Science.gov

Sample records for single field inflationary

  1. On the predictiveness of single-field inflationary models

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Patil, Subodh P.; Trott, Michael

    2014-06-01

    We re-examine the predictiveness of single-field inflationary models and discuss how an unknown UV completion can complicate determining inflationary model parameters from observations, even from precision measurements. Besides the usual naturalness issues associated with having a shallow inflationary potential, we describe another issue for inflation, namely, unknown UV physics modifies the running of Standard Model (SM) parameters and thereby introduces uncertainty into the potential inflationary predictions. We illustrate this point using the minimal Higgs Inflationary scenario, which is arguably the most predictive single-field model on the market, because its predictions for A S , r and n s are made using only one new free parameter beyond those measured in particle physics experiments, and run up to the inflationary regime. We find that this issue can already have observable effects. At the same time, this UV-parameter dependence in the Renormalization Group allows Higgs Inflation to occur (in principle) for a slightly larger range of Higgs masses. We comment on the origin of the various UV scales that arise at large field values for the SM Higgs, clarifying cut off scale arguments by further developing the formalism of a non-linear realization of SU L (2) × U(1) in curved space. We discuss the interesting fact that, outside of Higgs Inflation, the effect of a non-minimal coupling to gravity, even in the SM, results in a non-linear EFT for the Higgs sector. Finally, we briefly comment on post BICEP2 attempts to modify the Higgs Inflation scenario.

  2. Primordial non-Gaussianities in single field inflationary models with non-trivial initial states

    SciTech Connect

    Bahrami, Sina; Flanagan, Éanna É. E-mail: eef3@cornell.edu

    2014-10-01

    We compute the non-Gaussianities that arise in single field, slow roll inflationary models arising from arbitrary homogeneous initial states, as well as subleading contributions to the power spectrum. Non Bunch-Davies vacuum initial states can arise if the transition to the single field, slow roll inflation phase occurs only shortly before observable modes left the horizon. They can also arise from new physics at high energies that has been integrated out. Our general result for the bispectrum exhibits several features that were previously seen in special cases.

  3. Reconstructing inflationary paradigm within Effective Field Theory framework

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan

    2016-03-01

    In this paper my prime objective is to analyse the constraints on a sub-Planckian excursion of a single inflaton field within Effective Field Theory framework in a model independent fashion. For a generic single field inflationary potential, using the various parameterization of the primordial power spectrum I have derived the most general expression for the field excursion in terms of various inflationary observables, applying the observational constraints obtained from recent Planck 2015 and Planck 2015 + BICEP2/Keck Array data. By explicit computation I have reconstructed the structural form of the inflationary potential by constraining the Taylor expansion co-efficients appearing in the generic expansion of the potential within the Effective Field Theory. Next I have explicitly derived, a set of higher order inflationary consistency relationships, which would help us to break the degeneracy between various class of inflationary models by differentiating them. I also provided two simple examples of Effective Theory of inflation- inflection-point model and saddle-point model to check the compatibility of the prescribed methodology in the light of Planck 2015 and Planck 2015 + BICEP2/Keck Array data. Finally, I have also checked the validity of the prescription by estimating the cosmological parameters and fitting the theoretical CMB TT, TE and EE angular power spectra with the observed data within the multipole range 2 < l < 2500.

  4. Can CMB data constrain the inflationary field range?

    SciTech Connect

    Garcia-Bellido, Juan

    2014-09-01

    We study to what extent the spectral index n{sub s} and the tensor-to-scalar ratio r determine the field excursion Δφ during inflation. We analyse the possible degeneracy of Δ φ by comparing three broad classes of inflationary models, with different dependence on the number of e-foldings N, to benchmark models of chaotic inflation with monomial potentials. The classes discussed cover a large set of inflationary single field models. We find that the field range is not uniquely determined for any value of (n{sub s}, r); one can have the same predictions as chaotic inflation and a very different Δ φ. Intriguingly, we find that the field range cannot exceed an upper bound that appears in different classes of models. Finally, Δ φ can even become sub-Planckian, but this requires to go beyond the single-field slow-roll paradigm.

  5. Inflationary solutions in the nonminimally coupled scalar field theory

    NASA Astrophysics Data System (ADS)

    Koh, Seoktae; Kim, Sang Pyo; Song, Doo Jong

    2005-08-01

    We study analytically and numerically the inflationary solutions for various type scalar potentials in the nonminimally coupled scalar field theory. The Hamilton-Jacobi equation is used to deal with nonlinear evolutions of inhomogeneous spacetimes and the long-wavelength approximation is employed to find the homogeneous solutions during an inflation period. The constraints that lead to a sufficient number of e-folds, a necessary condition for inflation, are found for the nonminimal coupling constant and initial conditions of the scalar field for inflation potentials. In particular, we numerically find an inflationary solution in the new inflation model of a nonminimal scalar field.

  6. Non-Gaussianity and large-scale structure in a two-field inflationary model

    SciTech Connect

    Tseliakhovich, Dmitriy; Hirata, Christopher

    2010-08-15

    Single-field inflationary models predict nearly Gaussian initial conditions, and hence a detection of non-Gaussianity would be a signature of the more complex inflationary scenarios. In this paper we study the effect on the cosmic microwave background and on large-scale structure from primordial non-Gaussianity in a two-field inflationary model in which both the inflaton and curvaton contribute to the density perturbations. We show that in addition to the previously described enhancement of the galaxy bias on large scales, this setup results in large-scale stochasticity. We provide joint constraints on the local non-Gaussianity parameter f-tilde{sub NL} and the ratio {xi} of the amplitude of primordial perturbations due to the inflaton and curvaton using WMAP and Sloan Digital Sky Survey data.

  7. The inflationary bispectrum with curved field-space

    SciTech Connect

    Elliston, Joseph; Tavakol, Reza; Seery, David E-mail: d.seery@sussex.ac.uk

    2012-11-01

    We compute the covariant three-point function near horizon-crossing for a system of slowly-rolling scalar fields during an inflationary epoch, allowing for an arbitrary field-space metric. We show explicitly how to compute its subsequent evolution using a covariantized version of the separate universe or 'δN' expansion, which must be augmented by terms measuring curvature of the field-space manifold, and give the nonlinear gauge transformation to the comoving curvature perturbation. Nonlinearities induced by the field-space curvature terms are a new and potentially significant source of non-Gaussianity. We show how inflationary models with non-minimal coupling to the spacetime Ricci scalar can be accommodated within this framework. This yields a simple toolkit allowing the bispectrum to be computed in models with non-negligible field-space curvature.

  8. Primordial magnetic fields from the post-inflationary universe

    SciTech Connect

    Kobayashi, Takeshi

    2014-05-01

    We explore cosmological magnetogenesis in the post-inflationary universe, when the inflaton oscillates around its potential minimum and the universe is effectively dominated by cold matter. During this epoch prior to reheating, large-scale magnetic fields can be significantly produced by the cosmological background. By considering magnetogenesis both during and after inflation, we demonstrate that magnetic fields stronger than 10{sup −15} G can be generated on Mpc scales without having strong couplings in the theory, or producing too large electric fields that would dominate the universe.

  9. Effective field theory of dark matter from membrane inflationary paradigm

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan; Dasgupta, Arnab

    2016-09-01

    In this article, we have studied the cosmological and particle physics constraints on dark matter relic abundance from effective field theory of inflation from tensor-to-scalar ratio (r), in case of Randall-Sundrum single membrane (RSII) paradigm. Using semi-analytical approach we establish a direct connection between the dark matter relic abundance (ΩDMh2) and primordial gravity waves (r), which establishes a precise connection between inflation and generation of dark matter within the framework of effective field theory in RSII membrane. Further assuming the UV completeness of the effective field theory perfectly holds good in the prescribed framework, we have explicitly shown that the membrane tension, σ ≤ O(10-9) Mp4, bulk mass scale M5 ≤ O(0.04 - 0.05) Mp, and cosmological constant Λ˜5 ≥ - O(10-15) Mp5, in RSII membrane plays the most significant role to establish the connection between dark matter and inflation, using which we have studied the features of various mediator mass scale suppressed effective field theory "relevant operators" induced from the localized s, t and u channel interactions in RSII membrane. Taking a completely model independent approach, we have studied an exhaustive list of tree-level Feynman diagrams for dark matter annihilation within the prescribed setup and to check the consistency of the obtained results, further we apply the constraints as obtained from recently observed Planck 2015 data and Planck + BICEP2 + Keck Array joint data sets. Using all of these derived results we have shown that to satisfy the bound on, ΩDMh2 = 0.1199 ± 0.0027, as from Planck 2015 data, it is possible to put further stringent constraint on r within, 0.01 ≤ r ≤ 0.12, for thermally averaged annihilation cross-section of dark matter, < σv > ≈ O(10-28 - 10-27) cm3 / s, which are very useful to constrain various membrane inflationary models.

  10. Effective field theory of weakly coupled inflationary models

    SciTech Connect

    Gwyn, Rhiannon; Palma, Gonzalo A.; Sakellariadou, Mairi; Sypsas, Spyros E-mail: gpalmaquilod@ing.uchile.cl E-mail: spyridon.sypsas@kcl.ac.uk

    2013-04-01

    The application of Effective Field Theory (EFT) methods to inflation has taken a central role in our current understanding of the very early universe. The EFT perspective has been particularly useful in analyzing the self-interactions determining the evolution of co-moving curvature perturbations (Goldstone boson modes) and their influence on low-energy observables. However, the standard EFT formalism, to lowest order in spacetime differential operators, does not provide the most general parametrization of a theory that remains weakly coupled throughout the entire low-energy regime. Here we study the EFT formulation by including spacetime differential operators implying a scale dependence of the Goldstone boson self-interactions and its dispersion relation. These operators are shown to arise naturally from the low-energy interaction of the Goldstone boson with heavy fields that have been integrated out. We find that the EFT then stays weakly coupled all the way up to the cutoff scale at which ultraviolet degrees of freedom become operative. This opens up a regime of new physics where the dispersion relation is dominated by a quadratic dependence on the momentum ω ∼ p{sup 2}. In addition, provided that modes crossed the Hubble scale within this energy range, the predictions of inflationary observables — including non-Gaussian signatures — are significantly affected by the new scales characterizing it.

  11. The behavior of the Higgs field in the new inflationary universe

    NASA Technical Reports Server (NTRS)

    Guth, Alan H.; Pi, So-Young

    1986-01-01

    Answers are provided to questions about the standard model of the new inflationary universe (NIU) which have raised concerns about the model's validity. A baby toy problem which consists of the study of a single particle moving in one dimension under the influence of a potential with the form of an upside-down harmonic oscillator is studied, showing that the quantum mechanical wave function at large times is accurately described by classical physics. Then, an exactly soluble toy model for the behavior of the Higgs field in the NIU is described which should provide a reasonable approximation to the behavior of the Higgs field in the NIU. The dynamics of the toy model is described, and calculative results are reviewed which, the authors claim, provide strong evidence that the basic features of the standard picture are correct.

  12. On SUSY restoration in single-superfield inflationary models of supergravity

    NASA Astrophysics Data System (ADS)

    Ketov, Sergei V.; Terada, Takahiro

    2016-08-01

    We study the conditions of restoring supersymmetry (SUSY) after inflation in the supergravity-based cosmological models with a single chiral superfield and a quartic stabilization term in the Kähler potential. Some new, explicit, and viable inflationary models satisfying those conditions are found. The inflaton's scalar superpartner is dynamically stabilized during and after inflation. We also demonstrate a possibility of having small and adjustable SUSY breaking with a tiny cosmological constant.

  13. Inflationary schism

    NASA Astrophysics Data System (ADS)

    Ijjas, Anna; Steinhardt, Paul J.; Loeb, Abraham

    2014-09-01

    Classic inflation, the theory described in textbooks, is based on the idea that, beginning from typical initial conditions and assuming a simple inflaton potential with a minimum of fine-tuning, inflation can create exponentially large volumes of space that are generically homogeneous, isotropic and flat, with nearly scale-invariant spectra of density and gravitational wave fluctuations that are adiabatic, Gaussian and have generic predictable properties. In a recent paper, we showed that, in addition to having certain conceptual problems known for decades, classic inflation is for the first time also disfavored by data, specifically the most recent data from WMAP, ACT and Planck2013. Guth, Kaiser and Nomura and Linde have each recently published critiques of our paper, but, as made clear here, we all agree about one thing: the problematic state of classic inflation. Instead, they describe an alternative inflationary paradigm that revises the assumptions and goals of inflation, and perhaps of science generally. Assuming simple inflaton potentials with a single phase of inflation is “not at all realistic”, whereas highly complex potentials with many parameters, tunings, and fields are “very plausible according to recent ideas in high-energy physics” [GKN10-11]. The complex potentials inevitably lead to multiple stages of inflation and a multiverse in which anything can happen [GKN7]. The validity of the postmodern inflationary paradigm cannot be judged on whether it works for typical initial conditions since we do not know what those conditions are [GKN13]. Even if the initial conditions are determined some day they will not affect the validity of inflation; rather, the (yet unknown) measure will then be adjusted such that the observed properties of the universe are likely to emerge from those (yet unknown) initial conditions [GKN14]. The volume measure is rejected in favor of complex measures that are to be (re-)adjusted (a posteriori) to ensure that the

  14. Inflationary gravitational waves in the effective field theory of modified gravity

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Tsujikawa, Shinji

    2015-05-01

    In the approach of the effective field theory of modified gravity, we derive the second-order action and the equation of motion for tensor perturbations on the flat isotropic cosmological background. This analysis accommodates a wide range of gravitational theories including Horndeski theories, its generalization, and the theories with spatial derivatives higher than second order (e.g., Hořava-Lifshitz gravity). We obtain the inflationary power spectrum of tensor modes by taking into account corrections induced by higher-order spatial derivatives and slow-roll corrections to the de Sitter background. We also show that the leading-order spectrum in concrete modified gravitational theories can be mapped on to that in General Relativity under a disformal transformation. Our general formula will be useful to constrain inflationary models from the future precise measurement of the B-mode polarization in the cosmic microwave background.

  15. LRS Bianchi Type-II Inflationary Universe with Massless Scalar Field and Time Varying Λ

    NASA Astrophysics Data System (ADS)

    Raj, Bali; Swati

    2012-08-01

    The locally rotationally symmetric (LRS) Bianchi type-II inflationary cosmological model is investigated for massless scalar field with flat potential and time varying Λ. To obtain the deterministic solution, it is assumed that scale factor is a(t)~eHt as we considered previously for Bianchi type-I spacetime and Λ~a-2 as considered by Chen and Wu, where H is the Hubble constant and effective potential V(phi)=const; phi Higg's field. It is shown that such a time varying Λ leads to no conflict with existing observations. However, it does change the predictions of standard cosmology in the matter-dominated phase and alleviates some problems in reconciling observations with the inflationary scenario. The model represents anisotropic spacetime in general. However, the model isotropizes for large values of t and β = 3H2, where β is constant. The physical and geometrical aspects of the model in the context of an inflationary scenario is also discussed.

  16. Cosmological backreaction for a test field observer in a chaotic inflationary model

    SciTech Connect

    Marozzi, Giovanni; Vacca, Gian Paolo; Brandenberger, Robert H. E-mail: vacca@bo.infn.it

    2013-02-01

    In an inhomogeneous universe, an observer associated with a particular matter field does not necessarily measure the same cosmological evolution as an observer in a homogeneous and isotropic universe. Here we consider, in the context of a chaotic inflationary background model, a class of observers associated with a ''clock field'' for which we use a light test field. We compute the effective expansion rate and fluid equation of state in a gauge invariant way, taking into account the quantum fluctuations of the long wavelength modes, and working up to second order in perturbation theory and in the slow-roll approximation. We find that the effective expansion rate is smaller than what would be measured in the absence of fluctuations. Within the stochastic approach we study the bounds for which the approximations we make are consistent.

  17. Bayesian analysis of inflation: Parameter estimation for single field models

    SciTech Connect

    Mortonson, Michael J.; Peiris, Hiranya V.; Easther, Richard

    2011-02-15

    Future astrophysical data sets promise to strengthen constraints on models of inflation, and extracting these constraints requires methods and tools commensurate with the quality of the data. In this paper we describe ModeCode, a new, publicly available code that computes the primordial scalar and tensor power spectra for single-field inflationary models. ModeCode solves the inflationary mode equations numerically, avoiding the slow roll approximation. It is interfaced with CAMB and CosmoMC to compute cosmic microwave background angular power spectra and perform likelihood analysis and parameter estimation. ModeCode is easily extendable to additional models of inflation, and future updates will include Bayesian model comparison. Errors from ModeCode contribute negligibly to the error budget for analyses of data from Planck or other next generation experiments. We constrain representative single-field models ({phi}{sup n} with n=2/3, 1, 2, and 4, natural inflation, and 'hilltop' inflation) using current data, and provide forecasts for Planck. From current data, we obtain weak but nontrivial limits on the post-inflationary physics, which is a significant source of uncertainty in the predictions of inflationary models, while we find that Planck will dramatically improve these constraints. In particular, Planck will link the inflationary dynamics with the post-inflationary growth of the horizon, and thus begin to probe the ''primordial dark ages'' between TeV and grand unified theory scale energies.

  18. Inflationary implications of supersymmetry breaking

    SciTech Connect

    Borghese, Andrea; Roest, Diederik; Zavala, Ivonne

    2013-07-23

    We discuss a general bound on the possibility to realise inflation in any minimal supergravity with F-terms. The derivation crucially depends on the sGoldstini, the scalar field directions that are singled out by spontaneous supersymmetry breaking. The resulting bound involves both slow-roll parameters and the geometry of the Kähler manifold of the chiral scalars. We analyse the inflationary implications of this bound, and in particular discuss to what extent the requirements of single field and slow-roll can both be met in F-term inflation.

  19. Non-local scalar fields inflationary mechanism in light of Planck 2013

    NASA Astrophysics Data System (ADS)

    Sheikhahmadi, Haidar; Ghorbani, Soheyla; Saaidi, Khaled

    2015-06-01

    A generalization of the canonical and non-canonical theory of inflation is introduced in which the kinetic energy term in action is written as non-local term. The inflationary universe within the framework of considering this non-locality will be studied. To investigate the effects of non-locality on the inflationary parameters we consider two well known models of the inflationary scenario including chaotic and exponential inflation proposals. For such scenarios some important parameters include slow roll parameters, scalar and tensor power spectra, spectral indices, the tensor-to-scalar ratio and so on for both mentioned models, chaotic and exponential inflationary scenarios, will be calculated. Also the Hamilton-Jacobi formalism, as an easiest way to study the effect of perturbation based on e-folding number N, to investigate inflationary attractors will be used. The free theoretical parameters of this model will be compared with observations by means of Planck 2013, WMAP9+ eCMB+ BAO+ H 0 data sets in addition to BICEP2 data surveying. It will be shown that our theoretical results are in acceptable range in comparison to observations. For instance the tensor-to-scalar ratio for exponential potential, by considering BICEP2 is in best agreement in comparison with chaotic inflation.

  20. Model of inflationary magnetogenesis

    NASA Astrophysics Data System (ADS)

    Qian, Peng; Guo, Zong-Kuan

    2016-02-01

    We consider the possibility of inflationary magnetogenesis due to dynamical couplings of the electromagnetic fields to gravity. We find that large primordial magnetic fields can be generated during inflation without the strong coupling problem, backreaction problem, or curvature perturbation problem, which seed large-scale magnetic fields with observationally interesting strengths.

  1. Clarifying inflation models: The precise inflationary potential from effective field theory and the WMAP data

    SciTech Connect

    Cirigliano, D.; Sanchez, N.G.; Vega, H.J. de

    2005-05-15

    We clarify inflaton models by considering them as effective field theories in the Ginzburg-Landau spirit. In this new approach, the precise form of the inflationary potential is constructed from the present WMAP data, and a useful scheme is prepared to confront with the forthcoming data. In this approach, the WMAP statement excluding the pure {phi}{sup 4} potential implies the presence of an inflaton mass term at the scale m{approx}10{sup 13} GeV. Chaotic, new and hybrid inflation models are studied in an unified way. In all cases the inflaton potential takes the form V({phi})=m{sup 2}M{sub Pl}{sup 2}v({phi}/M{sub Pl}), where all coefficients in the polynomial v({phi}) are of order one. If such potential corresponds to supersymmetry breaking, the corresponding susy breaking scale is {radical}(mM{sub Pl}){approx}10{sup 16} GeV which turns to coincide with the grand unification (GUT) scale. The inflaton mass is therefore given by a seesaw formula m{approx}M{sub GUT}{sup 2}/M{sub Pl}. The observables turn to be two-valued functions: one branch corresponds to new inflation and the other to chaotic inflation, the branch point being the pure quadratic potential. For red tilted spectrum, the potential which fits the best the present data (vertical bar 1-n{sub s} vertical bar < or approx. 0.1,r < or approx. 0.1) and which best prepares the way for the forthcoming data is a trinomial polynomial with negative quadratic term (new inflation). For blue tilted spectrum, hybrid inflation turns to be the best choice. In both cases we find an analytic formula relating the inflaton mass with the ratio r of tensor to scalar perturbations and the spectral index n{sub s} of scalar perturbations: 10{sup 6}(m/M{sub Pl})=127{radical}(r vertical bar 1-n{sub s} vertical bar) where the numerical coefficient is fixed by the WMAP amplitude of adiabatic perturbations. Implications for string theory are discussed.

  2. Looking beyond inflationary cosmology

    NASA Astrophysics Data System (ADS)

    Brandenberger, R. H.

    2006-06-01

    In spite of the phenomenological successes of the inflationary universe scenario, the current realizations of inflation making use of scalar fields lead to serious conceptual problems that are reviewed in this lecture. String theory may provide an avenue towards addressing these problems. One particular approach to combining string theory and cosmology is String Gas Cosmology. The basic principles of this approach are summarized.

  3. A new mechanism of realizing inflationary universe with recourse to backreaction of quantized free fields — Inflation without inflaton —

    NASA Astrophysics Data System (ADS)

    Habara, Yoshinobu; Kawai, Hikaru; Ninomiya, Masao

    2015-02-01

    It is shown that the inflationary era in early universe is realized due to the effect of backreaction of quantized matter fields. In fact we start by quantizing a free scalar field in the Friedmann-Robertson-Walker space-time, and the field is fluctuating quantum mechanically around the bottom of the mass potential. We then obtain the vacuum expectation value of the energy density of the scalar field as a functional of the scale factor a( t) of the universe. By plugging it into the Einstein equation, a self-consistent equation is established in which the matter fields determine the time evolution of the universe. We solve this equation by setting few conditions and find the following solution: the universe expands à la de Sitter with e-folding number ≳ 60 and then it turns to shrink with a decreasing Hubble parameter H( t) which rapidly goes to zero.

  4. Inflationary paradigm in trouble after Planck2013

    NASA Astrophysics Data System (ADS)

    Ijjas, Anna; Steinhardt, Paul J.; Loeb, Abraham

    2013-06-01

    Recent results from the Planck satellite combined with earlier observations from WMAP, ACT, SPT and other experiments eliminate a wide spectrum of more complex inflationary models and favor models with a single scalar field, as reported by the Planck Collaboration. More important, though, is that all the simplest inflaton models are disfavored statistically relative to those with plateau-like potentials. We discuss how a restriction to plateau-like models has three independent serious drawbacks: it exacerbates both the initial conditions problem and the multiverse-unpredictability problem and it creates a new difficulty that we call the inflationary "unlikeliness problem." Finally, we comment on problems reconciling inflation with a standard model Higgs, as suggested by recent LHC results. In sum, we find that recent experimental data disfavors all the best-motivated inflationary scenarios and introduces new, serious difficulties that cut to the core of the inflationary paradigm. Forthcoming searches for B-modes, non-Gaussianity and new particles should be decisive.

  5. Topics in inflationary cosmologies

    SciTech Connect

    Mahajan, S.

    1986-04-01

    Several aspects of inflationary cosmologies are discussed. An introduction to the standard hot big bang cosmological model is reviewed, and some of the problems associated with it are presented. A short review of the proposals for solving the cosmological conundrums of the big bang model is presented. Old and the new inflationary scenarios are discussed and shown to be unacceptable. Some alternative scenarios especially those using supersymmetry are reviewed briefly. A study is given of inflationary models where the same set of fields that breaks supersymmetry is also responsible for inflation. In these models, the scale of supersymmetry breaking is related to the slope of the potential near the origin and can thus be kept low. It is found that a supersymmetry breaking scale of the order of the weak breaking scale. The cosmology obtained from the simplest of such models is discussed in detail and it is shown that there are no particular problems except a low reheating temperature and a violation of the thermal constraint. A possible solution to the thermal constraint problem is given by introducing a second field, and the role played by this second field in the scenario is discussed. An alternative mechanism for the generation of baryon number within the framework of supergravity inflationary models is studied using the gravitational couplings of the heavy fields with the hidden sector (the sector which breaks supersymmetry). This mechanism is applied to two specific models - one with and one without supersymmetry breaking. The baryon to entropy ratio is found to be dependent on parameters which are model dependent. Finally, the effect of direct coupling between the two sectors on results is related, 88 refs., 6 figs.

  6. Exact Approach to Inflationary Universe Models

    NASA Astrophysics Data System (ADS)

    del Campo, Sergio

    In this chapter we introduce a study of inflationary universe models that are characterized by a single scalar inflation field . The study of these models is based on two dynamical equations: one corresponding to the Klein-Gordon equation for the inflaton field and the other to a generalized Friedmann equation. After describing the kinematics and dynamics of the models under the Hamilton-Jacobi scheme, we determine in some detail scalar density perturbations and relic gravitational waves. We also introduce the study of inflation under the hierarchy of the slow-roll parameters together with the flow equations. We apply this approach to the modified Friedmann equation that we call the Friedmann-Chern-Simons equation, characterized by F(H) = H^2- α H4, and the brane-world inflationary models expressed by the modified Friedmann equation.

  7. The Quest for B Modes from Inflationary Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Kamionkowski, Marc; Kovetz, Ely D.

    2016-09-01

    The search for the curl component (B mode) in the cosmic microwave background (CMB) polarization induced by inflationary gravitational waves is described. The canonical single-field slow-roll model of inflation is presented, and we explain the quantum production of primordial density perturbations and gravitational waves. It is shown how these gravitational waves then give rise to polarization in the CMB. We then describe the geometric decomposition of the CMB polarization pattern into a curl-free component (E mode) and curl component (B mode) and show explicitly that gravitational waves induce B modes. We discuss the B modes induced by gravitational lensing and by Galactic foregrounds and show how both are distinguished from those induced by inflationary gravitational waves. Issues involved in the experimental pursuit of these B modes are described, and we summarize some of the strategies being pursued. We close with a brief discussion of some other avenues toward detecting/characterizing the inflationary gravitational-wave background.

  8. K-inflationary power spectra at second order

    SciTech Connect

    Martin, Jérôme; Vennin, Vincent; Ringeval, Christophe E-mail: christophe.ringeval@uclouvain.be

    2013-06-01

    Within the class of inflationary models, k-inflation represents the most general single field framework that can be associated with an effective quadratic action for the curvature perturbations and a varying speed of sound. The incoming flow of high-precision cosmological data, such as those from the Planck satellite and small scale Cosmic Microwave Background (CMB) experiments, calls for greater accuracy in the inflationary predictions. In this work, we calculate for the first time the next-to-next-to-leading order scalar and tensor primordial power spectra in k-inflation needed in order to obtain robust constraints on the inflationary theory. The method used is the uniform approximation together with a second order expansion in the Hubble and sound flow functions. Our result is checked in various limits in which it reduces to already known situations.

  9. Curvaton reheating in a logamediate inflationary model

    SciTech Connect

    Campo, Sergio del; Herrera, Ramon; Saavedra, Joel; Campuzano, Cuauhtemoc; Rojas, Efrain

    2009-12-15

    In a logamediate inflationary universe model we introduce the curvaton field in order to bring this inflationary model to an end. In this approach we determine the reheating temperature. We also outline some interesting constraints on the parameters that describe our models. Thus, we give the parameter space in this scenario.

  10. Constraints on single-field inflation

    NASA Astrophysics Data System (ADS)

    Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico

    2016-06-01

    Many alternatives to canonical slow-roll inflation have been proposed over the years, one of the main motivations being to have a model, capable of generating observable values of non-Gaussianity. In this work, we (re-)explore the physical implications of a great majority of such models within a single, effective field theory framework (including novel models with large non-Gaussianity discussed for the first time below). The constraints we apply—both theoretical and experimental—are found to be rather robust, determined to a great extent by just three parameters: the coefficients of the quadratic EFT operators (δN)2 and δNδE, and the slow-roll parameter ε. This allows to significantly limit the majority of single-field alternatives to canonical slow-roll inflation. While the existing data still leaves some room for most of the considered models, the situation would change dramatically if the current upper limit on the tensor-to-scalar ratio decreased down to r < 10‑2. Apart from inflationary models driven by plateau-like potentials, the single-field model that would have a chance of surviving this bound is the recently proposed slow-roll inflation with weakly-broken galileon symmetry. In contrast to canonical slow-roll inflation, the latter model can support r < 10‑2 even if driven by a convex potential, as well as generate observable values for the amplitude of non-Gaussianity.

  11. Inflationary buildup of a vector field condensate and its cosmological consequences

    SciTech Connect

    Sanchez, Juan C. Bueno; Dimopoulos, Konstantinos E-mail: k.dimopoulos1@lancaster.ac.uk

    2014-01-01

    Light vector fields during inflation obtain a superhorizon perturbation spectrum when their conformal invariance is appropriately broken. Such perturbations, by means of some suitable mechanism (e.g. the vector curvaton mechanism), can contribute to the curvatue perturbation in the Universe and produce characteristic signals, such as statistical anisotropy, on the microwave sky, most recently surveyed by the Planck satellite mission. The magnitude of such characteristic features crucially depends on the magnitude of the vector condensate generated during inflation. However, in the vast majority of the literature the expectation value of this condensate has so-far been taken as a free parameter, lacking a definite prediction or a physically motivated estimate. In this paper, we study the stochastic evolution of the vector condensate and obtain an estimate for its magnitude. Our study is mainly focused in the supergravity inspired case when the kinetic function and mass of the vector boson is time-varying during inflation, but other cases are also explored such as a parity violating axial theory or a non-minimal coupling between the vector field and gravity. As an example, we apply our findings in the context of the vector curvaton mechanism and contrast our results with current observations.

  12. Recovering the inflationary potential

    SciTech Connect

    Turner, Michael S.

    1993-08-06

    A procedure is developed for the recovery of the inflationary potential owl the interval that affects astrophysical scales. The amplitudes of the scalar and tensor metric perturbations and their power-spectrum indices, which can in principle be inferred from large-angle CBR anisotropy experiments and other cosmological data, determine the value of the inflationary potential and its first two derivatives. From these, the inflationary potential can be reconstructed in a Taylor series and the consistency of the inflationary hypothesis tested. A number of examples are presented, and the effect of observational uncertainties is discussed.

  13. Inhomogeneous viscous fluid in anisotropic inflationary universe

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Mohsaneen, Sidra

    2015-06-01

    In this paper, we study inhomogeneous viscous fluid for inflation in the framework of locally rotationally symmetric Bianchi type I universe model. We consider an inhomogeneous equation of state with viscosity term to ensure a graceful exit from inflationary period. In order to study inflationary perturbations, we evaluate slow-roll parameters, scalar and tensor power spectra, scalar spectral index, tensor to scalar ratio for scalar field and inhomogeneous viscous fluid. It is concluded that our anisotropic inflationary universe model with inhomogeneous viscous fluid is consistent with recent data in a specific range of the model parameters.

  14. The best inflationary models after Planck

    SciTech Connect

    Martin, Jérôme; Vennin, Vincent; Ringeval, Christophe; Trotta, Roberto E-mail: christophe.ringeval@uclouvain.be E-mail: vennin@iap.fr

    2014-03-01

    We compute the Bayesian evidence and complexity of 193 slow-roll single-field models of inflation using the Planck 2013 Cosmic Microwave Background data, with the aim of establishing which models are favoured from a Bayesian perspective. Our calculations employ a new numerical pipeline interfacing an inflationary effective likelihood with the slow-roll library ASPIC and the nested sampling algorithm MultiNest. The models considered represent a complete and systematic scan of the entire landscape of inflationary scenarios proposed so far. Our analysis singles out the most probable models (from an Occam's razor point of view) that are compatible with Planck data, while ruling out with very strong evidence 34% of the models considered. We identify 26% of the models that are favoured by the Bayesian evidence, corresponding to 15 different potential shapes. If the Bayesian complexity is included in the analysis, only 9% of the models are preferred, corresponding to only 9 different potential shapes. These shapes are all of the plateau type.

  15. Full trispectrum in single field DBI inflation

    SciTech Connect

    Arroja, Frederico; Tanaka, Takahiro; Mizuno, Shuntaro; Koyama, Kazuya

    2009-08-15

    We compute the tree-level connected four-point function of the primordial curvature perturbation for a fairly general minimally coupled single field inflationary model, where the inflaton's Lagrangian is a general function of the scalar field and its first derivatives. This model includes K inflation and DBI inflation as particular cases. We show that, at the leading order in the slow-roll expansion and in the small sound speed limit, there are two important tree-level diagrams for the trispectrum. One is a diagram where a scalar mode is exchanged and the other is a diagram where the interaction occurs at a point, i.e. a contact interaction diagram. The scalar exchange contribution is comparable to the contact interaction contribution. For the DBI-inflation model, in the so-called equilateral configuration, the scalar exchange trispectrum is maximized when the angles between the four momentum vectors are equal and in this case the amplitude of the trispectrum from the scalar exchange is 1 order of magnitude higher than the contact interaction trispectrum.

  16. Small field inflation in {N} = 1 supergravity with a single chiral superfield

    NASA Astrophysics Data System (ADS)

    Bernardo, Heliudson; Nastase, Horatiu

    2016-09-01

    We consider "new inflation" inflationary models at small fields, embedded in minimal {N} = 1 supergravity with a single chiral superfield. Imposing a period of inflation compatible with experiment severely restricts possible models, classified in perturbation theory. If moreover we impose that the field goes to large values and very small potential at the current time, like would be needed for instance for the inflaton being the volume modulus in large extra dimensional scenarios, the possible models are restricted to very contrived superpotentials.

  17. Toward the inflationary paradigm: Lectures on inflationary cosmology

    SciTech Connect

    Turner, M.S.

    1987-02-01

    Guth's inflationary Universe scenario has revolutionized our thinking about the very early Universe. The inflationary scenario offers the possibility of explaining a handful of very fundamental cosmological facts - the homogeneity, isotropy, and flatness of the Universe, the origin of density inhomogeneities and the origin of the baryon asymmetry, while at the same time avoiding the monopole problem. It is based upon microphysical events which occurred early (t less than or equal to 10/sup -34/ sec) in the history of the Universe, but well after the planck epoc (t greater than or equal to 10/sup -43/ sec). While Guth's original model was fundamentally flawed, the variant based on the slow-rollover transition proposed by Linde, and Albrecht and Steinhardt (dubbed 'new inflation') appears viable. Although old inflation and the earliest models of new inflation were based upon first order phase transitions associated with spontaneous-symmetry breaking (SSB), it now appears that the inflationary transition is a much more generic phenomenon, being associated with the evolution of a weakly-coupled scalar field which for some reason or other was initially displaced from the minimum of its potential. Models now exist which are based on a wide variety of microphysics: SSB, SUSY/SUGR, compactification of extra dimensions, R/sup 2/ gravity, induced gravity, and some random, weakly-coupled scalar field. While there are several models which successfully implement the inflation, none is particularly compelling and all seem somewhat ad hoc. The common distasteful feature of all the successful models is the necessity of a small dimensionless number in the model - usually in the form of a dimensionless coupling of order 10/sup -15/. All inflationary scenarios rely upon the assumption that vacuum energy was once dynamically very significant, whereas today there exists every evidence that it is not. 133 refs., 17 figs.

  18. From instantons to inflationary universe.

    NASA Astrophysics Data System (ADS)

    Khalatnikov, I. M.; Schiller, P.

    1993-01-01

    The present paper is based on a theory which includes gravity and a complex scalar field. In such a theory it is possible to analyze the evolution from instantons in the classically forbidden (Euclidean) region in minisuperspace to the inflationary universe in the classically allowed (Minkowski) region. The characteristics for the Hamilton-Jacobi equation, which define the action in the quasiclassical approximation, are described by four first-order differential equations. This four-dimensional dynamical system was integrated numerically. In the closed Euclidean region two types of instantons were found. It is shown that the instantons correspond to extremal trajectories. The existence of two types of instantons gives rise to different possibilities for tunneling from Euclidean region to Minkowski region and for creation of inflationary universes.

  19. From instanton to inflationary universe

    NASA Astrophysics Data System (ADS)

    Khalatnikov, I. M.; Schiller, P.

    1993-03-01

    The present paper is based on a theory which includes gravity and a complex scalar field [I.M. Khalatnikov and A. Mezhlumian, Phys. Lett. A 169 (1992) 308]. It is shown that in such a theory we can proceed the evolution from instantons in the classically forbidden (euclidean) region in minisuperspace to the inflationary universe in the classically allowed (Minkowski) region. The characteristics for the Hamilton-Jacobi equation, which define the action in the quasiclassical approximation, are described by four differential equations of first order. This four-dimensional dynamical system was integrated numerically. In the euclidean compact region we found two types of instantons. It is shown that the instantons correspond to extremal trajectories. The existence of two types of instantons gives different possibilities for tunneling from euclidean to Minkowski regions and for creation of inflationary universes.

  20. Simple inflationary quintessential model

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Amorós, Jaume; Pan, Supriya

    2016-04-01

    In the framework of a flat Friedmann-Lemaître-Robertson-Walker geometry, we present a non-geodesically past complete model of our Universe without the big bang singularity at finite cosmic time, describing its evolution starting from its early inflationary era up to the present accelerating phase. We found that a hydrodynamical fluid with nonlinear equation of state could result in such scenario, which after the end of this inflationary stage, suffers a sudden phase transition and enters into the stiff matter dominated era, and the Universe becomes reheated due to a huge amount of particle production. Finally, it asymptotically enters into the de Sitter phase concluding the present accelerated expansion. Using the reconstruction technique, we also show that this background provides an extremely simple inflationary quintessential potential whose inflationary part is given by the well-known 1-dimensional Higgs potential, i.e., a double well inflationary potential, and the quintessential one by an exponential potential that leads to a deflationary regime after this inflation, and it can depict the current cosmic acceleration at late times. Moreover the Higgs potential leads to a power spectrum of the cosmological perturbations which fit well with the latest Planck estimations. Further, we compared our viable potential with some known inflationary quintessential potential, which shows that our quintessential model, that is, the Higgs potential combined with the exponential one, is an improved version of them because it contains an analytic solution that allows us to perform all analytic calculations. Finally, we have shown that the introduction of a nonzero cosmological constant simplifies the potential considerably with an analytic behavior of the background which again permits us to evaluate all the quantities analytically.

  1. Critical constraint on inflationary magnetogenesis

    SciTech Connect

    Fujita, Tomohiro; Yokoyama, Shuichiro E-mail: shu@icrr.u-tokyo.ac.jp

    2014-03-01

    Recently, there are several reports that the cosmic magnetic fields on Mpc scale in void region is larger than ∼ 10{sup −15}G with an uncertainty of a few orders from the current blazar observations. On the other hand, in inflationary magnetogenesis models, additional primordial curvature perturbations are inevitably produced from iso-curvature perturbations due to generated electromagnetic fields. We explore such induced curvature perturbations in a model independent way and obtained a severe upper bound for the energy scale of inflation from the observed cosmic magnetic fields and the observed amplitude of the curvature perturbation , as ρ{sub inf}{sup 1/4} < 300MeV × (B{sub obs}/10{sup −15}G){sup −1} where B{sub obs} is the strength of the magnetic field at present. Therefore, without a dedicated low energy inflation model or an additional amplification of magnetic fields after inflation, inflationary magnetogenesis on Mpc scale is generally incompatible with CMB observations.

  2. Transport equations for the inflationary trispectrum

    SciTech Connect

    Anderson, Gemma J.; Seery, David; Mulryne, David J. E-mail: D.Mulryne@qmul.ac.uk

    2012-10-01

    We use transport techniques to calculate the trispectrum produced in multiple-field inflationary models with canonical kinetic terms. Our method allows the time evolution of the local trispectrum parameters, τ{sub NL} and g{sub NL}, to be tracked throughout the inflationary phase. We illustrate our approach using examples. We give a simplified method to calculate the superhorizon part of the relation between field fluctuations on spatially flat hypersurfaces and the curvature perturbation on uniform density slices, ζ, and obtain its third-order part for the first time. We clarify how the 'backwards' formalism of Yokoyama et al. relates to our analysis and other recent work. We supply explicit formulae which enable each inflationary observable to be computed in any canonical model of interest, using a suitable first-order ODE solver.

  3. Causality, initial conditions, and inflationary magnetogenesis

    NASA Astrophysics Data System (ADS)

    Tsagas, Christos G.

    2016-05-01

    The post-inflationary evolution of inflation-produced magnetic fields, conventional or not, can change dramatically when two fundamental issues are accounted for. The first is causality, which demands that local physical processes can never affect superhorizon perturbations. The second is the nature of the transition from inflation to reheating and then to the radiation era, which determine the initial conditions at the start of these epochs. Causality implies that inflationary magnetic fields do not freeze into the matter until they have re-entered the causal horizon. The nature of the cosmological transitions and the associated initial conditions, on the other hand, determine the large-scale magnetic evolution after inflation. Put together, the two can slow down the adiabatic magnetic decay on superhorizon scales throughout the Universe's post-inflationary evolution and thus lead to considerably stronger residual magnetic fields. This is "good news" for both the conventional and the nonconventional scenarios of cosmic magnetogenesis. Mechanisms operating outside standard electromagnetism, in particular, do not need to enhance their fields too much during inflation in order to produce seeds that can feed the galactic dynamo today. In fact, even conventionally produced inflationary magnetic fields might be able to sustain the dynamo.

  4. PLANCK and WMAP constraints on generalised Hubble flow inflationary trajectories

    SciTech Connect

    Contaldi, Carlo R.; Horner, Jonathan S. E-mail: j.horner11@imperial.ac.uk

    2014-08-01

    We use the Hamilton-Jacobi formalism to constrain the space of possible single field, inflationary Hubble flow trajectories when compared to the WMAP and PLANK satellites Cosmic Microwave Background (CMB) results. This method yields posteriors on the space of Hubble Slow Roll (HSR) parameters that uniquely determine the history of the Hubble parameter during the inflating epoch. The trajectories are used to numerically determine the observable primordial power spectrum and bispectra that can then be compared to observations. Our analysis is used to infer the most likely shape of the inflaton potential V(φ) and also yields a prediction for, B, the dimensionless amplitude of the non-Gaussian bispectrum.

  5. PLANCK and WMAP constraints on generalised Hubble flow inflationary trajectories

    NASA Astrophysics Data System (ADS)

    Contaldi, Carlo R.; Horner, Jonathan S.

    2014-08-01

    We use the Hamilton-Jacobi formalism to constrain the space of possible single field, inflationary Hubble flow trajectories when compared to the WMAP and PLANK satellites Cosmic Microwave Background (CMB) results. This method yields posteriors on the space of Hubble Slow Roll (HSR) parameters that uniquely determine the history of the Hubble parameter during the inflating epoch. The trajectories are used to numerically determine the observable primordial power spectrum and bispectra that can then be compared to observations. Our analysis is used to infer the most likely shape of the inflaton potential V(phi) and also yields a prediction for, Script B, the dimensionless amplitude of the non-Gaussian bispectrum.

  6. Adding helicity to inflationary magnetogenesis

    SciTech Connect

    Caprini, Chiara; Sorbo, Lorenzo E-mail: sorbo@physics.umass.edu

    2014-10-01

    The most studied mechanism of inflationary magnetogenesis relies on the time-dependence of the coefficient of the gauge kinetic term F{sub μν} F{sup μν}. Unfortunately, only extremely finely tuned versions of the model can consistently generate the cosmological magnetic fields required by observations. We propose a generalization of this model, where also the pseudoscalar invariant F{sub μν}  F-tilde {sup μν} is multiplied by a time dependent function. The new parity violating term allows more freedom in tuning the amplitude of the field at the end of inflation. Moreover, it leads to a helical magnetic field that is amplified at large scales by magnetohydrodynamical processes during the radiation dominated epoch. As a consequence, our model can satisfy the observational lower bounds on fields in the intergalactic medium, while providing a seed for the galactic dynamo, if inflation occurs at an energy scale ranging from 10{sup 5} to 10{sup 10} GeV. Such energy scale is well below that suggested by the recent BICEP2 result, if the latter is due to primordial tensor modes. However, the gauge field is a source of tensors during inflation and generates a spectrum of gravitational waves that can give a sizable tensor to scalar ratio r=O(0.2) even if inflation occurs at low energies. This system therefore evades the Lyth bound. For smaller values of r, lower values of the inflationary energy scale are required. The model predicts fully helical cosmological magnetic fields and a chiral spectrum of primordial gravitational waves.

  7. Observational Signatures and Non-Gaussianities ofGeneral Single Field Inflation

    SciTech Connect

    Chen, Xingang; Huang, Min-xin; Kachru, Shamit; Shiu, Gary

    2006-05-05

    We perform a general study of primordial scalar non-Gaussianities in single field inflationary models. We consider models where the inflaton Lagrangian is an arbitrary function of the scalar field and its first derivative, and the sound speed is arbitrary. We find that under reasonable assumptions, the non-Gaussianity is completely determined by 5 parameters. In special limits of the parameter space, one finds distinctive ''shapes'' of the non-Gaussianity. In models with a small sound speed, several of these shapes would become potentially observable in the near future. Different limits of our formulae recover various previously known results.

  8. The new inflationary universe, 1984

    NASA Technical Reports Server (NTRS)

    Guth, Alan H.

    1986-01-01

    The present status of the new inflationary theory in cosmology is discussed. The standard scenario of the very early universe, the problems of this scenario, and the basics of the new inflationary theory are reviewed. The ways in which this theory solves the problems connected with the standard scenario are described.

  9. Problems with the new inflationary universe

    NASA Astrophysics Data System (ADS)

    Breit, J. D.; Gupta, S.; Zaks, A.

    1983-09-01

    The new-inflationary-universe scenario, which is based on symmetry breaking due to radiative corrections of the Coleman-Weinberg type, was developed to overcome problems of excessive inhomogeneity associated with the inflationary-universe scenario of Guth (1979). The present paper discusses a difficulty with the new scenario which is independent of the previously identified scalar field fluctuations. It is shown that, for Higgs fields allowed to evolve in the full 24-dimensional space of the adjoint of SU(5), all the Coleman bubbles of the asymmetric phase within the symmetric universe evolve through an additional local minimum in the SU(4) x U(1) direction. Furthermore, if a bubble should get stuck in this minimum, it will evolve towards the SU(3) x SU(2) x U(1) global minimum by a strongly first-order transition, leading to the same problems as with the Guth scenario.

  10. Closed inflationary universe in patch cosmology

    SciTech Connect

    Campo, Sergio del Herrera, Ramon Saavedra, Joel Labrana, Pedro

    2009-09-15

    In this paper, we study closed inflationary universe models using the Gauss-Bonnet Brane. We determine and characterize the existence of a universe with {omega}>1, with an appropriate period of inflation. We have found that this model is less restrictive in comparison with the standard approach where a scalar field is considered. We use recent astronomical observations to constrain the parameters appearing in the model.

  11. Inflationary perturbations in a closed FLRW universe

    NASA Astrophysics Data System (ADS)

    Yokomizo, Nelson; Bonga, Beatrice; Gupt, Brajesh

    2016-03-01

    We investigate the evolution of gauge invariant quantum perturbations in the closed FLRW model in the presence of an inflationary potential. We first find out initial conditions for the background geometry which lead to a desired slow-roll phase that is compatible with observation. Providing the initial conditions for the quantum field at the onset of slow-roll we study the influence of the spatial curvature on the scalar and tensor power spectra at the end of inflation. By comparing our results with the recent Planck data we discuss the role of spatial curvature on the estimation of various cosmological parameters. We highlight the main differences from the standard inflationary scenario in a flat FLRW model and potential implications for future observations. Finally, we comment on the quantum gravitational extension of this scenario to the Planck scale. Supported by CNPq-Brazil and NSF.

  12. Statistical anisotropy in the inflationary universe

    SciTech Connect

    Shtanov, Yuri; Pyatkovska, Hanna

    2009-07-15

    During cosmological inflation, quasiclassical perturbations are permanently generated on super-Hubble spatial scales, their power spectrum being determined by the fundamental principles of quantum field theory. By the end of inflation, they serve as primeval seeds for structure formation in the universe. At early stages of inflation, such perturbations break homogeneity and isotropy of the inflationary background. In the present paper, we perturbatively take into account this quasiclassical background inhomogeneity of the inflationary universe while considering the evolution of small-scale (sub-Hubble) quantum modes. As a result, the power spectrum of primordial perturbations develops statistical anisotropy, which can subsequently manifest itself in the large-scale structure and cosmic microwave background. The statistically anisotropic contribution to the primordial power spectrum is predicted to have almost scale-invariant form dominated by a quadrupole. Theoretical expectation of the magnitude of this anisotropy depends on the assumptions about the physics in the trans-Planckian region of wave numbers.

  13. Inflationary predictions in scalar-tensor DBI inflation

    SciTech Connect

    Weller, Joel M.; Bruck, Carsten van de; Mota, David F. E-mail: c.vandebruck@sheffield.ac.uk

    2012-06-01

    The scalar-tensor Dirac-Born-Infeld (DBI) inflation scenario provides a simple mechanism to reduce the large values of the boost factor associated with single field models with DBI action, whilst still being able to drive 60 efolds of inflation. Using a slow-roll approach, we obtain an analytical expression for the spectral index of the perturbations and, moreover, determine numerically the regions of the parameter space of the model capable of giving rise to a power spectrum with amplitude and spectral index within the observed bounds. We find that regions that exhibit significant DBI effects throughout the inflationary period can be discarded by virtue of a blue-tilted spectral index, however, there are a number of viable cases — associated with a more red-tilted spectral index — for which the boost factor is initially suppressed by the effect of the coupling between the fields, but increases later to moderate values.

  14. Einstein Inflationary Probe (EIP)

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2004-01-01

    I will discuss plans to develop a concept for the Einstein Inflation Probe: a mission to detect gravity waves from inflation via the unique signature they impart to the cosmic microwave background (CMB) polarization. A sensitive CMB polarization satellite may be the only way to probe physics at the grand-unified theory (GUT) scale, exceeding by 12 orders of magnitude the energies studied at the Large Hadron Collider. A detection of gravity waves would represent a remarkable confirmation of the inflationary paradigm and set the energy scale at which inflation occurred when the universe was a fraction of a second old. Even a strong upper limit to the gravity wave amplitude would be significant, ruling out many common models of inflation, and pointing to inflation occurring at much lower energy, if at all. Measuring gravity waves via the CMB polarization will be challenging. We will undertake a comprehensive study to identify the critical scientific requirements for the mission and their derived instrumental performance requirements. At the core of the study will be an assessment of what is scientifically and experimentally optimal within the scope and purpose of the Einstein Inflation Probe.

  15. Observing inflationary reheating.

    PubMed

    Martin, Jérôme; Ringeval, Christophe; Vennin, Vincent

    2015-02-27

    Reheating is the epoch which connects inflation to the subsequent hot big-bang phase. Conceptually very important, this era is, however, observationally poorly known. We show that the current Planck satellite measurements of the cosmic microwave background (CMB) anisotropies constrain the kinematic properties of the reheating era for most of the inflationary models. This result is obtained by deriving the marginalized posterior distributions of the reheating parameter for about 200 models of slow-roll inflation. Weighted by the statistical evidence of each model to explain the data, we show that the Planck 2013 measurements induce an average reduction of the posterior-to-prior volume by 40%. Making some additional assumptions on reheating, such as specifying a mean equation of state parameter, or focusing the analysis on peculiar scenarios, can enhance or reduce this constraint. Our study also indicates that the Bayesian evidence of a model can substantially be affected by the reheating properties. The precision of the current CMB data is therefore such that estimating the observational performance of a model now requires incorporating information about its reheating history. PMID:25768752

  16. Signs of analyticity in single-field inflation

    NASA Astrophysics Data System (ADS)

    Baumann, Daniel; Green, Daniel; Lee, Hayden; Porto, Rafael A.

    2016-01-01

    The analyticity of response functions and scattering amplitudes implies powerful relations between low-energy observables and the underlying short-distance dynamics. These "IR/UV" relations are rooted in basic physical principles, such as causality and unitarity. In this paper, we seek similar connections in inflation, relating cosmological observations to the physics responsible for the accelerated expansion. We assume that the inflationary theory is Lorentz invariant at short distances, but allow for nonrelativistic interactions and a nontrivial speed of propagation at low energies. Focusing on forward scattering, we derive a "sum rule" which equates a combination of low-energy parameters to an integral which is sensitive to the high-energy behavior of the theory. While for relativistic amplitudes unitarity is sufficient to prove positivity of the sum rule, this is not guaranteed in the nonrelativistic case. We discuss the conditions under which positivity still applies, and show that they are satisfied by all known UV completions of single-field inflation. In that case, we obtain a consistency condition for primordial non-Gaussianity, which constrains the size and the sign of the equilateral four-point function in terms of the amplitude of the three-point function. The resulting bound rules out about half of the parameter space that is still allowed by current observations. Finding a violation of our consistency condition would point toward less conventional theories of inflation, or violations of basic physical principles.

  17. Warm-Polytropic Inflationary Universe Model

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Houndjo, M. J. S.; Kamali, V.

    2013-07-01

    In this paper, we study warm inflationary universe models in the context of a polytropic gas. We derive the characteristics of this model in slow-roll approximation and develop our model in two cases: (1) for a constant dissipative parameter Γ; (2) Γ as a function of scalar field ϕ. In these cases, we will obtain exact solution for the scalar field and Hubble parameter. We will also obtain explicit expressions for the tensor-scalar ratio R, scalar spectrum index ns and its running αs in slow-roll approximation.

  18. Non-gaussian signatures of general inflationary trajectories

    NASA Astrophysics Data System (ADS)

    Horner, Jonathan S.; Contaldi, Carlo R.

    2014-09-01

    We carry out a numerical calculation of the bispectrum in generalised trajectories of canonical, single-field inflation. The trajectories are generated in the Hamilton-Jacobi (HJ) formalism based on Hubble Slow Roll (HSR) parameters. The calculation allows generally shape and scale dependent bispectra, or dimensionless fNL, in the out-of-slow-roll regime. The distributions of fNL for various shapes and HSR proposals are shown as an example of how this procedure can be used within the context of Monte Carlo exploration of inflationary trajectories. We also show how allowing out-of-slow-roll behaviour can lead to a bispectrum that is relatively large for equilateral shapes.

  19. Non-gaussian signatures of general inflationary trajectories

    SciTech Connect

    Horner, Jonathan S.; Contaldi, Carlo R. E-mail: c.contaldi@imperial.ac.uk

    2014-09-01

    We carry out a numerical calculation of the bispectrum in generalised trajectories of canonical, single-field inflation. The trajectories are generated in the Hamilton-Jacobi (HJ) formalism based on Hubble Slow Roll (HSR) parameters. The calculation allows generally shape and scale dependent bispectra, or dimensionless f{sub NL}, in the out-of-slow-roll regime. The distributions of f{sub NL} for various shapes and HSR proposals are shown as an example of how this procedure can be used within the context of Monte Carlo exploration of inflationary trajectories. We also show how allowing out-of-slow-roll behaviour can lead to a bispectrum that is relatively large for equilateral shapes.

  20. Higgs vacuum stability and inflationary dynamics after BICEP2 and PLANCK dust polarisation data

    SciTech Connect

    Bhattacharya, Kaushik; Chakrabortty, Joydeep; Das, Suratna; Mondal, Tanmoy E-mail: joydeep@iitk.ac.in E-mail: tanmoym@prl.res.in

    2014-12-01

    If the recent detection of B-mode polarization of the Cosmic Microwave Background by BICEP2 observations, withstand the test of time after the release of recent PLANCK dust polarisation data, then it would surprisingly put the inflationary scale near Grand Unification scale if one considers single-field inflationary models. On the other hand, Large Hadron Collider has observed the elusive Higgs particle whose presently observed mass can lead to electroweak vacuum instability at high scale (∼ O(10{sup 10}) GeV). In this article, we seek for a simple particle physics model which can simultaneously keep the vacuum of the theory stable and yield high-scale inflation successfully. To serve our purpose, we extend the Standard Model of particle physics with a U(1){sub B-L} gauged symmetry which spontaneously breaks down just above the inflationary scale. Such a scenario provides a constrained parameter space where both the issues of vacuum stability and high-scale inflation can be successfully accommodated. The threshold effect on the Higgs quartic coupling due to the presence of the heavy inflaton field plays an important role in keeping the electroweak vacuum stable. Furthermore, this scenario is also capable of reheating the universe at the end of inflation. Though the issues of Dark Matter and Dark Energy, which dominate the late-time evolution of our universe, cannot be addressed within this framework, this model successfully describes the early universe dynamics according to the Big Bang model.

  1. WMAP normalization of inflationary cosmologies

    SciTech Connect

    Liddle, Andrew R.; Parkinson, David; Mukherjee, Pia; Leach, Samuel M.

    2006-10-15

    We use the three-year WMAP observations to determine the normalization of the matter power spectrum in inflationary cosmologies. In this context, the quantity of interest is not the normalization marginalized over all parameters, but rather the normalization as a function of the inflationary parameters n{sub S} and r with marginalization over the remaining cosmological parameters. We compute this normalization and provide an accurate fitting function. The statistical uncertainty in the normalization is 3%, roughly half that achieved by COBE. We use the k-l relation for the standard cosmological model to identify the pivot scale for the WMAP normalization. We also quote the inflationary energy scale corresponding to the WMAP normalization.

  2. Quantum gravity extension of the inflationary scenario.

    PubMed

    Agullo, Ivan; Ashtekar, Abhay; Nelson, William

    2012-12-21

    Since the standard inflationary paradigm is based on quantum field theory on classical space-times, it excludes the Planck era. Using techniques from loop quantum gravity, the paradigm is extended to a self-consistent theory from the Planck scale to the onset of slow roll inflation, covering some 11 orders of magnitude in energy density and curvature. This preinflationary dynamics also opens a small window for novel effects, e.g., a source for non-Gaussianities, which could extend the reach of cosmological observations to the deep Planck regime of the early Universe. PMID:23368448

  3. Quantum gravity extension of the inflationary scenario.

    PubMed

    Agullo, Ivan; Ashtekar, Abhay; Nelson, William

    2012-12-21

    Since the standard inflationary paradigm is based on quantum field theory on classical space-times, it excludes the Planck era. Using techniques from loop quantum gravity, the paradigm is extended to a self-consistent theory from the Planck scale to the onset of slow roll inflation, covering some 11 orders of magnitude in energy density and curvature. This preinflationary dynamics also opens a small window for novel effects, e.g., a source for non-Gaussianities, which could extend the reach of cosmological observations to the deep Planck regime of the early Universe.

  4. Discrepancies between Observational Data and Theoretical Forecast in Single Field Slow Roll Inflation

    NASA Astrophysics Data System (ADS)

    Amorós, Jaume; de Haro, Jaume

    2016-09-01

    The PLANCK collaboration has determined, or greatly constrained, values for the spectral parameters of the CMB radiation, namely the spectral index n s , its running α s , the running of the running β s , using a growing body of measurements of CMB anisotropies by the Planck satellite and other missions. These values do not follow the hierarchy of sizes predicted by single field, slow roll inflationary theory, and are thus difficult to fit for such inflation models. In this work we present first a study of 49 single field, slow roll inflationary potentials in which we assess the likelyhood of these models fitting the spectral parameters to their currently most accurate determination given by the PLANCK collaboration. We check numerically with a MATLAB program the spectral parameters that each model can yield for a very broad, comprehensive list of possible parameter and field values. The comparison of spectral parameter values supported by the models with their determinations by the PLANCK collaboration leads to the conclusion that the data provided by PLANCK2015 TT+lowP and PLANCK2015 TT,TE,EE+lowP taking into account the running of the running disfavours 40 of the 49 models with confidence level at least 92.8 %. Next, we discuss the reliability of the current computations of these spectral parameters. We identify a bias in the method of determination of the spectral parameters by least residue parameter fitting (using MCMC or any other scheme) currently used to reconstruct the power spectrum of scalar perturbations. This bias can explain the observed contradiction between theory and observations. Its removal is computationally costly, but necessary in order to compare the forecasts of single field, slow roll theories with observations.

  5. Inflationary models with non-minimally derivative coupling

    NASA Astrophysics Data System (ADS)

    Yang, Nan; Fei, Qin; Gao, Qing; Gong, Yungui

    2016-10-01

    We derive the general formulae for the scalar and tensor spectral tilts to the second order for the inflationary models with non-minimally derivative coupling without taking the high friction limit. The non-minimally kinetic coupling to Einstein tensor brings the energy scale in the inflationary models down to be sub-Planckian. In the high friction limit, the Lyth bound is modified with an extra suppression factor, so that the field excursion of the inflaton is sub-Planckian. The inflationary models with non-minimally derivative coupling are more consistent with observations in the high friction limit. In particular, with the help of the non-minimally derivative coupling, the quartic power law potential is consistent with the observational constraint at 95% CL.

  6. Chaotic Inflationary Scenario in Bianchi Type i Spacetime

    NASA Astrophysics Data System (ADS)

    Bali, Raj

    2012-03-01

    Chaotic inflationary model of the early universe proposed by Linde7 is investigated in the frame work of Bianchi type I spacetime. To determine inflationary scenario, we assume that scale factor R3 = ABC ˜ e3Ht, V(φ ) = (1)/(2)m2φ ^2+(λ )/(n)φ ^n, λ being a constant, m the mass, V(ϕ) the potential energy density. It is shown that chaotic model leads to an inflationary phase which also helps in isotropization process. The Higg's field (ϕ) is initially large but decreases due to lapse of time in both cases. The assumption R3 = ABC e3Ht does not lead to FRW model immediately but for large values of t, it reduces to FRW model since shear σ = 0 in FRW model and shear σ ≠ 0 in Bianchi type I model. The physical aspects of the model are also discussed.

  7. Inflationary Scenario in Bianchi Type I Space-Time

    NASA Astrophysics Data System (ADS)

    Bali, Raj

    2011-10-01

    Inflationary scenario in Bianchi Type I space-time is discussed. To get the deterministic model of the universe, it has been considered that the energy-momentum tensor of particles ˜ T 4, almost vanishes in the course of expansion of universe and total energy-momentum tensor reduces to vacuum stress tensor. This leads to a˜ e Ht where a is scale factor and H the Hubble constant and effective potential V( φ)=constant where φ is Higg's field and n is a constant. The physical and geometrical aspects of the model in the context of inflationary scenario are also discussed.

  8. Particle production and reheating of the inflationary universe

    SciTech Connect

    Moss, Ian G.; Graham, Chris

    2008-12-15

    Thermal field theory is applied to particle production rates in inflationary models, leading to new results for catalyzed or two-stage decay, where massive fields act as decay channels for the production of light fields. A numerical investigation of the Boltzmann equation in an expanding universe shows that the particle distributions produced during small amplitude inflaton oscillations or even alongside slowly moving inflaton fields can thermalize.

  9. Pre-inflationary clues from String Theory?

    SciTech Connect

    Kitazawa, N.; Sagnotti, A. E-mail: sagnotti@sns.it

    2014-04-01

    ''Brane supersymmetry breaking'' occurs in String Theory when the only available combinations of D-branes and orientifolds are not mutually BPS and yet do not introduce tree-level tachyon instabilities. It is characterized by the emergence of a steep exponential potential, and thus by the absence of maximally symmetric vacua. The corresponding low-energy supergravity admits intriguing spatially-flat cosmological solutions where a scalar field is forced to climb up toward the steep potential after an initial singularity, and additional milder terms can inject an inflationary phase during the ensuing descent. We show that, in the resulting power spectra of scalar perturbations, an infrared suppression is typically followed by a pre-inflationary peak that reflects the end of the climbing phase and can lie well apart from the approximately scale invariant profile. A first look at WMAP9 raw data shows that, while the χ{sup 2} fits for the low-ℓ CMB angular power spectrum are clearly compatible with an almost scale invariant behavior, they display nonetheless an eye-catching preference for this type of setting within a perturbative string regime.

  10. A scenario for inflationary magnetogenesis without strong coupling problem

    SciTech Connect

    Tasinato, Gianmassimo

    2015-03-23

    Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.

  11. A scenario for inflationary magnetogenesis without strong coupling problem

    SciTech Connect

    Tasinato, Gianmassimo

    2015-03-01

    Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.

  12. From WMAP to Planck: Exact Reconstruction of Four- and Five-dimensional Inflationary Potential from High-precision Cosmic Microwave Background Measurements

    NASA Astrophysics Data System (ADS)

    Popa, L. A.; Mandolesi, N.; Caramete, A.; Burigana, C.

    2009-12-01

    We make a more general determination of the inflationary observables in the standard four-dimensional (4D) and five-dimensional (5D) single-field inflationary scenarios by the exact reconstruction of the dynamics of the inflation potential during the observable inflation with a minimal number of assumptions: the computation does not assume the slow-roll approximation and is valid in all regimes if the field is monotonically rolling down its potential. We address higher order effects in the standard and braneworld single-field inflation scenarios by fitting the Hubbble expansion rate and subsequently the inflationary potential directly to WMAP5+SN+BAO and Planck-like simulated data sets. Making use of the Hamilton-Jacobi formalism developed for the 5D single-field inflation model, we compute the scale dependence of the amplitudes of the scalar and tensor perturbations by integrating the exact mode equation. The solutions in 4D and 5D inflation scenarios differ through the dynamics of the background scalar field and the number of e-folds assumed to be compatible with the observational window of inflation. We analyze the implications of the theoretical uncertainty in the determination of the reheating temperature after inflation on the observable predictions of inflation and evaluate its impact on the degeneracy of the standard inflation consistency relation. We find that the detection of tensor perturbations and the theoretical uncertainties in the inflationary observable represents a significant challenge for the future Planck cosmic microwave background measurements: distinguishing between the observational signatures of the standard and braneworld single-field inflation scenarios. This work has been done in the frame of Planck Core Team activities.

  13. FROM WMAP TO PLANCK: EXACT RECONSTRUCTION OF FOUR- AND FIVE-DIMENSIONAL INFLATIONARY POTENTIAL FROM HIGH-PRECISION COSMIC MICROWAVE BACKGROUND MEASUREMENTS

    SciTech Connect

    Popa, L. A.; Caramete, A.; Mandolesi, N.; Burigana, C.

    2009-12-01

    We make a more general determination of the inflationary observables in the standard four-dimensional (4D) and five-dimensional (5D) single-field inflationary scenarios by the exact reconstruction of the dynamics of the inflation potential during the observable inflation with a minimal number of assumptions: the computation does not assume the slow-roll approximation and is valid in all regimes if the field is monotonically rolling down its potential. We address higher order effects in the standard and braneworld single-field inflation scenarios by fitting the Hubbble expansion rate and subsequently the inflationary potential directly to WMAP5+SN+BAO and Planck-like simulated data sets. Making use of the Hamilton-Jacobi formalism developed for the 5D single-field inflation model, we compute the scale dependence of the amplitudes of the scalar and tensor perturbations by integrating the exact mode equation. The solutions in 4D and 5D inflation scenarios differ through the dynamics of the background scalar field and the number of e-folds assumed to be compatible with the observational window of inflation. We analyze the implications of the theoretical uncertainty in the determination of the reheating temperature after inflation on the observable predictions of inflation and evaluate its impact on the degeneracy of the standard inflation consistency relation. We find that the detection of tensor perturbations and the theoretical uncertainties in the inflationary observable represents a significant challenge for the future Planck cosmic microwave background measurements: distinguishing between the observational signatures of the standard and braneworld single-field inflation scenarios. This work has been done in the frame of Planck Core Team activities.

  14. Single-layer high field dipole magnets

    SciTech Connect

    Vadim V. Kashikhin and Alexander V. Zlobin

    2001-07-30

    Fermilab is developing high field dipole magnets for post-LHC hadron colliders. Several designs with a nominal field of 10-12 T, coil bore size of 40-50 mm based on both shell-type and block-type coil geometry are currently under consideration. This paper presents a new approach to magnet design, based on simple and robust single-layer coils optimized for the maximum field, good field quality and minimum number of turns.

  15. (Loop) quantum gravity and the inflationary scenario

    NASA Astrophysics Data System (ADS)

    Bojowald, Martin

    2015-12-01

    Quantum gravity, as a fundamental theory of space-time, is expected to reveal how the universe may have started, perhaps during or before an inflationary epoch. It may then leave a potentially observable (but probably miniscule) trace in cosmic large-scale structures that seem to match well with predictions of inflation models. A systematic quest to derive such tiny effects using one approach, loop quantum gravity, has, however, led to unexpected obstacles. Such models remain incomplete, and it is not clear whether loop quantum gravity can be consistent as a full theory. But some surprising effects appear to be generic and would drastically alter our understanding of space-time at large density. These new high-curvature phenomena are a consequence of a widening gap between quantum gravity and ordinary quantum-field theory on a background. xml:lang="fr"

  16. Inflationary imprints on dark matter

    SciTech Connect

    Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo E-mail: tommi.tenkanen@helsinki.fi

    2015-11-01

    We show that dark matter abundance and the inflationary scale H could be intimately related. Standard Model extensions with Higgs mediated couplings to new physics typically contain extra scalars displaced from vacuum during inflation. If their coupling to Standard Model is weak, they will not thermalize and may easily constitute too much dark matter reminiscent to the moduli problem. As an example we consider Standard Model extended by a Z{sub 2} symmetric singlet s coupled to the Standard Model Higgs Φ via λ Φ{sup †}Φ s{sup 2}. Dark matter relic density is generated non-thermally for λ ∼< 10{sup −7}. We show that the dark matter yield crucially depends on the inflationary scale. For H∼ 10{sup 10} GeV we find that the singlet self-coupling and mass should lie in the regime λ{sub s}∼> 10{sup −9} and m{sub s}∼< 50 GeV to avoid dark matter overproduction.

  17. Inflationary perturbation theory is geometrical optics in phase space

    SciTech Connect

    Seery, David; Frazer, Jonathan; Mulryne, David J.; Ribeiro, Raquel H. E-mail: D.Mulryne@qmul.ac.uk E-mail: R.Ribeiro@damtp.cam.ac.uk

    2012-09-01

    A pressing problem in comparing inflationary models with observation is the accurate calculation of correlation functions. One approach is to evolve them using ordinary differential equations ({sup t}ransport equations{sup )}, analogous to the Schwinger-Dyson hierarchy of in-out quantum field theory. We extend this approach to the complete set of momentum space correlation functions. A formal solution can be obtained using raytracing techniques adapted from geometrical optics. We reformulate inflationary perturbation theory in this language, and show that raytracing reproduces the familiar 'δN' Taylor expansion. Our method produces ordinary differential equations which allow the Taylor coefficients to be computed efficiently. We use raytracing methods to express the gauge transformation between field fluctuations and the curvature perturbation, ζ, in geometrical terms. Using these results we give a compact expression for the nonlinear gauge-transform part of f{sub NL} in terms of the principal curvatures of uniform energy-density hypersurfaces in field space.

  18. A Jacobian elliptic single-field inflation

    NASA Astrophysics Data System (ADS)

    Villanueva, J. R.; Gallo, Emanuel

    2015-06-01

    In the scenario of single-field inflation, this field is described in terms of Jacobian elliptic functions. This approach provides, when constrained to particular cases, analytic solutions already known in the past, generalizing them to a bigger family of analytical solutions. The emergent cosmology is analyzed using the Hamilton-Jacobi approach and then the main results are contrasted with the recent measurements obtained from the Planck 2015 data.

  19. Inflationary magnetogenesis without the strong coupling problem

    SciTech Connect

    Ferreira, Ricardo J.Z.; Jain, Rajeev Kumar; Sloth, Martin S. E-mail: jain@cp3.dias.sdu.dk

    2013-10-01

    The simplest gauge invariant models of inflationary magnetogenesis are known to suffer from the problems of either large backreaction or strong coupling, which make it difficult to self-consistently achieve cosmic magnetic fields from inflation with a field strength larger than 10{sup −32}G today on the Mpc scale. Such a strength is insufficient to act as seed for the galactic dynamo effect, which requires a magnetic field larger than 10{sup −20}G. In this paper we analyze simple extensions of the minimal model, which avoid both the strong coupling and back reaction problems, in order to generate sufficiently large magnetic fields on the Mpc scale today. First we study the possibility that the coupling function which breaks the conformal invariance of electromagnetism is non-monotonic with sharp features. Subsequently, we consider the effect of lowering the energy scale of inflation jointly with a scenario of prolonged reheating where the universe is dominated by a stiff fluid for a short period after inflation. In the latter case, a systematic study shows upper bounds for the magnetic field strength today on the Mpc scale of 10{sup −13}G for low scale inflation and 10{sup −25}G for high scale inflation, thus improving on the previous result by 7-19 orders of magnitude. These results are consistent with the strong coupling and backreaction constraints.

  20. Loop Quantum Cosmology: holonomy corrections to inflationary models

    SciTech Connect

    Artymowski, Michal; Lalak, Zygmunt; Szulc, Lukasz

    2009-01-15

    In the recent years the quantization methods of Loop Quantum Gravity have been successfully applied to the homogeneous and isotropic Friedmann-Robertson-Walker space-times. The resulting theory, called Loop Quantum Cosmology (LQC), resolves the Big Bang singularity by replacing it with the Big Bounce. We argue that the LQC holonomy corrections generate also certain corrections to field theoretical inflationary scenarios. These corrections imply that in the LQC the effective sonic horizon becomes infinite at some point after the bounce and that the scale of the inflationary potential implied by the COBE normalisation increases. The evolution of scalar fields immediately after the Bounce becomes modified in an interesting way. We point out that one can use COBE normalisation to establish an upper bound on the quantum of length of LQG. LQC corrections other than the holonomy one are assumed to be subdominant.

  1. The reconstruction of inflationary potentials

    NASA Astrophysics Data System (ADS)

    Lin, Jianmang; Gao, Qing; Gong, Yungui

    2016-07-01

    The observational data on the anisotropy of the cosmic microwave background constraints the scalar spectral tilt ns and the tensor to scalar ratio r which depend on the first and second derivatives of the inflaton potential. The information can be used to reconstruct the inflaton potential in the polynomial form up to some orders. However, for some classes of potentials, ns and r behave as ns(N) and r(N) universally in terms of the number of e-folds N. The universal behaviour of ns(N) can be used to reconstruct a class of inflaton potentials. By parametrizing one of the parameters ns(N), ɛ(N) and φ(N), and fitting the parameters in the models to the observational data, we obtain the constraints on the parameters and reconstruct the classes of the inflationary models which include the chaotic inflation, T-model, hilltop inflation, s-dual inflation, natural inflation and R2 inflation.

  2. Single-field α-attractors

    SciTech Connect

    Linde, Andrei

    2015-05-05

    I describe a simple class of α-attractors, generalizing the single-field GL model of inflation in supergravity. The new class of models is defined for 0<α≲1, providing a good match to the present cosmological data. I also present a generalized version of these models which can describe not only inflation but also dark energy and supersymmetry breaking.

  3. Boson stars and oscillatons in an inflationary universe

    NASA Astrophysics Data System (ADS)

    Fodor, Gyula; Forgács, Péter; Mezei, Márk

    2010-08-01

    Spherically symmetric gravitationally bound, oscillating scalar lumps (boson stars and oscillatons) are considered in Einstein’s gravity coupled to massive scalar fields in 1+D-dimensional de Sitter-type inflationary space-times. We show that due to inflation bosons stars and oscillatons lose mass through scalar radiation, but at a rate that is exponentially small when the expansion rate is slow.

  4. Simple predictions from multifield inflationary models.

    PubMed

    Easther, Richard; Frazer, Jonathan; Peiris, Hiranya V; Price, Layne C

    2014-04-25

    We explore whether multifield inflationary models make unambiguous predictions for fundamental cosmological observables. Focusing on N-quadratic inflation, we numerically evaluate the full perturbation equations for models with 2, 3, and O(100) fields, using several distinct methods for specifying the initial values of the background fields. All scenarios are highly predictive, with the probability distribution functions of the cosmological observables becoming more sharply peaked as N increases. For N=100 fields, 95% of our Monte Carlo samples fall in the ranges ns∈(0.9455,0.9534), α∈(-9.741,-7.047)×10-4, r∈(0.1445,0.1449), and riso∈(0.02137,3.510)×10-3 for the spectral index, running, tensor-to-scalar ratio, and isocurvature-to-adiabatic ratio, respectively. The expected amplitude of isocurvature perturbations grows with N, raising the possibility that many-field models may be sensitive to postinflationary physics and suggesting new avenues for testing these scenarios.

  5. Inflationary potentials from the exact renormalisation group

    NASA Astrophysics Data System (ADS)

    Grozdanov, Sašo; Kraljić, David; Svanes, Eirik Eik

    2016-08-01

    We show that an inflationary slow-roll potential can be derived as an IR limit of the non-perturbative exact renormalisation group equation for a scalar field within the mean-field approximation. The result follows without having to specify a Lagrangian in the UV, which we take to be somewhere below the Planck scale to avoid discussing quantum gravity effects. We assume that the theory contains a scalar mode with suppressed coupling to other fields, and that higher derivative couplings are suppressed. In this framework the exact RG equation becomes a one-dimensional Schrödinger equation, which we solve. The effective IR potential is then dominated by the eigen-states of the RG Hamiltonian with the highest eigenvalues. We find that these potentials can generically give rise to slow-roll inflation, which is fully consistent with recent observations. As an example of how the proposed renormalisation group procedure works, we perform an explicit calculation in the ϕ4 theory in an appendix.

  6. Mode coupling evolution in arbitrary inflationary backgrounds

    SciTech Connect

    Bernardeau, Francis

    2011-02-01

    The evolution of high order correlation functions of a test scalar field in arbitrary inflationary backgrounds is computed. Whenever possible, exact results are derived from quantum field theory calculations. Taking advantage of the fact that such calculations can be mapped, for super-horizon scales, into those of a classical system, we express the expected correlation functions in terms of classical quantities, power spectra, Green functions, that can be easily computed in the long-wavelength limit. Explicit results are presented that extend those already known for a de Sitter background. In particular the expressions of the late time amplitude of bispectrum and trispectrum, as well as the whole high-order correlation structure, are given in terms of the expansion factor behavior. When compared to the case of a de Sitter background, power law inflation and chaotic inflation induced by a massive field are found to induce high order correlation functions the amplitudes of which are amplified by almost one order of magnitude. These results indicate that the dependence of the related non-Gaussian parameters — such as f{sub NL} — on the wave-modes is at percent level.

  7. Surprising phenomena in a rich new class of inflationary models

    SciTech Connect

    Vaudrevange, Pascal M.; Podolsky, Dmitry I.; Starkman, Glenn D. E-mail: podolsky@phys.cwru.edu

    2010-04-01

    We report on a new class of fast-roll inflationary models. In a huge part of its parameter space, inflationary perturbations exhibit quite unusual phenomena such as scalar and tensor modes freezing out at widely different times, as well as scalar modes reentering the horizon during inflation. One specific point in parameter space is characterized by extraordinary behavior of the scalar perturbations. Freeze-out of scalar perturbations as well as particle production at horizon crossing are absent. Also the behavior of the perturbations around this quasi-de Sitter background is dual to a quantum field theory in flat space-time. Finally, the form of the primordial power spectrum is determined by the interaction between different modes of scalar perturbations.

  8. Initial conditions for anisotropic extended-type inflationary universes

    SciTech Connect

    del Campo, S. )

    1992-05-15

    Recently, extended-type inflationary universe models have been proposed as an appealing approach for solving most of the cosmological puzzles'' that, in contrast with previous models, do not require a fine-tuning'' for the microphysical parameters present in the effective potential. These scenarios rest on a Brans-Dicke-type theory, where a nonminimal coupling of the form {ital f}({ital cphi}){ital R} is assumed, and it may or may not include a potential for the Brans-Dicke field. In its classical description, different extended inflationary universe scenarios are described, where anisotropy is taken into account. By using the Hartle-Hawking and the Vilenkin boundary conditions for the wave function of the Universe, the probability distributions for the initial states of these extended models in the case of a small anisotropy are determined and discussed.

  9. Galilean creation of the inflationary universe

    SciTech Connect

    Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun’ichi

    2015-07-13

    It has been pointed out that the null energy condition can be violated stably in some non-canonical scalar-field theories. This allows us to consider the Galilean Genesis scenario in which the universe starts expanding from Minkowski spacetime and hence is free from the initial singularity. We use this scenario to study the early-time completion of inflation, pushing forward the recent idea of Pirtskhalava et al. We present a generic form of the Lagrangian governing the background and perturbation dynamics in the Genesis phase, the subsequent inflationary phase, and the graceful exit from inflation, as opposed to employing the effective field theory approach. Our Lagrangian belongs to a more general class of scalar-tensor theories than the Horndeski theory and Gleyzes-Langlois-Piazza-Vernizzi generalization, but still has the same number of the propagating degrees of freedom, and thus can avoid Ostrogradski instabilities. We investigate the generation and evolution of primordial perturbations in this scenario and show that one can indeed construct a stable model of inflation preceded by (generalized) Galilean Genesis.

  10. Galilean creation of the inflationary universe

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun'ichi

    2015-07-01

    It has been pointed out that the null energy condition can be violated stably in some non-canonical scalar-field theories. This allows us to consider the Galilean Genesis scenario in which the universe starts expanding from Minkowski spacetime and hence is free from the initial singularity. We use this scenario to study the early-time completion of inflation, pushing forward the recent idea of Pirtskhalava et al. We present a generic form of the Lagrangian governing the background and perturbation dynamics in the Genesis phase, the subsequent inflationary phase, and the graceful exit from inflation, as opposed to employing the effective field theory approach. Our Lagrangian belongs to a more general class of scalar-tensor theories than the Horndeski theory and Gleyzes-Langlois-Piazza-Vernizzi generalization, but still has the same number of the propagating degrees of freedom, and thus can avoid Ostrogradski instabilities. We investigate the generation and evolution of primordial perturbations in this scenario and show that one can indeed construct a stable model of inflation preceded by (generalized) Galilean Genesis.

  11. Loops in inflationary correlation functions

    NASA Astrophysics Data System (ADS)

    Tanaka, Takahiro; Urakawa, Yuko

    2013-12-01

    We review the recent progress regarding the loop corrections to the correlation functions in the inflationary universe. A naive perturbation theory predicts that the loop corrections generated during inflation suffer from various infrared (IR) pathologies. Introducing an IR cutoff by hand is neither satisfactory nor enough to fix the problem of a secular growth, which may ruin the predictive power of inflation models if the inflation lasts sufficiently long. We discuss the origin of the IR divergences and explore the regularity conditions of the loop corrections for the adiabatic perturbation, the iso-curvature perturbation, and the tensor perturbation, in turn. These three kinds of perturbations have qualitative differences, but in discussing the IR regularity there is a feature common to all cases, which is the importance of the proper identification of observable quantities. Genuinely, observable quantities should respect the gauge invariance from the view point of a local observer. Interestingly, we find that the requirement of the IR regularity restricts the allowed quantum states.

  12. Inflationary power spectra with quantum holonomy corrections

    SciTech Connect

    Mielczarek, Jakub

    2014-03-01

    In this paper we study slow-roll inflation with holonomy corrections from loop quantum cosmology. It was previously shown that, in the Planck epoch, these corrections lead to such effects as singularity avoidance, metric signature change and a state of silence. Here, we consider holonomy corrections affecting the phase of cosmic inflation, which takes place away from the Planck epoch. Both tensor and scalar power spectra of primordial inflationary perturbations are computed up to the first order in slow-roll parameters and V/ρ{sub c}, where V is a potential of the scalar field and ρ{sub c} is a critical energy density (expected to be of the order of the Planck energy density). Possible normalizations of modes at short scales are discussed. In case the normalization is performed with use of the Wronskian condition applied to adiabatic vacuum, the tensor and scalar spectral indices are not quantum corrected in the leading order. However, by choosing an alternative method of normalization one can obtain quantum corrections in the leading order. Furthermore, we show that the holonomy-corrected equations of motion for tensor and scalar modes can be derived based on effective background metrics. This allows us to show that the classical Wronskian normalization condition is well defined for the cosmological perturbations with holonomy corrections.

  13. Short distance physics of the inflationary de Sitter universe

    SciTech Connect

    Ali, Ahmed Farag; Faizal, Mir; Khalil, Mohammed M. E-mail: f2mir@uwaterloo.ca

    2015-09-01

    In this work, we investigate inflationary cosmology using scalar field theory deformed by the generalized uncertainty principle (GUP) containing a linear momentum term. Apart from being consistent with the existence of a minimum measurable length scale, this GUP is also consistent with doubly special relativity and hence with the existence of maximum measurable momentum. We use this deformed scalar field theory to analyze the tensor and scalar mode equations in a de Sitter background, and to calculate modifications to the tensor-to-scalar ratio. Finally, we compare our results for the tensor-to-scalar ratio with the Planck data to constrain the minimum length parameter in the GUP.

  14. Inflationary magnetogenesis with broken local U(1) symmetry

    NASA Astrophysics Data System (ADS)

    Domènech, Guillem; Lin, Chunshan; Sasaki, Misao

    2016-07-01

    We point out that a successful inflationary magnetogenesis could be realised if we break the local U(1) gauge symmetry during inflation. The effective electric charge is fixed as a fundamental constant, which allows us to obtain an almost scale-invariant magnetic spectrum avoiding both the strong coupling and back reaction problems. We examine the corrections to the primordial curvature perturbation due to these stochastic electromagnetic fields and find that, at both linear and non-linear orders, the contributions from the electromagnetic field are negligible compared to those created from vacuum fluctuations. Finally, the U(1) gauge symmetry is restored at the end of inflation.

  15. Last stand of single small field inflation

    NASA Astrophysics Data System (ADS)

    Bramante, Joseph; Lehman, Landon; Martin, Adam; Downes, Sean

    2014-07-01

    By incorporating both the tensor-to-scalar ratio and the measured value of the spectral index, we set a bound on solo small field inflation of Δϕ/mPl≥1.00√r/0.1 . Unlike previous bounds which require monotonic ɛV, |ηV|<1, and 60 e-folds of inflation, the bound remains valid for nonmonotonic ɛV, |ηV|≳1, and for inflation which occurs only over the eight e-folds which have been observed on the cosmic microwave background. The negative value of the spectral index over the observed eight e-folds is what makes the bound strong; we illustrate this by surveying single field models and finding that for r ≳0.1 and eight e-folds of inflation, there is no simple potential which reproduces observed cosmic microwave background perturbations and remains sub-Planckian. Models that are sub-Planckian after eight e-folds must be patched together with a second epoch of inflation that fills out the remaining ˜50 e-folds. This second, post-cosmic microwave background epoch is characterized by extremely small ɛV and therefore an increasing scalar power spectrum. Using the fact that large power can overabundantly produce primordial black holes, we bound the maximum energy level of the second phase of inflation.

  16. Observational signatures of anisotropic inflationary models

    SciTech Connect

    Ohashi, Junko; Tsujikawa, Shinji; Soda, Jiro E-mail: jiro@phys.sci.kobe-u.ac.jp

    2013-12-01

    We study observational signatures of two classes of anisotropic inflationary models in which an inflaton field couples to (i) a vector kinetic term F{sub μν}F{sup μν} and (ii) a two-form kinetic term H{sub μνλ}H{sup μνλ}. We compute the corrections from the anisotropic sources to the power spectrum of gravitational waves as well as the two-point cross correlation between scalar and tensor perturbations. The signs of the anisotropic parameter g{sub *} are different depending on the vector and the two-form models, but the statistical anisotropies generally lead to a suppressed tensor-to-scalar ratio r and a smaller scalar spectral index n{sub s} in both models. In the light of the recent Planck bounds of n{sub s} and r, we place observational constraints on several different inflaton potentials such as those in chaotic and natural inflation in the presence of anisotropic interactions. In the two-form model we also find that there is no cross correlation between scalar and tensor perturbations, while in the vector model the cross correlation does not vanish. The non-linear estimator f{sub NL} of scalar non-Gaussianities in the two-form model is generally smaller than that in the vector model for the same orders of |g{sub *}|, so that the former is easier to be compatible with observational bounds of non-Gaussianities than the latter.

  17. Warm inflationary model in loop quantum cosmology

    SciTech Connect

    Herrera, Ramon

    2010-06-15

    A warm inflationary universe model in loop quantum cosmology is studied. In general we discuss the condition of inflation in this framework. By using a chaotic potential, V({phi}){proportional_to}{phi}{sup 2}, we develop a model where the dissipation coefficient {Gamma}={Gamma}{sub 0}=constant. We use recent astronomical observations for constraining the parameters appearing in our model.

  18. About the isocurvature tension between axion and high scale inflationary models

    NASA Astrophysics Data System (ADS)

    Estevez, M.; Santillán, O.

    2016-07-01

    The present work suggests that the isocurvature tension between axion and high energy inflationary scenarios may be avoided by considering a double field inflationary model involving the hidden Peccei-Quinn Higgs and the Standard Model one. Some terms in the lagrangian we propose explicitly violate the Peccei-Quinn symmetry but, at the present era, their effect is completely negligible. The resulting mechanism allows for a large value for the axion constant, of the order f_a˜ M_p, thus the axion isocurvature fluctuations are suppressed even when the scale of inflation H_{inf} is very high, of the order of H_{inf}˜ M_{gut}. This numerical value is typical in Higgs inflationary models. An analysis about topological defect formation in this scenario is also performed, and it is suggested that, under certain assumptions, their effect is not catastrophic from the cosmological point of view.

  19. Cosmic inflation in a landscape of heavy-fields

    NASA Astrophysics Data System (ADS)

    Céspedes, Sebastián; Palma, Gonzalo A.

    2013-10-01

    Heavy isocurvature fields may have a strong influence on the low energy dynamics of curvature perturbations during inflation, as long as the inflationary trajectory becomes non-geodesic in the multi-field target space (the landscape). If fields orthogonal to the inflationary trajectory are sufficiently heavy, one expects a reliable effective field theory describing the low energy dynamics of curvature perturbations, with self-interactions determined by the shape of the inflationary trajectory. Previous work analyzing the role of heavy-fields during inflation have mostly focused in the effects on curvature perturbations due to a single heavy-field. In this article we extend the results of these works by studying models of inflation in which curvature perturbations interact with two heavy-fields. We show that the second heavy-field (orthogonal to both tangent and normal directions of the inflationary trajectory) may significantly affect the evolution of curvature modes. We compute the effective field theory for the low energy curvature perturbations obtained by integrating out the two heavy-fields and show that the presence of the second heavy-field implies the existence of additional self-interactions not accounted for in the single heavy-field case. We conclude that future observations will be able to constrain the number of heavy fields interacting with curvature perturbations.

  20. Effects of viscous pressure on warm inflationary generalized cosmic Chaplygin gas model

    SciTech Connect

    Sharif, M.; Saleem, Rabia E-mail: rabiasaleem1988@yahoo.com

    2014-12-01

    This paper is devoted to study the effects of bulk viscous pressure on an inflationary generalized cosmic Chaplygin gas model using FRW background. The matter contents of the universe are assumed to be inflaton and imperfect fluid. We evaluate inflaton fields, potentials and entropy density for variable as well as constant dissipation and bulk viscous coefficients in weak as well as high dissipative regimes during intermediate era. In order to discuss inflationary perturbations, we evaluate entropy density, scalar (tensor) power spectra, their corresponding spectral indices, tensor-scalar ratio and running of spectral index in terms of inflaton which are constrained using recent Planck, WMAP7 and Bicep2 probes.

  1. Simple inflationary quintessential model. II. Power law potentials

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Amorós, Jaume; Pan, Supriya

    2016-09-01

    The present work is a sequel of our previous work [Phys. Rev. D 93, 084018 (2016)] which depicted a simple version of an inflationary quintessential model whose inflationary stage was described by a Higgs-type potential and the quintessential phase was responsible due to an exponential potential. Additionally, the model predicted a nonsingular universe in past which was geodesically past incomplete. Further, it was also found that the model is in agreement with the Planck 2013 data when running is allowed. But, this model provides a theoretical value of the running which is far smaller than the central value of the best fit in ns , r , αs≡d ns/d l n k parameter space where ns, r , αs respectively denote the spectral index, tensor-to-scalar ratio and the running of the spectral index associated with any inflationary model, and consequently to analyze the viability of the model one has to focus in the two-dimensional marginalized confidence level in the allowed domain of the plane (ns,r ) without taking into account the running. Unfortunately, such analysis shows that this model does not pass this test. However, in this sequel we propose a family of models runs by a single parameter α ∈[0 ,1 ] which proposes another "inflationary quintessential model" where the inflation and the quintessence regimes are respectively described by a power law potential and a cosmological constant. The model is also nonsingular although geodesically past incomplete as in the cited model. Moreover, the present one is found to be more simple compared to the previous model and it is in excellent agreement with the observational data. In fact, we note that, unlike the previous model, a large number of the models of this family with α ∈[0 ,1/2 ) match with both Planck 2013 and Planck 2015 data without allowing the running. Thus, the properties in the current family of models compared to its past companion justify its need for a better cosmological model with the successive

  2. Density perturbations and the cosmological constant from inflationary landscapes

    SciTech Connect

    Feldstein, Brian; Hall, Lawrence J.; Watari, Taizan

    2005-12-15

    An anthropic understanding of the cosmological constant requires that the vacuum energy at late time scans from one patch of the universe to another. If the vacuum energy during inflation also scans, the various patches of the universe acquire exponentially differing volumes. In a generic landscape with slow-roll inflation, we find that this gives a steeply varying probability distribution for the normalization of the primordial density perturbations, resulting in an exponentially small fraction of observers measuring the Cosmic Background Explorer value of 10{sup -5}. Inflationary landscapes should avoid this ''{sigma} problem,'' and we explore features that can allow them to do that. One possibility is that, prior to slow-roll inflation, the probability distribution for vacua is extremely sharply peaked, selecting essentially a single anthropically allowed vacuum. Such a selection could occur in theories of eternal inflation. A second possibility is that the inflationary landscape has a special property: although scanning leads to patches with volumes that differ exponentially, the value of the density perturbation does not vary under this scanning. This second case is preferred over the first, partly because a flat inflaton potential can result from anthropic selection, and partly because the anthropic selection of a small cosmological constant is more successful.

  3. Inflationary magnetogenesis and non-local actions: the conformal anomaly

    NASA Astrophysics Data System (ADS)

    Kamal El-Menoufi, Basem

    2016-02-01

    We discuss the possibility of successful magnetogenesis during inflation by employing the one-loop effective action of massless QED. The action is strictly non-local and results from the long distance fluctuations of massless charged particles present at the inflationary scale. Most importantly, it encodes the conformal anomaly of QED which is crucial to avoid the vacuum preservation in classical electromagnetism. In particular, we find a blue spectrum for the magnetic field with spectral index nB simeq 2 - αe where αe depends on both the number of e-folds during inflation as well as the coefficient of the one-loop beta function. In particular, the sign of the beta function has important bearing on the final result. A low reheating temperature is required for the present day magnetic field to be consistent with the lower bound inferred on the field in the intergalactic medium.

  4. Initial directional singularity in inflationary models

    NASA Astrophysics Data System (ADS)

    Fernández-Jambrina, L.

    2016-07-01

    In Haro, Amorós, and Pan [Phys. Rev. D 93, 084018 (2016)] a new cosmological model is proposed with no big bang singularity in the past, though past geodesically incomplete. This model starts with an inflationary era, follows with a stiff matter dominated period and evolves to accelerated expansion in an asymptotically de Sitter regime in a realistic fashion. The big bang singularity is replaced by a directional singularity. This singularity cannot be reached by comoving observers, since it would take them an infinite proper time lapse to go back to it. On the contrary, observers with nonzero linear momentum have the singularity at finite proper time in their past, though arbitrarily large. Hence, the time lapse from the initial singularity can be as long as desired, even infinity, depending on the linear momentum of the observer. This conclusion applies to similar inflationary models. Due to the interest of these models, we address here the properties of such singularities.

  5. Inflationary tensor perturbations after BICEP2.

    PubMed

    Caligiuri, Jerod; Kosowsky, Arthur

    2014-05-16

    The measurement of B-mode polarization of the cosmic microwave background at large angular scales by the BICEP experiment suggests a stochastic gravitational wave background from early-Universe inflation with a surprisingly large amplitude. The power spectrum of these tensor perturbations can be probed both with further measurements of the microwave background polarization at smaller scales and also directly via interferometry in space. We show that sufficiently sensitive high-resolution B-mode measurements will ultimately have the ability to test the inflationary consistency relation between the amplitude and spectrum of the tensor perturbations, confirming their inflationary origin. Additionally, a precise B-mode measurement of the tensor spectrum will predict the tensor amplitude on solar system scales to 20% accuracy for an exact power-law tensor spectrum, so a direct detection will then measure the running of the tensor spectral index to high precision.

  6. On the initial condition of inflationary fluctuations

    NASA Astrophysics Data System (ADS)

    Jiang, Hongliang; Wang, Yi; Zhou, Siyi

    2016-04-01

    It is usually assumed that the inflationary fluctuations start from the Bunch-Davies (BD) vacuum and the iε prescription is used when interactions are calculated. We show that those assumptions can be verified explicitly by calculating the loop corrections to the inflationary two-point and three-point correlation functions. Those loop corrections can be resummed to exponential factors, which suppress non-BD coefficients and behave as the iε factor for the case of the BD initial condition. A new technique of loop chain diagram resummation is developed for this purpose. For the non-BD initial conditions which is setup at finite time and has not fully decayed, explicit correction to the two-point and three-point correlation functions are calculated. Especially, non-Gaussianity in the folded limit is regularized due to the interactions.

  7. Inflation after COBE: Lectures on inflationary cosmology

    SciTech Connect

    Turner, M.S. . Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL )

    1992-01-01

    In these lectures I review the standard hot big-bang cosmology, emphasizing its successes, its shortcomings, and its major challenge-a detailed understanding of the formation of structure in the Universe. I then discuss the motivations for and the fundamentals of inflationary cosmology, particularly emphasizing the quantum origin of metric (density and gravity-wave) perturbations. Inflation addresses the shortcomings of the standard cosmology and provides the initial data'' for structure formation. I conclude by addressing the implications of inflation for structure formation, evaluating the various cold dark matter models in the light of the recent detection of temperature anisotropies in the cosmic background radiation by COBE. In the near term, the study of structure formation offers a powerful probe of inflation, as well as specific inflationary models.

  8. Inflation after COBE: Lectures on inflationary cosmology

    SciTech Connect

    Turner, M.S. |

    1992-12-31

    In these lectures I review the standard hot big-bang cosmology, emphasizing its successes, its shortcomings, and its major challenge-a detailed understanding of the formation of structure in the Universe. I then discuss the motivations for and the fundamentals of inflationary cosmology, particularly emphasizing the quantum origin of metric (density and gravity-wave) perturbations. Inflation addresses the shortcomings of the standard cosmology and provides the ``initial data`` for structure formation. I conclude by addressing the implications of inflation for structure formation, evaluating the various cold dark matter models in the light of the recent detection of temperature anisotropies in the cosmic background radiation by COBE. In the near term, the study of structure formation offers a powerful probe of inflation, as well as specific inflationary models.

  9. Inflationary tensor perturbations after BICEP2.

    PubMed

    Caligiuri, Jerod; Kosowsky, Arthur

    2014-05-16

    The measurement of B-mode polarization of the cosmic microwave background at large angular scales by the BICEP experiment suggests a stochastic gravitational wave background from early-Universe inflation with a surprisingly large amplitude. The power spectrum of these tensor perturbations can be probed both with further measurements of the microwave background polarization at smaller scales and also directly via interferometry in space. We show that sufficiently sensitive high-resolution B-mode measurements will ultimately have the ability to test the inflationary consistency relation between the amplitude and spectrum of the tensor perturbations, confirming their inflationary origin. Additionally, a precise B-mode measurement of the tensor spectrum will predict the tensor amplitude on solar system scales to 20% accuracy for an exact power-law tensor spectrum, so a direct detection will then measure the running of the tensor spectral index to high precision. PMID:24877926

  10. Prospects for Inflationary B-Mode Detection

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2011-01-01

    Measurements of the linear polarization of the cosmic microwave background provide a direct window into the physics of inflation. The experimental challenges are daunting: not only is the predicted signal faint compared to the photon noise limit, but it is hidden behind competing foregrounds from both local and cosmic sources. I will discuss the experimental response to these challenges and the prospects for eventual detection and characterization of the inflationary signal.

  11. Inflationary cosmology as a probe of primordial quantum mechanics

    SciTech Connect

    Valentini, Antony

    2010-09-15

    We show that inflationary cosmology may be used to test the statistical predictions of quantum theory at very short distances and at very early times. Hidden-variables theories, such as the pilot-wave theory of de Broglie and Bohm, allow the existence of vacuum states with nonstandard field fluctuations ('quantum nonequilibrium'). We show that inflationary expansion can transfer microscopic nonequilibrium to macroscopic scales, resulting in anomalous power spectra for the cosmic microwave background. The conclusions depend only weakly on the details of the de Broglie-Bohm dynamics. We discuss, in particular, the nonequilibrium breaking of scale invariance for the primordial (scalar) power spectrum. We also show how nonequilibrium can generate primordial perturbations with nonrandom phases and intermode correlations (primordial non-Gaussianity). We address the possibility of a low-power anomaly at large angular scales, and show how it might arise from a nonequilibrium suppression of quantum noise. Recent observations are used to set an approximate bound on violations of quantum theory in the early Universe.

  12. Bianchi Type VI0 Inflationary Cosmological Model in General Relativity

    NASA Astrophysics Data System (ADS)

    Bali, Raj; Poonia, Laxmi

    Bianchi Type VI0 inflationary cosmological model with flat potential in General Relativity, is investigated. To get the deterministic solution in terms of cosmic time t, we assume that σ (shear) is proportional to expansion (θ) where σ = {1 / {√ 3 }}t( {{{{A}{4} } / {A}} - {{{B}{4} } / {B}}}), θ = {{{A}{4} } / {A}} + {{{2B}{4} } / {B}}. Thus {{σ / θ } = constant}, leads to A = Bn where A and B are metric potentials and n is a constant. We find that spatial volume increases with time. Hence inflationary scenario exists in the model. Since {σ / θ } != 0 in general. Thus the model represents anisotropic universe throughout. However, if l = {1 / {{4k}}} then the model isotropizes. This result matches with astronomical observations. The model represents decelerating and late time acceleration which matches with recent astronomical observations Riess et al. [29], Perlmutter et al. [30]. The model has Point Type singularity at τ = {1 / α }{sin}{ - 1} ({{1 / {{2k}}}} ) (MacCallum [31]). The rate of Higg’s field (φ) decreases with time.

  13. Behavior of a Single Langmuir Probe in a Magnetic Field.

    ERIC Educational Resources Information Center

    Pytlinski, J. T.; And Others

    1978-01-01

    Describes an experiment to demonstrate the influence of a magnetic field on the behavior of a single Langmuir probe. The experiment introduces the student to magnetically supported plasma and particle behavior in a magnetic field. (GA)

  14. Inflationary paradigm after Planck 2013

    NASA Astrophysics Data System (ADS)

    Guth, Alan H.; Kaiser, David I.; Nomura, Yasunori

    2014-06-01

    Models of cosmic inflation posit an early phase of accelerated expansion of the universe, driven by the dynamics of one or more scalar fields in curved spacetime. Though detailed assumptions about fields and couplings vary across models, inflation makes specific, quantitative predictions for several observable quantities, such as the flatness parameter (Ωk = 1 - Ω) and the spectral tilt of primordial curvature perturbations (ns - 1 = dln ⁡PR / dln ⁡ k), among others-predictions that match the latest observations from the Planck satellite to very good precision. In the light of data from Planck as well as recent theoretical developments in the study of eternal inflation and the multiverse, we address recent criticisms of inflation by Ijjas, Steinhardt, and Loeb. We argue that their conclusions rest on several problematic assumptions, and we conclude that cosmic inflation is on a stronger footing than ever before.

  15. Inflationary attractor from tachyonic matter

    NASA Astrophysics Data System (ADS)

    Guo, Zong-Kuan; Piao, Yun-Song; Cai, Rong-Gen; Zhang, Yuan-Zhong

    2003-08-01

    We study the complete evolution of a flat and homogeneous universe dominated by tachyonic matter. We demonstrate the attractor behavior of tachyonic inflation using the Hamilton-Jacobi formalism. We also obtain analytical approximations for the trajectories of the tachyon field in different regions. The numerical calculation shows that an initial nonvanishing momentum does not prevent the onset of inflation. The slow-rolling solution is an attractor.

  16. The origin of density fluctuations in the 'new inflationary universe'

    NASA Technical Reports Server (NTRS)

    Turner, M. S.

    1983-01-01

    Cosmological mysteries which are not explained by the Big Bang hypothesis but may be approached by a revamped inflationary universe model are discussed. Attention is focused on the isotropy, the large-scale homogeneity, small-scale inhomogeneity, the oldness/flatness of the universe, and the baryon asymmetry. The universe is assumed to start in the lowest energy state, be initially dominated by false vacuum energy, enter a de Sitter phase, and then cross a barrier which is followed by the formation of fluctuation regions that lead to structure. The scalar fields (perturbation regions) experience quantum fluctuations which produce spontaneous symmetry breaking on a large scale. The scalar field value would need to be much greater than the expansion rate during the de Sitter epoch. A supersymmetric (flat) potential which satisfies the requirement, yields fluctuations of the right magnitude, and allows inflation to occur is described.

  17. Spectrum of perturbations in anisotropic inflationary universe with vector hair

    SciTech Connect

    Himmetoglu, Burak

    2010-03-01

    We study both the background evolution and cosmological perturbations of anisotropic inflationary models supported by coupled scalar and vector fields. The models we study preserve the U(1) gauge symmetry associated with the vector field, and therefore do not possess instabilities associated with longitudinal modes (which instead plague some recently proposed models of vector inflation and curvaton). We first intoduce a model in which the background anisotropy slowly decreases during inflation; we then confirm the stability of the background solution by studying the quadratic action for all the perturbations of the model. We then compute the spectrum of the h{sub ×} gravitational wave polarization. The spectrum we find breaks statistical isotropy at the largest scales and reduces to the standard nearly scale invariant form at small scales. We finally discuss the possible relevance of our results to the large scale CMB anomalies.

  18. Braneworld inflation with a complex scalar field from Planck 2015

    NASA Astrophysics Data System (ADS)

    Mounzi, Z.; Ferricha-Alami, M.; Chakir, H.; Bennai, M.

    2016-06-01

    We study an inflationary model with a single complex scalar field in the framework of braneworld Randall-Sundrum model type 2. From the scalar curvature perturbation constrained by the recent observation values, and for specific choice of parameters, we can reduce the values of the coupling constant to take the natural values, and we found that the phase theta θ of the inflation field can take the narrow interval. We have also derived all known inflationary parameters (ns, r and dns/d ln (k)), which are widely consistent with the recent Planck data for a suitable choice of brane tension value λ.

  19. Statistical anisotropy from inflationary magnetogenesis

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2016-02-01

    Provided the quantum fluctuations are amplified in the presence of a classical gauge field configuration the resulting curvature perturbations exhibit a mild statistical anisotropy which should be sufficiently weak not to conflict with current observational data. The curvature power spectra induced by weakly anisotropic initial states are computed here for the first time when the electric and the magnetic gauge couplings evolve at different rates as it happens, for instance, in the relativistic theory of van der Waals interactions. After recovering the results valid for coincident gauge couplings, the constraints imposed by the isotropy and the homogeneity of the initial states are discussed. The obtained bounds turn out to be more stringent than naively expected and cannot be ignored when discussing the underlying magnetogenesis scenarios.

  20. Particle decay in inflationary cosmology

    SciTech Connect

    Boyanovsky, D.; Vega, H.J. de

    2004-09-15

    We investigate the relaxation and decay of a particle during inflation by implementing the dynamical renormalization group. This investigation allows us to give a meaningful definition for the decay rate in an expanding universe. As a prelude to a more general scenario, the method is applied here to study the decay of a particle in de Sitter inflation via a trilinear coupling to massless conformally coupled particles, both for wavelengths much larger and much smaller than the Hubble radius. For superhorizon modes we find that the decay is of the form {eta}{sup {gamma}{sub 1}} with {eta} being conformal time and we give an explicit expression for {gamma}{sub 1} to leading order in the coupling which has a noteworthy interpretation in terms of the Hawking temperature of de Sitter space-time. We show that if the mass M of the decaying field is <

  1. On the running of the spectral index to all orders: a new model-dependent approach to constrain inflationary models

    NASA Astrophysics Data System (ADS)

    Zarei, Moslem

    2016-06-01

    In conventional model-independent approaches, the power spectrum of primordial perturbations is characterized by such free parameters as the spectral index, its running, the running of running, and the tensor-to-scalar ratio. In this work we show that, at least for simple inflationary potentials, one can find the primordial scalar and tensor power spectra exactly by resumming over all the running terms. In this model-dependent method, we expand the power spectra about the pivot scale to find the series terms as functions of the e-folding number for some single field models of inflation. Interestingly, for the viable models studied here, one can sum over all the terms and evaluate the exact form of the power spectra. This in turn gives more accurate parametrization of the specific models studied in this work. We finally compare our results with recent cosmic microwave background data to find that our new power spectra are in good agreement with the data.

  2. Production of scalar and tensor perturbations in inflationary models

    NASA Astrophysics Data System (ADS)

    Turner, Michael S.

    1993-10-01

    Scalar (density) and tensor (gravity-wave) perturbations provide the basis for the fundamental observable consequences of inflation, including CBR anisotropy and the formation of structure in the Universe. These perturbations are nearly scale invariant (Harrison-Zel'dovich spectrum), though a slight deviation from scale invariance (``tilt'') can have significant consequences for both CBR anisotropy and structure formation. In particular, a slightly tilted spectrum of scalar perturbations may improve the agreement of the cold dark matter scenario with the observational data. The amplitude and spectrum of the scalar and tensor perturbations depend upon the shape of the inflationary potential in the small interval where the scalar field responsible for inflation was between about 46 and 54 e-folds before the end of inflation. By expanding the inflationary potential in a Taylor series over this interval we show that the amplitudes of the perturbations and the power-law slopes of their spectra can be expressed in terms of the value of the potential 50 e-folds before the end of inflation, V50, its steepness x50≡mPlV'50/V50, and the rate of change of its steepness, x'50 (a prime denotes a derivative with respect to the scalar field). In addition, the power-law index of the cosmic-scale factor at this time is q50≡[dlnR/dlnt]50~=16π/x250. (Formally, our results for the perturbation amplitudes and spectral indices are accurate to lowest order in the deviation from scale invariance.) In general, the deviation from scale invariance is such to enhance fluctuations on large scales, and is only significant for steep potentials, large x50, or potentials with rapidly changing steepness, large x'50. In the latter case, only the spectrum of scalar perturbations is significantly tilted. Steep potentials are characterized by a large tensor-mode contribution to the quadrupole CBR temperature anisotropy, a similar tilt in both scalar and tensor perturbations, and a slower expansion

  3. Inflationary spacetimes are incomplete in past directions.

    PubMed

    Borde, Arvind; Guth, Alan H; Vilenkin, Alexander

    2003-04-18

    Many inflating spacetimes are likely to violate the weak energy condition, a key assumption of singularity theorems. Here we offer a simple kinematical argument, requiring no energy condition, that a cosmological model which is inflating--or just expanding sufficiently fast--must be incomplete in null and timelike past directions. Specifically, we obtain a bound on the integral of the Hubble parameter over a past-directed timelike or null geodesic. Thus inflationary models require physics other than inflation to describe the past boundary of the inflating region of spacetime.

  4. Evolution of perturbations in an inflationary universe

    NASA Technical Reports Server (NTRS)

    Frieman, J. A.; Will, C. M.

    1982-01-01

    The evolution of inhomogeneous density perturbations in a model of the very early universe that is dominated for a time by a constant energy density of a false quantum-mechanical vacuum is analyzed. During this period, the universe inflates exponentially and supercools exponentially, until a phase transition back to the true vacuum reheats the matter and radiation. Focus is on the physically measurable, coordinate-independent modes of inhomogeneous perturbations of this model and it is found that all modes either are constant or are exponentially damped during the inflationary era.

  5. Inflationary scenarios in Starobinsky model with higher order corrections

    SciTech Connect

    Artymowski, Michał; Lalak, Zygmunt; Lewicki, Marek

    2015-06-17

    We consider the Starobinsky inflation with a set of higher order corrections parametrised by two real coefficients λ{sub 1} ,λ{sub 2}. In the Einstein frame we have found a potential with the Starobinsky plateau, steep slope and possibly with an additional minimum, local maximum or a saddle point. We have identified three types of inflationary behaviour that may be generated in this model: i) inflation on the plateau, ii) at the local maximum (topological inflation), iii) at the saddle point. We have found limits on parameters λ{sub i} and initial conditions at the Planck scale which enable successful inflation and disable eternal inflation at the plateau. We have checked that the local minimum away from the GR vacuum is stable and that the field cannot leave it neither via quantum tunnelling nor via thermal corrections.

  6. Single event burnout sensitivity of embedded field effect transistors

    SciTech Connect

    Koga, R.; Crain, S.H.; Crawford, K.B.; Yu, P.; Gordon, M.J.

    1999-12-01

    Observations of single event burnout (SEB) in embedded field effect transistors are reported. Both SEB and other single event effects are presented for several pulse width modulation and high frequency devices. The microscope has been employed to locate and to investigate the damaged areas. A model of the damage mechanism based on the results so obtained is described.

  7. Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure on the brane

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Kamali, V.

    2013-03-01

    We study warm-viscous inflationary universe model on the brane, in a tachyon field theory. We obtain the general conditions which are required for this model to be realizable. In longitudinal gauge, the primoradial perturbation parameters are found in great details, using slow-roll and quasi-stable approximations. The general expressions of the tensor-to-scalar ratio, scalar spectral index and its running are found. We derive the characteristics of the inflationary universe model by using an effective exponential potential in two cases: 1 — dissipative parameter Γ and bulk viscous parameter ζ are constant parameters. 2 — dissipative parameter as a function of tachyon field ϕ and bulk viscous parameter as a function of radiation-matter mixture energy density ρ. The parameters of the model are restricted by recent observational data from the seven-year Wilkinson microwave anisotropy probe (WMAP7).

  8. Space-time correlations in inflationary spectra: A wave-packet analysis

    SciTech Connect

    Campo, David; Parentani, Renaud

    2004-11-15

    The inflationary mechanism of mode amplification predicts that the state of each mode with a given wave vector is correlated to that of its partner mode with the opposite vector. This implies nonlocal correlations which leave their imprint on temperature anisotropies in the cosmic microwave background. Their spatial properties are best revealed by using local wave packets. This analysis shows that all density fluctuations giving rise to the large scale structures originate in pairs which are born near the reheating. In fact each local density fluctuation is paired with an oppositely moving partner with opposite amplitude. To obtain these results we first apply a 'wave packet transformation' with respect to one argument of the two-point correlation function. A finer understanding of the correlations is then reached by making use of coherent states. A knowledge of the velocity field is required to extract the contribution of a single pair of wave packets. Otherwise, there is a two-folded degeneracy which gives three aligned wave packets arising from two pairs. The applicability of these methods to observational data is briefly discussed.

  9. Non-Gaussianities and the stimulated creation of quanta in the inflationary universe

    SciTech Connect

    Agullo, Ivan; Parker, Leonard

    2011-03-15

    Cosmological inflation generates a spectrum of density perturbations that can seed the cosmic structures we observe today. These perturbations are usually computed as the result of the gravitationally induced spontaneous creation of perturbations from an initial vacuum state. In this paper, we compute the perturbations arising from gravitationally induced stimulated creation when perturbations are already present in the initial state. The effect of these initial perturbations is not diluted by inflation and survives to its end, and beyond. We consider a generic statistical density operator {rho} describing an initial mixed state that includes probabilities for nonzero numbers of scalar perturbations to be present at early times during inflation. We analyze the primordial bispectrum for general configurations of the three different momentum vectors in its arguments. We find that the initial presence of quanta can significantly enhance non-Gaussianities in the so-called squeezed limit. Our results show that an observation of non-Gaussianities in the squeezed limit can occur for single-field inflation when the state in the very early inflationary Universe is not the vacuum, but instead contains early-time perturbations. Valuable information about the initial state can then be obtained from observations of those non-Gaussianities.

  10. Generalized pole inflation: Hilltop, natural, and chaotic inflationary attractors

    NASA Astrophysics Data System (ADS)

    Terada, Takahiro

    2016-09-01

    A reformulation of inflationary model analyses appeared recently, in which inflationary observables are determined by the structure of a pole in the inflaton kinetic term rather than the shape of the inflaton potential. We comprehensively study this framework with an arbitrary order of the pole taking into account possible additional poles in the kinetic term or in the potential. Depending on the setup, the canonical potential becomes the form of hilltop or plateau models, variants of natural inflation, power-law inflation, or monomial/polynomial chaotic inflation. We demonstrate attractor behaviors of these models and compute corrections from the additional poles to the inflationary observables.

  11. Simple brane-world inflationary models — An update

    NASA Astrophysics Data System (ADS)

    Okada, Nobuchika; Okada, Satomi

    2016-05-01

    In the light of the Planck 2015 results, we update simple inflationary models based on the quadratic, quartic, Higgs and Coleman-Weinberg potentials in the context of the Randall-Sundrum brane-world cosmology. Brane-world cosmological effect alters the inflationary predictions of the spectral index (ns) and the tensor-to-scalar ratio (r) from those obtained in the standard cosmology. In particular, the tensor-to-scalar ratio is enhanced in the presence of the 5th dimension. In order to maintain the consistency with the Planck 2015 results for the inflationary predictions in the standard cosmology, we find a lower bound on the five-dimensional Planck mass (M5). On the other hand, the inflationary predictions laying outside of the Planck allowed region can be pushed into the allowed region by the brane-world cosmological effect with a suitable choice of M5.

  12. Single-Flavor Color Superconductivity in a Magnetic Field

    SciTech Connect

    Feng Bo; Hou Defu; Wu Pingping; Ren Haicang

    2010-07-23

    We investigate the single-flavor color superconductivity in a magnetic field. Because of the absence of the electromagnetic Meissner effect, forming a nonspherical CSC phase, polar, A, or planar, does not cost energy of excluding magnetic flux. We found that these nonspherical phases may be reached via a sequence of first order phase transitions under the typical quark density and magnetic field inside a neutron star.

  13. Inflationary gravitational waves and the evolution of the early universe

    SciTech Connect

    Jinno, Ryusuke; Moroi, Takeo; Nakayama, Kazunori E-mail: moroi@hep-th.phys.s.u-tokyo.ac.jp

    2014-01-01

    We study the effects of various phenomena which may have happened in the early universe on the spectrum of inflationary gravitational waves. The phenomena include phase transitions, entropy productions from non-relativistic matter, the production of dark radiation, and decoupling of dark matter/radiation from thermal bath. These events can create several characteristic signatures in the inflationary gravitational wave spectrum, which may be direct probes of the history of the early universe and the nature of high-energy physics.

  14. Transient current electric field profiling of single crystal CVD diamond

    NASA Astrophysics Data System (ADS)

    Isberg, J.; Gabrysch, M.; Tajani, A.; Twitchen, D. J.

    2006-08-01

    The transient current technique (TCT) has been adapted for profiling of the electric field distribution in intrinsic single crystal CVD diamond. It was found that successive hole transits do not appreciably affect the electric field distribution within the sample. Transits of holes can therefore be used to probe the electric field distribution and also the distribution of trapped charge. Electron transits, on the other hand, cause an accumulation of negative charge in the sample. Illumination with blue or green light was shown to lead to accumulation of positive charge. Low concentrations of trapped charge can be detected in diamond using TCT, corresponding to an ionized impurity concentration below N = 1010 cm-3.

  15. Computation of inflationary cosmological perturbations in chaotic inflationary scenarios using the phase-integral method

    SciTech Connect

    Rojas, Clara

    2009-05-15

    The phase-integral approximation devised by Froeman and Froeman is used for computing cosmological perturbations in the quadratic chaotic inflationary model. The phase-integral formulas for the scalar and tensor power spectra are explicitly obtained up to fifth order of the phase-integral approximation. We show that the phase integral gives a very good approximation for the shape of the power spectra associated with scalar and tensor perturbations as well as the spectral indices. We find that the accuracy of the phase-integral approximation compares favorably with the numerical results and those obtained using the slow-roll and uniform-approximation methods.

  16. Taming the runaway problem of inflationary landscapes

    SciTech Connect

    Hall, Lawrence J.; Watari, Taizan; Yanagida, T.T.

    2006-05-15

    A wide variety of vacua, and their cosmological realization, may provide an explanation for the apparently anthropic choices of some parameters of particle physics and cosmology. If the probability on various parameters is weighted by volume, a flat potential for slow-roll inflation is also naturally understood, since the flatter the potential the larger the volume of the subuniverse. However, such inflationary landscapes have a serious problem, predicting an environment that makes it exponentially hard for observers to exist and giving an exponentially small probability for a moderate universe like ours. A general solution to this problem is proposed, and is illustrated in the context of inflaton decay and leptogenesis, leading to an upper bound on the reheating temperature in our subuniverse. In a particular scenario of chaotic inflation and nonthermal leptogenesis, predictions can be made for the size of CP violating phases, the rate of neutrinoless double beta decay and, in the case of theories with gauge-mediated weak-scale supersymmetry, for the fundamental scale of supersymmetry breaking.

  17. Taming the Runaway Problem of Inflationary Landscapes

    SciTech Connect

    Hall, Lawrence J.; Watari, Taizan; Yanagida, T. T.

    2006-03-15

    A wide variety of vacua, and their cosmological realization, may provide an explanation for the apparently anthropic choices of some parameters of particle physics and cosmology. If the probability on various parameters is weighted by volume, a flat potential for slow-roll inflation is also naturally understood, since the flatter the potential the larger the volume of the sub-universe. However, such inflationary landscapes have a serious problem, predicting an environment that makes it exponentially hard for observers to exist and giving an exponentially small probability for a moderate universe like ours. A general solution to this problem is proposed, and is illustrated in the context of inflaton decay and leptogenesis, leading to an upper bound on the reheating temperature in our sub-universe. In a particular scenario of chaotic inflation and non-thermal leptogenesis, predictions can be made for the size of CP violating phases, the rate of neutrinoless double beta decay and, in the case of theories with gauge-mediated weak scale supersymmetry, for the fundamental scale of supersymmetry breaking.

  18. Field emission from single-crystalline HfC nanowires

    SciTech Connect

    Yuan, Jinshi; Tang, Jie; Zhang Han; Shinya, Norio; Nakajima, Kiyomi; Qin, Lu-Chang

    2012-03-12

    Single HfC nanowire field emitter/electrode structures have been fabricated using nano-assembling and electron beam induced deposition. Field ion microscopy has been applied to study the atomic arrangement of facets formed on a field evaporation-modified HfC nanowire tip. Field evaporation and crystal form studies suggest that the {l_brace}111{r_brace} and {l_brace}110{r_brace} crystal planes have lower work functions, while the {l_brace}100{r_brace}, {l_brace}210{r_brace}, and {l_brace}311{r_brace} planes have higher work functions. Field emission measurement permits us to obtain that the work function of the {l_brace}111{r_brace} crystal plane is about 3.4 eV.

  19. TOPICAL REVIEW: Organic field-effect transistors using single crystals

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tatsuo; Takeya, Jun

    2009-04-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm2 Vs-1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  20. Radiation burst from a single {gamma}-photon field

    SciTech Connect

    Shakhmuratov, R. N.; Vagizov, F.; Kocharovskaya, O.

    2011-10-15

    The radiation burst from a single {gamma}-photon field interacting with a dense resonant absorber is studied theoretically and experimentally. This effect was discovered for the fist time by P. Helisto et al.[Phys. Rev. Lett. 66, 2037 (1991)] and it was named the ''gamma echo''. The echo is generated by a 180 Degree-Sign phase shift of the incident radiation field, attained by an abrupt change of the position of the absorber with respect to the radiation source during the coherence time of the photon wave packet. Three distinguishing cases of the gamma echo are considered; i.e., the photon is in exact resonance with the absorber, close to resonance (on the slope of the absorption line), and far from resonance (on the far wings of the resonance line). In resonance the amplitude of the radiation burst is two times larger than the amplitude of the input radiation field just before its phase shift. This burst was explained by Helisto et al. as a result of constructive interference of the coherently scattered field with the phase-shifted input field, both having almost the same amplitude. We found that out of resonance the scattered radiation field acquires an additional component with almost the same amplitude as the amplitude of the incident radiation field. The phase of the additional field depends on the optical thickness of the absorber and resonant detuning. Far from resonance this field interferes destructively with the phase-shifted incident radiation field and radiation quenching is observed. Close to resonance the three fields interfere constructively and the amplitude of the radiation burst is three times larger than the amplitude of the input radiation field.

  1. Nonisotropy in the CMB power spectrum in single field inflation

    SciTech Connect

    Donoghue, John F.; Dutta, Koushik; Ross, Andreas

    2009-07-15

    Contaldi et al.[C. R. Contaldi, M. Peloso, L. Kofman, and A. Linde, J. Cosmol. Astropart. Phys. 07 (2003) 002] have suggested that an initial period of kinetic energy domination in single field inflation may explain the lack of CMB power at large angular scales. We note that in this situation it is natural that there also be a spatial gradient in the initial value of the inflaton field, and that this can provide a spatial asymmetry in the observed CMB power spectrum, manifest at low values of l. We investigate the nature of this asymmetry and comment on its relation to possible anomalies at low l.

  2. Single-field inflation à la generalized Chaplygin gas

    SciTech Connect

    Campo, Sergio del

    2013-11-01

    In the simplest scenario for inflation, i.e. in the single-field inflation, it is presented an inflaton field with properties equivalent to a generalized Chaplygin gas. Their study is performed using the Hamilton-Jacobi approach to cosmology. The main results are contrasted with the measurements recently released by the Planck data, combined with the WMAP large-angle polarization. If the measurements released by Planck for the scalar spectral index together with its running are taken into account it is found a value for the α-parameter associated to the generalized Chaplygin gas given by α = 0.2578±0.0009.

  3. Optimal bispectrum constraints on single-field models of inflation

    SciTech Connect

    Anderson, Gemma J.; Regan, Donough; Seery, David E-mail: D.Regan@sussex.ac.uk

    2014-07-01

    We use WMAP 9-year bispectrum data to constrain the free parameters of an 'effective field theory' describing fluctuations in single-field inflation. The Lagrangian of the theory contains a finite number of operators associated with unknown mass scales. Each operator produces a fixed bispectrum shape, which we decompose into partial waves in order to construct a likelihood function. Based on this likelihood we are able to constrain four linearly independent combinations of the mass scales. As an example of our framework we specialize our results to the case of 'Dirac-Born-Infeld' and 'ghost' inflation and obtain the posterior probability for each model, which in Bayesian schemes is a useful tool for model comparison. Our results suggest that DBI-like models with two or more free parameters are disfavoured by the data by comparison with single-parameter models in the same class.

  4. Structure of correlation functions in single-field inflation

    SciTech Connect

    Shandera, Sarah

    2009-06-15

    Many statistics available to constrain non-Gaussianity from inflation are simplest to use under the assumption that the curvature correlation functions are hierarchical. That is, if the n-point function is proportional to the (n-1) power of the two-point function amplitude and the fluctuations are small, the probability distribution can be approximated by expanding around a Gaussian in moments. However, single-field inflation with higher derivative interactions has a second small number, the sound speed, that appears in the problem when non-Gaussianity is significant and changes the scaling of correlation functions. Here we examine the structure of correlation functions in the most general single scalar field action with higher derivatives, formalizing the conditions under which the fluctuations can be expanded around a Gaussian distribution. We comment about the special case of the Dirac-Born-Infeld action.

  5. Single shot line-field optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Hao; Schill, Alexander; Singh, Manmohan; Wu, Chen; Li, Jiasong; Han, Zhaolong; Raghunathan, Raksha; Kazemi, Tina; Nair, Achuth; Hsu, Thomas; Larin, Kirill V.

    2016-03-01

    Elastic wave imaging optical coherence elastography (EWI-OCE) is an emerging technique that can quantify local biomechanical properties of tissues. However, long acquisition times make this technique unfeasible for clinical use. Here, we demonstrate a noncontact single shot line-field OCE technique using a line-field interferometer and an air-pulse delivery system. The spatial-temporal elastic wave propagation profile was acquired in a single shot and used to quantify the elastic wave group velocity in tissue. Results on tissue-mimicking phantoms and chicken breast muscle agreed well with mechanical compression testing, demonstrating that the presented method can effectively reduce the OCE acquisition time to a few milliseconds in biological application.

  6. Lattice calculation of non-gaussian density perturbations from the massless preheating inflationary model.

    PubMed

    Chambers, Alex; Rajantie, Arttu

    2008-02-01

    If light scalar fields are present at the end of inflation, their nonequilibrium dynamics such as parametric resonance or a phase transition can produce non-Gaussian density perturbations. We show how these perturbations can be calculated using nonlinear lattice field theory simulations and the separate universe approximation. In the massless preheating model, we find that some parameter values are excluded while others lead to acceptable but observable levels of non-Gaussianity. This shows that preheating can be an important factor in assessing the viability of inflationary models.

  7. Lattice calculation of non-gaussian density perturbations from the massless preheating inflationary model.

    PubMed

    Chambers, Alex; Rajantie, Arttu

    2008-02-01

    If light scalar fields are present at the end of inflation, their nonequilibrium dynamics such as parametric resonance or a phase transition can produce non-Gaussian density perturbations. We show how these perturbations can be calculated using nonlinear lattice field theory simulations and the separate universe approximation. In the massless preheating model, we find that some parameter values are excluded while others lead to acceptable but observable levels of non-Gaussianity. This shows that preheating can be an important factor in assessing the viability of inflationary models. PMID:18352255

  8. On the divergences of inflationary superhorizon perturbations

    SciTech Connect

    Enqvist, K; Nurmi, S; Podolsky, D; Rigopoulos, G I E-mail: sami.nurmi@helsinki.fi E-mail: gerasimos.rigopoulos@helsinki.fi

    2008-04-15

    We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that, within the stochastic framework, they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the {Delta}N formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two-and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for the infrared cutoff would, of course, be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization-group-invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point-independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.

  9. Single-point inversion of the coronal magnetic field

    SciTech Connect

    Plowman, Joseph

    2014-09-01

    The Fe XIII 10747 and 10798 Å lines observed in the solar corona are sensitive to the coronal magnetic field in such a way that, in principle, the full vector field at a point on the line of sight can be inferred from their combined polarization signals. This paper presents analytical inversion formulae for the field parameters and analyzes the uncertainty of magnetic field measurements made from such observations, assuming emission dominated by a single region along the line of sight. We consider the case of the current Coronal Multi-channel Polarimeter (CoMP) instrument as well as the future Coronal Solar Magnetism Observatory (COSMO) and Advanced Technology Solar Telescope (ATST) instruments. Uncertainties are estimated with a direct analytic inverse and with a Markov Chain Monte Carlo algorithm. We find that (in effect) two components of the vector field can be recovered with CoMP, and well recovered with COSMO or ATST, but that the third component can only be recovered when the solar magnetic field is strong and optimally oriented.

  10. Ultrasensitive detection of magnetic field using a single artificial atom

    NASA Astrophysics Data System (ADS)

    Bal, Mustafa; Deng, Chunqing; Orgiazzi, Jean-Luc; Ong, Florian; Lupascu, Adrian

    2013-03-01

    We employ a single artificial atom to implement ultrasensitive magnetic field detection. The artificial atom is a persistent current qubit with a size in the micron range, which couples very strongly to magnetic field, with an equivalent magnetic moment of 3 . 8 ×105 Bohr magnetons. Sensitive detection is realized by employing the field-dependent coherent evolution of the artificial atom and high-fidelity quantum measurement, in a way similar to atomic magnetometry. Using an operation mode based on spin-echo manipulation and qubit reset by energy relaxation, we demonstrate a magnetic field detection sensitivity of 7 . 5 pT /√{ Hz } for an AC field at 10 MHz . The sensitivity is further improved if the reset step is eliminated and the correlation of consecutive projective measurements is used instead, reaching 3 . 3 pT /√{ Hz } . The intrinsic sensitivity of this method to AC fields at frequencies in the 100 kHz - 10 MHz range compares favourably with DC-SQUIDs and atomic magnetometers of equivalent spatial resolution. More than an order of magnitude increase in sensitivity is possible using feasible improvements of qubit design and readout. This result illustrates the potential of artificial quantum systems for sensitive detection and related applications.

  11. High-scale axions without isocurvature from inflationary dynamics

    DOE PAGES

    Kearney, John; Orlofsky, Nicholas; Pierce, Aaron

    2016-05-31

    Observable primordial tensor modes in the cosmic microwave background (CMB) would point to a high scale of inflation HI. If the scale of Peccei-Quinn (PQ) breaking fa is greater than HI/2π, CMB constraints on isocurvature naively rule out QCD axion dark matter. This assumes the potential of the axion is unmodified during inflation. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed. We find that models that rely solely on a larger PQ-breaking scale during inflation fI require either late-time dilution of the axion abundance or highly super-Planckian fI that somehowmore » does not dominate the inflationary energy density. Models that have enhanced explicit breaking of the PQ symmetry during inflation may allow fa close to the Planck scale. Lastly, avoiding disruption of inflationary dynamics provides important limits on the parameter space.« less

  12. Relaxation models for single helical reversed field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Paccagnella, Roberto

    2016-09-01

    In this paper, a relaxation theory for plasmas where a single dominant mode is present [Bhattacharjee et al., Phys. Rev. Lett. 45, 347 (1980)], is revisited. The solutions of a related eigenvalue problem are numerically calculated and discussed. Although these solutions can reproduce well, the magnetic fields measured in experiments, there is no way within the theory to determine the dominant mode, whose pitch is a free parameter in the model. To find the preferred helical perturbation, a procedure is proposed that minimizes the "distance" of the relaxed state from a state which is constructed as a two region generalization of the Taylor's relaxation model [Taylor, Phys. Rev. Lett. 33, 1139 (1974); Rev. Mod. Phys. 58, 751 (1986)] and that allows current discontinuities. It is found that this comparison is able to predict the observed scaling with the aspect ratio and reversal parameter for the dominant mode in the Single Helical states. The aspect ratio scaling alone is discussed in a previous paper [Paccagnella, Nucl. Fusion 56, 046010 (2016)] in terms of the efficient response of a toroidal shell to specific modes (leaving a sign undetermined), showing that the ideal wall boundary condition, a key ingredient in relaxation theories, is particularly well matched for them. Therefore, the present paper altogether [Paccagnella, Nucl. Fusion 56, 046010 (2016)] can give a new and satisfactory explanation of some robust and reproducible experimental facts observed in the Single Helical Reversed Field Pinch plasmas and never explained before.

  13. Cosmological constraints on nonstandard inflationary quantum collapse models

    NASA Astrophysics Data System (ADS)

    Landau, Susana J.; Scóccola, Claudia G.; Sudarsky, Daniel

    2012-06-01

    We briefly review an important shortcoming—unearthed in previous works—of the standard version of the inflationary model for the emergence of the seeds of cosmic structure. We consider here some consequences emerging from a proposal inspired on ideas of Penrose and Diósi [R. Penrose, The Emperor’s New Mind. Concerning Computers, Minds and Laws of Physics (1989).][R. Penrose, in Physics meets Philosophy at the Planck Scale: Contemporary Theories in Quantum Gravity, edited by C. Callendar and N. Huggett (2001), pp. 290-+.][L. Diósi, Phys. Lett. A 120, 377 (1987).PYLAAG0375-960110.1016/0375-9601(87)90681-5][L. Diósi, Phys. Rev. A 40, 1165 (1989).PLRAAN0556-279110.1103/PhysRevA.40.1165] about a quantum-gravity induced reduction of the wave function, which has been put forward to address the shortcomings, arguing that its effect on the inflaton field is what can lead to the emergence of the seeds of cosmic structure [A. Perez, H. Sahlmann, and D. Sudarsky, Classical Quantum Gravity 23, 2317 (2006).CQGRDG0264-938110.1088/0264-9381/23/7/008]. The proposal leads to a deviation of the primordial spectrum from the scale-invariant Harrison-Zel’dovich one, and consequently, to a different CMB power spectrum. We perform statistical analyses to test two quantum collapse schemes with recent data from the CMB, including the 7-yr release of WMAP and the matter power spectrum measured using LRGs by the Sloan Digital Sky Survey. Results from the statistical analyses indicate that several collapse models are compatible with CMB and LRG data, and establish constraints on the free parameters of the models. The data put no restriction on the timescale for the collapse of the scalar field modes.

  14. Perturbations of single-field inflation in modified gravity theory

    NASA Astrophysics Data System (ADS)

    Qiu, Taotao; Xia, Jun-Qing

    2015-05-01

    In this paper, we study the case of single field inflation within the framework of modified gravity theory where the gravity part has an arbitrary form f (R). Via a conformal transformation, this case can be transformed into its Einstein frame where it looks like a two-field inflation model. However, due to the existence of the isocurvature modes in such a multi-degree-of-freedom (m.d.o.f.) system, the (curvature) perturbations are not equivalent in two frames, so despite of its convenience, it is illegal to treat the perturbations in its Einstein frame as the "real" ones as we always do for pure f (R) theory or single field with nonminimal coupling. Here by pulling the results of curvature perturbations back into its original Jordan frame, we show explicitly the power spectrum and spectral index of the perturbations in the Jordan frame, as well as how it differs from the Einstein frame. We also fit our results with the newest Planck data. Since there is large parameter space in these models, we show that it is easy to fit the data very well.

  15. On squeezed limits in single-field inflation. Part I

    SciTech Connect

    Flauger, Raphael; Green, Daniel; Porto, Rafael A. E-mail: dgreen@stanford.edu

    2013-08-01

    The n-point correlation functions in single-field inflation obey a set of consistency conditions in the exact squeezed limit which are not present in multi-field models, and thus are powerful tools to distinguish between the two. However, these consistency conditions may be violated for a finite range of scales in single-field models, for example by departures from the Bunch-Davies state. These excited states may be the consequence of interactions during inflation, or may be a remnant of the era that preceded inflation. In this paper we analyze the bispectrum, and show that in the regime of theoretical control the resulting signal in the squeezed limit remains undetectably small in all known models which continuously excite the state. We also show that the signal remains undetectably small if the initial state is related to the Bunch-Davies state by a Bogoliubov transformation and the energy density in the state is small enough so that the usual slow-roll conditions are obeyed. Bogoliubov states that lead to violations of the slow-roll conditions, as well as more general excited states, require more careful treatment and will be discussed in a separate publication.

  16. Edge field emission of large-area single layer graphene

    NASA Astrophysics Data System (ADS)

    Kleshch, Victor I.; Bandurin, Denis A.; Orekhov, Anton S.; Purcell, Stephen T.; Obraztsov, Alexander N.

    2015-12-01

    Field electron emission from the edges of large-area (∼1 cm × 1 cm) graphene films deposited onto quartz wafers was studied. The graphene was previously grown by chemical vapour deposition on copper. An extreme enhancement of electrostatic field at the edge of the films with macroscopically large lateral dimensions and with single atom thickness was achieved. This resulted in the creation of a blade type electron emitter, providing stable field emission at low-voltage with linear current density up to 0.5 mA/cm. A strong hysteresis in current-voltage characteristics and a step-like increase of the emission current during voltage ramp up were observed. These effects were explained by the local mechanical peeling of the graphene edge from the quartz substrate by the ponderomotive force during the field emission process. Specific field emission phenomena exhibited in the experimental study are explained by a unique combination of structural, electronic and mechanical properties of graphene. Various potential applications ranging from linear electron beam sources to microelectromechanical systems are discussed.

  17. Measuring the complex field scattered by single submicron particles

    SciTech Connect

    Potenza, Marco A. C. Sanvito, Tiziano

    2015-11-15

    We describe a method for simultaneous measurements of the real and imaginary parts of the field scattered by single nanoparticles illuminated by a laser beam, exploiting a self-reference interferometric scheme relying on the fundamentals of the Optical Theorem. Results obtained with calibrated spheres of different materials are compared to the expected values obtained through a simplified analytical model without any free parameters, and the method is applied to a highly polydisperse water suspension of Poly(D,L-lactide-co-glycolide) nanoparticles. Advantages with respect to existing methods and possible applications are discussed.

  18. The Magnetic Field Distribution of Single Exploding Wire Aluminum Plasmas

    NASA Astrophysics Data System (ADS)

    Blesener, Kate; Pikuz, Sergei; Shelkovenko, Tania; Hammer, David; Maron, Yitzhak; Doron, Ramy; Bernshtam, Vladimir; Weingarten, Leonid; Zarnitsky, Yuri

    2013-10-01

    The exploding wires were driven by the 13 kA Low Current Pulser LCP3 at Cornell University, employing high-resolution time-gated emission spectroscopy at visible wavelengths to determine the plasma parameters as a function of radial position and time. The distribution of current through single exploding aluminum wires was determined through time resolved studies of the magnitude of the magnetic field as a function of position. To study the magnetic field we used the Zeeman Broadening technique developed at the Weizmann Institute of Science. This research is supported by the DOE/NNSA joint program in HEDLP under contract DE-SC0002263 and by the NNSA SSAA program under DOE Cooperative Agreement DE-NA0001836.

  19. Non-Gaussianities of single field inflation with nonminimal coupling

    SciTech Connect

    Qiu, Taotao; Yang, Kwei-Chou

    2011-04-15

    We investigate the non-Gaussianities of inflation driven by a single scalar field coupling nonminimally to the Einstein Gravity. We assume that the form of the scalar field is very general with an arbitrary sound speed. For convenience, we take the subclass that the nonminimal coupling term is linear to the Ricci scalar R. We define a parameter {mu}{identical_to}{epsilon}{sub h}/{epsilon}{sub {theta}}, where {epsilon}{sub h} and {epsilon}{sub {theta}} are two kinds of slow-roll parameters, and obtain the dependence of the shape of the 3-point correlation function on {mu}. We also show the estimator F{sub NL} in the equilateral limit. Finally, based on numerical calculations, we present the non-Gaussianities of nonminimal coupling chaotic inflation as an explicit example.

  20. Model independent signatures of new physics in the inflationary power spectrum.

    PubMed

    Jackson, Mark G; Schalm, Koenraad

    2012-03-16

    We compute the universal generic corrections to the inflationary power spectrum due to unknown high-energy physics. We arrive at this result via a careful integrating out of massive fields in the "in-in" formalism yielding a consistent and predictive low-energy effective description in time-dependent backgrounds. We find that the power spectrum is universally modified at order H/M, where H is the scale of inflation. This is qualitatively different from the universal corrections in time-independent backgrounds, and it suggests that such effects may be present in upcoming cosmological observations.

  1. Subsurface Stress Fields in Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.

    2003-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and fatigue stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. Techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts are presented in this report. Figure 1 shows typical damper contact locations in a turbine blade. The subsurface stress results are used for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades.

  2. Subsurface Stress Fields In Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik C.; Duke, Greg; Battista, Gilda; Swanson, Greg

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is , presented, for evaluating the subsurface stresses in the elastic half-space, using a complex potential method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis. Effects of crystal orientation on stress response and fatigue life are examined.

  3. CMB imprints of a pre-inflationary climbing phase

    SciTech Connect

    Dudas, E.; Kitazawa, N.; Patil, S.P.; Sagnotti, A. E-mail: patil@cpht.polytechnique.fr E-mail: sagnotti@sns.it

    2012-05-01

    We discuss the implications for cosmic microwave background (CMB) observables, of a class of pre-inflationary dynamics suggested by string models where SUSY is broken due to the presence of D-branes and orientifolds preserving incompatible portions of it. In these models the would-be inflaton is forced to emerge from the initial singularity climbing up a mild exponential potential, until it bounces against a steep exponential potential of ''brane SUSY breaking'' scenarios, and as a result the ensuing descent gives rise to an inflationary epoch that begins when the system is still well off its eventual attractor. If a pre-inflationary climbing phase of this type had occurred within 6-7 e-folds of the horizon exit for the largest observable wavelengths, displacement off the attractor and initial-state effects would conspire to suppress power in the primordial scalar spectrum, enhancing it in the tensor spectrum and typically superposing oscillations on both. We investigate these imprints on CMB observables over a range of parameters, examine their statistical significance, and provide a semi-analytic rationale for our results. It is tempting to ascribe at least part of the large-angle anomalies in the CMB to pre-inflationary dynamics of this type.

  4. Inflationary Cosmology: Is Our Universe Part of a Multiverse?

    SciTech Connect

    Guth, Alan

    2008-11-06

    In this talk, Guth explains the inflationary theory and reviews the features that make it scientifically plausible. In addition, he discusses the biggest mystery in cosmology: Why is the value of the cosmological constant, sometimes called the "anti-gravity" effect, so remarkably small compared to theoretical expectations?

  5. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves

  6. Conformal consistency relations for single-field inflation

    SciTech Connect

    Creminelli, Paolo; Noreña, Jorge; Simonović, Marko E-mail: jorge.norena@gmail.com

    2012-07-01

    We generalize the single-field consistency relations to capture not only the leading term in the squeezed limit — going as 1/q{sup 3}, where q is the small wavevector — but also the subleading one, going as 1/q{sup 2}. This term, for an (n+1)-point function, is fixed in terms of the variation of the n-point function under a special conformal transformation; this parallels the fact that the 1/q{sup 3} term is related with the scale dependence of the n-point function. For the squeezed limit of the 3-point function, this conformal consistency relation implies that there are no terms going as 1/q{sup 2}. We verify that the squeezed limit of the 4-point function is related to the conformal variation of the 3-point function both in the case of canonical slow-roll inflation and in models with reduced speed of sound. In the second case the conformal consistency conditions capture, at the level of observables, the relation among operators induced by the non-linear realization of Lorentz invariance in the Lagrangian. These results mean that, in any single-field model, primordial correlation functions of ζ are endowed with an SO(4,1) symmetry, with dilations and special conformal transformations non-linearly realized by ζ. We also verify the conformal consistency relations for any n-point function in models with a modulation of the inflaton potential, where the scale dependence is not negligible. Finally, we generalize (some of) the consistency relations involving tensors and soft internal momenta.

  7. Three-dimensional temperature field measurement of flame using a single light field camera.

    PubMed

    Sun, Jun; Xu, Chuanlong; Zhang, Biao; Hossain, Md Moinul; Wang, Shimin; Qi, Hong; Tan, Heping

    2016-01-25

    Compared with conventional camera, the light field camera takes the advantage of being capable of recording the direction and intensity information of each ray projected onto the CCD (charge couple device) sensor simultaneously. In this paper, a novel method is proposed for reconstructing three-dimensional (3-D) temperature field of a flame based on a single light field camera. A radiative imaging of a single light field camera is also modeled for the flame. In this model, the principal ray represents the beam projected onto the pixel of the CCD sensor. The radiation direction of the ray from the flame outside the camera is obtained according to thin lens equation based on geometrical optics. The intensities of the principal rays recorded by the pixels on the CCD sensor are mathematically modeled based on radiative transfer equation. The temperature distribution of the flame is then reconstructed by solving the mathematical model through the use of least square QR-factorization algorithm (LSQR). The numerical simulations and experiments are carried out to investigate the validity of the proposed method. The results presented in this study show that the proposed method is capable of reconstructing the 3-D temperature field of a flame.

  8. Three-dimensional temperature field measurement of flame using a single light field camera.

    PubMed

    Sun, Jun; Xu, Chuanlong; Zhang, Biao; Hossain, Md Moinul; Wang, Shimin; Qi, Hong; Tan, Heping

    2016-01-25

    Compared with conventional camera, the light field camera takes the advantage of being capable of recording the direction and intensity information of each ray projected onto the CCD (charge couple device) sensor simultaneously. In this paper, a novel method is proposed for reconstructing three-dimensional (3-D) temperature field of a flame based on a single light field camera. A radiative imaging of a single light field camera is also modeled for the flame. In this model, the principal ray represents the beam projected onto the pixel of the CCD sensor. The radiation direction of the ray from the flame outside the camera is obtained according to thin lens equation based on geometrical optics. The intensities of the principal rays recorded by the pixels on the CCD sensor are mathematically modeled based on radiative transfer equation. The temperature distribution of the flame is then reconstructed by solving the mathematical model through the use of least square QR-factorization algorithm (LSQR). The numerical simulations and experiments are carried out to investigate the validity of the proposed method. The results presented in this study show that the proposed method is capable of reconstructing the 3-D temperature field of a flame. PMID:26832496

  9. Electric field dependent photocurrent decay length in single lead sulfide nanowire field effect transistors.

    PubMed

    Graham, Rion; Miller, Chris; Oh, Eunsoon; Yu, Dong

    2011-02-01

    We determined the minority carrier diffusion length to be ∼1 μm in single PbS nanowire field effect transistors by scanning photocurrent microscopy. PbS nanowires grown by the vapor-liquid-solid method were p-type with hole mobilities up to 49 cm(2)/(V s). We measured a photoresponse time faster than 14 μs with near-unity charge separation efficiency at the contacts. For the first time, we also observed a field-dependent photocurrent decay length, indicating a drift dominant carrier transport at high bias.

  10. Gravitational Effects on the Inflationary Phase Transition

    NASA Astrophysics Data System (ADS)

    Jensen, Lars Gerhard

    The thesis contains work on phase transitions in field theory with gravity present. Results on bubble nucleation in gravitational fields are included. A specific model has been examined, the SU(5) Grand Unified Theory of the Coleman-Weinberg type coupled to gravity. The modes of the phase transition have been analyzed with respect to the requirement of obtaining sufficient inflation to resolve the horizon puzzle and the flatness/oldness puzzle.

  11. A maximally symmetric no-scale inflationary universe

    NASA Astrophysics Data System (ADS)

    Kounnas, C.; Quiros, M.

    1985-02-01

    We present an inflationary model, based on maximally symmetric no-scale supergravity models, where the gravitino and inflation scale cosmological problems are solved simultaneously by means of a heavy - but weakly coupled to ordinary matter - gravitino. The gravitino mass is essentially given by the Hubble constant at the inflationary epoch, H≅1012 GeV. The reheating temperature of the universe after inflation is TR≅(1010-1011) GeV and so gravitinos are no longer regenerated. The grand unified theory suffers a rapid phase transition into the SU(3)×SU(2)×U(1) phase, during - or at the end of - inflation with dilution of magnetic monopoles. The dynamical determination of the electroweak scale predicts top quark masses between 40 and 50 GeV. Laboratoire Propre du Centre National de la Recherche Scientifique, associé à l'Ecole Normale Supérieure et à l'Université de Paris-Sud.

  12. Single-Plane Magnetically Focused Elongated Small Field Proton Beams.

    PubMed

    McAuley, Grant A; Slater, James M; Wroe, Andrew J

    2015-08-01

    We previously performed Monte Carlo simulations of magnetically focused proton beams shaped by a single quadrapole magnet and thereby created narrow elongated beams with superior dose delivery characteristics (compared to collimated beams) suitable for targets of similar geometry. The present study seeks to experimentally validate these simulations using a focusing magnet consisting of 24 segments of samarium cobalt permanent magnetic material adhered into a hollow cylinder. Proton beams with properties relevant to clinical radiosurgery applications were delivered through the magnet to a water tank containing a diode detector or radiochromic film. Dose profiles were analyzed and compared with analogous Monte Carlo simulations. The focused beams produced elongated beam spots with high elliptical symmetry, indicative of magnet quality. Experimental data showed good agreement with simulations, affirming the utility of Monte Carlo simulations as a tool to model the inherent complexity of a magnetic focusing system. Compared to target-matched unfocused simulations, focused beams showed larger peak to entrance ratios (26% to 38%) and focused simulations showed a two-fold increase in beam delivery efficiency. These advantages can be attributed to the magnetic acceleration of protons in the transverse plane that tends to counteract the particle outscatter that leads to degradation of peak to entrance performance in small field proton beams. Our results have important clinical implications and suggest rare earth focusing magnet assemblies are feasible and could reduce skin dose and beam number while delivering enhanced dose to narrow elongated targets (eg, in and around the spinal cord) in less time compared to collimated beams.

  13. Single-field consistency relations of large scale structure

    SciTech Connect

    Creminelli, Paolo; Noreña, Jorge; Simonović, Marko; Vernizzi, Filippo E-mail: jorge.norena@icc.ub.edu E-mail: filippo.vernizzi@cea.fr

    2013-12-01

    We derive consistency relations for the late universe (CDM and ΛCDM): relations between an n-point function of the density contrast δ and an (n+1)-point function in the limit in which one of the (n+1) momenta becomes much smaller than the others. These are based on the observation that a long mode, in single-field models of inflation, reduces to a diffeomorphism since its freezing during inflation all the way until the late universe, even when the long mode is inside the horizon (but out of the sound horizon). These results are derived in Newtonian gauge, at first and second order in the small momentum q of the long mode and they are valid non-perturbatively in the short-scale δ. In the non-relativistic limit our results match with [1]. These relations are a consequence of diffeomorphism invariance; they are not satisfied in the presence of extra degrees of freedom during inflation or violation of the Equivalence Principle (extra forces) in the late universe.

  14. Phenomenology of the minimal inflation scenario: inflationary trajectories and particle production

    SciTech Connect

    Álvarez-Gaumé, Luis; Gómez, César

    2012-03-01

    We discuss the phenomenology of the minimal inflation scenario. We concentrate on two aspects: inflationary trajectories and particle production. Our findings can be summarized in two main results: first, that inflationary trayectories that are very flat and provide enough number of e-foldings are natural in the scenario without fine tunning. We present a general formalism to identify attractors in multi-field inflation regardless of trajectories fulfilling the slow-roll conditions. We then explore particle production in the model and show how the inflaton naturally transmutes into a dark matter particle. One interesting feature of our model is that it provides a novel mechanism to generate particles and entropy in the universe: the filling of the Fermi sphere up to a given momentum p{sub F} due to the sea of goldstinos that are an important part of the matter generated after inflation. With this mechanism in hand we predict that the gravitino should have a mass of > 100−1000 TeV. Another interesting feature of our model is that the predicted level of gravity waves is r = 0.1−0.001, which is in the range of detectability from Planck and upcoming CMB polarization experiments.

  15. The field-space metric in spiral inflation and related models

    NASA Astrophysics Data System (ADS)

    Erlich, Joshua; Olsen, Jackson; Wang, Zhen

    2016-09-01

    Multi-field inflation models include a variety of scenarios for how inflation proceeds and ends. Models with the same potential but different kinetic terms are common in the literature. We compare spiral inflation and Dante's inferno-type models, which differ only in their field-space metric. We justify a single-field effective description in these models and relate the single-field description to a mass-matrix formalism. We note the effects of the nontrivial field-space metric on inflationary observables, and consequently on the viability of these models. We also note a duality between spiral inflation and Dante's inferno models with different potentials.

  16. Inflationary Cosmology: Is Our Universe Part of a Multiverse

    SciTech Connect

    Guth, Alan

    2008-11-06

    In 1981, Guth proposed the theory of the inflationary universe, a modification of the Big Bang theory, which is generally accepted by scientists to explain how the universe began. Nevertheless, the Big Bang theory leaves some questions, and the theory of inflation attempts to answer them. Guth states that a repulsive gravitational force generated by an exotic form of matter brought about the expansion of the universe. He postulates that the universe underwent an expansion of astronomical proportions within the first trillionth of a second of its existence, during which the seeds for its large-scale structure were generated. Guth and colleagues have further explored the possibility of mimicking inflation in a hypothetical laboratory, thereby creating a new universe, and they concluded that it might be theoretically possible. If it happened, the new universe would not endanger our own universe. Instead, it would slip through a wormhole, a hypothetical space-time travel shortcut, and rapidly disconnect from our universe. In this talk, Guth will explain the inflationary theory and review the features that make it scientifically plausible. In addition, he will discuss the biggest mystery in cosmology: Why is the value of the cosmological constant, sometimes called the "anti-gravity" effect, so remarkably small compared to theoretical expectations? Guth will explain how the inflationary theory, combined with other ideas from elementary particle physics and cosmology, can provide a possible explanation for this discrepancy.

  17. Low reheating temperatures in monomial and binomial inflationary models

    NASA Astrophysics Data System (ADS)

    Rehagen, Thomas; Gelmini, Graciela B.

    2015-06-01

    We investigate the allowed range of reheating temperature values in light of the Planck 2015 results and the recent joint analysis of Cosmic Microwave Background (CMB) data from the BICEP2/Keck Array and Planck experiments, using monomial and binomial inflationary potentials. While the well studied phi2 inflationary potential is no longer favored by current CMB data, as well as phip with p>2, a phi1 potential and canonical reheating (0wre=) provide a good fit to the CMB measurements. In this last case, we find that the Planck 2015 68% confidence limit upper bound on the spectral index, ns, implies an upper bound on the reheating temperature of Trelesssim 6× 1010 GeV, and excludes instantaneous reheating. The low reheating temperatures allowed by this model open the possibility that dark matter could be produced during the reheating period instead of when the Universe is radiation dominated, which could lead to very different predictions for the relic density and momentum distribution of WIMPs, sterile neutrinos, and axions. We also study binomial inflationary potentials and show the effects of a small departure from a phi1 potential. We find that as a subdominant phi2 term in the potential increases, first instantaneous reheating becomes allowed, and then the lowest possible reheating temperature of Tre=4 MeV is excluded by the Planck 2015 68% confidence limit.

  18. Dark energy from primordial inflationary quantum fluctuations.

    PubMed

    Ringeval, Christophe; Suyama, Teruaki; Takahashi, Tomo; Yamaguchi, Masahide; Yokoyama, Shuichiro

    2010-09-17

    We show that current cosmic acceleration can be explained by an almost massless scalar field experiencing quantum fluctuations during primordial inflation. Provided its mass does not exceed the Hubble parameter today, this field has been frozen during the cosmological ages to start dominating the Universe only recently. By using supernovae data, completed with baryonic acoustic oscillations from galaxy surveys and cosmic microwave background anisotropies, we infer the energy scale of primordial inflation to be around a few TeV, which implies a negligible tensor-to-scalar ratio of the primordial fluctuations. Moreover, our model suggests that inflation lasted for an extremely long period. Dark energy could therefore be a natural consequence of cosmic inflation close to the electroweak energy scale.

  19. Inflationary prediction for primordial non-gaussianity.

    PubMed

    Lyth, David H; Rodríguez, Yeinzon

    2005-09-16

    We extend the deltaN formalism so that it gives all of the stochastic properties of the primordial curvature perturbation zeta if the initial field perturbations are Gaussian. The calculation requires only the knowledge of some family of unperturbed universes. A formula is given for the normalization f(NL) of the bispectrum of zeta, which is the main signal of non-Gaussianity. Examples of the use of the formula are given, and its relation to cosmological perturbation theory is explained. PMID:16197063

  20. Multi-field conformal cosmological attractors

    SciTech Connect

    Kallosh, Renata; Linde, Andrei E-mail: alinde@stanford.edu

    2013-12-01

    We describe a broad class of multi-field inflationary models with spontaneously broken conformal invariance. It generalizes the recently discovered class of cosmological attractors with a single inflaton field [1]. In the new multi-field theories, just as in the single-field models of [1], the moduli space has a boundary (Kähler cone) in terms of the original homogeneous conformal variables. Upon spontaneous breaking of the conformal invariance and switching to the Einstein frame, this boundary moves to infinity in terms of the canonically normalized inflaton field. This results in the exponential stretching and flattening of scalar potentials in the vicinity of the boundary of the moduli space, which makes even very steep potentials perfectly suitable for the slow-roll inflation. These theories, just like their single-field versions, typically lead to inflationary perturbations with n{sub s} = 1−2/N and r = 12/N{sup 2}, where N is the number of e-foldings.

  1. Low reheating temperatures in monomial and binomial inflationary models

    SciTech Connect

    Rehagen, Thomas; Gelmini, Graciela B.

    2015-06-23

    We investigate the allowed range of reheating temperature values in light of the Planck 2015 results and the recent joint analysis of Cosmic Microwave Background (CMB) data from the BICEP2/Keck Array and Planck experiments, using monomial and binomial inflationary potentials. While the well studied ϕ{sup 2} inflationary potential is no longer favored by current CMB data, as well as ϕ{sup p} with p>2, a ϕ{sup 1} potential and canonical reheating (w{sub re}=0) provide a good fit to the CMB measurements. In this last case, we find that the Planck 2015 68% confidence limit upper bound on the spectral index, n{sub s}, implies an upper bound on the reheating temperature of T{sub re}≲6×10{sup 10} GeV, and excludes instantaneous reheating. The low reheating temperatures allowed by this model open the possibility that dark matter could be produced during the reheating period instead of when the Universe is radiation dominated, which could lead to very different predictions for the relic density and momentum distribution of WIMPs, sterile neutrinos, and axions. We also study binomial inflationary potentials and show the effects of a small departure from a ϕ{sup 1} potential. We find that as a subdominant ϕ{sup 2} term in the potential increases, first instantaneous reheating becomes allowed, and then the lowest possible reheating temperature of T{sub re}=4 MeV is excluded by the Planck 2015 68% confidence limit.

  2. Inflationary cosmology with Chaplygin gas in Palatini formalism

    NASA Astrophysics Data System (ADS)

    Borowiec, Andrzej; Stachowski, Aleksander; Szydłowski, Marek; Wojnar, Aneta

    2016-01-01

    We present a simple generalisation of the ΛCDM model which on the one hand reaches very good agreement with the present day experimental data and provides an internal inflationary mechanism on the other hand. It is based on Palatini modified gravity with quadratic Starobinsky term and generalized Chaplygin gas as a matter source providing, besides a current accelerated expansion, the epoch of endogenous inflation driven by type III freeze singularity. It follows from our statistical analysis that astronomical data favors negative value of the parameter coupling quadratic term into Einstein-Hilbert Lagrangian and as a consequence the bounce instead of initial Big-Bang singularity is preferred.

  3. Manipulating quantum fields with a single atom in a cavity

    SciTech Connect

    Haroche, Serge

    1995-04-01

    Circular Rydberg atoms, detected by the very sensitive and state selective field ionization method, can be used to measure and manipulate quantum fields stored in a cavity. The method is based on an interferometric detection of the dispersive energy shifts experienced by these atoms when they interact with a slightly off-resonant field mode sustained by a cavity which the atoms cross one at a time. These shifts give rise to a translation of the Ramsey fringe pattern observed in the field ionization signal of the atoms. The method consitutes a non-destructive way of photon counting. In this experiment, non local correlations between the atom and the cavity field are created, which could be used to perform new types of Einstein-Podolsky-Rosen experiments. Non classical fields could also be generated, which would display some of the properties discussed by Schroedinger in his famous 'cat paradox'. We present the theory of these experiments which until very recently would have been considered as mere 'gedanken' ones and we describe the operation of a Rydberg atom interferometer which has already enabled us to detect subphoton fields and to measure vacuum field effects in a cavity.

  4. Oscillatory features in the curvature power spectrum after a sudden turn of the inflationary trajectory

    SciTech Connect

    Gao, Xian; Langlois, David; Mizuno, Shuntaro E-mail: langlois@apc.univ-paris7.fr

    2013-10-01

    In the context of two-field inflation characterized by a light direction and a heavy direction, we revisit the question of the impact of the massive modes on the power spectrum produced after a turn in the inflationary trajectory. We consider in particular the resonant effect due to the background oscillations following a sharp turn. Working in the mass basis, i.e. in the basis spanned by the eigenvectors of the effective mass matrix for the perturbations, we provide an analytical estimate of the resonant effect, using the in-in formalism. In comparison with earlier estimates, we find the same the spectral dependence but a smaller amplitude. We also compute, again via the in-in formalism, the effect of the direct coupling between the light and heavy modes at the instant of the turn and confirm our previous results obtained via a different method.

  5. Computation of inflationary cosmological perturbations in the power-law inflationary model using the phase-integral method

    SciTech Connect

    Rojas, Clara; Villalba, Victor M.

    2007-03-15

    The phase-integral approximation devised by Froeman and Froeman, is used for computing cosmological perturbations in the power-law inflationary model. The phase-integral formulas for the scalar and tensor power spectra are explicitly obtained up to ninth-order of the phase-integral approximation. We show that, the phase-integral approximation exactly reproduces the shape of the power spectra for scalar and tensor perturbations as well as the spectral indices. We compare the accuracy of the phase-integral approximation with the results for the power spectrum obtained with the slow-roll and uniform-approximation methods.

  6. Inflationary Expansions Generated by a Physically Real Kinematic Acceleration

    NASA Astrophysics Data System (ADS)

    Savickas, David

    2010-02-01

    A repulsive cosmological acceleration is shown to exist that exhibits a behavior very similar to that found in both inflationary models at the time of origin of the universe, and also in the repulsive acceleration found in present-day cosmological observations. It is able to describe an inflationary model of a radiation universe in considerable numerical detail. It is based on a method that defines the Hubble parameter H, and consequently inertial systems themselves, directly in terms of the positions and velocities of mass particles in a universe. This makes it possible to describe a mass particle's motion relative to other particles in the universe, rather than relative to inertial systems. Because of this, the repulsive acceleration is a real kinematic effect existing in the present-day universe. This definition of H cannot include the use of photon positions or velocities because H determines the velocities of receding inertial systems of galaxies, and the velocity of a photon in a distant inertial system then depends on the definition of H itself. Therefore, at the time of its origin the magnitude of H in a radiation dominated universe would be solely determined by the behavior of the relatively few mass particles that it contained while allowing for a near balance with the gravitation of the Friedmann-Lemaître model. )

  7. Second-order reconstruction of the inflationary potential

    NASA Technical Reports Server (NTRS)

    Liddle, Andrew R.; Turner, Michael S.

    1994-01-01

    To first order in the deviation from scale invariance the inflationary potential and its first two derivatives can be expressed in terms of the spectral indices of the scalar and tensor perturbations, n and n(sub T), and their contributions to the variance of the quadrupole CBR temperature anisotropy, S and T. In addition, there is a 'consistency relation' between these quantities: n(sub T) = (-1/ 7)(T/S). We derive the second-order expressions for the inflationary potential and its first two derivatives and the first-order expression for its third derivative, in terms, of n, n(sub T), S, T, and dn/d ln gamma. We also obtain the second-order consistency relation, n(sub T) = (-1/7)(T/S)(1 + 0.11(T/S) + 0.15(n-1)). As an example we consider the exponential potential, the only known case where exact analytic solutions for the perturbation spectra exist. We reconstruct the potential via Taylor expansion (with coefficients calculated at both first and second order), and introduce the Pade approximate as a greatly improved alternative.

  8. BASIS: Bayfordbury single-object integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Richards, Samuel; Martin, William; Campbell, David; Jones, Hugh; Bland-Hawthorn, Joss; Lawrence, Jon; Brinks, Elias; Bryant, Julia J.; Fogarty, Lisa; Gallaway, Mark; Goodwin, Michael; Leon-Saval, Sergio; Sarzi, Marc; Smith, Daniel J.

    2012-09-01

    We present an inexpensive (field unit for use on small aperture telescopes. Based on a commercial small spectrograph (SBIG Self-Guiding Spectrograph) and a 37 optical fibre bundle integral field unit with each fibre having 50μm cores and a pitch of 125μm. It has an overall field-of-view of 40 arc seconds (2.6arcsec/core), a resolution of 9Å from 3995Å to 7170Å and an average system efficiency of 9%, yielding a signal-tonoise ratio of 10 for a 20min exposure of a 13mag/arcsec2 source. Still in commissioning, we present first light observations of Vega and M57.

  9. Electric Field Induced Fluorescence Modulation of Single Molecules in PMMA Based on Electron Transfer

    PubMed Central

    Chen, Ruiyun; Gao, Yan; Zhang, Guofeng; Wu, Ruixiang; Xiao, Liantuan; Jia, Suotang

    2012-01-01

    We present a method to modulate the fluorescence of non-polar single squaraine-derived rotaxanes molecules embedded in a polar poly(methyl methacrylate) (PMMA) matrix under an external electric field. The electron transfer between single molecules and the electron acceptors in a PMMA matrix contributes to the diverse responses of fluorescence intensities to the electric field. The observed instantaneous and non-instantaneous electric field dependence of single-molecule fluorescence reflects the redistribution of electron acceptors in PMMA induced by electronic polarization and orientation polarization of polar polymer chains in an electric field. PMID:23109842

  10. Mass spectroscopy of single aerosols from field measurements

    SciTech Connect

    Thomson, D.S.; Murphy, D.M.

    1995-12-31

    We are developing an aircraft instrument for the chemical analysis of individual ambient aerosols in real time. In order to test the laboratory version of this instrument, we participated in a field campaign near the continental divide in Colorado in September, 1993. During this campaign, over 5000 mass spectra of ambient aerosols were collected. Analysis of the negative ion spectra shows that sulfate was the most commonly seen component of smaller particles, while nitrate was more common in larger particles. Organic compounds are present in most particles, and we believe we can distinguish inorganic carbon in some particles. Although numerous distinct classes of particles were observed, indicating external mixtures, almost all of these particle types were themselves mixtures of several compounds. Finally, we note that although the field site experienced distinct polluted and unpolluted episodes, aerosol composition did not correlate with gas phase chemistry.

  11. Infrared light field imaging using single carbon nanotube detector

    NASA Astrophysics Data System (ADS)

    Xi, Ning; Chen, Liangliang; Zhou, Zhanxin; Yang, Ruiguo; Song, Bo; Sun, Zhiyong

    2014-06-01

    The conventional photographs only record the sum total of light rays of each point on image plane so that they tell little about the amount of light traveling along individual rays. The focus and lens aberration problems have challenged photographers since the very beginning therefore light field photography was proposed to solve these problems. Lens array and multiple camera systems are used to capture 4D light rays, by reordering the different views of scene from multiple directions. The coded aperture is another method to encode the angular information in frequency domain. However, infrared light field sensing is still widely opening to research. In the paper, we will propose micro plane mirror optics together with compressive sensing algorithm to record light field in infrared spectrum. The micro mirror reflects objects irradiation and forms a virtual image behind the plane in which the mirror lies. The Digital Micromirror (DMD) consists of millions microscale mirrors which work as CCD array in the camera and it is controlled separately so as to project linear combination of object image onto lens. Coded aperture could be utilized to control angular resolution of infrared light rays. The carbon nanotube based infrared detector, which has ultra high signal to noise ratio and ultra fast responsibility, will sum up all image information on it without image distortion. Based on a number of measurements, compressive sensing algorithm was used to recover images from distinct angles, which could compute different views of scene to reconstruct infrared light field scence. Two innovative applications of full image recovery using nano scale photodetector and DMD based synthetic aperture photography will also be discussed in this paper.

  12. Creation and recovery of a W(111) single atom gas field ion source.

    PubMed

    Pitters, Jason L; Urban, Radovan; Wolkow, Robert A

    2012-04-21

    Tungsten single atom tips have been prepared from a single crystal W(111) oriented wire using the chemical assisted field evaporation and etching method. Etching to a single atom tip occurs through a symmetric structure and leads to a predictable last atom unlike etching with polycrystalline tips. The single atom tip formation procedure is shown in an atom by atom removal process. Rebuilds of single atom tips occur on the same crystalline axis as the original tip such that ion emission emanates along a fixed direction for all tip rebuilds. This preparation method could be utilized and developed to prepare single atom tips for ion source development.

  13. Dependence of magnetic field and electronic transport of Mn4 Single-molecule magnet in a Single-Electron Transistor

    NASA Astrophysics Data System (ADS)

    Rodriguez, Alvar; Singh, Simranjeet; Haque, Firoze; Del Barco, Enrique; Nguyen, Tu; Christou, George

    2012-02-01

    Dependence of magnetic field and electronic transport of Mn4 Single-molecule magnet in a Single-Electron Transistor A. Rodriguez, S. Singh, F. Haque and E. del Barco Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 USA T. Nguyen and G. Christou Department of Chemistry, University of Florida, Gainesville, Florida 32611 USA Abstract We have performed single-electron transport measurements on a series of Mn-based low-nuclearity single-molecule magnets (SMM) observing Coulomb blockade. SMMs with well isolated and low ground spin states, i.e. S = 9/2 (Mn4) and S = 6 (Mn3) were chosen for these studies, such that the ground spin multiplet does not mix with levels of other excited spin states for the magnetic fields (H = 0-8 T) employed in the experiments. Different functionalization groups were employed to change the mechanical, geometrical and transport characteristics of the molecules when deposited from liquid solution on the transistors. Electromigration-broken three-terminal single-electron transistors were used. Results obtained at temperatures down to 240 mK and in the presence of high magnetic fields will be shown.

  14. BICEP2 implications for single-field slow-roll inflation revisited

    SciTech Connect

    Antusch, Stefan; Nolde, David E-mail: david.nolde@unibas.ch

    2014-05-01

    It is generally believed that in single-field slow-roll inflation, a large tensor-to-scalar ratio r > 0.1 requires inflaton field values close to or above the Planck scale. Recently, it has been claimed that r > 0.15 can be achieved with much smaller inflaton field values Δφ < M{sub Pl}/10. We show that in single-field slow-roll inflation, it is impossible to reconcile r > 0.1 with such small field values, independently of the form of the potential, and that the recent claim to the contrary is based on an invalid approximation. We conclude that the result of the BICEP2 measurement of r > 0.1, if confirmed, truly has the potential to rule out small-field models of single-field slow-roll inflation.

  15. Single and multiple electron dynamics in the strong field limit

    SciTech Connect

    Sheehy, B.; Walker, B.; Lafon, R.; Widmer, M.; Gambhir, A.; DiMauro, L.F.; Agostini, P.; Kulander, K.C.

    1996-12-31

    High precision photoelectron energy and angular distributions in helium and neon atoms for a broad intensity range reflect the change in the continuum dynamics that occurs as the ionization process evolves into the pure tunneling regime. Elastic rescattering of the laser-driven free electron from its parent ion core leaves a distinct signature on the spectra, providing a direct quantitative test of the various theories of strong field multiphoton ionization. They show that it takes a relatively complete semi-classical rescattering model to accurately reproduce the observed photoelectron distributions. However, the calculated inelastic rescattering rate fails to reproduce the measured nonsequential double ionization yields.

  16. Single and multiple electron dynamics in the strong field limit

    SciTech Connect

    Sheehy, B.; Walker, B.; Lafon, R.; Widmer, M.; Gambhir, A.; DiMauro, L.F.; Agostini, P.; Kulander, K.C.

    1996-10-01

    High precision photoelectron energy and angular distributions in helium and neon atoms for a broad intensity range reflect the change in the continuum dynamics that occurs as the ionization process evolves into the pure tunneling regime. Elastic rescattering of the laser-driven free electron from its parent ion core leaves a distinct signature on the spectra, providing a direct quantitative test of the various theories of strong field multiphoton ionization. We show that it takes a relatively complete semi-classical rescattering model to accurately reproduce the observed photoelectron distributions. However, the calculated inelastic rescattering rate fails to reproduce the measured nonsequential double ionization yields. 18 refs., 5 figs.

  17. Loop quantum cosmology: from pre-inflationary dynamics to observations

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Barrau, Aurélien

    2015-12-01

    The Planck collaboration has provided us rich information about the early Universe, and a host of new observational missions will soon shed further light on the ‘anomalies’ that appear to exist on the largest angular scales. From a quantum gravity perspective, it is natural to inquire if one can trace back the origin of such puzzling features to Planck scale physics. Loop quantum cosmology provides a promising avenue to explore this issue because of its natural resolution of the big bang singularity. Thanks to advances over the last decade, the theory has matured sufficiently to allow concrete calculations of the phenomenological consequences of its pre-inflationary dynamics. In this article we summarize the current status of the ensuing two-way dialog between quantum gravity and observations.

  18. TOPICAL REVIEW: String cosmology versus standard and inflationary cosmology

    NASA Astrophysics Data System (ADS)

    Gasperini, M.

    2000-06-01

    This paper presents a review of the basic, model-independent differences between the pre-big-bang scenario, arising naturally in a string cosmology context, and the standard inflationary scenario. We use an unconventional approach in which the introduction of technical details is avoided as much as possible, trying to focus the reader's attention on the main conceptual aspects of both scenarios. The aim of the paper is not to conclude either in favour of one or other of the scenarios, but to raise questions that are left to the reader's meditation. Warning: the paper does not contain equations, and is not intended as a complete review of all aspects of string cosmology.

  19. Testing and extending the inflationary consistency relation for tensor modes

    NASA Astrophysics Data System (ADS)

    Boyle, Latham; Smith, Kendrick M.; Dvorkin, Cora; Turok, Neil

    2015-08-01

    If observations confirm BICEP2's claim of a tensor-scalar ratio r ≈0.2 on CMB scales, then the inflationary consistency relation nt=-r /8 predicts a small negative value for the tensor spectral index nt. We show that future CMB polarization experiments should be able to confirm this prediction at several sigma. We also show how to properly extend the consistency relation to solar system scales, where the primordial gravitational wave density Ωgw could be measured by proposed experiments such as the Big Bang Observer. This would provide a far more stringent test of the consistency relation and access much more detailed information about the early Universe.

  20. Inflationary perturbations in anisotropic, shear-free universes

    SciTech Connect

    Pereira, Thiago S.; Carneiro, Saulo; Marugan, Guillermo A. Mena E-mail: saulo.carneiro@pq.cnpq.br

    2012-05-01

    In this work, the linear and gauge-invariant theory of cosmological perturbations in a class of anisotropic and shear-free spacetimes is developed. After constructing an explicit set of complete eigenfunctions in terms of which perturbations can be expanded, we identify the effective degrees of freedom during a generic slow-roll inflationary phase. These correspond to the anisotropic equivalent of the standard Mukhanov-Sasaki variables. The associated equations of motion present a remarkable resemblance to those found in perturbed Friedmann-Robertson-Walker spacetimes with curvature, apart from the spectrum of the Laplacian, which exhibits the characteristic frequencies of the underlying geometry. In particular, it is found that the perturbations cannot develop arbitrarily large super-Hubble modes.

  1. Case history of the Cormorant field single satellite well

    SciTech Connect

    Brommer, J.J.; Fernandinho, C.M.M.S.; Liles, J.R.

    1982-01-01

    A case history of the development of specifically tailor-made equipment and the experience gained from the installation and production from the first subsea well in the central area of the Cormorant field is presented. Emphasis is placed on development concepts and the equipment uniquely manufactured to meet special needs. A one-year onshore integrated system test of the equipment is described along with the interface problems identified and resolved prior to going offshore. Actual installation and commissioning activities are fully covered including drilling, completion, and production from the well. The study describes the major reasons for the success of the subsea well to date as being extensive onshore testing, detailed planning, and the early involvement of operating personnel.

  2. Single-shot spatiotemporal measurements of high-field terahertz pulses

    SciTech Connect

    van Tilborg, Jeroen; Schroeder, Carl; Toth, Csaba; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2011-06-17

    The electric field profiles of broad-bandwidth coherent terahertz (THz) pulses, emitted by laser-wakefield-accelerated electron bunches, are studied. The near-single-cycle THz pulses are measured with two single-shot techniques in the temporal and spatial domains. Spectra of 0-6 THz and peak fields up to {approx_equal} 0.4 MV cm{sup -1} are observed. The measured field substructure demonstrates the manifestation of spatiotemporal coupling at focus, which affects the interpretation of THz radiation as a bunch diagnostic and in high-field pump-probe experiments.

  3. Electric-field-assisted position and orientation control of organic single crystals.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2014-12-01

    We have investigated the motion of growing pentacene single crystals in solution under various electric fields. The pentacene single crystals in 1,2,4-trichlorobenzene responded to the electric field as if they were positively charged. By optimizing the strength and frequency of an alternating electric field, the pentacene crystals automatically bridged the electrodes on SiO2. The pentacene crystal with a large aspect ratio tended to direct the [1̅10] orientation parallel to the conduction direction, which will be suitable from a viewpoint of anisotropy in mobility. The present result shows a possibility of controlling the position and orientation of organic single crystals by the use of an electric field, which leads to high throughput and low cost industrial manufacturing of the single crystal array from solution.

  4. Emerging Evidence from Single-Subject Research in the Field of Deaf-Blindness

    ERIC Educational Resources Information Center

    Parker, Amy T.; Davidson, Roseanna; Banda, Devender R.

    2007-01-01

    Professionals in the field of deaf-blindness are challenged to use instructional practices that have been tested using experimental methodology. Single-subject design has been examined as a form of research that assists in substantiating practice. In a review of the literature, the authors identified 54 single-subject studies from 1969 to 2006…

  5. High-Dynamic-Range Imaging of Nanoscale Magnetic Fields Using Optimal Control of a Single Qubit

    NASA Astrophysics Data System (ADS)

    Häberle, T.; Schmid-Lorch, D.; Karrai, K.; Reinhard, F.; Wrachtrup, J.

    2013-10-01

    We present a novel spectroscopy protocol based on optimal control of a single quantum system. It enables measurements with quantum-limited sensitivity (ηω∝(1/T2*), T2* denoting the system’s coherence time) but has an orders of magnitude larger dynamic range than pulsed spectroscopy methods previously employed for this task. We employ this protocol to image nanoscale magnetic fields with a single scanning nitrogen-vacancy center in diamond. Here, our scheme enables quantitative imaging of a strongly inhomogeneous field in a single scan without closed-loop control, which has previously been necessary to achieve this goal.

  6. Alterations of single molecule fluorescence lifetimes in near-field optical microscopy

    SciTech Connect

    Ambrose, W.P.; Goodwin, P.M.; Keller, R.A.; Martin, J.C. )

    1994-07-15

    Fluorescence lifetimes of single Rhodamine 6G molecules on silica surfaces were measured with pulsed laser excitation, time-correlated single photon counting, and near-field scanning optical microscopy (NSOM). The fluorescence lifetime varies with the position of a molecule relative to a near-field probe. Qualitative features of lifetime decreases are consistent with molecular excited state quenching effects near metal surfaces. The technique of NSOM provides a means of altering the environment of a single fluorescent molecule and its decay kinetics in a repeatable fashion.

  7. The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors

    SciTech Connect

    Renema, J. J.; Rengelink, R. J.; Komen, I.; Wang, Q.; Kes, P.; Aarts, J.; Exter, M. P. van; Dood, M. J. A. de; Gaudio, R.; Hoog, K. P. M. op 't; Zhou, Z.; Fiore, A.; Sahin, D.; Driessen, E. F. C.

    2015-03-02

    We experimentally investigate the effect of a magnetic field on photon detection in superconducting single-photon detectors (SSPDs). At low fields, the effect of a magnetic field is through the direct modification of the quasiparticle density of states of the superconductor, and magnetic field and bias current are interchangeable, as is expected for homogeneous dirty-limit superconductors. At the field where a first vortex enters the detector, the effect of the magnetic field is reduced, up until the point where the critical current of the detector starts to be determined by flux flow. From this field on, increasing the magnetic field does not alter the detection of photons anymore, whereas it does still change the rate of dark counts. This result points at an intrinsic difference in dark and photon counts, and also shows that no enhancement of the intrinsic detection efficiency of a straight SSPD wire is achievable in a magnetic field.

  8. Single Event Effects (SEE) for Power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs)

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie

    2011-01-01

    Single-event gate rupture (SEGR) continues to be a key failure mode in power MOSFETs. (1) SEGR is complex, making rate prediction difficult SEGR mechanism has two main components: (1) Oxide damage-- Reduces field required for rupture (2) Epilayer response -- Creates transient high field across the oxide.

  9. Optical Field-Strength Polarization of Two-Mode Single-Photon States

    ERIC Educational Resources Information Center

    Linares, J.; Nistal, M. C.; Barral, D.; Moreno, V.

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of…

  10. Quantum teleportation of the angular spectrum of a single-photon field

    SciTech Connect

    Walborn, S. P.; Ether, D. S.; Matos Filho, R. L. de; Zagury, N.

    2007-09-15

    We propose a quantum teleportation scheme for the angular spectrum of a single-photon field, which allows for the transmission of a large amount of information. Our proposal also provides a method to tune the frequencies of spatially entangled fields, which is useful for interactions with stationary qubits.

  11. Effect of induced electric field on single-file reverse osmosis.

    PubMed

    Suk, M E; Aluru, N R

    2009-10-14

    We investigated the effect of the electric field on single-file reverse osmosis (RO) water flux using molecular dynamics simulations. The electric field is generated by introducing oppositely charged biomolecules to the salt solution and pure water chambers attached to the nanopore. Simulation results indicate that an electric field in the direction of RO enhances the water flux while in the direction opposite to RO it suppresses the water flux. When the RO water flux is enhanced, the single-file water dipoles are aligned in the direction of the electric field. The addition of an electric field in the direction of RO led to a flux of 3 water molecules ns(-1) by constantly maintaining water dipole vectors in the direction of the electric field, and this water flux is superimposed on the pressure driven water flux.

  12. Mars' paleomagnetic field as the result of a single-hemisphere dynamo.

    PubMed

    Stanley, Sabine; Elkins-Tanton, Linda; Zuber, Maria T; Parmentier, E Marc

    2008-09-26

    Mars' crustal magnetic field was most likely generated by dynamo action in the planet's early history. Unexplained characteristics of the field include its strength, concentration in the southern hemisphere, and lack of correlation with any surface features except for the hemispheric crustal dichotomy. We used numerical dynamo modeling to demonstrate that the mechanisms proposed to explain crustal dichotomy formation can result in a single-hemisphere dynamo. This dynamo produces strong magnetic fields in only the southern hemisphere. This magnetic field morphology can explain why Mars' crustal magnetic field intensities are substantially stronger in the southern hemisphere without relying on any postdynamo mechanisms.

  13. Simulated morphological landscape of polymer single crystals by phase field model

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Shi, Tongfei; Chen, Jizhong; An, Lijia; Jia, Yuxi

    2008-11-01

    The novel phase field model with the "polymer characteristic" was established based on a nonconserved spatiotemporal Ginzburg-Landau equation (TDGL model A). Especially, we relate the diffusion equation with the crystal growth faces of polymer single crystals. Namely, the diffusion equations are discretized according to the diffusion coefficient of every lattice site in various crystal growth faces and the shape of lattice is selected based on the real proportion of the unit cell dimensions. Spatiotemporal growth of syndiotactic polypropylene single crystals during isothermal crystallization has been investigated theoretically based on this phase field model. Two dimensional numerical calculations are performed to elucidate the faceted single crystal growth including square, rectangular, lozenge-shaped, and hexagonal single crystals. Our simulated patterns are in good agreement with the experimental morphologies, and the physical origin of polymer single crystal growth is discussed.

  14. Simple inflationary models in Gauss-Bonnet brane-world cosmology

    NASA Astrophysics Data System (ADS)

    Okada, Nobuchika; Okada, Satomi

    2016-06-01

    In light of the recent Planck 2015 results for the measurement of the cosmic microwave background (CMB) anisotropy, we study simple inflationary models in the context of the Gauss-Bonnet (GB) brane-world cosmology. The brane-world cosmological effect modifies the power spectra of scalar and tensor perturbations generated by inflation and causes a dramatic change for the inflationary predictions of the spectral index (n s) and the tensor-to-scalar ratio (r) from those obtained in the standard cosmology. In particular, the predicted r values in the inflationary models favored by the Planck 2015 results are suppressed due to the GB brane-world cosmological effect, which is in sharp contrast with inflationary scenario in the Randall-Sundrum brane-world cosmology, where the r values are enhanced. Hence, these two brane-world cosmological scenarios are distinguishable. With the dramatic change of the inflationary predictions, the inflationary scenario in the GB brane-world cosmology can be tested by more precise measurements of n s and future observations of the CMB B-mode polarization.

  15. Motor cortex single-neuron and population contributions to compensation for multiple dynamic force fields.

    PubMed

    Addou, Touria; Krouchev, Nedialko I; Kalaska, John F

    2015-01-15

    To elucidate how primary motor cortex (M1) neurons contribute to the performance of a broad range of different and even incompatible motor skills, we trained two monkeys to perform single-degree-of-freedom elbow flexion/extension movements that could be perturbed by a variety of externally generated force fields. Fields were presented in a pseudorandom sequence of trial blocks. Different computer monitor background colors signaled the nature of the force field throughout each block. There were five different force fields: null field without perturbing torque, assistive and resistive viscous fields proportional to velocity, a resistive elastic force field proportional to position and a resistive viscoelastic field that was the linear combination of the resistive viscous and elastic force fields. After the monkeys were extensively trained in the five field conditions, neural recordings were subsequently made in M1 contralateral to the trained arm. Many caudal M1 neurons altered their activity systematically across most or all of the force fields in a manner that was appropriate to contribute to the compensation for each of the fields. The net activity of the entire sample population likewise provided a predictive signal about the differences in the time course of the external forces encountered during the movements across all force conditions. The neurons showed a broad range of sensitivities to the different fields, and there was little evidence of a modular structure by which subsets of M1 neurons were preferentially activated during movements in specific fields or combinations of fields.

  16. Dark radiation and inflationary freedom after Planck 2015

    NASA Astrophysics Data System (ADS)

    Di Valentino, Eleonora; Gariazzo, Stefano; Gerbino, Martina; Giusarma, Elena; Mena, Olga

    2016-04-01

    The simplest inflationary models predict a primordial power spectrum (PPS) of the curvature fluctuations that can be described by a power-law function that is nearly scale invariant. It has been shown, however, that the low-multipole spectrum of the cosmic microwave background anisotropies may hint at the presence of some features in the shape of the scalar PPS, which could deviate from its canonical power-law form. We study the possible degeneracies of this nonstandard PPS with the active neutrino masses, the effective number of relativistic species, and a sterile neutrino or a thermal axion mass. The limits on these additional parameters are less constraining in a model with a nonstandard PPS when including only the temperature autocorrelation spectrum measurements in the data analyses. The inclusion of the polarization spectra noticeably helps in reducing the degeneracies, leading to results that typically show no deviation from the Λ CDM model with a standard power-law PPS. These findings are robust against changes in the function describing the noncanonical PPS. Albeit current cosmological measurements seem to prefer the simple power-law PPS description, the statistical significance to rule out other possible parametrizations is still very poor. Future cosmological measurements are crucial to improve the present PPS uncertainties.

  17. Bayesian analysis of inflationary features in Planck and SDSS data

    NASA Astrophysics Data System (ADS)

    Benetti, Micol; Alcaniz, Jailson S.

    2016-07-01

    We perform a Bayesian analysis to study possible features in the primordial inflationary power spectrum of scalar perturbations. In particular, we analyze the possibility of detecting the imprint of these primordial features in the anisotropy temperature power spectrum of the cosmic microwave background (CMB) and also in the matter power spectrum P (k ) . We use the most recent CMB data provided by the Planck Collaboration and P (k ) measurements from the 11th data release of the Sloan Digital Sky Survey. We focus our analysis on a class of potentials whose features are localized at different intervals of angular scales, corresponding to multipoles in the ranges 10 <ℓ<60 (Oscill-1) and 150 <ℓ<300 (Oscill-2). Our results show that one of the step potentials (Oscill-1) provides a better fit to the CMB data than does the featureless Λ CDM scenario, with moderate Bayesian evidence in favor of the former. Adding the P (k ) data to the analysis weakens the evidence of the Oscill-1 potential relative to the standard model and strengthens the evidence of this latter scenario with respect to the Oscill-2 model.

  18. Reconstructing the inflationary f(R) from observations

    SciTech Connect

    Rinaldi, Massimiliano; Cognola, Guido; Vanzo, Luciano; Zerbini, Sergio E-mail: guido.cognola@unitn.it E-mail: zerbini@science.unitn.it

    2014-08-01

    The BICEP2 collaboration has recently released data showing that the scalar-to-tensor ratio r is much larger than expected. The immediate consequence, in the context of f(R) gravity, is that the Starobinsky model of inflation is ruled out since it predicts a value of r much smaller than what is observed. Of course, the BICEP2 data need verification, especially from Planck with which there is some tension, therefore any conclusion seems premature. However, it is interesting to ask what would be the functional form of f(R) in the case when the value of r is different from the one predicted by the Starobinsky model. In this paper, we show how to determine the form of f(R), once the slow-roll parameters are known with some accuracy. The striking result is that, for given values of the scalar spectral index n{sub S} and r, the effective Lagrangian has the form f(R)=R{sup ζ}, where ζ=2-ε and |ε||| 1. Therefore, it appears that the inflationary phase of the Universe is best described by a R{sup 2} theory, with a small deviation that, as we show, can be obtained by quantum corrections.

  19. Inflationary cosmology leading to a soft type singularity

    NASA Astrophysics Data System (ADS)

    Brevik, I.; Obukhov, V. V.; Timoshkin, A. V.

    2016-06-01

    A remarkable property of modern cosmology is that it allows for a special case of symmetry, consisting in the possibility of describing the early-time acceleration (inflation) and the late-time acceleration using the same theoretical framework. In this paper, we consider various cosmological models corresponding to a generalized form for the equation of state for the fluid in a flat Friedmann-Robertson-Walker (FRW) universe, emphasizing cases where the so-called type IV singular inflation is encountered in the future. This is a soft (non-crushing) kind of singularity. Parameter values for an inhomogeneous equation of state leading to singular inflation are obtained. We present models for which there are two type IV singularities, the first corresponding to the end of the inflationary era and the second to a late-time event. We also study the correspondence between the theoretical slow-roll parameters leading to type IV singular inflation and the recent results observed by the Planck satellite.

  20. Basics of quantum field theory of electromagnetic interaction processes in single-layer graphene

    NASA Astrophysics Data System (ADS)

    Hieu Nguyen, Van

    2016-09-01

    The content of this work is the study of electromagnetic interaction in single-layer graphene by means of the perturbation theory. The interaction of electromagnetic field with Dirac fermions in single-layer graphene has a peculiarity: Dirac fermions in graphene interact not only with the electromagnetic wave propagating within the graphene sheet, but also with electromagnetic field propagating from a location outside the graphene sheet and illuminating this sheet. The interaction Hamiltonian of the system comprising electromagnetic field and Dirac fermions fields contains the limits at graphene plane of electromagnetic field vector and scalar potentials which can be shortly called boundary electromagnetic field. The study of S-matrix requires knowing the limits at graphene plane of 2-point Green functions of electromagnetic field which also can be shortly called boundary 2-point Green functions of electromagnetic field. As the first example of the application of perturbation theory, the second order terms in the perturbative expansions of boundary 2-point Green functions of electromagnetic field as well as of 2-point Green functions of Dirac fermion fields are explicitly derived. Further extension of the application of perturbation theory is also discussed.

  1. Response of two-band systems to a single-mode quantized field

    NASA Astrophysics Data System (ADS)

    Shi, Z. C.; Shen, H. Z.; Wang, W.; Yi, X. X.

    2016-03-01

    The response of topological insulators (TIs) to an external weakly classical field can be expressed in terms of Kubo formula, which predicts quantized Hall conductivity of the quantum Hall family. The response of TIs to a single-mode quantized field, however, remains unexplored. In this work, we take the quantum nature of the external field into account and define a Hall conductance to characterize the linear response of a two-band system to the quantized field. The theory is then applied to topological insulators. Comparisons with the traditional Hall conductance are presented and discussed.

  2. Determination of optimal ionic liquid for organic single-crystal field-effect transistors

    NASA Astrophysics Data System (ADS)

    Ono, S.; Miwa, K.; Seki, S.

    2016-02-01

    We investigate organic single-crystal field-effect transistors with various ionic liquids as gate dielectric. We find that the mobility of the field-effect transistors for both p-type and n-type organic semiconductors increases with decreasing total capacitance of the ionic liquid. However, it does not depend on the ion species at the interface between the organic semiconductor and the ionic liquid. By choosing an appropriate ionic liquid, a high carrier mobility of 12.4 cm2/V s in rubrene single crystals (p-type) and 0.13 cm2/V s in 7.7.8.8-Tetracyanoquinodimethane single crystals (n-type) are achieved. This study clarifies the influence of ionic liquids on the device performance of organic field-effect transistors and shows a way to maximize carrier mobility at the solid/liquid interface.

  3. R{sup 2}log R quantum corrections and the inflationary observables

    SciTech Connect

    Ben-Dayan, Ido; Westphal, Alexander; Jing, Shenglin; Torabian, Mahdi; Zarate, Lucila E-mail: shenglin.jing@utoronto.ca E-mail: alexander.westphal@desy.de

    2014-09-01

    We study a model of inflation with terms quadratic and logarithmic in the Ricci scalar, where the gravitational action is f(R)=R+α R{sup 2}+β R{sup 2} ln R. These terms are expected to arise from one loop corrections involving matter fields in curved space-time. The spectral index n{sub s} and the tensor to scalar ratio yield 4 × 10{sup -4}∼< r∼<0.03 and 0.94∼< n{sub s} ∼< 0.99. i.e. r is an order of magnitude bigger or smaller than the original Starobinsky model which predicted r∼ 10{sup -3}. Further enhancement of r gives a scale invariant n{sub s}∼ 1 or higher. Other inflationary observables are d n{sub s}/dln k ∼> -5.2 × 10{sup -4}, μ ∼< 2.1 × 10{sup -8} , y ∼< 2.6 × 10{sup -9}. Despite the enhancement in r, if the recent BICEP2 measurement stands, this model is disfavoured.

  4. Longitudinal wave function control in single quantum dots with an applied magnetic field.

    PubMed

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-01

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018

  5. Longitudinal wave function control in single quantum dots with an applied magnetic field

    PubMed Central

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-01

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018

  6. Gas field ion source current stability for trimer and single atom terminated W(111) tips

    SciTech Connect

    Urban, Radovan; Wolkow, Robert A.; Pitters, Jason L.

    2012-06-25

    Tungsten W(111) oriented trimer-terminated tips as well as single atom tips, fabricated by a gas and field assisted etching and evaporation process, were investigated with a view to scanning ion microscopy and ion beam writing applications. In particular, ion current stability was studied for helium and neon imaging gases. Large ion current fluctuations from individual atomic sites were observed when a trimer-terminated tip was used for the creation of neon ion beam. However, neon ion current was stable when a single atom tip was employed. No such current oscillations were observed for either a trimer or a single atom tip when imaged with helium.

  7. Single-molecule measurements of proteins using carbon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Sims, Patrick Craig

    Single-walled carbon nanotube (SWCNT) field-effect transistors (FETs) provide a promising platform for investigating proteins at the single-molecule level. Recently, we have demonstrated that SWCNT FETs have sufficient sensitivity and bandwidth to monitor the conformational motions and processivity of an individual T4 lysozyme molecule. This is accomplished by functionalizing a SWCNT FET device with a single protein and measuring the conductance versus time through the device as it is submerged in an electrolyte solution. To generalize this approach for the study of a wide variety of proteins at the single-molecule level, this dissertation investigates the conjugation process to determine and isolate the key parameters involved in functionalizing a SWCNT with a single protein, the physical basis for transducing conformational motion of a protein into an electrical signal, and finally, the general application of the technique to monitor the binary and ternary complex formation of cAMP-dependent protein kinase (PKA).

  8. A high-field (30 Tesla) pulsed magnet instrument for single-crystal scattering studies

    NASA Astrophysics Data System (ADS)

    Islam, Zahirul; Nojiri, Hiroyuki; Narumi, Yasuo; Lang, Jonathan

    2010-03-01

    Pulsed magnets have emerged as a viable approach at synchrotron x-ray facilities for studying materials in high magnetic fields. We are developing a new high-field (30 Tesla) pulsed magnet system for single-crystal x-ray diffraction studies. It consists of a single 18mm-bore solenoid, designed and built at Tohoku University using high-tensile-strength and high conductivity CuAg wires. A dual-cryostat scheme has been developed at Advanced Photon Source in order to cool the coil using liquid nitrogen and the sample using a closed-cycle cryostat independently. Liquid nitrogen cooling allows repetition rate of a few minutes for peak fields near 30 Tesla. This scheme is unique in that it allows the applied magnetic field to be parallel to the scattering plane. Time-resolved scattering data are typically collected using a fast one-dimensional strip detector. Opportunities and challenges for experiments and instrumentation will be discussed.

  9. Anisotropies of the lower and upper critical fields in MgB2 single crystals.

    PubMed

    Lyard, L; Szabó, P; Klein, T; Marcus, J; Marcenat, C; Kim, K H; Kang, B W; Lee, H S; Lee, S I

    2004-02-01

    The temperature dependence of the upper (H(c2)) and lower (H(c1)) critical fields has been deduced from Hall probe magnetization measurements of high quality MgB2 single crystals along the two main crystallographic directions. We show that Gamma(H(c2))=H(c2 axially ab)/H(c2 axially c) and Gamma(H(c1))=H(c1 axially c)/H(c1 axially ab) differ significantly at low temperature (being approximately 5 and approximately 1, respectively) and have opposite temperature dependencies. We suggest that MgB2 can be described by a single field dependent anisotropy parameter gamma(H) (=lambda(c)/lambda(ab)=xi(ab)/xi(c)) that increases from Gamma(H(c1)) at low field to Gamma(H(c2)) at high field.

  10. On the decay of the magnetic fields of single radio pulsars

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Dipankar; Wijers, Ralph A. M. J.; Hartman, Jan W.; Verbunt, Frank

    1992-01-01

    We investigate the statistical evidence for the decay of the magnetic field of single radio pulsars. We perform population syntheses for different assumed values for the time scale of field decay using a Monte Carlo method. We allow for the selection effects in pulsar surveys and compare the synthesized populations with the observed pulsars. We take account of the finite scale height of the distribution in the Galaxy of free electrons, which determine the dispersion measure and hence the apparent distance of radio pulsars. Our simulations give much better agreement with the observations if the time scale for the field decay is assumed to be longer than the typical active life time of a radio pulsar. This indicates that no significant field decay occurs in single radio pulsars.

  11. [Analysis of Influence on Single Eythrocyte Injury Caused by Oscillating Boundary Flow Field].

    PubMed

    Yun, Zhong; Xiang, Chuang; Cai, Chao; Xu, Junrui

    2016-02-01

    The implantable axial blood pump, driven by external electromagnet, is studied recently. It oscillats when it is running because of the elastic implanted environment and driving force disequilibrium, etc. In this paper, a model of single erythrocyte in vibrated flow field was built to simulate the deformation and force of the erythrocyte. By using the mechanical injury principle of blood in blood pump, we studied the injury of a single erythrocyte resulted from oscillating boundary flow field. The research results indicated that the shape of the erythrocyte, force and velocity field nearby, which are affected by oscillating boundary flow field, all cause injury to the erythrocyte. All the researches shown in the present paper are expected to provide theoretical foundation for lightening hemolysis by the blood pump. PMID:27382744

  12. Hybrid single-beam reconstruction technique for slow and fast varying wave fields.

    PubMed

    Falaggis, Konstantinos; Kozacki, Tomasz; Kujawinska, Malgorzata

    2015-06-01

    An iterative single-beam wave field reconstruction technique that employs both non-paraxial, wave propagation based and paraxial deterministic phase retrieval techniques is presented. This approach overcomes two major obstacles that exist in the current state of the art techniques: iterative methods do not reconstruct slowly varying wave fields due to slow convergence and stagnation, and deterministic methods have paraxial limits, making the reconstructions of quickly varying object features impossible. In this work, a hybrid approach is reported that uses paraxial wave field corrections within iterative phase retrieval solvers. This technique is suitable for cases ranging from slow to fast varying wave fields, and unlike the currently available methods, can also reconstruct measurement objects with different regions of both slowly and quickly varying object features. It is further shown that this technique gives a higher accuracy than current single-beam phase retrieval techniques, and in comparison to the iterative methods, has a higher convergence speed.

  13. Electro-optical field sensor using single total internal reflection in electro-optical crystals

    NASA Astrophysics Data System (ADS)

    Kijima, K.; Abe, O.; Shimizu, A.; Nakamura, T.; Kono, H.; Hagihara, S.; Torikai, E.; Hori, H.

    2015-08-01

    A novel electro-optical radio frequency field sensor with simple structure and high sensitivity is realized using single total internal reflection in electro-optical crystals. Without employing any waveguide structures, the minimum detectable electric field strength of the total internal reflection electro-optical-sensor is estimated to 86.52 dB μV/m (21.18 mV/m) at a resolution band width of 100 Hz for a short interaction length.

  14. Smartphone Microscopy of Parasite Eggs Accumulated into a Single Field of View.

    PubMed

    Sowerby, Stephen J; Crump, John A; Johnstone, Maree C; Krause, Kurt L; Hill, Philip C

    2016-01-01

    A Nokia Lumia 1020 cellular phone (Microsoft Corp., Auckland, New Zealand) was configured to image the ova of Ascaris lumbricoides converged into a single field of view but on different focal planes. The phone was programmed to acquire images at different distances and, using public domain computer software, composite images were created that brought all the eggs into sharp focus. This proof of concept informs a framework for field-deployable, point of care monitoring of soil-transmitted helminths. PMID:26572870

  15. Smartphone Microscopy of Parasite Eggs Accumulated into a Single Field of View

    PubMed Central

    Sowerby, Stephen J.; Crump, John A.; Johnstone, Maree C.; Krause, Kurt L.; Hill, Philip C.

    2016-01-01

    A Nokia Lumia 1020 cellular phone (Microsoft Corp., Auckland, New Zealand) was configured to image the ova of Ascaris lumbricoides converged into a single field of view but on different focal planes. The phone was programmed to acquire images at different distances and, using public domain computer software, composite images were created that brought all the eggs into sharp focus. This proof of concept informs a framework for field-deployable, point of care monitoring of soil-transmitted helminths. PMID:26572870

  16. Single-sided lateral-field and phototransistor-based optoelectronic tweezers

    NASA Technical Reports Server (NTRS)

    Ohta, Aaron (Inventor); Chiou, Pei-Yu (Inventor); Hsu, Hsan-Yin (Inventor); Jamshidi, Arash (Inventor); Wu, Ming-Chiang (Inventor); Neale, Steven L. (Inventor)

    2011-01-01

    Described herein are single-sided lateral-field optoelectronic tweezers (LOET) devices which use photosensitive electrode arrays to create optically-induced dielectrophoretic forces in an electric field that is parallel to the plane of the device. In addition, phototransistor-based optoelectronic tweezers (PhOET) devices are described that allow for optoelectronic tweezers (OET) operation in high-conductivity physiological buffer and cell culture media.

  17. Smartphone Microscopy of Parasite Eggs Accumulated into a Single Field of View.

    PubMed

    Sowerby, Stephen J; Crump, John A; Johnstone, Maree C; Krause, Kurt L; Hill, Philip C

    2016-01-01

    A Nokia Lumia 1020 cellular phone (Microsoft Corp., Auckland, New Zealand) was configured to image the ova of Ascaris lumbricoides converged into a single field of view but on different focal planes. The phone was programmed to acquire images at different distances and, using public domain computer software, composite images were created that brought all the eggs into sharp focus. This proof of concept informs a framework for field-deployable, point of care monitoring of soil-transmitted helminths.

  18. Bayesian evidence and predictivity of the inflationary paradigm

    NASA Astrophysics Data System (ADS)

    Gubitosi, Giulia; Lagos, Macarena; Magueijo, João; Allison, Rupert

    2016-06-01

    In this paper we consider the issue of paradigm evaluation by applying Bayes' theorem along the following nested hierarchy of progressively more complex structures: i) parameter estimation (within a model), ii) model selection and comparison (within a paradigm), iii) paradigm evaluation. In such a hierarchy the Bayesian evidence works both as the posterior's normalization at a given level and as the likelihood function at the next level up. Whilst raising no objections to the standard application of the procedure at the two lowest levels, we argue that it should receive a considerable modification when evaluating paradigms, when testability and fitting data are equally important. By considering toy models we illustrate how models and paradigms that are difficult to falsify are always favoured by the Bayes factor. We argue that the evidence for a paradigm should not only be high for a given dataset, but exceptional with respect to what it would have been, had the data been different. With this motivation we propose a measure which we term predictivity, as well as a prior to be incorporated into the Bayesian framework, penalising unpredictivity as much as not fitting data. We apply this measure to inflation seen as a whole, and to a scenario where a specific inflationary model is hypothetically deemed as the only one viable as a result of information alien to cosmology (e.g. Solar System gravity experiments, or particle physics input). We conclude that cosmic inflation is currently hard to falsify, but that this could change were external/additional information to cosmology to select one of its many models. We also compare this state of affairs to bimetric varying speed of light cosmology.

  19. Vector magnetic field sensing by a single nitrogen vacancy center in diamond

    NASA Astrophysics Data System (ADS)

    Chen, X.-D.; Sun, F.-W.; Zou, C.-L.; Cui, J.-M.; Zhou, L.-M.; Guo, G.-C.

    2013-03-01

    In this letter, we proposed and experimentally demonstrated a method to detect the vector magnetic field with a single nitrogen vacancy (NV) center in diamond. The magnetic field in parallel with the axis of the NV center can be obtained by detecting the electron Zeeman shift, while the Larmor precession of an ancillary nuclear spin close to the NV center can be used to measure the field perpendicular to the axis. Experimentally, both the Zeeman shift and Larmor precession can be measured through the fluorescence from the NV center. By applying additional calibrated magnetic fields, complete information on the vector magnetic field can be achieved with such a method. This vector magnetic-field detection method is insensitive to temperature fluctuation and it can be applied to nanoscale magnetic measurements.

  20. Design of a surgical robot with dynamic vision field control for Single Port Endoscopic Surgery.

    PubMed

    Kobayashi, Yo; Sekiguchi, Yuta; Tomono, Yu; Watanabe, Hiroki; Toyoda, Kazutaka; Konishi, Kozo; Tomikawa, Morimasa; Ieiri, Satoshi; Tanoue, Kazuo; Hashizume, Makoto; Fujie, Masaktsu G

    2010-01-01

    Recently, a robotic system was developed to assist Single Port Endoscopic Surgery (SPS). However, the existing system required a manual change of vision field, hindering the surgical task and increasing the degrees of freedom (DOFs) of the manipulator. We proposed a surgical robot for SPS with dynamic vision field control, the endoscope view being manipulated by a master controller. The prototype robot consisted of a positioning and sheath manipulator (6 DOF) for vision field control, and dual tool tissue manipulators (gripping: 5DOF, cautery: 3DOF). Feasibility of the robot was demonstrated in vitro. The "cut and vision field control" (using tool manipulators) is suitable for precise cutting tasks in risky areas while a "cut by vision field control" (using a vision field control manipulator) is effective for rapid macro cutting of tissues. A resection task was accomplished using a combination of both methods.

  1. Pinning features of the magnetic flux trapped by YBCO single crystals in weak constant magnetic fields

    NASA Astrophysics Data System (ADS)

    Monarkha, V. Yu.; Paschenko, V. A.; Timofeev, V. P.

    2013-02-01

    The dynamics of Abrikosov vortices and their bundles was experimentally investigated in weak constant magnetic fields, in the range of Earth's magnetic field. Characteristics of the isothermal magnetization relaxation in YBCO single-crystal samples with strong pinning centers were studied for different sample-field orientation. The obtained values of normalized relaxation rate S allowed us to estimate the effective pinning potential U in the bulk of the YBCO sample and its temperature dependence, as well as the critical current density Jc. A comparison between the data obtained and the results of similar measurements in significantly higher magnetic fields was performed. To compare different techniques for evaluation of Jc, the magnetization loop measurements M(H), which relate the loop width to the critical current, were carried out. These measurements provided important parameters of the samples under study (penetration field Hp and first critical field Hc1), which involve the geometrical configuration of the samples.

  2. Magnetostrictive behaviors of Fe-Si(001) single-crystal films under rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Kawai, Tetsuroh; Aida, Takuya; Ohtake, Mitsuru; Futamoto, Masaaki

    2015-05-01

    Magnetostrictive behaviors under rotating magnetic fields are investigated for bcc(001) single-crystal films of Fe100-x-Six(x = 0, 6, 10 at. %). The magnetostriction observation directions are along bcc[100] and bcc[110] of the films. The magnetostriction waveform varies greatly depending on the observation direction. For the observation along [100], the magnetostriction waveform of all the films is bathtub-like and the amplitude stays at almost constant even when the magnetic field is increased up to the anisotropy field. On the other hand, the waveform along [110] is triangular and the amplitude increases with increasing magnetic field up to the anisotropy field and then saturates. In addition, the waveform of Fe90Si10 film is distorted triangular when the applied magnetic fields are less than its anisotropy field. These magnetostrictive behaviors under rotating magnetic fields are well explained by employing a proposed modified coherent rotation model where the anisotropy field and the magnetization reversal field are determined by using measured magnetization curves. The results show that magnetocrystalline anisotropy plays important role on magnetostrictive behavior under rotating magnetic fields.

  3. A novel prediction method about single components of analog circuits based on complex field modeling.

    PubMed

    Zhou, Jingyu; Tian, Shulin; Yang, Chenglin

    2014-01-01

    Few researches pay attention to prediction about analog circuits. The few methods lack the correlation with circuit analysis during extracting and calculating features so that FI (fault indicator) calculation often lack rationality, thus affecting prognostic performance. To solve the above problem, this paper proposes a novel prediction method about single components of analog circuits based on complex field modeling. Aiming at the feature that faults of single components hold the largest number in analog circuits, the method starts with circuit structure, analyzes transfer function of circuits, and implements complex field modeling. Then, by an established parameter scanning model related to complex field, it analyzes the relationship between parameter variation and degeneration of single components in the model in order to obtain a more reasonable FI feature set via calculation. According to the obtained FI feature set, it establishes a novel model about degeneration trend of analog circuits' single components. At last, it uses particle filter (PF) to update parameters for the model and predicts remaining useful performance (RUP) of analog circuits' single components. Since calculation about the FI feature set is more reasonable, accuracy of prediction is improved to some extent. Finally, the foregoing conclusions are verified by experiments. PMID:25147853

  4. Gap size dependent transition from direct tunneling to field emission in single molecule junctions.

    PubMed

    Xiang, Dong; Zhang, Yi; Pyatkov, Feliks; Offenhäusser, Andreas; Mayer, Dirk

    2011-04-28

    I/V characteristics recorded in mechanically controllable break junctions revealed that field emission transport is enhanced in single molecule junctions as the gap size between two nanoelectrodes is reduced. This observation indicates that Fowler-Nordheim tunneling occurs not only for intermolecular but also for intramolecular electron transport driven by a reduced energy barrier at short tunneling distances.

  5. Resistive memory effects in BiFeO3 single crystals controlled by transverse electric fields

    NASA Astrophysics Data System (ADS)

    Kawachi, S.; Kuroe, H.; Ito, T.; Miyake, A.; Tokunaga, M.

    2016-04-01

    The effects of electric fields perpendicular to the c-axis of the trigonal cell in single crystals of BiFeO3 are investigated through magnetization and resistance measurements. Magnetization and resistance exhibit hysteretic changes under applied electric fields, which can be ascribed to the reorientation of the magnetoelectric domains. Samples are repetitively switched between high- and low-resistance states by changing the polarity of the applied electric fields over 20 000 cycles at room temperature. These results demonstrate the potential of BiFeO3 for use in non-volatile memory devices.

  6. Electrically controlling single-spin qubits in a continuous microwave field

    PubMed Central

    Laucht, Arne; Muhonen, Juha T.; Mohiyaddin, Fahd A.; Kalra, Rachpon; Dehollain, Juan P.; Freer, Solomon; Hudson, Fay E.; Veldhorst, Menno; Rahman, Rajib; Klimeck, Gerhard; Itoh, Kohei M.; Jamieson, David N.; McCallum, Jeffrey C.; Dzurak, Andrew S.; Morello, Andrea

    2015-01-01

    Large-scale quantum computers must be built upon quantum bits that are both highly coherent and locally controllable. We demonstrate the quantum control of the electron and the nuclear spin of a single 31P atom in silicon, using a continuous microwave magnetic field together with nanoscale electrostatic gates. The qubits are tuned into resonance with the microwave field by a local change in electric field, which induces a Stark shift of the qubit energies. This method, known as A-gate control, preserves the excellent coherence times and gate fidelities of isolated spins, and can be extended to arbitrarily many qubits without requiring multiple microwave sources. PMID:26601166

  7. Electrically controlling single-spin qubits in a continuous microwave field.

    PubMed

    Laucht, Arne; Muhonen, Juha T; Mohiyaddin, Fahd A; Kalra, Rachpon; Dehollain, Juan P; Freer, Solomon; Hudson, Fay E; Veldhorst, Menno; Rahman, Rajib; Klimeck, Gerhard; Itoh, Kohei M; Jamieson, David N; McCallum, Jeffrey C; Dzurak, Andrew S; Morello, Andrea

    2015-04-01

    Large-scale quantum computers must be built upon quantum bits that are both highly coherent and locally controllable. We demonstrate the quantum control of the electron and the nuclear spin of a single (31)P atom in silicon, using a continuous microwave magnetic field together with nanoscale electrostatic gates. The qubits are tuned into resonance with the microwave field by a local change in electric field, which induces a Stark shift of the qubit energies. This method, known as A-gate control, preserves the excellent coherence times and gate fidelities of isolated spins, and can be extended to arbitrarily many qubits without requiring multiple microwave sources. PMID:26601166

  8. [Detection of genetic variability in Cercospora kikuchii isolates from a single soybean field].

    PubMed

    Lurá, M C; Di Conza, J A; González, A M; Latorre Rapela, M G; Turino, L; Ibáñez, M M; Iacona, V

    2007-01-01

    Detection of genetic variability in Cercospora kikuchii isolates from a single soybean field. Current knowledge about epidemiology and population structure of Cercospora kikuchii is little developed and no studies regarding this subject have been reported in Argentina. The aim of this work was to select primers to study genetic variability in C. kikuchii isolated from the same soybean field using RAPD (Random Amplified Polymorphism DNA). RAPD was applied to the DNA of 5 C. kikuchii, isolated from diseased tissue of the soybean in the same field, another isolate, from a strain collection. Out of seven primers, five of them proved to be useful to study the population of C. kikuchii isolates.

  9. Detection of the spatiotemporal field of a single-shot terahertz pulse based on spectral holography

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Lei; Fei, Yang; Li, Lu-Jie; Wang, Qiang; Zhu, Zhu-Qing

    2014-06-01

    According to electro-optical sampling theory, we propose a new method to detect the spatiotemporal field of a single-shot terahertz pulse by spectral holography for the first time. The single-shot terahertz pulse is coupled into a broadened chirped femtosecond pulse according to electro-optical sampling theory in the detecting system. Then the reference wave and the signal wave are split by Dammann grating and spread into the interference band-pass filter. The filtered sub-waves are at different central-frequencies because of the different incident angles. These sub-waves at different central-frequencies interfere to form sub-holograms, which are recorded in a single frame of a charge coupled device (CCD). The sub-holograms are numerically processed, and the spatiotemporal field distribution of the original terahertz pulse is reconstructed. The computer simulations verify the feasibility of the proposed method.

  10. Obtaining Vector Magnetic Field Maps of Geological Samples with Single-Axis Scanning Magnetic Microscopes

    NASA Astrophysics Data System (ADS)

    Lima, E. A.; Weiss, B. P.

    2008-12-01

    Magnetic scanning microscopy can be used to study inhomogeneous magnetization in geological samples with submillimiter spatial resolution. In particular, Superconducting Quantum Interference Device (SQUID) microscopes offer a unique combination of high spatial resolution and outstanding field sensitivity. However, due to physical constraints, most magnetic microscopes only measure a single component of the magnetic field. Nevertheless, Maxwell's equations can be used to demonstrate that the components of a static magnetic field in a region of space devoid of sources are not independent. This means that single-axis scanning magnetometers can potentially obtain all of three components of the field external to the sample. We present an improved technique in the Fourier domain which can obtain the complete vector field planar map from just the planar map of one component. This technique is fast, robust, does not rely on any specific source type or configuration and does not require the formulation of an inverse problem. In contrast to other applications in geomagnetic remote sensing, the assumptions and conditions imposed on the field distribution by the technique can be naturally satisfied in scanning microscopy of geological samples. We analyze the advantages and shortcomings of the technique, and establish which sensor and mapping configurations may yield high quality three-component field maps with virtually no information loss. We present results obtained both with synthetic data and experimental data measured with our SQUID microscope system.

  11. Vertically-Aligned Single-Crystal Nanocone Arrays: Controlled Fabrication and Enhanced Field Emission.

    PubMed

    Duan, Jing Lai; Lei, Dang Yuan; Chen, Fei; Lau, Shu Ping; Milne, William I; Toimil-Molares, M E; Trautmann, Christina; Liu, Jie

    2016-01-13

    Metal nanostructures with conical shape, vertical alignment, large ratio of cone height and curvature radius at the apex, controlled cone angle, and single-crystal structure are ideal candidates for enhancing field electron-emission efficiency with additional merits, such as good mechanical and thermal stability. However, fabrication of such nanostructures possessing all these features is challenging. Here, we report on the controlled fabrication of large scale, vertically aligned, and mechanically self-supported single-crystal Cu nanocones with controlled cone angle and enhanced field emission. The Cu nanocones were fabricated by ion-track templates in combination with electrochemical deposition. Their cone angle is controlled in the range from 0.3° to 6.2° by asymmetrically selective etching of the ion tracks and the minimum tip curvature diameter reaches down to 6 nm. The field emission measurements show that the turn-on electric field of the Cu nanocone field emitters can be as low as 1.9 V/μm at current density of 10 μA/cm(2) (a record low value for Cu nanostructures, to the best of our knowledge). The maximum field enhancement factor we measured was as large as 6068, indicating that the Cu nanocones are promising candidates for field emission applications.

  12. Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2016-01-19

    We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process.

  13. Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2016-01-19

    We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process. PMID:26695105

  14. Magnetic-field-modulated Kondo effect in a single-magnetic-ion molecule

    NASA Astrophysics Data System (ADS)

    Romero, Javier I.; Vernek, E.; Martins, G. B.; Mucciolo, E. R.

    2014-11-01

    We study numerically the low-temperature electronic transport properties of a single-ion magnet with uniaxial and transverse spin anisotropies. We find clear signatures of a Kondo effect caused by the presence of a transverse (zero-field) anisotropy in the molecule. This Kondo effect has an SU(2) pseudospin character, associated with a doublet ground state of the isolated molecule, which results from the transverse anisotropy. Upon applying a transverse magnetic field to the single-ion magnet, we observe oscillations of the Kondo effect due to the presence of diabolical points (degeneracies) of the energy spectrum of the molecule caused by geometrical phase interference effects, similar to those observed in the quantum tunneling of multi-ion molecular nanomagnets. The field-induced lifting of the ground-state degeneracy competes with the interference modulation, resulting in some cases in a suppression of the Kondo peak.

  15. High-current-density field emission display fabricated from single-walled carbon nanotube electron sources

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Shang, X. F.; Ma, Y. P.; Zhou, J. J.; Gu, Z. Q.; Li, Z. H.; Xu, Y. B.; Wang, M.

    2008-06-01

    Single-walled carbon nanotubes can be used as electron sources in the process of field emission, and have great potential for practical application of the field emission display (FED) panels with large screen size. We fabricated a FED using the single-walled carbon nanotubes (SWNTs) as the cathode by the screen-printing process. Test showed that the SWNTs emitters exhibit excellent macroscopic emission properties. It has low turn-on voltage (2.7 V/μ m) and high brightness, with a high current density of good uniformity and stability. It was observed that the field emission qualitatively follows the conventional Fowler Nordheim (F N) theory, and aging treatment played an important role in improving the image uniformity and stability. Compared to other complicated processes, the simple fabrication using screen-printing process seems to be advantageous for practical application.

  16. Fluorescence modulation in single CdSe quantum dots by moderate applied electric fields

    NASA Astrophysics Data System (ADS)

    LeBlanc, Sharonda J.; McClanahan, Mason R.; Moyer, Tully; Jones, Marcus; Moyer, Patrick J.

    2014-01-01

    Single molecule time-resolved fluorescence spectroscopy of CdSe/ZnS core-shell quantum dots (QDs) under the influence of moderate applied electric fields reveals distributed emission from states which are neither fully on nor off and pronounced changes in the excited state decay. The data suggest that a 54 kV/cm applied electric field causes small perturbations to the QD surface charge distribution, effectively increasing the surface trapping probability and resulting in the appearance of gray states. We present simultaneous blinking and fluorescence decay results for two sets of QDs, with and without an applied electric field. Further kinetic modeling analysis suggests that a single trapped charged cannot be responsible for a blinking off event.

  17. Inflammable gas mixture detection with a single catalytic sensor based on the electric field effect.

    PubMed

    Tong, Ziyuan; Tong, Min-Ming; Meng, Wen; Li, Meng

    2014-01-01

    This paper introduces a new way to analyze mixtures of inflammable gases with a single catalytic sensor. The analysis technology was based on a new finding that an electric field on the catalytic sensor can change the output sensitivity of the sensor. The analysis of mixed inflammable gases results from processing the output signals obtained by adjusting the electric field parameter of the catalytic sensor. For the signal process, we designed a group of equations based on the heat balance of catalytic sensor expressing the relationship between the output signals and the concentration of gases. With these equations and the outputs of different electric fields, the gas concentration in a mixture could be calculated. In experiments, a mixture of methane, butane and ethane was analyzed by this new method, and the results showed that the concentration of each gas in the mixture could be detected with a single catalytic sensor, and the maximum relative error was less than 5%. PMID:24717635

  18. Alignment dynamics of single-walled carbon nanotubes in pulsed ultrahigh magnetic fields.

    PubMed

    Shaver, Jonah; Parra-Vasquez, A Nicholas G; Hansel, Stefan; Portugall, Oliver; Mielke, Charles H; von Ortenberg, Michael; Hauge, Robert H; Pasquali, Matteo; Kono, Junichiro

    2009-01-27

    We have measured the dynamic alignment properties of single-walled carbon nanotube (SWNT) suspensions in pulsed high magnetic fields through linear dichroism spectroscopy. Millisecond-duration pulsed high magnetic fields up to 56 T as well as microsecond-duration pulsed ultrahigh magnetic fields up to 166 T were used. Because of their anisotropic magnetic properties, SWNTs align in an applied magnetic field, and because of their anisotropic optical properties, aligned SWNTs show linear dichroism. The characteristics of their overall alignment depend on several factors, including the viscosity and temperature of the suspending solvent, the degree of anisotropy of nanotube magnetic susceptibilities, the nanotube length distribution, the degree of nanotube bundling, and the strength and duration of the applied magnetic field. To explain our data, we have developed a theoretical model based on the Smoluchowski equation for rigid rods that accurately reproduces the salient features of the experimental data.

  19. Communication: Multiple atomistic force fields in a single enhanced sampling simulation

    SciTech Connect

    Hoang Viet, Man; Derreumaux, Philippe; Nguyen, Phuong H.

    2015-07-14

    The main concerns of biomolecular dynamics simulations are the convergence of the conformational sampling and the dependence of the results on the force fields. While the first issue can be addressed by employing enhanced sampling techniques such as simulated tempering or replica exchange molecular dynamics, repeating these simulations with different force fields is very time consuming. Here, we propose an automatic method that includes different force fields into a single advanced sampling simulation. Conformational sampling using three all-atom force fields is enhanced by simulated tempering and by formulating the weight parameters of the simulated tempering method in terms of the energy fluctuations, the system is able to perform random walk in both temperature and force field spaces. The method is first demonstrated on a 1D system and then validated by the folding of the 10-residue chignolin peptide in explicit water.

  20. Communication: Multiple atomistic force fields in a single enhanced sampling simulation.

    PubMed

    Hoang Viet, Man; Derreumaux, Philippe; Nguyen, Phuong H

    2015-07-14

    The main concerns of biomolecular dynamics simulations are the convergence of the conformational sampling and the dependence of the results on the force fields. While the first issue can be addressed by employing enhanced sampling techniques such as simulated tempering or replica exchange molecular dynamics, repeating these simulations with different force fields is very time consuming. Here, we propose an automatic method that includes different force fields into a single advanced sampling simulation. Conformational sampling using three all-atom force fields is enhanced by simulated tempering and by formulating the weight parameters of the simulated tempering method in terms of the energy fluctuations, the system is able to perform random walk in both temperature and force field spaces. The method is first demonstrated on a 1D system and then validated by the folding of the 10-residue chignolin peptide in explicit water.

  1. Low field induced giant anisotropic magnetocaloric effect in DyFeO3 single crystal

    NASA Astrophysics Data System (ADS)

    Ya-Jiao, Ke; Xiang-Qun, Zhang; Heng, Ge; Yue, Ma; Zhao-Hua, Cheng

    2015-03-01

    We have investigated the anisotropic magnetocaloric effect and the rotating field magnetic entropy in DyFeO3 single crystal. A giant rotating field entropy change of was achieved from b axis to c axis in bc plane at 5 K for a low field change of 20 kOe. The large anisotropic magnetic entropy change is mainly accounted for the 4f electron of rare-earth Dy3 + ion. The large value of rotating field entropy change, together with large refrigeration capacity and negligible hysteresis, suggests that the multiferroic ferrite DyFeO3 singlecrystal could be a potential material for anisotropic magnetic refrigeration at low field, which can be realized in the practical application around liquid helium temperature region. Project supported by the National Basic Research Program of China (Grant Nos. 2010CB934202, 2011CB921801, and 2012CB933102) and the National Natural Science Foundation of China (Grant Nos. 11174351, 11274360, and 11034004).

  2. Space of non-Gaussian fields with single-clock bispectra

    NASA Astrophysics Data System (ADS)

    Baytaş, Bekir; Shandera, Sarah

    2016-08-01

    We develop a mathematical construction of non-Gaussian fields whose bispectra satisfy the single-clock inflation consistency relation. At the same order that our basis for bispectra recovers the two simplest single-clock templates, we also find a third orthogonal template which has the single-clock squeezed limit, peaks in folded configurations, and has very small coupling in the equilateral limit. We explore the map between templates and operators in a very general Lagrangian for single-clock fluctuations and find no significant overlap between the new template and models in the literature. We comment on the physical implications of this conclusion. Our findings add support for the idea that both theory- and data-driven considerations will be best served if next-generation non-Gaussianity constraints are made in a basis that uses the degree of coupling between long- and short-wavelength modes as an organizing principle.

  3. Single-shot velocity-map imaging of attosecond light-field control at kilohertz rate

    NASA Astrophysics Data System (ADS)

    Süßmann, F.; Zherebtsov, S.; Plenge, J.; Johnson, Nora G.; Kübel, M.; Sayler, A. M.; Mondes, V.; Graf, C.; Rühl, E.; Paulus, G. G.; Schmischke, D.; Swrschek, P.; Kling, M. F.

    2011-09-01

    High-speed, single-shot velocity-map imaging (VMI) is combined with carrier-envelope phase (CEP) tagging by a single-shot stereographic above-threshold ionization (ATI) phase-meter. The experimental setup provides a versatile tool for angle-resolved studies of the attosecond control of electrons in atoms, molecules, and nanostructures. Single-shot VMI at kHz repetition rate is realized with a highly sensitive megapixel complementary metal-oxide semiconductor camera omitting the need for additional image intensifiers. The developed camera software allows for efficient background suppression and the storage of up to 1024 events for each image in real time. The approach is demonstrated by measuring the CEP-dependence of the electron emission from ATI of Xe in strong (≈1013 W/cm2) near single-cycle (4 fs) laser fields. Efficient background signal suppression with the system is illustrated for the electron emission from SiO2 nanospheres.

  4. Magnetic field dependence of the diffusion of single dextran molecules within a hydrogel containing magnetite nanoparticles.

    PubMed

    Al-Baradi, Ateyyah M; Mykhaylyk, Oleksandr O; Blythe, Harry J; Geoghegan, Mark

    2011-03-01

    We consider the effect of applied magnetic fields on the diffusion of single dextran molecules labeled with fluorescein isothiocyanate within a ferrogel [a composite of magnetite nanoparticles in a poly(methacrylic acid) hydrogel] using fluorescence correlation spectroscopy. We show that the mesh size of the ferrogel is controlled by the applied magnetic field, B, and scales as exp(-(4)√ξ(3)B(2)/2μ(0)k(B)T), where ξ is a correlation length, μ(0) the magnetic constant, k(B) the Boltzmann constant, and T is the absolute temperature. The diffusion coefficient of the dextran can be modeled with a simple Stokes-Einstein law, containing the same scaling behavior with magnetic field as the swelling of the hydrogel. Furthermore, the magnetic field-dependent release of dextran from the hydrogel is also controlled by the same relationship. The samples were characterized by small angle x-ray scattering (SAXS) and magnetometry experiments. Magnetic hysteresis loops from these ferrogels and zero field cooled∕field cooled measurements reveal single domain ferromagnetic behavior at room temperature with a similar coercivity for both as-prepared and fully swollen ferrogels, and for increasing magnetic nanoparticle concentration. SAXS experiments, such as the hysteresis loops, show that magnetite does not aggregate in these gels.

  5. The single place fields of CA3 cells: a two-stage transformation from grid cells

    PubMed Central

    de Almeida, Licurgo; Idiart, Marco; Lisman, John E.

    2013-01-01

    Granule cells of the dentate gyrus (DG) generally have multiple place fields, whereas CA3 cells, which are second order, have only a single place field. Here, we explore the mechanisms by which the high selectivity of CA3 cells is achieved. Previous work showed that the multiple place fields of DG neurons could be quantitatively accounted for by a model based on the number and strength of grid cell inputs and a competitive network interaction in the DG that is mediated by gamma frequency feedback inhibition. We have now built a model of CA3 based on similar principles. CA3 cells receive input from an average of one active DG cell and from 1400 cortical grid cells. Based on experimental findings, we have assumed a linear interaction of the two pathways. The results show that simulated CA3 cells generally have a single place field, as observed experimentally. Thus, a two-step process based on simple rules (and that can occur without learning) is able to explain how grid cell inputs to the hippocampus give rise to cells having ultimate spatial selectivity. The CA3 processes that produce a single place depend critically on the competitive network processes and do not require the direct cortical inputs to CA3, which are therefore likely to perform some other unknown function. PMID:20928834

  6. Non-gaussian inflationary shapes in G{sup 3} theories beyond Horndeski

    SciTech Connect

    Fasiello, Matteo; Renaux-Petel, Sébastien E-mail: srenaux@lpthe.jussieu.fr

    2014-10-01

    We consider the possible signatures of a recently introduced class of healthy theories beyond Horndeski models on higher-order correlators of the inflationary curvature fluctuation. Despite the apparent large number and complexity of the cubic interactions, we show that the leading-order bispectrum generated by the Generalized Horndeski (also called G{sup 3}) interactions can be reduced to a linear combination of two well known k-inflationary shapes. We conjecture that said behavior is not an accident of the cubic order but a consequence dictated by the requirements on the absence of Ostrogradski instability, the general covariance and the linear dispersion relation in these theories.

  7. Single layer retarder with negative dispersion of birefringence and wide field-of-view.

    PubMed

    Hwang, Jiyong; Yang, Seungbin; Choi, Yu-Jin; Lee, Yumin; Jeong, Kwang-Un; Lee, Ji-Hoon

    2016-08-22

    A single layer retarder possessing negative dispersion (ND) of birefringence as well as wide field-of-view (FOV) was long-term objective in optical science. We synthesized new guest reactive monomers with x-shape and mixed them with the host smectic reactive mesogen. The host-guest molecules formed two dimensionally self-organized nanostructure and showed both the ND of birefringence and wide FOV properties. We simulated the antireflection property of a circular polarizer using the optical properties of the retarder. The average reflectance of the retarder was 0.52% which was much smaller than that of the commercial single layer ND retarder 1.83%. PMID:27557268

  8. The internal magnetic field distribution, and single exponential magnetic resonance free induction decay, in rocks.

    PubMed

    Chen, Quan; Marble, Andrew E; Colpitts, Bruce G; Balcom, Bruce J

    2005-08-01

    When fluid saturated porous media are subjected to an applied uniform magnetic field, an internal magnetic field, inside the pore space, is induced due to magnetic susceptibility differences between the pore-filling fluid and the solid matrix. The microscopic distribution of the internal magnetic field, and its gradients, was simulated based on the thin-section pore structure of a sedimentary rock. The simulation results were verified experimentally. We show that the 'decay due to diffusion in internal field' magnetic resonance technique may be applied to measure the pore size distribution in partially saturated porous media. For the first time, we have observed that the internal magnetic field and its gradients in porous rocks have a Lorentzian distribution, with an average gradient value of zero. The Lorentzian distribution of internal magnetic field arises from the large susceptibility contrast and an intrinsic disordered pore structure in these porous media. We confirm that the single exponential magnetic resonance free induction decay commonly observed in fluid saturated porous media arises from a Lorentzian internal field distribution. A linear relationship between the magnetic resonance linewidth, and the product of the susceptibility difference in the porous media and the applied magnetic field, is observed through simulation and experiment.

  9. Terahertz-field-induced ionization effect in a single nano island

    NASA Astrophysics Data System (ADS)

    Seo, Minah

    2016-03-01

    In this report, we present a novel approach to exploit the nonlinear response of terahertz (THz) field allowing the observation of ionization phenomenon in a single metal nano island. Because it is not easy to access such high power THz source to generate field over the threshold of the materials, fundamental studies on nonlinear terahertz waves and their applications in spectroscopy have been limited thus far. We are able to overcome this limitation through the use of a metallic nano island embedded in a slot antenna which strongly confines the terahertz electric field driving the system into a highly nonlinear regime. The structure, composed of a nano slot antenna and a nano island located at the center, highly confines THz electromagnetic field at the center of the structure, resulting in huge field enhancement by orders of magnitude at a specific frequency. Electrons on a metallic surface experience a ponderomotive force in a highly confined and enhanced THz electric field directed towards the weak field area by a field gradient. As a result, the accelerated electrons acquire enough energy to ionize ambient carbon atoms. It has to be stressed that it is the first time to observe the ionization of atoms induced by the enhanced terahertz radiation.

  10. Electric field effect on (6,0) zigzag single-walled aluminum nitride nanotube.

    PubMed

    Baei, Mohammad T; Peyghan, Ali Ahmadi; Moghimi, Masoumeh

    2012-09-01

    Structural, electronic, and electrical responses of the H-capped (6,0) zigzag single-walled aluminum nitride nanotube was studied under the parallel and transverse electric fields with strengths 0-140 × 10(-4) a.u. by using density functional calculations. Geometry optimizations were carried out at the B3LYP/6-31G* level of theory using a locally modified version of the GAMESS electronic structure program. The dipole moments, atomic charge variations, and total energy of the (6,0) zigzag AlNNT show increases with increase in the applied external electric field strengths. The length, tip diameters, electronic spatial extent, and molecular volume of the nanotube do not significantly change with increasing electric field strength. The energy gap of the nanotube decreases with increases of the electric field strength and its reactivity is increased. Increase of the ionization potential, electron affinity, chemical potential, electrophilicity, and HOMO and LUMO in the nanotube with increase of the applied parallel electric field strengths shows that the parallel field has a much stronger interaction with the nanotube with respect to the transverse electric field strengths. Analysis of the parameters indicates that the properties of AlNNTs can be controlled by the proper external electric field.

  11. Magnetic field tunable small-scale mechanical properties of nickel single crystals measured by nanoindentation technique.

    PubMed

    Zhou, Hao; Pei, Yongmao; Fang, Daining

    2014-01-01

    Nano- and micromagnetic materials have been extensively employed in micro-functional devices. However, measuring small-scale mechanical and magnetomechanical properties is challenging, which restricts the design of new products and the performance of smart devices. A new magnetomechanical nanoindentation technique is developed and tested on a nickel single crystal in the absence and presence of a saturated magnetic field. Small-scale parameters such as Young's modulus, indentation hardness, and plastic index are dependent on the applied magnetic field, which differ greatly from their macroscale counterparts. Possible mechanisms that induced 31% increase in modulus and 7% reduction in hardness (i.e., the flexomagnetic effect and the interaction between dislocations and magnetic field, respectively) are analyzed and discussed. Results could be useful in the microminiaturization of applications, such as tunable mechanical resonators and magnetic field sensors.

  12. Field emission of carbon quantum dots synthesized from a single organic solvent.

    PubMed

    Liu, Xiahui; Yang, Bingjun; Yang, Juan; Yu, Shengxue; Chen, Jiangtao

    2016-11-01

    In this paper, a facile synthesis of carbon quantum dots (CQDs) and its field emission performance are reported. The CQDs are prepared from a single N, N-dimethylformamide acting as carbon and nitrogen-doping sources simultaneously. The CQDs are investigated by photoluminescence, transmission electron microscopy and x-ray photoelectron spectroscopy. The CQDs have an average size of 3 nm and are doped with N atoms. CQD dispersion shows strong fluorescence under UV illumination. For the first time, the field emission behavior of CQDs coated on Si substrate is studied. As a candidate of cold cathode, the CQDs display good field emission performance. The CQD emitter reaches the current density of 1.1 mA cm(-2) at 7.0 V μm(-1) and exhibits good long-term emission stability, suggesting promising application in field emission devices. PMID:27671204

  13. Unsymmetrical magnetization switching in Fe/Si(001) single crystalline film induced by weak bias field

    NASA Astrophysics Data System (ADS)

    Ye, Jun; He, Wei; Wu, Qiong; Hu, Bo; Tang, Jin; Zhang, Xiang-Qun; Chen, Zi-Yu; Cheng, Zhao-Hua

    2014-03-01

    The weak bias field applied on perpendicular direction of the external field provides an excellent opportunity to investigate the in-plane magnetization reversal process of Fe/Si(001) film. In this work, we present the magneto-optical Kerr effect test of Fe single crystal film grown on Si(001) substrate with ultrathin p(2 × 2) iron silicide as buffer layer. Owing to the weak bias field, both 180° and 90° domain wall displacements were observed in one hysteresis loop between the easy axis and hard axis of iron film. Furthermore, both the 180° and 90° domain wall pinning energies can be derived from one hysteresis loop with weak bias field.

  14. Field emission of carbon quantum dots synthesized from a single organic solvent.

    PubMed

    Liu, Xiahui; Yang, Bingjun; Yang, Juan; Yu, Shengxue; Chen, Jiangtao

    2016-11-01

    In this paper, a facile synthesis of carbon quantum dots (CQDs) and its field emission performance are reported. The CQDs are prepared from a single N, N-dimethylformamide acting as carbon and nitrogen-doping sources simultaneously. The CQDs are investigated by photoluminescence, transmission electron microscopy and x-ray photoelectron spectroscopy. The CQDs have an average size of 3 nm and are doped with N atoms. CQD dispersion shows strong fluorescence under UV illumination. For the first time, the field emission behavior of CQDs coated on Si substrate is studied. As a candidate of cold cathode, the CQDs display good field emission performance. The CQD emitter reaches the current density of 1.1 mA cm(-2) at 7.0 V μm(-1) and exhibits good long-term emission stability, suggesting promising application in field emission devices.

  15. Magnetic Field Tunable Small-scale Mechanical Properties of Nickel Single Crystals Measured by Nanoindentation Technique

    PubMed Central

    Zhou, Hao; Pei, Yongmao; Fang, Daining

    2014-01-01

    Nano- and micromagnetic materials have been extensively employed in micro-functional devices. However, measuring small-scale mechanical and magnetomechanical properties is challenging, which restricts the design of new products and the performance of smart devices. A new magnetomechanical nanoindentation technique is developed and tested on a nickel single crystal in the absence and presence of a saturated magnetic field. Small-scale parameters such as Young's modulus, indentation hardness, and plastic index are dependent on the applied magnetic field, which differ greatly from their macroscale counterparts. Possible mechanisms that induced 31% increase in modulus and 7% reduction in hardness (i.e., the flexomagnetic effect and the interaction between dislocations and magnetic field, respectively) are analyzed and discussed. Results could be useful in the microminiaturization of applications, such as tunable mechanical resonators and magnetic field sensors. PMID:24695002

  16. Intraband optical absorption in a single quantum ring: Hydrostatic pressure and intense laser field effects

    NASA Astrophysics Data System (ADS)

    Barseghyan, M. G.

    2016-11-01

    The intraband optical absorption in GaAs/Ga0.7Al0.3As two-dimensional single quantum ring is investigated. Considering the combined effects of hydrostatic pressure and intense laser field the energy of the ground and few excited states has been found using the effective mass approximation and exact diagonalization technique. The energies of these states and the corresponding threshold energy of the intraband optical transitions are examined as a function of hydrostatic pressure for the different values of the laser field parameter. We also investigated the dependencies of the intraband optical absorption coefficient as a function of incident photon energy for different values of hydrostatic pressure and laser field parameter. It is found that the effects of hydrostatic pressure and intense laser field lead to redshift and blueshift of the intraband optical spectrum respectively.

  17. Field emission of carbon quantum dots synthesized from a single organic solvent

    NASA Astrophysics Data System (ADS)

    Liu, Xiahui; Yang, Bingjun; Yang, Juan; Yu, Shengxue; Chen, Jiangtao

    2016-11-01

    In this paper, a facile synthesis of carbon quantum dots (CQDs) and its field emission performance are reported. The CQDs are prepared from a single N, N-dimethylformamide acting as carbon and nitrogen-doping sources simultaneously. The CQDs are investigated by photoluminescence, transmission electron microscopy and x-ray photoelectron spectroscopy. The CQDs have an average size of 3 nm and are doped with N atoms. CQD dispersion shows strong fluorescence under UV illumination. For the first time, the field emission behavior of CQDs coated on Si substrate is studied. As a candidate of cold cathode, the CQDs display good field emission performance. The CQD emitter reaches the current density of 1.1 mA cm-2 at 7.0 V μm-1 and exhibits good long-term emission stability, suggesting promising application in field emission devices.

  18. Microfluidic Device for Electric Field-Driven Single-Cell Captureand Activation

    SciTech Connect

    Toriello, Nicholas M.; Douglas, Erik S.; Mathies, Richard A.

    2005-09-20

    A microchip that performs directed capture and chemical activation of surface-modified single-cells has been developed. The cell-capture system is comprised of interdigitated gold electrodes microfabricated on a glass substrate within PDMS channels. The cell surface is labeled with thiol functional groups using endogenous RGD receptors and adhesion to exposed gold pads on the electrodes is directed by applying a driving electric potential. Multiple cell types can thus be sequentially and selectively captured on desired electrodes. Single-cell capture efficiency is optimized by varying the duration of field application. Maximum single-cell capture is attained for the 10 min trial, with 63+-9 percent (n=30) of the electrode pad rows having a single cell. In activation studies, single M1WT3 CHO cells loaded with the calcium-sensitive dye fluo-4 AM were captured; exposure to the muscarinic agonist carbachol increased the fluorescence to 220+-74percent (n=79) of the original intensity. These results demonstrate the ability to direct the adhesion of selected living single cells on electrodes in a microfluidic device and to analyze their response to chemical stimuli.

  19. Single molecule spectroscopy of conjugated polymer chains in an electric field-aligned liquid crystal.

    PubMed

    Chang, Wei-Shun; Link, Stephan; Yethiraj, Arun; Barbara, Paul F

    2008-01-17

    Using single molecule polarization spectroscopy, we investigated the alignment of a polymer solute with respect to the liquid crystal (LC) director in an LC device while applying an external electric field. The polymer solute is poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (or MEH-PPV), and the LC solvent is 5CB. The electric field induces a change in the LC director orientation from a planar alignment (no electric field) to a perpendicular (homeotropic) alignment with an applied field of 5.5 x 103 V/cm. We find that the polymer chains align with the LC director in both planar and homeotropic alignment when measured in the bulk of the LC solution away from the device interface. Single molecule polarization distributions measured as a function of distance from the LC device interface reveal a continuous change of the MEH-PPV alignment from planar to homeotropic. The observed polarization distributions are modeled using a conventional elastic model that predicts the depth profile of the LC director orientation for the applied electric field. The excellent agreement between experiment and simulations shows that the alignment of MEH-PPV follows the LC director throughout the LC sample. Furthermore, our results suggest that conjugated polymers such as MEH-PPV can be used as sensitive local probes to explore complex (and unknown) structures in anisotropic media. PMID:17975912

  20. Universal thermal corrections to single interval entanglement entropy for two dimensional conformal field theories.

    PubMed

    Cardy, John; Herzog, Christopher P

    2014-05-01

    We consider single interval Rényi and entanglement entropies for a two dimensional conformal field theory on a circle at nonzero temperature. Assuming that the finite size of the system introduces a unique ground state with a nonzero mass gap, we calculate the leading corrections to the Rényi and entanglement entropy in a low temperature expansion. These corrections have a universal form for any two dimensional conformal field theory that depends only on the size of the mass gap and its degeneracy. We analyze the limits where the size of the interval becomes small and where it becomes close to the size of the spatial circle. PMID:24836236

  1. Field Ionization of Cold Atoms near the Wall of a Single Carbon Nanotube

    SciTech Connect

    Goodsell, Anne; Ristroph, Trygve; Golovchenko, J. A.; Hau, Lene Vestergaard

    2010-04-02

    We observe the capture and field ionization of individual atoms near the side wall of a single suspended nanotube. Extremely large cross sections for ionization from an atomic beam are observed at modest voltages due to the nanotube's small radius and extended length. The effects of the field strength on both the atomic capture and the ionization process are clearly distinguished in the data, as are prompt and delayed ionizations related to the locations at which they occur. Efficient and sensitive neutral atom detectors can be based on the nanotube capture and wall ionization processes.

  2. Inverse estimation of near-field temperature and surface heat flux via single point temperature measurement

    NASA Astrophysics Data System (ADS)

    Wu, Chen-Wu; Shu, Yong-Hua; Xie, Ji-Jia; Jiang, Jian-Zheng; Fan, Jing

    2016-05-01

    A concept was developed to inversely estimate the near-field temperature as well as the surface heat flux for the transient heat conduction problem with boundary condition of the unknown heat flux. The mathematical formula was derived for the inverse estimation of the near-field temperature and surface heat flux via a single point temperature measurement. The experiments were carried out in a vacuum chamber and the theoretically predicted temperatures were justified in specific positions. The inverse estimation principle was validated and the estimation deviation was evaluated for the present configuration.

  3. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer

    SciTech Connect

    Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Roch, J.-F.; Jacques, V.; Dal Savio, C.; Karrai, K.; Dantelle, G.; Thiaville, A.; Rohart, S.

    2012-04-09

    We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

  4. Controlled deposition or organic semiconductor single crystals and its application in field-effect transistors

    NASA Astrophysics Data System (ADS)

    Liu, Shuhong

    The search for low-cost, large area, flexible devices has led to a remarkable increase in the research and development of organic semiconductors. Single-crystal organic field-effect transistors (OFETs) are ideal device structures for studying fundamental science associated with charge transport in organic materials and have demonstrated high mobility and outstanding electrical characteristics. For example, an exceptionally high carrier mobility of 20 cm2/Vs has been demonstrated for rubrene single crystal field effect transistors. However, it remains a technical challenge to integrate single-crystal devices into practical electronic applications. A key difficulty is that organic single-crystal devices are usually fabricated one device at a time by handpicking a single crystal and placing it onto the device substrate. This makes it impossible to mass-produce at high density with reasonable throughput. Therefore, there is a great need for a high-throughput method for depositing large arrays of organic semiconductor single crystals directly onto device structures. In this dissertation, I develop several approaches towards realizing this goal. The first approach is a solution-processing technique, which relies on solvent wetting and de-wetting on substrates with patterned wettability to selectively direct the deposition or removal of organic crystals. The assembly of different organic crystals over centimeter-squared areas on Au, SiO 2 and flexible plastic substrates is demonstrated. By designing line features on the substrate, alignment of needle-like crystals is also achieved. As a demonstration of the potential application of this approach, arrays of organic single crystal FETs are fabricated by patterning organic single crystals directly onto and between transistor source and drain electrodes. Besides organic single crystals, this self-assembly strategy is also applicable for patterning other objects such as metallic nanowires. In the second technique, organic

  5. Single and dual-Gregorian reflector antenna shaped beam far-field synthesis

    NASA Astrophysics Data System (ADS)

    Mehler, M. J.

    The direct far-field G.O. synthesis of shaped beam reflector antennas has recently been treated by Mehler, Tun and Adatia (1986). These authors use a synthesis technique which exploits complex coordinates and which is based on a method originally considered by Norris and Westcott (1976). They describe the synthesis of single reflector antennas which radiate both elliptical beams and European coverage patterns. Here this technique is extended to consider a class of dual reflector antennas which possess shaped main reflectors and conic subreflectors. An example is given of a Gregorian duel reflector antenna which radiates a cross-polar field significantly smaller than that radiated by single shaped reflector antennas. In addition, the behavior of the radiation pattern as a function of the reflector diameter is investigated.

  6. Optical field-strength generalized polarization of multimode single photon states in integrated directional couplers

    NASA Astrophysics Data System (ADS)

    Liñares, Jesús; Barral, David; Nistal, María C.; Moreno, Vicente

    2011-05-01

    A quantum analysis of the generalized polarization properties of multimode single photon states is presented. It is based on the optical field-strength probability distributions in such a way that generalized polarization is understood as a significant confinement of the probability distribution along certain regions of the multidimensional optical field-strength space. The analysis is addressed to multimode integrated waveguiding devices, such as N × N integrated directional couplers, whose modes fulfil a spatial modal orthogonality relationship. For that purpose a definition of the quantum generalized polarization degree in a N-dimensional space, based on the concept of distance to an unpolarized N-dimensional Gaussian distribution, is proposed. The generalized polarization degree of pure and mixture multimode single photon states and also of some multi-photon states such as coherent and chaotic ones, is evaluated and analyzed.

  7. Growth of single-crystalline cobalt silicide nanowires and their field emission property

    PubMed Central

    2013-01-01

    In this work, cobalt silicide nanowires were synthesized by chemical vapor deposition processes on Si (100) substrates with anhydrous cobalt chloride (CoCl2) as precursors. Processing parameters, including the temperature of Si (100) substrates, the gas flow rate, and the pressure of reactions were varied and studied; additionally, the physical properties of the cobalt silicide nanowires were measured. It was found that single-crystal CoSi nanowires were grown at 850°C ~ 880°C and at a lower gas flow rate, while single-crystal Co2Si nanowires were grown at 880°C ~ 900°C. The crystal structure and growth direction were identified, and the growth mechanism was proposed as well. This study with field emission measurements demonstrates that CoSi nanowires are attractive choices for future applications in field emitters. PMID:23819795

  8. Single-spin manipulation by electric fields and adsorption of molecules

    NASA Astrophysics Data System (ADS)

    Tao, Kun; Xue, Desheng; Polyakov, O. P.; Stepanyuk, V. S.

    2016-07-01

    Performing ab initio calculations, we reveal that the magnetic anisotropy (MA) and the spin direction of a single adatom can be manipulated with a combination of electric fields and adsorption of molecules. Choosing the Fe adatom on the Cu2N /Cu (001 ) surface as a typical model system, we show that the MA of the pristine Fe adatom and the Fe adatom with an additional H or F atom adsorption remarkably changes by applying an external electric field. Moreover, we show that the F adsorption leads to the spin-reorientation transition of the Fe adatom from in plane to out of plane. Controlling the magnetization dynamics of a single magnetic adatom by molecule adsorption is demonstrated.

  9. Analyzing Carbohydrate-Protein Interaction Based on Single Plasmonic Nanoparticle by Conventional Dark Field Microscopy.

    PubMed

    Jin, Hong-Ying; Li, Da-Wei; Zhang, Na; Gu, Zhen; Long, Yi-Tao

    2015-06-10

    We demonstrated a practical method to analyze carbohydrate-protein interaction based on single plasmonic nanoparticles by conventional dark field microscopy (DFM). Protein concanavalin A (ConA) was modified on large sized gold nanoparticles (AuNPs), and dextran was conjugated on small sized AuNPs. As the interaction between ConA and dextran resulted in two kinds of gold nanoparticles coupled together, which caused coupling of plasmonic oscillations, apparent color changes (from green to yellow) of the single AuNPs were observed through DFM. Then, the color information was instantly transformed into a statistic peak wavelength distribution in less than 1 min by a self-developed statistical program (nanoparticleAnalysis). In addition, the interaction between ConA and dextran was proved with biospecific recognition. This approach is high-throughput and real-time, and is a convenient method to analyze carbohydrate-protein interaction at the single nanoparticle level efficiently. PMID:25985863

  10. Fault tolerant filtering and fault detection for quantum systems driven by fields in single photon states

    NASA Astrophysics Data System (ADS)

    Gao, Qing; Dong, Daoyi; Petersen, Ian R.; Rabitz, Herschel

    2016-06-01

    The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.

  11. Near-field acoustic characteristics of a single-rotor propfan

    NASA Technical Reports Server (NTRS)

    Bartel, H. W.; Swift, G.

    1989-01-01

    The near-field noise characteristics of the SR-7L, an eight-blade, single-rotor, wing-mounted, tractor propfan have been determined. It is found that the noise is dominated by discrete tones, usually at the first order (and occasionally at the second or third order) of the blade-passage frequency. The highest noise levels were noted at conditions of high tip helical speeds and high dynamic pressures.

  12. Design of a single-polarization single-mode photonic crystal fiber with a near-Gaussian mode field and wide bandwidth.

    PubMed

    Wang, Liwen; Lou, Shuqin; Chen, Weiguo; Li, Honglei

    2010-11-10

    Single-polarization single-mode (SPSM) fiber can efficiently eliminate polarization mode coupling, polarization mode dispersion, and polarization-dependent loss. Up to now, most single-polarization fibers have been designed based on form birefringence, which would result in a non-Gaussian field distribution and a small effective mode field area. In this paper, a novel structure of SPSM photonic crystal fibers based on the resonant coupling phenomena is proposed and analyzed by using a full-vector finite-element method with a second-order transparent boundary condition. From the numerical results it is confirmed that this fiber has a near-Gaussian mode field within the wavelength range from 1.46 to 2.2 μm, where only one polarized mode exists effectively, and the mode field area is about 79 μm(2) at the wavelength of 1.55 μm, matching that of the conventional single-mode fiber.

  13. Aligned Single Wall Carbon Nanotube Polymer Composites Using an Electric Field

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Wiklinson, John; Banda, Sumanth; Ounaies, Zoubeida; Wise, Kristopher E.; Sauti, Godfrey; Lillehei, Peter T.; Harrison, Joycelyn S.

    2005-01-01

    While high shear alignment has been shown to improve the mechanical properties of single wall carbon nanotubes (SWNT)-polymer composites, it is difficult to control and often results in degradation of the electrical and dielectric properties of the composite. Here, we report a novel method to actively align SWNTs in a polymer matrix, which allows for control over the degree of alignment of SWNTs without the side effects of shear alignment. In this process, SWNTs are aligned via field-induced dipolar interactions among the nanotubes under an AC electric field in a liquid matrix followed by immobilization by photopolymerization while maintaining the electric field. Alignment of SWNTs was controlled as a function of magnitude, frequency, and application time of the applied electric field. The degree of SWNT alignment was assessed using optical microscopy and polarized Raman spectroscopy and the morphology of the aligned nanocomposites was investigated by high resolution scanning electron microscopy. The structure of the field induced aligned SWNTs is intrinsically different from that of shear aligned SWNTs. In the present work, SWNTs are not only aligned along the field, but also migrate laterally to form thick, aligned SWNT percolative columns between the electrodes. The actively aligned SWNTs amplify the electrical and dielectric properties in addition to improving the mechanical properties of the composite. All of these properties of the aligned nanocomposites exhibited anisotropic characteristics, which were controllable by tuning the applied field conditions.

  14. Migration-induced field-stabilized polar phase in strontium titanate single crystals at room temperature

    NASA Astrophysics Data System (ADS)

    Hanzig, Juliane; Zschornak, Matthias; Hanzig, Florian; Mehner, Erik; Stöcker, Hartmut; Abendroth, Barbara; Röder, Christian; Talkenberger, Andreas; Schreiber, Gerhard; Rafaja, David; Gemming, Sibylle; Meyer, Dirk C.

    2013-07-01

    Local reversible structural changes in SrTiO3 single crystals in an external electric field are induced by oxygen redistribution. We present in situ x-ray diffraction measurements during and immediately after electroformation. Several reflections are monitored and show an elongation of the cubic unit cell of strontium titanate. Raman investigations verify that the expansion of the unit cell involves a transition from the centrosymmetric to a lower symmetry phase. During a complete formation cycle, including the hold time of the electric field and relaxation time without field, two different dynamics are observed for the reversible transitions from cubic symmetry to tetragonal distortion: a slow one during the increase of the lattice constant in field direction and a fast one after switching off the electric field. Based on the experimental data, we propose the formation of a polar strontium titanate unit cell at room temperature stabilized by the electric field, which is referred to as migration-induced field-stabilized polar phase.

  15. Single Nanoparticle Detection Using Far-field Emission of Photonic Molecule around the Exceptional Point

    PubMed Central

    Zhang, Nan; Liu, Shuai; Wang, Kaiyang; Gu, Zhiyuan; Li, Meng; Yi, Ningbo; Xiao, Shumin; Song, Qinghai

    2015-01-01

    Highly sensitive, label-free detection methods have important applications in fundamental research and healthcare diagnostics. To date, the detection of single nanoparticles has remained largely dependent on extremely precise spectral measurement, which relies on high-cost equipment. Here, we demonstrate a simple but very nontrivial mechanism for the label-free sizing of nanoparticles using the far-field emission of a photonic molecule (PM) around an exceptional point (EP). By attaching a nanoparticle to a PM around an EP, the main resonant behaviors are strongly disturbed. In addition to typical mode splitting, we find that the far-field pattern of the PM is significantly changed. Taking a heteronuclear diatomic PM as an example, we demonstrate that a single nanoparticle, whose radius is as small as 1 nm to 7 nm, can be simply monitored through the variation of the far-field pattern. Compared with conventional methods, our approach is much easier and does not rely on high-cost equipment. In addition, this research will illuminate new advances in single nanoparticle detection. PMID:26149067

  16. A Study of Multiple and Single Onset Substorms Selected Using GOES 10 Magnetic Field Data

    NASA Astrophysics Data System (ADS)

    Stoner, J. M.; Larson, R. B.; Erickson, K. N.; Engebretson, M. J.; Singer, H. J.

    2008-05-01

    A return to a more dipolar configuration of the magnetic field on the night side, near synchronous orbit, is one good indicator of a substorm expansion phase onset. Substorm expansion phase onsets for this study were selected by requiring a well-defined increase in the z-component of the magnetic field measured by the GOES 10 satellite. Event selection was subject to 2 restrictions: an increase in the z-component of the magnetic field greater than 10 nT in GSM coordinates and GOES 10 was located on the night side within 3 hours either side of local midnight during the months of August through November of the years 2000 through 2004. These time restrictions allowed for events selected using GOES 10 to be compared with events selected using the HYDRA electron flux instrument on the Polar satellite, as presented by Larson et al. [Fall 2007 AGU Meeting]. Of the 119 events selected using GOES 10, 9 events overlapped with this previous study. As expected, the 119 events closely correlated with ground-based auroral zone Pi2 data. Substorms were classified as either single or multiple onset, the latter being differentiated from the former by observing one or more subsequent Pi2 intensifications. The ratio of multiple onset to single onset substorms was found to be 2:1. Using ground-based Pi2 data it was found that in general the magnetic latitude of the initial onset of the multiple onset events was lower than the magnetic latitude of single onset events. Multiple onset events were found between 62 and 67 degrees and single onset events between 65 and 73 degrees, with single onset events being an average of one degree higher in latitude. Additionally, the time interval between Pi2 intensifications for multiple onset events was found to have a range of 9 to 30 minutes with an average of 19 minutes. The local time distribution of events used in this study corresponded to 63 percent of events occurring before local midnight. An analysis of the value of the z-component of the

  17. Electric field modulation of thermovoltage in single-layer MoS{sub 2}

    SciTech Connect

    Dobusch, Lukas; Furchi, Marco M.; Pospischil, Andreas; Mueller, Thomas; Bertagnolli, Emmerich; Lugstein, Alois

    2014-12-22

    We study electric field modulation of the thermovoltage in single-layer MoS{sub 2}. The Seebeck coefficient generally increases for a diminishing free carrier concentration, and in the case of single-layer MoS{sub 2} reaches considerable large values of about S = −5160 μV/K at a resistivity of 490 Ω m. Further, we observe time dependent degradation of the conductivity in single layer MoS{sub 2}, resulting in variations of the Seebeck coefficient. The degradation is attributable to adsorbates from ambient air, acting as p-dopants and additional Coulomb potentials, resulting in carrier scattering increase, and thus decrease of the electron mobility. The corresponding power factors remain at moderate levels, due to the low conductivity of single layer MoS{sub 2}. However, as single-layer MoS{sub 2} has a short intrinsic phonon mean free path, resulting in low thermal conductivity, MoS{sub 2} holds great promise as high-performance 2D thermoelectric material.

  18. Broadband multi-resonant strong field coherence breaking as a tool for single isomer microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Hernandez-Castillo, A. O.; Abeysekera, Chamara; Hays, Brian M.; Zwier, Timothy S.

    2016-09-01

    Using standard hardware available in chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy, an experimental method is introduced to selectively extract from the microwave spectrum of an otherwise complicated multicomponent mixture a set of transitions due to a single component, thereby speeding spectral assignment. The method operates the broadband chirped-pulse used to excite the sample in the strong-field limit through a combination of high power and control of the sweep rate. A procedure is introduced that leads to selection of three transition frequencies that can be incorporated as a set of resonant sequential single-frequency microwave pulses that follow broadband chirped-pulse excitation, resulting in a reduction in the coherent signal from a set of transitions ascribable to the component of interest. The difference in the CP-FTMW spectrum with and without this set of multi-resonant single-frequency pulses produces a set of transitions that can confidently be assigned to a single component of the mixture, aiding the analysis of its spectrum. The scheme is applied to (i) selectively extract the spectrum of one of five singly 13C-subsituted isotopologues of benzonitrile in natural abundance, (ii) obtain the microwave spectra of the two structural isomers (E)- and (Z)-phenylvinylnitrile, and (iii) obtain conformer-specific microwave spectra of methylbutyrate.

  19. Wide-field single metal nanoparticle spectroscopy for high throughput localized surface plasmon resonance sensing.

    PubMed

    Chen, Kok Hao; Hobley, Jonathan; Foo, Yong Lim; Su, Xiaodi

    2011-06-01

    Noble metal nanoparticles (mNPs) have a distinct extinction spectrum arising from their ability to support Localized Surface Plasmon Resonance (LSPR). Single-particle biosensing with LSPR is label free and offers a number of advantages, including single molecular sensitivity, multiplex detection, and in vivo quantification of chemical species etc. In this article, we introduce Single-particle LSPR Imaging (SLI), a wide-field spectral imaging method for high throughput LSPR biosensing. The SLI utilizes a transmission grating to generate the diffraction spectra from multiple mNPs, which are captured using a Charge Coupled Device (CCD). With the SLI, we are able to simultaneously image and track the spectral changes of up to 50 mNPs in a single (∼1 s) exposure and yet still retain a reasonable spectral resolution for biosensing. Using the SLI, we could observe spectral shift under different local refractive index environments and demonstrate biosensing using biotin-streptavidin as a model system. To the best of our knowledge, this is the first time a transmission grating based spectral imaging approach has been used for mNPs LSPR sensing. The higher throughput LSPR sensing, offered by SLI, opens up a new possibility of performing label-free, single-molecule experiments in a high-throughput manner. PMID:21359329

  20. Magnetostrictive behaviors of Fe-Al(001) single-crystal films under rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Kawai, Tetsuroh; Abe, Tatsuya; Ohtake, Mitsuru; Futamoto, Masaaki

    2016-05-01

    Magnetostrictive behaviors of Fe100-x - Alx(x = 0 - 30 at.%)(001) single-crystal films under rotating magnetic fields are investigated along the two different crystallographic orientations, [100] and [110]. The behaviors of Fe and Fe90Al10 films show bath-tub like waveform along [100], easy magnetization axis, and triangular waveform along [110], hard magnetization axis, with respect to their four-fold magnetic anisotropy. On the other hand, the behaviors of Fe80Al20 film are different from those of Fe or Fe90Al10 film. The output of the film along [100] shows a strong magnetic field dependence. The Fe70Al30 film shows similar magnetostrictive behaviors along both [100] and [110] reflecting its magnetic properties, which are almost same for the both directions. The growth of ordered phase (B2) in Fe80Al20 and Fe70Al30 films is considered to have affected their magnetostrictive behaviors. The Al content dependence on λ100 and λ111 values shows similar tendency to that reported for the bulk samples but the values are slightly different. The Fe90Al10(001) single-crystal film shows a large magnetostriction along [100] under a very small magnetic field of 0.02 kOe, which is comparable to the saturated one, and changes the value abruptly in relation to the angle of applied magnetic field.

  1. Gilding the Outcome by Tarnishing the Past: Inflationary Biases in Retrospective Pretests

    ERIC Educational Resources Information Center

    Taylor, Paul J.; Russ-Eft, Darlene F.; Taylor, Hazel

    2009-01-01

    We tested for inflationary bias introduced through retrospective pretests by analyzing traditional pretest, retrospective pretest, and posttest evaluation data collected on a first-line supervisory leadership training program, involving 196 supervisors and their subordinates, across 17 organizational settings. Retrospective pretest ratings by both…

  2. Giant thermovoltage in single InAs nanowire field-effect transistors.

    PubMed

    Roddaro, Stefano; Ercolani, Daniele; Safeen, Mian Akif; Suomalainen, Soile; Rossella, Francesco; Giazotto, Francesco; Sorba, Lucia; Beltram, Fabio

    2013-08-14

    Millivolt range thermovoltage is demonstrated in single InAs nanowire based field effect transistors. Thanks to a buried heating scheme, we drive both a large thermal bias ΔT > 10 K and a strong field-effect modulation of electric conductance on the nanostructures. This allows the precise mapping of the evolution of the Seebeck coefficient S as a function of the gate-controlled conductivity σ between room temperature and 100 K. Based on these experimental data a novel estimate of the electron mobility is given. This value is compared with the result of standard field-effect based mobility estimates and discussed in relation to the effect of charge traps in the devices. PMID:23869467

  3. Single layer planar near-field acoustic holography for compact sources and a parallel reflector

    NASA Astrophysics Data System (ADS)

    Zea, Elias; Lopez Arteaga, Ines

    2016-10-01

    We consider the problem of planar near-field acoustic holography (PNAH) and introduce a new reconstruction method that can be used to process single layer pressure measurements performed in the presence of a reflective surface that is parallel to the measurement plane. The method is specially tailored for compact sources, or for problems in which the scattered field due to the source can be neglected. The approach consists in formulating a seismic model (WRW model) in wavenumber-space and employ it for sound source reconstructions. The proposed method is validated with numerical and experimental data, and, although the most accurate results are obtained when an estimate of the surface impedance is known beforehand, we show that it can substantially improve the reconstruction performance with respect to that of free-field PNAH.

  4. Far-field imaging beyond diffraction limit using single sensor in combination with a resonant aperture.

    PubMed

    Li, Lianlin; Li, Fang; Cui, Tie Jun; Yao, Kan

    2015-01-12

    Far-field imaging beyond the diffraction limit is a long sought-after goal in various imaging applications, which requires usually mechanical scanning or an array of antennas. Here, we propose to solve this challenging problem using a single sensor in combination with a spatio-temporal resonant aperture antenna. We theoretically and numerically demonstrate that such resonant aperture antenna is capable of converting part evanescent waves into propagating waves and delivering them to far fields. The proposed imaging concept provides the unique ability to achieve super resolution for real-time data when illuminated by broadband electromagnetic waves, without the harsh requirements such as near- field scanning, mechanical scanning, or antenna arrays. We expect the imaging methodology to make breakthroughs in super-resolution imaging in microwave, terahertz, optical, and ultrasound regimes. PMID:25835685

  5. Evidence of Multi-Process Matrix Diffusion in a Single Fracturefrom a Field Tracer Test

    SciTech Connect

    Zhou, Quanlin; Liu, Hui-Hai; Bodvarsson, Gudmundur; Molz, Fred J.

    2005-06-11

    Compared to values inferred from laboratory tests on matrix cores, many field tracer tests in fractured rock have shown enhanced matrix diffusion coefficient values (obtained using a single-process matrix-diffusion model with a homogeneous matrix diffusion coefficient). To investigate this phenomenon, a conceptual model of multi-process matrix diffusion in a single-fracture system was developed. In this model, three matrix diffusion processes of different diffusion rates were assumed to coexist: (1) diffusion into stagnant water and infilling materials within fractures, (2) diffusion into a degraded matrix zone, and (3) further diffusion into an intact matrix zone. The validity of the conceptual model was then demonstrated by analyzing a unique tracer test conducted using a long-time constant-concentration injection. The tracer-test analysis was conducted using a numerical model capable of tracking the multiple matrix-diffusion processes. The analysis showed that in the degraded zone, a diffusion process with an enhanced diffusion rate controlled the steep rising limb and decay-like falling limb in the observed breakthrough curve, whereas in the intact matrix zone, a process involving a lower diffusion rate affected the long-term middle platform of slowly increasing tracer concentration. The different matrix-diffusion-coefficient values revealed from the field tracer test are consistent with the variability of matrix diffusion coefficient measured for rock cores with different degrees of fracture coating at the same site. By comparing to the matrix diffusion coefficient calibrated using single-process matrix diffusion, we demonstrated that this multi-process matrix diffusion may contribute to the enhanced matrix-diffusion-coefficient values for single-fracture systems at the field scale.

  6. Regional lymph node radiotherapy in breast cancer: single anterior supraclavicular field vs. two anterior and posterior opposed supraclavicular fields

    PubMed Central

    Houshyari, Mohammad; Kashi, Amir Shahram Yousefi; Varaki, Sakineh Soleimani; Rakhsha, Afshin; Blookat, Eftekhar Rajab

    2015-01-01

    Background: The treatment of lymph nodes engaged in breast cancer with radiotherapy leads to improved locoregional control and enhanced survival rates in patients after surgery. The aim of this study was to compare two treatment techniques, namely single anterior posterior (AP) supraclavicular field with plan depth and two anterior and posterior opposed (AP/PA) supraclavicular fields. In the study, we also examined the relationships between the depth of supraclavicular lymph nodes (SCLNs) and the diameter of the wall of the chest and body mass index (BMI). Methods: Forty patients with breast cancer were analyzed using computed tomography (CT) scans. In planning target volume (PTV), the SCLNs and axillary lymph nodes (AXLNs) were contoured, and, with the attention to PTV, supraclavicular (SC) depth was measured. The dosage that reached the aforementioned lymph nodes and the level of hot spots were investigated using two treatment methods, i.e., 1) AP/PA and 2) AP with three-dimensional (3D) planning. Each of these methods was analyzed using the program Isogray for the 6 MV compact accelerator, and the diameter of the wall of the chest was measured using the CT scan at the center of the SC field. Results: Placing the plan such that 95% of the target volume with 95% or greater of the prescribed dose of 50 Gy (V95) had ≥95% concordance in both treatment techniques. According to the PTV, the depth of SCLNs and the diameter of the wall of the chest were 3–7 and 12–21cm, respectively. Regression analysis showed that the mean SC depth (the mean Plan depth) and the mean diameter of the wall of the chest were related directly to BMI (p<0.0001, adjusted R2=0.67) and (p<0.0001, adjusted R2=0.71), respectively. Conclusion: The AP/PA treatment technique was a more suitable choice of treatment than the AP field, especially for overweight and obese breast cancer patients. However, in the AP/PA technique, the use of a single-photon, low energy (6 MV) caused more hot spots

  7. Gauge fields and inflation

    NASA Astrophysics Data System (ADS)

    Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.

    2013-07-01

    small field models also have a potential minimum at φ≠0 which the system falls in at the end of inflation. A typical property of small field models is that a sufficient number of e-folds, requires a sub-Planckian inflaton initial value. For this reason they are called small field models. Natural inflation is an example of this type [12]. Hybrid inflation models: These models involve more than one scalar field while inflation is mainly driven by a single inflaton field ϕ. Inflaton starts from a large value rolling down until it reaches a bifurcation point, ϕ=ϕe, after which the field becomes unstable and undergoes a waterfall transition toward its global minimum. Its prime example is the Linde’s hybrid inflation model with the following potential [13] V(ϕ,χ)={λ}/{4}(+{1}/{2}g2ϕ2χ2+{1}/{2}m2ϕ2. During the initial inflationary phase the potential of the hybrid inflation is effectively described by a single field ϕ while inflation ends by a phase transition triggered by the presence of the second scalar field, the waterfall field χ. In other words, when the effective mass squared of a waterfall field becomes negative, the tachyonic instability makes waterfall field roll down toward the true vacuum state and the inflation suddenly ends.Number of e-folds Ne is given as Ne≃{M4}/{4λm2}ln({ϕ0}/{ϕe}), where ϕe={M}/{g} is the critical value of the inflaton below which, due to tachyonic instability, χ=0 becomes unstable and mχ2 gets negative. K-inflation: This is the prime example of models with non-canonical Kinetic term we discuss here. They are described by the action [14] S=∫d4x√{-g}({R}/{2}+P(φ,X)), where φ is a scalar field and X≔-{1}/{2}(. Here, P plays the rule of the effective pressure, while the energy density is given by ρ=2XP-P. Thus, the slow-roll parameter is given as ɛ={3XP}/{2XP-P}. The characteristic feature of these models is that in general they have a non-trivial sound speed cs2 for the propagation of perturbations (cf. our

  8. CMB contraints on primordial non-Gaussianity from the bispectrum (f{sub NL}) and trispectrum (g{sub NL} and {tau}{sub NL}) and a new consistency test of single-field inflation

    SciTech Connect

    Smidt, Joseph; Amblard, Alexandre; Cooray, Asantha; Byrnes, Christian T.; Heavens, Alan; Munshi, Dipak

    2010-06-15

    We outline the expected constraints on non-Gaussianity from the cosmic microwave background with current and future experiments, focusing on both the third (f{sub NL}) and fourth-order (g{sub NL} and {tau}{sub NL}) amplitudes of the local configuration or non-Gaussianity. The experimental focus is the skewness (two-to-one) and kurtosis (two-to-two and three-to-one) power spectra from weighted maps. In addition to a measurement of {tau}{sub NL} and g{sub NL} with WMAP 5-year data, our study provides the first forecasts for future constraints on g{sub NL}. We describe how these statistics can be corrected for the mask and cut-sky through a window function, bypassing the need to compute linear terms that were introduced for the previous-generation non-Gaussianity statistics, such as the skewness estimator. We discus the ratio A{sub NL}={tau}{sub NL}/(6f{sub NL}/5){sup 2} as an additional test of single-field inflationary models and discuss the physical significance of each statistic. Using these estimators with WMAP 5-Year V+W-band data out to l{sub max}=600 we constrain the cubic order non-Gaussianity parameters {tau}{sub NL}, and g{sub NL} and find -7.4

  9. Gauge fields and inflation

    NASA Astrophysics Data System (ADS)

    Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.

    2013-07-01

    small field models also have a potential minimum at φ≠0 which the system falls in at the end of inflation. A typical property of small field models is that a sufficient number of e-folds, requires a sub-Planckian inflaton initial value. For this reason they are called small field models. Natural inflation is an example of this type [12]. Hybrid inflation models: These models involve more than one scalar field while inflation is mainly driven by a single inflaton field ϕ. Inflaton starts from a large value rolling down until it reaches a bifurcation point, ϕ=ϕe, after which the field becomes unstable and undergoes a waterfall transition toward its global minimum. Its prime example is the Linde’s hybrid inflation model with the following potential [13] V(ϕ,χ)={λ}/{4}(+{1}/{2}g2ϕ2χ2+{1}/{2}m2ϕ2. During the initial inflationary phase the potential of the hybrid inflation is effectively described by a single field ϕ while inflation ends by a phase transition triggered by the presence of the second scalar field, the waterfall field χ. In other words, when the effective mass squared of a waterfall field becomes negative, the tachyonic instability makes waterfall field roll down toward the true vacuum state and the inflation suddenly ends.Number of e-folds Ne is given as Ne≃{M4}/{4λm2}ln({ϕ0}/{ϕe}), where ϕe={M}/{g} is the critical value of the inflaton below which, due to tachyonic instability, χ=0 becomes unstable and mχ2 gets negative. K-inflation: This is the prime example of models with non-canonical Kinetic term we discuss here. They are described by the action [14] S=∫d4x√{-g}({R}/{2}+P(φ,X)), where φ is a scalar field and X≔-{1}/{2}(. Here, P plays the rule of the effective pressure, while the energy density is given by ρ=2XP-P. Thus, the slow-roll parameter is given as ɛ={3XP}/{2XP-P}. The characteristic feature of these models is that in general they have a non-trivial sound speed cs2 for the propagation of perturbations (cf. our

  10. Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.

    PubMed

    Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo

    2010-06-01

    A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads. PMID:20462180

  11. Optical field-strength polarization of two-mode single-photon states

    NASA Astrophysics Data System (ADS)

    Liñares, J.; Nistal, M. C.; Barral, D.; Moreno, V.

    2010-09-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of the two-mode optical field-strength plane. We will show that the mentioned probability distributions along with the values of quantum Stokes parameters allow us to characterize the polarization of a two-mode single-photon state, in an analogous way to the classical case, and to distinguish conceptually between mixture and partially polarized quantum states; in this way, we propose a simple definition of the quantum polarization degree based on the recent concept of distance measure to an unpolarized distribution, which gives rise to a depolarization degree equivalent to an overlapping between the probability distribution of the quantum state and a non-polarized two-mode Gaussian distribution. The work is particularly intended to university physics teachers and graduate students as well as to physicists and specialists concerned with the issue of optical polarization.

  12. Ionic field effect and memristive phenomena in single-point ferroelectric domain switching

    SciTech Connect

    Ievlev, Anton; Morozovska, A. N.; Eliseev, E. A.; Shur, Vladimir Ya.; Kalinin, Sergei V

    2014-01-01

    Electric field induced polarization switching underpins most functional applications of ferroelectric materials in information technology, materials science, and optoelectronics. In the last 20 years, much attention has been focused on the switching of individual domains using scanning probe microscopy, both as model of ferroelectric data storage and approach to explore fundamental physics of ferroelectric switching. The classical picture of tip induced switching includes formation of cylindrical domain oriented along the tip field, with the domain size is largely determined by the tip-induced field distribution and domain wall motion kinetics. The polarization screening is recognized as a necessary precondition to the stability of ferroelectric phase; however, screening processes are generally considered to be uniformly efficient and not leading to changes in switching behavior. Here, we demonstrate that single-point tip-induced polarization switching can give rise to a surprisingly broad range of domain morphologies, including radial and angular instabilities. These behaviors are traced to the surface screening charge dynamics, which in some cases can even give rise to anomalous switching against the electric field (ionic field effect). The implications of these behaviors for ferroelectric materials and devices are discussed.

  13. Single trap dynamics in electrolyte-gated Si-nanowire field effect transistors

    SciTech Connect

    Pud, S.; Li, J.; Offenhäusser, A.; Vitusevich, S. A.; Gasparyan, F.; Petrychuk, M.

    2014-06-21

    Liquid-gated silicon nanowire (NW) field effect transistors (FETs) are fabricated and their transport and dynamic properties are investigated experimentally and theoretically. Random telegraph signal (RTS) fluctuations were registered in the nanolength channel FETs and used for the experimental and theoretical analysis of transport properties. The drain current and the carrier interaction processes with a single trap are analyzed using a quantum-mechanical evaluation of carrier distribution in the channel and also a classical evaluation. Both approaches are applied to treat the experimental data and to define an appropriate solution for describing the drain current behavior influenced by single trap resulting in RTS fluctuations in the Si NW FETs. It is shown that quantization and tunneling effects explain the behavior of the electron capture time on the single trap. Based on the experimental data, parameters of the single trap were determined. The trap is located at a distance of about 2 nm from the interface Si/SiO{sub 2} and has a repulsive character. The theory of dynamic processes in liquid-gated Si NW FET put forward here is in good agreement with experimental observations of transport in the structures and highlights the importance of quantization in carrier distribution for analyzing dynamic processes in the nanostructures.

  14. Single-Cell Quantification of Cytosine Modifications by Hyperspectral Dark-Field Imaging.

    PubMed

    Wang, Xiaolei; Cui, Yi; Irudayaraj, Joseph

    2015-12-22

    Epigenetic modifications on DNA, especially on cytosine, play a critical role in regulating gene expression and genome stability. It is known that the levels of different cytosine derivatives are highly dynamic and are regulated by a variety of factors that act on the chromatin. Here we report an optical methodology based on hyperspectral dark-field imaging (HSDFI) using plasmonic nanoprobes to quantify the recently identified cytosine modifications on DNA in single cells. Gold (Au) and silver (Ag) nanoparticles (NPs) functionalized with specific antibodies were used as contrast-generating agents due to their strong local surface plasmon resonance (LSPR) properties. With this powerful platform we have revealed the spatial distribution and quantity of 5-carboxylcytosine (5caC) at the different stages in cell cycle and demonstrated that 5caC was a stably inherited epigenetic mark. We have also shown that the regional density of 5caC on a single chromosome can be mapped due to the spectral sensitivity of the nanoprobes in relation to the interparticle distance. Notably, HSDFI enables an efficient removal of the scattering noises from nonspecifically aggregated nanoprobes, to improve accuracy in the quantification of different cytosine modifications in single cells. Further, by separating the LSPR fingerprints of AuNPs and AgNPs, multiplex detection of two cytosine modifications was also performed. Our results demonstrate HSDFI as a versatile platform for spatial and spectroscopic characterization of plasmonic nanoprobe-labeled nuclear targets at the single-cell level for quantitative epigenetic screening. PMID:26505210

  15. Optical Clearing Delivers Ultrasensitive Hyperspectral Dark-Field Imaging for Single-Cell Evaluation.

    PubMed

    Cui, Yi; Wang, Xiaolei; Ren, Wen; Liu, Jing; Irudayaraj, Joseph

    2016-03-22

    A single-cell optical clearing methodology is developed and demonstrated in hyperspectral dark-field microscopy (HSDFM) and imaging of plasmonic nanoprobes. Our strategy relies on a combination of delipidation and refractive index (RI) matching with highly biocompatible and affordable agents. Before applying the RI-matching solution, the delipidation step by using a mild solvent effectively eliminates those high-density, lipid-enriched granular structures which emit strong scattering. Upon treatment, the background scattering from cellular organelles could be repressed to a negligible level while the scattering signals from plasmonic nanomaterials increase, leading to a significant improvement of the signal-to-noise ratio (SNR). With this method established, the versatility and applicability of HSDFM are greatly enhanced. In our demonstration, quantitative mapping of the dimerization-activated receptor kinase HER2 is achieved in a single cancer cell by a nonfluorescent approach. High-resolution imaging for oncogenic mRNAs, namely ER, PR, and HER2, is performed with single labeling. More importantly, in situ multiplex detection of mRNA and protein is made possible by HSDFM since it overcomes the difficulties of complex staining and signal imbalance suffered by the conventional optical imaging. Last, we show that with optical clearing, characterization of intracellularly grown gold particulates is accomplished at an unprecedented spatiotemporal resolution. Taken together, the uniqueness of optical clearing and HSDFM is expected to open ample avenues for single-cell studies and biomedical engineering. PMID:26895095

  16. Imaging biological molecules with single molecule sensitivity using near-field scanning optical microscopy

    SciTech Connect

    Ambrose, W.P.; Affleck, R.L.; Goodwin, P.M.; Keller, R.A.; Martin, J.C.; Petty, J.T.; Schecker, J.A.; Wu, Ming

    1995-12-01

    We have developed a near-field scanning optical microscope with the sensitivity to detect single fluorescent molecules. Our microscope is based on scanning a sample under a tapered and metal coated fiber optic probe and has an illumination-aperture diameter as small as 100 nm. The microscope simultaneously acquires a shear force image with a height noise of {approximately} 1 nm. We have used this system to demonstrate the detection of single molecules of Rhodamine-6G on silica. In this paper, we explore the use of NSOM for investigations of biological molecules. We have prepared and imaged double-stranded DNA intercalated with thiazole orange homodimer (TOTO); single chromosomes stained with propidium iodide; and {beta}-phycoerythrin proteins on dry, borosilicate-glass surfaces. At very dilute coverages, isolated fluorescent spots are observed for the un-intercalated TOTO dye and for {beta}-phycoerythrin. These fluorescent spots exhibit-emission intensity fluctuations and abrupt bleaching transitions, similar to the intensity behavior observed previously for single Rhodamine 6G molecules on silica.

  17. Non-contact single shot elastography using line field low coherence holography

    PubMed Central

    Liu, Chih-Hao; Schill, Alexander; Wu, Chen; Singh, Manmohan; Larin, Kirill V.

    2016-01-01

    Optical elastic wave imaging is a powerful technique that can quantify local biomechanical properties of tissues. However, typically long acquisition times make this technique unfeasible for clinical use. Here, we demonstrate non-contact single shot elastographic holography using a line-field interferometer integrated with an air-pulse delivery system. The propagation of the air-pulse induced elastic wave was imaged in real time, and required a single excitation for a line-scan measurement. Results on tissue-mimicking phantoms and chicken breast muscle demonstrated the feasibility of this technique for accurate assessment of tissue biomechanical properties with an acquisition time of a few milliseconds using parallel acquisition. PMID:27570694

  18. Predicting excitonic gaps of semiconducting single-walled carbon nanotubes from a field theoretic analysis

    NASA Astrophysics Data System (ADS)

    Konik, Robert M.; Sfeir, Matthew Y.; Misewich, James A.

    2015-02-01

    We demonstrate that a nonperturbative framework for the treatment of the excitations of single-walled carbon nanotubes based upon a field theoretic reduction is able to accurately describe experiment observations of the absolute values of excitonic energies. This theoretical framework yields a simple scaling function from which the excitonic energies can be read off. This scaling function is primarily determined by a single parameter, the charge Luttinger parameter of the tube, which is in turn a function of the tube chirality, dielectric environment, and the tube's dimensions, thus expressing disparate influences on the excitonic energies in a unified fashion. We test this theory explicitly on the data reported by Dukovic et al. [Nano Lett. 5, 2314 (2005), 10.1021/nl0518122] and Sfeir et al. [Phys. Rev. B 82, 195424 (2010), 10.1103/PhysRevB.82.195424] and so demonstrate the method works over a wide range of reported excitonic spectra.

  19. Non-contact single shot elastography using line field low coherence holography.

    PubMed

    Liu, Chih-Hao; Schill, Alexander; Wu, Chen; Singh, Manmohan; Larin, Kirill V

    2016-08-01

    Optical elastic wave imaging is a powerful technique that can quantify local biomechanical properties of tissues. However, typically long acquisition times make this technique unfeasible for clinical use. Here, we demonstrate non-contact single shot elastographic holography using a line-field interferometer integrated with an air-pulse delivery system. The propagation of the air-pulse induced elastic wave was imaged in real time, and required a single excitation for a line-scan measurement. Results on tissue-mimicking phantoms and chicken breast muscle demonstrated the feasibility of this technique for accurate assessment of tissue biomechanical properties with an acquisition time of a few milliseconds using parallel acquisition. PMID:27570694

  20. Predicting excitonic gaps of semiconducting single-walled carbon nanotubes from a field theoretic analysis

    SciTech Connect

    Konik, Robert M.; Sfeir, Matthew Y.; Misewich, James A.

    2015-02-17

    We demonstrate that a non-perturbative framework for the treatment of the excitations of single walled carbon nanotubes based upon a field theoretic reduction is able to accurately describe experiment observations of the absolute values of excitonic energies. This theoretical framework yields a simple scaling function from which the excitonic energies can be read off. This scaling function is primarily determined by a single parameter, the charge Luttinger parameter of the tube, which is in turn a function of the tube chirality, dielectric environment, and the tube's dimensions, thus expressing disparate influences on the excitonic energies in a unified fashion. As a result, we test this theory explicitly on the data reported in [NanoLetters 5, 2314 (2005)] and [Phys. Rev. B 82, 195424 (2010)] and so demonstrate the method works over a wide range of reported excitonic spectra.

  1. Predicting excitonic gaps of semiconducting single-walled carbon nanotubes from a field theoretic analysis

    DOE PAGES

    Konik, Robert M.; Sfeir, Matthew Y.; Misewich, James A.

    2015-02-17

    We demonstrate that a non-perturbative framework for the treatment of the excitations of single walled carbon nanotubes based upon a field theoretic reduction is able to accurately describe experiment observations of the absolute values of excitonic energies. This theoretical framework yields a simple scaling function from which the excitonic energies can be read off. This scaling function is primarily determined by a single parameter, the charge Luttinger parameter of the tube, which is in turn a function of the tube chirality, dielectric environment, and the tube's dimensions, thus expressing disparate influences on the excitonic energies in a unified fashion. Asmore » a result, we test this theory explicitly on the data reported in [NanoLetters 5, 2314 (2005)] and [Phys. Rev. B 82, 195424 (2010)] and so demonstrate the method works over a wide range of reported excitonic spectra.« less

  2. Temperature and Field Induced Strain Measurements in Single Crystal Gd5Si2Ge2

    NASA Astrophysics Data System (ADS)

    McCall, S. K.; Nersessian, N.; Carman, G. P.; Pecharsky, V. K.; Schlagel, D. L.; Radousky, H. B.

    2016-06-01

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of -8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of -8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.

  3. Generalized cosmic Chaplygin gas inspired intermediate standard scalar field inflation

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Rani, Shamaila; Mohsaneen, Sidra

    2016-08-01

    We study the warm intermediate inflationary regime in the presence of generalized cosmic Chaplygin gas and an inflaton decay rate proportional to the temperature. For this purpose, we consider standard scalar field model during weak and strong dissipative regimes. We explore inflationary parameters like spectral index, scalar and tensor power spectra, tensor to scalar ratio and decay rate in order to compare the present model with recent observational data. The physical behavior of inflationary parameters is presented and found that all the results are agreed with recent observational data such as WMAP7, WMAP9 and Planck 2015.

  4. Iridium single atom tips fabricated by field assisted reactive gas etching

    NASA Astrophysics Data System (ADS)

    Wood, John A.; Urban, Radovan; Salomons, Mark; Cloutier, Martin; Wolkow, Robert A.; Pitters, Jason L.

    2016-03-01

    We present a simple, reliable method to fabricate Ir single atom tips (SATs) from polycrystalline wire. An electrochemical etch in CaCl2 solution is followed by a field assisted reactive gas etch in vacuum at room temperature using oxygen as an etching gas and neon as an imaging gas. Once formed, SATs are cooled to liquid nitrogen temperatures and their underlying structure is examined through evaporation of the apex atoms. Furthermore, a method is developed to repair Ir SATs at liquid nitrogen temperatures when apex atoms evaporate. This method may be used to fabricate Ir SAT ion sources.

  5. Reprogrammable field programmable gate array with integrated system for mitigating effects of single event upsets

    NASA Technical Reports Server (NTRS)

    Ng, Tak-kwong (Inventor); Herath, Jeffrey A. (Inventor)

    2010-01-01

    An integrated system mitigates the effects of a single event upset (SEU) on a reprogrammable field programmable gate array (RFPGA). The system includes (i) a RFPGA having an internal configuration memory, and (ii) a memory for storing a configuration associated with the RFPGA. Logic circuitry programmed into the RFPGA and coupled to the memory reloads a portion of the configuration from the memory into the RFPGA's internal configuration memory at predetermined times. Additional SEU mitigation can be provided by logic circuitry on the RFPGA that monitors and maintains synchronized operation of the RFPGA's digital clock managers.

  6. Detection in near-field domain of biomolecules adsorbed on a single metallic nanoparticle.

    PubMed

    Barbillon, G; Bijeon, J-L; Bouillard, J-S; Plain, J; Lamy De la Chapelle, M; Adam, P-M; Royer, P

    2008-02-01

    In this paper, we study the performances of nanosensors based on Localized Surface Plasmon Resonance in the context of biological sensing. We demonstrate the sensitivity and the selectivity of our designed nanosensors by studying the influence of the concentration of Streptavidin on the shift of Localized Surface Plasmon Resonance wavelength. In addition, to study the detection of biomolecules on a single Au nanoparticle, we used a Scanning Near-field Optical Microscope. These results represent new steps for applications in biological research and medical diagnostics.

  7. Charge modulation infrared spectroscopy of rubrene single-crystal field-effect transistors

    NASA Astrophysics Data System (ADS)

    Uchida, R.; Yada, H.; Makino, M.; Matsui, Y.; Miwa, K.; Uemura, T.; Takeya, J.; Okamoto, H.

    2013-03-01

    Polarized absorption spectra of hole carriers in rubrene single crystal field-effect transistors were measured in the infrared region (725-8000 cm-1) by charge modulation spectroscopy. The absorptions, including the superimposed oscillatory components due to multiple reflections within thin crystals, monotonically increased with decreasing frequency. The spectra and their polarization dependences were well reproduced by the analysis based on the Drude model, in which the absorptions due to holes in rubrene and electrons in the gate electrodes (silicon), and multiple reflections were fully considered. The results support the band transport of hole carriers in rubrene.

  8. Magnetic field tuning of polaron losses in Fe doped BaTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Anand Theerthan, R.; Artemenko, Alla; Maglione, Mario

    2012-10-01

    Artificial tuning of dielectric parameters can result from interface conductivity in polycrystalline materials. In ferroelectric single crystals, it has already been shown that ferroelectric domain walls can be the source of such artificial coupling. We show here that low-temperature dielectric losses can be tuned by a dc magnetic field. Since such losses were previously ascribed to polaron relaxation we suggest this results from the interaction of hopping polarons with the magnetic field. The fact that this loss alteration has no counterpart in the real part of the dielectric permittivity confirms that no interface is involved in this purely dynamical effect. The contribution of mobile charges hopping among Fe-related centers was confirmed by ESR spectroscopy, showing a maximum intensity at ca T ˜ 40 K.

  9. Photon Energy Deposition in Strong-Field Single Ionization of Multielectron Molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbin; Li, Zhichao; Lu, Peifen; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Lin, Kang; Ma, Junyang; He, Feng; Zeng, Heping; Wu, Jian

    2016-09-01

    Molecules exposed to strong laser fields may coherently absorb multiple photons and deposit the energy into electrons and nuclei, triggering the succeeding dynamics as the primary stage of the light-molecule interaction. We experimentally explore the electron-nuclear sharing of the absorbed photon energy in above-threshold multiphoton single ionization of multielectron molecules. Using CO as a prototype, vibrational and orbital resolved electron-nuclear sharing of the photon energy is observed. Different from the simplest one- or two-electron systems, the participation of the multiple orbitals and the coupling of various electronic states in the strong-field ionization and dissociation processes alter the photon energy deposition dynamics of the multielectron molecule. The population of numerous vibrational states of the molecular cation as the energy reservoir in the ionization process plays an important role in photon energy sharing between the emitted electron and the nuclear fragments.

  10. Photon Energy Deposition in Strong-Field Single Ionization of Multielectron Molecules.

    PubMed

    Zhang, Wenbin; Li, Zhichao; Lu, Peifen; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Lin, Kang; Ma, Junyang; He, Feng; Zeng, Heping; Wu, Jian

    2016-09-01

    Molecules exposed to strong laser fields may coherently absorb multiple photons and deposit the energy into electrons and nuclei, triggering the succeeding dynamics as the primary stage of the light-molecule interaction. We experimentally explore the electron-nuclear sharing of the absorbed photon energy in above-threshold multiphoton single ionization of multielectron molecules. Using CO as a prototype, vibrational and orbital resolved electron-nuclear sharing of the photon energy is observed. Different from the simplest one- or two-electron systems, the participation of the multiple orbitals and the coupling of various electronic states in the strong-field ionization and dissociation processes alter the photon energy deposition dynamics of the multielectron molecule. The population of numerous vibrational states of the molecular cation as the energy reservoir in the ionization process plays an important role in photon energy sharing between the emitted electron and the nuclear fragments. PMID:27636472

  11. Single field inflation in supergravity with a U(1) gauge symmetry

    SciTech Connect

    Heurtier, L.; Khalil, S.; Moursy, A.

    2015-10-19

    A single field inflation based on a supergravity model with a shift symmetry and U(1) extension of the MSSM is analyzed. We show that one of the real components of the two U(1) charged scalar fields plays the role of inflaton with an effective scalar potential similar to the “new chaotic inflation” scenario. Both non-anomalous and anomalous (with Fayet-Iliopoulos term) U(1) are studied. We show that the non-anomalous U(1) scenario is consistent with data of the cosmic microwave background and recent astrophysical measurements. A possible kinetic mixing between U(1) and U(1){sub B−L} is considered in order to allow for natural decay channels of the inflaton, leading to a reheating epoch. Upper limits on the reheating temperature thus turn out to favour an intermediate (∼O(10{sup 13}) GeV) scale B−L symmetry breaking.

  12. Photon Energy Deposition in Strong-Field Single Ionization of Multielectron Molecules.

    PubMed

    Zhang, Wenbin; Li, Zhichao; Lu, Peifen; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Lin, Kang; Ma, Junyang; He, Feng; Zeng, Heping; Wu, Jian

    2016-09-01

    Molecules exposed to strong laser fields may coherently absorb multiple photons and deposit the energy into electrons and nuclei, triggering the succeeding dynamics as the primary stage of the light-molecule interaction. We experimentally explore the electron-nuclear sharing of the absorbed photon energy in above-threshold multiphoton single ionization of multielectron molecules. Using CO as a prototype, vibrational and orbital resolved electron-nuclear sharing of the photon energy is observed. Different from the simplest one- or two-electron systems, the participation of the multiple orbitals and the coupling of various electronic states in the strong-field ionization and dissociation processes alter the photon energy deposition dynamics of the multielectron molecule. The population of numerous vibrational states of the molecular cation as the energy reservoir in the ionization process plays an important role in photon energy sharing between the emitted electron and the nuclear fragments.

  13. Synthesis of 3D Model of a Magnetic Field-Influenced Body from a Single Image

    NASA Technical Reports Server (NTRS)

    Wang, Cuilan; Newman, Timothy; Gallagher, Dennis

    2006-01-01

    A method for recovery of a 3D model of a cloud-like structure that is in motion and deforming but approximately governed by magnetic field properties is described. The method allows recovery of the model from a single intensity image in which the structure's silhouette can be observed. The method exploits envelope theory and a magnetic field model. Given one intensity image and the segmented silhouette in the image, the method proceeds without human intervention to produce the 3D model. In addition to allowing 3D model synthesis, the method's capability to yield a very compact description offers further utility. Application of the method to several real-world images is demonstrated.

  14. Single field inflation in supergravity with a U(1) gauge symmetry

    SciTech Connect

    Heurtier, L.; Khalil, S.; Moursy, A. E-mail: skhalil@zewailcity.edu.eg

    2015-10-01

    A single field inflation based on a supergravity model with a shift symmetry and U(1) extension of the MSSM is analyzed. We show that one of the real components of the two U(1) charged scalar fields plays the role of inflaton with an effective scalar potential similar to the ''new chaotic inflation'' scenario. Both non-anomalous and anomalous (with Fayet-Iliopoulos term) U(1) are studied. We show that the non-anomalous U(1) scenario is consistent with data of the cosmic microwave background and recent astrophysical measurements. A possible kinetic mixing between U(1) and U(1){sub B−L} is considered in order to allow for natural decay channels of the inflaton, leading to a reheating epoch. Upper limits on the reheating temperature thus turn out to favour an intermediate (∼ O(10{sup 13}) GeV) scale B−L symmetry breaking.

  15. Magnetic field-controlled two-way shape memory in CoNiGa single crystals

    NASA Astrophysics Data System (ADS)

    Li, Y. X.; Liu, H. Y.; Meng, F. B.; Yan, L. Q.; Liu, G. D.; Dai, X. F.; Zhang, M.; Liu, Z. H.; Chen, J. L.; Wu, G. H.

    2004-05-01

    A two-way magnetic field controlled shape memory effect has been observed in single crystals of CoNiGa with martensitic transformation temperature ranging from 205 to 341 K. Two-way shape memory with -2.3% strain has been obtained in free samples. By applying a bias field of up to 2 T, the shape memory strain can be continuously controlled from negative 2.3% to positive 2.2% giving it a total strain of 4.5%. The magnetic properties of CoNiGa show that it is a good shape memory material working at relatively high temperature of up to 450 K, and has a lower magnetic anisotropy than NiMnGa.

  16. Orientation effect on the giant stress field induced in a single Ni nanowire by mechanical strain

    NASA Astrophysics Data System (ADS)

    Melilli, G.; Madon, B.; Clochard, M.-C.; Wegrowe, J.-E.

    2015-09-01

    The change of magnetization (i.e. using the inverse magnetostriction effect) allows to investigate at the nanoscale the effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW). The magnetization state is measured locally by anisotropic magnetoresitance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. Due to the inverse magnetostriction, a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≍ 10 K has been evidenced. The coplanarity of the vectors between the magnetization and the magnetic field is broken. A way of studying the effect of the geometry on such a system, is to fabricate oriented polymer templates. Track-etched polymer membranes were thus irradiated at various angles (αirrad) leading, after electrodeposition, to embedded Ni NWs of different orientations. With cylindrical Ni NW oriented normally to the template surface, the induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification results in three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress-strain law. When the Ni NWs are tilted from the polymer template surface normality, the induced stress field is reduced and the amplification phenomenon is less important.

  17. Ferroelectric Single-Crystal Gated Graphene/Hexagonal-BN/Ferroelectric Field-Effect Transistor.

    PubMed

    Park, Nahee; Kang, Haeyong; Park, Jeongmin; Lee, Yourack; Yun, Yoojoo; Lee, Jeong-Ho; Lee, Sang-Goo; Lee, Young Hee; Suh, Dongseok

    2015-11-24

    The effect of a ferroelectric polarization field on the charge transport in a two-dimensional (2D) material was examined using a graphene monolayer on a hexagonal boron nitride (hBN) field-effect transistor (FET) fabricated using a ferroelectric single-crystal substrate, (1-x)[Pb(Mg1/3Nb2/3)O3]-x[PbTiO3] (PMN-PT). In this configuration, the intrinsic properties of graphene were preserved with the use of an hBN flake, and the influence of the polarization field from PMN-PT could be distinguished. During a wide-range gate-voltage (VG) sweep, a sharp inversion of the spontaneous polarization affected the graphene channel conductance asymmetrically as well as an antihysteretic behavior. Additionally, a transition from antihysteresis to normal ferroelectric hysteresis occurred, depending on the V(G) sweep range relative to the ferroelectric coercive field. We developed a model to interpret the complex coupling among antihysteresis, current saturation, and sudden conductance variation in relation with the ferroelectric switching and the polarization-assisted charge trapping, which can be generalized to explain the combination of 2D structured materials with ferroelectrics.

  18. Terahertz probes of magnetic field induced spin reorientation in YFeO{sub 3} single crystal

    SciTech Connect

    Lin, Xian; Jiang, Junjie; Ma, Guohong; Jin, Zuanming; Wang, Dongyang; Tian, Zhen; Han, Jiaguang; Cheng, Zhenxiang

    2015-03-02

    Using the terahertz time-domain spectroscopy, we demonstrate the spin reorientation of a canted antiferromagnetic YFeO{sub 3} single crystal, by evaluating the temperature and magnetic field dependence of resonant frequency and amplitude for the quasi-ferromagnetic (FM) and quasi-antiferromagnetic modes (AFM), a deeper insight into the dynamics of spin reorientation in rare-earth orthoferrites is established. Due to the absence of 4f-electrons in Y ion, the spin reorientation of Fe sublattices can only be induced by the applied magnetic field, rather than temperature. In agreement with the theoretical predication, the frequency of FM mode decreases with magnetic field. In addition, an obvious step of spin reorientation phase transition occurs with a relatively large applied magnetic field of 4 T. By comparison with the family members of RFeO{sub 3} (R = Y{sup 3+} or rare-earth ions), our results suggest that the chosen of R would tailor the dynamical rotation properties of Fe ions, leading to the designable spin switching in the orthoferrite antiferromagnetic systems.

  19. Magnetic-field-enhanced synthesis of single-wall carbon nanotubes in arc discharge

    NASA Astrophysics Data System (ADS)

    Keidar, Michael; Levchenko, Igor; Arbel, Tamir; Alexander, Myriam; Waas, Anthony M.; Ostrikov, Kostya Ken

    2008-05-01

    The ability to control the properties of single-wall nanotubes (SWNTs) produced in the arc discharge is important for many practical applications. Our experiments suggest that the length of SWNTs significantly increases (up to 4000 nm), along with the purity of the carbon deposit, when the magnetic field is applied to arc discharge. Scanning electron microscopy and transmission electron microscopy analyses have demonstrated that the carbon deposit produced in the magnetic-field-enhanced arc mainly consists of the isolated and bunched SWNTs. A model of a carbon nanotube interaction and growth in the thermal plasma was developed, which considers several important effects such as anode ablation that supplies the carbon plasma in an anodic arc discharge technique, and the momentum, charge, and energy transfer processes between nanotube and plasma. It is shown that the nanotube charge with respect to the plasma as well as nanotube length depend on plasma density and electric field in the interelectrode gap. For instance, nanotube charge changes from negative to positive value with an electron density decrease. The numerical simulations based on the Monte Carlo technique were performed, which explain an increase in the nanotubes produced in the magnetic-field-enhanced arc discharge.

  20. Ferroelectric Single-Crystal Gated Graphene/Hexagonal-BN/Ferroelectric Field-Effect Transistor.

    PubMed

    Park, Nahee; Kang, Haeyong; Park, Jeongmin; Lee, Yourack; Yun, Yoojoo; Lee, Jeong-Ho; Lee, Sang-Goo; Lee, Young Hee; Suh, Dongseok

    2015-11-24

    The effect of a ferroelectric polarization field on the charge transport in a two-dimensional (2D) material was examined using a graphene monolayer on a hexagonal boron nitride (hBN) field-effect transistor (FET) fabricated using a ferroelectric single-crystal substrate, (1-x)[Pb(Mg1/3Nb2/3)O3]-x[PbTiO3] (PMN-PT). In this configuration, the intrinsic properties of graphene were preserved with the use of an hBN flake, and the influence of the polarization field from PMN-PT could be distinguished. During a wide-range gate-voltage (VG) sweep, a sharp inversion of the spontaneous polarization affected the graphene channel conductance asymmetrically as well as an antihysteretic behavior. Additionally, a transition from antihysteresis to normal ferroelectric hysteresis occurred, depending on the V(G) sweep range relative to the ferroelectric coercive field. We developed a model to interpret the complex coupling among antihysteresis, current saturation, and sudden conductance variation in relation with the ferroelectric switching and the polarization-assisted charge trapping, which can be generalized to explain the combination of 2D structured materials with ferroelectrics. PMID:26487348

  1. Running spectral index and formation of primordial black hole in single field inflation models

    SciTech Connect

    Drees, Manuel; Erfani, Encieh E-mail: erfani@th.physik.uni-bonn.de

    2012-01-01

    A broad range of single field models of inflation are analyzed in light of all relevant recent cosmological data, checking whether they can lead to the formation of long-lived Primordial Black Holes (PBHs). To that end we calculate the spectral index of the power spectrum of primordial perturbations as well as its first and second derivatives. PBH formation is possible only if the spectral index increases significantly at small scales, i.e. large wave number k. Since current data indicate that the first derivative α{sub S} of the spectral index n{sub S}(k{sub 0}) is negative at the pivot scale k{sub 0}, PBH formation is only possible in the presence of a sizable and positive second derivative (''running of the running'') β{sub S}. Among the three small-field and five large-field models we analyze, only one small-field model, the ''running mass'' model, allows PBH formation, for a narrow range of parameters. We also note that none of the models we analyze can accord for a large and negative value of α{sub S}, which is weakly preferred by current data.

  2. Application of magnetic fields in industrial growth of silicon single crystals

    NASA Astrophysics Data System (ADS)

    von Ammon, W.; Gelfgat, Yu.; Gorbunov, L.; Mulbauer, A.; Muiznieks, A.; Makarov, Y.; Virbulis, J.; Muller, G.

    2006-12-01

    The use of magnetic fields for the growth of semiconductor crystals has already been considered many decades ago. As early as in 1966, Chedzey et al te{1} and Utech et al te{2} reported about InSb crystals grown in a horizontal boat under the influence of a magnetic field. They found a suppression of temperature fluctuations in the InSb melt and a decrease of growth variations (striations) in the crystal. In 1970, Witt et al te{3} applied a static transverse (horizontal) magnetic field to the Czochralski (CZ) growth of InSb crystals. 10 years later, in 1980, the transverse field was also used for the CZ growth of silicon single crystals te{4,5}. Since then, the method has received considerable attention over the years. One of the major driving forces for introducing magnetic fields in the industrial CZ growth of silicon crystals was the request by the semiconductor industry to replace floating zone (FZ) grown crystals, which had been the preferred substrate material for the manufacturing of high power devices, by low oxygen CZ crystals te{6}. The reason for this changeover was the fact that the FZ method in the early 80's could not follow the rapid crystal diameter increase as required by the industry, namely, the switch from 4" to 5" diameter in the early 80's. The application of magnetic fields to the CZ technique (MCZ) allowed the growth of low oxygen crystals with the required diameter and having similar properties as the FZ grown crystals. Figs 12, Refs 59.

  3. Shape dependent synthesis and field emission induced rectification in single ZnS nanocrystals.

    PubMed

    Thupakula, Umamahesh; Dalui, Amit; Debangshi, Anupam; Bal, Jayanta K; Kumar, Gundam S; Acharya, Somobrata

    2014-05-28

    We report on the synthesis of shape controlled ZnS nanocrystals designed into nanodots, nanorods, and nanowires retaining the same diameter and crystallographic phase. We used UHV scanning tunneling microscopy and spectroscopy to study rectification behavior from single nanocrystals. The nanorod and nanowire show large tunneling current at the negative bias in comparison to the positive bias demonstrating current rectification, while the nanodot shows symmetric current-voltage behavior. We proposed a tunneling mechanism where direct tunneling is followed by resonant tunneling mechanism through ZnS nanocrystal at lower applied bias voltages. Stimulation of field emission in Fowler-Nordheim tunneling regime at higher negative bias voltages enables the rectification behavior from the ZnS nanorod or nanowire. Absence of rectification from the ZnS nanodot is associated with spherical shape where the field emission becomes less significant. Realizing functional electronic component from such shape dependent single ZnS nanocrystal may provide a means in realizing nanocrystal based miniaturized devices.

  4. Single-field consistency relations of large scale structure part II: resummation and redshift space

    SciTech Connect

    Creminelli, Paolo; Gleyzes, Jérôme; Vernizzi, Filippo; Simonović, Marko E-mail: jerome.gleyzes@cea.fr E-mail: filippo.vernizzi@cea.fr

    2014-02-01

    We generalize the recently derived single-field consistency relations of Large Scale Structure in two directions. First, we treat the effect of the long modes (with momentum q) on the short ones (with momentum k) non-perturbatively, by writing resummed consistency relations which do not require k/q⋅δ{sub q} << 1. These relations do not make any assumptions on the short-scales physics and are extended to include (an arbitrary number of) multiple long modes, internal lines with soft momenta and soft loops. We do several checks of these relations in perturbation theory and we verify that the effect of soft modes always cancels out in equal-time correlators. Second, we write the relations directly in redshift space, without assuming the single-stream approximation: not only the long mode affects the short scales as a homogeneous gravitational field, but it also displaces them by its velocity along the line-of-sight. Redshift space consistency relations still vanish when short modes are taken at equal time: an observation of a signal in the squeezed limit would point towards multifield inflation or a violation of the equivalence principle.

  5. Separation of non-stationary sound fields with single layer pressure-velocity measurements.

    PubMed

    Bi, Chuan-Xing; Geng, Lin; Zhang, Xiao-Zheng

    2016-02-01

    This paper examines the feasibility of extracting the non-stationary sound field generated by a target source in the presence of disturbing source from single layer pressure-velocity measurements. Unlike the method described in a previous paper [Bi, Geng, and Zhang, J. Acoust. Soc. Am. 135(6), 3474-3482 (2014)], the proposed method allows measurements of pressure and particle velocity signals on a single plane instead of pressure signals on two planes, and the time-dependent pressure generated by the target source is extracted by a simple superposition of the measured pressure and the convolution between the measured particle velocity and the corresponding impulse response function. Because the particle velocity here is measured directly, the error caused by the finite difference approximation can be avoided, which makes it possible to perform the separation better than the previous method. In this paper, a Microflown pressure-velocity probe is used to perform the experimental measurements, and the calibration procedure of the probe in the time domain is given. The experimental results demonstrate that the proposed method is effective in extracting the desired non-stationary sound field generated by the target source from the mixed one in both time and space domains, and it obtains more accurate results than the previous method. PMID:26936560

  6. Magnetic field of a single muscle fiber. First measurements and a core conductor model.

    PubMed Central

    van Egeraat, J M; Friedman, R N; Wikswo, J P

    1990-01-01

    We present the first measurements of the magnetic field from a single muscle fiber of the frog gastrocnemius, obtained by using a toroidal pickup coil coupled to a room-temperature, low-noise amplifier. The axial currents associated with the magnetic fields of single fibers were biphasic and had peak-to-peak amplitudes ranging between 50 and 100 nA, depending primarily on the fiber radius. With an intracellular microelectrode, we measured the action potential of the same fiber, which allowed us to determine that the intracellular conductivity of the muscle fiber in the core conductor approximation was 0.20 +/- 0.09 S/m. Similarly, we found that the effective membrane capacitance was 0.030 +/- 0.011 F/m2. These results were not significantly affected by the anisotropic conductivity of the muscle bundle. We demonstrate how our magnetic technique can be used to determine the transmembrane action potential without penetrating the membrane with a microelectrode, thereby offering a reliable, stable, and atraumatic method for studying contracting muscle fibers. PMID:2306511

  7. Linear magnetoresistance and zero-field anomalies in HfNiSn single crystals

    NASA Astrophysics Data System (ADS)

    Steinke, Lucia; Kistner-Morris, Jedediah J.; Deng, Haiming; Geschwind, Gayle; Aronson, Meigan C.

    The Half-Heusler compound HfNiSn is probably best known as a candidate material for thermoelectric applications, and studies of its properties have mainly focused on polycrystalline samples and thin films. However, magnetotransport studies of HfNiSn show unusual transport properties like linear magnetoresistance (LMR), where single-crystalline samples of HfNiSn exhibit unexpected LMR at very low fields. In this work, we optimized the solution growth of HfNiSn to obtain high-quality single crystals, where electrical transport measurements show that it is a compensated semimetal below ~ 200 K, where the Hall voltage is zero. At higher temperatures, we see a finite Hall contribution from activated excess carriers. In the semimetallic regime, we observe transport anomalies like resistive signals that strongly depend on contact configuration, and LMR below 5 K. Both low-field DC and low frequency AC magntization measurements show pronounced diamagnetic behavior and the onset of paramagnetism below 4 K. High-frequency diamagnetic screening may be attributed to a decreased skin depth with decreased resistance, but this scenario seems unlikely in HfNiSn since the measured resistance increases steeply at the lowest temperatures This research was supported by the Army Research Office.

  8. Coupling single giant nanocrystal quantum dots to the fundamental mode of patch nanoantennas through fringe field

    DOE PAGES

    Wang, Feng; Karan, Niladri S.; Minh Nguyen, Hue; Ghosh, Yagnaseni; Hollingsworth, Jennifer A.; Htoon, Han

    2015-09-23

    Through single dot spectroscopy and numerical simulation studies, we demonstrate that the fundamental mode of gold patch nanoantennas have fringe-field resonance capable of enhancing the nano-emitters coupled around the edge of the patch antenna. This fringe-field coupling is used to enhance the radiative rates of core/thick-shell nanocrystal quantum dots (g-NQDs) that cannot be embedded into the ultra-thin dielectric gap of patch nanoantennas due to their large sizes. We attain 14 and 3 times enhancements in single exciton radiative decay rate and bi-exciton emission efficiencies of g-NQDs respectively, with no detectable metal quenching. Our numerical studies confirmed our experimental results andmore » further reveal that patch nanoantennas can provide strong emission enhancement for dipoles lying not only in radial direction of the circular patches but also in the direction normal to the antennas surface. Finally, this provides a distinct advantage over the parallel gap-bar antennas that can provide enhancement only for the dipoles oriented across the gap.« less

  9. Separation of non-stationary sound fields with single layer pressure-velocity measurements.

    PubMed

    Bi, Chuan-Xing; Geng, Lin; Zhang, Xiao-Zheng

    2016-02-01

    This paper examines the feasibility of extracting the non-stationary sound field generated by a target source in the presence of disturbing source from single layer pressure-velocity measurements. Unlike the method described in a previous paper [Bi, Geng, and Zhang, J. Acoust. Soc. Am. 135(6), 3474-3482 (2014)], the proposed method allows measurements of pressure and particle velocity signals on a single plane instead of pressure signals on two planes, and the time-dependent pressure generated by the target source is extracted by a simple superposition of the measured pressure and the convolution between the measured particle velocity and the corresponding impulse response function. Because the particle velocity here is measured directly, the error caused by the finite difference approximation can be avoided, which makes it possible to perform the separation better than the previous method. In this paper, a Microflown pressure-velocity probe is used to perform the experimental measurements, and the calibration procedure of the probe in the time domain is given. The experimental results demonstrate that the proposed method is effective in extracting the desired non-stationary sound field generated by the target source from the mixed one in both time and space domains, and it obtains more accurate results than the previous method.

  10. Coupling Single Giant Nanocrystal Quantum Dots to the Fundamental Mode of Patch Nanoantennas through Fringe Field

    PubMed Central

    Wang, Feng; Karan, Niladri S.; Minh Nguyen, Hue; Ghosh, Yagnaseni; Hollingsworth, Jennifer A.; Htoon, Han

    2015-01-01

    Through single dot spectroscopy and numerical simulation studies, we demonstrate that the fundamental mode of gold patch nanoantennas have fringe-field resonance capable of enhancing the nano-emitters coupled around the edge of the patch antenna. This fringe-field coupling is used to enhance the radiative rates of core/thick-shell nanocrystal quantum dots (g-NQDs) that cannot be embedded into the ultra-thin dielectric gap of patch nanoantennas due to their large sizes. We attain 14 and 3 times enhancements in single exciton radiative decay rate and bi-exciton emission efficiencies of g-NQDs respectively, with no detectable metal quenching. Our numerical studies confirmed our experimental results and further reveal that patch nanoantennas can provide strong emission enhancement for dipoles lying not only in radial direction of the circular patches but also in the direction normal to the antennas surface. This provides a distinct advantage over the parallel gap-bar antennas that can provide enhancement only for the dipoles oriented across the gap. PMID:26394763

  11. Coupling single giant nanocrystal quantum dots to the fundamental mode of patch nanoantennas through fringe field

    SciTech Connect

    Wang, Feng; Karan, Niladri S.; Minh Nguyen, Hue; Ghosh, Yagnaseni; Hollingsworth, Jennifer A.; Htoon, Han

    2015-09-23

    Through single dot spectroscopy and numerical simulation studies, we demonstrate that the fundamental mode of gold patch nanoantennas have fringe-field resonance capable of enhancing the nano-emitters coupled around the edge of the patch antenna. This fringe-field coupling is used to enhance the radiative rates of core/thick-shell nanocrystal quantum dots (g-NQDs) that cannot be embedded into the ultra-thin dielectric gap of patch nanoantennas due to their large sizes. We attain 14 and 3 times enhancements in single exciton radiative decay rate and bi-exciton emission efficiencies of g-NQDs respectively, with no detectable metal quenching. Our numerical studies confirmed our experimental results and further reveal that patch nanoantennas can provide strong emission enhancement for dipoles lying not only in radial direction of the circular patches but also in the direction normal to the antennas surface. Finally, this provides a distinct advantage over the parallel gap-bar antennas that can provide enhancement only for the dipoles oriented across the gap.

  12. Electrical properties of single CuO nanowires for device fabrication: Diodes and field effect transistors

    SciTech Connect

    Florica, Camelia; Costas, Andreea; Boni, Andra Georgia; Negrea, Raluca; Preda, Nicoleta E-mail: encu@infim.ro; Pintilie, Lucian; Enculescu, Ionut E-mail: encu@infim.ro; Ion, Lucian

    2015-06-01

    High aspect ratio CuO nanowires are synthesized by a simple and scalable method, thermal oxidation in air. The structural, morphological, optical, and electrical properties of the semiconducting nanowires were studied. Au-Ti/CuO nanowire and Pt/CuO nanowire electrical contacts were investigated. A dominant Schottky mechanism was evidenced in the Au-Ti/CuO nanowire junction and an ohmic behavior was observed for the Pt/CuO nanowire junction. The Pt/CuO nanowire/Pt structure allows the measurements of the intrinsic transport properties of the single CuO nanowires. It was found that an activation mechanism describes the behavior at higher temperatures, while a nearest neighbor hopping transport mechanism is characteristic at low temperatures. This was also confirmed by four-probe resistivity measurements on the single CuO nanowires. By changing the metal/semiconductor interface, devices such as Schottky diodes and field effect transistors based on single CuO p-type nanowire semiconductor channel are obtained. These devices are suitable for being used in various electronic circuits where their size related properties can be exploited.

  13. Formation of a ''child'' universe in an inflationary cosmological model

    SciTech Connect

    Holcomb, K.A.; Park, S.J.; Vishniac, E.T.

    1989-02-15

    The evolution of a flat, spherically symmetric cosmological model, containing radiation and an inhomogeneous scalar field, is simulated numerically to determine whether the inhomogeneity could cause a ''child'' universe, connected by a wormhole to the external universe, to form. The gravitational and field quantities were computed self-consistently by means of the techniques of numerical relativity. Although we were unable to follow the process to its completion, preliminary indications are that the ''budding'' phenomenon could occur under very general initial conditions, as long as the scalar field is sufficiently inhomogeneous that the wormhole forms before the inflation is damped by the expansion of the background spacetime.

  14. High-efficiency broad-area single-quantum-well lasers with narrow single-lobed far-field patterns prepared by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Muttelstein, M.; Arakawa, Y.; Yariv, A.

    1986-01-01

    Broad-area single-quantum-well graded-index waveguide separate-confinement heterostructure lasers were fabricated by molecular beam epitaxy. A high external quantum efficiency of 79 percent and stable, single-lobed far-field patterns with a beam divergence as narrow as 0.8 deg (1.9 times diffraction limit) for a 100 micron-wide laser were obtained under pulsed conditions.

  15. Experimental measurement of the near tip strain field in an iron-silicon single crystal

    NASA Astrophysics Data System (ADS)

    Shield, T. W.; Kim, K.-S.

    1994-05-01

    EXPERIMENTAL RESULTS are presented for the plastic deformation field near a crack (200 μm wide notch) tip in an iron-3% silicon single crystal. The specimen was loaded in four point bending and the measurements were made at zero load after extensive plastic deformation had occurred. Results are given for a crack on the (011) plane with its tip along the [01|T] direction. The surface deformation field was measured using moire microscopy and a grating on the specimen surface. The in-plane Almansi strain components have been obtained by digitally processing the moire fringes. A well-structured asymptotic field has been found at a distance of 350-500 μm from the notch tip, where the maximum plastic strain is about 9%. The asymptotic field is observed to be composed of many distinct angular sectors. Three (six symmetric) of these sectors are found to have approximately constant strains. In a fourth (two symmetric) sector, the surface strains are approximately 1/ r singular. Between these sectors there are interconnecting transition sectors. The location of the stress state on the yield surface and the active slip systems in each sector are identified by assuming that the plastic strain rates are normal to a Schmid law yield surface. The slip systems identified in this manner show excellent agreement with direct observations of the slip texture on the surface and dislocation etch pits in the interior of the specimen. The experimental strain measurements also show that the constant strain sectors are regions in which unloading occurs. Because of this unloading, the crack tip stress and deformation state is substantially different from an HRR type field which assumes proportional loading. This strong nonproportional loading is thought to be caused by the presence of material anisotropy. The nonproportional loading also provides a large amount of crack tip shielding that is evidence of a toughening mechanism that results from the presence of material anisotropy.

  16. Single-Cell Quantification of Cytosine Modifications by Hyperspectral Dark-Field Imaging

    PubMed Central

    Wang, Xiaolei; Cui, Yi; Irudayaraj, Joseph

    2016-01-01

    Epigenetic modifications on DNA, especially on cytosine, play a critical role in regulating gene expression and genome stability. It is known that the levels of different cytosine derivatives are highly dynamic and are regulated by a variety of factors that act on the chromatin. Here we report an optical methodology based on hyperspectral dark-field imaging (HSDFI) using plasmonic nanoprobes to quantify the recently identified cytosine modifications on DNA in single cells. Gold (Au) and silver (Ag) nanoparticles (NPs) functionalized with specific antibodies were used as contrast-generating agents due to their strong Local Surface Plasmon Resonance (LSPR) properties. With this powerful platform we have revealed the spatial distribution and quantity of 5-carboxylcytosine (5caC) at the different stages in cell cycle, and demonstrated that 5caC was a stably inherited epigenetic mark. We have also shown that the regional density of 5caC on a single chromosome can be mapped due to the spectral sensitivity of the nanoprobes in relation to the inter-particle distance. Notably, HSDFI enables an efficient removal of the scattering noises from non-specifically aggregated nanoprobes, to improve accuracy in the quantification of different cytosine modifications in single cells. Further, by separating the LSPR fingerprints of AuNPs and AgNPs, multiplex detection of two cytosine modifications was also performed. Our results demonstrate HSDFI as a versatile platform for spatial and spectroscopic characterization of plasmonic nanoprobe-labeled nuclear targets at the single-cell level for quantitative epigenetic screening. PMID:26505210

  17. Revisiting a pre-inflationary radiation era and its effect on the CMB power spectrum

    SciTech Connect

    Das, Suratna; Goswami, Gaurav; Rangarajan, Raghavan; Prasad, Jayanti E-mail: gaugo@prl.res.in E-mail: raghavan@prl.res.in

    2015-06-01

    We revisit the scenario where inflation is preceded by a radiation era by considering that the inflaton too could have been in thermal equilibrium early in the radiation era. Hence we take into account not only the effect of a pre-inflationary era on the inflaton mode functions but also that of a frozen thermal distribution of inflaton quanta. We initially discuss in detail the issues relevant to our scenario of a pre-inflationary radiation dominated era and then obtain the scalar power spectrum for this scenario. We find that the power spectrum is free from infrared divergences. We then use the WMAP and Planck data to determine the constraints on the inflaton comoving 'temperature' and on the duration of inflation. We find that the best fit value of the duration of inflation is less than 1 e-folding more than what is required to solve cosmological problems, while only an upper bound on the inflaton temperature can be obtained.

  18. Inflationary Dilatonic de Sitter Universe from { N} = 4 Super-Yang Mills Theory Perturbed by Scalars

    NASA Astrophysics Data System (ADS)

    Hurtado, John Quiroga

    In this paper a quantum { N} = 4 super-Yang Mills theory perturbed by dilaton-coupled scalars, is considered. The induced effective action for such a theory is calculated on a dilaton-gravitational background using the conformal anomaly found via AdS/CFT correspondence. Considering such an effective action (using the large N method) as a quantum correction to the classical gravity action with cosmological constant we study the effect from dilaton to the scale factor (which corresponds to the inflationary universe without dilaton). It is shown that, depending on the initial conditions for the dilaton, the dilaton may slow down, or accelerate, the inflation process. At late times, the dilaton is decaying exponentially. At the end of this work, we consider the question how the perturbation of the solution for the scale factor affects the stability of the solution for the equations of motion and therefore the stability of the Inflationary Universe, which could be eternal.

  19. The present and future of the most favoured inflationary models after Planck 2015

    NASA Astrophysics Data System (ADS)

    Escudero, Miguel; Ramírez, Héctor; Boubekeur, Lotfi; Giusarma, Elena; Mena, Olga

    2016-02-01

    The value of the tensor-to-scalar ratio r in the region allowed by the latest Planck 2015 measurements can be associated to a large variety of inflationary models. We discuss here the potential of future Cosmic Microwave Background cosmological observations in disentangling among the possible theoretical scenarios allowed by our analyses of current Planck temperature and polarization data. Rather than focusing only on r, we focus as well on the running of the primordial power spectrum, αs and the running thereof, βs. If future cosmological measurements, as those from the COrE mission, confirm the current best-fit value for βs gtrsim 10-2 as the preferred one, it will be possible to rule-out the most favoured inflationary models.

  20. Facile fabrication of electrolyte-gated single-crystalline cuprous oxide nanowire field-effect transistors.

    PubMed

    Stoesser, Anna; von Seggern, Falk; Purohit, Suneeti; Nasr, Babak; Kruk, Robert; Dehm, Simone; Di Wang; Hahn, Horst; Dasgupta, Subho

    2016-10-14

    Oxide semiconductors are considered to be one of the forefront candidates for the new generation, high-performance electronics. However, one of the major limitations for oxide electronics is the scarcity of an equally good hole-conducting semiconductor, which can provide identical performance for the p-type metal oxide semiconductor field-effect transistors as compared to their electron conducting counterparts. In this quest, here we present a bulk synthesis method for single crystalline cuprous oxide (Cu2O) nanowires, their chemical and morphological characterization and suitability as active channel material in electrolyte-gated, low-power, field-effect transistors (FETs) for portable and flexible logic circuits. The bulk synthesis method used in the present study includes two steps: namely hydrothermal synthesis of the nanowires and the removal of the surface organic contaminants. The surface treated nanowires are then dispersed on a receiver substrate where the passive electrodes are structured, followed by printing of a composite solid polymer electrolyte (CSPE), chosen as the gate insulator. The characteristic electrical properties of individual nanowire FETs are found to be quite interesting including accumulation-mode operation and field-effect mobility of 0.15 cm(2) V(-1) s(-1). PMID:27609560

  1. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector.

    PubMed

    Stantchev, Rayko Ivanov; Sun, Baoqing; Hornett, Sam M; Hobson, Peter A; Gibson, Graham M; Padgett, Miles J; Hendry, Euan

    2016-06-01

    Terahertz (THz) imaging can see through otherwise opaque materials. However, because of the long wavelengths of THz radiation (λ = 400 μm at 0.75 THz), far-field THz imaging techniques suffer from low resolution compared to visible wavelengths. We demonstrate noninvasive, near-field THz imaging with subwavelength resolution. We project a time-varying, intense (>100 μJ/cm(2)) optical pattern onto a silicon wafer, which spatially modulates the transmission of synchronous pulse of THz radiation. An unknown object is placed on the hidden side of the silicon, and the far-field THz transmission corresponding to each mask is recorded by a single-element detector. Knowledge of the patterns and of the corresponding detector signal are combined to give an image of the object. Using this technique, we image a printed circuit board on the underside of a 115-μm-thick silicon wafer with ~100-μm (λ/4) resolution. With subwavelength resolution and the inherent sensitivity to local conductivity, it is possible to detect fissures in the circuitry wiring of a few micrometers in size. THz imaging systems of this type will have other uses too, where noninvasive measurement or imaging of concealed structures is necessary, such as in semiconductor manufacturing or in ex vivo bioimaging. PMID:27386577

  2. Facile fabrication of electrolyte-gated single-crystalline cuprous oxide nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Stoesser, Anna; von Seggern, Falk; Purohit, Suneeti; Nasr, Babak; Kruk, Robert; Dehm, Simone; Wang, Di; Hahn, Horst; Dasgupta, Subho

    2016-10-01

    Oxide semiconductors are considered to be one of the forefront candidates for the new generation, high-performance electronics. However, one of the major limitations for oxide electronics is the scarcity of an equally good hole-conducting semiconductor, which can provide identical performance for the p-type metal oxide semiconductor field-effect transistors as compared to their electron conducting counterparts. In this quest, here we present a bulk synthesis method for single crystalline cuprous oxide (Cu2O) nanowires, their chemical and morphological characterization and suitability as active channel material in electrolyte-gated, low-power, field-effect transistors (FETs) for portable and flexible logic circuits. The bulk synthesis method used in the present study includes two steps: namely hydrothermal synthesis of the nanowires and the removal of the surface organic contaminants. The surface treated nanowires are then dispersed on a receiver substrate where the passive electrodes are structured, followed by printing of a composite solid polymer electrolyte (CSPE), chosen as the gate insulator. The characteristic electrical properties of individual nanowire FETs are found to be quite interesting including accumulation-mode operation and field-effect mobility of 0.15 cm2 V-1 s-1.

  3. Single-shot measurements of the acoustic field of an electrohydraulic lithotripter using a hydrophone array

    PubMed Central

    Alibakhshi, Mohammad A.; Kracht, Jonathan M.; Cleveland, Robin O.; Filoux, Erwan; Ketterling, Jeffrey A.

    2013-01-01

    Piezopolymer-based hydrophone arrays consisting of 20 elements were fabricated and tested for use in measuring the acoustic field from a shock-wave lithotripter. The arrays were fabricated from piezopolymer films and were mounted in a housing to allow submersion into water. The motivation was to use the array to determine how the shot-to-shot variability of the spark discharge in an electrohydraulic lithotripter affects the resulting focused acoustic field. It was found that the dominant effect of shot-to-shot variability was to laterally shift the location of the focus by up to 5 mm from the nominal acoustic axis of the lithotripter. The effect was more pronounced when the spark discharge was initiated with higher voltages. The lateral beamwidth of individual, instantaneous shock waves were observed to range from 1.5 mm to 24 mm. Due to the spatial variation of the acoustic field, the average of instantaneous beamwidths were observed to be 1 to 2 mm narrower than beamwidths determined from traditional single-point measurements that average the pressure measured at each location before computing beamwidth. PMID:23654419

  4. Measurement of transient acoustic fields using a single-shot pressure-sensitive paint system.

    PubMed

    Disotell, Kevin J; Gregory, James W

    2011-07-01

    A pressure-sensitive paint (PSP) system capable of measuring high-frequency acoustic fields with non-periodic, acoustic-level pressure changes is described. As an optical measurement technique, PSP provides the experimenter with a global distribution of pressure on a painted surface. To demonstrate frequency response and enhanced sensitivity to pressure changes, a PSP system consisting of a polymer∕ceramic matrix binder with platinum tetra(pentafluorophenyl) porphyrin (PtTFPP) as the oxygen probe was applied to a wall inside an acoustic resonance cavity excited at 1.3 kHz. A data acquisition technique based on the luminescent decay lifetime of the oxygen sensors excited by a single pulse of light afforded the ability to capture instantaneous pressure fields with no phase-averaging. Superimposed wave-like structures were observed with a wavelength corresponding to a 4.7% difference from the theoretical value for a sound wave emanating from the speaker. High sound pressure cases upwards of 145 dB (re 20 μPa) exhibited skewed nodal lines attributed to a nonlinear acoustic field. The lowest sound pressure level of 125.4 dB--corresponding to an amplitude of 52.7 Pa, or approximately 0.05% of standard sea-level atmospheric pressure--showed that the paint could resolve the spatial details of the mode shape at the given resonance condition.

  5. Measurement of transient acoustic fields using a single-shot pressure-sensitive paint system

    NASA Astrophysics Data System (ADS)

    Disotell, Kevin J.; Gregory, James W.

    2011-07-01

    A pressure-sensitive paint (PSP) system capable of measuring high-frequency acoustic fields with non-periodic, acoustic-level pressure changes is described. As an optical measurement technique, PSP provides the experimenter with a global distribution of pressure on a painted surface. To demonstrate frequency response and enhanced sensitivity to pressure changes, a PSP system consisting of a polymer/ceramic matrix binder with platinum tetra(pentafluorophenyl) porphyrin (PtTFPP) as the oxygen probe was applied to a wall inside an acoustic resonance cavity excited at 1.3 kHz. A data acquisition technique based on the luminescent decay lifetime of the oxygen sensors excited by a single pulse of light afforded the ability to capture instantaneous pressure fields with no phase-averaging. Superimposed wave-like structures were observed with a wavelength corresponding to a 4.7% difference from the theoretical value for a sound wave emanating from the speaker. High sound pressure cases upwards of 145 dB (re 20 μPa) exhibited skewed nodal lines attributed to a nonlinear acoustic field. The lowest sound pressure level of 125.4 dB—corresponding to an amplitude of 52.7 Pa, or approximately 0.05% of standard sea-level atmospheric pressure—showed that the paint could resolve the spatial details of the mode shape at the given resonance condition.

  6. Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals.

    PubMed

    Tarduno, John A; Cottrell, Rory D; Watkeys, Michael K; Bauch, Dorothy

    2007-04-01

    The strength of the Earth's early geomagnetic field is of importance for understanding the evolution of the Earth's deep interior, surface environment and atmosphere. Palaeomagnetic and palaeointensity data from rocks formed near the boundary of the Proterozoic and Archaean eons, some 2.5 Gyr ago, show many hallmarks of the more recent geomagnetic field. Reversals are recorded, palaeosecular variation data indicate a dipole-dominated morphology and available palaeointensity values are similar to those from younger rocks. The picture before 2.8 Gyr ago is much less clear. Rocks of the Archaean Kaapvaal craton (South Africa) are among the best-preserved, but even they have experienced low-grade metamorphism. The variable acquisition of later magnetizations by these rocks is therefore expected, precluding use of conventional palaeointensity methods. Silicate crystals from igneous rocks, however, can contain minute magnetic inclusions capable of preserving Archaean-age magnetizations. Here we use a CO2 laser heating approach and direct-current SQUID magnetometer measurements to obtain palaeodirections and intensities from single silicate crystals that host magnetite inclusions. We find 3.2-Gyr-old field strengths that are within 50 per cent of the present-day value, indicating that a viable magnetosphere sheltered the early Earth's atmosphere from solar wind erosion. PMID:17410173

  7. Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals.

    PubMed

    Tarduno, John A; Cottrell, Rory D; Watkeys, Michael K; Bauch, Dorothy

    2007-04-01

    The strength of the Earth's early geomagnetic field is of importance for understanding the evolution of the Earth's deep interior, surface environment and atmosphere. Palaeomagnetic and palaeointensity data from rocks formed near the boundary of the Proterozoic and Archaean eons, some 2.5 Gyr ago, show many hallmarks of the more recent geomagnetic field. Reversals are recorded, palaeosecular variation data indicate a dipole-dominated morphology and available palaeointensity values are similar to those from younger rocks. The picture before 2.8 Gyr ago is much less clear. Rocks of the Archaean Kaapvaal craton (South Africa) are among the best-preserved, but even they have experienced low-grade metamorphism. The variable acquisition of later magnetizations by these rocks is therefore expected, precluding use of conventional palaeointensity methods. Silicate crystals from igneous rocks, however, can contain minute magnetic inclusions capable of preserving Archaean-age magnetizations. Here we use a CO2 laser heating approach and direct-current SQUID magnetometer measurements to obtain palaeodirections and intensities from single silicate crystals that host magnetite inclusions. We find 3.2-Gyr-old field strengths that are within 50 per cent of the present-day value, indicating that a viable magnetosphere sheltered the early Earth's atmosphere from solar wind erosion.

  8. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector

    PubMed Central

    Stantchev, Rayko Ivanov; Sun, Baoqing; Hornett, Sam M.; Hobson, Peter A.; Gibson, Graham M.; Padgett, Miles J.; Hendry, Euan

    2016-01-01

    Terahertz (THz) imaging can see through otherwise opaque materials. However, because of the long wavelengths of THz radiation (λ = 400 μm at 0.75 THz), far-field THz imaging techniques suffer from low resolution compared to visible wavelengths. We demonstrate noninvasive, near-field THz imaging with subwavelength resolution. We project a time-varying, intense (>100 μJ/cm2) optical pattern onto a silicon wafer, which spatially modulates the transmission of synchronous pulse of THz radiation. An unknown object is placed on the hidden side of the silicon, and the far-field THz transmission corresponding to each mask is recorded by a single-element detector. Knowledge of the patterns and of the corresponding detector signal are combined to give an image of the object. Using this technique, we image a printed circuit board on the underside of a 115-μm-thick silicon wafer with ~100-μm (λ/4) resolution. With subwavelength resolution and the inherent sensitivity to local conductivity, it is possible to detect fissures in the circuitry wiring of a few micrometers in size. THz imaging systems of this type will have other uses too, where noninvasive measurement or imaging of concealed structures is necessary, such as in semiconductor manufacturing or in ex vivo bioimaging. PMID:27386577

  9. Facile fabrication of electrolyte-gated single-crystalline cuprous oxide nanowire field-effect transistors.

    PubMed

    Stoesser, Anna; von Seggern, Falk; Purohit, Suneeti; Nasr, Babak; Kruk, Robert; Dehm, Simone; Di Wang; Hahn, Horst; Dasgupta, Subho

    2016-10-14

    Oxide semiconductors are considered to be one of the forefront candidates for the new generation, high-performance electronics. However, one of the major limitations for oxide electronics is the scarcity of an equally good hole-conducting semiconductor, which can provide identical performance for the p-type metal oxide semiconductor field-effect transistors as compared to their electron conducting counterparts. In this quest, here we present a bulk synthesis method for single crystalline cuprous oxide (Cu2O) nanowires, their chemical and morphological characterization and suitability as active channel material in electrolyte-gated, low-power, field-effect transistors (FETs) for portable and flexible logic circuits. The bulk synthesis method used in the present study includes two steps: namely hydrothermal synthesis of the nanowires and the removal of the surface organic contaminants. The surface treated nanowires are then dispersed on a receiver substrate where the passive electrodes are structured, followed by printing of a composite solid polymer electrolyte (CSPE), chosen as the gate insulator. The characteristic electrical properties of individual nanowire FETs are found to be quite interesting including accumulation-mode operation and field-effect mobility of 0.15 cm(2) V(-1) s(-1).

  10. Theoretical investigation of single dopant in core/shell nanocrystal in magnetic field

    NASA Astrophysics Data System (ADS)

    Talbi, A.; Feddi, E.; Oukerroum, A.; Assaid, E.; Dujardin, F.; Addou, M.

    2015-09-01

    The control of single dopant or "solitary dopant" in semiconductors constitute a challenge to achieve new range of tunable optoelectronic devices. Knowing that the properties of doped monocrystals are very sensitive to different external perturbations, the aim of this study is to understand the effect of a magnetic field on the ground state energy of an off-center ionized donor in a core/shell quantum dot (CSQD). The binding energies with and without an applied magnetic field are determined by the Ritz variational method taking into account the electron-impurity correlation in the trial wave function deduced from the second-order perturbation. It has been found that the external magnetic field affects strongly the binding energy, and its effect varies as a function of the core radius and the shell thickness. We have shown the existence of a threshold ratio (a / b) crit which represents the limit between the tridimensional and the spherical surface confinement. In addition our analysis demonstrates the important influence of the position of ionized donor in the shell material.

  11. Measurement of transient acoustic fields using a single-shot pressure-sensitive paint system.

    PubMed

    Disotell, Kevin J; Gregory, James W

    2011-07-01

    A pressure-sensitive paint (PSP) system capable of measuring high-frequency acoustic fields with non-periodic, acoustic-level pressure changes is described. As an optical measurement technique, PSP provides the experimenter with a global distribution of pressure on a painted surface. To demonstrate frequency response and enhanced sensitivity to pressure changes, a PSP system consisting of a polymer∕ceramic matrix binder with platinum tetra(pentafluorophenyl) porphyrin (PtTFPP) as the oxygen probe was applied to a wall inside an acoustic resonance cavity excited at 1.3 kHz. A data acquisition technique based on the luminescent decay lifetime of the oxygen sensors excited by a single pulse of light afforded the ability to capture instantaneous pressure fields with no phase-averaging. Superimposed wave-like structures were observed with a wavelength corresponding to a 4.7% difference from the theoretical value for a sound wave emanating from the speaker. High sound pressure cases upwards of 145 dB (re 20 μPa) exhibited skewed nodal lines attributed to a nonlinear acoustic field. The lowest sound pressure level of 125.4 dB--corresponding to an amplitude of 52.7 Pa, or approximately 0.05% of standard sea-level atmospheric pressure--showed that the paint could resolve the spatial details of the mode shape at the given resonance condition. PMID:21806232

  12. Independent complexity patterns in single neuron activity induced by static magnetic field.

    PubMed

    Spasić, S; Nikolić, Lj; Mutavdžić, D; Saponjić, J

    2011-11-01

    We applied a combination of fractal analysis and Independent Component Analysis (ICA) method to detect the sources of fractal complexity in snail Br neuron activity induced by static magnetic field of 2.7 mT. The fractal complexity of Br neuron activity was analyzed before (Control), during (MF), and after (AMF) exposure to the static magnetic field in six experimental animals. We estimated the fractal dimension (FD) of electrophysiological signals using Higuchi's algorithm, and empirical FD distributions. By using the Principal Component Analysis (PCA) and FastICA algorithm we determined the number of components, and defined the statistically independent components (ICs) in the fractal complexity of signal waveforms. We have isolated two independent components of the empirical FD distributions for each of three groups of data by using FastICA algorithm. ICs represent the sources of fractal waveforms complexity of Br neuron activity in particular experimental conditions. Our main results have shown that there could be two opposite intrinsic mechanisms in single snail Br neuron response to static magnetic field stimulation. We named identified ICs that correspond to those mechanisms - the component of plasticity and the component of elasticity. We have shown that combination of fractal analysis with ICA method could be very useful for the decomposition and identification of the sources of fractal complexity of bursting neuronal activity waveforms.

  13. Baryon isocurvature scenario in inflationary cosmology - A particle physics model and its astrophysical implications

    NASA Technical Reports Server (NTRS)

    Yokoyama, Jun'ichi; Suto, Yasushi

    1991-01-01

    A phenomenological model to produce isocurvature baryon-number fluctuations is proposed in the framework of inflationary cosmology. The resulting spectrum of density fluctuation is very different from the conventional Harrison-Zel'dovich shape. The model, with the parameters satisfying several requirements from particle physics and cosmology, provides an appropriate initial condition for the minimal baryon isocurvature scenario of galaxy formation discussed by Peebles.

  14. On the breaking of statistical isotropy through inflationary relics

    NASA Astrophysics Data System (ADS)

    Sánchez, Juan C. Bueno

    2016-06-01

    We explore a mechanism to generate local contributions to the curvature perturbation in isolated patches of the cosmic microwave background (CMB). The mechanism, based on the generation of an out-of-equilibrium configuration of a fluctuating scalar field of mass m ˜H during a sustained stage of fast-roll inflation, has been recently shown to be capable of accounting for some of the most robust large-angle anomalies detected in the CMB. In this paper, we show in detail how the embedding of the mechanism into models including vector fields can result in the breaking of statistical isotropy in isolated patches of the CMB.

  15. A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre

    PubMed Central

    Balciunas, T.; Fourcade-Dutin, C.; Fan, G.; Witting, T.; Voronin, A. A.; Zheltikov, A. M.; Gerome, F.; Paulus, G. G.; Baltuska, A.; Benabid, F.

    2015-01-01

    Over the past decade intense laser fields with a single-cycle duration and even shorter, subcycle multicolour field transients have been generated and applied to drive attosecond phenomena in strong-field physics. Because of their extensive bandwidth, single-cycle fields cannot be emitted or amplified by laser sources directly and, as a rule, are produced by external pulse compression—a combination of nonlinear optical spectral broadening followed up by dispersion compensation. Here we demonstrate a simple robust driver for high-field applications based on this Kagome fibre approach that ensures pulse self-compression down to the ultimate single-cycle limit and provides phase-controlled pulses with up to a 100 μJ energy level, depending on the filling gas, pressure and the waveguide length. PMID:25625549

  16. Implications of Planck2015 for inflationary, ekpyrotic and anamorphic bouncing cosmologies

    NASA Astrophysics Data System (ADS)

    Ijjas, Anna; Steinhardt, Paul J.

    2016-02-01

    The results from Planck2015, when combined with earlier observations from the Wilkinson Microwave Anisotropy Probe, Atacama Cosmology Telescope, South Pole Telescope and other experiments, were the first observations to disfavor the ‘classic’ inflationary paradigm. To satisfy the observational constraints, inflationary theorists have been forced to consider plateau-like inflaton potentials that introduce more parameters and more fine-tuning, problematic initial conditions, multiverse-unpredictability issues, and a new ‘unlikeliness problem’. Some propose turning instead to a ‘postmodern’ inflationary paradigm in which the cosmological properties in our observable Universe are only locally valid and set randomly, with completely different properties (and perhaps even different physical laws) existing in most regions outside our horizon. By contrast, the new results are consistent with the simplest versions of ekpyrotic cyclic models in which the Universe is smoothed and flattened during a period of slow contraction followed by a bounce, and another promising bouncing theory, anamorphic cosmology, has been proposed that can produce distinctive predictions.

  17. Inflationary gravitational-wave background and measurements of the scalar spectral index

    SciTech Connect

    Smith, Tristan L.; Kamionkowski, Marc; Cooray, Asantha

    2008-10-15

    Inflation predicts a stochastic background of gravitational waves over a broad range of frequencies, from those accessible with cosmic microwave background (CMB) measurements, to those accessible directly with gravitational-wave detectors, like NASA's Big-Bang Observer (BBO), currently under study. In a previous paper [Phys. Rev. D 73, 023504 (2006)] we connected CMB constraints to the amplitude and tensor spectral tilt of the inflationary gravitational-wave background (IGWB) at BBO frequencies for four classes of models of inflation by directly solving the inflationary equations of motion. Here we extend that analysis by including results obtained in the Wilkinson Microwave Anisotropy Probe third-year data release as well as by considering two additional classes of inflationary models. As often noted in the literature, the recent indication that the primordial density power spectrum has a red spectral index implies (with some caveats) that the amplitude of the IGWB may be large enough to be observable in the CMB polarization. Here we also explore the implications for the direct detection of the IGWB.

  18. The inflationary universe in the Coleman-Weinberg theory

    NASA Astrophysics Data System (ADS)

    Okada, Junji

    1984-08-01

    We investigate the time evolution of the Higgs field in the minimal SU(5) Coleman-Weinberg model. The bubble falls through the SU(4) × U(1) extremum irrespective of whether it is a local minimum or a saddle point. This is confirmed by numerical calculations. Present address: Department of Physics, Hiroshima University, Hiroshima 730, Japan.

  19. Relic vector field and CMB large scale anomalies

    SciTech Connect

    Chen, Xingang; Wang, Yi E-mail: yw366@cam.ac.uk

    2014-10-01

    We study the most general effects of relic vector fields on the inflationary background and density perturbations. Such effects are observable if the number of inflationary e-folds is close to the minimum requirement to solve the horizon problem. We show that this can potentially explain two CMB large scale anomalies: the quadrupole-octopole alignment and the quadrupole power suppression. We discuss its effect on the parity anomaly. We also provide analytical template for more detailed data comparison.

  20. Three-Dimensional Stress Fields and Slip Systems for Single Crystal Superalloy Notched Specimens

    NASA Technical Reports Server (NTRS)

    Magnan, Shannon M.; Throckmorton, David (Technical Monitor)

    2002-01-01

    Single crystal superalloys have become increasingly popular for turbine blade and vane applications due to their high strength, and creep and fatigue resistance at elevated temperatures. The crystallographic orientation of a single crystal material greatly affects its material properties, including elastic modulus, shear modulus, and ductility. These directional properties, along with the type of loading and temperature, dictate an anisotropic response in the yield strength, creep resistance, creep rupture ductility, fatigue resistance, etc. A significant amount of research has been conducted to determine the material properties in the <001> orientation, yet the material properties deviating from the <001> orientation have not been assessed for all cases. Based on the desired application and design criteria, a crystal orientation is selected to yield the maximum properties. Currently, single crystal manufacturing is able to control the primary crystallographic orientation within 15 of the target orientation, which is an acceptable deviation to meet both performance and cost guidelines; the secondary orientation is rarely specified. A common experiment is the standard load-controlled tensile test, in which specimens with different orientations can be loaded to observe the material response. The deformation behavior of single-crystal materials under tension and compression is known to be a function of not only material orientation, but also of varying microdeformation (i.e. dislocation) mechanisms. The underlying dislocation motion causes deformation via slip, and affects the activation of specific slip systems based on load and orientation. The slip can be analyzed by observing the visible traces left on the surface of the specimen from the slip activity within the single crystal material. The goal of this thesis was to predict the slip systems activated in three-dimensional stress fields of a notched tensile specimen, as a function of crystal orientation, using

  1. Superelastic rescattering in single ionization of helium in strong laser fields

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Chao; Jaron-Becker, Agnieszka; He, Feng

    2016-10-01

    Rescattering is a central process in ultrafast physics, in which an electron, freed from an atom and accelerated by a laser field, loses its energy by producing high-order harmonics or multiple ionization. Here, taking helium as a prototypical atom, we demonstrate numerically superelastic rescattering in single ionization of an atom. In this scenario, the absorption of a high-energy extreme ultraviolet photon leads to emission of one electron and excitation of the second one into its first excited state, forming He+*. A time-delayed midinfrared laser pulse accelerates the freed electron, drives it back to the He+*, and induces the transition of the bound electron to the ground state of the ion. Identification of the superelastic rescattering process in the photoelectron momentum spectra provides a means to determine the photoelectron momentum at the time of rescattering without using any information of the time-delayed probe laser pulse.

  2. Single particle transport in two-dimensional heterojunction interlayer tunneling field effect transistor

    SciTech Connect

    Li, Mingda Snider, Gregory; Jena, Debdeep; Grace Xing, Huili; Esseni, David

    2014-02-21

    The single particle tunneling in a vertical stack consisting of monolayers of two-dimensional semiconductors is studied theoretically, and its application to a novel Two-dimensional Heterojunction Interlayer Tunneling Field Effect Transistor (Thin-TFET) is proposed and described. The tunneling current is calculated by using a formalism based on the Bardeen's transfer Hamiltonian, and including a semi-classical treatment of scattering and energy broadening effects. The misalignment between the two 2D materials is also studied and found to influence the magnitude of the tunneling current but have a modest impact on its gate voltage dependence. Our simulation results suggest that the Thin-TFETs can achieve very steep subthreshold swing, whose lower limit is ultimately set by the band tails in the energy gaps of the 2D materials produced by energy broadening. The Thin-TFET is thus very promising as a low voltage, low energy solid state electronic switch.

  3. Quantum Correlations of Two Two-level Atoms Interacting with a Single Mode Vacuum Field

    NASA Astrophysics Data System (ADS)

    Zeng, Ke; Fang, Mao-Fa

    2015-04-01

    The quantum correlations (QC) of two two-level atoms interacting with a single mode vacuum field are investigated. The relationship between the quantum discord (QD) and the entanglement of formation (EOF), the influence of the atomic dipole-dipole interaction along with two-atom initial states on QC of two atoms are discussed. The results indicate that when two-atom is initially in an entangled state, QD is consistent with EOF. Compared with the quantumness of correlations, the latter is always larger than the former, and the larger the initial QE, the larger the QD. Meanwhile, there is no occurrence of sudden death phenomenon of QC throughout the temporal evolution. Moreover, QD is more robust than QE under strong dipole-dipole interaction, and then the relative stable QC resources can be achieved.

  4. Improved hurricane track and intensity forecast using single field-of-view advanced IR sounding measurements

    NASA Astrophysics Data System (ADS)

    Li, Jun; Liu, Hui

    2009-06-01

    Hyperspectral infrared sounders such as the AIRS and IASI provide unprecedented global atmospheric temperature and moisture soundings with high vertical resolution and accuracy. The AIRS and IASI data have been used in global numerical weather prediction models with positive impact on weather forecasts. The high spatial resolution single field-of-view soundings retrieved from AIRS have been applied to hurricane track and intensity assimilations and forecasts. The newly developed NCAR WRF/DART ensemble data assimilation is performed at 36 km resolution. Studies show that the track error for Hurricane Ike (2008) is reduced greatly when AIRS soundings are used compared with the control run which includes other observations such as radiosonde, satellite cloud winds, aircraft data, ship data, and land surface data, etc. The hurricane intensity forecast is also substantially improved when AIRS data are assimilated. This study demonstrates the importance of high spatial and hyperspectral IR sounding data in forecasting hurricanes.

  5. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field.

    PubMed

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M; Geday, Morten A

    2016-01-01

    Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules.

  6. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field.

    PubMed

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M; Geday, Morten A

    2016-01-01

    Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules. PMID:27547599

  7. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

    PubMed Central

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M

    2016-01-01

    Summary Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules. PMID:27547599

  8. Direct measurement of electrostatic fields using single Teflon nanoparticle attached to AFM tip

    PubMed Central

    2013-01-01

    Abstract A single 210-nm Teflon nanoparticle (sTNP) was attached to the vertex of a silicon nitride (Si3N4) atomic force microscope tip and charged via contact electrification. The charged sTNP can then be considered a point charge and used to measure the electrostatic field adjacent to a parallel plate condenser using 30-nm gold/20-nm titanium as electrodes. This technique can provide a measurement resolution of 250/100 nm along the X- and Z-axes, and the minimum electrostatic force can be measured within 50 pN. PACS 07.79.Lh, 81.16.-c, 84.37. + q PMID:24314111

  9. Experiments and modelling of active quasi-single helicity regime generation in a reversed field pinch

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Brunsell, P. R.; Drake, J. R.

    2009-07-01

    The interaction of a static resonant magnetic perturbation (RMP) with a tearing mode (TM) is becoming a relevant topic in fusion plasma physics. RMPs can be generated by active coils and then used to affect the properties of TMs and of the corresponding magnetic islands. This paper shows how the feedback system of the EXTRAP T2R reversed field pinch (RFP) can produce a RMP that affects a rotating TM and stimulate the transition to the so-called quasi-single helicity (QSH) regime, a RFP plasma state characterized by a magnetic island surrounded by low magnetic chaos. The application of the RMP can increase the QSH probability up to 10% and enlarge the size of the corresponding island. Part of the experimental results are supported by a theoretical study that models the effect of the active coils on the magnetic island.

  10. Sensing Reversible Protein–Ligand Interactions with Single-Walled Carbon Nanotube Field-Effect Transistors

    PubMed Central

    2015-01-01

    We report on the reversible detection of CaptAvidin, a tyrosine modified avidin, with single-walled carbon nanotube (SWNT) field-effect transistors (FETs) noncovalently functionalized with biotin moieties using 1-pyrenebutyric acid as a linker. Binding affinities at different pH values were quantified, and the sensor’s response at various ionic strengths was analyzed. Furthermore, protein “fingerprints” of NeutrAvidin and streptavidin were obtained by monitoring their adsorption at several pH values. Moreover, gold nanoparticle decorated SWNT FETs were functionalized with biotin using 1-pyrenebutyric acid as a linker for the CNT surface and (±)-α-lipoic acid linkers for the gold surface, and reversible CaptAvidin binding is shown, paving the way for potential dual mode measurements with the addition of surface enhanced Raman spectroscopy (SERS). PMID:25126155

  11. Ultrathin single-crystal ZnO nanobelts: Ag-catalyzed growth and field emission property

    NASA Astrophysics Data System (ADS)

    Xing, G. Z.; Fang, X. S.; Zhang, Z.; Wang, D. D.; Huang, X.; Guo, J.; Liao, L.; Zheng, Z.; Xu, H. R.; Yu, T.; Shen, Z. X.; Huan, C. H. A.; Sum, T. C.; Zhang, H.; Wu, T.

    2010-06-01

    We report the growth of ultrathin single-crystal ZnO nanobelts by using a Ag-catalyzed vapor transport method. Extensive transmission electron microscopy and atomic force microscopy measurements reveal that the thickness of the ultrathin ZnO nanobelts is ~ 2 nm. Scanning electron microscopy and post-growth annealing studies suggest a '1D branching and 2D filling' growth process. Our results demonstrate the critical role of catalyst in the deterministic synthesis of nanomaterials with the desired morphology. In addition, these ultrafine nanobelts exhibit stable field emission with unprecedented high emission current density of 40.17 mA cm - 2. These bottom-up building blocks of ultrathin ZnO nanobelts may facilitate the construction of advanced electronic and photonic nanodevices.

  12. Single high dose-large field irradiation in drug resistant non-Hodgkin's lymphoma

    SciTech Connect

    Scarantino, C.W.; Greven, K.M.; Buss, D.H.

    1988-05-01

    Single high dose-large field irradiation (SHD-LFI), also described as half-body irradiation (HBI), has previously been reported as an effective modality for the palliation of symptoms in a number of solid tumors. This report concerns the ability of SHD-LFI to produce palliation of symptoms and/or objective response in patients with drug resistant non-Hodgkin's lymphoma (NHL). From 1981 to 1984, 34 patients with advanced drug resistant NHL were treated with SHD-LFI either to the whole abdomen (24 patients) or to the upper half body (10 patients). Overall, 19 of 23 patients achieved symptomatic improvement, while objective response was noted in 23 of 30 patients. We noted subjective and objective response in all histologies, and duration of response was not significantly different. Our results suggest a beneficial role for the early and judicious use of SHD-LFI in NHL.

  13. Development and Validation of a Diabetic Retinopathy Referral Algorithm Based on Single-Field Fundus Photography

    PubMed Central

    Srinivasan, Sangeetha; Shetty, Sharan; Natarajan, Viswanathan; Sharma, Tarun; Raman, Rajiv

    2016-01-01

    Purpose To develop a simplified algorithm to identify and refer diabetic retinopathy (DR) from single-field retinal images specifically for sight-threatening diabetic retinopathy for appropriate care (ii) to determine the agreement and diagnostic accuracy of the algorithm as a pilot study among optometrists versus “gold standard” (retinal specialist grading). Methods The severity of DR was scored based on colour photo using a colour coded algorithm, which included the lesions of DR and number of quadrants involved. A total of 99 participants underwent training followed by evaluation. Data of the 99 participants were analyzed. Fifty posterior pole 45 degree retinal images with all stages of DR were presented. Kappa scores (κ), areas under the receiver operating characteristic curves (AUCs), sensitivity and specificity were determined, with further comparison between working optometrists and optometry students. Results Mean age of the participants was 22 years (range: 19–43 years), 87% being women. Participants correctly identified 91.5% images that required immediate referral (κ) = 0.696), 62.5% of images as requiring review after 6 months (κ = 0.462), and 51.2% of those requiring review after 1 year (κ = 0.532). The sensitivity and specificity of the optometrists were 91% and 78% for immediate referral, 62% and 84% for review after 6 months, and 51% and 95% for review after 1 year, respectively. The AUC was the highest (0.855) for immediate referral, second highest (0.824) for review after 1 year, and 0.727 for review after 6 months criteria. Optometry students performed better than the working optometrists for all grades of referral. Conclusions The diabetic retinopathy algorithm assessed in this work is a simple and a fairly accurate method for appropriate referral based on single-field 45 degree posterior pole retinal images. PMID:27661981

  14. Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields.

    PubMed

    Liu, Fayao; Shen, Chunhua; Lin, Guosheng; Reid, Ian

    2016-10-01

    In this article, we tackle the problem of depth estimation from single monocular images. Compared with depth estimation using multiple images such as stereo depth perception, depth from monocular images is much more challenging. Prior work typically focuses on exploiting geometric priors or additional sources of information, most using hand-crafted features. Recently, there is mounting evidence that features from deep convolutional neural networks (CNN) set new records for various vision applications. On the other hand, considering the continuous characteristic of the depth values, depth estimation can be naturally formulated as a continuous conditional random field (CRF) learning problem. Therefore, here we present a deep convolutional neural field model for estimating depths from single monocular images, aiming to jointly explore the capacity of deep CNN and continuous CRF. In particular, we propose a deep structured learning scheme which learns the unary and pairwise potentials of continuous CRF in a unified deep CNN framework. We then further propose an equally effective model based on fully convolutional networks and a novel superpixel pooling method, which is about 10 times faster, to speedup the patch-wise convolutions in the deep model. With this more efficient model, we are able to design deeper networks to pursue better performance. Our proposed method can be used for depth estimation of general scenes with no geometric priors nor any extra information injected. In our case, the integral of the partition function can be calculated in a closed form such that we can exactly solve the log-likelihood maximization. Moreover, solving the inference problem for predicting depths of a test image is highly efficient as closed-form solutions exist. Experiments on both indoor and outdoor scene datasets demonstrate that the proposed method outperforms state-of-the-art depth estimation approaches. PMID:26660697

  15. Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields.

    PubMed

    Liu, Fayao; Shen, Chunhua; Lin, Guosheng; Reid, Ian

    2016-10-01

    In this article, we tackle the problem of depth estimation from single monocular images. Compared with depth estimation using multiple images such as stereo depth perception, depth from monocular images is much more challenging. Prior work typically focuses on exploiting geometric priors or additional sources of information, most using hand-crafted features. Recently, there is mounting evidence that features from deep convolutional neural networks (CNN) set new records for various vision applications. On the other hand, considering the continuous characteristic of the depth values, depth estimation can be naturally formulated as a continuous conditional random field (CRF) learning problem. Therefore, here we present a deep convolutional neural field model for estimating depths from single monocular images, aiming to jointly explore the capacity of deep CNN and continuous CRF. In particular, we propose a deep structured learning scheme which learns the unary and pairwise potentials of continuous CRF in a unified deep CNN framework. We then further propose an equally effective model based on fully convolutional networks and a novel superpixel pooling method, which is about 10 times faster, to speedup the patch-wise convolutions in the deep model. With this more efficient model, we are able to design deeper networks to pursue better performance. Our proposed method can be used for depth estimation of general scenes with no geometric priors nor any extra information injected. In our case, the integral of the partition function can be calculated in a closed form such that we can exactly solve the log-likelihood maximization. Moreover, solving the inference problem for predicting depths of a test image is highly efficient as closed-form solutions exist. Experiments on both indoor and outdoor scene datasets demonstrate that the proposed method outperforms state-of-the-art depth estimation approaches.

  16. Using laboratory and field measurements to constrain a single habit shortwave optical parameterization for cirrus

    NASA Astrophysics Data System (ADS)

    Smith, Helen R.; Baran, Anthony J.; Hesse, Evelyn; Hill, Peter G.; Connolly, Paul J.; Webb, Ann

    2016-11-01

    A single habit parameterization for the shortwave optical properties of cirrus is presented. The parameterization utilizes a hollow particle geometry, with stepped internal cavities as identified in laboratory and field studies. This particular habit was chosen as both experimental and theoretical results show that the particle exhibits lower asymmetry parameters when compared to solid crystals of the same aspect ratio. The aspect ratio of the particle was varied as a function of maximum dimension, D, in order to adhere to the same physical relationships assumed in the microphysical scheme in a configuration of the Met Office atmosphere-only global model, concerning particle mass, size and effective density. Single scattering properties were then computed using T-Matrix, Ray Tracing with Diffraction on Facets (RTDF) and Ray Tracing (RT) for small, medium, and large size parameters respectively. The scattering properties were integrated over 28 particle size distributions as used in the microphysical scheme. The fits were then parameterized as simple functions of Ice Water Content (IWC) for 6 shortwave bands. The parameterization was implemented into the GA6 configuration of the Met Office Unified Model along with the current operational long-wave parameterization. The GA6 configuration is used to simulate the annual twenty-year short-wave (SW) fluxes at top-of-atmosphere (TOA) and also the temperature and humidity structure of the atmosphere. The parameterization presented here is compared against the current operational model and a more recent habit mixture model.

  17. Weak Ligand-Field Effect from Ancillary Ligands on Enhancing Single-Ion Magnet Performance.

    PubMed

    Meng, Yin-Shan; Zhang, Yi-Quan; Wang, Zhe-Ming; Wang, Bing-Wu; Gao, Song

    2016-08-26

    A series of bis-pentamethylcyclopentadienyl-supported Dy complexes containing different ancillary ligands were synthesized and characterized. Magnetic studies showed that 1 Dy [Cp*2 DyCl(THF)], 1 Dy' [Cp*2 DyCl2 K(THF)]n , 2 Dy [Cp*2 DyBr(THF)], 3 Dy [Cp*2 DyI(THF)] and 4 Dy [Cp*2 DyTp] (Tp=hydrotris(1-pyrazolyl)borate) were single-ion magnets (SIMs). The 1D dysprosium chain 1 Dy' exhibited a hysteresis at up to 5 K. Furthermore, 3 Dy featured the highest energy barrier (419 cm(-1) ) among the complexes. The effects of ancillary ligands on single-ion magnetic properties were studied by experimental, ab initio calculations and electrostatic analysis methods in detail. These results demonstrated that the QTM rate was strongly dependent on the ancillary ligands and that a weak equatorial ligand field could be beneficial for constructing Dy-SIMs. PMID:27417884

  18. Temperature and field induced strain measurements in single crystal Gd5Si2Ge2

    DOE PAGES

    McCall, S. K.; Nersessian, N.; Carman, G. P.; Pecharsky, V. K.; Schlagel, D. L.; Radousky, H. B.

    2016-03-29

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of –8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of –8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Furthermore,more » using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.« less

  19. High-efficiency resonant amplification of weak magnetic fields for single spin magnetometry at room temperature.

    PubMed

    Trifunovic, Luka; Pedrocchi, Fabio L; Hoffman, Silas; Maletinsky, Patrick; Yacoby, Amir; Loss, Daniel

    2015-06-01

    Magnetic resonance techniques not only provide powerful imaging tools that have revolutionized medicine, but they have a wide spectrum of applications in other fields of science such as biology, chemistry, neuroscience and physics. However, current state-of-the-art magnetometers are unable to detect a single nuclear spin unless the tip-to-sample separation is made sufficiently small. Here, we demonstrate theoretically that by placing a ferromagnetic particle between a nitrogen-vacancy magnetometer and a target spin, the magnetometer sensitivity is improved dramatically. Using materials and techniques that are already experimentally available, our proposed set-up is sensitive enough to detect a single nuclear spin within ten milliseconds of data acquisition at room temperature. The sensitivity is practically unchanged when the ferromagnet surface to the target spin separation is smaller than the ferromagnet lateral dimensions; typically about a tenth of a micrometre. This scheme further benefits when used for nitrogen-vacancy ensemble measurements, enhancing sensitivity by an additional three orders of magnitude.

  20. High-efficiency resonant amplification of weak magnetic fields for single spin magnetometry at room temperature

    NASA Astrophysics Data System (ADS)

    Trifunovic, Luka; Pedrocchi, Fabio L.; Hoffman, Silas; Maletinsky, Patrick; Yacoby, Amir; Loss, Daniel

    2015-06-01

    Magnetic resonance techniques not only provide powerful imaging tools that have revolutionized medicine, but they have a wide spectrum of applications in other fields of science such as biology, chemistry, neuroscience and physics. However, current state-of-the-art magnetometers are unable to detect a single nuclear spin unless the tip-to-sample separation is made sufficiently small. Here, we demonstrate theoretically that by placing a ferromagnetic particle between a nitrogen-vacancy magnetometer and a target spin, the magnetometer sensitivity is improved dramatically. Using materials and techniques that are already experimentally available, our proposed set-up is sensitive enough to detect a single nuclear spin within ten milliseconds of data acquisition at room temperature. The sensitivity is practically unchanged when the ferromagnet surface to the target spin separation is smaller than the ferromagnet lateral dimensions; typically about a tenth of a micrometre. This scheme further benefits when used for nitrogen-vacancy ensemble measurements, enhancing sensitivity by an additional three orders of magnitude.

  1. RESPONSE PROPERTIES OF LOCAL FIELD POTENTIALS AND NEIGHBORING SINGLE NEURONS IN AWAKE PRIMARY VISUAL CORTEX

    PubMed Central

    Lashgari, Reza; Li, Xiaobing; Chen, Yao; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A.; Alonso, Jose M.

    2012-01-01

    Recordings from local field potentials (LFPs) are becoming increasingly common in research and clinical applications, however, we still have a poor understanding of how LFP stimulus selectivity originates from the combined activity of single neurons. Here, we systematically compared the stimulus selectivity of LFP and neighboring single unit activity (SUA) recorded in area V1 of awake primates. We demonstrate that LFP and SUA have similar stimulus preferences for orientation, direction of motion, contrast, size, temporal frequency and even spatial phase. However, the average SUA had 50 times better signal to noise, 20% higher contrast sensitivity, 45% higher direction selectivity and 15% more tuning depth than the average LFP. Low LFP frequencies (< 30 Hz) were most strongly correlated with the spiking frequencies of neurons with non-linear spatial summation and poor orientation/direction selectivity that were located near cortical current sinks (negative LFPs). In contrast, LFP gamma frequencies (> 30 Hz) were correlated with a more diverse group of neurons located near cortical sources (positive LFPs). In summary, our results indicate that low- and high-frequency LFP pools signals from V1 neurons with similar stimulus preferences but different response properties and cortical depths. PMID:22895722

  2. Locating narrow bipolar events with single-station measurement of low-frequency magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbo; Lu, Gaopeng; Qie, Xiushu; Jiang, Rubin; Fan, Yanfeng; Tian, Ye; Sun, Zhuling; Liu, Mingyuan; Wang, Zhichao; Liu, Dongxia; Feng, Guili

    2016-06-01

    We developed a method to locate the narrow bipolar events (NBEs) based on the single-station measurement of low-frequency (LF, 40-500 kHz) magnetic fields. The direction finding of a two-axis magnetic sensor provides the azimuth of NBEs relative to the measurement site; the ionospheric reflection pairs in the lightning sferics are used to determine the range and height. We applied this method to determine the three-dimensional (3D) locations of 1475 NBEs with magnetic signals recorded during the SHandong Artificially Triggered Lightning Experiment (SHATLE) in summer of 2013. The NBE detections are evaluated on a storm basis by comparing with radar observations of reflectivity and lightning data from the World Wide Lightning Location Network (WWLLN) for two mesoscale convective systems (MCSs) of different sizes. As revealed by previous studies, NBEs are predominately produced in the convective regions with relatively strong radar echo (with composite reflectivity ≥30 dBZ), although not all the convections with high reflectivity and active lightning production are in favor of NBE production. The NBEs located by the single-station magnetic method also exhibit the distinct segregation in altitude for positive and negative NBEs, namely positive NBEs are mainly produced between 7 km and 15 km, while negative NBEs are predominantly produced above 14 km. In summary, the results of comparison generally show that the single-station magnetic method can locate NBEs with good reliability, although the accuracy of 3D location remains to be evaluated with the traditional multi-station method based on the time-of-arrival technique. This method can be applied to track the motion of storm convection within 800 km, especially when they move out to ocean beyond the detection range (typically <400 km) of meteorological radars, making it possible to study NBEs in oceanic thunderstorms for which the location with multiple ground-based stations is usually not feasible.

  3. Fluorescence detection of single molecules using pulsed near-field optical excitation and time correlated photon counting

    SciTech Connect

    Ambrose, W.P.; Goodwin, P.M.; Martin, J.C.; Keller, R.A.

    1994-03-01

    Pulsed excitation, time correlated single photon counting and time gated detection are used in near-field optical microscopy to enhance fluorescence images and measure the fluorescence lifetimes of single molecules of Rhodamine 6G on silica surfaces. Time gated detection is used to reject prompt scattered background and to improve the image signal to noise ratio. The excited state lifetime of a single Rhodamine 6G molecule is found to depend on the position of the near-field probe. We attribute the lifetime variations to spontaneous emission rate alterations by the fluorescence reflected from and quenching by the aluminum coated probe.

  4. Charting an Inflationary Landscape with Random Matrix Theory

    SciTech Connect

    Marsh, M.C. David; McAllister, Liam; Pajer, Enrico; Wrase, Timm E-mail: mcallister@cornell.edu E-mail: timm.wrase@stanford.edu

    2013-11-01

    We construct a class of random potentials for N >> 1 scalar fields using non-equilibrium random matrix theory, and then characterize multifield inflation in this setting. By stipulating that the Hessian matrices in adjacent coordinate patches are related by Dyson Brownian motion, we define the potential in the vicinity of a trajectory. This method remains computationally efficient at large N, permitting us to study much larger systems than has been possible with other constructions. We illustrate the utility of our approach with a numerical study of inflation in systems with up to 100 coupled scalar fields. A significant finding is that eigenvalue repulsion sharply reduces the duration of inflation near a critical point of the potential: even if the curvature of the potential is fine-tuned to be small at the critical point, small cross-couplings in the Hessian cause the curvature to grow in the neighborhood of the critical point.

  5. The effect of backreaction on inflationary Brans-Dicke cosmology

    NASA Astrophysics Data System (ADS)

    Sahraee, M.; Setare, M. R.

    2016-06-01

    In this paper, we study the effect of the quantum backreaction on Brans-Dicke cosmology in inflation era. We consider an inflaton field in the D-dimensional spacetime in the framework of Brans-Dicke model. We use a new notation for the Brans-Dicke field in terms of the dilaton field. Then we obtain the vacuum expectation value of the full energy-momentum tensor using WKB approximation of the mode functions which satisfy the equations of motion. The obtained vacuum expectation values of energy-momentum tensor are divergent. In order to renormalize it, we introduce a constant cut-off Ω. The vacuum expectation value of energy-momentum tensor is separated to the UV and IR parts by using Ω cut-off. Then, we use the dimensional regularization method to eliminate divergences by introducing a counterterm action. Also, we calculate the IR contribution of the vacuum expectation value of energy-momentum tensor. Thus, we obtain a physically finite result for the quantum energy-momentum tensor. Finally, we find the effect of backreaction on scale factor.

  6. Relationship between microelectrode array impedance and chronic recording quality of single units and local field potentials.

    PubMed

    Jiang, JingLe; Willett, Francis R; Taylor, Dawn M

    2014-01-01

    Practical application of intracortical microelectrode technology is currently hindered by the inability to reliably record neuronal signals chronically. The precise mechanism of device failure is still under debate, but most likely includes some combination of tissue reaction, mechanical failure, and chronic material degradation. Impedance is a measure of the ease with which current flows through a working electrode under a driving voltage. Impedance has been hypothesized to provide information about an electrode's surrounding tissue reaction as well as chronic insulation degradation. In this study, we investigated the relationship between an electrode's impedance and its chronic recording performance as measured by the number of isolatable single units and the quality of local field potential recordings. Two 64-channel electrode arrays implanted in separate monkeys were assessed. We found no simple relationship between impedance and recording quality that held for both animals across all time periods. This suggests that future investigations on the topic should adopt a more fine-grained within-day and within-animal analysis. We also found new evidence from local field potential spatial correlation supporting the theory that insulation degradation is an important contributor to electrode failure.

  7. Field emission from single-walled carbon nanotubes modified by annealing and CuCl doping

    NASA Astrophysics Data System (ADS)

    Kleshch, Victor I.; Tonkikh, Alexander A.; Malykhin, Sergey A.; Redekop, Eugene V.; Orekhov, Andrey S.; Chuvilin, Andrey L.; Obraztsova, Elena D.; Obraztsov, Alexander N.

    2016-10-01

    In this article, we present a comparative study of field emission (FE) properties of the films of pristine, annealed and CuCl-filled single-walled carbon nanotubes (SWCNTs). The current-voltage dependencies and emission site distributions were measured in the diode configuration with a flat phosphor-coated anode. A significant increase of the threshold field was observed after annealing and doping of the films. It was explained by the selective oxidation of the small-diameter nanotubes confirmed by the Raman spectroscopy. The FE properties of annealed and filled SWCNTs were found to coincide with each other. At the same time, their Raman spectra differ significantly indicating the strong p-type doping induced by encapsulated CuCl. The obtained result reveals that the CuCl filling leads to significant changes in macroscopically averaged electronic properties but do not change the local work function at the apexes of emitting nanotubes, which is important for the further development of SWCNTs-based FE cathodes.

  8. The Attentional Field Revealed by Single-Voxel Modeling of fMRI Time Courses

    PubMed Central

    DeYoe, Edgar A.

    2015-01-01

    The spatial topography of visual attention is a distinguishing and critical feature of many theoretical models of visuospatial attention. Previous fMRI-based measurements of the topography of attention have typically been too crude to adequately test the predictions of different competing models. This study demonstrates a new technique to make detailed measurements of the topography of visuospatial attention from single-voxel, fMRI time courses. Briefly, this technique involves first estimating a voxel's population receptive field (pRF) and then “drifting” attention through the pRF such that the modulation of the voxel's fMRI time course reflects the spatial topography of attention. The topography of the attentional field (AF) is then estimated using a time-course modeling procedure. Notably, we are able to make these measurements in many visual areas including smaller, higher order areas, thus enabling a more comprehensive comparison of attentional mechanisms throughout the full hierarchy of human visual cortex. Using this technique, we show that the AF scales with eccentricity and varies across visual areas. We also show that voxels in multiple visual areas exhibit suppressive attentional effects that are well modeled by an AF having an enhancing Gaussian center with a suppressive surround. These findings provide extensive, quantitative neurophysiological data for use in modeling the psychological effects of visuospatial attention. PMID:25810532

  9. Regional electroporation of single cardiac myocytes in a focused electric field.

    PubMed

    Klauke, Norbert; Smith, Godfrey; Cooper, Jonathan M

    2010-01-15

    There is now a significant interest in being able to locate single cells within geometrically defined regions of a microfluidic chip and to gain intracellular access through the local electroporation of the cell membrane. This paper describes the microfabrication of electroporation devices which can enable the regional electroporation of adult ventricular myocytes, in order to lower the local electrical resistance of the cell membrane. Initially three different devices, designed to suit the characteristic geometry of the cardiomyocyte, were investigated (all three designs serve to focus the electric field to selected regions of the cell). We demonstrate that one of these three devices revealed the sequence of cellular responses to field strengths of increasing magnitudes, namely, cell contraction, hypercontraction, and lysis. This same device required a reduced threshold voltage for each of these events, including in particular membrane breakdown. We were not only able to show the gradual regional increase in the electric conductivity of the cell membrane but were also able to avoid changes in the local intra- and extracellular pH (by preventing the local generation of protons at the electrode surface, as a consequence of the reduced threshold voltage). The paper provides evidence for new strategies for achieving robust and reproducible regional electroporation, a technique which, in future, may be used for the insertion of large molecular weight molecules (including genes) as well as for on-chip voltage clamping of the primary adult cardiomyocyte.

  10. Single-taxon field measurements of bacterial gene regulation controlling DMSP fate

    PubMed Central

    Varaljay, Vanessa A; Robidart, Julie; Preston, Christina M; Gifford, Scott M; Durham, Bryndan P; Burns, Andrew S; Ryan, John P; Marin III, Roman; Kiene, Ronald P; Zehr, Jonathan P; Scholin, Christopher A; Ann Moran, Mary

    2015-01-01

    The ‘bacterial switch' is a proposed regulatory point in the global sulfur cycle that routes dimethylsulfoniopropionate (DMSP) to two fundamentally different fates in seawater through genes encoding either the cleavage or demethylation pathway, and affects the flux of volatile sulfur from ocean surface waters to the atmosphere. Yet which ecological or physiological factors might control the bacterial switch remains a topic of considerable debate. Here we report the first field observations of dynamic changes in expression of DMSP pathway genes by a single marine bacterial species in its natural environment. Detection of taxon-specific gene expression in Roseobacter species HTCC2255 during a month-long deployment of an autonomous ocean sensor in Monterey Bay, CA captured in situ regulation of the first gene in each DMSP pathway (dddP and dmdA) that corresponded with shifts in the taxonomy of the phytoplankton community. Expression of the cleavage pathway was relatively greater during a high-DMSP-producing dinoflagellate bloom, and expression of the demethylation pathway was greater in the presence of a mixed diatom and dinoflagellate community. These field data fit the prevailing hypothesis for bacterial DMSP gene regulation based on bacterial sulfur demand, but also suggest a modification involving oxidative stress response, evidenced as upregulation of catalase via katG, when DMSP is demethylated. PMID:25700338

  11. Nanoscale Imaging of Local Few-Femtosecond Near-Field Dynamics within a Single Plasmonic Nanoantenna

    PubMed Central

    2015-01-01

    The local enhancement of few-cycle laser pulses by plasmonic nanostructures opens up for spatiotemporal control of optical interactions on a nanometer and few-femtosecond scale. However, spatially resolved characterization of few-cycle plasmon dynamics poses a major challenge due to the extreme length and time scales involved. In this Letter, we experimentally demonstrate local variations in the dynamics during the few strongest cycles of plasmon-enhanced fields within individual rice-shaped silver nanoparticles. This was done using 5.5 fs laser pulses in an interferometric time-resolved photoemission electron microscopy setup. The experiments are supported by finite-difference time-domain simulations of similar silver structures. The observed differences in the field dynamics across a single particle do not reflect differences in plasmon resonance frequency or dephasing time. They instead arise from a combination of retardation effects and the coherent superposition between multiple plasmon modes of the particle, inherent to a few-cycle pulse excitation. The ability to detect and predict local variations in the few-femtosecond time evolution of multimode coherent plasmon excitations in rationally synthesized nanoparticles can be used in the tailoring of nanostructures for ultrafast and nonlinear plasmonics. PMID:26375959

  12. Flexible reduced field of view magnetic resonance imaging based on single-shot spatiotemporally encoded technique

    NASA Astrophysics Data System (ADS)

    Li, Jing; Cai, Cong-Bo; Chen, Lin; Chen, Ying; Qu, Xiao-Bo; Cai, Shu-Hui

    2015-10-01

    In many ultrafast imaging applications, the reduced field-of-view (rFOV) technique is often used to enhance the spatial resolution and field inhomogeneity immunity of the images. The stationary-phase characteristic of the spatiotemporally-encoded (SPEN) method offers an inherent applicability to rFOV imaging. In this study, a flexible rFOV imaging method is presented and the superiority of the SPEN approach in rFOV imaging is demonstrated. The proposed method is validated with phantom and in vivo rat experiments, including cardiac imaging and contrast-enhanced perfusion imaging. For comparison, the echo planar imaging (EPI) experiments with orthogonal RF excitation are also performed. The results show that the signal-to-noise ratios of the images acquired by the proposed method can be higher than those obtained with the rFOV EPI. Moreover, the proposed method shows better performance in the cardiac imaging and perfusion imaging of rat kidney, and it can scan one or more regions of interest (ROIs) with high spatial resolution in a single shot. It might be a favorable solution to ultrafast imaging applications in cases with severe susceptibility heterogeneities, such as cardiac imaging and perfusion imaging. Furthermore, it might be promising in applications with separate ROIs, such as mammary and limb imaging. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474236, 81171331, and U1232212).

  13. Approaching the Trap-Free Limit in Organic Single-Crystal Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Blülle, Balthasar; Häusermann, Roger; Batlogg, Bertram

    2014-04-01

    We present measurements of rubrene single-crystal field-effect transistors with textbooklike transfer characteristics, as one would expect for intrinsically trap-free semiconductor devices. Particularly, the high purity of the crystals and the defect-free interface to the gate dielectric are reflected in an unprecedentedly low subthreshold swing of 65 mV/decade, remarkably close to the fundamental limit of 58.5 mV/decade. From these measurements, we quantify the residual density of traps by a detailed analysis of the subthreshold regime, including a full numerical simulation. An exceedingly low trap density of Dbulk=1×1013 cm-3 eV-1 at an energy of approximately 0.62 eV is found. This result corresponds to one trap per eV in 108 rubrene molecules. The equivalent density of traps located at the interface (Dit=3×109 cm-2 eV-1) is as low as in the best crystalline Si/Si field-effect transistors. These results highlight the benefit of having van der Waals bonded semiconducting crystals without electronically active states due to broken bonds at the surface.

  14. Quantum mechanical understanding of field dependence of the apex barrier of a single-wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Peng, Jie; Li, Zhibing; He, Chunshan; Deng, Shaozhi; Xu, Ningsheng; Zheng, Xiao; Chen, Guanhua

    2005-12-01

    The potential barrier at the apex of a single-wall carbon nanotube emitter is found to be strongly and nonlinearly dependent on the external applied field, due to a quantum mechanical mechanism instead of the correction of image potential in Fowler-Nordheim theory. The field enhancement factor depends on the applied field and is much smaller than that predicted by the classical theory. The field induced apex-vacuum barrier lowering is confirmed to be the essential mechanism for efficient field electron emission from capped carbon nanotubes.

  15. High magnetic field trapping in monolithic single-grain YBa2Cu3O(7-delta) bulk materials

    NASA Technical Reports Server (NTRS)

    Gao, L.; Xue, Y. Y.; Ramirez, D.; Huang, Z. J.; Meng, R. L.; Chu, C. W.

    1993-01-01

    Results of our study on high magnetic field trapping in unirradiated, high quality monolithic single-grain YBa2Cu3O(7-delta) disks are reported. A record high 4 T trapped field at the surface of the unirradiated disks is observed. However, below 11 K, large flux avalanches caused by thermal instability severely limit the remnant trapped field. Therefore, flux avalanche, rather than Jc x d, dictates the maximum trapped field at low temperatures. To overcome this problem, a strong high temperature superconductor trapped field magnet is proposed. A novel application of the avalanche effect is also mentioned.

  16. Probing the effective nuclear-spin magnetic field in a single quantum dot via full counting statistics

    SciTech Connect

    Xue, Hai-Bin; Nie, Yi-Hang; Chen, Jingzhe; Ren, Wei

    2015-03-15

    We study theoretically the full counting statistics of electron transport through a quantum dot weakly coupled to two ferromagnetic leads, in which an effective nuclear-spin magnetic field originating from the configuration of nuclear spins is considered. We demonstrate that the quantum coherence between the two singly-occupied eigenstates and the spin polarization of two ferromagnetic leads play an important role in the formation of super-Poissonian noise. In particular, the orientation and magnitude of the effective field have a significant influence on the variations of the values of high-order cumulants, and the variations of the skewness and kurtosis values are more sensitive to the orientation and magnitude of the effective field than the shot noise. Thus, the high-order cumulants of transport current can be used to qualitatively extract information on the orientation and magnitude of the effective nuclear-spin magnetic field in a single quantum dot. - Highlights: • The effective nuclear-spin magnetic field gives rise to the off-diagonal elements of the reduced density matrix of single QD. • The off-diagonal elements of reduced density matrix of the QD have a significant impact on the high-order current cumulants. • The high-order current cumulants are sensitive to the orientation and magnitude of the effective nuclear-spin magnetic field. • The FCS can be used to detect the orientation and magnitude of the effective nuclear-spin magnetic field in a single QD.

  17. A no-scale inflationary model to fit them all

    SciTech Connect

    Ellis, John; García, Marcos A.G.; Olive, Keith A.; Nanopoulos, Dimitri V. E-mail: garciagarcia@physics.umn.edu E-mail: olive@physics.umn.edu

    2014-08-01

    The magnitude of B-mode polarization in the cosmic microwave background as measured by BICEP2 favours models of chaotic inflation with a quadratic m{sup 2} φ{sup 2}/2 potential, whereas data from the Planck satellite favour a small value of the tensor-to-scalar perturbation ratio r that is highly consistent with the Starobinsky R +R{sup 2} model. Reality may lie somewhere between these two scenarios. In this paper we propose a minimal two-field no-scale supergravity model that interpolates between quadratic and Starobinsky-like inflation as limiting cases, while retaining the successful prediction n{sub s} ≅ 0.96.

  18. An inflationary model with small scalar and large tensor nongaussianities

    SciTech Connect

    Cook, Jessica L.; Sorbo, Lorenzo E-mail: sorbo@physics.umass.edu

    2013-11-01

    We study a model of inflation where the scalar perturbations are almost gaussian while there is sizable (equilateral) nongaussianity in the tensor sector. In this model, a rolling pseudoscalar gravitationally coupled to the inflaton amplifies the vacuum fluctuations of a vector field. The vector sources both scalar and tensor metric perturbations. Both kinds of perturbations are nongaussian, but, due to helicity conservation, the tensors have a larger amplitude, so that nongaussianity in the scalar perturbations is negligible. Moreover, the tensors produced this way are chiral. We study, in the flat sky approximation, how constraints on tensor nongaussianities affect the detectability of parity violation in the Cosmic Microwave Background. We expect the model to feature interesting patterns on nongaussianities in the polarization spectra of the CMB.

  19. General model of phospholipid bilayers in fluid phase within the single chain mean field theory.

    PubMed

    Guo, Yachong; Pogodin, Sergey; Baulin, Vladimir A

    2014-05-01

    Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.

  20. An expansion of the field modulus suitable for the description of strong field gradients in axisymmetric magnetic fields: application to single-sided magnet design, field mapping and STRAFI.

    PubMed

    Hugon, Cedric; Aubert, Guy; Sakellariou, Dimitris

    2012-01-01

    Mapping (or plotting) the magnetic field has a critical importance for the achievement of the homogeneous magnetic field necessary to standard MR experiments. A powerful tool for this purpose is the Spherical Harmonic Expansion (SHE), which provides a simple way to describe the spatial variations of a field in free space. Well-controlled non-zero spatial variations of the field are critical to MRI. The resolution of the image is directly related to the strength of the gradient used to encode space. As a result, it is desirable to have strong variations of the field. In that case, the SHE cannot be used as is, because the field modulus variations are affected by the variations of all components of the field. In this paper, we propose a method based on the SHE to characterize such variations, theoretically and experimentally, in the limit of an axisymmetric magnetic field. Practical applications of this method are proposed through the examples of single-sided magnet design and characterization, along with Stray-Field Imaging (STRAFI).

  1. Inflationary tensor fossils in large-scale structure

    SciTech Connect

    Dimastrogiovanni, Emanuela; Fasiello, Matteo; Jeong, Donghui; Kamionkowski, Marc E-mail: mrf65@case.edu E-mail: kamion@jhu.edu

    2014-12-01

    Inflation models make specific predictions for a tensor-scalar-scalar three-point correlation, or bispectrum, between one gravitational-wave (tensor) mode and two density-perturbation (scalar) modes. This tensor-scalar-scalar correlation leads to a local power quadrupole, an apparent departure from statistical isotropy in our Universe, as well as characteristic four-point correlations in the current mass distribution in the Universe. So far, the predictions for these observables have been worked out only for single-clock models in which certain consistency conditions between the tensor-scalar-scalar correlation and tensor and scalar power spectra are satisfied. Here we review the requirements on inflation models for these consistency conditions to be satisfied. We then consider several examples of inflation models, such as non-attractor and solid-inflation models, in which these conditions are put to the test. In solid inflation the simplest consistency conditions are already violated whilst in the non-attractor model we find that, contrary to the standard scenario, the tensor-scalar-scalar correlator probes directly relevant model-dependent information. We work out the predictions for observables in these models. For non-attractor inflation we find an apparent local quadrupolar departure from statistical isotropy in large-scale structure but that this power quadrupole decreases very rapidly at smaller scales. The consistency of the CMB quadrupole with statistical isotropy then constrains the distance scale that corresponds to the transition from the non-attractor to attractor phase of inflation to be larger than the currently observable horizon. Solid inflation predicts clustering fossils signatures in the current galaxy distribution that may be large enough to be detectable with forthcoming, and possibly even current, galaxy surveys.

  2. A note on perfect scalar fields

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, Sanil; Sriramkumar, L.

    2010-05-01

    We derive a condition on the Lagrangian density describing a generic, single, noncanonical scalar field, by demanding that the intrinsic, nonadiabatic pressure perturbation associated with the scalar field vanishes identically. Based on the analogy with perfect fluids, we refer to such fields as perfect scalar fields. It is common knowledge that models that depend only on the kinetic energy of the scalar field (often referred to as pure kinetic models) possess no nonadiabatic pressure perturbation. While we are able to construct models that seemingly depend on the scalar field and also do not contain any nonadiabatic pressure perturbation, we find that all such models that we construct allow a redefinition of the field under which they reduce to pure kinetic models. We show that, if a perfect scalar field drives inflation, then, in such situations, the first slow roll parameter will always be a monotonically decreasing function of time. We point out that this behavior implies that these scalar fields cannot lead to features in the inflationary, scalar perturbation spectrum.

  3. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    SciTech Connect

    Zhu, Xiaoyang

    2014-12-10

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering. Organic semiconductors are emerging as viable materials for low-cost electronics and optoelectronics, such as organic photovoltaics (OPV), organic field effect transistors (OFETs), and organic light emitting diodes (OLEDs). Despite extensive studies spanning many decades, a clear understanding of the nature of charge carriers in organic semiconductors is still lacking. It is generally appreciated that polaron formation and charge carrier trapping are two hallmarks associated with electrical transport in organic semiconductors; the former results from the low dielectric constants and weak intermolecular electronic overlap while the latter can be attributed to the prevalence of structural disorder. These properties have lead to the common observation of low charge carrier mobilities, e.g., in the range of 10-5 - 10-3 cm2/Vs, particularly at low carrier concentrations. However, there is also growing evidence that charge carrier mobility approaching those of inorganic semiconductors and metals can exist in some crystalline organic semiconductors, such as pentacene, tetracene and rubrene. A particularly striking example is single crystal rubrene (Figure 1), in which hole mobilities well above 10 cm2/Vs have been observed in OFETs operating at room temperature. Temperature dependent transport and spectroscopic measurements both revealed evidence of free carriers in rubrene. Outstanding questions are: what are the structural features and physical properties that make rubrene so unique? How do we establish fundamental design principles for the development of other organic semiconductors of high mobility? These questions are critically important but not comprehensive, as the nature of

  4. Electroweak vacuum (in)stability in an inflationary universe

    NASA Astrophysics Data System (ADS)

    Kobakhidze, Archil; Spencer-Smith, Alexander

    2013-05-01

    Recent analysis shows that if the 125-126 GeV LHC resonance turns out to be the Standard Model Higgs boson, the electroweak vacuum would be a metastable state at 98% C.L. In this Letter we argue that, during inflation, the electroweak vacuum can actually be very short-lived, contrary to the conclusion that follows from the flat spacetime analysis. Namely, in the case of a pure Higgs potential the electroweak vacuum decays via the Hawking-Moss transition, which has no flat spacetime analogue. As a result, the Higgs vacuum is unstable, unless the rate of inflation is low enough: Hinf ≲109-1012 GeV. Models of inflation with such a low rate typically predict negligible tensor perturbations in the cosmic microwave background radiation (CMBR). This is also true for models in which the perturbations are produced by a curvaton field. We also find that if the effective curvature of the Higgs potential at a local maximum (which may be induced by inflaton-Higgs interactions) is large enough, then the decay of the electroweak vacuum is dominated by the Coleman-de Luccia transition. The electroweak vacuum is also short-lived in this case, due to a negative effective self-interaction coupling. Based on our analysis of Higgs vacuum stability during inflation, we conclude that the observation of tensor perturbations by the Planck satellite would provide strong indirect evidence for new physics beyond the Standard Model responsible for stabilisation of the electroweak vacuum.

  5. Polarity tuning of single-walled carbon nanotube by dipole field of ferroelectric polymer for thermoelectric conversion

    NASA Astrophysics Data System (ADS)

    Horike, Shohei; Misaki, Masahiro; Koshiba, Yasuko; Morimoto, Masahiro; Saito, Takeshi; Ishida, Kenji

    2016-08-01

    The tuning of the Seebeck coefficient of a single-walled carbon nanotube (SWCNT) film was achieved by using the dipole field of a ferroelectric polymer. The Seebeck coefficient was positive under an up-poling dipole field, but negative under a down-poling dipole field, whereas the control remained positive. This tunable behavior can be explained by selective carrier injection and accumulation, which was confirmed by the temperature dependence of electrical conductivity. Connecting p- and n-type SWCNT films tuned by dipole fields to create a π module resulted in a significant improvement in output voltage owing to the temperature difference between the two.

  6. Effect of an AC electric field on the conductance of single-wall semiconductor-type carbon nanotubes

    SciTech Connect

    Belonenko, M. B.; Glazov, S. Yu.; Mescheryakova, N. E.

    2010-09-15

    The effect of an ac electric field on the conductance of a system of single-wall semiconductor-type carbon nanotubes placed in a dc electric field is considered. The strength vectors of dc and ac electric fields are directed along the nanotube axis. The electronic system of carbon nanotubes is considered in the context of the Boltzmann kinetic equation in the relaxation-time approximation. The dependence of the current density in the system on the characteristics of applied fields is studied. The effect of absolute negative conductance is detected.

  7. Advantages of flattened electrode in bottom contact single-walled carbon nanotube field-effect transistor

    SciTech Connect

    Setiadi, Agung; Akai-Kasaya, Megumi Saito, Akira; Kuwahara, Yuji

    2014-09-01

    We fabricated single-walled carbon nanotube (SWNT) field-effect transistor (FET) devices on flattened electrodes, in which there are no height difference between metal electrodes and the substrate. SWNT-FET fabricated using bottom contact technique have some advantages, such that the SWNTs are free from electron irradiation, have direct contact with the desired metal electrodes, and can be functionalized before or after deposition. However, the SWNTs can be bent at the contact point with the metal electrodes leading to a different electrical characteristic of the devices. The number of SWNT direct junctions in short channel length devices is drastically increased by the use of flattened electrodes due to strong attractive interaction between SWNT and the substrate. The flattened electrodes show a better balance between their hole and electron mobility compared to that of the non-flattened electrodes, that is, ambipolar FET characteristic. It is considered that bending of the SWNTs in the non-flattened electrode devices results in a higher Schottky barrier for the electrons.

  8. Nb-doped single crystalline MoS{sub 2} field effect transistor

    SciTech Connect

    Das, Saptarshi E-mail: das@anl.gov; Demarteau, Marcellinus; Roelofs, Andreas

    2015-04-27

    We report on the demonstration of a p-type, single crystalline, few layer MoS{sub 2} field effect transistor (FET) using Niobium (Nb) as the dopant. The doping concentration was extracted and determined to be ∼3 × 10{sup 19}/cm{sup 3}. We also report on bilayer Nb-doped MoS{sub 2} FETs with ambipolar conduction. We found that the current ON-OFF ratio of the Nb-doped MoS{sub 2} FETs changes significantly as a function of the flake thickness. We attribute this experimental observation to bulk-type electrostatic effect in ultra-thin MoS{sub 2} crystals. We provide detailed analytical modeling in support of our claims. Finally, we show that in the presence of heavy doping, even ultra-thin 2D-semiconductors cannot be fully depleted and may behave as a 3D material when used in transistor geometry. Our findings provide important insights into the doping constraints of 2D materials, in general.

  9. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis

    PubMed Central

    Córdoba, Ainara López; Ali, Tayyibah; Shevchuk, Andrew; Takahashi, Yasufumi; Novak, Pavel; Edwards, Christopher; Lab, Max; Gopal, Sahana; Chiappini, Ciro; Anand, Uma; Magnani, Luca; Coombes, R. Charles; Gorelik, Julia; Matsue, Tomokazu; Schuhmann, Wolfgang; Klenerman, David; Sviderskaya, Elena V.; Korchev, Yuri

    2016-01-01

    Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements. PMID:26816294

  10. Computational Modeling of Single Neuron Extracellular Electric Potentials and Network Local Field Potentials using LFPsim.

    PubMed

    Parasuram, Harilal; Nair, Bipin; D'Angelo, Egidio; Hines, Michael; Naldi, Giovanni; Diwakar, Shyam

    2016-01-01

    Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. This paper introduces LFPsim, a NEURON-based tool for computing population LFP activity and single neuron extracellular potentials. LFPsim was developed to be used on existing cable compartmental neuron and network models. Point source, line source, and RC based filter approximations can be used to compute extracellular activity. As a demonstration of efficient implementation, we showcase LFPs from mathematical models of electrotonically compact cerebellum granule neurons and morphologically complex neurons of the neocortical column. LFPsim reproduced neocortical LFP at 8, 32, and 56 Hz via current injection, in vitro post-synaptic N2a, N2b waves and in vivo T-C waves in cerebellum granular layer. LFPsim also includes a simulation of multi-electrode array of LFPs in network populations to aid computational inference between biophysical activity in neural networks and corresponding multi-unit activity resulting in extracellular and evoked LFP signals. PMID:27445781

  11. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis.

    PubMed

    Zhang, Yanjun; Clausmeyer, Jan; Babakinejad, Babak; López Córdoba, Ainara; Ali, Tayyibah; Shevchuk, Andrew; Takahashi, Yasufumi; Novak, Pavel; Edwards, Christopher; Lab, Max; Gopal, Sahana; Chiappini, Ciro; Anand, Uma; Magnani, Luca; Coombes, R Charles; Gorelik, Julia; Matsue, Tomokazu; Schuhmann, Wolfgang; Klenerman, David; Sviderskaya, Elena V; Korchev, Yuri

    2016-03-22

    Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements.

  12. Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Schwarz, Florian; Kastlunger, Georg; Lissel, Franziska; Egler-Lucas, Carolina; Semenov, Sergey N.; Venkatesan, Koushik; Berke, Heinz; Stadler, Robert; Lörtscher, Emanuel

    2016-02-01

    Charge transport through single molecules can be influenced by the charge and spin states of redox-active metal centres placed in the transport pathway. These intrinsic properties are usually manipulated by varying the molecule's electrochemical and magnetic environment, a procedure that requires complex setups with multiple terminals. Here we show that oxidation and reduction of organometallic compounds containing either Fe, Ru or Mo centres can solely be triggered by the electric field applied to a two-terminal molecular junction. Whereas all compounds exhibit bias-dependent hysteresis, the Mo-containing compound additionally shows an abrupt voltage-induced conductance switching, yielding high-to-low current ratios exceeding 1,000 at bias voltages of less than 1.0 V. Density functional theory calculations identify a localized, redox-active molecular orbital that is weakly coupled to the electrodes and closely aligned with the Fermi energy of the leads because of the spin-polarized ground state unique to the Mo centre. This situation provides an additional slow and incoherent hopping channel for transport, triggering a transient charging effect in the entire molecule with a strong hysteresis and large high-to-low current ratios.

  13. Attention Influences Single Unit and Local Field Potential Response Latencies in Visual Cortical Area V4

    PubMed Central

    Sundberg, Kristy A.; Mitchell, Jude F.; Gawne, Timothy J.

    2012-01-01

    Many previous studies have demonstrated that changes in selective attention can alter the response magnitude of visual cortical neurons, but there has been little evidence for attention affecting response latency. Small latency differences, though hard to detect, can potentially be of functional importance, and may also give insight into the mechanisms of neuronal computation. We therefore reexamined the effect of attention on the response latency of both single units and the local field potential (LFP) in primate visual cortical area V4. We find that attention does produce small (1–2 ms) but significant reductions in the latency of both the spiking and LFP responses. Though attention, like contrast elevation, reduces response latencies, we find that the two have different effects on the magnitude of the LFP. Contrast elevations increase and attention decreases the magnitude of the initial deflection of the stimulus-evoked LFP. Both contrast elevation and attention increase the magnitude of the spiking response. We speculate that latencies may be reduced at higher contrast because stronger stimulus inputs drive neurons more rapidly to spiking threshold, while attention may reduce latencies by placing neurons in a more depolarized state closer to threshold before stimulus onset. PMID:23136440

  14. Enzyme-modified field effect transistors based on surface-conductive single-crystalline diamond.

    PubMed

    Härtl, Andreas; Baur, Barbara; Stutzmann, Martin; Garrido, Jose A

    2008-09-01

    Enzyme-modified field effect transistors (ENFETs) were realized using surface-conductive single-crystalline diamond films. The enzymes penicillinase and acetylcholinesterase were immobilized onto the active area of diamond-based electrolytic solution gated FETs, using different organic linker molecules and cross-linking chemistries. The active area of the devices was patterned to generate enzyme-modified regions next to surface-conductive regions. Penicillinase was chosen as a robust model system, but the main focus of the present paper is on acetylcholinesterase, an enzyme essential for many neuronal signal transduction processes. All the different ENFETs show a clear and specific response to the corresponding substrate, penicillin and acetylcholine. The device response is based on the pH sensitivity of the surface-conductive active area and is enabled by the local pH change induced during the enzymatic reaction. The devices demonstrate promising stability and characteristic variations of the enzymatic activity with measurement conditions. Furthermore, the results from the ENFET measurements were compared with the results of spectrophotometric experiments, carried out with enzymes immobilized on diamond substrates and also with free enzymes in solution. This allows an analysis of the enzyme kinetics, as well as qualitative comparison of the different functionalization methods employed in this study.

  15. Spontaneous quasi single helicity regimes in EXTRAP T2R reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Menmuir, S.; Cecconello, M.

    2007-11-01

    In recent years, good progress toward a better understanding and control of the plasma performance in reversed-field pinch devices has been made. These improvements consist both of the discovery of spontaneous plasma regimes, termed the quasi single helicity (QSH) regime, in which part of the plasma core is no longer stochastic, and of the development of techniques for active control of plasma instabilities. In this paper, a systematic study of spontaneous QSH in the EXTRAP T2R device [P. R. Brunsell, H. Bergsaker, M. Cecconello et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] is presented. In this device, QSH states can occur spontaneously and it is associated with magnetic and thermal structures. A statistical analysis to determine the most favorable experimental conditions to have a transition to the QSH regime will be presented. The results described here are useful to understand the underlying properties of QSH regimes in view of future applications of the QSH active control in EXTRAP T2R; they are also important to have a comparison with the QSH studied in other devices.

  16. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis.

    PubMed

    Zhang, Yanjun; Clausmeyer, Jan; Babakinejad, Babak; López Córdoba, Ainara; Ali, Tayyibah; Shevchuk, Andrew; Takahashi, Yasufumi; Novak, Pavel; Edwards, Christopher; Lab, Max; Gopal, Sahana; Chiappini, Ciro; Anand, Uma; Magnani, Luca; Coombes, R Charles; Gorelik, Julia; Matsue, Tomokazu; Schuhmann, Wolfgang; Klenerman, David; Sviderskaya, Elena V; Korchev, Yuri

    2016-03-22

    Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements. PMID:26816294

  17. Modeling comparison of graphene nanoribbon field effect transistors with single vacancy defect

    NASA Astrophysics Data System (ADS)

    Nazari, Atefeh; Faez, Rahim; Shamloo, Hassan

    2016-09-01

    In this paper, some important circuit parameters of a monolayer armchair graphene nanoribbon (GNR) field effect transistor (GNRFET) in different structures are studied. Also, these structures are Ideal with no defect, 1SVGNRFET with one single vacancy defect, and 3SVsGNRFET with three SV defects. Moreover, the circuit parameters are extracted based on Semi Classical Top of Barrier Modeling (SCTOBM) method. The I-V characteristics simulations of Ideal GNRFET, 1SVGNRFET and 3SVsGNRFET are used for comparing with SCTOBM method. These simulations are solved with Poisson-Schrodinger equation self-consistently by using Non- Equilibrium Green Function (NEGF) and in the real space approach. The energy band structure of nanoribbon is obtained by using nearest-neighbour interactions within an approximation tight-binding method. The modeling results show that 3SVsGNRFET in comparison to 1SVGNRFET has higher transconductance, cut-off frequency, electron average velocity, mobile charge, and quantum capacitance. Also, 3SVsGNRFET has smaller gate, drain and source capacitances than Ideal GNRFET. Furthermore, Drain-induced barrier lowering (DIBL) and sub-threshold swing (SS) of 3SVsGNRFET are smaller than 1SVGNRFET.

  18. Near-field acoustic microbead trapping as remote anchor for single particle manipulation

    NASA Astrophysics Data System (ADS)

    Hwang, Jae Youn; Cheon, Dong Young; Shin, Hyunjune; Kim, Hyun Bin; Lee, Jungwoo

    2015-05-01

    We recently proposed an analytical model of a two-dimensional acoustic trapping of polystyrene beads in the ray acoustics regime, where a bead diameter is larger than the wavelength used. As its experimental validation, this paper demonstrates the transverse (or lateral) trapping of individual polystyrene beads in the near field of focused ultrasound. A 100 μm bead is immobilized on the central beam axis by a focused sound beam from a 30 MHz single element lithium niobate transducer, after being laterally displaced through hundreds of micrometers. Maximum displacement, a longest lateral distance at which a trapped bead can be directed towards the central axis, is thus measured over a discrete frequency range from 24 MHz to 36 MHz. The displacement data are found to be between 323.7 μm and 470.2 μm, depending on the transducer's driving frequency and input voltage amplitude. The experimental results are compared with their corresponding model values, and their relative errors lie between 0.9% and 3.9%. The results suggest that this remote maneuvering technique may be employed to manipulate individual cells through solid microbeads, provoking certain cellular reactions to localized mechanical disturbance without direct contact.

  19. Confronting predictions of stellar evolution theory: the case of single field M dwarf stars

    NASA Astrophysics Data System (ADS)

    Feiden, Gregory A.; Mann, Andrew W.; Gaidos, Eric

    2015-01-01

    Using a homogenous sample of single field M dwarf stars from the CONCH-SHELL catalog, we confront the reliability of predictions from low mass stellar evolution models. Empirical values for the bolometric flux, effective temperature, and stellar radius are typically determined with better than 1%, 2%, and 5% precision, respectively. Coupled with precise [M/H] values, these observations place strong constraints on the accuracy of stellar models. A Markov Chain Monte Carlo (MCMC) formalism is used to establish the most likely stellar properties, with associated uncertainties, by interpolating within a dense grid of Dartmouth stellar evolution models with mass, age, metallicity, and distance as free parameters. The observed effective temperature and bolometric flux are adopted as independent observables in the MCMC likelihood function with the addition of the observed [M/H] and distance as informative Bayesian priors. Results are presented comparing model mass estimates to those from an empirical mass-luminosity calibration, and showing how well stellar models reproduce the observed radii, effective temperatures, and luminosities. Reliability of stellar models is then investigated as a function of mass, [M/H], equivalent width of H-alpha, and X-ray luminosity. Finally, we briefly discuss various physical mechanisms to explain the observed trends, particularly in the context of the hypothesis that magnetic activity is the source of model-observation discrepancies.

  20. Single Event Effects Test Results for Advanced Field Programmable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Allen, Gregory R.; Swift, Gary M.

    2006-01-01

    Reconfigurable Field Programmable Gate Arrays (FPGAs) from Altera and Actel and an FPGA-based quick-turnApplication Specific Integrated Circuit (ASIC) from Altera were subjected to single-event testing using heavy ions. Both Altera devices (Stratix II and HardCopy II) exhibited a low latchup threshold (below an LET of 3 MeV-cm2/mg) and thus are not recommended for applications in the space radiation environment. The flash-based Actel ProASIC Plus device did not exhibit latchup to an effective LET of 75 MeV-cm2/mg at room temperature. In addition, these tests did not show flash cell charge loss (upset) or retention damage. Upset characterization of the design-level flip-flops yielded an LET threshold below 10 MeV-cm2/mg and a high LET cross section of about lxlO-6 cm2/bit for storing ones and about lxl0-7 cm2/bit for storing zeros . Thus, the ProASIC device may be suitable for critical flight applications with appropriate triple modular redundancy mitigation techniques.

  1. Computational Modeling of Single Neuron Extracellular Electric Potentials and Network Local Field Potentials using LFPsim

    PubMed Central

    Parasuram, Harilal; Nair, Bipin; D'Angelo, Egidio; Hines, Michael; Naldi, Giovanni; Diwakar, Shyam

    2016-01-01

    Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. This paper introduces LFPsim, a NEURON-based tool for computing population LFP activity and single neuron extracellular potentials. LFPsim was developed to be used on existing cable compartmental neuron and network models. Point source, line source, and RC based filter approximations can be used to compute extracellular activity. As a demonstration of efficient implementation, we showcase LFPs from mathematical models of electrotonically compact cerebellum granule neurons and morphologically complex neurons of the neocortical column. LFPsim reproduced neocortical LFP at 8, 32, and 56 Hz via current injection, in vitro post-synaptic N2a, N2b waves and in vivo T-C waves in cerebellum granular layer. LFPsim also includes a simulation of multi-electrode array of LFPs in network populations to aid computational inference between biophysical activity in neural networks and corresponding multi-unit activity resulting in extracellular and evoked LFP signals. PMID:27445781

  2. Simulation of plume dispersion from single release in Fusion Field Trial-07 experiment

    NASA Astrophysics Data System (ADS)

    Singh, Sarvesh Kumar; Sharan, Maithili

    2013-12-01

    Accurate description of source-receptor relationship is required for an efficient source reconstruction. This is examined by simulating the dispersion of plumes resulted from the available ten trials of single releases conducted at Fusion Field Trials, Dugway Proving Ground, Utah. The simulation is addressed with an earlier developed IIT (Indian Institute of Technology) dispersion model using the dispersion parameters in terms of measurements of turbulent velocity fluctuations. Simulation is described separately in both stable and unstable conditions, characterizing the peak as well as overall observed concentration distribution. Simulated results are compared with those obtained using AERMOD. With IIT model, peak concentrations are predicted within a factor of two in all the trials. The higher concentrations (>5 × 10-4 g m-3) are well predicted in stable condition and under-predicted (within a factor of two) in unstable condition whereas relatively smaller concentrations (<5 × 10-4 g m-3) are severely under-predicted in stable conditions and over-predicted in unstable conditions. The AERMOD exhibits the similar prediction of concentrations as shown by IIT model in most of the trials. Overall, both the models predict 70-80% concentrations in stable conditions and 85-95% concentrations in unstable conditions within a factor of six. The statistical measures for both the models are found well in agreement with the observations.

  3. Vibration of a single microcapsule with a hard plastic shell in an acoustic standing wave field.

    PubMed

    Koyama, Daisuke; Kotera, Hironori; Kitazawa, Natsuko; Yoshida, Kenji; Nakamura, Kentaro; Watanabe, Yoshiaki

    2011-04-01

    Observation techniques for measuring the small vibration of a single microcapsule of tens of nanometers in an acoustic standing wave field are discussed. First, simultaneous optical observation of a microbubble vibration by two methods is investigated, using a high-speed video camera, which permits two-dimensional observation of the bubble vibration, and a laser Doppler vibrometer (LDV), which can observe small bubble vibration amplitudes at high frequency. Bubbles of tens of micrometers size were trapped at the antinode of an acoustic standing wave generated in an observational cell. Bubble vibration at 27 kHz could be observed and the experimental results for the two methods showed good agreement. The radial vibration of microcapsules with a hard plastic shell was observed using the LDV and the measurement of the capsule vibration with radial oscillation amplitude of tens of nanometers was successful. The acoustic radiation force acting on microcapsules in the acoustic standing wave was measured from the trapped position of the standing wave and the radial oscillation amplitude of the capsules was estimated from the theoretical equation of the acoustic radiation force, giving results in good agreement with the LDV measurements. The radial oscillation amplitude of a capsule was found to be proportional to the amplitude of the driving sound pressure. A larger expansion ratio was observed for capsules closer to the resonance condition under the same driving sound pressure and frequency.

  4. Near-field acoustic microbead trapping as remote anchor for single particle manipulation

    SciTech Connect

    Hwang, Jae Youn; Cheon, Dong Young; Shin, Hyunjune; Kim, Hyun Bin; Lee, Jungwoo

    2015-05-04

    We recently proposed an analytical model of a two-dimensional acoustic trapping of polystyrene beads in the ray acoustics regime, where a bead diameter is larger than the wavelength used. As its experimental validation, this paper demonstrates the transverse (or lateral) trapping of individual polystyrene beads in the near field of focused ultrasound. A 100 μm bead is immobilized on the central beam axis by a focused sound beam from a 30 MHz single element lithium niobate transducer, after being laterally displaced through hundreds of micrometers. Maximum displacement, a longest lateral distance at which a trapped bead can be directed towards the central axis, is thus measured over a discrete frequency range from 24 MHz to 36 MHz. The displacement data are found to be between 323.7 μm and 470.2 μm, depending on the transducer's driving frequency and input voltage amplitude. The experimental results are compared with their corresponding model values, and their relative errors lie between 0.9% and 3.9%. The results suggest that this remote maneuvering technique may be employed to manipulate individual cells through solid microbeads, provoking certain cellular reactions to localized mechanical disturbance without direct contact.

  5. Predictions of single field inflation for the tensor/scalar ratio and the running spectral index

    SciTech Connect

    Vega, H. J. de; Sanchez, N. G.

    2006-09-15

    We study the single field slow-roll inflation models that better agree with the available CMB and LSS data including the three years WMAP data: new inflation and hybrid inflation. We study these models as effective field theories in the Ginsburg-Landau context: a trinomial potential turns out to be a simple and well motivated model. The spectral index n{sub s} of the adiabatic fluctuations, the ratio r of tensor to scalar fluctuations and the running index dn{sub s}/dlnk are studied in detail. We derive explicit formulas for n{sub s}, r and dn{sub s}/dlnk and provide relevant plots. In new inflation, and for the chosen central value n{sub s}=0.95, we predict 0.03field {sigma} coupled to the inflaton. For {mu}{sub 0}{sup 2}<{lambda}{sub 0}M{sub Pl}{sup 2}/192, where {lambda}{sub 0} is the cosmological constant, hybrid inflation yields a blue tilted n{sub s}>1 behavior. Hybrid inflation for {mu}{sub 0}{sup 2}>{lambda}{sub 0}M{sub Pl}{sup 2}/192 fulfills all the present CMB+LSS data for a large enough initial inflaton amplitude. Even if chaotic inflation predicts n{sub s} values compatible with the data, chaotic inflation is disfavored since it predicts a too high value r{approx_equal}0.27 for the ratio of tensor to scalar fluctuations. The model which best agrees with the current data and which best prepares the way to the expected data r(less-or-similar sign)0.1, is the trinomial potential with negative mass term: new inflation.

  6. Natural Language Search Interfaces: Health Data Needs Single-Field Variable Search

    PubMed Central

    Smith, Sam; Sufi, Shoaib; Goble, Carole; Buchan, Iain

    2016-01-01

    Background Data discovery, particularly the discovery of key variables and their inter-relationships, is key to secondary data analysis, and in-turn, the evolving field of data science. Interface designers have presumed that their users are domain experts, and so they have provided complex interfaces to support these “experts.” Such interfaces hark back to a time when searches needed to be accurate first time as there was a high computational cost associated with each search. Our work is part of a governmental research initiative between the medical and social research funding bodies to improve the use of social data in medical research. Objective The cross-disciplinary nature of data science can make no assumptions regarding the domain expertise of a particular scientist, whose interests may intersect multiple domains. Here we consider the common requirement for scientists to seek archived data for secondary analysis. This has more in common with search needs of the “Google generation” than with their single-domain, single-tool forebears. Our study compares a Google-like interface with traditional ways of searching for noncomplex health data in a data archive. Methods Two user interfaces are evaluated for the same set of tasks in extracting data from surveys stored in the UK Data Archive (UKDA). One interface, Web search, is “Google-like,” enabling users to browse, search for, and view metadata about study variables, whereas the other, traditional search, has standard multioption user interface. Results Using a comprehensive set of tasks with 20 volunteers, we found that the Web search interface met data discovery needs and expectations better than the traditional search. A task × interface repeated measures analysis showed a main effect indicating that answers found through the Web search interface were more likely to be correct (F 1,19=37.3, P<.001), with a main effect of task (F 3,57=6.3, P<.001). Further, participants completed the task

  7. Thermo-Elastic Triangular Sandwich Element for the Complete Stress Field Based on a Single-Layer Theory

    NASA Technical Reports Server (NTRS)

    Das, M.; Barut, A.; Madenci, E.; Ambur, D. R.

    2004-01-01

    This study presents a new triangular finite element for modeling thick sandwich panels, subjected to thermo-mechanical loading, based on a {3,2}-order single-layer plate theory. A hybrid energy functional is employed in the derivation of the element because of a C interelement continuity requirement. The single-layer theory is based on five weighted-average field variables arising from the cubic and quadratic representations of the in-plane and transverse displacement fields, respectively. The variations of temperature and distributed loading acting on the top and bottom surfaces are non-uniform. The temperature varies linearly through the thickness.

  8. Updating constraints on inflationary features in the primordial power spectrum with the Planck data

    NASA Astrophysics Data System (ADS)

    Benetti, Micol

    2013-10-01

    We present new constraints on possible features in the primordial inflationary density perturbation power spectrum in light of the recent cosmic microwave background anisotropy measurements from the Planck satellite. We found that the Planck data hints for the presence of features in two different ranges of angular scales, corresponding to multipoles 10<ℓ<60 and 150<ℓ<300, with a decrease in the best-fit χ2 value with respect to the featureless “vanilla” ΛCDM model of Δχ2≃9 in both cases.

  9. Single-proton resonant states and the isospin dependence investigated by Green’s function relativistic mean field theory

    NASA Astrophysics Data System (ADS)

    Sun, T. T.; Niu, Z. M.; Zhang, S. Q.

    2016-08-01

    The relativistic mean field theory formulated with Green’s function method (RMF-GF) is applied to investigate single-proton resonant states and isospin dependence. The calculated energies and widths for the single-proton resonant states in {}120{{Sn}} are in good agreement with previous investigations. The single-proton resonant states of the Sn isotopes and the N = 82 isotones are systematically studied and it is shown that the calculated energies and widths decrease monotonically with the increase of neutron number while increase monotonically with the increase of proton number. To further examine the evolutions of the single-proton resonant states, their dependence on the depth, radius and diffuseness of nuclear potential is investigated with the help of an analytic Woods-Saxon potential, and it is found that the increase of radius plays the most important role in the cross phenomenon appearing in the single-proton resonant states of the Sn isotopes.

  10. Magnetic field asymmetry and high temperature magnetoresistance in single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cobden, David

    2006-03-01

    The length scales and scattering processes in the one-dimensional electron system in single-walled carbon nanotubes remain only partially understood. Measuring the magnetoresistance, in both linear and nonlinear response, is a way to investigate these processes. In disordered nanotubes with ballistic paths much shorter than the length, we observe magnetoresistance in the metallic regime which at low temperatures resembles the universal fluctuations and weak localization seen in higher dimensional metals. A parabolic magnetoresistance persists at room temperature, indicating a significant role for phase coherence and/or interactions at high temperatures. While the linear resistance of a two-terminal sample must be an even function of magnetic field B by Onsager's principle, the nonlinear resistance need not be. Importantly, the B-asymmetric nonlinear terms can in principle be used to infer the strength of electron-electron interactions in the sample [1]. We have therefore also measured in detail the lowest order B-asymmetric current contributions, with a focus on the B-linear term. This has apparently not been done before in any system. Consistent with general theory, at high temperatures the term is small and has a constant sign independent of Fermi energy. At low temperatures it grows and develops mesoscopic fluctuations. Although these result imply that interactions are involved in the transport, calculations specific to nanotubes are needed in order to extract interaction parameters. This work was done by the authors of Ref [2]. References: [1] E.L. Ivchenko and B. Spivak, Phys. Rev. B 66, 155404 (2002); [2] Jiang Wei, Michael Shimogawa, Zenghui Wang, Iuliana Radu, Robert Dormaier, and David H. Cobden, Phys. Rev. Lett. (Dec. 2005) (cond-mat/0506275).

  11. Conjunctival lymphoma: Results and treatment with a single anterior electron field. A lens sparing approach

    SciTech Connect

    Dunbar, S.F.; Linggood, R.M.; Doppke, K.P.; Duby, A.; Wang, C.C. )

    1990-08-01

    Lymphoma of the conjunctiva is rare. It presents in older patients as a mass lesion and usually remains localized. Surgery is limited to biopsy, and radiation therapy is the definitive treatment of choice. The entire conjunctiva is treated. Relatively high doses (approximately 30 Gy) are required for local control, which may lead to cataract formation. Twelve patients with conjunctival lymphoma were treated at the Massachusetts General Hospital between 1979 and 1988. Ten of 12 patients presented with a unilateral lesion; 2 of 12 with bilateral lesions. Two of 12 patients were found to have systemic disease at the time of presentation. One patient developed conjunctival lymphoma 5 years after the diagnosis of generalized disease. Using electron beam, all patients were treated with a single anterior circular field to total doses ranging from 24 Gy to 30 Gy delivered in 8 to 16 fractions over 9 to 20 days. In all cases, the lens was shielded by a specially designed plastic contact lens bearing a 12 mm diameter lead shield. The lens dose was determined at varying depths beneath the shield for 6 MeV and 9 MeV electron beams and ranged from a minimum of 5% to an absolute maximum of 18% of the total dose delivered to the tumor. Local control was maintained in all patients with follow-up to 9 1/2 years. One patient relapsed distantly 3 years after treatment. One of 12 patients died of systemic disease 4 years after treatment of the ocular lesion. Two patients developed cataracts 4 and 5 years after treatment; one had bilateral cataract, although only one eye had been treated. Both patients were over 75 years old. In both cases, the cataracts were felt to be senile cataracts which are ophthalmologically and radiographically distinguishable from radiation induced lesions.

  12. Numerical simulation of two-dimensional single- and multiple-material flow fields

    SciTech Connect

    Lopez, A.R.; Baty, R.S.; Kashiwa, B.A.

    1992-03-01

    Over the last several years, Sandia National Laboratories has had an interest in developing capabilities to predict the flow fields around vehicles entering or exiting the water at a wide range of speeds. Such prediction schemes have numerous engineering applications in the design of weapon systems. For example, such a scheme could be used to predict the forces and moments experienced by an air-launched anti-submarine weapon on water-entry. Furthermore, a water-exit prediction capability could be used to model the complicated surface closure jet resulting from a missile being shot out of the water. The CCICE (Cell-Centered Implicit Continuous-fluid Eulerian) code developed at Los Alamos National Laboratory (LANL) was chosen to provide the fluid dynamics solver for high speed water-entry and water-exit problems. This implicit time-marching, two-dimensional, conservative, finite-volume code solves the multi-material, compressible, inviscid fluid dynamics equations. The incompressible version of the CCICE code, CCMAC (cell-Centered Marker and Cell), was chosen for low speed water- entry and water-exit problems in order to reduce the computational expense. These codes were chosen to take advantage of certain advances in numerical methods for computational fluid dynamics (CFD) that have taken place at LANL. Notable among these advances is the ability to perform implicit, multi-material, compressible flow simulations, with a fully cell-centered data structure. This means that a single set of control volumes are used, on which a discrete form of the conservation laws is satisfied. This is in control to the more classical staggered mesh methods, in which separate control volumes are defined for mass and momentum. 12 refs.

  13. Numerical simulation of two-dimensional single- and multiple-material flow fields

    SciTech Connect

    Lopez, A.R.; Baty, R.S. ); Kashiwa, B.A. )

    1992-01-01

    Over the last several years, Sandia National Laboratories has had an interest in developing capabilities to predict the flow fields around vehicles entering or exiting the water at a wide range of speeds. Such prediction schemes have numerous engineering applications in the design of weapon systems. For example, such a scheme could be used to predict the forces and moments experienced by an air-launched anti-submarine weapon on water-entry. Furthermore, a water-exit prediction capability could be used to model the complicated surface closure jet resulting from a missile being shot out of the water. The CCICE (Cell-Centered Implicit Continuous-fluid Eulerian) code developed at Los Alamos National Laboratory (LANL) was chosen to provide the fluid dynamics solver for high speed water-entry and water-exit problems. This implicit time-marching, two-dimensional, conservative, finite-volume code solves the multi-material, compressible, inviscid fluid dynamics equations. The incompressible version of the CCICE code, CCMAC (cell-Centered Marker and Cell), was chosen for low speed water- entry and water-exit problems in order to reduce the computational expense. These codes were chosen to take advantage of certain advances in numerical methods for computational fluid dynamics (CFD) that have taken place at LANL. Notable among these advances is the ability to perform implicit, multi-material, compressible flow simulations, with a fully cell-centered data structure. This means that a single set of control volumes are used, on which a discrete form of the conservation laws is satisfied. This is in control to the more classical staggered mesh methods, in which separate control volumes are defined for mass and momentum. 12 refs.

  14. Phase Locking of Multiple Single Neurons to the Local Field Potential in Cat V1.

    PubMed

    Martin, Kevan A C; Schröder, Sylvia

    2016-02-24

    The local field potential (LFP) is thought to reflect a temporal reference for neuronal spiking, which may facilitate information coding and orchestrate the communication between neural populations. To explore this proposed role, we recorded the LFP and simultaneously the spike activity of one to three nearby neurons in V1 of anesthetized cats during the presentation of drifting sinusoidal gratings, binary dense noise stimuli, and natural movies. In all stimulus conditions and during spontaneous activity, the average LFP power at frequencies >20 Hz was higher when neurons were spiking versus not spiking. The spikes were weakly but significantly phase locked to all frequencies of the LFP. The average spike phase of the LFP was stable across high and low levels of LFP power, but the strength of phase locking at low frequencies (≤10 Hz) increased with increasing LFP power. In a next step, we studied how strong stimulus responses of single neurons are reflected in the LFP and the LFP-spike relationship. We found that LFP power was slightly increased and phase locking was slightly stronger during strong compared with weak stimulus-locked responses. In summary, the coupling strength between high frequencies of the LFP and spikes was not strongly modulated by LFP power, which is thought to reflect spiking synchrony, nor was it strongly influenced by how strongly the neuron was driven by the stimulus. Furthermore, a comparison between neighboring neurons showed no clustering of preferred LFP phase. We argue that hypotheses on the relevance of phase locking in their current form are inconsistent with our findings.

  15. SU-E-T-296: Single Field Per Day Vs. Multiple Fields Per Day and the Impact On BED in Proton Therapy Treatment

    SciTech Connect

    Grantham, K; Wooten, H; Zhao, T; Klein, E

    2014-06-01

    Purpose: A common practice, in proton therapy, is to deliver a rotating subset of fields from the treatment plan for the daily fractions. This study compares the impact this practice has on the biological effective dose (BED) versus delivering all planned fields daily. Methods: For two scenarios (a phantom with a geometry approximating the anatomy of a prostate treatment with opposing lateral beams, and a clinical 3-field brain treatment), treatment plans were produced in Eclipse (Varian) to simulate delivery of one, two, and three fields per fraction. The RT-Dose file, structure set, and α/β ratios were processed using in-house MATLAB code to return a new RT-Dose file containing the BED (including a proton RBE of 1.1) which was imported back into Eclipse for analysis. Results: For targets and regions of field overlap in the treatment plan, BED is not affected by delivery regimen. In the phantom, BED in the femoral heads showed increased by 20% when a single field was used rather than two fields. In the brain treatment, the minimum BED to the left optic nerve and the pituitary gland increased by 13% and 10% respectively, for a one-field regime compared to three-fields per fraction. Comparing the two-field and threefield regimes, the optic nerve BED was not significantly affected and the minimum pituitary BED was 4% higher for two fields per day. Conclusion: Hypo-fractionation effects, in regions of non-overlap of fields, significantly increase the BED to the involved tissues by as much as 20%. Care should be taken to avoid inadvertently sacrificing plan effectiveness in the interest of reduced treatment time.

  16. A Field-Tested Task Analysis for Creating Single-Subject Graphs Using Microsoft[R] Office Excel

    ERIC Educational Resources Information Center

    Lo, Ya-yu; Konrad, Moira

    2007-01-01

    Creating single-subject (SS) graphs is challenging for many researchers and practitioners because it is a complex task with many steps. Although several authors have introduced guidelines for creating SS graphs, many users continue to experience frustration. The purpose of this article is to minimize these frustrations by providing a field-tested…

  17. Relationship between single-file diffusion of mixed and pure gases in dipeptide nanochannels by high field diffusion NMR.

    PubMed

    Dutta, Akshita R; Sekar, Poorvajan; Dvoyashkin, Muslim; Bowers, Clifford R; Ziegler, Kirk J; Vasenkov, Sergey

    2015-09-01

    High field NMR diffusometry reveals single-file diffusion of CO/CH4 mixture in dipeptide nanochannels with a coincident mobility for CO and CH4. In contrast to the relationship commonly observed for normal diffusion, this mixture mobility is only slightly smaller than that of pure CO which diffuses much faster than pure CH4.

  18. Magnetic field dependent photoluminescence studies of InGaAs/GaAs strained-single-quantum wells

    SciTech Connect

    Jones, E.D.; Dawson, L.R.; Klem, J.F.; Lyo, S.K.; Heiman, D.; Liu, X.C.

    1994-08-01

    Magnetoluminescence determined conduction-band and valence-band dispersion curves are presented for n-type InGaAs/GaAs stained-single-quantum well structures. The magnetic field range was 0 to 30 tesla, and the temperature varied between 4.2 and 77.4 K.

  19. Effect of an electric field on the magnetization of a SmFe3(BO3)4 single crystal

    NASA Astrophysics Data System (ADS)

    Freidman, A. L.; Balaev, A. D.; Dubrovskii, A. A.; Eremin, E. V.; Shaikhutdinov, K. A.; Temerov, V. L.; Gudim, I. A.

    2015-07-01

    A change in the magnetization of a SmFe3(BO3)4 single crystal in response to an applied alternating electric field has been experimentally observed for the first time. The measurements have demonstrated that the magnetization oscillates not only at a frequency of the applied electric field but also at twice the frequency. The dependences of the magnetoelectric effect on the magnetic and electric fields and temperature have been measured. It has been assumed that the existence of the second harmonic of the magnetoelectric effect is due to the electrostriction.

  20. Chaotic inflationary universe and the anisotropy of the large-scale structure

    NASA Technical Reports Server (NTRS)

    Chibisov, G. V.; Shtanov, Yu. V.

    1991-01-01

    It has been realized that the inflationary universe is in fact chaotic, that globally it is strongly inhomogeneous, and that the inflation in the universe as a whole is eternal. In such a picture the region available to modern observations is just a tiny part of the universe, in which inflation finished about 10(exp 10) years ago. In spite of the great popularity of the chaotic inflationary universe models, it is usually taken for granted that their specific features (such as strong global inhomogeneity of the universe) can hardly lead to any observable consequences. The argument is that all that is seen is just a tiny part of the universe, a region about 10(exp 28) cm, and the typical scales of considerable inhomogeneities are much greater than this size. In contrast to this opinion, an attempt is made to show that such observable consequences can really exist. The phenomenon closely connected with the origin of structure (galaxies, clusters, etc.) in the observable region is discussed. The main idea considered is the vacuum fluctuations evolution on the inhomogeneous background.

  1. Searching for features of a string-inspired inflationary model with cosmological observations

    NASA Astrophysics Data System (ADS)

    Cai, Yi-Fu; Ferreira, Elisa G. M.; Hu, Bin; Quintin, Jerome

    2015-12-01

    The latest Planck results show a power deficit in the temperature anisotropies near ℓ≈20 in the cosmic microwave background (CMB). This observation can hardly be explained within the standard inflationary Λ -cold-dark-matter (Λ CDM ) scenario. In this paper we consider a string theory inspired inflationary model (axion monodromy inflation) with a step-like modulation in the potential which gives rise to observable signatures in the primordial perturbations. One interesting phenomenon is that the primordial scalar modes experience a sudden suppression at a critical scale when the modulation occurs. By fitting to the CMB data, we find that the model can nicely explain the ℓ≈20 power deficit anomaly as well as predict specific patterns in the temperature-polarization correlation and polarization autocorrelation spectra. Though the significance of the result is not sufficient to claim a detection, our analysis reveals that fundamental physics at extremely high energy scales, namely, some effects inspired by string theory, may be observationally testable in forthcoming cosmological experiments.

  2. Perfect fluid and F(T) gravity descriptions of inflationary universe and comparison with observational data

    NASA Astrophysics Data System (ADS)

    Ganiou, M. G.; Houndjo, M. J. S.; Salako, Ines G.; Rodrigues, M. E.; Tossa, J.

    2016-07-01

    We describe in this paper the observables of inflationary models, in particular the spectrum index of torsion scalar perturbations, the tensor-to-scalar ratio, and the running of the spectral index, in the framework of perfect fluid models and F(T) gravity theories through the reconstruction methods. Then, our results on the perfect fluid and F(T) gravity theories of inflation are compared with recent cosmological observations such as the Planck satellite and BICEP2 experiment. Our studies prove that the perfect fluid and F(T) gravity models can reproduce the inflationary Universe consistent above all with the Planck data. We have reconstructed several models and considered others which give the best fit values compatible with the spectral index of curvature perturbations, the tensor-to-scalar ratio, and the running of the spectral index within the allowed ranges suggested by the Planck and BICEP2 results. By taking the trace-anomaly into consideration, we have shown that the reconstructed models F(T) can not describe a finite de Sitter inflation without an additional constant n that we related to cosmological constant.

  3. Dissipated power and induced velocity fields data of a micro single dielectric barrier discharge plasma actuator for active flow control.

    PubMed

    Pescini, E; Martínez, D S; De Giorgi, M G; Francioso, L; Ficarella, A

    2015-12-01

    In recent years, single dielectric barrier discharge (SDBD) plasma actuators have gained great interest among all the active flow control devices typically employed in aerospace and turbomachinery applications [1,2]. Compared with the macro SDBDs, the micro single dielectric barrier discharge (MSDBD) actuators showed a higher efficiency in conversion of input electrical power to delivered mechanical power [3,4]. This article provides data regarding the performances of a MSDBD plasma actuator [5,6]. The power dissipation values [5] and the experimental and numerical induced velocity fields [6] are provided. The present data support and enrich the research article entitled "Optimization of micro single dielectric barrier discharge plasma actuator models based on experimental velocity and body force fields" by Pescini et al. [6]. PMID:26425667

  4. Dissipated power and induced velocity fields data of a micro single dielectric barrier discharge plasma actuator for active flow control.

    PubMed

    Pescini, E; Martínez, D S; De Giorgi, M G; Francioso, L; Ficarella, A

    2015-12-01

    In recent years, single dielectric barrier discharge (SDBD) plasma actuators have gained great interest among all the active flow control devices typically employed in aerospace and turbomachinery applications [1,2]. Compared with the macro SDBDs, the micro single dielectric barrier discharge (MSDBD) actuators showed a higher efficiency in conversion of input electrical power to delivered mechanical power [3,4]. This article provides data regarding the performances of a MSDBD plasma actuator [5,6]. The power dissipation values [5] and the experimental and numerical induced velocity fields [6] are provided. The present data support and enrich the research article entitled "Optimization of micro single dielectric barrier discharge plasma actuator models based on experimental velocity and body force fields" by Pescini et al. [6].

  5. ORBXYZ: a 3D single-particle orbit code for following charged-particle trajectories in equilibrium magnetic fields

    SciTech Connect

    Anderson, D.V.; Cohen, R.H.; Ferguson, J.R.; Johnston, B.M.; Sharp, C.B.; Willmann, P.A.

    1981-06-30

    The single particle orbit code, TIBRO, has been modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications. Many details pertaining to this code are given on microfiche accompanying this report.

  6. Quantum criticality in single crystalline YFe2 Al10 determined from zero-field and longitudinal-field muon spin relaxation

    NASA Astrophysics Data System (ADS)

    Huang, Kevin; Tan, Cheng; Zhang, Jian; Ding, Zhaofeng; Maclaughlin, Douglas; Bernal, Oscar; Ho, Pei-Chun; Wu, Liusuo; Aronson, Meigan; Shu, Lei

    Muon spin relaxation (μSR) measurements were performed on single crystalline YFe2Al10 down to 19 mK and in magnetic fields up to ~100 Oe. Zero-field- μSR measurements showed no evidence of magnetic order down to 19 mK, consistent with previous measurements. However, we also find that the depolarization rate Λ is temperature independent above 1 K but increases in an exponential behavior for T < 1 K. Longitudinal-field μSR measurements also reveals a time-field scaling where G (t , H) = G (t /Hγ), with γ = 0.67. This is further confirmed from the magnetic field dependence of Λ, which finds Λ (H) ~H0. 67 at 19 mK. This is further evidence that single crystalline YFe2Al10 is in close proximity to a ferromagnetic quantum critical point. The research performed in this study was supported by the National NSF of China under Grant No. 11474060 and STCSM of China (No. 15XD1500200). Work at CSULA funded by NSF/DMR-1105380. Research at CSU-Fresno is supported by NSF DMR-1506677.

  7. Direct observation of λ-DNA molecule reversal movement within microfluidic channels under electric field with single molecule imaging technique

    NASA Astrophysics Data System (ADS)

    Fengyun, Yang; Kaige, Wang; Dan, Sun; Wei, Zhao; Hai-qing, Wang; Xin, He; Gui-ren, Wang; Jin-tao, Bai

    2016-07-01

    The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fluidic channels are important in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties of λ-DNA molecules transferring along the microchannels driven by the external electrickinetic force were systemically investigated with the single molecule fluorescence imaging technique. The experimental results indicated that the velocity of DNA molecules was strictly dependent on the value of the applied electric field and the diameter of the channel. The larger the external electric field, the larger the velocity, and the more significant deformation of DNA molecules. More meaningfully, it was found that the moving directions of DNA molecules had two completely different directions: (i) along the direction of the external electric field, when the electric field intensity was smaller than a certain threshold value; (ii) opposite to the direction of the external electric field, when the electric field intensity was greater than the threshold electric field intensity. The reversal movement of DNA molecules was mainly determined by the competition between the electrophoresis force and the influence of electro-osmosis flow. These new findings will theoretically guide the practical application of fluidic channel sensors and lab-on-chips for precisely manipulating single DNA molecules. Project supported by the National Natural Science Foundation of China (Grant No. 61378083), the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011DFA12220), the Major Research Plan of National Natural Science Foundation of China (Grant No. 91123030), and the Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2010JS110 and 2013SZS03-Z01).

  8. Direct observation of λ-DNA molecule reversal movement within microfluidic channels under electric field with single molecule imaging technique

    NASA Astrophysics Data System (ADS)

    Fengyun, Yang; Kaige, Wang; Dan, Sun; Wei, Zhao; Hai-qing, Wang; Xin, He; Gui-ren, Wang; Jin-tao, Bai

    2016-07-01

    The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fluidic channels are important in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties of λ-DNA molecules transferring along the microchannels driven by the external electrickinetic force were systemically investigated with the single molecule fluorescence imaging technique. The experimental results indicated that the velocity of DNA molecules was strictly dependent on the value of the applied electric field and the diameter of the channel. The larger the external electric field, the larger the velocity, and the more significant deformation of DNA molecules. More meaningfully, it was found that the moving directions of DNA molecules had two completely different directions: (i) along the direction of the external electric field, when the electric field intensity was smaller than a certain threshold value; (ii) opposite to the direction of the external electric field, when the electric field intensity was greater than the threshold electric field intensity. The reversal movement of DNA molecules was mainly determined by the competition between the electrophoresis force and the influence of electro-osmosis flow. These new findings will theoretically guide the practical application of fluidic channel sensors and lab-on-chips for precisely manipulating single DNA molecules. Project supported by the National Natural Science Foundation of China (Grant No. 61378083), the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011DFA12220), the Major Research Plan of National Natural Science Foundation of China (Grant No. 91123030), and the Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2010JS110 and 2013SZS03-Z01).

  9. Volatilize-controlled oriented growth of the single-crystal layer for organic field-effect transistors.

    PubMed

    Zhao, Haoyan; Li, Dong; Dong, Guifang; Duan, Lian; Liu, Xiaohui; Wang, Liduo

    2014-10-14

    We demonstrate a solution method of volatilize-controlled oriented growth (VOG) to fabricate aligned single crystals of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) on a Si/SiO2 substrate. Through controlling the evaporation rate of the solvent, large-area-aligned single-crystal layers can be achieved on several substrates at the same time, covering over 90% on 2 × 1 cm substrates. The method provides a low-cost, maneuverable technology, which has potential to be used in batch production. We find that the atmosphere of the solvent with high dissolving capacity is in favor of aligned single-crystal growth. Besides, the growth mechanism of the VOG method is investigated in this paper. Top-contact organic field-effect transistors based on the single crystals of TIPS pentacene are achieved on a Si/SiO2 substrate. The optimal device exhibits a field-effect mobility of 0.42 cm(2) V(-1) s(-1) and an on/off current ratio of 10(5). Our research indicates that the VOG method is promising in single-crystal growth on a Si/SiO2 substrate for commercial production.

  10. Analysing one isolated single walled carbon nanotube in the near-field domain with selective nanovolume Raman spectroscopy.

    PubMed

    Atalay, Han; Lefrant, Serge

    2004-09-01

    In this paper, we describe a new method to the selective nanovolume analysing of one isolated single walled carbon nanotube (SWNT). This concept is based on actually available imaging micro-spectrometry systems for working in near-field domain combined with a stigmatic solid immersion lens. This combination of different analytical methods, and modified and configured equipment entitles us to expand the functionality toward a three-dimensional (3D) nanovolume Raman mapping and photoluminescence intensity with a possible discrimination in polarization, as well as photoluminescence decaytime constant mapping with their unique combination. Subsequently, selective spectra can be acquired from the same location on the samples. By spectrally selecting a SWNT, we registered the spatial distribution of the emitted photons in x, y, z vectors to determine the position of a SWNT in the near-field domain. For the SWNTs that are localized with an accuracy better than 18 nm in the x, y and <1 nm in the z directions, we demonstrate an analytical sensitivity close to a single nanotube with unity throughput. This near-field capability is applied to resolve local variations unambiguously in the Raman spectrum along one single SWNT. Finally, in this paper, we report what we believe to be the first evidence of Raman mapping and 3D real optical imaging of carbon nanotubes with near-field resolution.

  11. Time-resolved hyperspectral single-pixel camera implementation for compressive wide-field fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Pian, Qi; Yao, Ruoyang; Intes, Xavier

    2016-03-01

    Single-pixel imaging based on compressive sensing theory has been a highlighted technique in the biomedical imaging field for many years. This interest has been driven by the possibility of performing microscopic or macroscopic imaging based on low-cost detector arrays, increased SNR (signal-to-noise ratio) in the acquired data sets and the ability to perform high quality image reconstruction with compressed data sets by exploiting signal sparsity. In this work, we present our recent work in implementing this technique to perform time domain fluorescence-labeled investigations in preclinical settings. More precisely, we report on our time-resolved hyperspectral single-pixel camera for fast, wide-field mapping of molecular labels and lifetime-based quantification. The hyperspectral single-pixel camera implements a DMD (Digital micro-mirror device) to generate optical masks for modulating the illumination field before it is delivered onto the sample and focuses the emission light signals into a multi-anode hyperspectral time-resolved PMT (Photomultiplier tube) to acquire spatial, temporal and spectral information enriched 4-D data sets. Fluorescence dyes with lifetime and spectral contrast are embedded in well plates and thin tissues. L-1 norm based regularization or the least square method, is applied to solve the underdetermined inverse problem during image reconstruction. These experimental results prove the possibility of fast, wide-field mapping of fluorescent labels with lifetime and spectral contrast in thin media.

  12. High-performance single crystal organic field-effect transistors based on two dithiophene-tetrathiafulvalene (DT-TTF) polymorphs.

    PubMed

    Pfattner, Raphael; Mas-Torrent, Marta; Bilotti, Ivano; Brillante, Aldo; Milita, Silvia; Liscio, Fabiola; Biscarini, Fabio; Marszalek, Tomasz; Ulanski, Jacek; Nosal, Andrzej; Gazicki-Lipman, Maciej; Leufgen, Michael; Schmidt, Georg; Molenkamp, Laurens W; Laukhin, Vladimir; Veciana, Jaume; Rovira, Concepció

    2010-10-01

    Solution prepared single crystal organic field-effect transistors (OFETs) combine low-cost with high performance due to structural ordering of molecules. However, in organic crystals polymorphism is a known phenomenon, which can have a crucial influence on charge transport. Here, the performance of solution-prepared single crystal OFETs based on two different polymorphs of dithiophene-tetrathiafulvalene, which were investigated by confocal Raman spectroscopy and X-ray diffraction, are reported. OFET devices prepared using different configurations show that both polymorphs exhibited excellent device performance, although the -phase revealed charge carrier mobility between two and ten times higher in accordance to the closer stacking of the molecules.

  13. Ultrashort Single-Wall Carbon Nanotubes Reveal Field-Emission Coulomb Blockade and Highest Electron-Source Brightness

    NASA Astrophysics Data System (ADS)

    Pascale-Hamri, A.; Perisanu, S.; Derouet, A.; Journet, C.; Vincent, P.; Ayari, A.; Purcell, S. T.

    2014-03-01

    We present here well-defined Coulomb staircases using an original field-emission experiment on several individual in situ—grown single-wall carbon nanotubes. A unique in situ process was applied nine times to progressively shorten one single-wall carbon nanotube down to ≃10 nm, which increased the oscillations periods from 5.5 to 80 V, the temperature for observable Coulomb staircase to 1100 K and the currents to 1.8 μA. This process led to the brightest electron source ever reported [9×1011 A/(str m2 V)].

  14. Document ink bleed-through removal with two hidden Markov random fields and a single observation field.

    PubMed

    Wolf, Christian

    2010-03-01

    We present a new method for blind document bleed-through removal based on separate Markov Random Field (MRF) regularization for the recto and for the verso side, where separate priors are derived from the full graph. The segmentation algorithm is based on Bayesian Maximum a Posteriori (MAP) estimation. The advantages of this separate approach are the adaptation of the prior to the contents creation process (e.g., superimposing two handwritten pages), and the improvement of the estimation of the recto pixels through an estimation of the verso pixels covered by recto pixels; moreover, the formulation as a binary labeling problem with two hidden labels per pixels naturally leads to an efficient optimization method based on the minimum cut/maximum flow in a graph. The proposed method is evaluated on scanned document images from the 18th century, showing an improvement of character recognition results compared to other restoration methods.

  15. Partial Dissolution of Charge Order Phase Observed in β-(BEDT-TTF)2PF6 Single Crystal Field Effect Transistor.

    PubMed

    Sakai, Masatoshi; Moritoshi, Norifumi; Kuniyoshi, Shigekazu; Yamauchi, Hiroshi; Kudo, Kazuhiro; Masu, Hyuma

    2016-04-01

    The effect of an applied gate electric field on the charge-order phase in β-(BEDT-TTF)2PF6 single-crystal field-effect transistor structure was observed at around room temperature by technical improvement with respect to sample preparation and electrical measurements. A relatively slight but systematic increase of the electrical conductance induced by the applied gate electric field and its temperature dependence was observed at around the metal-insulator transition temperature (TMI). The temperature dependence of the modulated electrical conductance demonstrated that TMI was shifted toward the lower side by application of a gate electric field, which corresponds to partial dissolution of the charge-order phase. The thickness of the partially dissolved charge order region was estimated to be several score times larger than the charge accumulation region. PMID:27451615

  16. Comparative studies on field-induced stretching behavior of single-walled and multiwalled carbon nanotube clusters.

    PubMed

    Tie, Weiwei; Bhattacharyya, Surjya Sarathi; Park, Hye Ryung; Lee, Joong Hee; Lee, Sang Won; Lee, Tae Hoon; Lee, Young Hee; Lee, Seung Hee

    2014-07-01

    We demonstrate distinct entanglement of single-walled carbon nanotube (SWCNT) and multiwalled carbon nanotube (MWCNT) clusters in nematic liquid crystal medium using scanning electron microscopy technique and the entanglement influence on electric field-induced stretching phenomena of the said clusters in the same medium under optical microscopy investigation. The observed stretching threshold field for MWCNT clusters is found to be higher than the SWCNT counterpart caused by the interplay between attractive field-induced dipolar interaction of intercarbon nanotube (CNT) bundles and the distinct degree of entanglement of neighboring CNT bundles. Subsequently observed different tensile elasticity modulus results for different CNT kinds also confirm different CNT bundle entanglement and attractive dipolar interaction between adjacent CNT bundles in CNT clusters are responsible for distinct stretching threshold field behavior.

  17. Kagome staircase compound Co3V2O8 in an applied magnetic field: Single-crystal neutron diffraction study

    NASA Astrophysics Data System (ADS)

    Petrenko, O. A.; Wilson, N. R.; Balakrishnan, G.; Paul, D. Mck; McIntyre, G. J.

    2010-09-01

    The magnetic properties of Co3V2O8 have been studied by single-crystal neutron diffraction. In zero magnetic field, the observed broadening of the magnetic Bragg peaks suggests the presence of disorder both in the low-temperature ferromagnetic and in the higher temperature antiferromagnetic state. The field dependence of the intensity and position of the magnetic reflections in Co3V2O8 reveals a complex sequence of phase transitions in this Kagome staircase compound. For H∥a , a commensurate-incommensurate-commensurate transition is found in a field of 0.072 T in the antiferromagnetic phase at 7.5 K. For H∥c at low temperature, an applied field induces an unusual transformation from a ferromagnetic to an antiferromagnetic state at about 1 T accompanied by a sharp increase in magnetization.

  18. Generalized cable formalism to calculate the magnetic field of single neurons and neuronal populations.

    PubMed

    Bedard, Claude; Destexhe, Alain

    2014-10-01

    Neurons generate magnetic fields which can be recorded with macroscopic techniques such as magnetoencephalography. The theory that accounts for the genesis of neuronal magnetic fields involves dendritic cable structures in homogeneous resistive extracellular media. Here we generalize this model by considering dendritic cables in extracellular media with arbitrarily complex electric properties. This method is based on a multiscale mean-field theory where the neuron is considered in interaction with a "mean" extracellular medium (characterized by a specific impedance). We first show that, as expected, the generalized cable equation and the standard cable generate magnetic fields that mostly depend on the axial current in the cable, with a moderate contribution of extracellular currents. Less expected, we also show that the nature of the extracellular and intracellular media influence the axial current, and thus also influence neuronal magnetic fields. We illustrate these properties by numerical simulations and suggest experiments to test these findings.

  19. Generalized cable formalism to calculate the magnetic field of single neurons and neuronal populations

    NASA Astrophysics Data System (ADS)

    Bedard, Claude; Destexhe, Alain

    2014-10-01

    Neurons generate magnetic fields which can be recorded with macroscopic techniques such as magnetoencephalography. The theory that accounts for the genesis of neuronal magnetic fields involves dendritic cable structures in homogeneous resistive extracellular media. Here we generalize this model by considering dendritic cables in extracellular media with arbitrarily complex electric properties. This method is based on a multiscale mean-field theory where the neuron is considered in interaction with a "mean" extracellular medium (characterized by a specific impedance). We first show that, as expected, the generalized cable equation and the standard cable generate magnetic fields that mostly depend on the axial current in the cable, with a moderate contribution of extracellular currents. Less expected, we also show that the nature of the extracellular and intracellular media influence the axial current, and thus also influence neuronal magnetic fields. We illustrate these properties by numerical simulations and suggest experiments to test these findings.

  20. Magnetic field-induced transitions in geometrically frustrated Co3V2O8 single crystal

    NASA Astrophysics Data System (ADS)

    Szymczak, R.; Baran, M.; Diduszko, R.; Fink-Finowicki, J.; Gutowska, M.; Szewczyk, A.; Szymczak, H.

    2006-03-01

    Magnetization and specific heat of the S=3/2 antiferromagnet on a kagome staircase, Co3V2O8 , were investigated as a function of temperature and magnetic field. The low temperature magnetization data revealed unusual features related to the strongly frustrated spin lattice. Of particular interest were magnetic field induced phase transitions observed for various orientations of the magnetic field. Abrupt macroscopic magnetization jumps induced by a magnetic field directed along the c -axis have been observed below 6K . This effect was also observed for a high enough magnetic field applied in the a-c plane. It is suggested that the jump, observed for H∥c is due to a spin reorientation phase transition. It was shown that Co3V2O8 crystals are characterized by a strong magnetocrystalline anisotropy of an easy-plane type. This anisotropy is due to the presence of Co2+ ions in octahedral positions.

  1. Generation of an external magnetic field with the spin orientation effect in a single layer Ising nanographene

    NASA Astrophysics Data System (ADS)

    Şarlı, Numan

    2016-09-01

    In this work, the magnetic properties of the single layer Ising nanogaphene (SLING) are investigated by using Kaneyoshi approach (KA) within the effective field theory for different spin orientations of its magnetic atoms. We find that the magnetizations of the SLING has no phase transition, certain Curie temperature and distinct peak of susceptibility at Tc for the some spin orientations at the zero external magnetic field (H=0.0). Because these behaviors occur at H≠0.0, we suggest that the SLING generates an external magnetic field and behaves as an external magnetic field generator for these spin orientations. However, the SLING exhibits ferromagnetic behaviors for only one spin orientations. But, it exhibits antiferromagnetic behaviors for the others. For the AFM cases, diamagnetic susceptibility behaviors and type II superconductivity hysteresis behaviors are obtained. We hope that these results can open a door to obtain new class of single layer graphene and graphene-based magnetic field generator devices with the spin orientation effect.

  2. Interaction of a two-level atom with single-mode optical field beyond the rotating wave approximation.

    PubMed

    Liu, Ju; Li, Zhi-Yuan

    2014-11-17

    One of the simplest models involving the atom-field interaction is the coupling of a single two-level atom with single-mode optical field. Under the rotating wave approximation, this problem is reduced to a form that can be solved exactly. But the approximation is only valid when the two levels are resonant or nearly resonant with the applied electromagnetic radiation. Here we present an analytical solution without the rotating wave approximation and applicable to general atom-field interaction far away from the resonance. We find that there exists remarkable influence of the initial phase of optical field on the Rabi oscillations and Rabi splitting, and this issue cannot be explored in the context of the rotating wave approximation. Due to the retention of the counter-rotating terms, higher-order harmonic appears during the Rabi splitting. The analytical solution suggests a way to regulate and control the quantum dynamics of a two-level atom and allows for exploring more essential features of the atom-field interaction. PMID:25402108

  3. Interaction of a two-level atom with single-mode optical field beyond the rotating wave approximation.

    PubMed

    Liu, Ju; Li, Zhi-Yuan

    2014-11-17

    One of the simplest models involving the atom-field interaction is the coupling of a single two-level atom with single-mode optical field. Under the rotating wave approximation, this problem is reduced to a form that can be solved exactly. But the approximation is only valid when the two levels are resonant or nearly resonant with the applied electromagnetic radiation. Here we present an analytical solution without the rotating wave approximation and applicable to general atom-field interaction far away from the resonance. We find that there exists remarkable influence of the initial phase of optical field on the Rabi oscillations and Rabi splitting, and this issue cannot be explored in the context of the rotating wave approximation. Due to the retention of the counter-rotating terms, higher-order harmonic appears during the Rabi splitting. The analytical solution suggests a way to regulate and control the quantum dynamics of a two-level atom and allows for exploring more essential features of the atom-field interaction.

  4. Magnetic field induced extraordinary photoluminescence enhancement in Er{sup 3+}:YVO{sub 4} single crystal

    SciTech Connect

    Zhang, Junpei; Wang, Xia; Tang, Chaoqun; Zhong, Zhiqiang; Ma, Zongwei; Wang, Shaoliang; Han, Yibo; Han, Jun-Bo Li, Liang

    2015-08-28

    A bright green photoluminescence (PL) from {sup 4}S{sub 3∕2} → {sup 4}I{sub 15∕2} emission band in Er{sup 3+}:YVO{sub 4} single crystal has been observed with the excitation of an argon laser at 488.0 nm. More than two orders of PL enhancement have been obtained under the effect of magnetic fields, and the enhancement factor f reaches 170 when the applied magnetic field is 7.7 T under the sample temperature of 4.2 K. Unusually, the PL enhancements only happen at some certain magnetic fields (B{sub c}s), and a decrease of sample temperature will lead to the increase of f and decrease of B{sub c}. The results confirm that this PL enhancement originates from the resonance excitation of the electron transitions induced by the cross of the laser energy and the absorption energy modulated by both the magnetic field and temperature. This special PL enhancement in Er{sup 3+}:YVO{sub 4} single crystal can be applied in the calibration of pulsed high magnetic field, detection of material fine energy structures, and modulation of magneto-optical devices.

  5. Effects of composition and temperature on the large-field behavior of [001]C relaxor single crystals.

    PubMed

    Gallagher, John; Lynch, Christopher; Tian, Jian

    2014-12-01

    The compositional dependence of the large-field behavior of [001]C-cut relaxor ferroelectric xPb(In1/2Nb1/2) O3-(1-x-y)Pb(Mg1/3Nb2/3)O3-yPbTiO3 (PIN-PMN-PT) single crystals that are on the rhombohedral side of the morphotropic phase boundary was characterized under electrical, mechanical, and thermal loading. The effects of varying the concentrations of PIN and PT are discussed. Composition was found to impact the material constants and the field-induced phase transformation threshold in the piezoelectric d333-mode configuration. PMID:25474790

  6. Generation of single-crystalline domain in nano-scale silicon pillars by near-field short pulsed laser

    NASA Astrophysics Data System (ADS)

    In, Jung Bin; Xiang, Bin; Hwang, David J.; Ryu, Sang-Gil; Kim, Eunpa; Yoo, Jae-Hyuck; Dubon, Oscar; Minor, Andrew M.; Grigoropoulos, Costas P.

    2014-01-01

    We observe laser-induced grain morphology change in silicon nanopillars under a transmission electron microscopy (TEM) environment. We couple the TEM with a near-field scanning optical microscopy pulsed laser processing system. This novel combination enables immediate scrutiny on the grain morphologies that the pulsed laser irradiation produces. We find unusual transformation of the tip of the amorphous or polycrystalline silicon pillar into a single crystalline domain via melt-mediated crystallization. On the basis of the three-dimensional finite difference simulation result and the dark field TEM data, we propose that the creation of the distinct single crystalline tip originates from the dominant grain growth initiated at the apex of the non-planar liquid-solid interface. Our microscopic observation provides a fundamental basis for laser-induced conversion of amorphous nanostructures into coarse-grained crystals.

  7. Metastable Copper-Phthalocyanine Single-Crystal Nanowires and Their Use in Fabricating High-Performance Field-Effect Transistors

    SciTech Connect

    Xiao, Kai; Li, Rongjin; Tao, Jing; Payzant, E Andrew; Ivanov, Ilia N; Puretzky, Alexander A; Hu, Wenping; Geohegan, David B

    2009-01-01

    This paper describes a simple, vapor-phase route to the synthesis of metastable α-phase copper-phthalocyanine (CuPc) single-crystal nanowires through control of the growth temperature. The influence of the growth temperature on the crystal structures, morphology, and size of the CuPc nanostructures was explored by XRD, optical absorption and Transmission Electron Microscopy (TEM). α-CuPc nanowires were successfully incorporated as active semiconductors in field-effect transistors (FETs). Single nanowire devices exhibited the carrier mobilities and current on/off ratios as high as 0.4 cm2/Vs and > 104, respectively, rendering them useful for organic photovoltaic cells, organic light-emitting diodes, field-effect transistors, memories and gas sensors

  8. Effects of Variable Inflationary Conditions on AN Inventory Model with Inflation-Proportional Demand Rate

    NASA Astrophysics Data System (ADS)

    Mirzazadeh, Abolfazl

    2009-08-01

    The inflation rate in the most of the previous researches has been considered constant and well-known over the time horizon, although the future rate of inflation is inherently uncertain and unstable, and is difficult to predict it accurately. Therefore, A time varying inventory model for deteriorating items with allowable shortages is developed in this paper. The inflation rates (internal and external) are time-dependent and demand rate is inflation-proportional. The inventory level is described by differential equations over the time horizon and present value method is used. The numerical example is given to explain the results. Some particular cases, which follow the main problem, will discuss and the results will compare with the main model by using the numerical examples. It has been achieved which shortages increases considerably in comparison with the case of without variable inflationary conditions.

  9. Inflationary slow-roll formalism and perturbations in the Randall-Sundrum type II braneworld

    NASA Astrophysics Data System (ADS)

    Ramírez, Erandy; Liddle, Andrew R.

    2004-04-01

    We formalize the Hubble slow-roll formalism for inflationary dynamics in Randall-Sundrum type II braneworld cosmologies, defining Hubble slow-roll parameters which can be used along with the Hamilton-Jacobi formalism. Focusing on the high-energy limit, we use these to calculate the exact power spectrum for power-law inflation, and then perturb around this solution to derive the higher-order expression for the density perturbations (sometimes called the Stewart-Lyth correction) of slow-roll braneworld models. Finally we apply our result to specific examples of potentials to calculate the correction to the amplitude of the power spectrum, and compare it with the standard cosmology. We find that the amplitude is not changed significantly by the higher-order correction.

  10. Prospects for direct detection of inflationary gravitational waves by next generation interferometric detectors

    SciTech Connect

    Kuroyanagi, Sachiko; Chiba, Takeshi; Sugiyama, Naoshi

    2011-02-15

    We study the potential impact of detecting the inflationary gravitational wave background by the future space-based gravitational wave detectors, such as DECIGO and BBO. The signal-to-noise ratio of each experiment is calculated for chaotic/natural/hybrid inflation models by using the precise predictions of the gravitational wave spectrum based on numerical calculations. We investigate the dependence of each inflation model on the reheating temperature which influences the amplitude and shape of the spectrum, and find that the gravitational waves could be detected for chaotic/natural inflation models with high reheating temperature. From the detection of the gravitational waves, a lower bound on the reheating temperature could be obtained. The implications of this lower bound on the reheating temperature for particle physics are also discussed.

  11. Dissipated power and induced velocity fields data of a micro single dielectric barrier discharge plasma actuator for active flow control☆

    PubMed Central

    Pescini, E.; Martínez, D.S.; De Giorgi, M.G.; Francioso, L.; Ficarella, A.

    2015-01-01

    In recent years, single dielectric barrier discharge (SDBD) plasma actuators have gained great interest among all the active flow control devices typically employed in aerospace and turbomachinery applications [1,2]. Compared with the macro SDBDs, the micro single dielectric barrier discharge (MSDBD) actuators showed a higher efficiency in conversion of input electrical power to delivered mechanical power [3,4]. This article provides data regarding the performances of a MSDBD plasma actuator [5,6]. The power dissipation values [5] and the experimental and numerical induced velocity fields [6] are provided. The present data support and enrich the research article entitled “Optimization of micro single dielectric barrier discharge plasma actuator models based on experimental velocity and body force fields” by Pescini et al. [6]. PMID:26425667

  12. Magnetic anisotropy and crystalline electric field effects in RRh{sub 4}B{sub 4} single crystals.

    SciTech Connect

    Zhou, H.; Lambert, S. E.; Maple, M. B.; Dunlap, B. D.; Materials Science Division; Univ. of California at San Diego

    2009-08-01

    Research on polycrystalline RRh{sub 4}B{sub 4} samples has shown that crystalline electric field (CEF) effects play an important role in these compounds. The successful synthesis of single crystal samples of RRh{sub 4}B{sub 4} with R = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu has provided an opportunity to further investigate CEF effects in these materials. Magnetization and magnetic susceptibility measurements on the RRh{sub 4}B{sub 4} single crystals revealed strong magnetic anisotropy, and the experimental results could be described well by CEF calculations based on the parameters derived from an analysis of experimental data for ErRh{sub 4}B{sub 4} single crystals. The easy directions of magnetization of these compounds are consistent with the signs of the Stevens factor {alpha}J of the CEF Hamiltonian. A strong influence of magnetic anisotropy on superconductivity was also observed.

  13. [Dynamics of cardiac and skeletal muscle lactate dehydrogenase activity following a single exposure to an alternating magnetic field].

    PubMed

    Udintsev, N A; Kanskaia, N V; Shchepetil'nikova, A I; Ordina, O M; Pichurina, R A

    1976-06-01

    A rise in LDH activity and a change of the enzyme distribution in the cytostructures of the heart and skeletal muscles of albino rats was revealed during the first 48 hours after a single twenty-four-hour action of an A. C. magnetic field (200 e, 50 cps). A displacement of the enzyma ratio in the direction of M-type was noted. Complete normalization occurred in the 3rd or 4th week only.

  14. A single field of view method for retrieving tropospheric temperature profiles from cloud-contaminated radiance data

    NASA Technical Reports Server (NTRS)

    Hodges, D. B.; Scoggins, J. R.

    1977-01-01

    The paper presents a method for retrieving single field of view tropospheric temperature profiles directly from cloud-contaminated radiance data through the use of auxiliary data such as observed shelter temperatures and estimated cloud-top height. A model was formulated to calculate cloud parameters for use with the radiative transport equation at an estimated cloud-top level. The cloud and temperature data are used in conjunction with real and simulated radiance data from NOAA satellites.

  15. Magnetic-field-induced color change in α-Fe2O3 single crystals

    NASA Astrophysics Data System (ADS)

    Chen, P.; Lee, N.; McGill, S.; Cheong, S.-W.; Musfeldt, J. L.

    2012-05-01

    We investigated the magneto-optical properties of α-Fe2O3 in order to understand the interplay between charge and magnetism in a model transition metal oxide. We discovered that hematite appears more red in applied magnetic field than in zero-field conditions, an effect that is amplified by the presence of the spin-flop transition. Analysis of the exciton pattern on the edge of the d-d color band reveals C2 monoclinic symmetry in the high-field phase. These findings advance our understanding of magnetoelectric coupling away from the static limit and motivate spectroscopic work on other iron-based materials under extreme conditions.

  16. Electric field perturbation due to impurities in GaAs through single electron transistor

    NASA Astrophysics Data System (ADS)

    Abdalla, S.

    2009-11-01

    The present work shows the presence of inevitable impurities in the semi-insulating GaAs domains when one is developing a single electron transistor (SET) and alters the quantization mechanism of single electron tunneling through the island. It is also indicated that these impurities decrease the amount of energy required to change the number of electrons on the island, which leads to a drastic reduction of SET quality. A theoretical model has been presented for elucidating the I- V characteristics of GaAs nano-crystals. It is found that this proposed model fits well the experimental data.

  17. Field locked to a Fock state by quantum feedback with single photon corrections.

    PubMed

    Zhou, X; Dotsenko, I; Peaudecerf, B; Rybarczyk, T; Sayrin, C; Gleyzes, S; Raimond, J M; Brune, M; Haroche, S

    2012-06-15

    Fock states with photon numbers n up to 7 are prepared on demand in a microwave superconducting cavity by a quantum feedback procedure that reverses decoherence-induced quantum jumps. Circular Rydberg atoms are used as quantum nondemolition sensors or as single-photon emitter or absorber actuators. The quantum nature of these actuators matches the correction of single-photon quantum jumps due to relaxation. The flexibility of this method is suited to the generation of arbitrary sequences of Fock states. PMID:23004271

  18. Magnetostriction of fcc(110) single-crystal films of Ni-Fe, Ni, and Co under rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Ohtani, Taiki; Kawai, Tetsuroh; Ohtake, Mitsuru; Futamotoa, Masaaki

    2014-07-01

    Ni-Fe, Ni, and Co(110) single-crystal films with uniaxial magnetic anisotropies are prepared on MgO(110) substrates by radio-frequency magnetron sputtering. The magnetostriction behavior under rotating magnetic fields is investigated. The Ni-Fe film shows waveforms consisting of a mixture of sinusoidal and triangular shapes under fields lower than 200 Oe. The peak of sinusoidal shape is observed when the field is applied along the easy magnetization axis, whereas that of triangular shape appears when the field is applied along the hard axis. With increasing the field from 200 to 300 Oe, the waveform changes to a usual sinusoidal shape. The waveform variation is related to the difference between the directions of uniaxial magnetic anisotropy and magnetization of magnetically unsaturated film. Waveforms consisting of sinusoidal and triangular shapes are also observed for the Ni and the Co films under low rotating fields. The threshold magnetic field where the shape changes to sinusoidal increases in the order of Ni-Fe < Ni < Co. The waveform is influenced by the symmetry and the strength of magnetic anisotropy.

  19. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field.

    PubMed

    Su, Jiaye; Guo, Hongxia

    2011-01-25

    The transport of water molecules through nanopores is not only crucial to biological activities but also useful for designing novel nanofluidic devices. Despite considerable effort and progress that has been made, a controllable and unidirectional water flow is still difficult to achieve and the underlying mechanism is far from being understood. In this paper, using molecular dynamics simulations, we systematically investigate the effects of an external electric field on the transport of single-file water molecules through a carbon nanotube (CNT). We find that the orientation of water molecules inside the CNT can be well-tuned by the electric field and is strongly coupled to the water flux. This orientation-induced water flux is energetically due to the asymmetrical water-water interaction along the CNT axis. The wavelike water density profiles are disturbed under strong field strengths. The frequency of flipping for the water dipoles will decrease as the field strength is increased, and the flipping events vanish completely for the relatively large field strengths. Most importantly, a critical field strength E(c) related to the water flux is found. The water flux is increased as E is increased for E ≤ E(c), while it is almost unchanged for E > E(c). Thus, the electric field offers a level of governing for unidirectional water flow, which may have some biological applications and provides a route for designing efficient nanopumps.

  20. Enhanced mobility in organic field-effect transistors due to semiconductor/dielectric interface control and very thin single crystal

    NASA Astrophysics Data System (ADS)

    Dong, Ji; Yu, Peng; Atika Arabi, Syeda; Wang, Jiawei; He, Jun; Jiang, Chao

    2016-07-01

    A perfect organic crystal while keeping high quality semiconductor/dielectric interface with minimal defects and disorder is crucial for the realization of high performance organic single crystal field-effect transistors (OSCFETs). However, in most reported OSCFET devices, the crystal transfer processes is extensively used. Therefore, the semiconductor/dielectric interface is inevitably damaged. Carrier traps and scattering centers are brought into the conduction channel, so that the intrinsic high mobility of OSCFET devices is entirely disguised. Here, very thin pentacene single crystal is grown directly on bare SiO2 by developing a ‘seed-controlled’ pentacene single crystal method. The interface quality is controlled by an in situ fabrication of OSCFETs. The interface is kept intact without any transfer process. Furthermore, we quantitatively analyze the influence of crystal thickness on device performance. With a pristine interface and very thin crystal, we have achieved the highest mobility: 5.7 cm2 V‑1 s‑1—more than twice the highest ever reported pentacene OSCFET mobility on bare SiO2. This study may provide a universal route for the use of small organic molecules to achieve high performance in lamellar single crystal field-effect devices.