrasheet hydrogen-bonding and intersheet side-chain interactions to contribute to stability to similar extent. In combination with finite element analysis of simplified beta-sheet skeletons, we could ascribe the distinct force distribution pattern of the antiparallel and parallel silk crystalline units to the difference in hydrogen-bond geometry, featuring an in-line or zigzag arrangement, respectively. Hydrogen-bond strength was higher in antiparallel models, and ultimately resulted in higher stiffness of the crystal, compensating the effect of the mechanically disadvantageous in-line hydrogen-bond geometry. Atomistic and coarse-grained force distribution patterns can thus explain differences in mechanical response of silk crystals, opening up the road to predict full fiber mechanics.
Loreto, Carla; Carnazza, Maria Luisa; Cardile, Venera; Libra, Massimo; Lombardo, Laura; Malaponte, Grazia; Martinez, Giuseppina; Musumeci, Giuseppe; Papa, Veronica; Cocco, Lucio
2009-02-01
Given the role of phosphoinositide-specific phospholipase C (PLC) isozymes in the control of cell growth and differentiation we were prompted to analyze the expression of some of these PLC in human bronchoalveolar carcinoma-derived alveolar epithelial A549 cells. The effects of several fluoro-edenite fibers were compared with those of tremolite, a member of the calcic amphibole group of asbestos that originates from Calabria (Italy), and crocidolite, that, due to its high toxicity, is one of the most studied asbestos amphiboles. Our data show an increased expression of both PLC beta1 and PLC gamma1 in A549 cells treated with asbestos-like fibers, hinting at a role of PLC signalling in those cancerous cells.
Pulse shape discrimination for background rejection in germanium gamma-ray detectors
NASA Technical Reports Server (NTRS)
Feffer, P. T.; Smith, D. M.; Campbell, R. D.; Primbsch, J. H.; Lin, R. P.
1989-01-01
A pulse-shape discrimination (PSD) technique is developed to reject the beta-decay background resulting from activation of Ge gamma-ray detectors by cosmic-ray secondaries. These beta decays are a major source of background at 0.2-2 MeV energies in well shielded Ge detector systems. The technique exploits the difference between the detected current pulse shapes of single- and multiple-site energy depositions within the detector: beta decays are primarily single-site events, while photons at these energies typically Compton scatter before being photoelectrically absorbed to produce multiple-site events. Depending upon the amount of background due to sources other than beta decay, PSD can more than double the detector sensitivity.
NASA Astrophysics Data System (ADS)
Chien, Haoyang
A syndiotactic alternating ethylene-propylene (SYN-ALT-EP) crystalline copolymer was synthesized by complete hydrogenation, using a diimide reduction, of syndiotactic cis-1,4-poly(pentadiene-1,3) (CIS-PPD). The microstructure was studied by both high resolution nuclear magnetic resonance (NMR) spectroscopy and also fourier transform infra-red (FTIR) spectroscopy. The number average length of syndiotactic sequences is about 69 which indicates a high degree of syndiotacticity (97%) in the microstructure of this copolymer. The single FTIR absorbance at 733 cm^{ -1} without any splitting suggests an alternating arrangement of ethylene and propylene units. The solution state characterization of SYN-ALT -EP was studied by gel permeation chromatography using on -line measurements of multi-angle laser light scattering (MALLS), single capillary viscosities (VISC), and concentrations by differential refractive index (DRI) detectors. The Mark-Houwink-Sakurada parameters of "K" and "a" in THF at 30^circC are determined to be 8.99 times 10^ {-5} and 0.8, respectively. The universal GPC calibration curve can be applied to this copolymer in THF at 30^circC. Two different molecular relaxation processes ( alpha and beta relaxations) were found via dynamic mechanical (DM) analysis below room temperature: an alpha relaxation (around -60^ circC) and a beta relaxation (around -125^circ C). The apparent activation energy of the alpha relaxation is 285 kJ/mol, and the activation energy of the beta relaxation is 43 kJ/mol based on the Arrhenius equation. Molecular motion in SYN-ALT-EP copolymer was probed by solid state ^{13}C NMR experiments. At temperatures above T_{rm g} there are two major molecular motions in this copolymer: a backbone motion (the rotational motion about single bonds) and a methyl side group rotation. The backbone motion is frozen below T_{rm g}, but the methyl rotation still occurs. As the temperature is further decreased to about -175 ^circC, well below the beta -transition observed in DM analysis, the methyl side group rotation slows down, suggesting that the methyl rotation may be associated with the observed beta relaxation process. The equilibrium melting temperature is 55 +/- 1^circC; the equilibrium heat of fusion is 8.8 +/- 0.3 kJ/mol. The overall crystallization kinetics show an Avrami exponent (n) that qualitatively increases with crystallization temperature during primary crystallization. The transition from Regime II to Regime III is observed near T_{rm c} = 26 ^circC based on linear crystal growth rate experiments. The fold surface free energy ( sigma_{rm e}) is determined to be 33 erg/cm^2. A monoclinic crystal unit cell was determined (a = 11.19A b = 11.82A c = 9.00A gamma = 67.03^circ) from the fiber pattern via wide angle x-ray diffraction experiments (WAXD). A banded spherulitic morphology was observed by polarized light microscopy (PLM) and transmission electron microscopy (TEM). Such texture is characteristic of the co-twisting of growing lamellae. The morphology changes from regularly banded spherulites to non-regularly banded spherulites and may be correlated with the Regime III to Regime II transition. A plate-like single crystal morphology was also observed by polarized light microscopy after a melt crystallization at small supercooling conditions. Blends of SYN-ALT-EP/IPP, SYN-ALT-EP/HDPE, and SYN-ALT-EP/LDPE were made and examined. Neither T _{rm g} shifting nor co-crystallization using different blending compositions were observed. Therefore, only limited, if any, miscibility exists in these blends.
Mäkelä, Valtteri; Wahlström, Ronny; Holopainen-Mantila, Ulla; Kilpeläinen, Ilkka; King, Alistair W T
2018-05-14
Herein, we describe a new method of assessing the kinetics of dissolution of single fibers by dissolution under limited dissolving conditions. The dissolution is followed by optical microscopy under limited dissolving conditions. Videos of the dissolution were processed in ImageJ to yield kinetics for dissolution, based on the disappearance of pixels associated with intact fibers. Data processing was performed using the Python language, utilizing available scientific libraries. The methods of processing the data include clustering of the single fiber data, identifying clusters associated with different fiber types, producing average dissolution traces and also extraction of practical parameters, such as, time taken to dissolve 25, 50, 75, 95, and 99.5% of the clustered fibers. In addition to these simple parameters, exponential fitting was also performed yielding rate constants for fiber dissolution. Fits for sample and cluster averages were variable, although demonstrating first-order kinetics for dissolution overall. To illustrate this process, two reference pulps (a bleached softwood kraft pulp and a bleached hardwood pre-hydrolysis kraft pulp) and their cellulase-treated versions were analyzed. As expected, differences in the kinetics and dissolution mechanisms between these samples were observed. Our initial interpretations are presented, based on the combined mechanistic observations and single fiber dissolution kinetics for these different samples. While the dissolution mechanisms observed were similar to those published previously, the more direct link of mechanistic information with the kinetics improve our understanding of cell wall structure and pre-treatments, toward improved processability.
An engineering, multiscale constitutive model for fiber-forming collagen in tension.
Annovazzi, Lorella; Genna, Francesco
2010-01-01
This work proposes a nonlinear constitutive model for a single collagen fiber. Fiber-forming collagen can exhibit different hierarchies of basic units, called fascicles, bundles, fibrils, microfibrils, and so forth, down to the molecular (tropocollagen) level. Exploiting the fact that at each hierarchy level the microstructure can be seen, at least approximately, as that of a wavy, or crimped, extensible cable, the proposed stress-strain model considers a given number of levels, each of which contributes to the overall mechanical behavior according to its own geometrical features (crimp, or waviness), as well as to the basic mechanical properties of the tropocollagen. The crimp features at all levels are assumed to be random variables, whose statistical integration furnishes a stress-strain curve for a collagen fiber. The soundness of this model-the first, to the Authors' knowledge, to treat a single collagen fiber as a microstructured nonlinear structural element-is checked by its application to collagen fibers for which experimental results are available: rat tail tendon, periodontal ligament, and engineered ones. Here, no attempt is made to obtain a stress-strain law for generic collagenous tissues, which exhibit specific features, often much more complex than those of a single fiber. However, it is trivial to observe that the availability of a sound, microstructurally based constitutive law for a single collagen fiber (but applicable at any sub-level, or to any other material with a similar microstructure) is essential for assembling complex constitutive models for any collagenous fibrous tissue.
Mid-infrared performance of single mode chalcogenide fibers
NASA Astrophysics Data System (ADS)
Cook, Justin; Sincore, Alex; Tan, Felix; El Halawany, Ahmed; Riggins, Anthony; Shah, Lawrence; Abouraddy, Ayman F.; Richardson, Martin C.; Schepler, Kenneth L.
2018-02-01
Due to the intrinsic absorption edge in silica near 2.4 μm, more exotic materials are required to transmit laser power in the IR such as fluoride or chalcogenide glasses (ChGs). In particular, ChG fibers offer broad IR transmission with low losses < 1 dB/m. Here, we report on the performance of in-house drawn multi-material chalcogenide fibers at four different infrared wavelengths: 2053 nm, 2520 nm and 4550 nm. Polymer clad ChG fibers were drawn with 12.3 μm and 25 μm core diameters. Testing at 2053 nm was accomplished using a > 15 W, CW Tm:fiber laser. Power handling up to 10.2 W with single mode beam quality has been demonstrated, limited only by the available Tm:fiber output power. Anti-reflective coatings were successfully deposited on the ChG fiber facets, allowing up to 90.6% transmission with 12.2 MW/cm2 intensity on the facet. Single mode guidance at 4550 nm was also demonstrated using a quantum cascade laser (QCL). A custom optical system was constructed to efficiently couple the 0.8 NA QCL radiation into the 0.2 NA ChG fiber, allowing for a maximum of 78% overlap between the QCL radiation and fundamental mode of the fiber. With an AR-coated, 25 μm core diameter fiber, >50 mW transmission was demonstrated with > 87% transmission. Finally, we present results on fiber coupling from a free space Cr:ZnSe resonator at 2520 nm.
Multiplex CARS imaging with spectral notch shaped laser pulses delivered by optical fibers.
Oh, Seung Ryeol; Park, Joo Hyun; Kim, Kyung-Soo; Lee, Jae Yong; Kim, Soohyun
2017-12-11
We present an experimental demonstration of single-pulse coherent anti-Stokes Raman spectroscopy (CARS) using a spectrally shaped broadband laser that is delivered by an optical fiber to a sample at its distal end. The optical fiber consists of a fiber Bragg grating component to serve as a narrowband notch filter and a combined large-mode-area fiber to transmit such shaped ultrashort laser pulses without spectral distortion in a long distance. Experimentally, our implementation showed a capability to measure CARS spectra of various samples with molecular vibrations in the fingerprint region. Furthermore, CARS imaging of poly(methyl methacrylate) bead samples was carried out successfully under epi-CARS geometry in which backward-scattered CARS signals were collected into a multimode optical fiber. A compatibility of single-pulse CARS scheme with fiber optics, verified in this study, implies a potential for future realization of compact all-fiber CARS spectroscopic imaging systems.
NASA Astrophysics Data System (ADS)
Skvortsov, M. I.; Wolf, A. A.; Dostovalov, A. V.; Vlasov, A. A.; Akulov, V. A.; Babin, S. A.
2018-03-01
A distributed feedback (DFB) fiber laser based on a 32-mm long pi-phase-shifted fiber Bragg grating inscribed using the femtosecond point-by-point technique in a single-mode erbium-doped optical fiber (CorActive EDF-L 1500) is demonstrated. The lasing power of the DFB laser reaches 0.7 mW at a wavelength of 1550 nm when pumped with a laser diode at a wavelength of 976 nm and power of 525 mW. The width of the lasing spectrum is 17 kHz. It is shown that the pi-phase-shifted fiber Bragg grating fs-inscribed in a non-PM fiber provides the selection of the single polarization mode of the DFB laser. DFB laser formation in a highly doped non-photosensitive optical fiber (CoreActive SCF-ER60-8/125-12) is also demonstrated.
Material removal rate fiber optic corrosion sensor
NASA Astrophysics Data System (ADS)
Trego, Angela; Haugse, Eric D.; Udd, Eric
1998-09-01
Fiber Bragg grating sensors generally consist of a single grating written in a low-birefringent optical fiber. The wavelength shift of the peak in the reflected spectrum from these sensors can be used to measure a single component of strain or a change in temperature [Lawrence, 1997]. Fibers are also available with a significant enough birefringence to maintain the polarization state along great lengths and through many turns. This 'polarization maintaining' fiber is commercially available through several companies and in several configurations (including different cladding material and wavelength shift). The grating usually extends approximately 3 mm - 5 m in length. Udd gives a detailed explanation of fiber optics, Bragg gratings and birefringence [Udd, 1991]. As light from an LED is passed through the fiber, only the wavelength consistent with the grating period will be reflected back towards the source. All other wavelengths will pass through. The reflected spectrum will shift as the fiber is strained along its axis at the grating location. Strain or temperature changes at any other location have negligible effect on the wavelength encoded data output. When the Fiber Bragg grating single-axis sensor (termed fiber hereafter) is strained transversely the wavelength will separate into two distinct peaks according to a mathematical relationship defined by Lawrence and Nelson [Lawrence, Nelson et al. 96]. Using these Fiber Bragg grating fibers a corrosion sensor which measures the rate of material was developed. The principle behind this newly developed corrosion sensor is to pre-stress the fiber with a known load. The load is applied by inducing a uniform hoop stress through pressure fitted cylinders around the fiber. This induced stress creates a broadening of the reflected spectrum until the bifurcation of the reflected intensity peaks is distinguishable. As the material from the outer cylinder corrodes away the applied stress will be relieved. Finally, when no load is achieved, the reflected spectrum will have a single peak centered around the nominal Bragg grating wavelength. If a polarizing-maintaining 3-axis grating is used then the sensor would be even more sensitive, having two distinct peaks in each wavelength regime which shift.
NASA Astrophysics Data System (ADS)
Baselt, Tobias; Taudt, Christopher; Nelsen, Bryan; Lasagni, Andrés. Fabián.; Hartmann, Peter
2017-06-01
The optical properties of the guided modes in the core of photonic crystal fibers (PCFs) can be easily manipulated by changing the air-hole structure in the cladding. Special properties can be achieved in this case such as endless singlemode operation. Endlessly single-mode fibers, which enable single-mode guidance over a wide spectral range, are indispensable in the field of fiber technology. A two-dimensional photonic crystal with a silica central core and a micrometer-spaced hexagonal array of air holes is an established method to achieve endless single-mode properties. In addition to the guidance of light in the core, different cladding modes occur. The coupling between the core and the cladding modes can affect the endlessly single-mode guides. There are two possible ways to determine the dispersion: measurement and calculation. We calculate the group velocity dispersion (GVD) of different cladding modes based on the measurement of the fiber structure parameters, the hole diameter and the pitch of a presumed homogeneous hexagonal array. Based on the scanning electron image, a calculation was made of the optical guiding properties of the microstructured cladding. We compare the calculation with a method to measure the wavelength-dependent time delay. We measure the time delay of defined cladding modes with a homemade supercontinuum light source in a white light interferometric setup. To measure the dispersion of cladding modes of optical fibers with high accuracy, a time-domain white-light interferometer based on a Mach-Zehnder interferometer is used. The experimental setup allows the determination of the wavelengthdependent differential group delay of light travelling through a thirty centimeter piece of test fiber in the wavelength range from VIS to NIR. The determination of the GVD using different methods enables the evaluation of the individual methods for characterizing the cladding modes of an endlessly single-mode fiber.
Single-mode single-frequency high peak power all-fiber MOPA at 1550 nm
NASA Astrophysics Data System (ADS)
Kotov, L. V.; Likhachev, M. E.; Bubnov, M. M.; Paramonov, V. M.; Belovolov, M. I.; Lipatov, D. S.; Guryanov, A. N.
2014-10-01
In this Report, we present a record-high-peak-power single-frequency master oscillator power amplifier (MOPA) system based on a newly developed double-clad large-mode-area Yb-free Er-doped fiber (DC-LMA-EDF). A fiber Bragg grating wavelength-stabilized fiber-coupled diode laser at λ=1551 nm with ~2 MHz spectral width was used as the master oscillator. Its radiation was externally modulated with a 5 kHz repetition rate and 92 ns pulse duration and then amplified in a core-pumped Er-doped fiber amplifier up to an average power of 4 mW. The amplified spontaneous emission (ASE) generated at the last preamplifier stage was suppressed by a narrow-band (0.7 nm) DWDM filter. The last MOPA stage was based on the recently developed single-mode DC-LMA-EDF with a mode field diameter of 25 microns and pump clad-absorption of 3 dB/m at λ=980 nm. The pump and the signal were launched into this fiber through a commercial pump combiner in a co-propagating amplifier scheme. At first, we used a 3-m long DC-LMAEDF. In such configuration, a peak power of 800 W was achieved at the output of the amplifier together with a ~ 12 % pump conversion slope efficiency. Further power scaling was limited by SBS. After that we shortened the fiber length to 1 m. As a result, owing to large unabsorbed pump power, the efficiency decreased to ~5 %. However, a peak power of more than 3.5 kW was obtained before the SBS threshold. In this case, the pulse shape changed and its duration decreased to ~60 ns owing to inversion depletion after propagation of the forward front of the pulse. To the best of our knowledge, the peak power of more than 3.5 kW reported here is the highest value ever published for a single-frequency single-mode silica-based fiber laser system operating near λ=1550 nm.
Development of single crystal membranes
NASA Technical Reports Server (NTRS)
Stormont, R. W.; Cocks, F. H.
1972-01-01
The design and construction of a high pressure crystal growth chamber was accomplished which would allow the growth of crystals under inert gas pressures of 2 MN/sq m (300 psi). A novel crystal growth technique called EFG was used to grow tubes and rods of the hollandite compounds, BaMgTi7O16, K2MgTi7O16, and tubes of sodium beta-alumina, sodium magnesium-alumina, and potassium beta-alumina. Rods and tubes grown are characterized using metallographic and X-ray diffraction techniques. The hollandite compounds are found to be two or three-phase, composed of coarse grained orientated crystallites. Single crystal c-axis tubes of sodium beta-alumina were grown from melts containing excess sodium oxide. Additional experiments demonstrated that crystals of magnesia doped beta-alumina and potassium beta-alumina also can be achieved by this EFG technique.
Wool-waste as organic nutrient source for container-grown plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheljazkov, Valtcho D.; Stratton, Glenn W.; Pincock, James
A container experiment was conducted to test the hypothesis that uncomposted wool wastes could be used as nutrient source and growth medium constituent for container-grown plants. The treatments were: (1) rate of wool-waste application (0 or unamended control, 20, 40, 80, and 120 g of wool per 8-in. pot), (2) growth medium constituents [(2.1) wool plus perlite, (2.2) wool plus peat, and (2.3) wool plus peat plus perlite], and (3) plant species (basil and Swiss chard). A single addition of 20, 40, 80, or 120 g of wool-waste to Swiss chard (Beta vulgaris L.) and basil (Ocimum basilicum L.) inmore » pots with growth medium provided four harvests of Swiss chard and five harvests of basil. Total basil yield from the five harvests was 1.6-5 times greater than the total yield from the unamended control, while total Swiss chard yield from the four harvests was 2-5 times greater relative to the respective unamended control. The addition of wool-waste to the growth medium increased Swiss chard and basil tissue N, and NO{sub 3}-N and NH{sub 4}-N in growth medium relative to the unamended control. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis of wool fibers sampled at the end of the experiments indicated various levels of decomposition, with some fibers retaining their original surface structure. Furthermore, most of the wool fibers' surfaces contained significant concentrations of S and much less N, P, or K. SEM/EDX revealed that some plant roots grow directly on wool-waste fibers suggesting either (1) root directional growth towards sites with greater nutrient concentration and/or (2) a possible role for roots or root exudates in wool decomposition. Results from this study suggest that uncomposted wool wastes can be used as soil amendment, growth medium constituent, and nutrient source for container-grown plants.« less
Fiber release from impacted graphite reinforced epoxy composites
NASA Technical Reports Server (NTRS)
Babinsky, T. C.
1980-01-01
Carbon fibers released from composites by aircraft fires and crashes can cause electrical shorts and consequent equipment damage. This report investigates less vigorous release mechanisms than that previously simulated by explosive burn/blast tests. When AS/3501-6 composites are impacted by various head and weight configurations of a pendulum impactor, less than 0.2 percent by weight of the original sample is released as single fibers. Other fiber release mechanisms studied were air blasts, constant airflow, torsion, flexural, and vibration of composite samples. The full significance of the low single fiber release rates found here is to be evaluated by NASA in their aircraft vulnerability studies.
Low-NA single-mode LMA photonic crystal rod fiber amplifier
NASA Astrophysics Data System (ADS)
Alkeskjold, Thomas Tanggaard; Laurila, Marko; Scolari, Lara; Broeng, Jes
2011-02-01
Enabling Single-Mode (SM) operation in Large-Mode-Area (LMA) fiber amplifiers and lasers is critical, since a SM output ensures high beam quality and excellent pointing stability. In this paper, we demonstrate and test a new design approach for achieving ultra-low NA SM rod fibers by using a spatially Distributed Mode Filter (DMF). This approach achieves SM performance in a short and straight rod fiber and allows preform tolerances to be compensated during draw. A low-NA SM rod fiber amplifier having a mode field diameter of ~60μm at 1064nm and a pump absorption of 27dB/m at 976nm is demonstrated.
Pump-Induced, Dual-Frequency Switching in a Short-Cavity, Ytterbium-Doped Fiber Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, W.; Marciante, J.R.
2008-07-23
Using a short linear cavity composed of a section of highly ytterbium-doped fiber surrounded by two fiber Bragg gratings, dual frequency switching is achieved by tuning the pump power of the laser. The dual-frequency switching is generated by the thermal effects of the absorbed pump in the ytterbium-doped fiber. At each frequency, the laser shows single-longitudinal-mode behavior. In each single-mode regime, the optical signal-to-noise ratio of the laser is greater than 50 dB. The dual-frequency, switchable, fiber laser can be designed for various applications by the careful selection of the two gratings.
NASA Astrophysics Data System (ADS)
Chen, Weiguo; Lou, Shuqin; Wang, Liwen; Li, Honglei; Guo, Tieying; Jian, Shuisheng
2009-08-01
The compact Mach-Zehnder interferometer is proposed by splicing a section of photonic crystal fiber (PCF) and two pieces of single mode fiber (SMF) with the air-holes of PCF intentionally collapsed in the vicinity of the splices. The depedence of the fringe spacing on the length of PCF is investigated. Based on the Mach-Zehnder interferometer as wavelength-selective filter, a switchable dual-wavelength fiber ring laser is demonstrated with a homemade erbiumdoped fiber amplifier (EDFA) as the gain medium at room temperature. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-and dual -wavelength lasing operations by exploiting polarization hole burning (PHB) effect.
Yadav, T K; Narayanaswamy, R; Abu Bakar, M H; Kamil, Y Mustapha; Mahdi, M A
2014-09-22
We demonstrate refractive index sensors based on single mode tapered fiber and its application as a biosensor. We utilize this tapered fiber optic biosensor, operating at 1550 nm, for the detection of protein (gelatin) concentration in water. The sensor is based on the spectroscopy of mode coupling based on core modes-fiber cladding modes excited by the fundamental core mode of an optical fiber when it transitions into tapered regions from untapered regions. The changes are determined from the wavelength shift of the transmission spectrum. The proposed fiber sensor has sensitivity of refractive index around 1500 nm/RIU and for protein concentration detection, its highest sensitivity is 2.42141 nm/%W/V.
NASA Technical Reports Server (NTRS)
Parker, Jr., Allen R (Inventor); Chan, Hon Man (Inventor); Piazza, Anthony (Nino) (Inventor); Richards, William Lance (Inventor)
2014-01-01
A method and system for multiplexing a network of parallel fiber Bragg grating (FBG) sensor-fibers to a single acquisition channel of a closed Michelson interferometer system via a fiber splitter by distinguishing each branch of fiber sensors in the spatial domain. On each branch of the splitter, the fibers have a specific pre-determined length, effectively separating each branch of fiber sensors spatially. In the spatial domain the fiber branches are seen as part of one acquisition channel on the interrogation system. However, the FBG-reference arm beat frequency information for each fiber is retained. Since the beat frequency is generated between the reference arm, the effective fiber length of each successive branch includes the entire length of the preceding branch. The multiple branches are seen as one fiber having three segments where the segments can be resolved. This greatly simplifies optical, electronic and computational complexity, and is especially suited for use in multiplexed or branched OFS networks for SHM of large and/or distributed structures which need a lot of measurement points.
Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei
2015-10-02
The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals.
Design of a low-bending-loss large-mode-area photonic crystal fiber
NASA Astrophysics Data System (ADS)
Napierala, Marek; Beres-Pawlik, Elzbieta; Nasilowski, Tomasz; Mergo, Pawel; Berghmans, Francis; Thienpont, Hugo
2012-04-01
We present a design of a photonic crystal fiber for high power laser and amplifier applications. Our fiber comprises a core with a diameter larger than 60 μm and exhibits single mode operation when the fiber is bent around a 10 cm radius at a wavelength of 1064 nm. Single mode guidance is enforced by the high loss of higher order modes which exceeds 80 dB/m whereas the loss of the fundamental mode (FM) is lower than 0.03 dB/m. The fiber can therefore be considered as an active medium for compact high power fiber lasers and amplifiers with a nearly diffraction limited beam output. We also analyze our fiber in terms of tolerance to manufacturing imperfections. To do so we employ a statistical design methodology. This analysis reveals those crucial parameters of the fiber that have to be controlled precisely during the fabrication process not to deteriorate the fiber performance. Finally we show that the fiber can be fabricated according to our design and we present experimental results that confirm the expected fiber performance.
Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei
2015-01-01
The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals. PMID:28793597
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, R.L.; MacQueen, D.B.; Bader, K.E.
1997-12-31
Alkali Metal Thermoelectric Converters (AMTEC) are efficient direct energy conversion devices that depend on the use of highly conductive beta-alumina membranes for their operation. The key component of the AMTEC system is a highly conductive Na-{beta}{double_prime}-alumina solid electrolyte which conducts sodium ions from the high to low temperature zone, thereby generating electricity. AMTEC cells convert thermal to electrical energy by using heat to produce and maintain an alkali metal concentration gradient across the ion transporting BASE membrane. They have developed a method for producing pure phase Na-{beta}{double_prime}-alumina and K-{beta}{double_prime}-alumina powders from single phase nano-sized carboxylato-alumoxanes precursors. Sodium or potassium ionsmore » (the mobile ions) and either Mg{sup 2+} or Li{sup +} ions (which stabilize the {beta}{double_prime}-alumina structure) can be atomically dispersed into the carboxylato-alumoxane lattice at low (< 100 C) temperature. Calculation of the carboxylato-alumoxane precursors at 1,200--1,500 C produces pure phase {beta}{double_prime}-alumina powders.« less
Carlini, Leslie E; Getz, Michael J; Strauch, Arthur R; Kelm, Robert J
2002-03-08
An asymmetric polypurine-polypyrimidine cis-element located in the 5' region of the mouse vascular smooth muscle alpha-actin gene serves as a binding site for multiple proteins with specific affinity for either single- or double-stranded DNA. Here, we test the hypothesis that single-stranded DNA-binding proteins are responsible for preventing a cryptic MCAT enhancer centered within this element from cooperating with a nearby serum response factor-interacting CArG motif to trans-activate the minimal promoter in fibroblasts and smooth muscle cells. DNA binding studies revealed that the core MCAT sequence mediates binding of transcription enhancer factor-1 to the double-stranded polypurine-polypyrimidine element while flanking nucleotides account for interaction of Pur alpha and Pur beta with the purine-rich strand and MSY1 with the complementary pyrimidine-rich strand. Mutations that selectively impaired high affinity single-stranded DNA binding by fibroblast or smooth muscle cell-derived Pur alpha, Pur beta, and MSY1 in vitro, released the cryptic MCAT enhancer from repression in transfected cells. Additional experiments indicated that Pur alpha, Pur beta, and MSY1 also interact specifically, albeit weakly, with double-stranded DNA and with transcription enhancer factor-1. These results are consistent with two plausible models of cryptic MCAT enhancer regulation by Pur alpha, Pur beta, and MSY1 involving either competitive single-stranded DNA binding or masking of MCAT-bound transcription enhancer factor-1.
Regeneration of Bombyx mori silk nanofibers and nanocomposite fibrils by the electrospinning process
NASA Astrophysics Data System (ADS)
Ayutsede, Jonathan Eyitouyo
In recent years, there has been significant interest in the utilization of natural materials for novel nanoproducts such as tissue engineered scaffolds. Silkworm silk fibers represent one of the strongest natural fibers known. Silkworm silk, a protein-based natural biopolymer, has received renewed interest in recent years due to its unique properties (strength, toughness) and potential applications such as smart textiles, protective clothing and tissue engineering. The traditional 10--20 mum diameter, triangular-shaped Bombyx mori fibers have remained unchanged over the years. However, in our study, we examine the scientific implication and potential applications of reducing the diameter to the nanoscale, changing the triangular shape of the fiber and adding nanofillers in the form of single wall carbon nanotubes (SWNT) by the electrospinning process. The electrospinning process preserves the natural conformation of the silk (random and beta-sheet). The feasibility of changing the properties of the electrospun nanofibers by post processing treatments (annealing and chemical treatment) was investigated. B. mori silk fibroin solution (formic acid) was successfully electrospun to produce uniform nanofibers (as small as 12 nm). Response Surface Methodology (RSM) was applied for the first time to experimental results of electrospinning, to develop a processing window that can reproduce regenerated silk nanofibers of a predictable size (d < 100nm). SWNT-silk multifunctional nanocomposite fibers were fabricated for the first time with anticipated properties (mechanical, thermal and electrically conductive) that may have scientific applications (nerve regeneration, stimulation of cell-scaffold interaction). In order to realize these applications, the following areas need to be addressed: a systematic investigation of the dispersion of the nanotubes in the silk matrix, a determination of new methodologies for characterizing the nanofiber properties and establishing the nature of the silk-SWNT interactions. A new visualization system was developed to characterize the transport properties of the nanofibrous assemblies. The morphological, chemical, structural and mechanical properties of the nanofibers were determined by field emission environmental scanning microscopy, Fourier transform infrared and Raman spectroscopy, wide angle x-ray diffraction and microtensile tester respectively.
Genomic landscape of fiber genes in fibered and non-fibered cottons
USDA-ARS?s Scientific Manuscript database
Cotton fiber is the largest single cell in the plant kingdom. It is the best model to study cell function, differentiation, maturation, and cell death. Cotton fiber transcriptome can be clustered into two types of regions: conservative areas and recombination hotspots. This study was to investig...
Use of optical fibers in spectrophotometry
NASA Technical Reports Server (NTRS)
Ramsey, Lawrence W.
1988-01-01
The use of single or small numbers of fiber optic fibers in astronomical spectroscopy with the goal of greater spectrophotometric and radial velocity accuracy is discussed. The properties of multimode step index fibers which are most important for this application are outlined, as are laboratory tests of currently available fibers.
Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser.
Wang, P; Cooper, L J; Sahu, J K; Clarkson, W A
2006-01-15
A novel approach to achieving robust single-spatial-mode operation of cladding-pumped fiber lasers with multimode cores is reported. The approach is based on the use of a fiber geometry in which the core has a helical trajectory within the inner cladding to suppress laser oscillation on higher-order modes. In a preliminary proof-of-principle study, efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser with a 30 microm diameter core and a numerical aperture of 0.087 has been demonstrated. The laser yielded 60.4 W of output at 1043 nm in a beam with M2 < 1.4 for 92.6 W launched pump power from a diode stack at 976 nm. The slope efficiency at pump powers well above threshold was approximately 84%, which compares favorably with the slope efficiencies achievable with conventional straight-core Yb-doped double-clad fiber lasers.
NASA Astrophysics Data System (ADS)
Grudinin, A. B.; Dianov, Evgenii M.; Korobkin, D. V.; Prokhorov, A. M.; Semenov, V. A.; Khrushchev, I. Yu
1990-08-01
An experimental investigation was made of the process of amplification of femtosecond pulses in single-mode fiber waveguides activated with erbium ions. The amplified pulses were compressed from 80 to 55 fs in the course of their propagation. The energy of the pulses was estimated to be 5 nJ. The maximum gain was 26 dB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampath, Sujatha; Isdebski, Thomas; Jenkins, Janelle E.
Synchrotron X-ray micro-diffraction experiments were carried out on Nephila clavipes (NC) and Argiope aurantia (AA) major (MA) and minor ampullate (MiA) fibers that make up dragline spider silk. The diffraction patterns show a semi-crystalline structure with {beta}-poly(L-alanine) nanocrystallites embedded in a partially oriented amorphous matrix. A superlattice reflection 'S' diffraction ring is observed, which corresponds to a crystalline component larger in size and is poorly oriented, when compared to the {beta}-poly(L-alanine) nanocrystallites that are commonly observed in dragline spider silks. Crystallite size, crystallinity and orientation about the fiber axis have been determined from the wide-angle X-ray diffraction (WAXD) patterns. Inmore » both NC and AA, the MiA silks are found to be more highly crystalline, when compared with the corresponding MA silks. Detailed analysis on the amorphous matrix shows considerable differences in the degree of order of the oriented amorphous component between the different silks studied and may play a crucial role in determining the mechanical properties of the silks.« less
The Weibull probabilities analysis on the single kenaf fiber
NASA Astrophysics Data System (ADS)
Ibrahim, I.; Sarip, S.; Bani, N. A.; Ibrahim, M. H.; Hassan, M. Z.
2018-05-01
Kenaf fiber has a great potential to be replaced with the synthetic composite due to their advantages such as environmentally friendly and outstanding performance. However, the main issue of this natural fiber that to be used in structural composite is inconsistency of their mechanical properties. Here, the influence of the gage length on the mechanical properties of single kenaf fiber was evaluated. This fiber was tested using the Universal testing machine at a loading rate of 1mm per min following ASTM D3822 standard. In this study, the different length of treated fiber including 20, 30 and 40mm were being tested. Following, Weibull probabilities analysis was used to characterize the tensile strength and Young modulus of kenaf fiber. The predicted average tensile strength from this approach is in good agreement with experimental results for the obtained parameter.
Polarization anisotropy in fiber-optic second harmonic generation microscopy.
Fu, Ling; Gu, Min
2008-03-31
We report the investigation and implementation of a compact second harmonic generation microscope that uses a single-mode fiber coupler and a double-clad photonic crystal fiber. Second harmonic polarization anisotropy through the fiber-optic microscope systems is quantitatively measured with KTP microcrystals, fish scale and rat tail tendon. It is demonstrated that the polarized second harmonic signals can be excited and collected through the single-mode fiber coupler to analyze the molecular orientations of structural proteins. It has been discovered that a double-clad photonic crystal fiber can preserve the linear polarization in the core, although a depolarization effect is observed in the inner cladding region. The feasibility of polarization anisotropy measurements in fiber-optic second harmonic generation microscopy will benefit the in vivo study of collagen-related diseases with a compact imaging probe.
Collection efficiency of a single optical fiber in turbid media.
Bargo, Paulo R; Prahl, Scott A; Jacques, Steven L
2003-06-01
If a single optical fiber is used for both delivery and collection of light, two major factors affect the measurement of collected light: (1) the light transport in the medium that describes the amount of light that returns to the fiber and (2) the light coupling to the optical fiber that depends on the angular distribution of photons entering the fiber. We focus on the importance of the latter factor and describe how the efficiency of the coupling depends on the optical properties of the medium. For highly scattering tissues, the efficiency is well predicted by the numerical aperture (NA) of the fiber. For lower scattering, such as in soft tissues, photons arrive at the fiber from deeper depths, and the coupling efficiency could increase twofold to threefold above that predicted by the NA.
Li, X; Velleman, S G
2009-02-01
During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation, as well as a regulator of extracellular matrix (ECM) production. Decorin, a member of the small leucine-rich ECM proteoglycans, binds to TGF-beta1 and modulates TGF-beta1-dependent cell growth stimulation or inhibition. The expression of decorin can be regulated by TGF-beta1 during muscle proliferation and differentiation. How TGF-beta1 affects decorin and muscle growth, however, has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on decorin expression and intracellular connective tissue development during skeletal muscle growth. Exogenous TGF-beta1 significantly decreased the number of myofibers in a given area at both 1 d and 6 wk posthatch. The TGF-beta1-treated muscle had a significant decrease in decorin mRNA expression at embryonic day (ED) 10, whereas protein amounts decreased at 17 ED and 1 d posthatch compared to the control muscle. Decorin was localized in both the endomysium and perimysium in the control pectoralis major muscle. Transforming growth factor-beta1 reduced decorin in both the endomysium and perimysium from 17 ED to 6 wk posthatch. Compared to the control muscle, the perimysium space in the pectoralis major muscle was dramatically decreased by TGF-beta1 during embryonic development through posthatch growth. Because decorin regulates collagen fibrillogenesis, a major component of the ECM, the reduction of decorin by TGF-beta1 treatment may cause the irregular formation of collagen fibrils, leading to the decrease in endomysium and perimysium space. The results from the current study suggest that the effect of TGF-beta1 on decorin expression and localization was likely associated with altered development of the perimysium and the regulation of muscle fiber development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muley, A.; Manglik, R.M.
1997-07-01
Experimental data for isothermal pressure drop and heat transfer in single-phase water flows in a plate heat exchanger (PHE) with chevron plates are presented. A single-pass, U-type, counterflow PHE, with three different chevron plate arrangements is employed: two symmetric plate arrangements with {beta} = 30/30{degree} and 60/60{degree}, and a mixed-plate arrangement with {beta} = 30/60{degree}. With water flow rates in the turbulent flow regime (600 < Re < 10{sup 4} and 2 < Pr < 6), effects of the chevron corrugation inclination angle {beta} on Nu and f characteristics of the PHE are investigated. As {beta} increases and compared tomore » a flat-plate pack, up to 2 to 5 times higher Nu are obtained; the concomitant f, however, are 13 to 44 times higher. Based on the experimental data for Re {le} 1,000, predictive correlations of the form Nu = C{sub 1}{beta} Re{sup p1({beta})} Pr{sup 1/3} ({mu}/{mu}{sub w}){sup 0.14} and f = C{sub 2}{beta} Re{sup p2({beta})} are devised. Also, at constant pumping power and depending upon {beta}, the heat transfer is found to be enhanced over 1.8 times that in equivalent flat-plate channels.« less
Kim, Hyuntai; Kim, Jongki; Jung, Yongmin; Vazquez-Zuniga, Luis Alonso; Lee, Seung Jong; Choi, Geunchang; Oh, Kyunghwan; Wang, Pu; Clarkson, W A; Jeong, Yoonchan
2012-11-05
We propose a simple and efficient light launch scheme for a helical-core fiber (HCF) by using an adiabatically tapered splice technique, through which we overcome its inherent difficulty with light launch owing to the large lateral offset and angular tilt of its core. We experimentally demonstrate single-mode excitation in the HCF in this configuration, which yields the coupling efficiency of around -5.9 dB (26%) for a ~1.1-μm light input when the splice joint is tapered down to 30 μm in diameter. To our knowledge, this is the first proof-of-principle report on the fusion-splice coupling between an HCF and a conventional single-mode fiber.
Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers
NASA Astrophysics Data System (ADS)
Goodno, Gregory D.; Book, Lewis D.; Rothenberg, Joshua E.; Weber, Mark E.; Benjamin Weiss, S.
2011-11-01
Thulium-doped fiber lasers (TFLs) emitting retina-safe 2-μm wavelengths offer substantial power-scaling advantages over ytterbium-doped fiber lasers for narrow linewidth, single-mode operation. This article reviews the design and performance of a pump-limited, 600 W, single-mode, single-frequency TFL amplifier chain that balances thermal limitations against those arising from stimulated Brillouin scattering (SBS). A simple analysis of thermal and SBS limits is anchored with measurements on kilowatt class Tm and Yb fiber lasers to highlight the scaling advantage of Tm for narrow linewidth operation. We also report recent results on active phase-locking of a TFL amplifier to an optical reference as a precursor to further parallel scaling via coherent beam combining.
A numerical study of a long flexible fiber in shear flow: dynamics and rheology
NASA Astrophysics Data System (ADS)
Zuk, Pawel; Perazzo, Antonio; Nunes, Janine; Stone, Howard
2017-11-01
Long slender particles can span the whole spectrum of stiffness: from very flexible particles such as globular proteins to extremely rigid particles, e.g. carbon nanotubes or β-amyloid fibers. The behavior of rigid particles is well understood, however there are only few recent experimental reports about long fibers of moderate flexibility. We present a numerical study of a single long flexible fiber in a shear flow. The fiber is simulated as a bead-spring model including hydrodynamic interactions in the Rotne-Prager-Yamakawa approximation. We analyze fiber shape, motion and stress induced in the fluid under the shear flow. We find that all of these properties appear to be related to the characteristic length scale of the kinks formed in the fibers. We present a scaling law for the kink size as a function of shear rate and the fiber parameters and justify it using elastic theory. The study suggests that local properties of a single fiber may condition the behavior of concentrated suspensions.
Writing Bragg Gratings in Multicore Fibers.
Lindley, Emma Y; Min, Seong-Sik; Leon-Saval, Sergio G; Cvetojevic, Nick; Lawrence, Jon; Ellis, Simon C; Bland-Hawthorn, Joss
2016-04-20
Fiber Bragg gratings in multicore fibers can be used as compact and robust filters in astronomical and other research and commercial applications. Strong suppression at a single wavelength requires that all cores have matching transmission profiles. These gratings cannot be inscribed using the same method as for single-core fibers because the curved surface of the cladding acts as a lens, focusing the incoming UV laser beam and causing variations in exposure between cores. Therefore we use an additional optical element to ensure that the beam shape does not change while passing through the cross-section of the multicore fiber. This consists of a glass capillary tube which has been polished flat on one side, which is then placed over the section of the fiber to be inscribed. The laser beam enters the fiber through the flat surface of the capillary tube and hence maintains its original dimensions. This paper demonstrates the improvements in core-to-core uniformity for a 7-core fiber using this method. The technique can be generalized to larger multicore fibers.
Writing Bragg Gratings in Multicore Fibers
Lindley, Emma Y.; Min, Seong-sik; Leon-Saval, Sergio G.; Cvetojevic, Nick; Lawrence, Jon; Ellis, Simon C.; Bland-Hawthorn, Joss
2016-01-01
Fiber Bragg gratings in multicore fibers can be used as compact and robust filters in astronomical and other research and commercial applications. Strong suppression at a single wavelength requires that all cores have matching transmission profiles. These gratings cannot be inscribed using the same method as for single-core fibers because the curved surface of the cladding acts as a lens, focusing the incoming UV laser beam and causing variations in exposure between cores. Therefore we use an additional optical element to ensure that the beam shape does not change while passing through the cross-section of the multicore fiber. This consists of a glass capillary tube which has been polished flat on one side, which is then placed over the section of the fiber to be inscribed. The laser beam enters the fiber through the flat surface of the capillary tube and hence maintains its original dimensions. This paper demonstrates the improvements in core-to-core uniformity for a 7-core fiber using this method. The technique can be generalized to larger multicore fibers. PMID:27167576
Observation of stimulated emission from a single Fe-doped AlN triangular fiber at room temperature
Jiang, Liangbao; Jin, Shifeng; Wang, Wenjun; Zuo, Sibin; Li, Zhilin; Wang, Shunchong; Zhu, Kaixing; Wei, Zhiyi; Chen, Xiaolong
2015-01-01
Aluminum nitride (AlN) is a well known wide-band gap semiconductor that has been widely used in fabricating various ultraviolet photo-electronic devices. Herein, we demonstrate that a fiber laser can be achieved in Fe-doped AlN fiber where Fe is the active ion and AlN fiber is used as the gain medium. Fe-doped single crystal AlN fibers with a diameter of 20–50 μm and a length of 0.5–1 mm were preparated successfully. Stimulated emission (peak at about 607 nm and FWHM ~0.2 nm) and a long luminescence lifetime (2.5 ms) were observed in the fibers by a 532nm laser excitation at room temperature. The high quality long AlN fibers are also found to be good optical waveguides. This kind of fiber lasers may possess potential advantages over traditional fiber lasers in enhancing power output and extending laser wavelengths from infrared to visible regime. PMID:26647969
Ninomiya, Y; Hellekant, G
1994-01-28
Taste enhancing effects of sodium saccharin (Sac) on D-phenylalanine (D-Phe), first found in mice, were examined by comparing single fiber responses to various taste stimuli in the monkey chorda tympani nerve. Fifteen fibers sampled were divided into the following 5 groups according to their responsiveness to 5 prototypical taste stimuli; 8 sucrose-, 2 quinine-, 2 acid-, 2 NaCl- and one monosodium glutamate (MSG)-best fibers. Out of 8 sucrose-best fibers, 5 fibers showed enhancement of D-Phe responses after the stimulation with Sac, but neither the remaining 3 sucrose-best fibers nor other fibers showed the enhancement. These results suggest that (1) the enhancement of D-Phe responses by Sac also occurs in the monkey peripheral taste system, and (2) there exist distinct receptor sites for D-Phe responsible for occurrence of the enhancement, and (3) taste cells possessing the D-Phe receptor site are innervated by a limited subpopulation of sucrose-best fibers.
NASA Astrophysics Data System (ADS)
Kanick, Stephen Chad; van der Leest, Cor; Aerts, Joachim G. J. V.; Hoogsteden, Henk C.; Kaščáková, Slávka; Sterenborg, Henricus J. C. M.; Amelink, Arjen
2010-01-01
We describe the incorporation of a single-fiber reflectance spectroscopy probe into the endoscopic ultrasound fine-needle aspiration (EUS-FNA) procedure utilized for lung cancer staging. A mathematical model is developed to extract information about the physiological and morphological properties of lymph tissue from single-fiber reflectance spectra, e.g., microvascular saturation, blood volume fraction, bilirubin concentration, average vessel diameter, and Mie slope. Model analysis of data from a clinical pilot study shows that the single-fiber reflectance measurement is capable of detecting differences in the physiology between normal and metastatic lymph nodes. Moreover, the clinical data show that probe manipulation within the lymph node can perturb the in vivo environment, a concern that must be carefully considered when developing a sampling strategy. The data show the feasibility of this novel technique; however, the potential clinical utility has yet to be determined.
2009-03-30
seeded with 15 W of single-frequency laser light at 1064 nm and cladding -pumped of 700 W in the forward direction and 300 W in the opposite direction...57-W single-mode phosphate fiber laser Our early studies of phosphate fiber lasers taught us that adding an air-hole to the inner cladding and... cladding -pumped with a fiber-coupled laser diode at 977 nm through a dichroic beam splitter placed on the OC side. The fiber ends were cooled using the
A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier
NASA Astrophysics Data System (ADS)
Trikshev, A. I.; Kurkov, A. S.; Tsvetkov, V. B.; Filatova, S. A.; Kertulla, J.; Filippov, V.; Chamorovskiy, Yu K.; Okhotnikov, O. G.
2013-06-01
We present a CW single-frequency laser at 1062 nm (linewidth <3 MHz) with 160 W of total output power based on a two stage fiber amplifier. A GTWave fiber is used for the first stage of the amplifier. A tapered double-clad fiber (T-DCF) is used for the second stage of the amplifier. The high output power is achieved due to the amplified spontaneous emission (ASE) filtering and increased stimulated Brillouin scattering (SBS) threshold inherent to the axially non-uniform geometry.
Extending Mode Areas of Single-mode All-solid Photonic Bandgap Fibers
2015-04-02
T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal ...Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006). 10. L. Dong, T. Wu, H. McKay, L. Fu...progress in mode area scaling of optical fibers. One notable area is in photonic crystal fibers (PCF) [3–5, 8, 9]. The short straight PCF rods used in
Fini, John M; Nicholson, Jeffrey W
2013-08-12
Fibers with symmetric bend compensated claddings are proposed, and demonstrate performance much better than conventional designs. These fibers can simultaneously achieve complete HOM suppression, negligible bend loss, and mode area >1000 square microns. The robust single-modedness of these fibers offers a path to overcoming mode instability limits on high-power amplifiers and lasers. The proposed designs achieve many of the advantages of our previous (asymmetric) bend compensation strategy in the regime of moderately large area, and are much easier to fabricate and utilize.
Patel, Paras R.; Na, Kyounghwan; Zhang, Huanan; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Yoon, Euisik; Chestek, Cynthia A.
2016-01-01
Objective Single carbon fiber electrodes (d=8.4 μm) insulated with parylene-c and functionalized with PEDOT:pTS have been shown to record single unit activity but manual implantation of these devices with forceps can be difficult. Without an improvement in the insertion method any increase in the channel count by fabricating carbon fiber arrays would be impractical. In this study, we utilize a water soluble coating and structural backbones that allow us to create, implant, and record from fully functionalized arrays of carbon fibers with ~150 μm pitch. Approach Two approaches were tested for the insertion of carbon fiber arrays. The first method used a PEG coating that temporarily stiffened the fibers while leaving a small portion at the tip exposed. The small exposed portion (500 μm – 1 mm) readily penetrated the brain allowing for an insertion that did not require the handling of each fiber by forceps. The second method involved the fabrication of silicon support structures with individual shanks spaced 150 μm apart. Each shank consisted of a small groove that held an individual carbon fiber. Main results Our results showed that the PEG coating allowed for the chronic implantation of carbon fiber arrays in 5 rats with unit activity detected at 31 days post-implant. The silicon support structures recorded single unit activity in 3 acute rat surgeries. In one of those surgeries a stacked device with 3 layers of silicon support structures and carbon fibers was built and shown to readily insert into the brain with unit activity on select sites. Significance From these studies we have found that carbon fibers spaced at ~150 μm readily insert into the brain. This greatly increases the recording density of chronic neural probes and paves the way for even higher density devices that have a minimal scarring response. PMID:26035638
NASA Technical Reports Server (NTRS)
McDonald, K. S.; Fitts, R. H.
1993-01-01
This study characterizes the time course of change in single soleus muscle fiber size and function elicited by hindlimb un weighting (HU) and analyzes the extent to which varying durations of HU altered maximal velocity of shortening (V(sub o)), myofibrillar adenosinetriphosphatase (ATPase), and relative content of slow and fast myosin in individual soleus fibers. After 1, 2, or 3 weeks of HU, soleus muscle bundles were prepared and stored in skinning solution at -20 C. Single fibers were isolated and mounted between a motor arm and a transducer, and fiber force, V(sub o), and ATPase activity were measured. Fiber myosin content was determined by one-dimensional sodium dodecyl sulfate- (SDS) polyacrylamide gel electrophoresis. After 1, 2, and 3 weeks of HU, soleus fibers exhibited a progressive reduction in fiber diameter (16, 22, and 42%, respectively) and peak force (42, 48, and 7%, respectively). Peak specific tension was significantly reduced after 1 week of HU (18%) and showed no further change in 2-3 weeks of HU. During 1 and 3 wk of HU, fiber V(sub o) and ATPase showed a significant increase. By 3 week, V(sub o) had increased from 1.32 +/- 0.04 to 2.94 +/- 0.17 fiber lengths/s and fiber ATPase from 291 +/- 16 to 1064 +/- 128 micro-M min(sub -1) mm(sub -3). The percent fibers expressing fast myosin heavy chain increased from 4% to 29% by 3 week of HU, and V(sub o) and ATPase activity within a fiber were highly correlated. However, a large population of fibers after 1, 2, and 3 weeks of HU showed increases in V(sub o) and ATPase but displayed the same myosin protein profile on SDS gels as control fibers. The mechanism eliciting increased fiber V(sub o) and ATPase activity was not obvious but may have been due to increases in fast myosin that went undetected on SDS gels and/or other factors unrelated to the myosin filament.
NASA Astrophysics Data System (ADS)
Kopp, Victor I.; Churikov, Victor M.; Singer, Jonathan; Neugroschl, Daniel; Genack, Azriel Z.
2010-04-01
We have fabricated a variety of chiral fiber sensors by twisting one or more standard or custom optical fibers with noncircular or nonconcentric core as they pass though a miniature oven. The resulting structures are as stable as the glass material and can be produced with helical pitch ranging from microns to hundreds of microns. The polarization selectivity of the chiral gratings is determined by the geometry of the fiber cross section. Single helix structures are polarization insensitive, while double helix gratings interact only with a single optical polarization component. Both single and double helix gratings may function as a fiber long period grating, coupling core and cladding modes or as a diffraction grating scattering light from the fiber core out of the fiber. The resulting dips in the transmission spectrum are sensitive to fiber elongation, twist and temperature, and (in the case of the long period gratings) to the refractive index of the surrounding medium. The suitability of chiral gratings for sensing temperature, elongation, twist and liquid levels will be discussed. Gratings made of radiation sensitive glass can be used to measure the cumulative radiation dose, while gratings made of radiation-hardened glass are suitable for stable sensing of the environment in nuclear power plants. Excellent temperature stability up to 900°C is found in pure silica chiral diffraction grating sensors.
Arc fusion splicing of photonic crystal fibers to standard single mode fibers
NASA Astrophysics Data System (ADS)
Borzycki, Krzysztof; Kobelke, Jens; Schuster, Kay; Wójcik, Jan
2010-04-01
Coupling a photonic crystal fiber (PCF) to measuring instruments or optical subsystems is often done by splicing it to short lengths of single mode fiber (SMF) used for interconnections, as SMF is standardized, widely available and compatible with most fiber optic components and measuring instruments. This paper presents procedures and results of loss measurements during fusion splicing of five PCFs tested at NIT laboratory within activities of COST Action 299 "FIDES". Investigated silica-based fibers had 80-200 μm cladding diameter and were designed as single mode. A standard splicing machine designed for telecom fibers was used, but splicing procedure and arc power were tailored to each PCF. Splice loss varied between 0.7 and 2.8 dB at 1550 nm. Splices protected with heat-shrinkable sleeves served well for gripping fibers during mechanical tests and survived temperature cycling from -30°C to +70°C with stable loss. Collapse of holes in the PCF was limited by reducing fusion time to 0.2-0.5 s; additional measures included reduction of discharge power and shifting SMF-PCF contact point away from the axis of electrodes. Unfortunately, short fusion time sometimes precluded proper smoothing of glass surface, leading to a trade-off between splice loss and strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garvey, Megan; Tepper, Katharina; Haupt, Caroline
Highlights: {yields} Sodium phosphate buffer accelerated A{beta}(1-40) nucleation relative to HEPES. {yields} A{beta}(1-40) fibrils formed in the two buffers show only minor structural differences. {yields} NMR revealed that A{beta}(1-40) histidine residues mediate buffer dependent changes. -- Abstract: The oligomerization of A{beta} peptide into amyloid fibrils is a hallmark of Alzheimer's disease. Due to its biological relevance, phosphate is the most commonly used buffer system for studying the formation of A{beta} and other amyloid fibrils. Investigation into the characteristics and formation of amyloid fibrils frequently relies upon material formed in vitro, predominantly in phosphate buffers. Herein, we examine the effects onmore » the fibrillation and oligomerization mechanism of A{beta} peptide that occur due solely to the influence of phosphate buffer. We reveal that significant differences in amyloid fibrillation are observed due to fibrillation being initiated in phosphate or HEPES buffer (at physiological pH and temperature). Except for the differing buffer ions, all experimental parameters were kept constant. Fibril formation was assessed using fluorescently monitored kinetic studies, microscopy, X-ray fiber diffraction and infrared and nuclear magnetic resonance spectroscopies. Based on this set up, we herein reveal profound effects on the mechanism and speed of A{beta} fibrillation. The three histidine residues at positions 6, 13 and 14 of A{beta}(1-40) are instrumental in these mechanistic changes. We conclude that buffer plays a more significant role in fibril formation than has been generally acknowledged.« less
Pu, Juan; Komvopoulos, Kyriakos
2014-06-01
Bilayer fibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning, using a parallel-disk mandrel configuration that resulted in the sequential deposition of a layer with fibers aligned across the two parallel disks and a layer with randomly oriented fibers, both layers deposited in a single process step. Membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, bilayer membranes exhibited higher porosity than single-layer membranes consisting of randomly oriented fibers fabricated with a solid-drum collector. However, despite their higher porosity, bilayer membranes demonstrated generally higher elastic modulus, yield strength and toughness than single-layer membranes with random fibers. Bilayer membrane deformation at relatively high strain rates comprised multiple abrupt microfracture events characterized by discontinuous fiber breakage. Bilayer membrane elongation yielded excessive necking of the layer with random fibers and remarkable fiber stretching (on the order of 400%) in the layer with fibers aligned in the stress direction. In addition, fibers in both layers exhibited multiple localized necking, attributed to the nonuniform distribution of crystalline phases in the fibrillar structure. The high membrane porosity, good mechanical properties, and good biocompatibility and biodegradability of PLLA (demonstrated in previous studies) make the present bilayer membranes good scaffold candidates for a wide range of tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Parenti, Ronald R.; Michael, Steven; Roth, Jeffrey M.; Yarnall, Timothy M.
2010-08-01
Over a two-year period beginning in early 2008, MIT Lincoln Laboratory conducted two free-space optical communication experiments designed to test the ability of spatial beam diversity, symbol encoding, and interleaving to reduce the effects of turbulence-induced scintillation. The first of these exercises demonstrated a 2.7 Gb/s link over a ground-level 5.4 km horizontal path. Signal detection was accomplished through the use of four spatially-separated 12 mm apertures that coupled the received light into pre-amplified single-mode fiber detectors. Similar equipment was used in a second experiment performed in the fall of 2009, which demonstrated an error-free air-to-ground link at propagation ranges up to 60 km. In both of these tests power levels at all fiber outputs were sampled at 1 msec intervals, which enabled a high-rate characterization of the received signal fluctuations. The database developed from these experiments encompasses a wide range of propagation geometries and turbulence conditions. This information has subsequently been analyzed in an attempt to correlate estimates of the turbulence profile with measurements of the scintillation index, characteristic fading time constant, scintillation patch size, and the shape parameters of the statistical distributions of the received signals. Significant findings include observations of rapid changes in the scintillation index driven by solar flux variations, consistent similarities in the values of the alpha and beta shape parameters of the gamma-gamma distribution function, and strong evidence of channel reciprocity. This work was sponsored by the Department of Defense, RRCO DDR&E, under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.
Flame Retardant Fibers for Human Space Exploration - Past, Present, and Future
NASA Technical Reports Server (NTRS)
Orndoff, Evelyne
2017-01-01
The National Aeronautics and Space Administration (NASA) has led the development of unique flame retardant fibers for the specific requirements of different space programs. Three of these fibers have greatly contributed to the safety of all the space missions since the Apollo program. Beta alumina-silica microfiber developed for the outer layer of the space suit after the Apollo 1 fire is no longer used and has been replaced by other glass fibers. Expanded polytetrafluoroethylene (e-PTFE) fiber used in the current spacesuit is mostly known today through its trade mark Gore-Tex®. Polybenzimidazole (PBI) filament fiber used in many applications from the Apollo to the Space Shuttle program is no longer available. More recently, TOR"TM" copolymer of polyimide fiber developed during the space shuttle program to resist the atomic oxygen present in Low Earth Orbit has been barely used. The high cost and narrow range of aeronautical and aerospace applications have, however, led to a limited production of these fibers. Only fibers that found niche markets survived. Yet, deep space exploration will require more of these inherently flame retardant fibers than what is available today. There is a need for new flame retardant fabrics inside the space vehicles as well as a need for logistics reduction for long term space missions. Materials like modacrylic and polyimide are good candidates for future flame retardant aerospace fabrics. New fabrics must be developed for astronauts' clothing, as well as crew quarters and habitat. Therefore, both staple and filament fibers of various linear densities are needed for a three years mission to Mars.
First total-absorption spectroscopy measurement on the neutron-rich Cu isotopes
NASA Astrophysics Data System (ADS)
Naqvi, F.; Spyrou, A.; Liddick, S. N.; Larsen, A. C.; Guttormsen, M.; Bleuel, D. L.; Campo, L. C.; Couture, A.; Crider, B. P.; Dombos, A. C.; Ginter, T.; Lewis, R.; Mosby, S.; Perdikakis, G.; Prokop, C. P.; Quinn, S. J.; Renstrom, T.; Rubio, B.; Siem, S.
2015-10-01
The first beta-decay studies of 73-71Cu isotopes using the Total Absorption Spectroscopy (TAS) will be reported. The Cu isotopes have one proton outside the Z = 28 shell and hence are good candidates to probe the single-particle structure in the region.Theories predict weakening of the Z = 28 shell gap due to the tensor interaction between the valence πν single-particle orbitals. Comparing the beta-decay strength distributions in the daughter Zn isotopes to the theoretical calculations will provide a stringent test of the predictions. The experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) employing the TAS technique with the Summing NaI(Tl) detector, while beta decays were measured in the NSCL beta-counting system. The experimentally obtained total absorption spectra for the neutron-rich Cu isotopes will be presented and the implications of the extracted beta-feeding intensities will be discussed.
NASA Astrophysics Data System (ADS)
Belov, A. V.; Kurkov, Andrei S.; Chikolini, A. V.
1989-02-01
A method was developed for calculating the effective cutoff length, the size of a mode spot, and the chromatic dispersion over the profile of the refractive index (measured in the preform stage) of single-mode fiber waveguides with a depressed cladding. The results of such calculations are shown to agree with the results of measurements of these quantities.
Single-mode optical fiber design with wide-band ultra low bending-loss for FTTH application.
Watekar, Pramod R; Ju, Seongmin; Han, Won-Taek
2008-01-21
We propose a new design of a single-mode optical fiber (SMF) which exhibits ultra low bend sensitivity over a wide communication band (1.3 microm to 1.65 microm). A five-cladding fiber structure has been proposed to minimize the bending loss, estimated to be as low as 4.4x10(-10) dB/turn for the bend radius of 10 mm.
Bridging classical and molecular genetics of cotton fiber quality and development
USDA-ARS?s Scientific Manuscript database
Cotton is the single most important natural fiber in the world and represents a vital agricultural commodity in the global economy. Ninety percent of cotton’s value resides in the lint fiber. Cotton fiber quality, defined by the physical properties of the lint fibers, is an important part of the cot...
Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation
NASA Technical Reports Server (NTRS)
Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)
2001-01-01
Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.
NASA Astrophysics Data System (ADS)
Pei, Yifei; Zhang, Jingchuan; Zhang, Luosha; Liu, Yang; Zhang, Lina; Chen, Shiyu
2018-01-01
To satisfy the application of fiber grating sensor technology in high vacuum thermal environment, two different kinds of sleeve compactly single model fiber covered by acrylate and polyimide are researched. Influence of the cover to the characteristic of FBG reflectance spectrum in high vacuum thermal environment is analyzed and verified. First, transmission characteristic of single model fiber in high vacuum thermal environment is analyzed by solve the equation of heat conduction. Then, experimental program of influence on FBG reflection spectrum characteristics is designed and a hardware-in-the-loop detection platform is set up. Finally, the influence of temperature and vacuum on the reflection peak power of FBG in different coating single-mode transmission fiber under high vacuum thermal environment is studied and verified. Experimental results indicate that: when vacuum varied from normal pressure to 10-4Pa level and then return to normal pressure, temperature of two different coating single-mode transmission fiber dropped to -196 ° from room temperature and then returned to room temperature, after 224 hours, the peak power of the FBG reflectance spectrum did not change. It provided the theoretical and experimental basis for the application of optical fiber sensing technology in high vacuum (pressure about 10-4Pa level) and thermal environment (-196 ° 25 ° temperature cycle) .
Long-Period Gratings in Highly Germanium-Doped, Single-Mode Optical Fibers for Sensing Applications
Schlangen, Sebastian; Bremer, Kort; Zheng, Yulong; Böhm, Sebastian; Steinke, Michael; Wellmann, Felix; Neumann, Jörg; Overmeyer, Ludger
2018-01-01
Long-period fiber gratings (LPGs) are well known for their sensitivity to external influences, which make them interesting for a large number of sensing applications. For these applications, fibers with a high numerical aperture (i.e., fibers with highly germanium (Ge)-doped fused silica fiber cores) are more attractive since they are intrinsically photosensitive, as well as less sensitive to bend- and microbend-induced light attenuations. In this work, we introduce a novel method to inscribe LPGs into highly Ge-doped, single-mode fibers. By tapering the optical fiber, and thus, tailoring the effective indices of the core and cladding modes, for the first time, an LPG was inscribed into such fibers using the amplitude mask technique and a KrF excimer laser. Based on this novel method, sensitive LPG-based fiber optic sensors only a few millimeters in length can be incorporated in bend-insensitive fibers for use in various monitoring applications. Moreover, by applying the described inscription method, the LPG spectrum can be influenced and tailored according to the specific demands of a particular application. PMID:29702600
NASA Astrophysics Data System (ADS)
Gleyze, Jean-François; Scol, Florent; Perrin, Arnaud; Gouriou, Pierre; Valentin, Constance; Bouwmans, Géraud; Hugonnot, Emmanuel
2017-05-01
The Laser Megajoule (LMJ) is a French large scale laser facility dedicated to inertial fusion and plasma physics research. LMJ front-ends are based on fiber laser technology at nanojoule range [1]. Scaling the energy of those fiber seeders to the millijoule range is a way to upgrade LMJ's front ends architecture and could also be used as seeder for lasers for ELI project for example. However, required performances are so restrictive (optical-signal-to-noise ratio higher than 50 dB, temporally-shaped nanosecond pulses and spatial single-mode top-hat beam output) that such fiber systems are very tricky to build. High-energy fiber amplifiers In 2015, we have demonstrated, an all-fiber MOPA prototype able to produce a millijoule seeder, but unfortunately not 100% conform for all LMJ's performances. A major difficulty was to manage the frequency modulation used to avoid stimulated Brillouin scattering, to amplitude modulation (FM-AM) conversion, this limits the energy at 170µJ. For upgrading the energy to the millijoule range, it's necessary to use an amplifier with a larger core fiber. However, this fiber must still be flexible; polarization maintaining and exhibit a strictly single-mode behaviour. We are thus developing a new amplifier architecture based on an Yb-doped tapered fiber: its core diameter is from a narrow input to a wide output (MFD 8 to 26 µm). A S² measurement on a 2,5m long tapered fiber rolled-up on 22 cm diameter confirmed that this original geometry allows obtaining strictly single-mode behaviour. In a 1 kHz repetition rate regime, we already obtain 750 µJ pulses, and we are on the way to mJ, respecting LMJ performances. Beam delivery In LMJ architecture the distance between the nanojoule fiber seeder and the amplifier stages is about 16 m. Beam delivery is achieved with a standard PM fiber, such a solution is no longer achievable with hundreds of kilowatt peak powers. An efficient way to minimize nonlinear effects is to use hollow-core (HC) fibers. The comparison between the different fibers will be presented in the conference. Fiber spatial beam shaping Spatial beam shaping (top-hat profile) is mandatory to optimize the energy extraction in free-space amplifier. It would be very interesting to obtain a flat-top beam in an all-fiber way. Accordingly, we have design and realize a large mode area single-mode top-hat fiber able to deliver a coherent top-hat beam. This fiber, with larger MFD adapted to mJ pulse, will be implemented to perform the spatial beam shaping from coherent Gaussian profile to coherent top-hat intensity profile in the mJ range. In conclusion, we will present an all-fiber MOPA built to fulfil stringent requirements for large scale laser facility seeding. We have already achieved 750 µJ with 10 ns square pulses. Transport of high peak power pulses over 17 m in a hollow-core fiber has been achieved and points out FM to AM conversion management issues. Moreover, spatial beam shaping is obtained by using specifically designed single-mode fibers. Various optimizations are currently under progress and will be presented.
NASA Astrophysics Data System (ADS)
Geng, Ying; Li, Shenping; Li, Ming-Jun; Sutton, Clifford G.; McCollum, Robert L.; McClure, Randy L.; Koklyushkin, Alexander V.; Matthews, Karen I.; Luther, James P.; Butler, Douglas L.
2015-03-01
A complete single mode dual-core fiber system for short-reach optical interconnects is fabricated and tested for high-speed data transmission. It includes dual-core fibers capable of bi-directional data transmission, dual-core simplex LC connectors, and fan-outs. The transmission system offers simplified bi-directional traffic engineering with integrated bidirectional transceivers and compact system design, utilizing simplex dual-core LC connectors that use half the space while increasing the bandwidth density by a factor of two. The fiber has two cores that are compatible with single mode fiber and conforms to the industry standard outer diameter of 125 μm. This reduces operational complexity by reducing the size and number of fibers, cables and connectors. Measured OTDR loss for both cores was 0.34 dB/km at 1310 nm and 0.19 dB/km at 1550 nm. Crosstalk for a piece of 5.8 km long dual-core fiber was measured to be below -75 dB at 1310 nm, and below -40 dB at 1550 nm. Both free-space optics fan-outs and tapered-fiber-coupler based MCF fan-outs were evaluated for the transmission system. Error-free and penalty-free 25 Gb/s bi-directional transmission performance was demonstrated for three different fiber lengths, 200 m, 2 km and 10 km, using the complete all-fiber-based system including connectors and fan-outs. This single mode, dual-core fiber transmission system adds complementary value to systems where additional increases in bandwidth density can come from wavelength division multiplexing and multiple bits per symbol.
High-resolution confocal Raman microscopy using pixel reassignment.
Roider, Clemens; Ritsch-Marte, Monika; Jesacher, Alexander
2016-08-15
We present a practical modification of fiber-coupled confocal Raman scanning microscopes that is able to provide high confocal resolution in conjunction with high light collection efficiency. For this purpose, the single detection fiber is replaced by a hexagonal lenslet array in combination with a hexagonally packed round-to-linear multimode fiber bundle. A multiline detector is used to collect individual Raman spectra for each fiber. Data post-processing based on pixel reassignment allows one to improve the lateral resolution by up to 41% compared to a single fiber of equal light collection efficiency. We present results from an experimental implementation featuring seven collection fibers, yielding a resolution improvement of about 30%. We believe that our implementation represents an attractive upgrade for existing confocal Raman microscopes that employ multi-line detectors.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Chow, Chi-Wai; Chen, Jing-Heng
2017-02-01
In this demonstration, to achieve stabilized and wavelength-selectable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, a short length of ytterbium-doped fiber (YDF) is utilized to serve as a spatial multi-mode interference (MMI) inside a fiber cavity for suppressing multi-longitudinal-mode (MLM) significantly. In the measurement, the output powers and optical signal to noise ratios (OSNRs) of proposed EDF ring laser are measured between -9.85 and -5.71 dBm; and 38.03 and 47.95 dB, respectively, in the tuning range of 1530.0-1560.0 nm. In addition, the output SLM and stability performance are also analyzed and discussed experimentally.
Force-velocity and power characteristics of rat soleus muscle fibers after hindlimb suspension
NASA Technical Reports Server (NTRS)
Mcdonald, K. S.; Blaser, C. A.; Fitts, R. H.
1994-01-01
The effects of 1, 2, and 3 wk of hindlimb suspension (HS) on force-velocity and power characteristics of single rat soleus fibers were determined. After 1, 2, or 3 wk of HA, small fiber bundles were isolated, placed in skinning solution, and stored at -20 C until studied. Single fibers were isolated and placed between a motor arm and force transducer, functional properties were studied, and fiber protein content was subsequently analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Additional fibers were isolated from soleus of control after 1 and 3 wk of HS, and fiber type distribution and myosin light chain stoichiometry were determined from SDS-PAGE analysis. After 1 wk of HS, percent type I fibers declined from 82 to 74%, whereas hybrid fibers increased from 10 to 18%. Percent fast type II fibers increased from 8% in control and 1 wk of HS to 26% by 3 wk of HS. Most fibers showed an increased unloaded maximal shortening velocity (V sub O)), but myosin heavy chain remained entirely slow type I. The mechanism for increased V(sub O) is unknown. There was a progressive decrease in fiber diameter and peak force after 1, 2, and 3 wk of HS, respectively. One week of HS resulted in a shift of the force-velocity curve, and between 2 and 3 wk of HS the curve shifted further such that V(sub O) was higher than control at all relative loads less than 45% peak isometric force. Peak absolute power output of soleus fibers progressively decreased through 2 wk of HS but showed no further change at 3 wk. The results suggest that between 2 and 3 wk the HS-induced alterations in the force-velocity relationship act to maintain the power output of single soleus fibers despite a continued reduction in fiber force.
Force-Velocity and Power Characteristics of Rat Soleus Muscle Fibers after Hindlimb Suspension
NASA Technical Reports Server (NTRS)
McDonald, K. S.; Blaser, C. A.; Fitts, R. H.
1994-01-01
The effects of 1, 2, and 3 wk of Hindlimb Suspension (HS) on force-velocity and power characteristics of single rat soleus fibers were determined. After 1, 2, or 3 wk of HS, small fiber bundles were isolated, placed in skinning solution, and stored at -20 C until studied. Single fibers were isolated and placed between a motor arm and force transducer, functional properties were studied, and fiber protein content was subsequently analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Additional fibers were isolated from soleus of control and after 1 and 3 wk of HS, and fiber type distribution and myosin light chain stoichiometry were determined from SDS-PAGE analysis. After 1 wk of HS, percent type I fibers declined from 82 to 74%, whereas hybrid fibers increased from 10 to 18%. Percent fast type 11 fibers increased from 8% in control and 1 wk of HS to 26% by 3 wk of HS. Most fibers showed an increased unloaded maximal shortening velocity (V(sub 0)), but myosin heavy chain remained entirely slow type I. The mechanism for increased V(sub 0) is unknown. There was a progressive decrease in fiber diameter (14, 30, and 38%) and peak force (38, 56, and 63%) after 1, 2, and 3 wk of HS, respectively. One week of HS resulted in a shift of the force-velocity curve, and between 2 and 3 wk of HS the curve shifted further such that V(sub 0) was higher than control at all relative loads less than 45% peak isometric force. Peak absolute power output of soleus fibers progressively decreased through 2 wk of HS but showed no further change at 3 wk. The results suggest that between 2 and 3 wk the HS-induced alterations in the force-velocity relationship act to maintain the power output of single soleus fibers despite a continued reduction in fiber force.
Tunable multiwavelength Tm-doped fiber laser based on the multimode interference effect.
Zhang, Peng; Wang, Tianshu; Ma, Wanzhuo; Dong, Keyan; Jiang, Huilin
2015-05-20
A simple multiwavelength Tm-doped fiber laser at the 2 μm band based on multimode interference (MMI) is proposed and experimentally demonstrated. In this scheme, a 4 m Tm-doped single-mode fiber is pumped by a 1568 nm laser, and a single-mode-multimode-single-mode (SMS) fiber structure is used as an MMI filter in which the multimode fiber is used to tune the laser. Laser operation of up to three wavelengths is obtained based on the MMI filter. The wavelengths can be tuned by adjusting the polarization controller and rotating the multimode fiber in the SMS structure, and the tuning region is about 24 nm, i.e., 1892-1916 nm. The side-mode suppression ratio of the laser is about 54 dB. The 3 dB linewidth is less than 0.04 nm. Peak fluctuation at each wavelength is analyzed, and the results show that the power fluctuation is less than 3 dB around the average power.
High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure.
Liu, Dejun; Mallik, Arun Kumar; Yuan, Jinhui; Yu, Chongxiu; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang
2015-09-01
A high sensitivity refractive index (RI) sensor based on a tapered small core single-mode fiber (SCSMF) structure sandwiched between two traditional single-mode fibers (SMF28) is reported. The microheater brushing technique was employed to fabricate the tapered fiber structures with different waist diameters of 12.5, 15.0, and 18.8 μm. Experiments demonstrate that the fiber sensor with a waist diameter of 12.5 μm offers the best sensitivity of 19212.5 nm/RIU (RI unit) in the RI range of 1.4304 to 1.4320. All sensors fabricated in this Letter show good linearity in terms of the spectral wavelength shift versus changes in RI. Furthermore, the sensor with the best sensitivity to RI was also used to measure relative humidity (RH) without any coating materials applied to the fiber surface. Experimental results show that the spectral wavelength shift changes exponentially as the RH varies from 60% to 95%. A maximum sensitivity of 18.3 nm per relative humidity unit (RHU) was achieved in the RH range of 90.4% to 94.5% RH.
Effect of MMF stub on the sensitivity of a photonic crystal fiber interferometer sensor at 1550 nm
NASA Astrophysics Data System (ADS)
Dhara, P.; Singh, Vinod K.
2015-01-01
A simple photonic crystal fiber (PCF) based Mach-Zehnder interferometric sensor is reported for sensing the refractive index and level of liquid. The sensing head is formed by all-fiber in-line single mode-multi mode-photonic crystal-single mode fiber structure using the fusion splicing method. The interferometric pattern, observed in the PCF interferometer using monochromatic source and temperature sensing arrangement, is novel and reported for the first time to the best of our knowledge. The refractive index sensitivity of the interferometric device is increased by using multimode fiber. The output intensity at the end of lead-out single mode fiber decreases with increase in refractive index of surrounding. The index sensitivities of the interferometric devices are 440.32 μw/RIU, 267.48 μw/RIU and 195.36 μw/RIU with sensing length 2.10 cm, 5.50 cm and 7.20 cm respectively. A 7.20 cm longed PCF sensor exhibits liquid level sensitivities -1.032 μw/cm, -1.197 μw/cm, and -1.489 μw/cm for three different liquid respectively.
High-brightness 9xxnm fiber coupled diode lasers
NASA Astrophysics Data System (ADS)
Liu, Rui; Jiang, Xiaochen; Yang, Thomas; He, Xiaoguang; Gao, Yanyan; Zhu, Jing; Zhang, Tujia; Guo, Weirong; Wang, Baohua; Guo, Zhijie; Zhang, Luyan; Chen, Louisa
2015-03-01
We developed a high brightness fiber coupled diode laser module providing more than 140W output power from a 105μm NA 0.15 fiber at the wavelength of 915nm.The high brightness module has an electrical to optical efficiency better than 45% and power enclosure more than 90% within NA 0.13. It is based on multi-single emitters using optical and polarization beam combining and fiber coupling technique. With the similar technology, over 100W of optical power into a 105μm NA 0.15 fiber at 976nm is also achieved which can be compatible with the volume Bragg gratings to receive narrow and stabilized spectral linewidth. The light within NA 0.12 is approximately 92%. The reliability test data of single and multiple single emitter laser module under high optical load are also presented and analyzed using a reliability model with an emitting aperture optimized for coupling into 105μm core fiber. The total MTTF shows exceeding 100,000 hours within 60% confidence level. The packaging processes and optical design are ready for commercial volume production.
Li, Yujia; Gao, Lei; Huang, Wei; Gao, Cong; Liu, Min; Zhu, Tao
2016-10-03
We report an all-fiber passively mode-locked laser based on a saturable absorber fabricated by filling short single-wall carbon nanotubes into cladding holes of grapefruit-type photonic crystal fiber. The single-wall carbon nanotube is insensitive to polarization of light for its one-dimensional structure, which suppresses the polarization dependence loss. Carbon nanotubes interact with photonic crystal fiber with ultra-weak evanescent field, which enhances the damage threshold of the saturable absorber and improves the operating stability. In our experiment, conventional soliton with a pulse duration of 1.003 ps and center wavelength of 1566.36 nm under a pump power of 240 mW is generated in a compact erbium-doped fiber laser cavity with net anomalous dispersion of -0.4102 ps2. The signal to noise ratio of the fundamental frequency component is ~80 dB. The maximum average output power of the mode-locked laser reaches 9.56 mW under a pump power of 360 mW. The output power can be further improved by a higher pump power.
Study of probe-sample distance for biomedical spectra measurement.
Wang, Bowen; Fan, Shuzhen; Li, Lei; Wang, Cong
2011-11-02
Fiber-based optical spectroscopy has been widely used for biomedical applications. However, the effect of probe-sample distance on the collection efficiency has not been well investigated. In this paper, we presented a theoretical model to maximize the illumination and collection efficiency in designing fiber optic probes for biomedical spectra measurement. This model was in general applicable to probes with single or multiple fibers at an arbitrary incident angle. In order to demonstrate the theory, a fluorescence spectrometer was used to measure the fluorescence of human finger skin at various probe-sample distances. The fluorescence spectrum and the total fluorescence intensity were recorded. The theoretical results show that for single fiber probes, contact measurement always provides the best results. While for multi-fiber probes, there is an optimal probe distance. When a 400- μm excitation fiber is used to deliver the light to the skin and another six 400- μm fibers surrounding the excitation fiber are used to collect the fluorescence signal, the experimental results show that human finger skin has very strong fluorescence between 475 nm and 700 nm under 450 nm excitation. The fluorescence intensity is heavily dependent on the probe-sample distance and there is an optimal probe distance. We investigated a number of probe-sample configurations and found that contact measurement could be the primary choice for single-fiber probes, but was very inefficient for multi-fiber probes. There was an optimal probe-sample distance for multi-fiber probes. By carefully choosing the probe-sample distance, the collection efficiency could be enhanced by 5-10 times. Our experiments demonstrated that the experimental results of the probe-sample distance dependence of collection efficiency in multi-fiber probes were in general agreement with our theory.
Patel, Vidushi S; Cooper, Steven J B; Deakin, Janine E; Fulton, Bob; Graves, Tina; Warren, Wesley C; Wilson, Richard K; Graves, Jennifer A M
2008-07-25
Vertebrate alpha (alpha)- and beta (beta)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the alpha- and beta-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil beta-globin gene (omega) in the marsupial alpha-cluster, however, suggested that duplication of the alpha-beta cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous alpha- and beta-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. The platypus alpha-globin cluster (chromosome 21) contains embryonic and adult alpha- globin genes, a beta-like omega-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-zeta-zeta'-alphaD-alpha3-alpha2-alpha1-omega-GBY-3'. The platypus beta-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-epsilon-beta-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate alpha-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal beta-globin clusters are embedded in olfactory genes. Thus, the mammalian alpha- and beta-globin clusters are orthologous to the bird alpha- and beta-globin clusters respectively. We propose that alpha- and beta-globin clusters evolved from an ancient MPG-C16orf35-alpha-beta-GBY-LUC7L arrangement 410 million years ago. A copy of the original beta (represented by omega in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of beta-globin genes with different expression profiles in different lineages.
Mitigation of EMU Glove Cut Hazard by MMOD Impact Craters on Exposed ISS Handrails
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.; Ryan, Shannon
2009-01-01
Recent cut damages to crewmember extravehicular mobility unit (EMU) gloves during extravehicular activity (EVA) onboard the International Space Station (ISS) has been found to result from contact with sharp edges or pinch points rather than general wear or abrasion. One possible source of cut-hazards are protruding sharp edged crater lips from impact of micrometeoroid and orbital debris (MMOD) particles on external metallic handrails along EVA translation paths. During impact of MMOD particles at hypervelocity an evacuation flow develops behind the shock wave, resulting in the formation of crater lips that can protrude above the target surface. In this study, two methods were evaluated to limit EMU glove cut-hazards due to MMOD impact craters. In the first phase, four flexible overwrap configurations are evaluated: a felt-reusable surface insulation (FRSI), polyurethane polyether foam with beta-cloth cover, double-layer polyurethane polyether foam with beta-cloth cover, and multi-layer beta-cloth with intermediate Dacron netting spacers. These overwraps are suitable for retrofitting ground equipment that has yet to be flown, and are not intended to protect the handrail from impact of MMOD particles, rather to act as a spacer between hazardous impact profiles and crewmember gloves. At the impact conditions considered, all four overwrap configurations evaluated were effective in limiting contact between EMU gloves and impact crater profiles. The multi-layer beta-cloth configuration was the most effective in reducing the height of potentially hazardous profiles in handrail-representative targets. In the second phase of the study, four material alternatives to current aluminum and stainless steel alloys were evaluated: a metal matrix composite, carbon fiber reinforced plastic (CFRP), fiberglass, and a fiber metal laminate. Alternative material handrails are intended to prevent the formation of hazardous damage profiles during MMOD impact and are suitable for flight hardware yet to be constructed. Of the four materials evaluated, only the fiberglass formed a less hazardous damage profile than the baseline metallic target. Although the CFRP laminate did not form any noticeable crater lip, brittle protruding fibers are considered a puncture risk. In parallel with EMU glove redesign efforts, modifications to metallic ISS handrails such as those evaluated in this study provide the means to significantly reduce cut-hazards from MMOD impact craters.
Delp, M D; Duan, C; Mattson, J P; Musch, T I
1997-10-01
One of the primary consequences of left ventricular dysfunction (LVD) after myocardial infarction is a decrement in exercise capacity. Several factors have been hypothesized to account for this decrement, including alterations in skeletal muscle metabolism and aerobic capacity. The purpose of this study was to determine whether LVD-induced alterations in skeletal muscle enzyme activities, fiber composition, and fiber size are 1) generalized in muscles or specific to muscles composed primarily of a given fiber type and 2) related to the severity of the LVD. Female Wistar rats were divided into three groups: sham-operated controls (n = 13) and rats with moderate (n = 10) and severe (n = 7) LVD. LVD was surgically induced by ligating the left main coronary artery and resulted in elevations (P < 0.05) in left ventricular end-diastolic pressure (sham, 5 +/- 1 mmHg; moderate LVD, 11 +/- 1 mmHg; severe LVD, 25 +/- 1 mmHg). Moderate LVD decreased the activities of phosphofructokinase (PFK) and citrate synthase in one muscle composed of type IIB fibers but did not modify fiber composition or size of any muscle studied. However, severe LVD diminished the activity of enzymes involved in terminal and beta-oxidation in muscles composed primarily of type I fibers, type IIA fibers, and type IIB fibers. In addition, severe LVD induced a reduction in the activity of PFK in type IIB muscle, a 10% reduction in the percentage of type IID/X fibers, and a corresponding increase in the portion of type IIB fibers. Atrophy of type I fibers, type IIA fibers, and/or type IIB fibers occurred in soleus and plantaris muscles of rats with severe LVD. These data indicate that rats with severe LVD after myocardial infarction exhibit 1) decrements in mitochondrial enzyme activities independent of muscle fiber composition, 2) a reduction in PFK activity in type IIB muscle, 3) transformation of type IID/X to type IIB fibers, and 4) atrophy of type I, IIA, and IIB fibers.
NASA Technical Reports Server (NTRS)
Delp, M. D.; Duan, C.; Mattson, J. P.; Musch, T. I.
1997-01-01
One of the primary consequences of left ventricular dysfunction (LVD) after myocardial infarction is a decrement in exercise capacity. Several factors have been hypothesized to account for this decrement, including alterations in skeletal muscle metabolism and aerobic capacity. The purpose of this study was to determine whether LVD-induced alterations in skeletal muscle enzyme activities, fiber composition, and fiber size are 1) generalized in muscles or specific to muscles composed primarily of a given fiber type and 2) related to the severity of the LVD. Female Wistar rats were divided into three groups: sham-operated controls (n = 13) and rats with moderate (n = 10) and severe (n = 7) LVD. LVD was surgically induced by ligating the left main coronary artery and resulted in elevations (P < 0.05) in left ventricular end-diastolic pressure (sham, 5 +/- 1 mmHg; moderate LVD, 11 +/- 1 mmHg; severe LVD, 25 +/- 1 mmHg). Moderate LVD decreased the activities of phosphofructokinase (PFK) and citrate synthase in one muscle composed of type IIB fibers but did not modify fiber composition or size of any muscle studied. However, severe LVD diminished the activity of enzymes involved in terminal and beta-oxidation in muscles composed primarily of type I fibers, type IIA fibers, and type IIB fibers. In addition, severe LVD induced a reduction in the activity of PFK in type IIB muscle, a 10% reduction in the percentage of type IID/X fibers, and a corresponding increase in the portion of type IIB fibers. Atrophy of type I fibers, type IIA fibers, and/or type IIB fibers occurred in soleus and plantaris muscles of rats with severe LVD. These data indicate that rats with severe LVD after myocardial infarction exhibit 1) decrements in mitochondrial enzyme activities independent of muscle fiber composition, 2) a reduction in PFK activity in type IIB muscle, 3) transformation of type IID/X to type IIB fibers, and 4) atrophy of type I, IIA, and IIB fibers.
Multimode-singlemode-multimode fiber sensor for alcohol sensing application
NASA Astrophysics Data System (ADS)
Rofi'ah, Iftihatur; Hatta, A. M.; Sekartedjo, Sekartedjo
2016-11-01
Alcohol is volatile and flammable liquid which is soluble substances both on polar and non polar substances that has been used in some industrial sectors. Alcohol detection method now widely used one of them is the optical fiber sensor. In this paper used fiber optic sensor based on Multimode-Single-mode-Multimode (MSM) to detect alcohol solution at a concentration range of 0-3%. The working principle of sensor utilizes the modal interference between the core modes and the cladding modes, thus make the sensor sensitive to environmental changes. The result showed that characteristic of the sensor not affect the length of the single-mode fiber (SMF). We obtain that the sensor with a length of 5 mm of single-mode can sensing the alcohol with a sensitivity of 0.107 dB/v%.
Jung, Yongmin; Brambilla, Gilberto; Richardson, David J
2008-09-15
We report the use of a sub-wavelength optical wire (SOW) with a specifically designed transition region as an efficient tool to filter higher-order modes in multimode waveguides. Higher-order modes are effectively suppressed by controlling the transition taper profile and the diameter of the sub-wavelength optical wire. As a practical example, single-mode operation of a standard telecom optical fiber over a broad spectral window (400 approximately 1700 nm) was demonstrated with a 1microm SOW. The ability to obtain robust and stable single-mode operation over a very broad range of wavelengths offers new possibilities for mode control within fiber devices and is relevant to a range of application sectors including high performance fiber lasers, sensors, photolithography, and optical coherence tomography systems.
Design of 150W, 105-μm, 0.22NA, fiber coupled laser diode module by ZEMAX
NASA Astrophysics Data System (ADS)
Qi, Yunfei; Zhao, Pengfei; Chen, Qing; Wu, Yulong; Chen, Yongqi; Zou, Yonggang; Lin, Xuechun
2016-10-01
We represent a design of a high brightness, fiber coupled diode laser module based on 16 single emitters at 915nm. The module can produce more than 150 Watts output power from a standard fiber with core diameter of 105μm and numerical aperture (NA) of 0.22. To achieve a high power and high brightness laser beam, the spatial beam combination and polarization beam combination are used to combine output of 16 single emitters into a single beam, and then an aspheric lens is used to couple the combined beam into an optical fiber. The simulation show that the total coupling efficiency is more than 95% and the highest brightness is estimated to be 11MW/ (cm2*sr).
Fiber-optical switch controlled by a single atom.
O'Shea, Danny; Junge, Christian; Volz, Jürgen; Rauschenbeutel, Arno
2013-11-08
We demonstrate highly efficient switching of optical signals between two optical fibers controlled by a single atom. The key element of our experiment is a whispering-gallery-mode bottle microresonator, which is coupled to a single atom and interfaced by two tapered fiber couplers. This system reaches the strong coupling regime of cavity quantum electrodynamics, leading to a vacuum Rabi splitting in the excitation spectrum. We systematically investigate the switching efficiency of our system, i.e., the probability that the fiber-optical switch redirects the light into the desired output. We obtain a large redirection efficiency reaching a raw fidelity of more than 60% without postselection. Moreover, by measuring the second-order correlation functions of the output fields, we show that our switch exhibits a photon-number-dependent routing capability.
FIBER OPTICS: Polarization phase nonreciprocity in all-fiber ring interferometers
NASA Astrophysics Data System (ADS)
Andreev, A. Ts; Vasilev, V. D.; Kozlov, V. A.; Kuznetsov, A. V.; Senatorov, A. A.; Shubochkin, R. L.
1993-08-01
The polarization phase nonreciprocity in all-fiber ring interferometers based on single-mode optical fibers was studied experimentally. The results confirm existing theoretical models. Experimentally, it was possible to use fiber ring interferometers to measure the extinction coefficients of optical fiber polarizers. The largest extinction coefficients found for optical-fiber polarizers were 84 dB (for the wavelength 0.82 μm) and 86 dB (1.3 μm).
Coric, Dragan; Lai, Marco; Botsis, John; Luo, Aiping; Limberger, Hans G
2010-12-06
Optical low coherence reflectometry and fiber Bragg gratings written in small diameter (50 micrometer) optical fibers were used for measurements of non-homogenous internal strain fields inside an epoxy specimen with sub-grating length resolution. The results were compared with measurements using Fiber Bragg gratings in standard size (125 micrometer) single mode fibers and show that smaller fibers are less intrusive at stress heterogeneities.
NASA Astrophysics Data System (ADS)
Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe
2015-01-01
In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.
Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe
2015-01-12
In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.
Changes of propagation light in optical fiber submicron wires
NASA Astrophysics Data System (ADS)
Stasiewicz, K. A.; Łukowski, A.; Jaroszewicz, L. R.
2013-05-01
At the moment technology allows to miniaturize measurement system to several micrometers. Application of an optical fiber taper in such system needs to manufacture a new one with diameters below single micrometers which is very difficult and expensive. Another way to obtain this level of diameters is the process of tapering from the existing fibers. In the paper, experimental results of propagation light from a supercontinnum sources of the wavelength generates the wavelength of 350-2000 nm, in different optical fiber submicron wires made from tapers manufactured from single mode fibers are presented. Biconical optical fibers' tapers were manufactured in low pressure gas burner technique. There are presented spectral characteristics of a propagated beam. For the test, there was manufactured an optical fiber submicron wires with a different length of waist region with a diameter near one micrometer. We put to the test a taper made from a standard telecommunication fiber SMF-28 with a cutoff wavelength equal to 1260.
Effect of laser frequency noise on fiber-optic frequency reference distribution
NASA Technical Reports Server (NTRS)
Logan, R. T., Jr.; Lutes, G. F.; Maleki, L.
1989-01-01
The effect of the linewidth of a single longitude-mode laser on the frequency stability of a frequency reference transmitted over a single-mode optical fiber is analyzed. The interaction of the random laser frequency deviations with the dispersion of the optical fiber is considered to determine theoretically the effect on the Allan deviation (square root of the Allan variance) of the transmitted frequency reference. It is shown that the magnitude of this effect may determine the limit of the ultimate stability possible for frequency reference transmission on optical fiber, but is not a serious limitation to present system performance.
Xiao, Limin; Jin, Wei; Demokan, M S
2007-01-15
We demonstrate a novel method for low-loss splicing small-core photonic crystal fibers (PCFs) and single-mode fibers (SMFs) by repeated arc discharges using a conventional fusion splicer. An optimum mode field match at the interface of PCF-SMF and an adiabatic mode field variation in the longitudinal direction of the small-core PCF can be achieved by repeated arc discharges applied over the splicing joint to gradually collapse the air holes of the small-core PCF. This method is simple and offers a practical solution for light coupling between small-core PCFs and SMFs.
Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges
NASA Astrophysics Data System (ADS)
Xiao, Limin; Jin, Wei; Demokan, M. S.
2007-01-01
We demonstrate a novel method for low-loss splicing small-core photonic crystal fibers (PCFs) and single-mode fibers (SMFs) by repeated arc discharges using a conventional fusion splicer. An optimum mode field match at the interface of PCF-SMF and an adiabatic mode field variation in the longitudinal direction of the small-core PCF can be achieved by repeated arc discharges applied over the splicing joint to gradually collapse the air holes of the small-core PCF. This method is simple and offers a practical solution for light coupling between small-core PCFs and SMFs.
NASA Astrophysics Data System (ADS)
Chen, Xiaogang; Hu, Xizhen; Huang, Dexiu
2014-09-01
The transmission performance of single sideband (SSB) radio over fiber (RoF) system is evaluated through tuning the modulation index of Mach-Zehnder modulator, two different data modulation schemes and the influence of fiber dispersion are considered. The quantitative simulation results validate that there exist an optimum modulation index, and the system performance could be improved if the data signal is modulated on only optical carrier or sidebands.
USDA-ARS?s Scientific Manuscript database
Soluble fiber ß-glucan is one of the key dietary materials in healthy food products known for reducing serum cholesterol levels. The micro-structural heterogeneity and micro-rheology of high-viscosity barley ß-glucan solutions were investigated by the diffusing wave spectroscopy (DWS) technology. By...
Absolute neutrino mass measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Joachim
2011-10-06
The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments inmore » Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebermeister, Lars, E-mail: lars.liebermeister@physik.uni-muenchen.de; Petersen, Fabian; Münchow, Asmus v.
2014-01-20
A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency ofmore » (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.« less
16 CFR 303.29 - Labeling of pairs or products containing two or more units.
Code of Federal Regulations, 2012 CFR
2012-01-01
... handled as a single product or ensemble and are sold and delivered to the ultimate consumer as a single product or ensemble, the required information may be set out on a single label in such a manner as to... other textile fiber products are marketed or handled in pairs or ensembles of the same fiber content...
16 CFR 303.29 - Labeling of pairs or products containing two or more units.
Code of Federal Regulations, 2010 CFR
2010-01-01
... handled as a single product or ensemble and are sold and delivered to the ultimate consumer as a single product or ensemble, the required information may be set out on a single label in such a manner as to... other textile fiber products are marketed or handled in pairs or ensembles of the same fiber content...
16 CFR 303.29 - Labeling of pairs or products containing two or more units.
Code of Federal Regulations, 2013 CFR
2013-01-01
... handled as a single product or ensemble and are sold and delivered to the ultimate consumer as a single product or ensemble, the required information may be set out on a single label in such a manner as to... other textile fiber products are marketed or handled in pairs or ensembles of the same fiber content...
16 CFR 303.29 - Labeling of pairs or products containing two or more units.
Code of Federal Regulations, 2014 CFR
2014-01-01
... handled as a single product or ensemble and are sold and delivered to the ultimate consumer as a single product or ensemble, the required information may be set out on a single label in such a manner as to... other textile fiber products are marketed or handled in pairs or ensembles of the same fiber content...
16 CFR 303.29 - Labeling of pairs or products containing two or more units.
Code of Federal Regulations, 2011 CFR
2011-01-01
... handled as a single product or ensemble and are sold and delivered to the ultimate consumer as a single product or ensemble, the required information may be set out on a single label in such a manner as to... other textile fiber products are marketed or handled in pairs or ensembles of the same fiber content...
Kenaf Bast Fibers—Part I: Hermetical Alkali Digestion
Shi, Jinshu; Shi, Sheldon Q.; Barnes, H. Michael; ...
2011-01-01
The objective of this study was to develop a hermetical alkali digestion process to obtain single cellulosic fibers from kenaf bast. Kenaf bast were hermetically digested into single fiber using a 5% sodium hydroxide solution for one hour at four different temperatures (80 ° C, 110 ° C, 130 ° C, and 160 ° C). The hermetical digestion process used in this study produced fibers with high cellulose content (84.2–92.3%) due to the removal of lignin and hemicelluloses. The surface hardness and elastic modulus of the fibers digested at 130 ° C and 160 ° C were improved significantly comparedmore » with those digested at 80 ° C. The tensile modulus and tensile strength of the individual fibers reduced as the digestion temperature increased from 110 ° C to 160 ° C. Micropores were generated in fiber cell wall when the fibers were digested at 130 ° C and 160 ° C. The studies on the composites that were made from polypropylene reinforced with the digested fibers indicated that the compatibility between the digested fibers and polypropylene matrix was poor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Jinshu; Shi, Sheldon Q.; Barnes, H. Michael
The objective of this study was to develop a hermetical alkali digestion process to obtain single cellulosic fibers from kenaf bast. Kenaf bast were hermetically digested into single fiber using a 5% sodium hydroxide solution for one hour at four different temperatures (80 ° C, 110 ° C, 130 ° C, and 160 ° C). The hermetical digestion process used in this study produced fibers with high cellulose content (84.2–92.3%) due to the removal of lignin and hemicelluloses. The surface hardness and elastic modulus of the fibers digested at 130 ° C and 160 ° C were improved significantly comparedmore » with those digested at 80 ° C. The tensile modulus and tensile strength of the individual fibers reduced as the digestion temperature increased from 110 ° C to 160 ° C. Micropores were generated in fiber cell wall when the fibers were digested at 130 ° C and 160 ° C. The studies on the composites that were made from polypropylene reinforced with the digested fibers indicated that the compatibility between the digested fibers and polypropylene matrix was poor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muley, A.; Manglik, R.M.
1999-02-01
Experimental heat transfer and isothermal pressure drop data for single-phase water flows in a plate heat exchanger (PHE) with chevron plates are presented. In a single-pass U-type counterflow PHE, three different chevron plate arrangements are considered: two symmetric plate arrangements with {beta} = 30 deg/30 deg and 60 deg/60 deg, and one mixed-plate arrangement with {beta} = 30 deg/60 deg. For water (2 < Pr < 6) flow rates in the 600 < Re < 10{sup 4} regime, data for Nu and f are presented. The results show significant effects of both the chevron angle {beta} and surface area enlargementmore » factor {phi}. As {beta} increases, and compared to a flat-plate pack, up to two to five times higher Nu are obtained; the concomitant f, however, are 13 to 44 times higher. Increasing {phi} also has a similar, though smaller effect. Based on experimental data for Re {ge} 1000 and 30 deg {le} {beta} {le} 60 deg, predictive correlations of the form Nu = C{sub 1}({beta}) D{sub 1}({phi}) Re{sup p1({beta})} Pr{sup 1/3} ({mu}/{mu}{sub w}){sup 0.14} and f = C{sub 2}({beta}) D{sub 2}({phi}) Re{sup p2({beta})} are devised. Finally, at constant pumping power, and depending upon Re, {beta}, and {phi}, the heat transfer is found to be enhanced by up to 2.8 times that in an equivalent flat-plate channel.« less
NASA Technical Reports Server (NTRS)
Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian
2000-01-01
Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors to infer integrity of the aircraft structure. Part 1 of this two part series describes sensors that will measure load and temperature signatures of these structures. In some cases a single fiber may be used for measuring these parameters. Part 2 will describe techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service integrity of composite structures using a single fiber optic sensor capable of measuring multiple chemical and physical parameters. The facilities for fabricating optical fiber and associated sensors and the methods of demodulating Bragg gratings for strain measurement will be described.
Wenke, G; Zhu, Y
1983-12-01
The coupling of CSP lasers to single-mode fibers with different coupling structures made on the fiber face is investigated. In this case easy to make coupling arrangements such as tapers and microlenses, result in a high launching efficiency (approximately 2-dB loss), in contrast to launching from gain-guided lasers with strong astigmatism and a broader far-field pattern. Index-guiding lasers exhibit, however, a higher sensitivity to optical feedback. Laser output power and wavelength are changed due to reflections from the fiber tip. Critical distances exist which lead to a highly unstable laser spectrum. A comparison of the influence of various fiber faces on laser power and wavelength stability is presented. It is concluded that a tapered fiber end with a large working distance reduces the influence on the laser's performance.
Papanikolopoulou, Katerina; van Raaij, Mark J; Mitraki, Anna
2008-01-01
Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, beta-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple beta-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.
Transduction of satellite cells after prenatal intramuscular administration of lentiviral vectors.
MacKenzie, Tippi C; Kobinger, Gary P; Louboutin, Jean-Pierre; Radu, Antoneta; Javazon, Elizabeth H; Sena-Esteves, Miguel; Wilson, James M; Flake, Alan W
2005-01-01
We have previously reported long-term expression of lacZ in myocytes after in utero intramuscular injection of Mokola and Ebola pseudotyped lentiviral vectors. In further experiments, we have noted that these vectors also transduce small cells at the periphery of the muscle fibers that have the morphology of satellite cells, or muscle stem cells. In this study we performed experiments to further define the morphology and function of these cells. Balb/c mice at 14-15 days gestation were injected intramuscularly with Ebola or Mokola pseudotyped lentiviral vectors carrying CMV-lacZ. Animals were harvested at various time points, muscles were stained with X-gal, and processed for electron microscopy (EM) and immunofluorescence. To determine whether transduced satellite cells were functionally capable of regenerating injured muscles, animals were injected with notexin in the same area 8 weeks after the in utero injection of viral vector. Transmission EM of transduced cells confirmed the ultrastructural appearance of satellite cells. Double immunofluorescence for beta-galactosidase and satellite cell markers demonstrated co-localization of these markers in transduced cells. In the notexin-injured animals, small blue cells were seen at the areas of regeneration that co-localized beta-galactosidase with markers of regenerating satellite cells. Central nucleated blue fibers were seen at late time points, indicating regenerated muscle fibers arising from a transduced satellite cell. This study demonstrates transduction of muscle satellite cells following prenatal viral vector mediated gene transfer. These findings may have important implications for gene therapy strategies directed toward muscular dystrophy.
Fiber Bragg grating inscription in optical multicore fibers
NASA Astrophysics Data System (ADS)
Becker, Martin; Elsmann, Tino; Lorenz, Adrian; Spittel, Ron; Kobelke, Jens; Schuster, Kay; Rothhardt, Manfred; Latka, Ines; Dochow, Sebastian; Bartelt, Hartmut
2015-09-01
Fiber Bragg gratings as key components in telecommunication, fiber lasers, and sensing systems usually rely on the Bragg condition for single mode fibers. In special applications, such as in biophotonics and astrophysics, high light coupling efficiency is of great importance and therefore, multimode fibers are often preferred. The wavelength filtering effect of Bragg gratings in multimode fibers, however is spectrally blurred over a wide modal spectrum of the fiber. With a well-designed all solid multicore microstructured fiber a good light guiding efficiency in combination with narrow spectral filtering effect by Bragg gratings becomes possible.
Alterations in Skeletal Muscle With Disuse Atrophy: The Effects of Countermeasures
NASA Technical Reports Server (NTRS)
Fitts, Robert H.
1996-01-01
The specific aims of this project concerned three general areas: (1) studies on the contractile function of single skinned fibers designed to determine the time course and cellular basis of the Hindlimb Suspension (HS) induced increase in fiber Vo (maximal shortening velocity), and the decrease in peak tension (Po); (2) studies designed to understand the effect of HS on single fiber substrate utilization during contractile activity, and how if at all such changes contribute to the increased muscle fatigue associated with HS; and (3) studies evaluating the effectiveness of standing and ladder climbing as countermeasures to the deleterious effects of HS. We have constructed all of the necessary equipment, and are currently conducting preliminary studies on T-tubular charge movement. A list of publications from this contract is included at the end of this report. The three objectives are (1) Functional Studies on the Single Skinned Fiber; (2) Fiber Substrate Utilization and Muscle Fatugue with Contracting Activity and (3) Exercise Countermeasures.
Intensity liquid level sensor based on multimode interference and fiber Bragg grating
NASA Astrophysics Data System (ADS)
Oliveira, Ricardo; Aristilde, Stenio; Osório, Jonas H.; Franco, Marcos A. R.; Bilro, Lúcia; Nogueira, Rogério N.; Cordeiro, Cristiano M. B.
2016-12-01
In this paper an intensity liquid level sensor based on a single-mode—no-core—single-mode (SMS) fiber structure together with a Bragg grating inscribed in the later single mode fiber is proposed. As the no-core fiber is sensitive to the external refractive index, the SMS spectral response will be shifted related to the length of no-core fiber that is immersed in a liquid. By positioning the FBG central wavelength at the spectral region of the SMS edge filter, it is possible to measure the liquid level using the reflected FBG peak power through an intensity-based approach. The sensor is also self-referenced using the peak power of another FBG that is placed before and far from the sensing part. The temperature error analysis was also studied revealing that the sensor can operate in environments where the temperature changes are minimal. The possibility to use a second setup that makes the whole device temperature insensitive is also discussed.
A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response
NASA Astrophysics Data System (ADS)
Zhang, Yixin; Xia, Lan; Cao, Chunqi; Sun, Zhenhong; Li, Yanting; Zhang, Xuping
2017-01-01
A hybrid single-end-access Mach-Zehnder interferometer (MZI) and phase sensitive OTDR (Φ-OTDR) vibration sensing system is proposed and demonstrated experimentally. In our system, the narrow optical pulses and the continuous wave are injected into the fiber through the front end of the fiber at the same time. And at the rear end of the fiber, a frequency-shift-mirror (FSM) is designed to back propagate the continuous wave modulated by the external vibration. Thus the Rayleigh backscattering signals (RBS) and the back propagated continuous wave interfere with the reference light at the same end of the sensing fiber and a single-end-access configuration is achieved. The RBS can be successfully separated from the interference signal (IS) through digital signal process due to their different intermediate frequency based on frequency division multiplexing technique. There is no influence between these two schemes. The experimental results show 10 m spatial resolution and up to 1.2 MHz frequency response along a 6.35 km long fiber. This newly designed single-end-access setup can achieve vibration events locating and high frequency events response, which can be widely used in health monitoring for civil infrastructures and transportation.
Optoelectronic Fibers via Selective Amplification of In-Fiber Capillary Instabilities.
Wei, Lei; Hou, Chong; Levy, Etgar; Lestoquoy, Guillaume; Gumennik, Alexander; Abouraddy, Ayman F; Joannopoulos, John D; Fink, Yoel
2017-01-01
Thermally drawn metal-insulator-semiconductor fibers provide a scalable path to functional fibers. Here, a ladder-like metal-semiconductor-metal photodetecting device is formed inside a single silica fiber in a controllable and scalable manner, achieving a high density of optoelectronic components over the entire fiber length and operating at a bandwidth of 470 kHz, orders of magnitude larger than any other drawn fiber device. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.