Characterization of single-file diffusion in one-dimensional dusty plasma
NASA Astrophysics Data System (ADS)
Theisen, W. L.; Sheridan, T. E.
2010-11-01
Single-file diffusion occurs in one-dimensional systems when particles cannot pass each other and the mean-squared displacement (msd) of these particles increases with time t. Diffusive processes that follow Ficks law predict that the msd increases as t, however, single-file diffusion is sub-Fickean meaning that the msd is predicted to increase as t^1/2. One-dimensional dusty plasma rings have been created under strongly coupled, over-damped conditions. Particle position data from these rings will be analyzed to determine the scaling of the msd with time. Results will be compared with predictions of single-file diffusion theory.
Preliminary investigation of single-file diffusion in complex plasma rings
NASA Astrophysics Data System (ADS)
Theisen, W. L.; Sheridan, T. E.
2010-04-01
Particles in one-dimensional (1D) systems cannot pass each other. However, it is still possible to define a diffusion process where the mean-squared displacement (msd) of an ensemble of particles in a 1D chain increases with time t. This process is called single-file diffusion. In contrast to diffusive processes that follow Fick's law, msdt, single-file diffusion is sub-Fickean and the msd is predicted to increase as t^1/2. We have recently created 1D dusty (complex) plasma rings in the DONUT (Dusty ONU experimenT) apparatus. Particle position data from these rings will be analyzed to determine the scaling of the msd with time and results will be compared with predictions of single-file diffusion theory.
Single file diffusion into a semi-infinite tube.
Farrell, Spencer G; Brown, Aidan I; Rutenberg, Andrew D
2015-11-23
We investigate single file diffusion (SFD) of large particles entering a semi-infinite tube, such as luminal diffusion of proteins into microtubules or flagella. While single-file effects have no impact on the evolution of particle density, we report significant single-file effects for individually tracked tracer particle motion. Both exact and approximate ordering statistics of particles entering semi-infinite tubes agree well with our stochastic simulations. Considering initially empty semi-infinite tubes, with particles entering at one end starting from an initial time t = 0, tracked particles are initially super-diffusive after entering the system, but asymptotically diffusive at later times. For finite time intervals, the ratio of the net displacement of individual single-file particles to the average displacement of untracked particles is reduced at early times and enhanced at later times. When each particle is numbered, from the first to enter (n = 1) to the most recent (n = N), we find good scaling collapse of this distance ratio for all n. Experimental techniques that track individual particles, or local groups of particles, such as photo-activation or photobleaching of fluorescently tagged proteins, should be able to observe these single-file effects. However, biological phenomena that depend on local concentration, such as flagellar extension or luminal enzymatic activity, should not exhibit single-file effects.
On the role of adhesion in single-file dynamics
NASA Astrophysics Data System (ADS)
Fouad, Ahmed M.; Noel, John A.
2017-08-01
For a one-dimensional interacting system of Brownian particles with hard-core interactions (a single-file model), we study the effect of adhesion on both the collective diffusion (diffusion of the entire system with respect to its center of mass) and the tracer diffusion (diffusion of the individual tagged particles). For the case with no adhesion, all properties of these particle systems that are independent of particle labeling (symmetric in all particle coordinates and velocities) are identical to those of non-interacting particles (Lebowitz and Percus, 1967). We clarify this last fact twice. First, we derive our analytical predictions that show that the probability-density functions of single-file (ρsf) and ordinary (ρord) diffusion are identical, ρsf =ρord, predicting a nonanomalous (ordinary) behavior for the collective single-file diffusion, where the average second moment with respect to the center of mass, < x(t) 2 > , is calculated from ρ for both diffusion processes. Second, for single-file diffusion, we show, both analytically and through large-scale simulations, that < x(t) 2 > grows linearly with time, confirming the nonanomalous behavior. This nonanomalous collective behavior comes in contrast to the well-known anomalous sub-diffusion behavior of the individual tagged particles (Harris, 1965). We introduce adhesion to single-file dynamics as a second inter-particle interaction rule and, interestingly, we show that adding adhesion does reduce the magnitudes of both < x(t) 2 > and the mean square displacement per particle Δx2; but the diffusion behavior remains intact independent of adhesion in both cases. Moreover, we study the dependence of both the collective diffusion constant D and the tracer diffusion constant DT on the adhesion coefficient α.
Sub-Fickean Diffusion in a One-Dimensional Plasma Ring
NASA Astrophysics Data System (ADS)
Theisen, W. L.
2013-12-01
A one-dimensional dusty plasma ring is formed in a strongly-coupled complex plasma. The dust particles in the ring can be characterized as a one-dimensional system where the particles cannot pass each other. The particles perform random walks due to thermal motions. This single-file self diffusion is characterized by the mean-squared displacement (msd) of the individual particles which increases with time t. Diffusive processes that follow Ficks law predict that the msd increases as t, however, single-file diffusion is sub-Fickean meaning that the msd is predicted to increase as t^(1/2). Particle position data from the dusty plasma ring is analyzed to determine the scaling of the msd with time. Results are compared with predictions of single-file diffusion theory.
Fractional Dynamics of Single File Diffusion in Dusty Plasma Ring
NASA Astrophysics Data System (ADS)
Muniandy, S. V.; Chew, W. X.; Asgari, H.; Wong, C. S.; Lim, S. C.
2011-11-01
Single file diffusion (SFD) refers to the constrained motion of particles in quasi-one-dimensional channel such that the particles are unable to pass each other. Possible SFD of charged dust confined in biharmonic annular potential well with screened Coulomb interaction is investigated. Transition from normal diffusion to anomalous sub-diffusion behaviors is observed. Deviation from SFD's mean square displacement scaling behavior of 1/2-exponent may occur in strongly interacting systems. A phenomenological model based on fractional Langevin equation is proposed to account for the anomalous SFD behavior in dusty plasma ring.
Ackerman, David M; Wang, Jing; Wendel, Joseph H; Liu, Da-Jiang; Pruski, Marek; Evans, James W
2011-03-21
We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice-gas model for this reaction-diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.
Interplay between inhibited transport and reaction in nanoporous materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackerman, David Michael
2013-01-01
This work presents a detailed formulation of reaction and diffusion dynamics of molecules in confined pores such as mesoporous silica and zeolites. A general reaction-diffusion model and discrete Monte Carlo simulations are presented. Both transient and steady state behavior is covered. Failure of previous mean-field models for these systems is explained and discussed. A coarse-grained, generalized hydrodynamic model is developed that accurately captures the interplay between reaction and restricted transport in these systems. This method incorporates the non-uniform chemical diffusion behavior present in finite pores with multi-component diffusion. Two methods of calculating these diffusion values are developed: a random walkmore » based approach and a driven diffusion model based on an extension of Fick's law. The effects of reaction, diffusion, pore length, and catalytic site distribution are investigated. In addition to strictly single file motion, quasi-single file diffusion is incorporated into the model to match a range of experimental systems. The connection between these experimental systems and model parameters is made through Langevin dynamics modeling of particles in confined pores.« less
Approximation of super-ions for single-file diffusion of multiple ions through narrow pores.
Kharkyanen, Valery N; Yesylevskyy, Semen O; Berezetskaya, Natalia M
2010-11-01
The general theory of the single-file multiparticle diffusion in the narrow pores could be greatly simplified in the case of inverted bell-like shape of the single-particle energy profile, which is often observed in biological ion channels. There is a narrow and deep groove in the energy landscape of multiple interacting ions in such profiles, which corresponds to the pre-defined optimal conduction pathway in the configurational space. If such groove exists, the motion of multiple ions can be reduced to the motion of single quasiparticle, called the superion, which moves in one-dimensional effective potential. The concept of the superions dramatically reduces the computational complexity of the problem and provides very clear physical interpretation of conduction phenomena in the narrow pores.
Ackerman, David M.; Evans, James W.
2017-01-19
Here, we perform a tracer counterpermeation (TCP) analysis for a stochastic model of diffusive transport through a narrow linear pore where passing of species within the pore is inhibited or even excluded (single-file diffusion). TCP involves differently labeled but otherwise identical particles from two decoupled infinite reservoirs adsorbing into opposite ends of the pore, and desorbing from either end. In addition to transient behavior, we assess steady-state concentration profiles, spatial correlations, particle number fluctuations, and diffusion fluxes through the pore. From the profiles and fluxes, we determine a generalized tracer diffusion coefficient D tr(x), at various positions x within themore » pore. D tr(x) has a plateau value in the pore center scaling inversely with the pore length, but it is enhanced near the pore openings. The latter feature reflects the effect of fluctuations in adsorption and desorption, and it is also associated with a nontrivial scaling of the concentration profiles near the pore openings.« less
NASA Astrophysics Data System (ADS)
Ackerman, David M.; Evans, James W.
2017-01-01
We perform a tracer counterpermeation (TCP) analysis for a stochastic model of diffusive transport through a narrow linear pore where passing of species within the pore is inhibited or even excluded (single-file diffusion). TCP involves differently labeled but otherwise identical particles from two decoupled infinite reservoirs adsorbing into opposite ends of the pore, and desorbing from either end. In addition to transient behavior, we assess steady-state concentration profiles, spatial correlations, particle number fluctuations, and diffusion fluxes through the pore. From the profiles and fluxes, we determine a generalized tracer diffusion coefficient Dtr(x ) , at various positions x within the pore. Dtr(x ) has a plateau value in the pore center scaling inversely with the pore length, but it is enhanced near the pore openings. The latter feature reflects the effect of fluctuations in adsorption and desorption, and it is also associated with a nontrivial scaling of the concentration profiles near the pore openings.
Active Brownian particles escaping a channel in single file.
Locatelli, Emanuele; Baldovin, Fulvio; Orlandini, Enzo; Pierno, Matteo
2015-02-01
Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).
Active Brownian particles escaping a channel in single file
NASA Astrophysics Data System (ADS)
Locatelli, Emanuele; Baldovin, Fulvio; Orlandini, Enzo; Pierno, Matteo
2015-02-01
Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).
Single-File Escape of Colloidal Particles from Microfluidic Channels
NASA Astrophysics Data System (ADS)
Locatelli, Emanuele; Pierno, Matteo; Baldovin, Fulvio; Orlandini, Enzo; Tan, Yizhou; Pagliara, Stefano
2016-07-01
Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10-15 N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions.
Transverse single-file diffusion and enhanced longitudinal diffusion near a subcritical bifurcation
NASA Astrophysics Data System (ADS)
Dessup, Tommy; Coste, Christophe; Saint Jean, Michel
2018-05-01
A quasi-one-dimensional system of repelling particles undergoes a configurational phase transition when the transverse confining potential decreases. Below a threshold, it becomes energetically favorable for the system to adopt one of two staggered raw patterns, symmetric with respect to the system axis. This transition is a subcritical pitchfork bifurcation for short range interactions. As a consequence, the homogeneous zigzag pattern is unstable in a finite zigzag amplitude range [hC 1,hC 2] . We exhibit strong qualitative effects of the subcriticality on the thermal motions of the particles. When the zigzag amplitude is close enough to the limits hC 1 and hC 2, a transverse vibrational soft mode occurs which induces a strongly subdiffusive behavior of the transverse fluctuations, similar to single-file diffusion. On the contrary, the longitudinal fluctuations are enhanced, with a diffusion coefficient which is more than doubled. Conversely, a simple measurement of the thermal fluctuations allows a precise determination of the bifurcation thresholds.
ERIC Educational Resources Information Center
American Journal of Physics, 1978
1978-01-01
Describes experiments demonstrating the Josephson effect, single-file diffusion in biological membranes, refractive index of beer, lines of magnetic fields, indexing diffraction patterns, Maxwell's equations, and spherical aberration. (SL)
NASA Astrophysics Data System (ADS)
Forsling, Robin; Sanders, Lloyd P.; Ambjörnsson, Tobias; Lizana, Ludvig
2014-09-01
The standard setup for single-file diffusion is diffusing particles in one dimension which cannot overtake each other, where the dynamics of a tracer (tagged) particle is of main interest. In this article, we generalize this system and investigate first-passage properties of a tracer particle when flanked by identical crowder particles which may, besides diffuse, unbind (rebind) from (to) the one-dimensional lattice with rates koff (kon). The tracer particle is restricted to diffuse with rate kD on the lattice and the density of crowders is constant (on average). The unbinding rate koff is our key parameter and it allows us to systematically study the non-trivial transition between the completely Markovian case (koff ≫ kD) to the non-Markovian case (koff ≪ kD) governed by strong memory effects. This has relevance for several quasi one-dimensional systems. One example is gene regulation where regulatory proteins are searching for specific binding sites on a crowded DNA. We quantify the first-passage time distribution, f (t) (t is time), numerically using the Gillespie algorithm, and estimate f (t) analytically. In terms of koff (keeping kD fixed), we study the transition between the two known regimes: (i) when koff ≫ kD the particles may effectively pass each other and we recover the single particle result f (t) ˜ t-3/2, with a reduced diffusion constant; (ii) when koff ≪ kD unbinding is rare and we obtain the single-file result f (t) ˜ t-7/4. The intermediate region displays rich dynamics where both the characteristic f (t) - peak and the long-time power-law slope are sensitive to koff.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackerman, David M.; Wang, Jing; Evans, James W.
2012-05-30
Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.
Ackerman, David M; Wang, Jing; Evans, James W
2012-06-01
Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.
Ahmadi, Sheida; Bowles, Richard K
2017-04-21
Particles confined to a single file, in a narrow quasi-one-dimensional channel, exhibit a dynamic crossover from single file diffusion to Fickian diffusion as the channel radius increases and the particles begin to pass each other. The long time diffusion coefficient for a system in the crossover regime can be described in terms of a hopping time, which measures the time it takes for a particle to escape the cage formed by its neighbours. In this paper, we develop a transition state theory approach to the calculation of the hopping time, using the small system isobaric-isothermal ensemble to rigorously account for the volume fluctuations associated with the size of the cage. We also describe a Monte Carlo simulation scheme that can be used to calculate the free energy barrier for particle hopping. The theory and simulation method correctly predict the hopping times for a two-dimensional confined ideal gas system and a system of confined hard discs over a range of channel radii, but the method breaks down for wide channels in the hard discs' case, underestimating the height of the hopping barrier due to the neglect of interactions between the small system and its surroundings.
Colloid-colloid hydrodynamic interaction around a bend in a quasi-one-dimensional channel.
Liepold, Christopher; Zarcone, Ryan; Heumann, Tibor; Rice, Stuart A; Lin, Binhua
2017-07-01
We report a study of how a bend in a quasi-one-dimensional (q1D) channel containing a colloid suspension at equilibrium that exhibits single-file particle motion affects the hydrodynamic coupling between colloid particles. We observe both structural and dynamical responses as the bend angle becomes more acute. The structural response is an increasing depletion of particles in the vicinity of the bend and an increase in the nearest-neighbor separation in the pair correlation function for particles on opposite sides of the bend. The dynamical response monitored by the change in the self-diffusion [D_{11}(x)] and coupling [D_{12}(x)] terms of the pair diffusion tensor reveals that the pair separation dependence of D_{12} mimics that of the pair correlation function just as in a straight q1D channel. We show that the observed behavior is a consequence of the boundary conditions imposed on the q1D channel: both the single-file motion and the hydrodynamic flow must follow the channel around the bend.
Garcia, Andres; Wang, Jing; Windus, Theresa L.; ...
2016-05-20
Statistical mechanical modeling is developed to describe a catalytic conversion reaction A → B c or B t with concentration-dependent selectivity of the products, B c or B t, where reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated restricted diffusive transport, which in the extreme case is described by single-file diffusion, naturally induces strong concentration gradients. Hence, by comparing kinetic Monte Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong spatial correlations induced by restricted diffusivity in the presence of reaction and also by a subtle clustering of reactants, A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Andres
Transport and reaction in zeolites and other porous materials, such as mesoporous silica particles, has been a focus of interest in recent years. This is in part due to the possibility of anomalous transport effects (e.g. single-file diffusion) and its impact in the reaction yield in catalytic processes. Computational simulations are often used to study these complex nonequilibrium systems. Computer simulations using Molecular Dynamics (MD) techniques are prohibitive, so instead coarse grained one-dimensional models with the aid of Kinetic Monte Carlo (KMC) simulations are used. Both techniques can be computationally expensive, both time and resource wise. These coarse-grained systems canmore » be exactly described by a set of coupled stochastic master equations, that describe the reaction-diffusion kinetics of the system. The equations can be written exactly, however, coupling between the equations and terms within the equations make it impossible to solve them exactly; approximations must be made. One of the most common methods to obtain approximate solutions is to use Mean Field (MF) theory. MF treatments yield reasonable results at high ratios of reaction rate k to hop rate h of the particles, but fail completely at low k=h due to the over-estimation of fluxes of particles within the pore. We develop a method to estimate fluxes and intrapore diffusivity in simple one- dimensional reaction-diffusion models at high and low k=h, where the pores are coupled to an equilibrated three-dimensional fluid. We thus successfully describe analytically these simple reaction-diffusion one-dimensional systems. Extensions to models considering behavior with long range steric interactions and wider pores require determination of multiple boundary conditions. We give a prescription to estimate the required parameters for these simulations. For one dimensional systems, if single-file diffusion is relaxed, additional parameters to describe particle exchange have to be introduced. We use Langevin Molecular Dynamics (MD) simulations to assess these parameters.« less
Betty Petersen Memorial Library - NCWCP Publications - NWS
Filters to Variational Statistical Analysis with Spatially Inhomogeneous Covariances (.PDF file) 432 2001 file) 456 2008 Purser, R. James Normalization Of The Diffusive Filters That Represent The Inhomogeneous file) 457 2008 Purser, R. James Normalization Of The Diffusive Filters That Represent The Inhomogeneous
First passage times for a tracer particle in single file diffusion and fractional Brownian motion.
Sanders, Lloyd P; Ambjörnsson, Tobias
2012-05-07
We investigate the full functional form of the first passage time density (FPTD) of a tracer particle in a single-file diffusion (SFD) system whose population is: (i) homogeneous, i.e., all particles having the same diffusion constant and (ii) heterogeneous, with diffusion constants drawn from a heavy-tailed power-law distribution. In parallel, the full FPTD for fractional Brownian motion [fBm-defined by the Hurst parameter, H ∈ (0, 1)] is studied, of interest here as fBm and SFD systems belong to the same universality class. Extensive stochastic (non-Markovian) SFD and fBm simulations are performed and compared to two analytical Markovian techniques: the method of images approximation (MIA) and the Willemski-Fixman approximation (WFA). We find that the MIA cannot approximate well any temporal scale of the SFD FPTD. Our exact inversion of the Willemski-Fixman integral equation captures the long-time power-law exponent, when H ≥ 1/3, as predicted by Molchan [Commun. Math. Phys. 205, 97 (1999)] for fBm. When H < 1/3, which includes homogeneous SFD (H = 1/4), and heterogeneous SFD (H < 1/4), the WFA fails to agree with any temporal scale of the simulations and Molchan's long-time result. SFD systems are compared to their fBm counter parts; and in the homogeneous system both scaled FPTDs agree on all temporal scales including also, the result by Molchan, thus affirming that SFD and fBm dynamics belong to the same universality class. In the heterogeneous case SFD and fBm results for heterogeneity-averaged FPTDs agree in the asymptotic time limit. The non-averaged heterogeneous SFD systems display a lack of self-averaging. An exponential with a power-law argument, multiplied by a power-law pre-factor is shown to describe well the FPTD for all times for homogeneous SFD and sub-diffusive fBm systems.
NASA Astrophysics Data System (ADS)
Gong, Xiao-Jing; Fang, Hai-Ping
2008-07-01
In biological water channel aquaporins (AQPs), it is believed that the bipolar orientation of the single-file water molecules inside the channel blocks proton permeation but not water transport. In this paper, the water permeation and particularly the water-selective behaviour across a single-walled carbon nanotube (SWNT) with two partial charges adjacent to the wall of the SWNT are studied by molecular dynamics simulations, in which the distance between the two partial charges is varied from 0.14 nm to 0.5 nm and the charges each have a quantity of 0.5 e. The two partial charges are used to mimic the charge distribution of the conserved non-pseudoautosomal (NPA) (asparagine/proline/alanine) regions in AQPs. Compared with across the nanochannel in a system with one +1 e charge, the water permeation across the nanochannel is greatly enhanced in a system with two +0.5 e charges when charges are close to the nanotube, i.e. the two partial charges permit more rapid water diffusion and maintain better bipolar order along the water file when the distance between the two charges and the wall of SWNT is smaller than about 0.05 nm. The bipolar orientation of the single-file water molecules is crucial for the exclusion of proton transfer. These findings may serve as guidelines for the future nanodevices by using charges to transport water and have biological implications because membrane water channels share a similar single-file water chain and positive charged region at centre and provide an insight into why two residues are necessitated in the central region of water channel protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Ackerman, David M.; Lin, Victor S.-Y.
2013-04-02
Statistical mechanical modeling is performed of a catalytic conversion reaction within a functionalized nanoporous material to assess the effect of varying the reaction product-pore interior interaction from attractive to repulsive. A strong enhancement in reactivity is observed not just due to the shift in reaction equilibrium towards completion but also due to enhanced transport within the pore resulting from reduced loading. The latter effect is strongest for highly restricted transport (single-file diffusion), and applies even for irreversible reactions. The analysis is performed utilizing a generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reactionmore » and restricted transport.« less
Brownian Dynamics simulations of model colloids in channel geometries and external fields
NASA Astrophysics Data System (ADS)
Siems, Ullrich; Nielaba, Peter
2018-04-01
We review the results of Brownian Dynamics simulations of colloidal particles in external fields confined in channels. Super-paramagnetic Brownian particles are well suited two- dimensional model systems for a variety of problems on different length scales, ranging from pedestrian walking through a bottleneck to ions passing ion-channels in living cells. In such systems confinement into channels can have a great influence on the diffusion and transport properties. Especially we will discuss the crossover from single file diffusion in a narrow channel to the diffusion in the extended two-dimensional system. Therefore a new algorithm for computing the mean square displacement (MSD) on logarithmic time scales is presented. In a different study interacting colloidal particles were dragged over a washboard potential and are additionally confined in a two-dimensional micro-channel. In this system kink and anti-kink solitons determine the depinning process of the particles from the periodic potential.
Analysis of Bacteriophage Motion Through a Non-Static Medium
NASA Astrophysics Data System (ADS)
Dickey, Samuel A.
In this work, I investigated the motion of bacteriophages (phages) through their mucosal environment. Recently, biologists here at San Diego State University have proposed a model in which phages move sub-diffusively through mucosal fibers in their hunt for bacteria to prey upon. Through a Hoc protein located upon the capsid of the wild type phages, these phages are allowed to bind to mucosal fibers, and extend the amount of time spent in a single location hunting for bacteria. Contrarily, the delta hoc phages are unable to. The ability of the wild type phages to attach itself to mucosal fibers is what enables its subdiffusive behavior. This study investigates the diffusive behavior of these phages in different mucus concentrations. It expands on previous studies in which only short tracks could be observed. In the study at hand, phages are imaged in a highly doped optical fiber with varying concentrations of mucus present in solution. Through rigorous image processing techniques, trajectories of these phages are created with a minimized noise level. We developed code that created position-versus-time files for each phage present in the experimental data. These files were then further analyzed. The sub-diffusive behavior is investigated via mean squared displacement versus time. The diffusive exponent can be obtained from fits to these data. For large enough time intervals, I always obtained an exponent of one for space and time averaged data. This indicates that the diffusion is normal, or sub-diffusive of the CTRW type. CTRW sub-diffusive motion is characterized by waiting times that resemble a power law distribution and have long tails. I investigate these stuck time distributions, however am unable to determine if a power law or exponential fits the data best. Moreover, the distribution gives the same power law exponent for phages moving through water, or mucus, for wild type and delta hoc phages. These exponents would predict super-diffusive instead of sub-diffusive behavior. We conclude that many of these problems result from the small amount of data available to us and the still primitive conditions of the setup at the time the data were collected.
Small file aggregation in a parallel computing system
Faibish, Sorin; Bent, John M.; Tzelnic, Percy; Grider, Gary; Zhang, Jingwang
2014-09-02
Techniques are provided for small file aggregation in a parallel computing system. An exemplary method for storing a plurality of files generated by a plurality of processes in a parallel computing system comprises aggregating the plurality of files into a single aggregated file; and generating metadata for the single aggregated file. The metadata comprises an offset and a length of each of the plurality of files in the single aggregated file. The metadata can be used to unpack one or more of the files from the single aggregated file.
Lizana, L; Ambjörnsson, T
2009-11-01
We solve a nonequilibrium statistical-mechanics problem exactly, namely, the single-file dynamics of N hard-core interacting particles (the particles cannot pass each other) of size Delta diffusing in a one-dimensional system of finite length L with reflecting boundaries at the ends. We obtain an exact expression for the conditional probability density function rhoT(yT,t|yT,0) that a tagged particle T (T=1,...,N) is at position yT at time t given that it at time t=0 was at position yT,0. Using a Bethe ansatz we obtain the N -particle probability density function and, by integrating out the coordinates (and averaging over initial positions) of all particles but particle T , we arrive at an exact expression for rhoT(yT,t|yT,0) in terms of Jacobi polynomials or hypergeometric functions. Going beyond previous studies, we consider the asymptotic limit of large N , maintaining L finite, using a nonstandard asymptotic technique. We derive an exact expression for rhoT(yT,t|yT,0) for a tagged particle located roughly in the middle of the system, from which we find that there are three time regimes of interest for finite-sized systems: (A) for times much smaller than the collision time t
EPA FRS Facilities State Single File CSV Download
This page provides state comma separated value (CSV) files containing key information of all facilities and sites within the Facility Registry System (FRS). Each state zip file contains a single CSV file of key facility-level information.
Bürklein, S; Benten, S; Schäfer, E
2014-05-01
To assess in a laboratory setting the amount of apically extruded debris associated with different single-file nickel-titanium instrumentation systems compared to one multiple-file rotary system. Eighty human mandibular central incisors were randomly assigned to four groups (n = 20 teeth per group). The root canals were instrumented according to the manufacturers' instructions using the reciprocating single-file system Reciproc, the single-file rotary systems F360 and OneShape and the multiple-file rotary Mtwo instruments. The apically extruded debris was collected and dried in pre-weighed glass vials. The amount of debris was assessed with a micro balance and statistically analysed using anova and post hoc Student-Newman-Keuls test. The time required to prepare the canals with the different instruments was also recorded. Reciproc produced significantly more debris compared to all other systems (P < 0.05). No significant difference was noted between the two single-file rotary systems and the multiple-file rotary system (P > 0.05). Instrumentation with the three single-file systems was significantly faster than with Mtwo (P < 0.05). Under the condition of this study, all systems caused apical debris extrusion. Rotary instrumentation was associated with less debris extrusion compared to reciprocal instrumentation. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Andres; Evans, James W.
2016-11-03
We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) andmore » also by intermolecular interactions (thermodynamic correlations). We develop a generalized hydrodynamic formulation to effectively describe inhibited transport accounting for the effect of these correlations, and incorporate this description of transport into appropriate reaction-diffusion equations. These equations accurately describe both shorter-range concentration oscillations near the pore opening and the longer-range mesoscale variation of concentration profiles in the pore (and thus also describe reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model. As a result, this work elucidates unconventional chemical kinetics in interacting confined systems.« less
Zinge, Priyanka Ramdas; Patil, Jayaprakash
2017-01-01
The aim of this study is to evaluate and compare the effect of one shape, Neolix rotary single-file systems and WaveOne, Reciproc reciprocating single-file systems on pericervical dentin (PCD) using cone-beam computed tomography (CBCT). A total of 40 freshly extracted mandibular premolars were collected and divided into two groups, namely, Group A - Rotary: A 1 - Neolix and A 2 - OneShape and Group B - Reciprocating: B 1 - WaveOne and B 2 - Reciproc. Preoperative scans of each were taken followed by conventional access cavity preparation and working length determination with 10-k file. Instrumentation of the canal was done according to the respective file system, and postinstrumentation CBCT scans of teeth were obtained. 90 μm thick slices were obtained 4 mm apical and coronal to the cementoenamel junction. The PCD thickness was calculated as the shortest distance from the canal outline to the closest adjacent root surface, which was measured in four surfaces, i.e., facial, lingual, mesial, and distal for all the groups in the two obtained scans. There was no significant difference found between rotary single-file systems and reciprocating single-file systems in their effect on PCD, but in Group B 2 , there was most significant loss of tooth structure in the mesial, lingual, and distal surface ( P < 0.05). Reciproc single-file system removes more PCD as compared to other experimental groups, whereas Neolix single file system had the least effect on PCD.
Program to convert SUDS2ASC files to a single binary SEGY file
Goldman, Mark
2000-01-01
This program, SUDS2SEGY, converts and combines ASCII files created using SUDS2ASC Version 2.60, to a single SEGY file. SUDS2ASC has been used previously to create an ASCII file of three-component seismic data for an individual recording station. However, many seismic processing packages have difficulty reading in ASCII data. In addition, it may be cumbersome to process a separate file for each recording station, particularly if traces from different recording stations contain a different number of data samples and/or a different start time. This new program - SUDS2SEGY - combines these recording station files into a single SEGY file. In addition, SUDS2SEGY normalizes the trace times so that each trace starts at a given time and consists of a fixed number of samples. This normalization allows seismic data from many different stations to be read in as a single "data gather". SUDS2SEGY also produces a report summarizing the offset and maximum absolute amplitude for each component in a station file. These data are output separately to an ASCII file and can be subsequently input to a plotting package.
Wanted: A Positive Control for Anomalous Subdiffusion
Saxton, Michael J.
2012-01-01
Anomalous subdiffusion in cells and model systems is an active area of research. The main questions are whether diffusion is anomalous or normal, and if it is anomalous, its mechanism. The subject is controversial, especially the hypothesis that crowding causes anomalous subdiffusion. Anomalous subdiffusion measurements would be strengthened by an experimental standard, particularly one able to cross-calibrate the different types of measurements. Criteria for a calibration standard are proposed. First, diffusion must be anomalous over the length and timescales of the different measurements. The length-scale is fundamental; the time scale can be adjusted through the viscosity of the medium. Second, the standard must be theoretically well understood, with a known anomalous subdiffusion exponent, ideally readily tunable. Third, the standard must be simple, reproducible, and independently characterizable (by, for example, electron microscopy for nanostructures). Candidate experimental standards are evaluated, including obstructed lipid bilayers; aqueous systems obstructed by nanopillars; a continuum percolation system in which a prescribed fraction of randomly chosen obstacles in a regular array is ablated; single-file diffusion in pores; transient anomalous subdiffusion due to binding of particles in arrays such as transcription factors in randomized DNA arrays; and computer-generated physical trajectories. PMID:23260043
VizieR Online Data Catalog: Radiative forces for stellar envelopes (Seaton, 1997)
NASA Astrophysics Data System (ADS)
Seaton, M. J.; Yan, Y.; Mihalas, D.; Pradhan, A. K.
2000-02-01
(1) Primary data files, stages.zz These files give data for the calculation of radiative accelerations, GRAD, for elements with nuclear charge zz. Data are available for zz=06, 07, 08, 10, 11, 12, 13, 14, 16, 18, 20, 24, 25, 26 and 28. Calculations are made using data from the Opacity Project (see papers SYMP and IXZ). The data are given for each ionisation stage, j. They are tabulated on a mesh of (T, Ne, CHI) where T is temperature, Ne electron density and CHI is abundance multiplier. The files include data for ionisation fractions, for each (T, Ne). The file contents are described in the paper ACC and as comments in the code add.f (2) Code add.f This reads a file stages.zz and creates a file acc.zz giving radiative accelerations averaged over ionisation stages. The code prompts for names of input and output files. The code, as provided, gives equal weights (as defined in the paper ACC) to all stages. Th weights are set in SUBROUTINE WEIGHTS, which could be changed to give any weights preferred by the user. The dependence of diffusion coefficients on ionisation stage is given by a function ZET, which is defined in SUBROUTINE ZETA. The expressions used for ZET are as given in the paper. The user can change that subroutine if other expressions are preferred. The output file contains values, ZETBAR, of ZET, averaged over ionisation stages. (3) Files acc.zz Radiative accelerations computed using add.f as provided. The user will need to run the code add.f only if it is required to change the subroutines WEIGHTS or ZETA. The contents of the files acc.zz are described in the paper ACC and in comments contained in the code add.f. (4) Code accfit.f This code gives gives radiative accelerations, and some related data, for a stellar model. Methods used to interpolate data to the values of (T, RHO) for the stellar model are based on those used in the code opfit.for (see the paper OPF). The executable file accfit.com runs accfit.f. It uses a list of files given in accfit.files (see that file for further description). The mesh used for the abundance-multiplier CHI on the output file will generally be finer than that used in the input files acc.zz. The mesh to be used is specified on a file chi.dat. For a test run, the stellar model used is given in the file 10000_4.2 (Teff=10000 K, LOG10(g)=4.2) The output file from that test run is acc100004.2. The contents of the output file are described in the paper ACC and as comments in the code accfit.f. (5) The code diff.f This code reads the output file (e.g. acc1000004.2) created by accfit.f. For any specified depth point in the model and value of CHI, it gives values of radiative accelerations, the quantity ZETBAR required for calculation of diffusion coefficients, and Rosseland-mean opacities. The code prompts for input data. It creates a file recording all data calculated. The code diff.f is intended for incorporation, as a set of subroutines, in codes for diffusion calculations. (1 data file).
Apically extruded dentin debris by reciprocating single-file and multi-file rotary system.
De-Deus, Gustavo; Neves, Aline; Silva, Emmanuel João; Mendonça, Thais Accorsi; Lourenço, Caroline; Calixto, Camila; Lima, Edson Jorge Moreira
2015-03-01
This study aims to evaluate the apical extrusion of debris by the two reciprocating single-file systems: WaveOne and Reciproc. Conventional multi-file rotary system was used as a reference for comparison. The hypotheses tested were (i) the reciprocating single-file systems extrude more than conventional multi-file rotary system and (ii) the reciprocating single-file systems extrude similar amounts of dentin debris. After solid selection criteria, 80 mesial roots of lower molars were included in the present study. The use of four different instrumentation techniques resulted in four groups (n = 20): G1 (hand-file technique), G2 (ProTaper), G3 (WaveOne), and G4 (Reciproc). The apparatus used to evaluate the collection of apically extruded debris was typical double-chamber collector. Statistical analysis was performed for multiple comparisons. No significant difference was found in the amount of the debris extruded between the two reciprocating systems. In contrast, conventional multi-file rotary system group extruded significantly more debris than both reciprocating groups. Hand instrumentation group extruded significantly more debris than all other groups. The present results yielded favorable input for both reciprocation single-file systems, inasmuch as they showed an improved control of apically extruded debris. Apical extrusion of debris has been studied extensively because of its clinical relevance, particularly since it may cause flare-ups, originated by the introduction of bacteria, pulpal tissue, and irrigating solutions into the periapical tissues.
VizieR Online Data Catalog: Low-mass helium white dwarfs evolutionary models (Istrate+, 2016)
NASA Astrophysics Data System (ADS)
Istrate, A.; Marchant, P.; Tauris, T. M.; Langer, N.; Stancliffe, R. J.; Grassitelli, L.
2016-07-01
Evolutionary models of low-mass helium white dwarfs including element diffusion and rotational mixing. The WDs are produced considering binary evolution through the LMXB channel, with final WDs masses between ~0.16-~0.44. The models are computed using MESA, for different metallicities: Z=0.02, 0.01, 0.001 and 0.0002. For each metallicity, the models are divided in three categories: (1) basic (no diffusion nor rotation are considered) (2) diffusion (element diffusion is considered) (3) rotation+diffusion (both element diffusion and rotational mixing are considered) (4 data files).
Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.
2015-07-28
A method of simulating X-ray diffuse scattering from multi-model PDB files is presented. Despite similar agreement with Bragg data, different translation–libration–screw refinement strategies produce unique diffuse intensity patterns. Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling andmore » validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls-as-xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.« less
Dipy, a library for the analysis of diffusion MRI data.
Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian
2014-01-01
Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing.
Dipy, a library for the analysis of diffusion MRI data
Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian
2014-01-01
Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing. PMID:24600385
Warner, Graham C.; Helmer, Karl G.
2018-01-01
As the sharing of data is mandated by funding agencies and journals, reuse of data has become more prevalent. It becomes imperative, therefore, to develop methods to characterize the similarity of data. While users can group data based on the acquisition parameters stored in the file headers, these gives no indication whether a file can be combined with other data without increasing the variance in the data set. Methods have been implemented that characterize the signal-to-noise ratio or identify signal drop-outs in the raw image files, but potential users of data often have access to calculated metric maps and these are more difficult to characterize and compare. Here we describe a histogram-distance-based method applied to diffusion metric maps of fractional anisotropy and mean diffusivity that were generated using data extracted from a repository of clinically-acquired MRI data. We describe the generation of the data set, the pitfalls specific to diffusion MRI data, and the results of the histogram distance analysis. We find that, in general, data from GE scanners are less similar than are data from Siemens scanners. We also find that the distribution of distance metric values is not Gaussian at any selection of the acquisition parameters considered here (field strength, number of gradient directions, b-value, and vendor). PMID:29568257
Garcia, Andres; Evans, James W.
2017-04-03
In this paper, we consider a variety of diffusion-mediated processes occurring within linear nanopores, but which involve coupling to an equilibrated external fluid through adsorption and desorption. By determining adsorption and desorption rates through a set of tailored simulations, and by exploiting a spatial Markov property of the models, we develop a formulation for performing efficient pore-only simulations of these processes. Coupling to the external fluid is described exactly through appropriate nontrivial boundary conditions at the pore openings. This formalism is applied to analyze the following: (i) tracer counter permeation (TCP) where different labeled particles adsorb into opposite ends ofmore » the pore and establish a nonequilibrium steady state; (ii) tracer exchange (TE) with exchange of differently labeled particles within and outside the pore; (iii) catalytic conversion reactions where a reactant in the external fluid adsorbs into the pore and converts to a product which may desorb. The TCP analysis also generates a position-dependent generalized tracer diffusion coefficient, the form of which controls behavior in the TE and catalytic conversion processes. We focus on the regime of single-file diffusion within the pore which produces the strongest correlations and largest deviations from mean-field type behavior. Finally, behavior is quantified precisely via kinetic Monte Carlo simulations but is also captured with appropriate analytic treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1979-07-01
User input data requirements are presented for certain special processors in a nuclear reactor computation system. These processors generally read data in formatted form and generate binary interface data files. Some data processing is done to convert from the user oriented form to the interface file forms. The VENTURE diffusion theory neutronics code and other computation modules in this system use the interface data files which are generated.
FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET
Lerner, Eitan; Chung, SangYoon; Weiss, Shimon; Michalet, Xavier
2016-01-01
Single-molecule Förster Resonance Energy Transfer (smFRET) allows probing intermolecular interactions and conformational changes in biomacromolecules, and represents an invaluable tool for studying cellular processes at the molecular scale. smFRET experiments can detect the distance between two fluorescent labels (donor and acceptor) in the 3-10 nm range. In the commonly employed confocal geometry, molecules are free to diffuse in solution. When a molecule traverses the excitation volume, it emits a burst of photons, which can be detected by single-photon avalanche diode (SPAD) detectors. The intensities of donor and acceptor fluorescence can then be related to the distance between the two fluorophores. While recent years have seen a growing number of contributions proposing improvements or new techniques in smFRET data analysis, rarely have those publications been accompanied by software implementation. In particular, despite the widespread application of smFRET, no complete software package for smFRET burst analysis is freely available to date. In this paper, we introduce FRETBursts, an open source software for analysis of freely-diffusing smFRET data. FRETBursts allows executing all the fundamental steps of smFRET bursts analysis using state-of-the-art as well as novel techniques, while providing an open, robust and well-documented implementation. Therefore, FRETBursts represents an ideal platform for comparison and development of new methods in burst analysis. We employ modern software engineering principles in order to minimize bugs and facilitate long-term maintainability. Furthermore, we place a strong focus on reproducibility by relying on Jupyter notebooks for FRETBursts execution. Notebooks are executable documents capturing all the steps of the analysis (including data files, input parameters, and results) and can be easily shared to replicate complete smFRET analyzes. Notebooks allow beginners to execute complex workflows and advanced users to customize the analysis for their own needs. By bundling analysis description, code and results in a single document, FRETBursts allows to seamless share analysis workflows and results, encourages reproducibility and facilitates collaboration among researchers in the single-molecule community. PMID:27532626
Inventory of File gdas1.t06z.sfluxgrbf06.grib2
hour ave Visible Diffuse Downward Solar Flux [W/m^2] 036 surface NBDSF 0-6 hour ave Near IR Beam Downward Solar Flux [W/m^2] 037 surface NDDSF 0-6 hour ave Near IR Diffuse Downward Solar Flux [W/m^2] 038
Inventory of File gfs.t06z.sfluxgrbf06.grib2
hour ave Visible Diffuse Downward Solar Flux [W/m^2] 036 surface NBDSF 0-6 hour ave Near IR Beam Downward Solar Flux [W/m^2] 037 surface NDDSF 0-6 hour ave Near IR Diffuse Downward Solar Flux [W/m^2] 038
Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 1)
Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R.N.C.
2011-02-02
These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 1 are the pattern and configuration files for the pattern showed in Figure 2a in the paper.
Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 2)
Seibert, M. Marvin; Ekeberg, Tomas
2011-02-02
These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 2 are the pattern and configuration files for the pattern showed in Figure 2b in the paper.
Aydin, Ugur; Karataslioglu, Emrah
2017-01-01
Canal transportation is a common sequel caused by rotary instruments. The purpose of the present study is to evaluate the degree of transportation after the use of Reciproc single-file instruments with or without glide path files. Thirty resin blocks with L-shaped canals were divided into three groups ( n = 10). Group 1 - canals were prepared with Reciproc-25 file. Group 2 - glide path file-G1 was used before Reciproc. Group 3 - glide path files-G1 and G2 were used before Reciproc. Pre- and post-instrumentation images were superimposed under microscope, and resin removed from the inner and outer surfaces of the root canal was calculated throughout 10 points. Statistical analysis was performed with Kruskal-Wallis test and post hoc Dunn test. For coronal and middle one-thirds, there was no significant difference among groups ( P > 0.05). For apical section, transportation of Group 1 was significantly higher than other groups ( P < 0.05). Using glide path files before Reciproc single-file system reduced the degree of apical canal transportation.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
...-Plated Flat-Rolled Steel Products From Japan: Initiation of Antidumping Duty Investigation AGENCY: Import... products from Japan (``certain nickel-plated, flat-rolled steel''), filed in proper form by Thomas Steel... Antidumping Duty Petition on Diffusion-Annealed, Nickel- Plated Steel Flat-Rolled Products from Japan, dated...
NASA Astrophysics Data System (ADS)
Umansky, Moti; Weihs, Daphne
2012-08-01
In many physical and biophysical studies, single-particle tracking is utilized to reveal interactions, diffusion coefficients, active modes of driving motion, dynamic local structure, micromechanics, and microrheology. The basic analysis applied to those data is to determine the time-dependent mean-square displacement (MSD) of particle trajectories and perform time- and ensemble-averaging of similar motions. The motion of particles typically exhibits time-dependent power-law scaling, and only trajectories with qualitatively and quantitatively comparable MSD should be ensembled. Ensemble averaging trajectories that arise from different mechanisms, e.g., actively driven and diffusive, is incorrect and can result inaccurate correlations between structure, mechanics, and activity. We have developed an algorithm to automatically and accurately determine power-law scaling of experimentally measured single-particle MSD. Trajectories can then categorized and grouped according to user defined cutoffs of time, amplitudes, scaling exponent values, or combinations. Power-law fits are then provided for each trajectory alongside categorized groups of trajectories, histograms of power laws, and the ensemble-averaged MSD of each group. The codes are designed to be easily incorporated into existing user codes. We expect that this algorithm and program will be invaluable to anyone performing single-particle tracking, be it in physical or biophysical systems. Catalogue identifier: AEMD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 25 892 No. of bytes in distributed program, including test data, etc.: 5 572 780 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.11 (2010b) or higher, program should also be backwards compatible. Symbolic Math Toolboxes (5.5) is required. The Curve Fitting Toolbox (3.0) is recommended. Computer: Tested on Windows only, yet should work on any computer running MATLAB. In Windows 7, should be used as administrator, if the user is not the administrator the program may not be able to save outputs and temporary outputs to all locations. Operating system: Any supporting MATLAB (MathWorks Inc.) v7.11 / 2010b or higher. Supplementary material: Sample output files (approx. 30 MBytes) are available. Classification: 12 External routines: Several MATLAB subfunctions (m-files), freely available on the web, were used as part of and included in, this code: count, NaN suite, parseArgs, roundsd, subaxis, wcov, wmean, and the executable pdfTK.exe. Nature of problem: In many physical and biophysical areas employing single-particle tracking, having the time-dependent power-laws governing the time-averaged meansquare displacement (MSD) of a single particle is crucial. Those power laws determine the mode-of-motion and hint at the underlying mechanisms driving motion. Accurate determination of the power laws that describe each trajectory will allow categorization into groups for further analysis of single trajectories or ensemble analysis, e.g. ensemble and time-averaged MSD. Solution method: The algorithm in the provided program automatically analyzes and fits time-dependent power laws to single particle trajectories, then group particles according to user defined cutoffs. It accepts time-dependent trajectories of several particles, each trajectory is run through the program, its time-averaged MSD is calculated, and power laws are determined in regions where the MSD is linear on a log-log scale. Our algorithm searches for high-curvature points in experimental data, here time-dependent MSD. Those serve as anchor points for determining the ranges of the power-law fits. Power-law scaling is then accurately determined and error estimations of the parameters and quality of fit are provided. After all single trajectory time-averaged MSDs are fit, we obtain cutoffs from the user to categorize and segment the power laws into groups; cutoff are either in exponents of the power laws, time of appearance of the fits, or both together. The trajectories are sorted according to the cutoffs and the time- and ensemble-averaged MSD of each group is provided, with histograms of the distributions of the exponents in each group. The program then allows the user to generate new trajectory files with trajectories segmented according to the determined groups, for any further required analysis. Additional comments: README file giving the names and a brief description of all the files that make-up the package and clear instructions on the installation and execution of the program is included in the distribution package. Running time: On an i5 Windows 7 machine with 4 GB RAM the automated parts of the run (excluding data loading and user input) take less than 45 minutes to analyze and save all stages for an 844 trajectory file, including optional PDF save. Trajectory length did not affect run time (tested up to 3600 frames/trajectory), which was on average 3.2±0.4 seconds per trajectory.
Finite Element Analysis of a Copper Single Crystal Shape Memory Alloy-Based Endodontic Instruments
NASA Astrophysics Data System (ADS)
Vincent, Marin; Thiebaud, Frédéric; Bel Haj Khalifa, Saifeddine; Engels-Deutsch, Marc; Ben Zineb, Tarak
2015-10-01
The aim of the present paper is the development of endodontic Cu-based single crystal Shape Memory Alloy (SMA) instruments in order to eliminate the antimicrobial and mechanical deficiencies observed with the conventional Nickel-Titane (NiTi) SMA files. A thermomechanical constitutive law, already developed and implemented in a finite element code by our research group, is adopted for the simulation of the single crystal SMA behavior. The corresponding material parameters were identified starting from experimental results for a tensile test at room temperature. A computer-aided design geometry has been achieved and considered for a finite element structural analysis of the endodontic Cu-based single crystal SMA files. They are meshed with tetrahedral continuum elements to improve the computation time and the accuracy of results. The geometric parameters tested in this study are the length of the active blade, the rod length, the pitch, the taper, the tip diameter, and the rod diameter. For each set of adopted parameters, a finite element model is built and tested in a combined bending-torsion loading in accordance with ISO 3630-1 norm. The numerical analysis based on finite element procedure allowed purposing an optimal geometry suitable for Cu-based single crystal SMA endodontic files. The same analysis was carried out for the classical NiTi SMA files and a comparison was made between the two kinds of files. It showed that Cu-based single crystal SMA files are less stiff than the NiTi files. The Cu-based endodontic files could be used to improve the root canal treatments. However, the finite element analysis brought out the need for further investigation based on experiments.
Storage of sparse files using parallel log-structured file system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, John M.; Faibish, Sorin; Grider, Gary
A sparse file is stored without holes by storing a data portion of the sparse file using a parallel log-structured file system; and generating an index entry for the data portion, the index entry comprising a logical offset, physical offset and length of the data portion. The holes can be restored to the sparse file upon a reading of the sparse file. The data portion can be stored at a logical end of the sparse file. Additional storage efficiency can optionally be achieved by (i) detecting a write pattern for a plurality of the data portions and generating a singlemore » patterned index entry for the plurality of the patterned data portions; and/or (ii) storing the patterned index entries for a plurality of the sparse files in a single directory, wherein each entry in the single directory comprises an identifier of a corresponding sparse file.« less
Özkocak, I; Taşkan, M M; Gökt Rk, H; Aytac, F; Karaarslan, E Şirin
2015-01-01
The aim of this study is to evaluate increases in temperature on the external root surface during endodontic treatment with different rotary systems. Fifty human mandibular incisors with a single root canal were selected. All root canals were instrumented using a size 20 Hedstrom file, and the canals were irrigated with 5% sodium hypochlorite solution. The samples were randomly divided into the following three groups of 15 teeth: Group 1: The OneShape Endodontic File no.: 25; Group 2: The Reciproc Endodontic File no.: 25; Group 3: The WaveOne Endodontic File no.: 25. During the preparation, the temperature changes were measured in the middle third of the roots using a noncontact infrared thermometer. The temperature data were transferred from the thermometer to the computer and were observed graphically. Statistical analysis was performed using the Kruskal-Wallis analysis of variance at a significance level of 0.05. The increases in temperature caused by the OneShape file system were lower than those of the other files (P < 0.05). The WaveOne file showed the highest temperature increases. However, there were no significant differences between the Reciproc and WaveOne files. The single file rotary systems used in this study may be recommended for clinical use.
Crowding and hopping in a protein’s diffusive transport on DNA
NASA Astrophysics Data System (ADS)
Koslover, Elena F.; Díaz de la Rosa, Mario; Spakowitz, Andrew J.
2017-02-01
Diffusion is a ubiquitous phenomenon that impacts virtually all processes that involve random fluctuations, and as such, the foundational work of Smoluchowski has proven to be instrumental in addressing innumerable problems. Here, we focus on a critical biological problem that relies on diffusive transport and is analyzed using a probabilistic treatment originally developed by Smoluchowski. The search of a DNA binding protein for its specific target site is believed to rely on non-specific binding to DNA with transient hops along the chain. In this work, we address the impact of protein crowding along the DNA on the transport of a DNA-binding protein. The crowders dramatically alter the dynamics of the protein while bound to the DNA, resulting in single-file transport that is subdiffusive in nature. However, transient unbinding and hopping results in a long-time behavior (shown to be superdiffusive) that is qualitatively unaffected by the crowding on the DNA. Thus, hopping along the chain mitigates the role that protein crowding has in restricting the translocation dynamics along the chain. The superdiffusion coefficient is influenced by the quantitative values of the effective binding rate, which is influenced by protein crowding. We show that vacancy fraction and superdiffusion coefficient exhibits a non-monotonic relationship under many circumstances. We leverage analytical theory and dynamic Monte Carlo simulations to address this problem. With several additional contributions, the core of our modeling work adopts a reaction-diffusion framework that is based on Smoluchowski’s original work.
Li, Rui; Fan, Jianfen; Li, Hui; Yan, Xiliang; Yu, Yi
2015-07-07
Classical molecular dynamics simulations have been performed to investigate the dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes (CPNTs) with various radii, i.e., 8×(WL¯)n=3,4,5/POPE. The results show that ethanol molecules spontaneously fill the octa- and deca-CPNTs, but not the hexa-CPNT. In the octa-CPNT, ethanol molecules are trapped at individual gaps with their carbon skeletons perpendicular to the tube axis and hydroxyl groups towards the tube wall, forming a broken single-file chain. As the channel radius increases, ethanol molecules inside the deca-CPNT tend to form a tubular layer and the hydroxyl groups mainly stretch towards the tube axis. Computations of diffusion coefficients indicate that ethanol molecules in the octa-CPNT nearly lost their diffusion abilities, while those in the deca-CPNT diffuse as 4.5 times as in a (8, 8) carbon nanotube with a similar tube diameter. The osmotic and diffusion permeabilities (pf and pd, respectively) of the octa- and deca-CPNTs transporting ethanol were deduced for the first time. The distributions of the gauche and trans conformers of ethanol molecules in two CPNTs are quite similar, both with approximately 57% gauche conformers. The non-bonded interactions of channel ethanol with a CPNT wall and surrounding ethanol were explored. The potential of mean force elucidates the mechanism underlying the transporting characteristics of channel ethanol in a transmembrane CPNT.
VizieR Online Data Catalog: Wisconsin soft X-ray diffuse background all-sky Survey (McCammon+ 1983)
NASA Astrophysics Data System (ADS)
McCammon, D.; Burrows, D. N.; Sanders, W. T.; Kraushaar, W. L.
1997-10-01
The catalog contains all-sky survey of the soft X-ray diffuse background and the count-rate data from which the maps were made for the ten flights included in the survey. It contains 40 files in the machine-readable version and includes documentation and utility subroutines. The data files contain different band maps (B, C, M, M1, M2, I, J, 2-6 keV) in a 0 degree-centered Aitoff projection, in a 180-degree-centered Aitoff projection, in a north polar projection, and in a south polar projection. Lookup tables in the form of FITS images are provided for conversion between pixel coordinates and Galactic coordinates for the various projections. The bands are: B = 130-188eV C = 160-284eV M1 = 440-930eV M2 = 600-1100eV I = 770-1500eV J = 1100-2200eV 2-6keV = 1800-6300eV (51 data files).
De-Deus, Gustavo; Brandão, Maria Claudia; Barino, Bianca; Di Giorgi, Karina; Fidel, Rivail Antonio Sergio; Luna, Aderval Severino
2010-09-01
This study was designed to quantitatively evaluate the amount of dentin debris extruded from the apical foramen by comparing the conventional sequence of the ProTaper Universal nickel-titanium (NiTi) files with the single-file ProTaper F2 technique. Thirty mesial roots of lower molars were selected, and the use of different instrumentation techniques resulted in 3 groups (n=10 each). In G1, a crown-down hand-file technique was used, and in G2 conventional ProTaper Universal technique was used. In G3, ProTaper F2 file was used in a reciprocating motion. The apical finish preparation was equivalent to ISO size 25. An apparatus was used to evaluate the apically extruded debris. Statistical analysis was performed using 1-way analysis of variance and Tukey multiple comparisons. No significant difference was found in the amount of the debris extruded between the conventional sequence of the ProTaper Universal NiTi files and the single-file ProTaper F2 technique (P>.05). In contrast, the hand instrumentation group extruded significantly more debris than both NiTi groups (P<.05). The present results yielded favorable input for the F2 single-file technique in terms of apically extruded debris, inasmuch as it is the most simple and cost-effective instrumentation approach. Copyright (c) 2010 Mosby, Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-02
..., by reason of imports from Japan of diffusion-annealed, nickel-plated steel flat-rolled products... 45 days, or in this case by May 13, 2013. The Commission's views are due at Commerce within five.... Lisa R. Barton, Acting Secretary to the Commission. [FR Doc. 2013-07584 Filed 4-1-13; 8:45 am] BILLING...
Engine Systems Ownership Cost Reduction - Aircraft Propulsion Subsystems Integration (APSI)
1975-08-01
compreusor fabrication costs. Hybrid Radial Compresscr Diffuser - Combining both the radial and axial sections of a standard diffuser into a single cascade...compressor diffuser by using a single mixed-flow diffuser instead of the separate radial and axial diffuser stator rows. The proposed mixed-flow diffuser...to an axial diffuser. A cost analyses of the hybrid radial diffuser was made and compared to baseline configuration ( radial and axial diffusers). The
Complementary mode analyses between sub- and superdiffusion
NASA Astrophysics Data System (ADS)
Saito, Takuya; Sakaue, Takahiro
2017-04-01
Several subdiffusive stochastic processes in nature, e.g., the motion of a tagged monomer in polymers, the height fluctuation of interfaces, particle dynamics in single-file diffusion, etc., can be described rigorously or approximately by the superposition of various modes whose relaxation times are broadly distributed. In this paper, we propose a mode analysis generating superdiffusion, which is paired with or complementary to subdiffusion. The key point in our discussion lies in the identification of a pair of conjugated variables, which undergo sub- and superdiffusion, respectively. We provide a simple interpretation for the sub- and superdiffusion duality for these variables using the language of polymer physics. The analysis also suggests the usefulness of looking at the force fluctuation in experiments, where a polymer is driven by a constant velocity.
Radiative accelerations in stellar envelopes
NASA Astrophysics Data System (ADS)
Seaton, M. J.
1997-08-01
In stars which are sufficiently quiescent, changes in the relative abundances of the chemical elements can result from gravitational settling and from levitation produced by radiation pressure forces, usually expressed as radiative accelerations g_rad. Those changes can affect the structure of such stars, due to modifications in opacities, and can lead to marked peculiarities in observed atmospheric abundances. It is necessary to consider diffusive movements both in the atmospheres and in much deeper layers of the stellar envelopes. For the envelopes the equation of radiative transfer can be solved in a diffusion approximation and, for an element k in ionization stage j, one obtains expressions for g_rad(j, k) proportional to the total radiative flux, to the Rosseland-mean opacity kappa_R (which may depend on the abundance of k), and to a dimensionless quantity gamma(j, k) which, due to saturation effects, can be sensitive to the abundance of k. The radiative accelerations are required for each ionization stage, because the diffusion coefficients depend on j. Using atomic data obtained in the course of the work of the Opacity Project (OP), we calculate kappa_R and gamma(j, k) for the chemical elements C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Cr, Mn, Fe and Ni. We start from standard Solar system abundances, and then vary the abundance of one element at a time (element k) by a factor chi. The following results are obtained and are available at the Centre de Donnees astronomiques de Strasbourg (CDS). (1) Files stages.zz (where zz specifies the nuclear charge of the selected element k) containing values of kappa_R and gamma(j, k) on a mesh of values of (T, N_e, chi), where T is temperature, and N_e is electron density. We include derivatives of kappa_R and gamma(j, k) with respect to chi, which are used for making interpolations. (2) A code add.f which reads a file stages.zz and writes a file acc.zz containing values of gamma(k) obtained on summing the gamma(j, k), weighted by diffusion coefficients. The diffusion coefficients to be employed can be selected by the user. (3) A code acc.f which reads a file acc.zz and provides facilities for interpolations of kappa_R and g_rad(k) to values of (T, rho, chi) for a stellar model, where rho is mass density. The mesh to be used for log(chi) is specified by the user. (4) A code diff.f intended for use in diffusion calculations. It reads a file created by acc.f and provides function subroutines for the calculation of kappa_R and g_rad(k) for any specified depth-point and any value of chi. Results are compared with those from other recent work for C, N, O, Ca and Fe.
Code of Federal Regulations, 2011 CFR
2011-01-01
... FEDERAL TRADE COMMISSION THE FAIR CREDIT REPORTING ACT FREE ANNUAL FILE DISCLOSURES § 610.2 Centralized... request methods, at the consumers' option: (i) A single, dedicated Internet website, (ii) A single, dedicated toll-free telephone number; and (iii) Mail directed to a single address; (2) Be designed, funded...
Code of Federal Regulations, 2012 CFR
2012-01-01
... FEDERAL TRADE COMMISSION THE FAIR CREDIT REPORTING ACT FREE ANNUAL FILE DISCLOSURES § 610.2 Centralized... request methods, at the consumers' option: (i) A single, dedicated Internet website, (ii) A single, dedicated toll-free telephone number; and (iii) Mail directed to a single address; (2) Be designed, funded...
de Souza, Samir Noronha; Marques, André Augusto Franco; Sponchiado-Júnior, EmÍlio Carlos; Roberti Garcia, Lucas da Fonseca; da Frota, Matheus Franco; de Carvalho, Fredson Márcio Acris
2017-01-01
The field of endodontics has become increasingly successful due to technological advances that allow clinicians to solve clinical cases that would have been problematic a few years ago. Despite such advances, endodontic treatment of teeth with internal root resorption remains challenging. This article presents a clinical case in which a reciprocating single-file system was used for endodontic treatment of a mandibular molar with internal root resorption. Radiographic examination revealed the presence of internal root resorption in the distobuccal root canal of the mandibular right first molar. A reciprocating single-file system was used for root canal instrumentation and final preparation, and filling was obtained through a thermal compaction technique. No painful symptoms or periapical lesions were observed in 12 months of follow-up. The results indicate that a reciprocating single-file system is an adequate alternative for root canal instrumentation, particularly in teeth with internal root resorption.
78 FR 76529 - Members of a Family for Purpose of Filing CBP Family Declaration
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-18
...This final rule affects persons eligible to file a single customs declaration. The final rule expands the definitions of family members residing in one household. As a result of this expansion, more U.S. returning resident and non-resident visitor families will be eligible to file a single customs declaration, and correspondingly, more U.S. returning resident family members may group their personal duty exemptions.
Communication: Coordinate-dependent diffusivity from single molecule trajectories
NASA Astrophysics Data System (ADS)
Berezhkovskii, Alexander M.; Makarov, Dmitrii E.
2017-11-01
Single-molecule observations of biomolecular folding are commonly interpreted using the model of one-dimensional diffusion along a reaction coordinate, with a coordinate-independent diffusion coefficient. Recent analysis, however, suggests that more general models are required to account for single-molecule measurements performed with high temporal resolution. Here, we consider one such generalization: a model where the diffusion coefficient can be an arbitrary function of the reaction coordinate. Assuming Brownian dynamics along this coordinate, we derive an exact expression for the coordinate-dependent diffusivity in terms of the splitting probability within an arbitrarily chosen interval and the mean transition path time between the interval boundaries. This formula can be used to estimate the effective diffusion coefficient along a reaction coordinate directly from single-molecule trajectories.
Flexibility and Performance of Parallel File Systems
NASA Technical Reports Server (NTRS)
Kotz, David; Nieuwejaar, Nils
1996-01-01
As we gain experience with parallel file systems, it becomes increasingly clear that a single solution does not suit all applications. For example, it appears to be impossible to find a single appropriate interface, caching policy, file structure, or disk-management strategy. Furthermore, the proliferation of file-system interfaces and abstractions make applications difficult to port. We propose that the traditional functionality of parallel file systems be separated into two components: a fixed core that is standard on all platforms, encapsulating only primitive abstractions and interfaces, and a set of high-level libraries to provide a variety of abstractions and application-programmer interfaces (API's). We present our current and next-generation file systems as examples of this structure. Their features, such as a three-dimensional file structure, strided read and write interfaces, and I/O-node programs, are specifically designed with the flexibility and performance necessary to support a wide range of applications.
Nickel-Titanium Single-file System in Endodontics.
Dagna, Alberto
2015-10-01
This work describes clinical cases treated with a innovative single-use and single-file nickel-titanium (NiTi) system used in continuous rotation. Nickel-titanium files are commonly used for root canal treatment but they tend to break because of bending stresses and torsional stresses. Today new instruments used only for one treatment have been introduced. They help the clinician to make the root canal shaping easier and safer because they do not require sterilization and after use have to be discarded. A new sterile instrument is used for each treatment in order to reduce the possibility of fracture inside the canal. The new One Shape NiTi single-file instrument belongs to this group. One Shape is used for complete shaping of root canal after an adequate preflaring. Its protocol is simple and some clinical cases are presented. It is helpful for easy cases and reliable for difficult canals. After 2 years of clinical practice, One Shape seems to be helpful for the treatment of most of the root canals, with low risk of separation. After each treatment, the instrument is discarded and not sterilized in autoclave or re-used. This single-use file simplifies the endodontic therapy, because only one instrument is required for canal shaping of many cases. The respect of clinical protocol guarantees predictable good results.
Shaping ability of 4 different single-file systems in simulated S-shaped canals.
Saleh, Abdulrahman Mohammed; Vakili Gilani, Pouyan; Tavanafar, Saeid; Schäfer, Edgar
2015-04-01
The aim of this study was to compare the shaping ability of 4 different single-file systems in simulated S-shaped canals. Sixty-four S-shaped canals in resin blocks were prepared to an apical size of 25 using Reciproc (VDW, Munich, Germany), WaveOne (Dentsply Maillefer, Ballaigues, Switzerland), OneShape (Micro Méga, Besançon, France), and F360 (Komet Brasseler, Lemgo, Germany) (n = 16 canals/group) systems. Composite images were made from the superimposition of pre- and postinstrumentation images. The amount of resin removed by each system was measured by using a digital template and image analysis software. Canal aberrations and the preparation time were also recorded. The data were statistically analyzed by using analysis of variance, Tukey, and chi-square tests. Canals prepared with the F360 and OneShape systems were better centered compared with the Reciproc and WaveOne systems. Reciproc and WaveOne files removed significantly greater amounts of resin from the inner side of both curvatures (P < .05). Instrumentation with OneShape and Reciproc files was significantly faster compared with WaveOne and F360 files (P < .05). No instrument fractured during canal preparation. Under the conditions of this study, all single-file instruments were safe to use and were able to prepare the canals efficiently. However, single-file systems that are less tapered seem to be more favorable when preparing S-shaped canals. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Single-image diffusion coefficient measurements of proteins in free solution.
Zareh, Shannon Kian; DeSantis, Michael C; Kessler, Jonathan M; Li, Je-Luen; Wang, Y M
2012-04-04
Diffusion coefficient measurements are important for many biological and material investigations, such as studies of particle dynamics and kinetics, and size determinations. Among current measurement methods, single particle tracking (SPT) offers the unique ability to simultaneously obtain location and diffusion information about a molecule while using only femtomoles of sample. However, the temporal resolution of SPT is limited to seconds for single-color-labeled samples. By directly imaging three-dimensional diffusing fluorescent proteins and studying the widths of their intensity profiles, we were able to determine the proteins' diffusion coefficients using single protein images of submillisecond exposure times. This simple method improves the temporal resolution of diffusion coefficient measurements to submilliseconds, and can be readily applied to a range of particle sizes in SPT investigations and applications in which diffusion coefficient measurements are needed, such as reaction kinetics and particle size determinations. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Agarwal, Rolly S; Agarwal, Jatin; Jain, Pradeep; Chandra, Anil
2015-05-01
The ability of an endodontic instrument to remain centered in the root canal system is one of the most important characteristic influencing the clinical performance of a particular file system. Thus, it is important to assess the canal centering ability of newly introduced single file systems before they can be considered a viable replacement of full-sequence rotary file systems. The aim of the study was to compare the canal transportation, centering ability, and time taken for preparation of curved root canals after instrumentation with single file systems One Shape and Wave One, using cone-beam computed tomography (CBCT). Sixty mesiobuccal canals of mandibular molars with an angle of curvature ranging from 20(o) to 35(o) were divided into three groups of 20 samples each: ProTaper PT (group I) - full-sequence rotary control group, OneShape OS (group II)- single file continuous rotation, WaveOne WO - single file reciprocal motion (group III). Pre instrumentation and post instrumentation three-dimensional CBCT images were obtained from root cross-sections at 3mm, 6mm and 9mm from the apex. Scanned images were then accessed to determine canal transportation and centering ability. The data collected were evaluated using one-way analysis of variance (ANOVA) with Tukey's honestly significant difference test. It was observed that there were no differences in the magnitude of transportation between the rotary instruments (p >0.05) at both 3mm as well as 6mm from the apex. At 9 mm from the apex, Group I PT showed significantly higher mean canal transportation and lower centering ability (0.19±0.08 and 0.39±0.16), as compared to Group II OS (0.12±0.07 and 0.54±0.24) and Group III WO (0.13±0.06 and 0.55±0.18) while the differences between OS and WO were not statistically significant. It was concluded that there was minor difference between the tested groups. Single file systems demonstrated average canal transportation and centering ability comparable to full sequence Protaper system in curved root canals.
[In vitro study of shaping ability of single-file techniques in curved canals].
Zeng, Yajie; Gu, Lisha; Cai, Yanling; Chen, Dian; Wei, Xi
2014-11-01
To compare the shaping quality in curved canals of two single-file technique systems with other two traditional full-sequential systems. Eighty mature molar canals with the curvature between 20 and 45 degrees were randomly divided into four groups. Specimens in each group were prepared to size 25 at working length using A (Reciproc), B (OneShape), C (MTwo) and D (Revo S), respectively. Each canal was scanned by micro-computed tomography before and after preparation. Parameters including changes in dentine volume, percentage of uninstrumented area, degree and tendency of transportation were analyzed. The operating time was also recorded. In full canal length, there was no difference in canal dentine removal, instrumented percentage and transportation degree among four groups (P > 0.05). In the apical 4 mm region, group A removed more dentine [(2.14±0.76) mm(2) of canal surface area and (0.38 ± 0.15) mm(3) of canal volume] than groups B and C(P < 0.05). At 1 mm level, median of transportation degree of group A was 0.05 (0.03)mm, which was smaller than other groups (P < 0.05). Groups A and B took (86.3±24.6) s and (85.9±21.3) s, while groups C and D took (147.4±28.3) s and (126.3±27.7) s srespectively to finish preparation. Single file techniques were significantly faster than the two full-sequential systems (P < 0.01). Compared with the continuous rotary systems, the reciprocating single-file system A showed better apical shaping ability. Both single-file techniques were more efficient than full-sequential systems for curved canal preparation. Single-file techniques appear to be the effective and efficient method for curved canal preparation.
Carvalho, Maira de Souza; Junior, Emílio Carlos Sponchiado; Bitencourt Garrido, Angela Delfina; Roberti Garcia, Lucas da Fonseca; Franco Marques, André Augusto
2015-01-01
The aim of this study was to evaluate the cleaning effectiveness achieved with two reciprocating single-file systems in severely curved root canals: Reciproc and WaveOne. Twenty-five mesial roots of mandibular molars were randomly separated into two groups, according to the instrumentation system used. The negative control group consisted of five specimens that were not instrumented. The mesial canals (buccal and lingual) in Reciproc Group were instrumented with file R25 and the WaveOne group with the Primary file. The samples were submitted to histological processing and analyzed under a digital microscope. The WaveOne group presented a larger amount of debris than the Reciproc Group, however, without statistically significant difference (P > 0.05). A larger amount of debris in the control group was observed, with statistically significant difference to Reciproc and WaveOne groups (P < 0.05). The two reciprocating single-file instrumentation systems presented similar effectiveness for root canal cleaning.
Single-shot diffusion measurement in laser-polarized Gas
NASA Technical Reports Server (NTRS)
Peled, S.; Tseng, C. H.; Sodickson, A. A.; Mair, R. W.; Walsworth, R. L.; Cory, D. G.
1999-01-01
A single-shot pulsed gradient stimulated echo sequence is introduced to address the challenges of diffusion measurements of laser polarized 3He and 129Xe gas. Laser polarization enhances the NMR sensitivity of these noble gases by >10(3), but creates an unstable, nonthermal polarization that is not readily renewable. A new method is presented which permits parallel acquisition of the several measurements required to determine a diffusive attenuation curve. The NMR characterization of a sample's diffusion behavior can be accomplished in a single measurement, using only a single polarization step. As a demonstration, the diffusion coefficient of a sample of laser-polarized 129Xe gas is measured via this method. Copyright 1999 Academic Press.
Enhancement of Brownian motion for a chain of particles in a periodic potential
NASA Astrophysics Data System (ADS)
Dessup, Tommy; Coste, Christophe; Saint Jean, Michel
2018-02-01
The transport of particles in very confined channels in which single file diffusion occurs has been largely studied in systems where the transverse confining potential is smooth. However, in actual physical systems, this potential may exhibit both static corrugations and time fluctuations. Some recent results suggest the important role played by this nonsmoothness of the confining potential. In particular, quite surprisingly, an enhancement of the Brownian motion of the particles has been evidenced in these kinds of systems. We show that this enhancement results from the commensurate effects induced by the underlying potential on the vibrational spectra of the chain of particles, and from the effective temperature associated with its time fluctuations. We will restrict our derivation to the case of low temperatures for which the mean squared displacement of the particles remains smaller than the potential period.
Inferring diffusion in single live cells at the single-molecule level
Robson, Alex; Burrage, Kevin; Leake, Mark C.
2013-01-01
The movement of molecules inside living cells is a fundamental feature of biological processes. The ability to both observe and analyse the details of molecular diffusion in vivo at the single-molecule and single-cell level can add significant insight into understanding molecular architectures of diffusing molecules and the nanoscale environment in which the molecules diffuse. The tool of choice for monitoring dynamic molecular localization in live cells is fluorescence microscopy, especially so combining total internal reflection fluorescence with the use of fluorescent protein (FP) reporters in offering exceptional imaging contrast for dynamic processes in the cell membrane under relatively physiological conditions compared with competing single-molecule techniques. There exist several different complex modes of diffusion, and discriminating these from each other is challenging at the molecular level owing to underlying stochastic behaviour. Analysis is traditionally performed using mean square displacements of tracked particles; however, this generally requires more data points than is typical for single FP tracks owing to photophysical instability. Presented here is a novel approach allowing robust Bayesian ranking of diffusion processes to discriminate multiple complex modes probabilistically. It is a computational approach that biologists can use to understand single-molecule features in live cells. PMID:23267182
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjaardema, Gregory
2010-08-06
Conjoin is a code for joining sequentially in time multiple exodusII database files. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. The resulting output file will be the union of the input files with a status variable indicating the status of each element at the various time planes.Combining multiple exodusII files arising from a restarted analysis or combining multiple exodusII files arising from a finite element analysis with dynamic topology changes.
Photon-HDF5: An Open File Format for Timestamp-Based Single-Molecule Fluorescence Experiments.
Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier
2016-01-05
We introduce Photon-HDF5, an open and efficient file format to simplify exchange and long-term accessibility of data from single-molecule fluorescence experiments based on photon-counting detectors such as single-photon avalanche diode, photomultiplier tube, or arrays of such detectors. The format is based on HDF5, a widely used platform- and language-independent hierarchical file format for which user-friendly viewers are available. Photon-HDF5 can store raw photon data (timestamp, channel number, etc.) from any acquisition hardware, but also setup and sample description, information on provenance, authorship and other metadata, and is flexible enough to include any kind of custom data. The format specifications are hosted on a public website, which is open to contributions by the biophysics community. As an initial resource, the website provides code examples to read Photon-HDF5 files in several programming languages and a reference Python library (phconvert), to create new Photon-HDF5 files and convert several existing file formats into Photon-HDF5. To encourage adoption by the academic and commercial communities, all software is released under the MIT open source license. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Photon-HDF5: An Open File Format for Timestamp-Based Single-Molecule Fluorescence Experiments
Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier
2016-01-01
We introduce Photon-HDF5, an open and efficient file format to simplify exchange and long-term accessibility of data from single-molecule fluorescence experiments based on photon-counting detectors such as single-photon avalanche diode, photomultiplier tube, or arrays of such detectors. The format is based on HDF5, a widely used platform- and language-independent hierarchical file format for which user-friendly viewers are available. Photon-HDF5 can store raw photon data (timestamp, channel number, etc.) from any acquisition hardware, but also setup and sample description, information on provenance, authorship and other metadata, and is flexible enough to include any kind of custom data. The format specifications are hosted on a public website, which is open to contributions by the biophysics community. As an initial resource, the website provides code examples to read Photon-HDF5 files in several programming languages and a reference Python library (phconvert), to create new Photon-HDF5 files and convert several existing file formats into Photon-HDF5. To encourage adoption by the academic and commercial communities, all software is released under the MIT open source license. PMID:26745406
Ingargiola, A.; Laurence, T. A.; Boutelle, R.; ...
2015-12-23
We introduce Photon-HDF5, an open and efficient file format to simplify exchange and long term accessibility of data from single-molecule fluorescence experiments based on photon-counting detectors such as single-photon avalanche diode (SPAD), photomultiplier tube (PMT) or arrays of such detectors. The format is based on HDF5, a widely used platform- and language-independent hierarchical file format for which user-friendly viewers are available. Photon-HDF5 can store raw photon data (timestamp, channel number, etc) from any acquisition hardware, but also setup and sample description, information on provenance, authorship and other metadata, and is flexible enough to include any kind of custom data. Themore » format specifications are hosted on a public website, which is open to contributions by the biophysics community. As an initial resource, the website provides code examples to read Photon-HDF5 files in several programming languages and a reference python library (phconvert), to create new Photon-HDF5 files and convert several existing file formats into Photon-HDF5. As a result, to encourage adoption by the academic and commercial communities, all software is released under the MIT open source license.« less
Life and dynamic capacity modeling for aircraft transmissions
NASA Technical Reports Server (NTRS)
Savage, Michael
1991-01-01
A computer program to simulate the dynamic capacity and life of parallel shaft aircraft transmissions is presented. Five basic configurations can be analyzed: single mesh, compound, parallel, reverted, and single plane reductions. In execution, the program prompts the user for the data file prefix name, takes input from a ASCII file, and writes its output to a second ASCII file with the same prefix name. The input data file includes the transmission configuration, the input shaft torque and speed, and descriptions of the transmission geometry and the component gears and bearings. The program output file describes the transmission, its components, their capabilities, locations, and loads. It also lists the dynamic capability, ninety percent reliability, and mean life of each component and the transmission as a system. Here, the program, its input and output files, and the theory behind the operation of the program are described.
Basheer Ahamed, Shadir Bughari; Vanajassun, Purushothaman Pranav; Rajkumar, Kothandaraman; Mahalaxmi, Sekar
2018-04-01
Single cross-sectional nickel-titanium (NiTi) rotary instruments during continuous rotations are subjected to constant and variable stresses depending on the canal anatomy. This study was intended to create 2 new experimental, theoretic single-file designs with combinations of triple U (TU), triangle (TR), and convex triangle (CT) cross sections and to compare their bending stresses in simulated root canals with a single cross-sectional instrument using finite element analysis. A 3-dimensional model of the simulated root canal with 45° curvature and NiTi files with 5 cross-sectional designs were created using Pro/ENGINEER Wildfire 4.0 software (PTC Inc, Needham, MA) and ANSYS software (version 17; ANSYS, Inc, Canonsburg, PA) for finite element analysis. The NiTi files of 3 groups had single cross-sectional shapes of CT, TR, and TU designs, and 2 experimental groups had a CT, TR, and TU (CTU) design and a TU, TR, and CT (UTC) design. The file was rotated in simulated root canals to analyze the bending stress, and the von Mises stress value for every file was recorded in MPa. Statistical analysis was performed using the Kruskal-Wallis test and the Bonferroni-adjusted Mann-Whitney test for multiple pair-wise comparison with a P value <.05 (95 %). The maximum bending stress of the rotary file was observed in the apical third of the CT design, whereas comparatively less stress was recorded in the CTU design. The TU and TR designs showed a similar stress pattern at the curvature, whereas the UTC design showed greater stress in the apical and middle thirds of the file in curved canals. All the file designs showed a statistically significant difference. The CTU designed instruments showed the least bending stress on a 45° angulated simulated root canal when compared with all the other tested designs. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... concrete tetrapods; and (10) a new single- circuit 230-kilovolt transmission line approximately 9 miles in... encourages electronic filing. Please file comments, motions to intervene, notices of intent, and [email protected] , (866) 208-3676 (toll free), or (202) 502- 8659 (TTY). In lieu of electronic filing...
Koh, Hye Ran; Wang, Xinlei; Myong, Sua
2016-08-01
TRBP, one of double strand RNA binding proteins (dsRBPs), is an essential cofactor of Dicer in the RNA interference pathway. Previously we reported that TRBP exhibits repetitive diffusion activity on double strand (ds)RNA in an ATP independent manner. In the TRBP-Dicer complex, the diffusion mobility of TRBP facilitates Dicer-mediated RNA cleavage. Such repetitive diffusion of dsRBPs on a nucleic acid at the nanometer scale can be appropriately captured by several single molecule detection techniques. Here, we provide a step-by-step guide to four different single molecule fluorescence assays by which the diffusion activity of dsRBPs on dsRNA can be detected. One color assay, termed protein induced fluorescence enhancement enables detection of unlabeled protein binding and diffusion on a singly labeled RNA. Two-color Fluorescence Resonance Energy Transfer (FRET) in which labeled dsRBPs is applied to labeled RNA, allows for probing the motion of protein along the RNA axis. Three color FRET reports on the diffusion movement of dsRBPs from one to the other end of RNA. The single molecule pull down assay provides an opportunity to collect dsRBPs from mammalian cells and examine the protein-RNA interaction at single molecule platform. Copyright © 2016 Elsevier Inc. All rights reserved.
Log file-based patient dose calculations of double-arc VMAT for head-and-neck radiotherapy.
Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Majima, Kazuhiro; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi
2018-04-01
The log file-based method cannot display dosimetric changes due to linac component miscalibration because of the insensitivity of log files to linac component miscalibration. The purpose of this study was to supply dosimetric changes in log file-based patient dose calculations for double-arc volumetric-modulated arc therapy (VMAT) in head-and-neck cases. Fifteen head-and-neck cases participated in this study. For each case, treatment planning system (TPS) doses were produced by double-arc and single-arc VMAT. Miscalibration-simulated log files were generated by inducing a leaf miscalibration of ±0.5 mm into the log files that were acquired during VMAT irradiation. Subsequently, patient doses were estimated using the miscalibration-simulated log files. For double-arc VMAT, regarding planning target volume (PTV), the change from TPS dose to miscalibration-simulated log file dose in D mean was 0.9 Gy and that for tumor control probability was 1.4%. As for organ-at-risks (OARs), the change in D mean was <0.7 Gy and normal tissue complication probability was <1.8%. A comparison between double-arc and single-arc VMAT for PTV showed statistically significant differences in the changes evaluated by D mean and radiobiological metrics (P < 0.01), even though the magnitude of these differences was small. Similarly, for OARs, the magnitude of these changes was found to be small. Using the log file-based method for PTV and OARs, the log file-based method estimate of patient dose using the double-arc VMAT has accuracy comparable to that obtained using the single-arc VMAT. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sagnotti, Leonardo
2013-04-01
Modern rock magnetometers and stepwise demagnetization procedures result in the production of large datasets, which need a versatile and fast software for their display and analysis. Various software packages for paleomagnetic analyses have been recently developed to overcome the problems linked to the limited capability and the loss of operability of early codes written in obsolete computer languages and/or platforms, not compatible with modern 64 bit processors. The Demagnetization Analysis in Excel (DAIE) workbook is a new software that has been designed to make the analysis of demagnetization data easy and accessible on an application (Microsoft Excel) widely diffused and available on both the Microsoft Windows and Mac OS X operating systems. The widespread diffusion of Excel should guarantee a long term working life, since compatibility and functionality of current Excel files should be most likely maintained during the development of new processors and operating systems. DAIE is designed for viewing and analyzing stepwise demagnetization data of both discrete and u-channel samples. DAIE consists of a single file and has an open modular structure organized in 10 distinct worksheets. The standard demagnetization diagrams and various parameters of common use are shown on the same worksheet including selectable parameters and user's choices. The remanence characteristic components may be computed by principal component analysis (PCA) on a selected interval of demagnetization steps. Saving of the PCA data can be done both sample by sample, or in automatic by applying the selected choices to all the samples included in the file. The DAIE open structure allows easy personalization, development and improvement. The workbook has the following features which may be valuable for various users: - Operability in nearly all the computers and platforms; - Easy inputs of demagnetization data by "copy and paste" from ASCII files; - Easy export of computed parameters and demagnetization plots; - Complete control of the whole workflow and possibility of implementation of the workbook by any user; - Modular structure in distinct worksheets for each type of analyses and plots, in order to make implementation and personalization easier; - Opportunity to use the workbook for educational purposes, since all the computations and analyses are easily traceable and accessible; - Automatic and fast analysis of a large batch of demagnetization data, such as those measured on u-channel samples. The DAIE workbook and the "User manual" are available for download on a dedicated web site (http://roma2.rm.ingv.it/en/facilities/software/49/daie).
76 FR 6311 - Regulations Affecting Publication of the United States Government Manual
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-04
... as a single PDF file that includes bookmarks. Finally, he asked if any smart phone applications... an annual online edition of the Manual in both text-only files and PDF files. It is now possible to...
NASA Technical Reports Server (NTRS)
Unnam, J.; Tenney, D. R.
1981-01-01
Exact solutions for diffusion in single phase binary alloy systems with constant diffusion coefficient and zero-flux boundary condition have been evaluated to establish the optimum zone size of applicability. Planar, cylindrical and spherical interface geometry, and finite, singly infinite, and doubly infinite systems are treated. Two solutions are presented for each geometry, one well suited to short diffusion times, and one to long times. The effect of zone-size on the convergence of these solutions is discussed. A generalized form of the diffusion solution for doubly infinite systems is proposed.
SEDIMENT DATA - COMMENCEMENT BAY HYLEBOS WATERWAY - TACOMA, WA - PRE-REMEDIAL DESIGN PROGRAM
Event 1A/1B Data Files URL address: http://www.epa.gov/r10earth/datalib/superfund/hybos1ab.htm. Sediment Chemistry Data (Database Format): HYBOS1AB.EXE is a self-extracting file which expands to the single-value per record .DBF format database file HYBOS1AB.DBF. This file contai...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... tetrapods; and (10) a new single-circuit 230-kilovolt transmission line approximately 20 miles in length... electronic filing. Please file comments, motions to intervene, notices of intent, and competing applications....gov , (866) 208-3676 (toll free), or (202) 502- 8659 (TTY). In lieu of electronic filing, please send...
Agarwal, Jatin; Jain, Pradeep; Chandra, Anil
2015-01-01
Background The ability of an endodontic instrument to remain centered in the root canal system is one of the most important characteristic influencing the clinical performance of a particular file system. Thus, it is important to assess the canal centering ability of newly introduced single file systems before they can be considered a viable replacement of full-sequence rotary file systems. Aim The aim of the study was to compare the canal transportation, centering ability, and time taken for preparation of curved root canals after instrumentation with single file systems One Shape and Wave One, using cone-beam computed tomography (CBCT). Materials and Methods Sixty mesiobuccal canals of mandibular molars with an angle of curvature ranging from 20o to 35o were divided into three groups of 20 samples each: ProTaper PT (group I) – full-sequence rotary control group, OneShape OS (group II)- single file continuous rotation, WaveOne WO – single file reciprocal motion (group III). Pre instrumentation and post instrumentation three-dimensional CBCT images were obtained from root cross-sections at 3mm, 6mm and 9mm from the apex. Scanned images were then accessed to determine canal transportation and centering ability. The data collected were evaluated using one-way analysis of variance (ANOVA) with Tukey’s honestly significant difference test. Results It was observed that there were no differences in the magnitude of transportation between the rotary instruments (p >0.05) at both 3mm as well as 6mm from the apex. At 9 mm from the apex, Group I PT showed significantly higher mean canal transportation and lower centering ability (0.19±0.08 and 0.39±0.16), as compared to Group II OS (0.12±0.07 and 0.54±0.24) and Group III WO (0.13±0.06 and 0.55±0.18) while the differences between OS and WO were not statistically significant Conclusion It was concluded that there was minor difference between the tested groups. Single file systems demonstrated average canal transportation and centering ability comparable to full sequence Protaper system in curved root canals. PMID:26155551
NASA Astrophysics Data System (ADS)
Freidlin, R. Z.; Kakareka, J. W.; Pohida, T. J.; Komlosh, M. E.; Basser, P. J.
2012-08-01
In vivo MRI data can be corrupted by motion. Motion artifacts are particularly troublesome in Diffusion Weighted MRI (DWI), since the MR signal attenuation due to Brownian motion can be much less than the signal loss due to dephasing from other types of complex tissue motion, which can significantly degrade the estimation of self-diffusion coefficients, diffusion tensors, etc. This paper describes a snapshot DWI sequence, which utilizes a novel single-sided bipolar diffusion sensitizing gradient pulse within a spin echo sequence. The proposed method shortens the diffusion time by applying a single refocused bipolar diffusion gradient on one side of a refocusing RF pulse, instead of a set of diffusion sensitizing gradients, separated by a refocusing RF pulse, while reducing the impact of magnetic field inhomogeneity by using a spin echo sequence. A novel MRI phantom that can exhibit a range of complex motions was designed to demonstrate the robustness of the proposed DWI sequence.
Comparison between rotary and manual instrumentation in primary teeth.
Crespo, S; Cortes, O; Garcia, C; Perez, L
2008-01-01
The aim of this study was to compare the efficiency in both, preparation time and root canal shape, when using the Nickel Titanium (Ni-Ti) rotary and K-Files hand instrumentation on root canal preparation of single rooted primary teeth. Sixty single rooted primary teeth were selected and divided into two equal groups: Group (I) 30 teeth instrumented with manual K-files and group (II) 30 teeth instrumented with Ni-Ti rotary files (ProFile 0.04). Instrumentation times were calculated and root canal impressions were taken with light bodied silicone in order to evaluate the shape. The data was analyzed with SPSS program using the t-test and the Chi-square test to compare their means. The preparation time with group (I) K-files was significantly higher than in group (II) rotary files (ProFile 0.04), with a p= .005. The ProFile system showed a significantly more favorable canal taper when compared to the K-files system (P= .002). The use of rotary files in primary teeth has several advantages when compared with manual K files: the efficiency in both, preparation time and root canal shape. 1. A decreased working time, that helps maintain patient cooperation by diminishing the potential for tiredness. 2. The shape of the root canal is more conical, favoring a higher quality of the root canal filling, and increasing clinical success.
VizieR Online Data Catalog: DIB and NaD spectra of 3 nearby stars (Kohl+, 2016)
NASA Astrophysics Data System (ADS)
Kohl, S.; Czesla, S.; Schmitt, J. H. M. M.
2016-05-01
The present data collection contains coadded spectra of tau Boo, HD 33608 and alpha CrB. This data was used to obtain the equivalent widths of interstellar features. The spectra show the wavelength regions around the Na D lines and around 5780Å. The latter location corresponds to a wavelength range where a strong diffuse interstellar band (DIB) is found in the spectrum of the early-type supergiant HD 183143. Each single spectrum has been corrected for telluric absorption and the wavelength axis has been shifted to the barycentric reference frame. However, the data has not been corrected for radial velocity of the star. The spectra have been acquired at the 1.2m Tigre telescope located in La Luz, Mexico. The spectral resolution of the HEROS spectrograph is 20000. A detailed description of the spectra is given in the aforementioned paper. (2 data files).
High-Performance, Multi-Node File Copies and Checksums for Clustered File Systems
NASA Technical Reports Server (NTRS)
Kolano, Paul Z.; Ciotti, Robert B.
2012-01-01
Modern parallel file systems achieve high performance using a variety of techniques, such as striping files across multiple disks to increase aggregate I/O bandwidth and spreading disks across multiple servers to increase aggregate interconnect bandwidth. To achieve peak performance from such systems, it is typically necessary to utilize multiple concurrent readers/writers from multiple systems to overcome various singlesystem limitations, such as number of processors and network bandwidth. The standard cp and md5sum tools of GNU coreutils found on every modern Unix/Linux system, however, utilize a single execution thread on a single CPU core of a single system, and hence cannot take full advantage of the increased performance of clustered file systems. Mcp and msum are drop-in replacements for the standard cp and md5sum programs that utilize multiple types of parallelism and other optimizations to achieve maximum copy and checksum performance on clustered file systems. Multi-threading is used to ensure that nodes are kept as busy as possible. Read/write parallelism allows individual operations of a single copy to be overlapped using asynchronous I/O. Multinode cooperation allows different nodes to take part in the same copy/checksum. Split-file processing allows multiple threads to operate concurrently on the same file. Finally, hash trees allow inherently serial checksums to be performed in parallel. Mcp and msum provide significant performance improvements over standard cp and md5sum using multiple types of parallelism and other optimizations. The total speed-ups from all improvements are significant. Mcp improves cp performance over 27x, msum improves md5sum performance almost 19x, and the combination of mcp and msum improves verified copies via cp and md5sum by almost 22x. These improvements come in the form of drop-in replacements for cp and md5sum, so are easily used and are available for download as open source software at http://mutil.sourceforge.net.
Purge-Alert | High-Performance Computing | NREL
and maintain if you want notifications for files that will be removed within 7 days. Simply add a single email address to this file: /scratch/$USER/.notify-email The email you will receive will provide instructions as to where the files are located. You will only receive emails if there are files that will be
Serag, Maged F.; Abadi, Maram; Habuchi, Satoshi
2014-01-01
Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields. PMID:25283876
Anomalous diffusion of single metal atoms on a graphene oxide support
Furnival, Tom; Leary, Rowan K.; Tyo, Eric C.; ...
2017-04-21
Recent studies of single-atom catalysts open up the prospect of designing exceptionally active and environmentally efficient chemical processes. The stability and durability of such catalysts is governed by the strength with which the atoms are bound to their support and their diffusive behaviour. Here we use aberration-corrected STEM to image the diffusion of single copper adatoms on graphene oxide. As a result, we discover that individual atoms exhibit anomalous diffusion as a result of spatial and energetic disorder inherent in the support, and interpret the origins of this behaviour to develop a physical picture for the surface diffusion of singlemore » metal atoms.« less
FGGE/ERBM tape specification and shipping letter description
NASA Technical Reports Server (NTRS)
Han, D.; Lo, H.
1983-01-01
The Nimbus-7 FGGE/ERBM tape contains 27 ERB parameters which are extracted and reformatted from the Nimbus-7 ERB-MATRIX tape. There are four types of files on a FGGE/ERBM tape: a test file; tape-header file which describes the data set characteristics and the contents of the tape; a grid-descriptor file which contains the information of the ERB scanning channel target number and their associated latitude limits and longitude intervals; and one or more data files. A single end-of-file (EOF) tape mark is written after each file, and two EOF marks are written after the last data file on the tape.
Paqué, Frank; Zehnder, Matthias; De-Deus, Gustavo
2011-10-01
A preparation technique with only 1 single instrument was proposed on the basis of the reciprocating movement of the F2 ProTaper instrument. The present study was designed to quantitatively assess canal preparation outcomes achieved by this technique. Twenty-five extracted human mandibular first molars with 2 separate mesial root canals were selected. Canals were randomly assigned to 1 of the 2 experimental groups: group 1, rotary conventional preparation by using ProTaper, and group 2, reciprocate instrumentation with 1 single ProTaper F2 instrument. Specimens were scanned initially and after root canal preparation with an isotropic resolution of 20 μm by using a micro-computed tomography system. The following parameters were assessed: changes in dentin volume, percentage of shaped canal walls, and degree of canal transportation. In addition, the time required to reach working length with the F2 instrument was recorded. Preoperatively, there were no differences regarding root canal curvature and volume between experimental groups. Overall, instrumentation led to enlarged canal shapes with no evidence of preparation errors. There were no statistical differences between the 2 preparation techniques in the anatomical parameters assessed (P > .01), except for a significantly higher canal transportation caused by the reciprocating file in the coronal canal third. On the other hand, preparation was faster by using the single-file technique (P < .01). Shaping outcomes with the single-file F2 ProTaper technique and conventional ProTaper full-sequence rotary approach were similar. However, the single-file F2 ProTaper technique was markedly faster in reaching working length. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
VizieR Online Data Catalog: Diffuse ionized gas in the Antennae galaxy (Weilbacher+, 2018)
NASA Astrophysics Data System (ADS)
Weilbacher, P. M.; Monreal-Ibero, A.; Verhamme, A.; Sandin, C.; Steinmetz, M.; Kollatschny, W.; Krajnovic, D.; Kamann, S.; Roth, M. M.; Erroz-Ferrer, S.; Marino, R. A.; Maseda, M. V.; Wendt, M.; Bacon, R.; Dreizler, S.; Richard, J.; Wisotzki, L.
2017-11-01
We provide two-dimensional maps of two different ways to measure the diffuse ionized gas as traced by the Halpha emission line in the Antennae Galaxy, both for the central field and the field at the end of the southern tidal tail. We provide a velocity map derived from the Halpha emission line, binned to a S/N~30. Finally, we provide line measurements and derived properties for all HII regions discussed in the paper. (4 data files).
Effect of Riblets on Pressure Recovery in a Straight-Walled Diffuser
1990-12-01
in the boundary layer velocity pro - file. As the flow continues to oppose the adverse pressure gradient, the fluid near the wall begins to flow in the...and was 37 inches long. The floor and ceiling of the test section were con - 3 structed of wood and the side panels were made of plexiglass. Both side...the diffuser remained fairly con - stant at 52 percent. The riblet results seem to follow the same trend, providing an approximate 35 percent increase in
User's guide to the MESOI diffusion model and to the utility programs UPDATE and LOGRVU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athey, G.F.; Allwine, K.J.; Ramsdell, J.V.
MESOI is an interactive, Lagrangian puff trajectory diffusion model. The model is documented separately (Ramsdell and Athey, 1981); this report is intended to provide MESOI users with the information needed to successfully conduct model simulations. The user is also provided with guidance in the use of the data file maintenance and review programs; UPDATE and LOGRVU. Complete examples are given for the operaton of all three programs and an appendix documents UPDATE and LOGRVU.
Nayak, Gurudutt; Singh, Inderpreet; Shetty, Shashit; Dahiya, Surya
2014-05-01
Apical extrusion of debris and irrigants during cleaning and shaping of the root canal is one of the main causes of periapical inflammation and postoperative flare-ups. The purpose of this study was to quantitatively measure the amount of debris and irrigants extruded apically in single rooted canals using two reciprocating and one rotary single file nickel-titanium instrumentation systems. Sixty human mandibular premolars, randomly assigned to three groups (n = 20) were instrumented using two reciprocating (Reciproc and Wave One) and one rotary (One Shape) single-file nickel-titanium systems. Bidistilled water was used as irrigant with traditional needle irrigation delivery system. Eppendorf tubes were used as test apparatus for collection of debris and irrigant. The volume of extruded irrigant was collected and quantified via 0.1-mL increment measure supplied on the disposable plastic insulin syringe. The liquid inside the tubes was dried and the mean weight of debris was assessed using an electronic microbalance. The data were statistically analysed using Kruskal-Wallis nonparametric test and Mann Whitney U test with Bonferroni adjustment. P-values less than 0.05 were considered significant. The Reciproc file system produced significantly more debris compared with OneShape file system (P<0.05), but no statistically significant difference was obtained between the two reciprocating instruments (P>0.05). Extrusion of irrigant was statistically insignificant irrespective of the instrument or instrumentation technique used (P >0.05). Although all systems caused apical extrusion of debris and irrigant, continuous rotary instrumentation was associated with less extrusion as compared with the use of reciprocating file systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Liang; Cheng, Xiaolin; Glass, Dennis C.
2012-06-05
The effect of surface hydration water on internal protein motion is of fundamental interest in molecular biophysics. Here, by decomposing the picosecond to nanosecond atomic motion in molecular dynamics simulations of lysozyme at different hydration levels into three components localized single-well diffusion, methyl group rotation, and nonmethyl jumps we show that the effect of surface hydration is mainly to increase the volume of the localized single-well diffusion. As a result, these diffusive motions are coupled in such a way that the hydration effect propagates from the protein surface into the dry core.
Analysis of InP-based single photon avalanche diodes based on a single recess-etching process
NASA Astrophysics Data System (ADS)
Lee, Kiwon
2018-04-01
Effects of the different etching techniques have been investigated by analyzing electrical and optical characteristics of two-types of single-diffused single photon avalanche diodes (SPADs). The fabricated two-types of SPADs have no diffusion depth variation by using a single diffusion process at the same time. The dry-etched SPADs show higher temperature dependence of a breakdown voltage, larger dark-count-rate (DCR), and lower photon-detection-efficiency (PDE) than those of the wet-etched SPADs due to plasma-induced damage of dry-etching process. The results show that the dry etching damages can more significantly affect the performance of the SPADs based on a single recess-etching process.
Oiki, Shigetoshi; Iwamoto, Masayuki; Sumikama, Takashi
2011-01-31
In narrow pore ion channels, ions and water molecules diffuse in a single-file manner and cannot pass each other. Under such constraints, ion and water fluxes are coupled, leading to experimentally observable phenomena such as the streaming potential. Analysis of this coupled flux would provide unprecedented insights into the mechanism of permeation. In this study, ion and water permeation through the KcsA potassium channel was the focus, for which an eight-state discrete-state Markov model has been proposed based on the crystal structure, exhibiting four ion-binding sites. Random transitions on the model lead to the generation of the net flux. Here we introduced the concept of cycle flux to derive exact solutions of experimental observables from the permeation model. There are multiple cyclic paths on the model, and random transitions complete the cycles. The rate of cycle completion is called the cycle flux. The net flux is generated by a combination of cyclic paths with their own cycle flux. T.L. Hill developed a graphical method of exact solutions for the cycle flux. This method was extended to calculate one-way cycle fluxes of the KcsA channel. By assigning the stoichiometric numbers for ion and water transfer to each cycle, we established a method to calculate the water-ion coupling ratio (CR(w-i)) through cycle flux algebra. These calculations predicted that CR(w-i) would increase at low potassium concentrations. One envisions an intuitive picture of permeation as random transitions among cyclic paths, and the relative contributions of the cycle fluxes afford experimental observables.
Oiki, Shigetoshi; Iwamoto, Masayuki; Sumikama, Takashi
2011-01-01
In narrow pore ion channels, ions and water molecules diffuse in a single-file manner and cannot pass each other. Under such constraints, ion and water fluxes are coupled, leading to experimentally observable phenomena such as the streaming potential. Analysis of this coupled flux would provide unprecedented insights into the mechanism of permeation. In this study, ion and water permeation through the KcsA potassium channel was the focus, for which an eight-state discrete-state Markov model has been proposed based on the crystal structure, exhibiting four ion-binding sites. Random transitions on the model lead to the generation of the net flux. Here we introduced the concept of cycle flux to derive exact solutions of experimental observables from the permeation model. There are multiple cyclic paths on the model, and random transitions complete the cycles. The rate of cycle completion is called the cycle flux. The net flux is generated by a combination of cyclic paths with their own cycle flux. T.L. Hill developed a graphical method of exact solutions for the cycle flux. This method was extended to calculate one-way cycle fluxes of the KcsA channel. By assigning the stoichiometric numbers for ion and water transfer to each cycle, we established a method to calculate the water-ion coupling ratio (CR w-i) through cycle flux algebra. These calculations predicted that CR w-i would increase at low potassium concentrations. One envisions an intuitive picture of permeation as random transitions among cyclic paths, and the relative contributions of the cycle fluxes afford experimental observables. PMID:21304994
Topçuoğlu, H S; Üstün, Y; Akpek, F; Aktı, A; Topçuoğlu, G
2016-09-01
To evaluate the effect of coronal flaring on the amount of debris extruded apically during root canal preparation using the Reciproc, WaveOne (WO) and OneShape (OS) single-file systems. Ninety extracted single-rooted mandibular incisor teeth were randomly assigned to six groups (n = 15 for each group) for canal instrumentation. Endodontic access cavities were prepared in each tooth. In three of the six groups, coronal flaring was not performed; coronal flaring was performed with Gates-Glidden drills on all teeth in the remaining three groups. The canals were then instrumented with one or other of the following single-file instrument systems: Reciproc, WO and OS. Debris extruded apically during instrumentation was collected into pre-weighed Eppendorf tubes. The tubes were then stored in an incubator at 70 °C for 5 days. The weight of the dry extruded debris was established by subtracting the pre-instrumentation and post-instrumentation weight of the Eppendorf tubes for each group. Data were analysed using one-way analysis of variance (anova) and Tukey's post hoc tests (P = 0.05). Reciproc and WO files without coronal flaring produced significantly more debris compared with the other groups (P < 0.05). There was no significant difference in apical extrusion of debris amongst the other groups (P > 0.05). All single-file systems caused apical extrusion of debris. Performing coronal flaring prior to canal preparation reduced the amount of apically extruded debris when using Reciproc or WO systems. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Modifications to the accuracy assessment analysis routine MLTCRP to produce an output file
NASA Technical Reports Server (NTRS)
Carnes, J. G.
1978-01-01
Modifications are described that were made to the analysis program MLTCRP in the accuracy assessment software system to produce a disk output file. The output files produced by this modified program are used to aggregate data for regions greater than a single segment.
Delay-induced wave instabilities in single-species reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Otto, Andereas; Wang, Jian; Radons, Günter
2017-11-01
The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.
Shaping Ability of Single-file Systems with Different Movements: A Micro-computed Tomographic Study.
Santa-Rosa, Joedy; de Sousa-Neto, Manoel Damião; Versiani, Marco Aurelio; Nevares, Giselle; Xavier, Felipe; Romeiro, Kaline; Cassimiro, Marcely; Leoni, Graziela Bianchi; de Menezes, Rebeca Ferraz; Albuquerque, Diana
2016-01-01
This study aimed to perform a rigorous sample standardization and also evaluate the preparation of mesiobuccal (MB) root canals of maxillary molars with severe curvatures using two single-file engine-driven systems (WaveOne with reciprocating motion and OneShape with rotary movement), using micro-computed tomography (micro-CT). Ten MB roots with single canals were included, uniformly distributed into two groups (n=5). The samples were prepared with a WaveOne or OneShape files. The shaping ability and amount of canal transportation were assessed by a comparison of the pre- and post-instrumentation micro-CT scans. The Kolmogorov-Smirnov and t-tests were used for statistical analysis. The level of significance was set at 0.05. Instrumentation of canals increased their surface area and volume. Canal transportation occurred in coronal, middle and apical thirds and no statistical difference was observed between the two systems (P>0.05). In apical third, significant differences were found between groups in canal roundness (in 3 mm level) and perimeter (in 3 and 4 mm levels) (P<0.05). The WaveOne and One Shape single-file systems were able to shape curved root canals, producing minor changes in the canal curvature.
Lill, Yoriko; Martinez, Karen L; Lill, Markus A; Meyer, Bruno H; Vogel, Horst; Hecht, Bert
2005-08-12
We report on an in vivo single-molecule study of the signaling kinetics of G protein-coupled receptors (GPCR) performed using the neurokinin 1 receptor (NK1R) as a representative member. The NK1R signaling cascade is triggered by the specific binding of a fluorescently labeled agonist, substance P (SP). The diffusion of single receptor-ligand complexes in plasma membrane of living HEK 293 cells is imaged using fast single-molecule wide-field fluorescence microscopy at 100 ms time resolution. Diffusion trajectories are obtained which show intra- and intertrace heterogeneity in the diffusion mode. To investigate universal patterns in the diffusion trajectories we take the ligand-binding event as the common starting point. This synchronization allows us to observe changes in the character of the ligand-receptor-complex diffusion. Specifically, we find that the diffusion of ligand-receptor complexes is slowed down significantly and becomes more constrained as a function of time during the first 1000 ms. The decelerated and more constrained diffusion is attributed to an increasing interaction of the GPCR with cellular structures after the ligand-receptor complex is formed.
Measurement tensors in diffusion MRI: generalizing the concept of diffusion encoding.
Westin, Carl-Fredrik; Szczepankiewicz, Filip; Pasternak, Ofer; Ozarslan, Evren; Topgaard, Daniel; Knutsson, Hans; Nilsson, Markus
2014-01-01
In traditional diffusion MRI, short pulsed field gradients (PFG) are used for the diffusion encoding. The standard Stejskal-Tanner sequence uses one single pair of such gradients, known as single-PFG (sPFG). In this work we describe how trajectories in q-space can be used for diffusion encoding. We discuss how such encoding enables the extension of the well-known scalar b-value to a tensor-valued entity we call the diffusion measurement tensor. The new measurements contain information about higher order diffusion propagator covariances not present in sPFG. As an example analysis, we use this new information to estimate a Gaussian distribution over diffusion tensors in each voxel, described by its mean (a diffusion tensor) and its covariance (a 4th order tensor).
Using light transmission to watch hydrogen diffuse
Pálsson, Gunnar K.; Bliersbach, Andreas; Wolff, Max; Zamani, Atieh; Hjörvarsson, Björgvin
2012-01-01
Because of its light weight and small size, hydrogen exhibits one of the fastest diffusion rates in solid materials, comparable to the diffusion rate of liquid water molecules at room temperature. The diffusion rate is determined by an intricate combination of quantum effects and dynamic interplay with the displacement of host atoms that is still only partially understood. Here we present direct observations of the spatial and temporal changes in the diffusion-induced concentration profiles in a vanadium single crystal and we show that the results represent the experimental counterpart of the full time and spatial solution of Fick's diffusion equation. We validate the approach by determining the diffusion rate of hydrogen in a single crystal vanadium (001) film, with net diffusion in the [110] direction. PMID:22692535
Using light transmission to watch hydrogen diffuse
NASA Astrophysics Data System (ADS)
Pálsson, Gunnar K.; Bliersbach, Andreas; Wolff, Max; Zamani, Atieh; Hjörvarsson, Björgvin
2012-06-01
Because of its light weight and small size, hydrogen exhibits one of the fastest diffusion rates in solid materials, comparable to the diffusion rate of liquid water molecules at room temperature. The diffusion rate is determined by an intricate combination of quantum effects and dynamic interplay with the displacement of host atoms that is still only partially understood. Here we present direct observations of the spatial and temporal changes in the diffusion-induced concentration profiles in a vanadium single crystal and we show that the results represent the experimental counterpart of the full time and spatial solution of Fick's diffusion equation. We validate the approach by determining the diffusion rate of hydrogen in a single crystal vanadium (001) film, with net diffusion in the [110] direction.
Ianuş, Andrada; Shemesh, Noam
2018-04-01
Diffusion MRI is confounded by the need to acquire at least two images separated by a repetition time, thereby thwarting the detection of rapid dynamic microstructural changes. The issue is exacerbated when diffusivity variations are accompanied by rapid changes in T 2 . The purpose of the present study is to accelerate diffusion MRI acquisitions such that both reference and diffusion-weighted images necessary for quantitative diffusivity mapping are acquired in a single-shot experiment. A general methodology termed incomplete initial nutation diffusion imaging (INDI), capturing two diffusion contrasts in a single shot, is presented. This methodology creates a longitudinal magnetization reservoir that facilitates the successive acquisition of two images separated by only a few milliseconds. The theory behind INDI is presented, followed by proof-of-concept studies in water phantom, ex vivo, and in vivo experiments at 16.4 and 9.4 T. Mean diffusivities extracted from INDI were comparable with diffusion tensor imaging and the two-shot isotropic diffusion encoding in the water phantom. In ex vivo mouse brain tissues, as well as in the in vivo mouse brain, mean diffusivities extracted from conventional isotropic diffusion encoding and INDI were in excellent agreement. Simulations for signal-to-noise considerations identified the regimes in which INDI is most beneficial. The INDI method accelerates diffusion MRI acquisition to single-shot mode, which can be of great importance for mapping dynamic microstructural properties in vivo without T 2 bias. Magn Reson Med 79:2198-2204, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Tuning HDF5 subfiling performance on parallel file systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byna, Suren; Chaarawi, Mohamad; Koziol, Quincey
Subfiling is a technique used on parallel file systems to reduce locking and contention issues when multiple compute nodes interact with the same storage target node. Subfiling provides a compromise between the single shared file approach that instigates the lock contention problems on parallel file systems and having one file per process, which results in generating a massive and unmanageable number of files. In this paper, we evaluate and tune the performance of recently implemented subfiling feature in HDF5. In specific, we explain the implementation strategy of subfiling feature in HDF5, provide examples of using the feature, and evaluate andmore » tune parallel I/O performance of this feature with parallel file systems of the Cray XC40 system at NERSC (Cori) that include a burst buffer storage and a Lustre disk-based storage. We also evaluate I/O performance on the Cray XC30 system, Edison, at NERSC. Our results show performance benefits of 1.2X to 6X performance advantage with subfiling compared to writing a single shared HDF5 file. We present our exploration of configurations, such as the number of subfiles and the number of Lustre storage targets to storing files, as optimization parameters to obtain superior I/O performance. Based on this exploration, we discuss recommendations for achieving good I/O performance as well as limitations with using the subfiling feature.« less
Thermal diffusivity of Bi 2Sr 2CaCu 2O 8 single crystals
NASA Astrophysics Data System (ADS)
Wu, X. D.; Fanton, J. G.; Kino, G. S.; Ryu, S.; Mitzi, D. B.; Kapitulnik, A.
1993-12-01
We have made direct measurements of the temperature dependence of the thermal diffusivity along all three axes of a single- crystal Bi 2Ca 2SrCu 2O 8 superconductor. We find that the thermal diffusivity is enhanced dramatically along the Cu-O planes below Tc. From our results, we estimate a 40% electronic contribution to the diffusivity along the Cu-O planes. At room temperature the total anisotropy in thermal diffusivity is 7:1, while the lattice contribution has only a 4.2:1 anisotropy.
Sun, Xiaobo; Gao, Jingjing; Jin, Peng; Eng, Celeste; Burchard, Esteban G; Beaty, Terri H; Ruczinski, Ingo; Mathias, Rasika A; Barnes, Kathleen; Wang, Fusheng; Qin, Zhaohui S
2018-06-01
Sorted merging of genomic data is a common data operation necessary in many sequencing-based studies. It involves sorting and merging genomic data from different subjects by their genomic locations. In particular, merging a large number of variant call format (VCF) files is frequently required in large-scale whole-genome sequencing or whole-exome sequencing projects. Traditional single-machine based methods become increasingly inefficient when processing large numbers of files due to the excessive computation time and Input/Output bottleneck. Distributed systems and more recent cloud-based systems offer an attractive solution. However, carefully designed and optimized workflow patterns and execution plans (schemas) are required to take full advantage of the increased computing power while overcoming bottlenecks to achieve high performance. In this study, we custom-design optimized schemas for three Apache big data platforms, Hadoop (MapReduce), HBase, and Spark, to perform sorted merging of a large number of VCF files. These schemas all adopt the divide-and-conquer strategy to split the merging job into sequential phases/stages consisting of subtasks that are conquered in an ordered, parallel, and bottleneck-free way. In two illustrating examples, we test the performance of our schemas on merging multiple VCF files into either a single TPED or a single VCF file, which are benchmarked with the traditional single/parallel multiway-merge methods, message passing interface (MPI)-based high-performance computing (HPC) implementation, and the popular VCFTools. Our experiments suggest all three schemas either deliver a significant improvement in efficiency or render much better strong and weak scalabilities over traditional methods. Our findings provide generalized scalable schemas for performing sorted merging on genetics and genomics data using these Apache distributed systems.
Nayak, Gurudutt; Singh, Inderpreet; Shetty, Shashit; Dahiya, Surya
2014-01-01
Objective: Apical extrusion of debris and irrigants during cleaning and shaping of the root canal is one of the main causes of periapical inflammation and postoperative flare-ups. The purpose of this study was to quantitatively measure the amount of debris and irrigants extruded apically in single rooted canals using two reciprocating and one rotary single file nickel-titanium instrumentation systems. Materials and Methods: Sixty human mandibular premolars, randomly assigned to three groups (n = 20) were instrumented using two reciprocating (Reciproc and Wave One) and one rotary (One Shape) single-file nickel-titanium systems. Bidistilled water was used as irrigant with traditional needle irrigation delivery system. Eppendorf tubes were used as test apparatus for collection of debris and irrigant. The volume of extruded irrigant was collected and quantified via 0.1-mL increment measure supplied on the disposable plastic insulin syringe. The liquid inside the tubes was dried and the mean weight of debris was assessed using an electronic microbalance. The data were statistically analysed using Kruskal-Wallis nonparametric test and Mann Whitney U test with Bonferroni adjustment. P-values less than 0.05 were considered significant. Results: The Reciproc file system produced significantly more debris compared with OneShape file system (P<0.05), but no statistically significant difference was obtained between the two reciprocating instruments (P>0.05). Extrusion of irrigant was statistically insignificant irrespective of the instrument or instrumentation technique used (P >0.05). Conclusions: Although all systems caused apical extrusion of debris and irrigant, continuous rotary instrumentation was associated with less extrusion as compared with the use of reciprocating file systems. PMID:25628665
1995 Joseph E. Whitley, MD, Award. A World Wide Web gateway to the radiologic learning file.
Channin, D S
1995-12-01
Computer networks in general, and the Internet specifically, are changing the way information is manipulated in the world at large and in radiology. The goal of this project was to develop a computer system in which images from the Radiologic Learning File, available previously only via a single-user laser disc, are made available over a generic, high-availability computer network to many potential users simultaneously. Using a networked workstation in our laboratory and freely available distributed hypertext software, we established a World Wide Web (WWW) information server for radiology. Images from the Radiologic Learning File are requested through the WWW client software, digitized from a single laser disc containing the entire teaching file and then transmitted over the network to the client. The text accompanying each image is incorporated into the transmitted document. The Radiologic Learning File is now on-line, and requests to view the cases result in the delivery of the text and images. Image digitization via a frame grabber takes 1/30th of a second. Conversion of the image to a standard computer graphic format takes 45-60 sec. Text and image transmission speed on a local area network varies between 200 and 400 kilobytes (KB) per second depending on the network load. We have made images from a laser disc of the Radiologic Learning File available through an Internet-based hypertext server. The images previously available through a single-user system located in a remote section of our department are now ubiquitously available throughout our department via the department's computer network. We have thus converted a single-user, limited functionality system into a multiuser, widely available resource.
Gao, Jingjing; Jin, Peng; Eng, Celeste; Burchard, Esteban G; Beaty, Terri H; Ruczinski, Ingo; Mathias, Rasika A; Barnes, Kathleen; Wang, Fusheng
2018-01-01
Abstract Background Sorted merging of genomic data is a common data operation necessary in many sequencing-based studies. It involves sorting and merging genomic data from different subjects by their genomic locations. In particular, merging a large number of variant call format (VCF) files is frequently required in large-scale whole-genome sequencing or whole-exome sequencing projects. Traditional single-machine based methods become increasingly inefficient when processing large numbers of files due to the excessive computation time and Input/Output bottleneck. Distributed systems and more recent cloud-based systems offer an attractive solution. However, carefully designed and optimized workflow patterns and execution plans (schemas) are required to take full advantage of the increased computing power while overcoming bottlenecks to achieve high performance. Findings In this study, we custom-design optimized schemas for three Apache big data platforms, Hadoop (MapReduce), HBase, and Spark, to perform sorted merging of a large number of VCF files. These schemas all adopt the divide-and-conquer strategy to split the merging job into sequential phases/stages consisting of subtasks that are conquered in an ordered, parallel, and bottleneck-free way. In two illustrating examples, we test the performance of our schemas on merging multiple VCF files into either a single TPED or a single VCF file, which are benchmarked with the traditional single/parallel multiway-merge methods, message passing interface (MPI)–based high-performance computing (HPC) implementation, and the popular VCFTools. Conclusions Our experiments suggest all three schemas either deliver a significant improvement in efficiency or render much better strong and weak scalabilities over traditional methods. Our findings provide generalized scalable schemas for performing sorted merging on genetics and genomics data using these Apache distributed systems. PMID:29762754
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-23
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-68253; File No. SR-ICC-2012-20] Self-Regulatory... Single Name Contract November 16, 2012. Pursuant to Section 19(b)(1) of the Securities Exchange Act of... Clear Credit LLC (``ICC'') filed with the Securities and Exchange Commission (``Commission'') the...
Analysis of dangerous area of single berth oil tanker operations based on CFD
NASA Astrophysics Data System (ADS)
Shi, Lina; Zhu, Faxin; Lu, Jinshu; Wu, Wenfeng; Zhang, Min; Zheng, Hailin
2018-04-01
Based on the single process in the liquid cargo tanker berths in the state as the research object, we analyzed the single berth oil tanker in the process of VOCs diffusion theory, built network model of VOCs diffusion with Gambit preprocessor, set up the simulation boundary conditions and simulated the five detection point sources in specific factors under the influence of VOCs concentration change with time by using Fluent software. We analyzed the dangerous area of single berth oil tanker operations through the diffusion of VOCs, so as to ensure the safe operation of oil tanker.
VizieR Online Data Catalog: The KepVIM catalog (Makarov+, 2016)
NASA Astrophysics Data System (ADS)
Makarov, V. V.; Goldin, A.
2016-07-01
The algorithm described in section 4 was applied to the entire collection of "long-cadence" files archived in the MAST for the principal Kepler mission. A single variability-induced motion (VIM) detection corresponds to a complete data set for a given target collected during one quarter. Therefore, a single target can generate up to 17 VIM detections in the catalog. (2 data files).
COVART 6.1: FASTGEN Legacy Model User’s Manual
2010-03-31
Program Office • Crystal Gateway #4 • Suite 1103 • 200 12 th St. South • Arlington, VA 22202 REPORT DOCUMENTATION PAGE Form Approved... Single Proximity Burst File Layout ................................................ 208 Figure 23-2 OFRAGB Multiple Proximity Burst File Layout...dimensional normal, distribution of shotlines about an aim point (SHOT1) 2. Multiple shotlines over a two-dimensional grid (SHOT2) 3. A single shotline at
Prabhakar, Attiguppe R; Yavagal, Chandrashekar; Dixit, Kratika; Naik, Saraswathi V
2016-01-01
Primary root canals are considered to be most challenging due to their complex anatomy. "Wave one" and "one shape" are single-file systems with reciprocating and rotary motion respectively. The aim of this study was to evaluate and compare dentin thickness, centering ability, canal transportation, and instrumentation time of wave one and one shape files in primary root canals using a cone beam computed tomographic (CBCT) analysis. This is an experimental, in vitro study comparing the two groups. A total of 24 extracted human primary teeth with minimum 7 mm root length were included in the study. Cone beam computed tomographic images were taken before and after the instrumentation for each group. Dentin thickness, centering ability, canal transportation, and instrumentation times were evaluated for each group. A significant difference was found in instrumentation time and canal transportation measures between the two groups. Wave one showed less canal transportation as compared with one shape, and the mean instrumentation time of wave one was significantly less than one shape. Reciprocating single-file systems was found to be faster with much less procedural errors and can hence be recommended for shaping the root canals of primary teeth. How to cite this article: Prabhakar AR, Yavagal C, Dixit K, Naik SV. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-File Systems. Int J Clin Pediatr Dent 2016;9(1):45-49.
10 CFR 76.72 - Miscellaneous procedural matters.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Miscellaneous procedural matters. 76.72 Section 76.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.72 Miscellaneous procedural matters. (a) The filing of any petitions for review or any responses...
10 CFR 76.72 - Miscellaneous procedural matters.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Miscellaneous procedural matters. 76.72 Section 76.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.72 Miscellaneous procedural matters. (a) The filing of any petitions for review or any responses...
10 CFR 76.72 - Miscellaneous procedural matters.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Miscellaneous procedural matters. 76.72 Section 76.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.72 Miscellaneous procedural matters. (a) The filing of any petitions for review or any responses...
10 CFR 76.72 - Miscellaneous procedural matters.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Miscellaneous procedural matters. 76.72 Section 76.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.72 Miscellaneous procedural matters. (a) The filing of any petitions for review or any responses...
10 CFR 76.72 - Miscellaneous procedural matters.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Miscellaneous procedural matters. 76.72 Section 76.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.72 Miscellaneous procedural matters. (a) The filing of any petitions for review or any responses...
Hamoudi, H.; Suga, T.; Bennett, T. D.; Cairns, A. B.
2015-01-01
The topochemical conversion of a dense, insulating metal–organic framework (MOF) into a semiconducting amorphous MOF is described. Treatment of single crystals of copper(i) chloride trithiocyanurate, CuICl(ttcH3) (ttcH3 = trithiocyanuric acid), 1, in aqueous ammonia solution yields monoliths of amorphous CuI 1.8(ttc)0.6(ttcH3)0.4, 3. The treatment changes the transparent orange crystals of 1 into shiny black monoliths of 3 with retention of morphology, and moreover increases the electrical conductivity from insulating to semiconducting (conductivity of 3 ranges from 4.2 × 10–11 S cm–1 at 20 °C to 7.6 × 10–9 S cm–1 at 140 °C; activation energy = 0.59 eV; optical band gap = 0.6 eV). The structure and properties of the amorphous conductor are fully characterized by AC impedance spectroscopy, X-ray photoelectron spectroscopy, X-ray pair distribution function analysis, infrared spectroscopy, diffuse reflectance spectroscopy, electron spin resonance spectroscopy, elemental analysis, thermogravimetric analysis, and theoretical calculations. PMID:29560235
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Sanfeliz, Gerant, E-mail: gerantrivera@ucsd.edu; Kinney, Thomas B.; Rose, Steven C.
2005-06-15
Purpose: To describe our experience with ultrasound (US)-guided percutaneous liver biopsies using the INRAD 18G Express core needle biopsy system.Methods: One hundred and fifty-four consecutive percutaneous core liver biopsy procedures were performed in 153 men in a single institution over 37 months. The medical charts, pathology reports, and radiology files were retrospectively reviewed. The number of needle passes, type of guidance, change in hematocrit level, and adequacy of specimens for histologic analysis were evaluated.Results: All biopsies were performed for histologic staging of chronic liver diseases. The majority of patients had hepatitis C (134/153, 90.2%). All patients were discharged to homemore » after 4 hr of postprocedural observation. In 145 of 154 (94%) biopsies, a single needle pass was sufficient for diagnosis. US guidance was utilized in all but one of the procedures (153/154, 99.4%). The mean hematocrit decrease was 1.2% (44.1-42.9%). Pain requiring narcotic analgesia, the most frequent complication, occurred in 28 of 154 procedures (18.2%). No major complications occurred. The specimens were diagnostic in 152 of 154 procedures (98.7%).Conclusions: Single-pass percutaneous US-guided liver biopsy with the INRAD 18G Express core needle biopsy system is safe and provides definitive pathologic diagnosis of chronic liver disease. It can be performed on an outpatient basis. Routine post-biopsy monitoring of hematocrit level in stable, asymptomatic patients is probably not warranted.« less
Kroll, Alexandra; Haramagatti, Chandrashekara R.; Lipinski, Hans-Gerd; Wiemann, Martin
2017-01-01
Darkfield and confocal laser scanning microscopy both allow for a simultaneous observation of live cells and single nanoparticles. Accordingly, a characterization of nanoparticle uptake and intracellular mobility appears possible within living cells. Single particle tracking allows to measure the size of a diffusing particle close to a cell. However, within the more complex system of a cell’s cytoplasm normal, confined or anomalous diffusion together with directed motion may occur. In this work we present a method to automatically classify and segment single trajectories into their respective motion types. Single trajectories were found to contain more than one motion type. We have trained a random forest with 9 different features. The average error over all motion types for synthetic trajectories was 7.2%. The software was successfully applied to trajectories of positive controls for normal- and constrained diffusion. Trajectories captured by nanoparticle tracking analysis served as positive control for normal diffusion. Nanoparticles inserted into a diblock copolymer membrane was used to generate constrained diffusion. Finally we segmented trajectories of diffusing (nano-)particles in V79 cells captured with both darkfield- and confocal laser scanning microscopy. The software called “TraJClassifier” is freely available as ImageJ/Fiji plugin via https://git.io/v6uz2. PMID:28107406
Unbinding Transition of Probes in Single-File Systems
NASA Astrophysics Data System (ADS)
Bénichou, Olivier; Démery, Vincent; Poncet, Alexis
2018-02-01
Single-file transport, arising in quasi-one-dimensional geometries where particles cannot pass each other, is characterized by the anomalous dynamics of a probe, notably its response to an external force. In these systems, the motion of several probes submitted to different external forces, although relevant to mixtures of charged and neutral or active and passive objects, remains unexplored. Here, we determine how several probes respond to external forces. We rely on a hydrodynamic description of the symmetric exclusion process to obtain exact analytical results at long times. We show that the probes can either move as a whole, or separate into two groups moving away from each other. In between the two regimes, they separate with a different dynamical exponent, as t1 /4. This unbinding transition also occurs in several continuous single-file systems and is expected to be observable.
Theoretical model of the ionic mechanism of 1/f noise in nerve membrane.
Clay, J R; Shlesinger, M F
1976-01-01
A model is presented for the ionic mechanism of low frequency 1/f electrical noise which has been observed in axonal membranes. The model consists of narrow channels which open randomly throughout the membrane and remain open for only a short time compared with f-1max where fmax approximately 2 kHz is the maximum frequency for which 1/f noise is observed. The fluctuation in channel formation is coupled to low frequency normal mode vibrations in liquid crystals which have properties similar to nerve membranes. Ionic current flow through the channels is assumed to occur via single file diffusion. The diffusion process is regarded as a non-Markovian random walk on a one-dimensional lattice which is mathematically decomposed into its spatial and temporal components. This technique allows calculation of the mean and variance of the number of ions which flow through any single short-lived channel. The final result for the current noise power spectrum, S, is S(f) = (A + k/I/2)/f, where I is the mean membrane current and A and k are parameters which are independent of membrane voltage. The theoretical result is consistent with observations of 1/f noise in lobster axon by Poussart (1971, Biophys. J. 11:212.) on the dependence of S(f) on the mean steady-state current and the external potassium concentration. We also calculate the mean channel density and the Frank elastic constant of the membrane. This work is an extension of a macroscopic model of Lundström and McQueen (1974, J. Theor. Biol. 45:405.) who obtain a spectral density of the form S approximately /I/2/f. PMID:1247642
Structure prediction and molecular simulation of gases diffusion pathways in hydrogenase.
Sundaram, Shanthy; Tripathi, Ashutosh; Gupta, Vipul
2010-10-06
Although hydrogen is considered to be one of the most promising future energy sources and the technical aspects involved in using it have advanced considerably, the future supply of hydrogen from renewable sources is still unsolved. The [Fe]- hydrogenase enzymes are highly efficient H(2) catalysts found in ecologically and phylogenetically diverse microorganisms, including the photosynthetic green alga, Chlamydomonas reinhardtii. While these enzymes can occur in several forms, H(2) catalysis takes place at a unique [FeS] prosthetic group or H-cluster, located at the active site. 3D structure of the protein hydA1 hydrogenase from Chlamydomonas reinhardtti was predicted using the MODELER 8v2 software. Conserved region was depicted from the NCBI CDD Search. Template selection was done on the basis NCBI BLAST results. For single template 1FEH was used and for multiple templates 1FEH and 1HFE were used. The result of the Homology modeling was verified by uploading the file to SAVS server. On the basis of the SAVS result 3D structure predicted using single template was chosen for performing molecular simulation. For performing molecular simulation three strategies were used. First the molecular simulation of the protein was performed in solvated box containing bulk water. Then 100 H(2) molecules were randomly inserted in the solvated box and two simulations of 50 and 100 ps were performed. Similarly 100 O(2) molecules were randomly placed in the solvated box and again 50 and 100 ps simulation were performed. Energy minimization was performed before each simulation was performed. Conformations were saved after each simulation. Analysis of the gas diffusion was done on the basis of RMSD, Radius of Gyration and no. of gas molecule/ps plot.
78 FR 53455 - Notice of Agreements Filed
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-29
.... Parties: Zim Integrated Shipping Services, Ltd.; China Shipping Container Line Co., Ltd. and China Shipping Container Lines (Hong Kong) Co., Ltd. (acting as a single party). Filing Party: Mark E. Newcomb... the [[Page 53456
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... (10) a new single-circuit 230-kilovolt transmission line approximately 12 miles in length. The... intent must meet the requirements of 18 CFR 4.36. The Commission strongly encourages electronic filing... (toll free), or (202) 502- 8659 (TTY). In lieu of electronic filing, please send a paper copy to...
Shih, Po-Hsun; Wu, Sheng Yun
2017-07-21
Plenty of studies have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since analyzing the growth mechanism along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid the appearance of catalytic contamination. Two-dimensional energy dispersive spectroscopy (EDS) mapping with a diffusion model was used to obtain the diffusion length and the activation energy ratio. The ratio value is close to 0.3, revealing that the growth of ZnO nanowires was attributed to the short-circuit diffusion.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Renewals. 76.36 Section 76.36 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Application § 76.36 Renewals. (a) The Corporation shall file periodic applications for renewal, as required by § 76.31. (b) Information contained in...
10 CFR 76.55 - Timely renewal.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Timely renewal. 76.55 Section 76.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.55 Timely renewal. In any case in which the Corporation has timely filed a sufficient application for a certificate...
10 CFR 76.55 - Timely renewal.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Timely renewal. 76.55 Section 76.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.55 Timely renewal. In any case in which the Corporation has timely filed a sufficient application for a certificate...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Renewals. 76.36 Section 76.36 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Application § 76.36 Renewals. (a) The Corporation shall file periodic applications for renewal, as required by § 76.31. (b) Information contained in...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Renewals. 76.36 Section 76.36 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Application § 76.36 Renewals. (a) The Corporation shall file periodic applications for renewal, as required by § 76.31. (b) Information contained in...
10 CFR 76.33 - Application procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Application procedures. 76.33 Section 76.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Application § 76.33 Application procedures. (a) Filing requirements. (1) An application for a certificate of compliance must be tendered by...
10 CFR 76.33 - Application procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Application procedures. 76.33 Section 76.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Application § 76.33 Application procedures. (a) Filing requirements. (1) An application for a certificate of compliance must be tendered by...
10 CFR 76.55 - Timely renewal.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Timely renewal. 76.55 Section 76.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.55 Timely renewal. In any case in which the Corporation has timely filed a sufficient application for a certificate...
10 CFR 76.33 - Application procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Application procedures. 76.33 Section 76.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Application § 76.33 Application procedures. (a) Filing requirements. (1) An application for a certificate of compliance must be tendered by...
10 CFR 76.55 - Timely renewal.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Timely renewal. 76.55 Section 76.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.55 Timely renewal. In any case in which the Corporation has timely filed a sufficient application for a certificate...
10 CFR 76.33 - Application procedures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Application procedures. 76.33 Section 76.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Application § 76.33 Application procedures. (a) Filing requirements. (1) An application for a certificate of compliance must be tendered by...
10 CFR 76.33 - Application procedures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Application procedures. 76.33 Section 76.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Application § 76.33 Application procedures. (a) Filing requirements. (1) An application for a certificate of compliance must be tendered by...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Renewals. 76.36 Section 76.36 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Application § 76.36 Renewals. (a) The Corporation shall file periodic applications for renewal, as required by § 76.31. (b) Information contained in...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Renewals. 76.36 Section 76.36 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Application § 76.36 Renewals. (a) The Corporation shall file periodic applications for renewal, as required by § 76.31. (b) Information contained in...
10 CFR 76.55 - Timely renewal.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Timely renewal. 76.55 Section 76.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.55 Timely renewal. In any case in which the Corporation has timely filed a sufficient application for a certificate...
Canary: an atomic pipeline for clinical amplicon assays.
Doig, Kenneth D; Ellul, Jason; Fellowes, Andrew; Thompson, Ella R; Ryland, Georgina; Blombery, Piers; Papenfuss, Anthony T; Fox, Stephen B
2017-12-15
High throughput sequencing requires bioinformatics pipelines to process large volumes of data into meaningful variants that can be translated into a clinical report. These pipelines often suffer from a number of shortcomings: they lack robustness and have many components written in multiple languages, each with a variety of resource requirements. Pipeline components must be linked together with a workflow system to achieve the processing of FASTQ files through to a VCF file of variants. Crafting these pipelines requires considerable bioinformatics and IT skills beyond the reach of many clinical laboratories. Here we present Canary, a single program that can be run on a laptop, which takes FASTQ files from amplicon assays through to an annotated VCF file ready for clinical analysis. Canary can be installed and run with a single command using Docker containerization or run as a single JAR file on a wide range of platforms. Although it is a single utility, Canary performs all the functions present in more complex and unwieldy pipelines. All variants identified by Canary are 3' shifted and represented in their most parsimonious form to provide a consistent nomenclature, irrespective of sequencing variation. Further, proximate in-phase variants are represented as a single HGVS 'delins' variant. This allows for correct nomenclature and consequences to be ascribed to complex multi-nucleotide polymorphisms (MNPs), which are otherwise difficult to represent and interpret. Variants can also be annotated with hundreds of attributes sourced from MyVariant.info to give up to date details on pathogenicity, population statistics and in-silico predictors. Canary has been used at the Peter MacCallum Cancer Centre in Melbourne for the last 2 years for the processing of clinical sequencing data. By encapsulating clinical features in a single, easily installed executable, Canary makes sequencing more accessible to all pathology laboratories. Canary is available for download as source or a Docker image at https://github.com/PapenfussLab/Canary under a GPL-3.0 License.
Single-shot turbo spin echo acquisition for in vivo cardiac diffusion MRI.
Edalati, Masoud; Lee, Gregory R; Hui Wang; Taylor, Michael D; Li, Yu Y
2016-08-01
Diffusion MRI offers the ability to noninvasively characterize the microstructure of myocardium tissue and detect disease related pathology in cardiovascular examination. This study investigates the feasibility of in vivo cardiac diffusion MRI under free-breathing condition. A high-speed imaging technique, correlation imaging, is used to enable single-shot turbo spin echo for free-breathing cardiac data acquisition. The obtained in vivo cardiac diffusion-weighted images illustrate robust image quality and minor geometry distortions. The resultant diffusion scalar maps show reliable quantitative values consistent with those previously published in the literature. It is demonstrated that this technique has the potential for in vivo free-breathing cardiac diffusion MRI.
Oxygen Tracer Diffusion in LA(z-x) SR(X) CUO(4-y) Single Crystals
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Tuller, Harry L.; Wuensch, Berhardt J.; Maier, Joachim
1993-01-01
The tracer diffusion of O-18 in La(2-x)Sr(x)CuO(4-y) single crystals (x = 0 to 0.12) has been measured from 400 to 700 C in 1 atm of oxygen using SIMS analysis. Evidence for diffusion by a vacancy mechanism was found at low strontium contents. Oxygen diffusivities for x greater than or = 0.07 were depressed by several orders of magnitude below the diffusivity for undoped La2CuO(4+/-y). The observed effects of strontium doping on oxygen diffusivity are discussed in terms of defect chemical models. The decreasing oxygen diffusivity with increasing strontium was attributed to the ordering of oxygen vacancies at large defect concentrations. A diffusion anisotropy D(sub ab)/D(sub c) of nearly 600 was also found at 500 C.
Investigating Access Performance of Long Time Series with Restructured Big Model Data
NASA Astrophysics Data System (ADS)
Shen, S.; Ostrenga, D.; Vollmer, B.; Meyer, D. J.
2017-12-01
Data sets generated by models are substantially increasing in volume, due to increases in spatial and temporal resolution, and the number of output variables. Many users wish to download subsetted data in preferred data formats and structures, as it is getting increasingly difficult to handle the original full-size data files. For example, application research users, such as those involved with wind or solar energy, or extreme weather events, are likely only interested in daily or hourly model data at a single point or for a small area for a long time period, and prefer to have the data downloaded in a single file. With native model file structures, such as hourly data from NASA Modern-Era Retrospective analysis for Research and Applications Version-2 (MERRA-2), it may take over 10 hours for the extraction of interested parameters at a single point for 30 years. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is exploring methods to address this particular user need. One approach is to create value-added data by reconstructing the data files. Taking MERRA-2 data as an example, we have tested converting hourly data from one-day-per-file into different data cubes, such as one-month, one-year, or whole-mission. Performance are compared for reading local data files and accessing data through interoperable service, such as OPeNDAP. Results show that, compared to the original file structure, the new data cubes offer much better performance for accessing long time series. We have noticed that performance is associated with the cube size and structure, the compression method, and how the data are accessed. An optimized data cube structure will not only improve data access, but also may enable better online analytic services.
Investigating Access Performance of Long Time Series with Restructured Big Model Data
NASA Technical Reports Server (NTRS)
Shen, Suhung; Ostrenga, Dana M.; Vollmer, Bruce E.; Meyer, Dave
2017-01-01
Data sets generated by models are substantially increasing in volume, due to increases in spatial and temporal resolution, and the number of output variables. Many users wish to download subsetted data in preferred data formats and structures, as it is getting increasingly difficult to handle the original full-size data files. For example, application research users such as those involved with wind or solar energy, or extreme weather events are likely only interested in daily or hourly model data at a single point (or for a small area) for a long time period, and prefer to have the data downloaded in a single file. With native model file structures, such as hourly data from NASA Modern-Era Retrospective analysis for Research and Applications Version-2 (MERRA-2), it may take over 10 hours for the extraction of parameters-of-interest at a single point for 30 years. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is exploring methods to address this particular user need. One approach is to create value-added data by reconstructing the data files. Taking MERRA-2 data as an example, we have tested converting hourly data from one-day-per-file into different data cubes, such as one-month, or one-year. Performance is compared for reading local data files and accessing data through interoperable services, such as OPeNDAP. Results show that, compared to the original file structure, the new data cubes offer much better performance for accessing long time series. We have noticed that performance is associated with the cube size and structure, the compression method, and how the data are accessed. An optimized data cube structure will not only improve data access, but also may enable better online analysis services
WaveOne Rotary Instruments after Clinical Use.
Shen, Ya; Coil, Jeffrey M; Mo, Anthony John; Wang, Zhejun; Hieawy, Ahmed; Yang, Yan; Haapasalo, Markus
2016-02-01
The purpose of this study was to evaluate the incidence and mode of WaveOne (Dentsply Tulsa Dental Specialties, Tulsa, OK) instrument defects after single use at different endodontic clinics. A total of 438 WaveOne instruments were collected after clinical use from the 4 specialist clinics over a 12-month period and from 1 graduate program over a 20-month period. The incidence and type of instrument defects were analyzed. The lateral surfaces of part of the defective instruments and fracture surfaces of fractured files were examined using scanning electron microscopy. Unused and clinically used files were examined by a nanoindentation test. Of the 438 WaveOne instruments collected, 42 (9.6%) had defects: 40 (9.1%) were distorted and 2 (0.5%) files had fractured, 1 Small and 1 Primary file. Clear differences in the frequency of defects were found among the 3 file sizes; the occurrence of distortion and fracture were highest with the Small file (21.2% and 0.7%, respectively) followed by the Primary file (4.4% and 0.4%, respectively) (P < .05). No defects were detected on the Large file. The cause of the 2 fractures was shear stress. Instruments from various clinics showed no significantly different occurrence of instrument deformation. Unwinding occurred at 1.2-3.1 mm from the tip. No significant difference in nanohardness was detected among unused and used instruments. The risk of WaveOne fracture is very low when files are singly used by endodontists and residents. Unwinding of the files occurred most frequently in the Small file. The frequency of defects of WaveOne instruments were not influenced by the operator. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Cyclic fatigue behavior of nickel-titanium dental rotary files in clinical simulated root canals.
Chi, Chih-Wen; Li, Chun-Chieh; Lin, Chun-Pin; Shin, Chow-Shing
2017-04-01
Dental rotary instruments can be applied in multiple conditions of canals, but unpredictable fatigue fracture may happen. This study evaluated the fatigue lives of two batches of nickel-titanium (NiTi) dental rotary files operating in clinically simulated root canals. Single-step cyclic fatigue tests were carried out to assess the performance of two batches of NiTi files (ProTaper and ProFile) in nine combinations of simulated canals (cylinder radii 5 mm, 7.5 mm, and 10 mm, and insertion angles 20°, 40°, and 60°). Two-step cyclic fatigue tests were carried out in simulated root canals with the same radius by using the following two sets of insertion angles: (20°, 40°), (20°, 60°), (40°, 20°), and (60°, 20°). Fracture surfaces were observed by scanning electron microscopy. The single-step cyclic fatigue results showed that cyclic fatigue lives of the files decreased with increasing insertion angles or decreasing cylinder radius. The ProFile #25 .04 file was more fatigue resistant than the ProTaper F2 file. In two-step cyclic fatigue tests, the total fatigue lives were usually more than 100% when the files operated at a lower strain and then at a higher strain. By scanning electron microscopy, a larger area of fatigue striation corresponded to a longer fatigue life. Cyclic fatigue life can be influenced by the strains and geometries of files. The fatigue life was prolonged when the files operated at a lower strain and then at a higher strain. However, the fatigue life was shortened if the loading sequence was reversed. Copyright © 2016. Published by Elsevier B.V.
Molecular diffusion of stable water isotopes in polar firn as a proxy for past temperatures
NASA Astrophysics Data System (ADS)
Holme, Christian; Gkinis, Vasileios; Vinther, Bo M.
2018-03-01
Polar precipitation archived in ice caps contains information on past temperature conditions. Such information can be retrieved by measuring the water isotopic signals of δ18O and δD in ice cores. These signals have been attenuated during densification due to molecular diffusion in the firn column, where the magnitude of the diffusion is isotopologue specific and temperature dependent. By utilizing the differential diffusion signal, dual isotope measurements of δ18O and δD enable multiple temperature reconstruction techniques. This study assesses how well six different methods can be used to reconstruct past surface temperatures from the diffusion-based temperature proxies. Two of the methods are based on the single diffusion lengths of δ18O and δD , three of the methods employ the differential diffusion signal, while the last uses the ratio between the single diffusion lengths. All techniques are tested on synthetic data in order to evaluate their accuracy and precision. We perform a benchmark test to thirteen high resolution Holocene data sets from Greenland and Antarctica, which represent a broad range of mean annual surface temperatures and accumulation rates. Based on the benchmark test, we comment on the accuracy and precision of the methods. Both the benchmark test and the synthetic data test demonstrate that the most precise reconstructions are obtained when using the single isotope diffusion lengths, with precisions of approximately 1.0 °C . In the benchmark test, the single isotope diffusion lengths are also found to reconstruct consistent temperatures with a root-mean-square-deviation of 0.7 °C . The techniques employing the differential diffusion signals are more uncertain, where the most precise method has a precision of 1.9 °C . The diffusion length ratio method is the least precise with a precision of 13.7 °C . The absolute temperature estimates from this method are also shown to be highly sensitive to the choice of fractionation factor parameterization.
VizieR Online Data Catalog: HI-bearing ultra-diffuse ALFALFA galaxies (Leisman+, 2017)
NASA Astrophysics Data System (ADS)
Leisman, L.; Haynes, M. P.; Janowiecki, S.; Hallenbeck, G.; Jozsa, G.; Giovanelli, R.; Adams, E. A. K.; Neira, D. B.; Cannon, J. M.; Janesh, W. F.; Rhode, K. L.; Salzer, J. J.
2018-02-01
All sources discussed here have available SDSS and ALFALFA data. The ALFALFA observations, data reduction, and catalog products are detailed elsewhere (e.g., Giovanelli+ 2005AJ....130.2598G ; Saintonge 2007AJ....133.2087S ; Haynes+ 2011, J/AJ/142/170). (1 data file).
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-16
... Technology Laboratory and Corrosion Solutions AGENCY: National Energy Technology Laboratory, Department of... diffusion coating to a metallic alloy,'' to Corrosion Solutions having its principal place of business in... for filing written objections. Corrosion Solutions, a new small business, has applied for an exclusive...
Bürklein, Sebastian; Schäfer, Edgar
2012-06-01
The purpose of this in vitro study was to assess the amount of apically extruded debris using rotary and reciprocating nickel-titanium instrumentation systems. Eighty human mandibular central incisors were randomly assigned to 4 groups (n = 20 teeth per group). The root canals were instrumented according to the manufacturers' instructions using the 2 reciprocating single-file systems Reciproc (VDW, Munich, Germany) and WaveOne (Dentsply Maillefer, Ballaigues, Switzerland) and the 2 full-sequence rotary Mtwo (VDW, Munich, Germany) and ProTaper (Dentsply Maillefer, Ballaigues, Switzerland) instruments. Bidistilled water was used as irrigant. The apically extruded debris was collected in preweighted glass vials using the Myers and Montgomery method. After drying, the mean weight of debris was assessed with a microbalance and statistically analyzed using analysis of variance and the post hoc Student-Newman-Keuls test. The time required to prepare the canals with the different instruments was also recorded. The reciprocating files produced significantly more debris compared with both rotary systems (P < .05). Although no statistically significant difference was obtained between the 2 rotary instruments (P > .05), the reciprocating single-file system Reciproc produced significantly more debris compared with all other instruments (P < .05). Instrumentation was significantly faster using Reciproc than with all other instrument (P < .05). Under the condition of this study, all systems caused apical debris extrusion. Full-sequence rotary instrumentation was associated with less debris extrusion compared with the use of reciprocating single-file systems. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Prabhakar, Attiguppe R; Yavagal, Chandrashekar; Naik, Saraswathi V
2016-01-01
ABSTRACT Background: Primary root canals are considered to be most challenging due to their complex anatomy. "Wave one" and "one shape" are single-file systems with reciprocating and rotary motion respectively. The aim of this study was to evaluate and compare dentin thickness, centering ability, canal transportation, and instrumentation time of wave one and one shape files in primary root canals using a cone beam computed tomographic (CBCT) analysis. Study design: This is an experimental, in vitro study comparing the two groups. Materials and methods: A total of 24 extracted human primary teeth with minimum 7 mm root length were included in the study. Cone beam computed tomographic images were taken before and after the instrumentation for each group. Dentin thickness, centering ability, canal transportation, and instrumentation times were evaluated for each group. Results: A significant difference was found in instrumentation time and canal transportation measures between the two groups. Wave one showed less canal transportation as compared with one shape, and the mean instrumentation time of wave one was significantly less than one shape. Conclusion: Reciprocating single-file systems was found to be faster with much less procedural errors and can hence be recommended for shaping the root canals of primary teeth. How to cite this article: Prabhakar AR, Yavagal C, Dixit K, Naik SV. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-File Systems. Int J Clin Pediatr Dent 2016;9(1):45-49. PMID:27274155
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-21
... Organizations; ICE Clear Credit LLC; Notice of Filing and Immediate Effectiveness of Proposed Rule Change To... (``Act''),\\1\\ notice is hereby given that on November 7, 2011, ICE Clear Credit LLC (``ICC'') filed with... 502 of the ICC Rules. The Additional Single Names have been reviewed by the ICE Risk Department, the...
ADEOS Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide
NASA Technical Reports Server (NTRS)
Krueger, A.; Bhartia, P. K.; McPeters, R.; Herman, J.; Wellemeyer, C.; Jaross, G.; Seftor, C.; Torres, O.; Labow, G.; Byerly, W.;
1998-01-01
Two data products from the Total Ozone Mapping Spectrometer (ADEOS/TOMS) have been archived at the Distributed Active Archive Center, in the form of Hierarchical Data Format files. The ADEOS/ TOMS began taking measurements on September 11, 1996, and ended on June 29, 1997. The instrument measured backscattered Earth radiance and incoming solar irradiance; their ratio was used in ozone retrievals. Changes in the reflectivity of the solar diffuser used for the irradiance measurement were monitored using a carousel of three diffusers, each exposed to the degrading effects of solar irradiation at different rates. The algorithm to retrieve total column ozone compares measured Earth radiances at sets of three wavelengths with radiances calculated for different total ozone values, solar zenith angles, and optical paths. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard deviation random error is 2 percent, and the drift is less than 0.5 percent over the 9-month data record. The Level 2 product contains the measured radiances, the derived total ozone amount, and reflectivity information for each scan position. The Level 3 product contains daily total ozone and reflectivity in a 1-degree latitude by 1.25 degrees longitude grid. The Level 3 files containing estimates of UVB at the Earth surface and tropospheric aerosol information will also be available. Detailed descriptions of both HDF data files and the CDROM product are provided.
Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Product User's Guide
NASA Technical Reports Server (NTRS)
McPeters, R.; Bhartia, P. K.; Krueger, A.; Herman, J.; Wellemeyer, C.; Seftor, C.; Jaross, G.; Torres, O.; Moy, L.; Labow, G.;
1998-01-01
Two data products from the Earth Probe Total Ozone Mapping Spectrometer (EP/TOMS) have been archived at the Distributed Active Archive Center, in the form of Hierarchical Data Format files. The EP/ TOMS began taking measurements on July 15, 1996. The instrument measures backscattered Earth radiance and incoming solar irradiance; their ratio is used in ozone retrievals. Changes in the reflectivity of the solar diffuser used for the irradiance measurement are monitored using a carousel of three diffusers, each exposed to the degrading effects of solar irradiation at different rates. The algorithm to retrieve total column ozone compares measured Earth radiances at sets of three wavelengths with radiances calculated for different total ozone values. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard deviation random error is 2 percent, and the drift is less than 0.5 percent over the first year of data. The Level-2 product contains the measured radiances, the derived total ozone amount, and reflectivity information for each scan position. The Level-3 product contains daily total ozone and reflectivity in a 1-degree latitude by 1.25 degrees longitude grid. Level-3 files containing estimates of LTVB at the Earth surface and tropospheric aerosol information are also available, Detailed descriptions of both HDF data-files and the CD-ROM product are provided.
C do Nascimento, Adriano; A F Marques, André; C Sponchiado-Júnior, Emílio; F R Garcia, Lucas; M A de Carvalho, Fredson
2016-01-01
Taurodontism is a developmental tooth disorder characterized by lack of constriction in the cementoenamel junction and consequent vertical stretch of the pulp chamber, accompanied by apical displacement of the pulpal floor. The endodontic treatment of teeth with this type of morpho-anatomical anomaly is challenging. The purpose of this article is to report the successful endodontic treatment of a hypertaurodontic mandibular molar using a reciprocating single-file system.
Staradmin -- Starlink User Database Maintainer
NASA Astrophysics Data System (ADS)
Fish, Adrian
The subject of this SSN is a utility called STARADMIN. This utility allows the system administrator to build and maintain a Starlink User Database (UDB). The principal source of information for each user is a text file, named after their username. The content of each file is a list consisting of one keyword followed by the relevant user data per line. These user database files reside in a single directory. The STARADMIN program is used to manipulate these user data files and automatically generate user summary lists.
Giant Acceleration of Diffusion Observed in a Single-Molecule Experiment on F(1)-ATPase.
Hayashi, Ryunosuke; Sasaki, Kazuo; Nakamura, Shuichi; Kudo, Seishi; Inoue, Yuichi; Noji, Hiroyuki; Hayashi, Kumiko
2015-06-19
The giant acceleration (GA) of diffusion is a universal phenomenon predicted by the theoretical analysis given by Reimann et al. [Phys. Rev. Lett. 87, 010602 (2001)]. Here we apply the theory of the GA of diffusion to a single-molecule experiment on a rotary motor protein, F(1), which is a component of F(o)F(1) adenosine triphosphate synthase. We discuss the energetic properties of F(1) and identify a high energy barrier of the rotary potential to be 20k(B)T, with the condition that the adenosine diphosphates are tightly bound to the F(1) catalytic sites. To conclude, the GA of diffusion is useful for measuring energy barriers in nonequilibrium and single-molecule experiments.
Shih, Po-Hsun
2017-01-01
Plenty of studies have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since analyzing the growth mechanism along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid the appearance of catalytic contamination. Two-dimensional energy dispersive spectroscopy (EDS) mapping with a diffusion model was used to obtain the diffusion length and the activation energy ratio. The ratio value is close to 0.3, revealing that the growth of ZnO nanowires was attributed to the short-circuit diffusion. PMID:28754030
Giant Acceleration of Diffusion Observed in a Single-Molecule Experiment on F1-ATPase
NASA Astrophysics Data System (ADS)
Hayashi, Ryunosuke; Sasaki, Kazuo; Nakamura, Shuichi; Kudo, Seishi; Inoue, Yuichi; Noji, Hiroyuki; Hayashi, Kumiko
2015-06-01
The giant acceleration (GA) of diffusion is a universal phenomenon predicted by the theoretical analysis given by Reimann et al. [Phys. Rev. Lett. 87, 010602 (2001)]. Here we apply the theory of the GA of diffusion to a single-molecule experiment on a rotary motor protein, F1 , which is a component of Fo F1 adenosine triphosphate synthase. We discuss the energetic properties of F1 and identify a high energy barrier of the rotary potential to be 20 kBT , with the condition that the adenosine diphosphates are tightly bound to the F1 catalytic sites. To conclude, the GA of diffusion is useful for measuring energy barriers in nonequilibrium and single-molecule experiments.
Topçuoğlu, H S; Düzgün, S; Akpek, F; Topçuoğlu, G; Aktı, A
2016-06-01
To evaluate the effect of a glide path on the amount of apically extruded debris during canal preparation using single-file systems in curved canals. Ninety extracted mandibular molar teeth were randomly assigned to six groups (n = 15 for each group) for canal instrumentation. Endodontic access cavities were prepared in each tooth. In three of the six groups, a glide path was not created whereas a glide path was created using PathFile instruments on the mesial canals of all teeth in the remaining three groups. The mesial canals of the teeth were then instrumented with the following single-file instrument systems: WaveOne, Reciproc and OneShape. Debris extruded apically during instrumentation was collected into pre-weighed Eppendorf tubes. The tubes were then stored in an incubator at 70 °C for 5 days. The weight of the dry extruded debris was established by subtracting the pre-instrumentation and post-instrumentation weight of the Eppendorf tubes for each group. The data obtained were analysed using one-way analysis of variance (anova) and Tukey's post hoc tests. The OneShape file was associated with less debris extrusion than the Reciproc and WaveOne files when canal instrumentation was performed without a glide path (P < 0.05). However, no significant difference was found between the Reciproc and WaveOne files (P > 0.05). There was no significant difference amongst the OneShape, Reciproc and WaveOne files when a glide path was created before canal preparation in curved root canals (P > 0.05). All systems extruded significantly less debris in groups with a glide path than in groups without a glide path (P < 0.05). All instruments were associated with apical extrusion of debris. Creating a glide path prior to canal instrumentation reduced the amount of apically extruded debris in curved canals. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Standard Populations (Millions) for Age-Adjustment - SEER Population Datasets
Download files containing standard population data for use in statististical software. The files contain the same data distributed with SEER*Stat software. You can also view the standard populations, either 19 age groups or single ages.
Matysik, Artur; Kraut, Rachel S
2014-05-01
Single molecule tracking (SMT) analysis of fluorescently tagged lipid and protein probes is an attractive alternative to ensemble averaged methods such as fluorescence correlation spectroscopy (FCS) or fluorescence recovery after photobleaching (FRAP) for measuring diffusion in artificial and plasma membranes. The meaningful estimation of diffusion coefficients and their errors is however not straightforward, and is heavily dependent on sample type, acquisition method, and equipment used. Many approaches require advanced computing and programming skills for their implementation. Here we present TrackArt software, an accessible graphic interface for simulation and complex analysis of multiple particle paths. Imported trajectories can be filtered to eliminate spurious or corrupted tracks, and are then analyzed using several previously described methodologies, to yield single or multiple diffusion coefficients, their population fractions, and estimated errors. We use TrackArt to analyze the single-molecule diffusion behavior of a sphingolipid analog SM-Atto647N, in mica supported DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayers. Fitting with a two-component diffusion model confirms the existence of two separate populations of diffusing particles in these bilayers on mica. As a demonstration of the TrackArt workflow, we characterize and discuss the effective activation energies required to increase the diffusion rates of these populations, obtained from Arrhenius plots of temperature-dependent diffusion. Finally, TrackArt provides a simulation module, allowing the user to generate models with multiple particle trajectories, diffusing with different characteristics. Maps of domains, acting as impermeable or permeable obstacles for particles diffusing with given rate constants and diffusion coefficients, can be simulated or imported from an image. Importantly, this allows one to use simulated data with a known diffusion behavior as a comparison for results acquired using particular algorithms on actual, "natural" samples whose diffusion behavior is to be extracted. It can also serve as a tool for demonstrating diffusion principles. TrackArt is an open source, platform-independent, Matlab-based graphical user interface, and is easy to use even for those unfamiliar with the Matlab programming environment. TrackArt can be used for accurate simulation and analysis of complex diffusion data, such as diffusion in lipid bilayers, providing publication-quality formatted results.
Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy.
Rowland, David J; Tuson, Hannah H; Biteen, Julie S
2016-05-24
By following single fluorescent molecules in a microscope, single-particle tracking (SPT) can measure diffusion and binding on the nanometer and millisecond scales. Still, although SPT can at its limits characterize the fastest biomolecules as they interact with subcellular environments, this measurement may require advanced illumination techniques such as stroboscopic illumination. Here, we address the challenge of measuring fast subcellular motion by instead analyzing single-molecule data with spatiotemporal image correlation spectroscopy (STICS) with a focus on measurements of confined motion. Our SPT and STICS analysis of simulations of the fast diffusion of confined molecules shows that image blur affects both STICS and SPT, and we find biased diffusion rate measurements for STICS analysis in the limits of fast diffusion and tight confinement due to fitting STICS correlation functions to a Gaussian approximation. However, we determine that with STICS, it is possible to correctly interpret the motion that blurs single-molecule images without advanced illumination techniques or fast cameras. In particular, we present a method to overcome the bias due to image blur by properly estimating the width of the correlation function by directly calculating the correlation function variance instead of using the typical Gaussian fitting procedure. Our simulation results are validated by applying the STICS method to experimental measurements of fast, confined motion: we measure the diffusion of cytosolic mMaple3 in living Escherichia coli cells at 25 frames/s under continuous illumination to illustrate the utility of STICS in an experimental parameter regime for which in-frame motion prevents SPT and tight confinement of fast diffusion precludes stroboscopic illumination. Overall, our application of STICS to freely diffusing cytosolic protein in small cells extends the utility of single-molecule experiments to the regime of fast confined diffusion without requiring advanced microscopy techniques. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Electron-hole diffusion lengths >175 μm in solution-grown CH 3NH 3PbI 3 single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Qingfeng; Fang, Yanjun; Shao, Yuchuan
Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH 3NH 3PbI 3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH 3NH 3PbI 3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm –2) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smallermore » trap densities in the single crystals than in polycrystalline thin films. As a result, the long carrier diffusion lengths enabled the use of CH 3NH 3PbI 3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.« less
Electron-hole diffusion lengths >175 μm in solution-grown CH 3NH 3PbI 3 single crystals
Dong, Qingfeng; Fang, Yanjun; Shao, Yuchuan; ...
2015-02-27
Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH 3NH 3PbI 3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH 3NH 3PbI 3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm –2) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smallermore » trap densities in the single crystals than in polycrystalline thin films. As a result, the long carrier diffusion lengths enabled the use of CH 3NH 3PbI 3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.« less
Parallel file system with metadata distributed across partitioned key-value store c
Bent, John M.; Faibish, Sorin; Grider, Gary; Torres, Aaron
2017-09-19
Improved techniques are provided for storing metadata associated with a plurality of sub-files associated with a single shared file in a parallel file system. The shared file is generated by a plurality of applications executing on a plurality of compute nodes. A compute node implements a Parallel Log Structured File System (PLFS) library to store at least one portion of the shared file generated by an application executing on the compute node and metadata for the at least one portion of the shared file on one or more object storage servers. The compute node is also configured to implement a partitioned data store for storing a partition of the metadata for the shared file, wherein the partitioned data store communicates with partitioned data stores on other compute nodes using a message passing interface. The partitioned data store can be implemented, for example, using Multidimensional Data Hashing Indexing Middleware (MDHIM).
Aging Wiener-Khinchin theorem and critical exponents of 1/f^{β} noise.
Leibovich, N; Dechant, A; Lutz, E; Barkai, E
2016-11-01
The power spectrum of a stationary process may be calculated in terms of the autocorrelation function using the Wiener-Khinchin theorem. We here generalize the Wiener-Khinchin theorem for nonstationary processes and introduce a time-dependent power spectrum 〈S_{t_{m}}(ω)〉 where t_{m} is the measurement time. For processes with an aging autocorrelation function of the form 〈I(t)I(t+τ)〉=t^{Υ}ϕ_{EA}(τ/t), where ϕ_{EA}(x) is a nonanalytic function when x is small, we find aging 1/f^{β} noise. Aging 1/f^{β} noise is characterized by five critical exponents. We derive the relations between the scaled autocorrelation function and these exponents. We show that our definition of the time-dependent spectrum retains its interpretation as a density of Fourier modes and discuss the relation to the apparent infrared divergence of 1/f^{β} noise. We illustrate our results for blinking-quantum-dot models, single-file diffusion, and Brownian motion in a logarithmic potential.
Empirical constraints on closure temperatures from a single diffusion coefficient
NASA Astrophysics Data System (ADS)
Lee, J. K. W.
The elucidation of thermal histories by geochronological and isotopic means is based fundamentally on solid-state diffusion and the concept of closure temperatures. Because diffusion is thermally activated, an analytical solution of the closure temperature (Tc*) can only be obtained if the diffusion coefficient D of the diffusion process is measured at two or more different temperatures. If the diffusion coefficient is known at only one temperature, however, the true closure temperature (Tc*) cannot be calculated analytically because there exist an infinite number of possible (apparent) closure temperatures (Tc) which can be generated by this single datum. By introducing further empirical constraints to limit the range of possible closure temperatures, however, mathematical analysis of a modified form of the closure temperature equation shows that it is possible to make both qualitative and quantitative estimates of Tc* given knowledge of only one diffusion coefficient DM measured at one temperature TM. Qualitative constraints of the true closure temperature Tc* are obtained from the shapes of curves on a graph of the apparent Tc (Tc) vs. activation energy E, in which each curve is based on a single diffusion coefficient measurement DM at temperature TM. Using a realistic range of E, the concavity of the curve shows whether TM is less than, approximately equal to, or greater than Tc*. Quantitative estimates are obtained by considering two dimensionless parameters [
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingargiola, A.; Laurence, T. A.; Boutelle, R.
We introduce Photon-HDF5, an open and efficient file format to simplify exchange and long term accessibility of data from single-molecule fluorescence experiments based on photon-counting detectors such as single-photon avalanche diode (SPAD), photomultiplier tube (PMT) or arrays of such detectors. The format is based on HDF5, a widely used platform- and language-independent hierarchical file format for which user-friendly viewers are available. Photon-HDF5 can store raw photon data (timestamp, channel number, etc) from any acquisition hardware, but also setup and sample description, information on provenance, authorship and other metadata, and is flexible enough to include any kind of custom data. Themore » format specifications are hosted on a public website, which is open to contributions by the biophysics community. As an initial resource, the website provides code examples to read Photon-HDF5 files in several programming languages and a reference python library (phconvert), to create new Photon-HDF5 files and convert several existing file formats into Photon-HDF5. As a result, to encourage adoption by the academic and commercial communities, all software is released under the MIT open source license.« less
Singbal, Kiran; Jain, Disha; Raja, Kranthi; Hoe, Tan Ming
2017-01-01
Background: Apical extrusion of debris during instrumentation is detrimental to the patient. Aim: The aim of this study was to evaluate the apical extrusion of debris during root canal instrumentation using two single file rotary Ni-Ti systems. Materials and Methods: Thirty freshly extracted mandibular premolars with straight roots were sterilized and divided into two groups instrumented using: One Shape rotary Ni-Ti system with Endoflare orifice shaper (Group 1) and Neo-Niti rotary Ni-Ti system with C1 orifice shaper (Group 2). Preweighed Eppendorf tubes fitted for each tooth before instrumentation. During instrumentation, 1 mL of distilled water with a 30-gauge needle was used to irrigate after every instrument. Tips of the tooth were irrigated with 2 ml distilled water after removal from Eppendorf tubes. The total volume of irrigant in each group was the same 8 ml. All tubes were incubated at 68°C for 15 days and subsequently weighed. The difference between pre- and post-debris weights was calculated, and statistical analysis was performed using independent t-test and level of significance was set at 0.05. Results: The difference between pre- and post-weights was significantly greater for the One Shape system. Conclusions: The Neolix Niti single file was associated with less extrusion compared to One Shape single file system. PMID:28855748
Singbal, Kiran; Jain, Disha; Raja, Kranthi; Hoe, Tan Ming
2017-01-01
Apical extrusion of debris during instrumentation is detrimental to the patient. The aim of this study was to evaluate the apical extrusion of debris during root canal instrumentation using two single file rotary Ni-Ti systems. Thirty freshly extracted mandibular premolars with straight roots were sterilized and divided into two groups instrumented using: One Shape rotary Ni-Ti system with Endoflare orifice shaper (Group 1) and Neo-Niti rotary Ni-Ti system with C1 orifice shaper (Group 2). Preweighed Eppendorf tubes fitted for each tooth before instrumentation. During instrumentation, 1 mL of distilled water with a 30-gauge needle was used to irrigate after every instrument. Tips of the tooth were irrigated with 2 ml distilled water after removal from Eppendorf tubes. The total volume of irrigant in each group was the same 8 ml. All tubes were incubated at 68°C for 15 days and subsequently weighed. The difference between pre- and post-debris weights was calculated, and statistical analysis was performed using independent t -test and level of significance was set at 0.05. The difference between pre- and post-weights was significantly greater for the One Shape system. The Neolix Niti single file was associated with less extrusion compared to One Shape single file system.
Mean first-passage times of non-Markovian random walkers in confinement.
Guérin, T; Levernier, N; Bénichou, O; Voituriez, R
2016-06-16
The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels, or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics, dense soft colloids or viscoelastic solutions. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.
Mean first-passage times of non-Markovian random walkers in confinement
NASA Astrophysics Data System (ADS)
Guérin, T.; Levernier, N.; Bénichou, O.; Voituriez, R.
2016-06-01
The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels, or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics, dense soft colloids or viscoelastic solutions. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.
Boggara, Mohan; Athmakuri, Krishna; Srivastava, Sunit; Cole, Richard; Kane, Ravi S
2013-02-01
A number of studies have shown that receptors of the epidermal growth factor receptor family (ErbBs) exist as higher-order oligomers (clusters) in cell membranes in addition to their monomeric and dimeric forms. Characterizing the lateral diffusion of such clusters may provide insights into their dynamics and help elucidate their functional relevance. To that end, we used single particle tracking to study the diffusion of clusters of the epidermal growth factor (EGF) receptor (EGFR; ErbB1) containing bound fluorescently-labeled ligand, EGF. EGFR clusters had a median diffusivity of 6.8×10(-11)cm(2)/s and were found to exhibit different modes of transport (immobile, simple, confined, and directed) similar to that previously reported for single EGFR molecules. Disruption of actin filaments increased the median diffusivity of EGFR clusters to 10.3×10(-11)cm(2)/s, while preserving the different modes of diffusion. Interestingly, disruption of microtubules rendered EGFR clusters nearly immobile. Our data suggests that microtubules may play an important role in the diffusion of EGFR clusters either directly or perhaps indirectly via other mechanisms. To our knowledge, this is the first report probing the effect of the cytoskeleton on the diffusion of EGFR clusters in the membranes of live cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Diffusion maps for high-dimensional single-cell analysis of differentiation data.
Haghverdi, Laleh; Buettner, Florian; Theis, Fabian J
2015-09-15
Single-cell technologies have recently gained popularity in cellular differentiation studies regarding their ability to resolve potential heterogeneities in cell populations. Analyzing such high-dimensional single-cell data has its own statistical and computational challenges. Popular multivariate approaches are based on data normalization, followed by dimension reduction and clustering to identify subgroups. However, in the case of cellular differentiation, we would not expect clear clusters to be present but instead expect the cells to follow continuous branching lineages. Here, we propose the use of diffusion maps to deal with the problem of defining differentiation trajectories. We adapt this method to single-cell data by adequate choice of kernel width and inclusion of uncertainties or missing measurement values, which enables the establishment of a pseudotemporal ordering of single cells in a high-dimensional gene expression space. We expect this output to reflect cell differentiation trajectories, where the data originates from intrinsic diffusion-like dynamics. Starting from a pluripotent stage, cells move smoothly within the transcriptional landscape towards more differentiated states with some stochasticity along their path. We demonstrate the robustness of our method with respect to extrinsic noise (e.g. measurement noise) and sampling density heterogeneities on simulated toy data as well as two single-cell quantitative polymerase chain reaction datasets (i.e. mouse haematopoietic stem cells and mouse embryonic stem cells) and an RNA-Seq data of human pre-implantation embryos. We show that diffusion maps perform considerably better than Principal Component Analysis and are advantageous over other techniques for non-linear dimension reduction such as t-distributed Stochastic Neighbour Embedding for preserving the global structures and pseudotemporal ordering of cells. The Matlab implementation of diffusion maps for single-cell data is available at https://www.helmholtz-muenchen.de/icb/single-cell-diffusion-map. fbuettner.phys@gmail.com, fabian.theis@helmholtz-muenchen.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Moens, Pierre D.J.; Digman, Michelle A.; Gratton, Enrico
2015-01-01
The image-mean square displacement technique applies the calculation of the mean square displacement commonly used in single-molecule tracking to images without resolving single particles. The image-mean square displacement plot obtained is similar to the mean square displacement plot obtained using the single-particle tracking technique. This plot is then used to reconstruct the protein diffusion law and to identify whether the labeled molecules are undergoing pure isotropic, restricted, corralled, transiently confined, or directed diffusion. In our study total internal reflection fluorescence microscopy images were taken of Cholera toxin subunit B (CtxB) membrane-labeled NIH 3T3 mouse fibroblasts and MDA 231 MB cells. We found a population of CTxB undergoing purely isotropic diffusion and one displaying restricted diffusion with corral sizes ranging from 150 to ∼1800 nm. We show that the diffusion rate of CTxB bound to GM1 is independent of the size of the confinement, suggesting that the mechanism of confinement is different from the mechanism controlling the diffusion rate of CtxB. We highlight the potential effect of continuous illumination on the diffusion mode of CTxB. We also show that aggregation of CTxB/GM1 in large complexes occurs and that these aggregates tend to have slower diffusion rates. PMID:25809257
Moens, Pierre D J; Digman, Michelle A; Gratton, Enrico
2015-03-24
The image-mean square displacement technique applies the calculation of the mean square displacement commonly used in single-molecule tracking to images without resolving single particles. The image-mean square displacement plot obtained is similar to the mean square displacement plot obtained using the single-particle tracking technique. This plot is then used to reconstruct the protein diffusion law and to identify whether the labeled molecules are undergoing pure isotropic, restricted, corralled, transiently confined, or directed diffusion. In our study total internal reflection fluorescence microscopy images were taken of Cholera toxin subunit B (CtxB) membrane-labeled NIH 3T3 mouse fibroblasts and MDA 231 MB cells. We found a population of CTxB undergoing purely isotropic diffusion and one displaying restricted diffusion with corral sizes ranging from 150 to ∼1800 nm. We show that the diffusion rate of CTxB bound to GM1 is independent of the size of the confinement, suggesting that the mechanism of confinement is different from the mechanism controlling the diffusion rate of CtxB. We highlight the potential effect of continuous illumination on the diffusion mode of CTxB. We also show that aggregation of CTxB/GM1 in large complexes occurs and that these aggregates tend to have slower diffusion rates. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Single-shot spiral imaging enabled by an expanded encoding model: Demonstration in diffusion MRI.
Wilm, Bertram J; Barmet, Christoph; Gross, Simon; Kasper, Lars; Vannesjo, S Johanna; Haeberlin, Max; Dietrich, Benjamin E; Brunner, David O; Schmid, Thomas; Pruessmann, Klaas P
2017-01-01
The purpose of this work was to improve the quality of single-shot spiral MRI and demonstrate its application for diffusion-weighted imaging. Image formation is based on an expanded encoding model that accounts for dynamic magnetic fields up to third order in space, nonuniform static B 0 , and coil sensitivity encoding. The encoding model is determined by B 0 mapping, sensitivity mapping, and concurrent field monitoring. Reconstruction is performed by iterative inversion of the expanded signal equations. Diffusion-tensor imaging with single-shot spiral readouts is performed in a phantom and in vivo, using a clinical 3T instrument. Image quality is assessed in terms of artefact levels, image congruence, and the influence of the different encoding factors. Using the full encoding model, diffusion-weighted single-shot spiral imaging of high quality is accomplished both in vitro and in vivo. Accounting for actual field dynamics, including higher orders, is found to be critical to suppress blurring, aliasing, and distortion. Enhanced image congruence permitted data fusion and diffusion tensor analysis without coregistration. Use of an expanded signal model largely overcomes the traditional vulnerability of spiral imaging with long readouts. It renders single-shot spirals competitive with echo-planar readouts and thus deploys shorter echo times and superior readout efficiency for diffusion imaging and further prospective applications. Magn Reson Med 77:83-91, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Meshram, GK
2010-01-01
ABSTRACT Aim : To assess the cleaning efficacy of manual and automated instrumentation using 4% sodium hypochlorite singly and in combination with Glyde file Prep as root canal irrigant. Methodology : The study utilized 40 extracted human permanent premolars with single, straight and fully formed root. The teeth were then divided into four groups of ten each, Group I and II were prepared by manual instruments with 4% sodium hypochlorite used as irrigant singly [Group I] or in combination with Glyde file prep. Group III and IV were prepared by automated instruments at 250 rpm with 4% sodium hypochlorite as irrigant singly [Group III] and in combination with glyde file prep [Group IV] automated instrumentation. After completion of the root canal preparation the canal, teeth were prepared for SEM examination. These photomicrographs were qualitatively evaluated using criteria. Overall cleanliness, presence or absence of the smear layer, presence or absence of the debris, patency of the opening of dentinal tubules. Results : When comparing the cleansing efficacy of manual and automated instrumentation using 4% sodium hypochlorite better cleansing was there with manual instrumentation. When comparing the cleansing efficacy of manual and automated instrumentation using combination regime cleansing is better with automated instrumentation. When comparing the cleansing efficacy of manual instrumentation using 4% sodium hypochlorite singly and in combination with EDTA, the combination regime led to better cleansing. When comparing the cleansing efficacy of automated instrumentation using 4% sodium hypochlorite singly and in combination regime lead to better cleansing. Conclusion : Neither of instrumentation technique, nor irrigating regimes were capable of providing a completely clean canal. Automated instrumentation with a combination of sodium hypochlorite & EDTA resulted the best cleansing efficacy. PMID:27616839
Efficient compression of molecular dynamics trajectory files.
Marais, Patrick; Kenwood, Julian; Smith, Keegan Carruthers; Kuttel, Michelle M; Gain, James
2012-10-15
We investigate whether specific properties of molecular dynamics trajectory files can be exploited to achieve effective file compression. We explore two classes of lossy, quantized compression scheme: "interframe" predictors, which exploit temporal coherence between successive frames in a simulation, and more complex "intraframe" schemes, which compress each frame independently. Our interframe predictors are fast, memory-efficient and well suited to on-the-fly compression of massive simulation data sets, and significantly outperform the benchmark BZip2 application. Our schemes are configurable: atomic positional accuracy can be sacrificed to achieve greater compression. For high fidelity compression, our linear interframe predictor gives the best results at very little computational cost: at moderate levels of approximation (12-bit quantization, maximum error ≈ 10(-2) Å), we can compress a 1-2 fs trajectory file to 5-8% of its original size. For 200 fs time steps-typically used in fine grained water diffusion experiments-we can compress files to ~25% of their input size, still substantially better than BZip2. While compression performance degrades with high levels of quantization, the simulation error is typically much greater than the associated approximation error in such cases. Copyright © 2012 Wiley Periodicals, Inc.
Zebra: A striped network file system
NASA Technical Reports Server (NTRS)
Hartman, John H.; Ousterhout, John K.
1992-01-01
The design of Zebra, a striped network file system, is presented. Zebra applies ideas from log-structured file system (LFS) and RAID research to network file systems, resulting in a network file system that has scalable performance, uses its servers efficiently even when its applications are using small files, and provides high availability. Zebra stripes file data across multiple servers, so that the file transfer rate is not limited by the performance of a single server. High availability is achieved by maintaining parity information for the file system. If a server fails its contents can be reconstructed using the contents of the remaining servers and the parity information. Zebra differs from existing striped file systems in the way it stripes file data: Zebra does not stripe on a per-file basis; instead it stripes the stream of bytes written by each client. Clients write to the servers in units called stripe fragments, which are analogous to segments in an LFS. Stripe fragments contain file blocks that were written recently, without regard to which file they belong. This method of striping has numerous advantages over per-file striping, including increased server efficiency, efficient parity computation, and elimination of parity update.
Arora, Neha; Syed, Aleem; Sander, Suzanne; Smith, Emily A
2014-10-07
A combination of sterol modulation with cyclodextrins plus fluorescence microscopy revealed a biophysical mechanism behind cholesterol's influence on the diffusion of a ubiquitous class of receptors called integrins. The heterogeneous diffusion of integrins bound to ligand-coated quantum dots was measured using single particle tracking (SPT), and the ensemble changes in integrin diffusion were measured by fluorescence recovery after photobleaching (FRAP). A 25 ± 1% reduction of membrane cholesterol resulted in three significant changes to the diffusion of ligand-bound αPS2CβPS integrins as measured by SPT. There was a 23% increase in ligand-bound mobile integrins; there was a statistically significant increase in the average diffusion coefficient inside zones of confined diffusion, and histograms of confined integrin trajectories showed an increased frequency in the range of 0.1-1 μm(2) s(-1) and a decreased frequency in the 0.001-0.1 μm(2) s(-1) range. No statistical change was measured in the duration of confinement nor the size of confined zones. Restoring the cholesterol-depleted cells with exogenous cholesterol or exogenous epicholesterol resulted in similar diffusion properties. Epicholesterol differs from cholesterol in the orientation of a single hydroxyl group. The ability of epicholesterol to substitute for cholesterol suggests a biophysical mechanism for cholesterol's effect on integrin diffusion. Influences of bilayer thickness, viscosity and organization are discussed as possible explanations for the measured changes in integrin diffusion when the membrane cholesterol concentration is reduced.
Diffusion in Single Supported Lipid Bilayers
NASA Astrophysics Data System (ADS)
Armstrong, C. L.; Trapp, M.; Rheinstädter, M. C.
2011-03-01
Despite their potential relevance for the development of functionalized surfaces and biosensors, the study of single supported membranes using neutron scattering has been limited by the challenge of obtaining relevant dynamic information from a sample with minimal material. Using state of the art neutron instrumentation we have, for the first time, modeled lipid diffusion in single supported lipid bilayers. While we find that the diffusion coefficient for the single bilayer system is comparable to a multi-lamellar lipid system, the molecular mechanism for lipid motion in the single bilayer is a continuous diffusion process with no sign of the flow-like ballistic motion reported in the stacked membrane system. In the future, these membranes will be used to hold and align proteins, mimicking physiological conditions enabling the study of protein structure, function and interactions in relevant and highly topical membrane/protein systems with minimal sample material. C.L. Armstrong, M.D. Kaye, M. Zamponi, E. Mamontov, M. Tyagi, T. Jenkins and M.C. Rheinstädter, Soft Matter Communication, 2010, Advance Article, DOI: 10.1039/C0SM00637H
Reciproc versus Twisted file for root canal filling removal: assessment of apically extruded debris.
Altunbas, Demet; Kutuk, Betul; Toyoglu, Mustafa; Kutlu, Gizem; Kustarci, Alper; Er, Kursat
2016-01-01
The aim of this study was to evaluate the amount of apically extruded debris during endodontic retreatment with different file systems. Sixty extracted human mandibular premolar teeth were used in this study. Root canals of the teeth were instrumented and filled before being randomly assigned to three groups. Guttapercha was removed using the Reciproc system, the Twisted File system (TF), and Hedström-files (H-file). Apically extruded debris was collected and dried in pre-weighed Eppendorf tubes. The amount of extruded debris was assessed with an electronic balance. Data were statistically analyzed using one-way ANOVA, Kruskal-Wallis, and Mann-Whitney U tests. The Reciproc and TF systems extruded significantly less debris than the H-file (p<0.05). However, no significant difference was found between the Reciproc and TF systems. All tested file systems caused apical extrusion of debris. Both the rotary file (TF) and the reciprocating single-file (Reciproc) systems were associated with less apical extrusion compared with the H-file.
Test of the diffusing-diffusivity mechanism using near-wall colloidal dynamics
NASA Astrophysics Data System (ADS)
Matse, Mpumelelo; Chubynsky, Mykyta V.; Bechhoefer, John
2017-10-01
The mechanism of diffusing diffusivity predicts that, in environments where the diffusivity changes gradually, the displacement distribution becomes non-Gaussian, even though the mean-square displacement grows linearly with time. Here, we report single-particle tracking measurements of the diffusion of colloidal spheres near a planar substrate. Because the local effective diffusivity is known, we have been able to carry out a direct test of this mechanism for diffusion in inhomogeneous media.
Debris Evaluation after Root Canal Shaping with Rotating and Reciprocating Single-File Systems
Dagna, Alberto; Gastaldo, Giulia; Beltrami, Riccardo; Poggio, Claudio
2016-01-01
This study evaluated the root canal dentine surface by scanning electron microscope (SEM) after shaping with two reciprocating single-file NiTi systems and two rotating single-file NiTi systems, in order to verify the presence/absence of the smear layer and the presence/absence of open tubules along the walls of each sample; Forty-eight single-rooted teeth were divided into four groups and shaped with OneShape (OS), F6 SkyTaper (F6), WaveOne (WO) and Reciproc and irrigated using 5.25% NaOCl and 17% EDTA. Root canal walls were analyzed by SEM at a standard magnification of 2500×. The presence/absence of the smear layer and the presence/absence of open tubules at the coronal, middle, and apical third of each canal were estimated using a five-step scale for scores. Numeric data were analyzed using Kruskal-Wallis and Mann-Whitney U statistical tests and significance was predetermined at P < 0.05; The Kruskal-Wallis ANOVA for debris score showed significant differences among the NiTi systems (P < 0.05). The Mann-Whitney test confirmed that reciprocating systems presented significantly higher score values than rotating files. The same results were assessed considering the smear layer scores. ANOVA confirmed that the apical third of the canal maintained a higher quantity of debris and smear layer after preparation of all the samples; Single-use NiTi systems used in continuous rotation appeared to be more effective than reciprocating instruments in leaving clean walls. The reciprocating systems produced more debris and smear layer than rotating instruments. PMID:27763503
Chen, Fang; Neupane, Bhanu; Li, Peiyuan; Su, Wei; Wang, Gufeng
2016-08-01
We explored the feasibility of using confocal fluorescence correlation spectroscopy to study small nanoparticle diffusion in hundred-nanometer-sized cylindrical pores. By modeling single particle diffusion in tube-like confined three-dimensional space aligned parallel to the confocal optical axis, we showed that two diffusion dynamics can be observed in both original intensity traces and the autocorrelation functions (ACFs): the confined two-dimensional lateral diffusion and the unconfined one-dimensional (1D) axial diffusion. The separation of the axial and confined lateral diffusion dynamics provides an opportunity to study diffusions in different dimensions separately. We further experimentally studied 45 nm carboxylated polystyrene particles diffusing in 300 nm alumina pores. The experimental data showed consistency with the simulation. To extract the accurate axial diffusion coefficient, we found that a 1D diffusion model with a Lorentzian axial collection profile needs to be used to analyze the experimental ACFs. The diffusion of the 45 nm nanoparticles in polyethyleneglycol-passivated 300 nm pores slowed down by a factor of ∼2, which can be satisfactorily explained by hydrodynamic frictions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Expanding the calculation of activation volumes: Self-diffusion in liquid water
NASA Astrophysics Data System (ADS)
Piskulich, Zeke A.; Mesele, Oluwaseun O.; Thompson, Ward H.
2018-04-01
A general method for calculating the dependence of dynamical time scales on macroscopic thermodynamic variables from a single set of simulations is presented. The approach is applied to the pressure dependence of the self-diffusion coefficient of liquid water as a particularly useful illustration. It is shown how the activation volume associated with diffusion can be obtained directly from simulations at a single pressure, avoiding approximations that are typically invoked.
Deceit: A flexible distributed file system
NASA Technical Reports Server (NTRS)
Siegel, Alex; Birman, Kenneth; Marzullo, Keith
1989-01-01
Deceit, a distributed file system (DFS) being developed at Cornell, focuses on flexible file semantics in relation to efficiency, scalability, and reliability. Deceit servers are interchangeable and collectively provide the illusion of a single, large server machine to any clients of the Deceit service. Non-volatile replicas of each file are stored on a subset of the file servers. The user is able to set parameters on a file to achieve different levels of availability, performance, and one-copy serializability. Deceit also supports a file version control mechanism. In contrast with many recent DFS efforts, Deceit can behave like a plain Sun Network File System (NFS) server and can be used by any NFS client without modifying any client software. The current Deceit prototype uses the ISIS Distributed Programming Environment for all communication and process group management, an approach that reduces system complexity and increases system robustness.
17 CFR 270.30a-2 - Certification of Form N-CSR and Form N-Q.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., at the time of filing of the report must sign a certification. (b) Each report on Form N-CSR filed by... company (or equivalent thereof) must sign a certification. This requirement may be satisfied by a single... Form N-CSR and Form N-Q. (a) Each report filed on Form N-CSR (§§ 249.331 and 274.128 of this chapter...
17 CFR 270.30a-2 - Certification of Form N-CSR and Form N-Q.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., at the time of filing of the report must sign a certification. (b) Each report on Form N-CSR filed by... company (or equivalent thereof) must sign a certification. This requirement may be satisfied by a single... Form N-CSR and Form N-Q. (a) Each report filed on Form N-CSR (§§ 249.331 and 274.128 of this chapter...
Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles
Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.
2015-01-01
Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis. PMID:26249347
Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles
Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; ...
2015-07-28
Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier'smore » equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. In addition, these methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.« less
NASA Astrophysics Data System (ADS)
Mühlbacher, Marlene; Bochkarev, Anton S.; Mendez-Martin, Francisca; Sartory, Bernhard; Chitu, Livia; Popov, Maxim N.; Puschnig, Peter; Spitaler, Jürgen; Ding, Hong; Schalk, Nina; Lu, Jun; Hultman, Lars; Mitterer, Christian
2015-08-01
Dense single-crystal and polycrystalline TiN/Cu stacks were prepared by unbalanced DC magnetron sputter deposition at a substrate temperature of 700 °C and a pulsed bias potential of -100 V. The microstructural variation was achieved by using two different substrate materials, MgO(001) and thermally oxidized Si(001), respectively. Subsequently, the stacks were subjected to isothermal annealing treatments at 900 °C for 1 h in high vacuum to induce the diffusion of Cu into the TiN. The performance of the TiN diffusion barrier layers was evaluated by cross-sectional transmission electron microscopy in combination with energy-dispersive X-ray spectrometry mapping and atom probe tomography. No Cu penetration was evident in the single-crystal stack up to annealing temperatures of 900 °C, due to the low density of line and planar defects in single-crystal TiN. However, at higher annealing temperatures when diffusion becomes more prominent, density-functional theory calculations predict a stoichiometry-dependent atomic diffusion mechanism of Cu in bulk TiN, with Cu diffusing on the N sublattice for the experimental N/Ti ratio. In comparison, localized diffusion of Cu along grain boundaries in the columnar polycrystalline TiN barriers was detected after the annealing treatment. The maximum observed diffusion length was approximately 30 nm, yielding a grain boundary diffusion coefficient of the order of 10-16 cm2 s-1 at 900 °C. This is 10 to 100 times less than for comparable underdense polycrystalline TiN coatings deposited without external substrate heating or bias potential. The combined numerical and experimental approach presented in this paper enables the contrasting juxtaposition of diffusion phenomena and mechanisms in two TiN coatings, which differ from each other only in the presence of grain boundaries.
Nakatani, Kiyoharu; Matsuta, Emi
2015-01-01
The release mechanism of coumarin 102 from a single ODS-silica gel microparticle into the water phase in the presence of Triton X-100 was investigated by confocal fluorescence microspectroscopy combined with the single microparticle injection technique. The release rate significantly depended on the Triton X-100 concentration in the water phase and was not limited by diffusion in the pores of the microparticle. The release rate constant was inversely proportional to the microparticle radius squared, indicating that the rate-determining step is the external diffusion between the microparticle and the water phase.
Integration experiences and performance studies of A COTS parallel archive systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hsing-bung; Scott, Cody; Grider, Bary
2010-01-01
Current and future Archive Storage Systems have been asked to (a) scale to very high bandwidths, (b) scale in metadata performance, (c) support policy-based hierarchical storage management capability, (d) scale in supporting changing needs of very large data sets, (e) support standard interface, and (f) utilize commercial-off-the-shelf(COTS) hardware. Parallel file systems have been asked to do the same thing but at one or more orders of magnitude faster in performance. Archive systems continue to move closer to file systems in their design due to the need for speed and bandwidth, especially metadata searching speeds such as more caching and lessmore » robust semantics. Currently the number of extreme highly scalable parallel archive solutions is very small especially those that will move a single large striped parallel disk file onto many tapes in parallel. We believe that a hybrid storage approach of using COTS components and innovative software technology can bring new capabilities into a production environment for the HPC community much faster than the approach of creating and maintaining a complete end-to-end unique parallel archive software solution. In this paper, we relay our experience of integrating a global parallel file system and a standard backup/archive product with a very small amount of additional code to provide a scalable, parallel archive. Our solution has a high degree of overlap with current parallel archive products including (a) doing parallel movement to/from tape for a single large parallel file, (b) hierarchical storage management, (c) ILM features, (d) high volume (non-single parallel file) archives for backup/archive/content management, and (e) leveraging all free file movement tools in Linux such as copy, move, ls, tar, etc. We have successfully applied our working COTS Parallel Archive System to the current world's first petaflop/s computing system, LANL's Roadrunner, and demonstrated its capability to address requirements of future archival storage systems.« less
Integration experiments and performance studies of a COTS parallel archive system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hsing-bung; Scott, Cody; Grider, Gary
2010-06-16
Current and future Archive Storage Systems have been asked to (a) scale to very high bandwidths, (b) scale in metadata performance, (c) support policy-based hierarchical storage management capability, (d) scale in supporting changing needs of very large data sets, (e) support standard interface, and (f) utilize commercial-off-the-shelf (COTS) hardware. Parallel file systems have been asked to do the same thing but at one or more orders of magnitude faster in performance. Archive systems continue to move closer to file systems in their design due to the need for speed and bandwidth, especially metadata searching speeds such as more caching andmore » less robust semantics. Currently the number of extreme highly scalable parallel archive solutions is very small especially those that will move a single large striped parallel disk file onto many tapes in parallel. We believe that a hybrid storage approach of using COTS components and innovative software technology can bring new capabilities into a production environment for the HPC community much faster than the approach of creating and maintaining a complete end-to-end unique parallel archive software solution. In this paper, we relay our experience of integrating a global parallel file system and a standard backup/archive product with a very small amount of additional code to provide a scalable, parallel archive. Our solution has a high degree of overlap with current parallel archive products including (a) doing parallel movement to/from tape for a single large parallel file, (b) hierarchical storage management, (c) ILM features, (d) high volume (non-single parallel file) archives for backup/archive/content management, and (e) leveraging all free file movement tools in Linux such as copy, move, Is, tar, etc. We have successfully applied our working COTS Parallel Archive System to the current world's first petafiop/s computing system, LANL's Roadrunner machine, and demonstrated its capability to address requirements of future archival storage systems.« less
Phase transition in conservative diffusive contact processes
NASA Astrophysics Data System (ADS)
Fiore, Carlos E.; de Oliveira, Mário J.
2004-10-01
We determine the phase diagrams of conservative diffusive contact processes by means of numerical simulations. These models are versions of the ordinary diffusive single-creation, pair-creation, and triplet-creation contact processes in which the particle number is conserved. The transition between the frozen and active states was determined by studying the system in the subcritical regime, and the nature of the transition, whether continuous or first order, was determined by looking at the fractal dimension of the critical cluster. For the single-creation model the transition remains continuous for any diffusion rate. For pair- and triplet-creation models, however, the transition becomes first order for high enough diffusion rate. Our results indicate that in the limit of infinite diffusion rate the jump in density equals 2/3 for the pair-creation model and 5/6 for the triplet-creation model.
Notelaers, Kristof; Smisdom, Nick; Rocha, Susana; Janssen, Daniel; Meier, Jochen C; Rigo, Jean-Michel; Hofkens, Johan; Ameloot, Marcel
2012-12-01
The spatio-temporal membrane behavior of glycine receptors (GlyRs) is known to be of influence on receptor homeostasis and functionality. In this work, an elaborate fluorimetric strategy was applied to study the GlyR α3K and L isoforms. Previously established differential clustering, desensitization and synaptic localization of these isoforms imply that membrane behavior is crucial in determining GlyR α3 physiology. Therefore diffusion and aggregation of homomeric α3 isoform-containing GlyRs were studied in HEK 293 cells. A unique combination of multiple diffraction-limited ensemble average methods and subdiffraction single particle techniques was used in order to achieve an integrated view of receptor properties. Static measurements of aggregation were performed with image correlation spectroscopy (ICS) and, single particle based, direct stochastic optical reconstruction microscopy (dSTORM). Receptor diffusion was measured by means of raster image correlation spectroscopy (RICS), temporal image correlation spectroscopy (TICS), fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT). The results show a significant difference in diffusion coefficient and cluster size between the isoforms. This reveals a positive correlation between desensitization and diffusion and disproves the notion that receptor aggregation is a universal mechanism for accelerated desensitization. The difference in diffusion coefficient between the clustering GlyR α3L and the non-clustering GlyR α3K cannot be explained by normal diffusion. SPT measurements indicate that the α3L receptors undergo transient trapping and directed motion, while the GlyR α3K displays mild hindered diffusion. These findings are suggestive of differential molecular interaction of the isoforms after incorporation in the membrane. Copyright © 2012 Elsevier B.V. All rights reserved.
Transport of neutral solute across articular cartilage: the role of zonal diffusivities.
Arbabi, V; Pouran, B; Weinans, H; Zadpoor, A A
2015-07-01
Transport of solutes through diffusion is an important metabolic mechanism for the avascular cartilage tissue. Three types of interconnected physical phenomena, namely mechanical, electrical, and chemical, are all involved in the physics of transport in cartilage. In this study, we use a carefully designed experimental-computational setup to separate the effects of mechanical and chemical factors from those of electrical charges. Axial diffusion of a neutral solute Iodixanol into cartilage was monitored using calibrated microcomputed tomography micro-CT images for up to 48 hr. A biphasic-solute computational model was fitted to the experimental data to determine the diffusion coefficients of cartilage. Cartilage was modeled either using one single diffusion coefficient (single-zone model) or using three diffusion coefficients corresponding to superficial, middle, and deep cartilage zones (multizone model). It was observed that the single-zone model cannot capture the entire concentration-time curve and under-predicts the near-equilibrium concentration values, whereas the multizone model could very well match the experimental data. The diffusion coefficient of the superficial zone was found to be at least one order of magnitude larger than that of the middle zone. Since neutral solutes were used, glycosaminoglycan (GAG) content cannot be the primary reason behind such large differences between the diffusion coefficients of the different cartilage zones. It is therefore concluded that other features of the different cartilage zones such as water content and the organization (orientation) of collagen fibers may be enough to cause large differences in diffusion coefficients through the cartilage thickness.
NASA Astrophysics Data System (ADS)
Rowland, David J.; Biteen, Julie S.
2017-04-01
Single-molecule super-resolution imaging and tracking can measure molecular motions inside living cells on the scale of the molecules themselves. Diffusion in biological systems commonly exhibits multiple modes of motion, which can be effectively quantified by fitting the cumulative probability distribution of the squared step sizes in a two-step fitting process. Here we combine this two-step fit into a single least-squares minimization; this new method vastly reduces the total number of fitting parameters and increases the precision with which diffusion may be measured. We demonstrate this Global Fit approach on a simulated two-component system as well as on a mixture of diffusing 80 nm and 200 nm gold spheres to show improvements in fitting robustness and localization precision compared to the traditional Local Fit algorithm.
Optimal estimates of the diffusion coefficient of a single Brownian trajectory.
Boyer, Denis; Dean, David S; Mejía-Monasterio, Carlos; Oshanin, Gleb
2012-03-01
Modern developments in microscopy and image processing are revolutionizing areas of physics, chemistry, and biology as nanoscale objects can be tracked with unprecedented accuracy. The goal of single-particle tracking is to determine the interaction between the particle and its environment. The price paid for having a direct visualization of a single particle is a consequent lack of statistics. Here we address the optimal way to extract diffusion constants from single trajectories for pure Brownian motion. It is shown that the maximum likelihood estimator is much more efficient than the commonly used least-squares estimate. Furthermore, we investigate the effect of disorder on the distribution of estimated diffusion constants and show that it increases the probability of observing estimates much smaller than the true (average) value.
NASA Technical Reports Server (NTRS)
Lee, C. H.
1978-01-01
The CELFE computer program and user's manual, together with the execution of the CELFE/NASTRAN system, are described. The execution procedure and the transfer of data between the CELFE and NASTRAN programs are controlled through the use of DATA files in the Univac 1100 system. Five data files are used to control the runstream and data transfer, and three files are used to hold the programs. These files are contained on a single tape. Changes in NASTRAN routines required by the present analysis are also discussed in this report. All the program listings, except the last two files (where the absolute and relocatable elements are stored), are included in the appendixes.
Single Molecule Spectral Diffusion in a Solid Detected Via Fluorescence Spectroscopy
1991-10-15
other local fields) at the position of the molecule, the spectral jumps may occur because the class II pentacene molecules are coupled to an...and identify by block number) FIELD jGROUP SUB-GROUP_ Single molecule spectroscopy Precision detection Spectral diffusion, Pentacene in p-terphenyl 19...significant increases in detection sensitivity for single pentacene molecules in crystals of p-terphenyl at low temperatures. With the increased signal to
Liu, Xiaozheng; Yuan, Zhenming; Guo, Zhongwei; Xu, Dongrong
2015-05-01
Diffusion tensor imaging is widely used for studying neural fiber trajectories in white matter and for quantifying changes in tissue using diffusion properties at each voxel in the brain. To better model the nature of crossing fibers within complex architectures, rather than using a simplified tensor model that assumes only a single fiber direction at each image voxel, a model mixing multiple diffusion tensors is used to profile diffusion signals from high angular resolution diffusion imaging (HARDI) data. Based on the HARDI signal and a multiple tensors model, spherical deconvolution methods have been developed to overcome the limitations of the diffusion tensor model when resolving crossing fibers. The Richardson-Lucy algorithm is a popular spherical deconvolution method used in previous work. However, it is based on a Gaussian distribution, while HARDI data are always very noisy, and the distribution of HARDI data follows a Rician distribution. This current work aims to present a novel solution to address these issues. By simultaneously considering both the Rician bias and neighbor correlation in HARDI data, the authors propose a localized Richardson-Lucy (LRL) algorithm to estimate fiber orientations for HARDI data. The proposed method can simultaneously reduce noise and correct the Rician bias. Mean angular error (MAE) between the estimated Fiber orientation distribution (FOD) field and the reference FOD field was computed to examine whether the proposed LRL algorithm offered any advantage over the conventional RL algorithm at various levels of noise. Normalized mean squared error (NMSE) was also computed to measure the similarity between the true FOD field and the estimated FOD filed. For MAE comparisons, the proposed LRL approach obtained the best results in most of the cases at different levels of SNR and b-values. For NMSE comparisons, the proposed LRL approach obtained the best results in most of the cases at b-value = 3000 s/mm(2), which is the recommended schema for HARDI data acquisition. In addition, the FOD fields estimated by the proposed LRL approach in regions of fiber crossing regions using real data sets also showed similar fiber structures which agreed with common acknowledge in these regions. The novel spherical deconvolution method for improved accuracy in investigating crossing fibers can simultaneously reduce noise and correct Rician bias. With the noise smoothed and bias corrected, this algorithm is especially suitable for estimation of fiber orientations in HARDI data. Experimental results using both synthetic and real imaging data demonstrated the success and effectiveness of the proposed LRL algorithm.
Endodontic treatment of mandibular molar with root dilaceration using Reciproc single-file system.
Meireles, Daniely Amorin; Bastos, Mariana Mena Barreto; Marques, André Augusto Franco; Garcia, Lucas da Fonseca Roberti; Sponchiado, Emílio Carlos
2013-08-01
Biomechanical preparation of root canals with accentuated curvature is challenging. New rotatory systems, such as Reciproc, require a shorter period of time to prepare curved canals, and became a viable alternative for endodontic treatment of teeth with root dilaceration. Thus, this study aimed to report a clinical case of endodontic therapy of root with accentuated dilaceration using Reciproc single-file system. Mandibular right second molar was diagnosed as asymptomatic irreversible pulpitis. Pulp chamber access was performed, and glide path was created with #10 K-file (Dentsply Maillefer) and PathFile #13, #16 and #19 (Dentsply Maillefer) up to the temporary working length. The working length measured corresponded to 20 mm in the mesio-buccal and mesio-lingual canals, and 22 mm in the distal canal. The R25 file (VDW GmbH) was used in all the canals for instrumentation and final preparation, followed by filling with Reciproc gutta-percha cones (VDW GmbH) and AH Plus sealer (Dentsply Maillefer), using thermal compaction technique. The case has been receiving follow-up for 6 mon and no painful symptomatology or periapical lesions have been found. Despite the difficulties, the treatment could be performed in a shorter period of time than the conventional methods.
Single-beam thermal lens measurement of thermal diffusivity of engine coolants
NASA Astrophysics Data System (ADS)
George, Nibu A.; Thomas, Nibu B.; Chacko, Kavya; T, Neethu V.; Hussain Moidu, Haroon; Piyush, K.; David, Nitheesh M.
2015-04-01
Automobile engine coolant liquids are commonly used for efficient heat transfer from the engine to the surroundings. In this work we have investigated the thermal diffusivity of various commonly available engine coolants in Indian automobile market. We have used single beam laser induced thermal lens technique for the measurements. Engine coolants are generally available in concentrated solution form and are recommended to use at specified dilution. We have investigated the samples in the entire recommended concentration range for the use in radiators. While some of the brands show an enhanced thermal diffusivity compared to pure water, others show slight decrease in thermal diffusivity.
Numerical schemes for anomalous diffusion of single-phase fluids in porous media
NASA Astrophysics Data System (ADS)
Awotunde, Abeeb A.; Ghanam, Ryad A.; Al-Homidan, Suliman S.; Tatar, Nasser-eddine
2016-10-01
Simulation of fluid flow in porous media is an indispensable part of oil and gas reservoir management. Accurate prediction of reservoir performance and profitability of investment rely on our ability to model the flow behavior of reservoir fluids. Over the years, numerical reservoir simulation models have been based mainly on solutions to the normal diffusion of fluids in the porous reservoir. Recently, however, it has been documented that fluid flow in porous media does not always follow strictly the normal diffusion process. Small deviations from normal diffusion, called anomalous diffusion, have been reported in some experimental studies. Such deviations can be caused by different factors such as the viscous state of the fluid, the fractal nature of the porous media and the pressure pulse in the system. In this work, we present explicit and implicit numerical solutions to the anomalous diffusion of single-phase fluids in heterogeneous reservoirs. An analytical solution is used to validate the numerical solution to the simple homogeneous case. The conventional wellbore flow model is modified to account for anomalous behavior. Example applications are used to show the behavior of wellbore and wellblock pressures during the single-phase anomalous flow of fluids in the reservoirs considered.
45. Photocopy of photograph (Pentran file), photographer and date unknown ...
45. Photocopy of photograph (Pentran file), photographer and date unknown (circa 1900). A single truck, solid mahagony car which ran between Hampton, Phoebus and Old Point Comfort. - Newport News & Old Point Railway & Electric Company, Trolley Barn & Administration Building, 3400 Victoria Boulevard, Hampton, Hampton, VA
Nonlinear optical susceptibilities in the diffusion modified AlxGa1-xN/GaN single quantum well
NASA Astrophysics Data System (ADS)
Das, T.; Panda, S.; Panda, B. K.
2018-05-01
Under thermal treatment of the post growth AlGaN/GaN single quantum well, the diffusion of Al and Ga atoms across the interface is expected to form the diffusion modified quantum well with diffusion length as a quantitative parameter for diffusion. The modification of confining potential and position-dependent effective mass in the quantum well due to diffusion is calculated taking the Fick's law. The built-in electric field which arises from spontaneous and piezoelectric polarizations in the wurtzite structure is included in the effective mass equation. The electronic states are calculated from the effective mass equation using the finite difference method for several diffusion lengths. Since the effective well width decreases with increasing diffusion length, the energy levels increase with it. The intersubband energy spacing in the conduction band decreases with diffusion length due to built-in electric field and reduction of effective well width. The linear susceptibility for first-order and the nonlinear second-order and third-order susceptibilities are calculated using the compact density matrix approach taking only two levels. The calculated susceptibilities are red shifted with increase in diffusion lengths due to decrease in intersubband energy spacing.
NASA Astrophysics Data System (ADS)
Yang, W.; Min, M.; Bai, Y.; Lynnes, C.; Holloway, D.; Enloe, Y.; di, L.
2008-12-01
In the past few years, there have been growing interests, among major earth observing satellite (EOS) data providers, in serving data through the interoperable Web Coverage Service (WCS) interface protocol, developed by the Open Geospatial Consortium (OGC). The interface protocol defined in WCS specifications allows client software to make customized requests of multi-dimensional EOS data, including spatial and temporal subsetting, resampling and interpolation, and coordinate reference system (CRS) transformation. A WCS server describes an offered coverage, i.e., a data product, through a response to a client's DescribeCoverage request. The description includes the offered coverage's spatial/temporal extents and resolutions, supported CRSs, supported interpolation methods, and supported encoding formats. Based on such information, a client can request the entire or a subset of coverage in any spatial/temporal resolutions and in any one of the supported CRSs, formats, and interpolation methods. When implementing a WCS server, a data provider has different approaches to present its data holdings to clients. One of the most straightforward, and commonly used, approaches is to offer individual physical data files as separate coverages. Such implementation, however, will result in too many offered coverages for large data holdings and it also cannot fully present the relationship among different, but spatially and/or temporally associated, data files. It is desirable to disconnect offered coverages from physical data files so that the former is more coherent, especially in spatial and temporal domains. Therefore, some servers offer one single coverage for a set of spatially coregistered time series data files such as a daily global precipitation coverage linked to many global single- day precipitation files; others offer one single coverage for multiple temporally coregistered files together forming a large spatial extent. In either case, a server needs to assemble an output coverage real-time by combining potentially large number of physical files, which can be operationally difficult. The task becomes more challenging if an offered coverage involves spatially and temporally un-registered physical files. In this presentation, we will discuss issues and lessons learned in providing NASA's AIRS Level 2 atmospheric products, which are in satellite swath CRS and in 6-minute segment granule files, as virtual global coverages. We"ll discuss the WCS server's on- the-fly georectification, mosaicking, quality screening, performance, and scalability.
VizieR Online Data Catalog: FARGO_THORIN 1.0 hydrodynamic code (Chrenko+, 2017)
NASA Astrophysics Data System (ADS)
Chrenko, O.; Broz, M.; Lambrechts, M.
2017-07-01
This archive contains the source files, documentation and example simulation setups of the FARGO_THORIN 1.0 hydrodynamic code. The program was introduced, described and used for simulations in the paper. It is built on top of the FARGO code (Masset, 2000A&AS..141..165M, Baruteau & Masset, 2008ApJ...672.1054B) and it is also interfaced with the REBOUND integrator package (Rein & Liu, 2012A&A...537A.128R). THORIN stands for Two-fluid HydrOdynamics, the Rebound integrator Interface and Non-isothermal gas physics. The program is designed for self-consistent investigations of protoplanetary systems consisting of a gas disk, a disk of small solid particles (pebbles) and embedded protoplanets. Code features: I) Non-isothermal gas disk with implicit numerical solution of the energy equation. The implemented energy source terms are: Compressional heating, viscous heating, stellar irradiation, vertical escape of radiation, radiative diffusion in the midplane and radiative feedback to accretion heating of protoplanets. II) Planets evolved in 3D, with close encounters allowed. The orbits are integrated using the IAS15 integrator (Rein & Spiegel, 2015MNRAS.446.1424R). The code detects the collisions among planets and resolve them as mergers. III) Refined treatment of the planet-disk gravitational interaction. The code uses a vertical averaging of the gravitational potential, as outlined in Muller & Kley (2012A&A...539A..18M). IV) Pebble disk represented by an Eulerian, presureless and inviscid fluid. The pebble dynamics is affected by the Epstein gas drag and optionally by the diffusive effects. We also implemented the drag back-reaction term into the Navier-Stokes equation for the gas. Archive summary: ------------------------------------------------------------------------- directory/file Explanation ------------------------------------------------------------------------- /in_relax Contains setup of the first example simulation /in_wplanet Contains setup of the second example simulation /srcmain Contains the source files of FARGOTHORIN /src_reb Contains the source files of the REBOUND integrator package to be linked with THORIN GUNGPL3 GNU General Public License, version 3 LICENSE License agreement README Simple user's guide UserGuide.pdf Extended user's guide refman.pdf Programer's guide ----------------------------------------------------------------------------- (1 data file).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinavicius, A.; Abrasonis, G.; Moeller, W.
2011-10-01
The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm{sup -2}), ion energy (0.5-1.2 keV), and temperature (370-430 deg. C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasingmore » ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.« less
Single ion dynamics in molten sodium bromide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alcaraz, O.; Trullas, J.; Demmel, F.
We present a study on the single ion dynamics in the molten alkali halide NaBr. Quasielastic neutron scattering was employed to extract the self-diffusion coefficient of the sodium ions at three temperatures. Molecular dynamics simulations using rigid and polarizable ion models have been performed in parallel to extract the sodium and bromide single dynamics and ionic conductivities. Two methods have been employed to derive the ion diffusion, calculating the mean squared displacements and the velocity autocorrelation functions, as well as analysing the increase of the line widths of the self-dynamic structure factors. The sodium diffusion coefficients show a remarkable goodmore » agreement between experiment and simulation utilising the polarisable potential.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-09-12
Mcqueuer is a simple tool that allows anyone from researchers to experienced developers to create multi-node/multi-core jobs by simply creating a file with a list of commands. Users simply combine tasks, which would otherwise each be their own job on the cluster, into a single file that is given to Mcqueuer. Mcqueuer then does the heavy lifting required to process the tasks in parallel in a single multi-node job. In addition, Mcqueuer provides load-balancing, which frees the user from having to worry about complex memory and CPU considerations, and instead focus on the processing itself.
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). This web service includes the State and County boundaries from the TIGER shapefiles compiled into a single national coverage for each layer. The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB).
How Do Academic Disciplines Use PowerPoint?
ERIC Educational Resources Information Center
Garrett, Nathan
2016-01-01
How do academic disciplines use PowerPoint? This project analyzed PowerPoint files created by an academic publisher to supplement textbooks. An automated analysis of 30,263 files revealed clear differences by disciplines. Single-paradigm "hard" disciplines used less complex writing but had more words than multi-paradigm "soft"…
Digital geologic map of the Butler Peak 7.5' quadrangle, San Bernardino County, California
Miller, Fred K.; Matti, Jonathan C.; Brown, Howard J.; digital preparation by Cossette, P. M.
2000-01-01
Open-File Report 00-145, is a digital geologic map database of the Butler Peak 7.5' quadrangle that includes (1) ARC/INFO (Environmental Systems Research Institute) version 7.2.1 Patch 1 coverages, and associated tables, (2) a Portable Document Format (.pdf) file of the Description of Map Units, Correlation of Map Units chart, and an explanation of symbols used on the map, btlrpk_dcmu.pdf, (3) a Portable Document Format file of this Readme, btlrpk_rme.pdf (the Readme is also included as an ascii file in the data package), and (4) a PostScript plot file of the map, Correlation of Map Units, and Description of Map Units on a single sheet, btlrpk.ps. No paper map is included in the Open-File report, but the PostScript plot file (number 4 above) can be used to produce one. The PostScript plot file generates a map, peripheral text, and diagrams in the editorial format of USGS Geologic Investigation Series (I-series) maps.
Chatterjee, Abhijit; Vlachos, Dionisios G
2007-07-21
While recently derived continuum mesoscopic equations successfully bridge the gap between microscopic and macroscopic physics, so far they have been derived only for simple lattice models. In this paper, general deterministic continuum mesoscopic equations are derived rigorously via nonequilibrium statistical mechanics to account for multiple interacting surface species and multiple processes on multiple site types and/or different crystallographic planes. Adsorption, desorption, reaction, and surface diffusion are modeled. It is demonstrated that contrary to conventional phenomenological continuum models, microscopic physics, such as the interaction potential, determines the final form of the mesoscopic equation. Models of single component diffusion and binary diffusion of interacting particles on single-type site lattice and of single component diffusion on complex microporous materials' lattices consisting of two types of sites are derived, as illustrations of the mesoscopic framework. Simplification of the diffusion mesoscopic model illustrates the relation to phenomenological models, such as the Fickian and Maxwell-Stefan transport models. It is demonstrated that the mesoscopic equations are in good agreement with lattice kinetic Monte Carlo simulations for several prototype examples studied.
Liu, Rui; Hou, Ben Xiang; Wesselink, Paul R; Wu, Min-Kai; Shemesh, Hagay
2013-08-01
The aim of this study was to compare the incidence of root cracks observed at the apical root surface and/or in the canal wall after canal instrumentation with 3 single-file systems and the ProTaper system (Dentsply Maillefer, Ballaigues, Switzerland). One hundred mandibular incisors were selected. Twenty control teeth were coronally flared with Gates-Glidden drills (Dentsply Maillefer). No further preparation was made. The other 80 teeth were mounted in resin blocks with simulated periodontal ligaments, and the apex was exposed. They were divided into 4 experimental groups (n = 20); the root canals were first coronally flared with Gates-Glidden drills and then instrumented to the full working length with the ProTaper, OneShape (Micro-Mega, Besancon, France), Reciproc (VDW, Munich, Germany), or the Self-Adjusting File (ReDent-Nova, Ra'anana, Israel). The apical root surface and horizontal sections 2, 4, and 6 mm from the apex were observed under a microscope. The presence of cracks was noted. The chi-square test was performed to compare the appearance of cracked roots between the experimental groups. No cracks were found in the control teeth and teeth instrumented with the Self-Adjusting File. Cracks were found in 10 of 20 (50%), 7 of 20 (35%), and 1 of 20 (5%) teeth after canal instrumentation with the ProTaper, OneShape, and Reciproc files, respectively. The difference between the experimental groups was statistically significant (P < .001). Nickel-titanium instruments may cause cracks on the apical root surface or in the canal wall; the Self-Adjusting File and Reciproc files caused less cracks than the ProTaper and OneShape files. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gafarov, Ozarfar; Martyshkin, Dmitriy; Fedorov, Vladimir; Mirov, Sergey
2018-02-01
Middle-infrared (mid-IR) lasers enabling a wide range of scientific, medical, technological, and defense related applications continue to enjoy a strong demand. Transition metal (TM) doped II-VI chalcogenides are appealing mid-IR gain medial providing direct access to 1.8-6 μm spectral range. . II-VI chalcogenides are available in single crystal and in polycrystalline forms. With respect to single crystals, polycrystalline gain elements fabricated by postgrowth thermal diffusion of TM impurities in II-VI hosts feature better optical quality and enable superior laser characteristics. Despite significant progress in post-growth thermal diffusion technology, there are still some difficulties associated with the diffusion of certain TM ions in certain II-VI hosts. Specifically, the diffusion length Fe in ZnS during 1 month annealing at 950°C is of the order of 0.1 mm. In this work, enhancement of diffusion coefficient under Hot Isostatic Pressing, at temperature and pressure of 1350°C and 2000 atm, and effect of these extreme conditions on the overall optical quality of the crystal were studied. The high temperature was applied to increase the diffusion rate, and the high pressure was needed to suppress strong sublimation and sphalerite - wurtzite phase transition at elevated temperatures. Under these conditions, the diffusion coefficient Fe in ZnS was enhanced by 5500 times as compared to standard diffusion processes carried out at 950°C. It was also demonstrated that the grain size had grown from 30μm to 5.5mm, which is believed to be another reason for efficient diffusion besides the elevation of temperature. The XRD patterns were measured such that the X-ray beam falls on a single grain. The XRD patterns showed only peaks characteristic to single crystals with zinc blende structure. Lasing characterization was performed to investigate the optical quality of the crystal. Slope efficiencies of 23.2% and 15.4% were obtained for TM11 and TM00 modes of operation, respectively. The emission of the laser was demonstrated to be in the 3840-3920 nm.
Imaging and quantification of trans-membrane protein diffusion in living bacteria.
Oswald, Felix; L M Bank, Ernst; Bollen, Yves J M; Peterman, Erwin J G
2014-07-07
The cytoplasmic membrane forms the barrier between any cell's interior and the outside world. It contains many proteins that enable essential processes such as the transmission of signals, the uptake of nutrients, and cell division. In the case of prokaryotes, which do not contain intracellular membranes, the cytoplasmic membrane also contains proteins for respiration and protein folding. Mutual interactions and specific localization of these proteins depend on two-dimensional diffusion driven by thermal fluctuations. The experimental investigation of membrane-protein diffusion in bacteria is challenging due to their small size, only a few times larger than the resolution of an optical microscope. Here, we review fluorescence microscopy-based methods to study diffusion of membrane proteins in living bacteria. The main focus is on data-analysis tools to extract diffusion coefficients from single-particle tracking data obtained by single-molecule fluorescence microscopy. We introduce a novel approach, IPODD (inverse projection of displacement distributions), to obtain diffusion coefficients from the usually obtained 2-D projected diffusion trajectories of the highly 3-D curved bacterial membrane. This method provides, in contrast to traditional mean-squared-displacement methods, correct diffusion coefficients and allows unravelling of heterogeneously diffusing populations.
Wen, Qiuting; Kodiweera, Chandana; Dale, Brian M; Shivraman, Giri; Wu, Yu-Chien
2018-01-01
To accelerate high-resolution diffusion imaging, rotating single-shot acquisition (RoSA) with composite reconstruction is proposed. Acceleration was achieved by acquiring only one rotating single-shot blade per diffusion direction, and high-resolution diffusion-weighted (DW) images were reconstructed by using similarities of neighboring DW images. A parallel imaging technique was implemented in RoSA to further improve the image quality and acquisition speed. RoSA performance was evaluated by simulation and human experiments. A brain tensor phantom was developed to determine an optimal blade size and rotation angle by considering similarity in DW images, off-resonance effects, and k-space coverage. With the optimal parameters, RoSA MR pulse sequence and reconstruction algorithm were developed to acquire human brain data. For comparison, multishot echo planar imaging (EPI) and conventional single-shot EPI sequences were performed with matched scan time, resolution, field of view, and diffusion directions. The simulation indicated an optimal blade size of 48 × 256 and a 30 ° rotation angle. For 1 × 1 mm 2 in-plane resolution, RoSA was 12 times faster than the multishot acquisition with comparable image quality. With the same acquisition time as SS-EPI, RoSA provided superior image quality and minimum geometric distortion. RoSA offers fast, high-quality, high-resolution diffusion images. The composite image reconstruction is model-free and compatible with various diffusion computation approaches including parametric and nonparametric analyses. Magn Reson Med 79:264-275, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
ERIC Educational Resources Information Center
Roberson, E. Wayne; Glowinski, Debra J.
The Computer Assisted Diagnostic Prescriptive Program (CADPP) is a customized databased curriculum management system which permits the user to load the following into a filing/retrieval software system: (1) learning characteristics of individual students (e.g., age, instructional level, learning modality); (2) skill-oriented characteristics of…
VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, A.; Huria, H.C.; Cho, K.W.
1991-12-01
VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing tomore » disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.« less
Kalra, Pinky; Rao, Arathi; Suman, Ethel; Shenoy, Ramya; Suprabha, Baranya-Shrikrishna
2017-02-01
Endodontic instrumentation carries the risk of over extrusion of debris and bacteria. The technique used and the type of instrumentation influences this risk. The purpose of this study was to evaluate and compare the K-file, ProTaper hand and ProTaper rotary instrumentation systems for the amount of apically extruded debris, irrigant solution and intracanal bacteria. Experimental single blinded randomized type of in vitro study with sample of 30 single rooted teeth. Endodontic access cavities were prepared and the root canals were filled with the suspension of E. faecalis . Myers and Montogomery Model was used to collect apically extruded debris and irrigant. Canals were prepared using K files, Hand protapers and Protaper rotary files. Non Parametric test like Kruskal-Wallis and Mann-Whitney U test were applied to determine the significant differences among the group. Tests revealed statistically significant difference between the amount of debris and number of bacteria extruded by the ProTaper hand and the K-files. No statistically significant difference was observed between the amounts of irrigant extruded by the ProTaper hand and the K-file system. Statistically significant differences were observed between the amounts of bacteria and irrigant extruded by the ProTaper rotary and the Protaper hand. No statistically significant difference was observed between the amounts of debris extruded by the ProTaper hand and the K-file system. Amount of apical extrusion of irrigant solution, bacteria and debris are significantly greater with K File instruments and least with Protaper rotary instruments. Key words: Protaper, rotary, periapical extrusion.
NASA Technical Reports Server (NTRS)
Warren, W. H., Jr.
1984-01-01
Detailed descriptions of the three files of the machine-readable catalog are given. The files of the original tape have been restructured and the data records reformatted to produce a uniform data file having a single logical record per star and homogeneous data fields. The characteristics of the tape version as it is presently being distributed from the Astronomical Data Center are given and the changes to the original tape supplied are described.
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). This web service includes the State, County, and Census Block Groups boundaries from the TIGER shapefiles compiled into a single national coverage for each layer. The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB).
Zhao, Jiong; Deng, Qingming; Avdoshenko, Stanislav M.; Fu, Lei; Eckert, Jürgen; Rümmeli, Mark H.
2014-01-01
Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp2 carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations. PMID:25331874
Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2 -Filmed Ultramicroelectrode.
Peng, Yue-Yi; Ma, Hui; Ma, Wei; Long, Yi-Tao; Tian, He
2018-03-26
An ultrasensitive photoelectrochemical method for achieving real-time detection of single nanoparticle collision events is presented. Using a micrometer-thick nanoparticulate TiO 2 -filmed Au ultra-microelectrode (TiO 2 @Au UME), a sub-millisecond photocurrent transient was observed for an individual N719-tagged TiO 2 (N719@TiO 2 ) nanoparticle and is due to the instantaneous collision process. Owing to a trap-limited electron diffusion process as the rate-limiting step, a random three-dimensional diffusion model was developed to simulate electron transport dynamics in TiO 2 film. The combination of theoretical simulation and high-resolution photocurrent measurement allow electron-transfer information of a single N719@TiO 2 nanoparticle to be quantified at single-molecule accuracy and the electron diffusivity and the electron-collection efficiency of TiO 2 @Au UME to be estimated. This method provides a test for studies of photoinduced electron transfer at the single-nanoparticle level. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kasanzu, C.; Beucher, R.; Brown, R. W.; Persano, C.; Stuart, F.
2011-12-01
Apatite (U-Th)/he thermochronometry is one of the most widely used methods of quantifying thermal histories of rocks within the vicinity of the surface. Theoretical and practical development carried out during the last decade, among which was the release of affordable LASERs, have led to standard practice of analyzing single grain rather than multigrain aliquots. The standard theoretical basis for interpreting these ages assumes that the technique is used on full grains. However, the natural weak cleavage of apatite leads to fragmentation of these individual prismatic crystals during the rock crushing and mineral separation process. Apatites are most often broken along a weak cleavage perpendicular to the c-axis. It is therefore common practice to analyze fragments of whole grains, not complete crystals. It is also well known that dating often leads to single ages being more dispersed than expected whatever the efforts to avoid perturbations on the He system. Using a theoretical numerical model and considering both axial and radial diffusion, we demonstrate thata largepart (most?) of the dispersion is due to analyses of single apatite fragments. This effect is larger for older grains which have exprienced a slow cooling history and have well rounded diffusive profiles. Ages are a strongfunction of the fragment size (length specifically), we show that ages from apatite fragments with 1 prismatic termination (1T) can be used to retrieve the helium diffusion profile, provided a sufficient number of single fragment analyses are carried out. The shape of the helium diffusion profile provides a strong constraint on the style of the thermal history and so we propose to use single crystal fragment analyses to extract a mean diffusion profile, and deduce the thermal history of the sample. In order to test these ideas, we performed a set of experiments with natural samples and semi-synthetic grains of apatite. Synthetic grains are obtained by drilling cores of various length/width ratios within standard Durango crystals while natural grains are separated from a deep borehole in south-Africa (BK1) and from the Australian craton. Several experiences are presented: 1) (U-Th)/He dating of about 100 1T single-fragment aliquots of different shape ratio from the BK1 borehole; 2) (U-Th)/He dating of 20 2T single-fragment aliquot from an Australian sample previously dated following standard procedure. 3) (U-Th)/He dating of synthetic fragmentsfrom synthetic grains previously degassed by a known percentageusing a thermo-regulated furnace. The results of the experiments lead to important new insight into the natural dispersion of (U-Th)/He single-grain ages. They show that far from being problematic, highly dispersed data may indeed contain first-order information on the thermal history of rocks. We discuss all the details of the standard (U-Th)/He approach such as the effects of temporally variable diffusivity (e.g. radiation damage models), zonation of U and Th and arbitrary grain size variations.
Multiple echo multi-shot diffusion sequence.
Chabert, Steren; Galindo, César; Tejos, Cristian; Uribe, Sergio A
2014-04-01
To measure both transversal relaxation time (T2 ) and diffusion coefficients within a single scan using a multi-shot approach. Both measurements have drawn interest in many applications, especially in skeletal muscle studies, which have short T2 values. Multiple echo single-shot schemes have been proposed to obtain those variables simultaneously within a single scan, resulting in a reduction of the scanning time. However, one problem with those approaches is the associated long echo read-out. Consequently, the minimum achievable echo time tends to be long, limiting the application of these sequences to tissues with relatively long T2 . To address this problem, we propose to extend the multi-echo sequences using a multi-shot approach, so that to allow shorter echo times. A multi-shot dual-echo EPI sequence with diffusion gradients and echo navigators was modified to include independent diffusion gradients in any of the two echoes. The multi-shot approach allows us to drastically reduce echo times. Results showed a good agreement for the T2 and mean diffusivity measurements with gold standard sequences in phantoms and in vivo data of calf muscles from healthy volunteers. A fast and accurate method is proposed to measure T2 and diffusion coefficients simultaneously, tested in vitro and in healthy volunteers. Copyright © 2013 Wiley Periodicals, Inc.
Interdiffusion and stress development in single-crystalline Pd/Ag bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noah, Martin A., E-mail: m.noah@is.mpg.de; Flötotto, David; Wang, Zumin
Interdiffusion and stress evolution in single-crystalline Pd/single-crystalline Ag thin films were investigated by Auger electron spectroscopy sputter-depth profiling and in-situ X-ray diffraction, respectively. The concentration-dependent chemical diffusion coefficient, as well as the impurity diffusion coefficient of Ag in Pd could be determined in the low temperature range of 356 °C–455 °C. As a consequence of the similarity of the strong concentration-dependences of the intrinsic diffusion coefficients, the chemical diffusion coefficient varies only over three orders of magnitude over the whole composition range, despite the large difference of six orders of magnitude of the self-diffusion coefficients of Ag in Ag and Pd inmore » Pd. It is shown that the Darken-Manning treatment should be adopted for interpretation of the experimental data; the Nernst-Planck treatment yielded physically unreasonable results. Apart from the development of compressive thermal stress, the development of stress in both sublayers separately could be ascribed to compositional stress (tensile in the Ag sublayer and compressive in the Pd sublayer) and dominant relaxation processes, especially in the Ag sublayer. The effect of these internal stresses on the values determined for the diffusion coefficients is shown to be negligible.« less
Taheri, Siavash; Lakmehsari, Muhammad Shadman; Soltanabadi, Azim
2017-08-01
The separation of the azeotropic ethanol-water mixture (95.57wt% ethanol) over a wide range of pressures (100-100000kPa) was studied on armchair SWCNTs, SWSiCNTs and SWBNNTs with different diameters at 351.30K using GCMC simulations. The GCMC results demonstrated that ethanol and water molecules form a monolayer single-file, chain together in the center of (6,6) SWCNT, while a spiral ring of ethanol and water is formed in the center of (8,8), (10,10) and (12,12) SWCNTs. It was found that in SWCNTs, the adsorption of ethanol reduces the function of pressure, while water adsorption increases its function. Water selectivity rises as a function of pressure. Also, in SWBNNTs, the adsorption of water increases as a function of pressure, while ethanol adsorption is almost constant. However, in the case of SWSiCNTs, ethanol and water adsorptions are very similar to those of SWBNNTs, whereas the adsorptivities of SWSiCNTs are more than those of SWBNNTs. Our findings regarding adsorption and slope of adsorption indicate that higher pressures are favorable for separating water and ethanol by SWCNTs, while SWBNNTs and SWSiCNTs are demonstrate higher ethanol adsorptivities in lower pressures. Also, MD simulations have been performed to study the microscopic structure and diffusion of binary mixtures of water and ethanol within SWCNTs, SWSiCNTs and SWBNNTs. The MD simulations imply that the oxygen atoms are highly well-organized around themselves. Also, the MD results illustrate a similar tendency for oxygen of water (OW) and oxygen of ethanol (OE) to the wall of the nanotubes in all the pressures. In addition, from the MD results, self-diffusion of water and ethanol in all nanotubes were calculated and discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Valette, Julien; Giraudeau, Céline; Marchadour, Charlotte; Djemai, Boucif; Geffroy, Françoise; Ghaly, Mohamed Ahmed; Le Bihan, Denis; Hantraye, Philippe; Lebon, Vincent; Lethimonnier, Franck
2012-12-01
Diffusion-weighted spectroscopy is a unique tool for exploring the intracellular microenvironment in vivo. In living systems, diffusion may be anisotropic, when biological membranes exhibit particular orientation patterns. In this work, a volume selective diffusion-weighted sequence is proposed, allowing single-shot measurement of the trace of the diffusion tensor, which does not depend on tissue anisotropy. With this sequence, the minimal echo time is only three times the diffusion time. In addition, cross-terms between diffusion gradients and other gradients are cancelled out. An adiabatic version, similar to localization by adiabatic selective refocusing sequence, is then derived, providing partial immunity against cross-terms. Proof of concept is performed ex vivo on chicken skeletal muscle by varying tissue orientation and intra-voxel shim. In vivo performance of the sequence is finally illustrated in a U87 glioblastoma mouse model, allowing the measurement of the trace apparent diffusion coefficient for six metabolites, including J-modulated metabolites. Although measurement performed along three separate orthogonal directions would bring similar accuracy on trace apparent diffusion coefficient under ideal conditions, the method described here should be useful for probing intimate properties of the cells with minimal experimental bias. Copyright © 2012 Wiley Periodicals, Inc.
Gillespie, Dirk; Boda, Dezső; He, Yan; Apel, Pavel; Siwy, Zuzanna S.
2008-01-01
The predictions of a theory for the anomalous mole fraction effect (AMFE) are tested experimentally with synthetic nanopores in plastic. The negatively charged synthetic nanopores under consideration are highly cation selective and 50 Å in diameter at their smallest point. These pores exhibit an AMFE in mixtures of Ca2+ and monovalent cations. An AMFE occurs when the conductance through a pore is lower in a mixture of salts than in the pure salts at the same concentration. For ion channels, the textbook interpretation of the AMFE is that multiple ions move through the pore in coordinated, single-file motion. However, because the synthetic nanopores are so wide, their AMFE shows that single filing is not necessary for the AMFE. It is shown that the AMFE in the synthetic nanopores is explained by a theory of preferential ion selectivity. The unique properties of the synthetic nanopores allow us to experimentally confirm several predictions of this theory. These same properties make synthetic nanopores an interesting new platform to test theories of ion channel permeation and selectivity in general. PMID:18390596
26 CFR 51.4T - Information provided by the agencies (temporary).
Code of Federal Regulations, 2013 CFR
2013-04-01
... sales price (ASP) for each Healthcare Common Procedure Coding System (HCPCS) code for the sales year...IdentifiableDataFiles/03_PartBNationalSummaryDataFile.asp to obtain the number of allowed billing units per... respective NDCs) manufactured by a single entity, CMS will multiply the annual weighted ASP by the total...
26 CFR 51.4T - Information provided by the agencies (temporary).
Code of Federal Regulations, 2014 CFR
2014-04-01
... sales price (ASP) for each Healthcare Common Procedure Coding System (HCPCS) code for the sales year...IdentifiableDataFiles/03_PartBNationalSummaryDataFile.asp to obtain the number of allowed billing units per... respective NDCs) manufactured by a single entity, CMS will multiply the annual weighted ASP by the total...
26 CFR 51.4T - Information provided by the agencies (temporary).
Code of Federal Regulations, 2012 CFR
2012-04-01
... sales price (ASP) for each Healthcare Common Procedure Coding System (HCPCS) code for the sales year...IdentifiableDataFiles/03_PartBNationalSummaryDataFile.asp to obtain the number of allowed billing units per... respective NDCs) manufactured by a single entity, CMS will multiply the annual weighted ASP by the total...
18 CFR 385.2003 - Specifications (Rule 2003).
Code of Federal Regulations, 2011 CFR
2011-04-01
... governing timeliness, a document filed via the Internet will be deemed to have been received by the... other word or data processing equipment; (2) Have double-spaced lines with left margins not less than 11/2 inch wide, except that any tariff or rate filing may be single-spaced; (3) Have indented and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
... troubling trend of reduced participation in the equity markets by individual investors, and that nearly 30... different asset classes within a single strategy. NASDAQ also notes that cash equities and options markets...-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate Effectiveness of...
Kashefinejad, Mohamad; Harandi, Azade; Eram, Saeed; Bijani, Ali
2016-01-01
Pain is an unpleasant outcome of endodontic treatment that can be unbearable to patients. Instrumentation techniques may affect the frequency and intensity of post-endodontic pain. This study aimed to compare single visit post endodontic pain using Mtwo (NiTi) rotary and hand K-file instruments. In this randomized controlled trial, 60 teeth with symptomatic irreversible pulpitis in 53 patients were selected and randomly assigned into two groups of 30 teeth. In group A, the root canals were prepared with Mtwo (NiTi) rotary instruments. In group B, the root canals were prepared with hand K-file instruments. Pain assessment was implemented using visual analog scale (VAS) at four, eight, 12 and 24 hours after treatment. The acquired data were analyzed using chi-square, Mann-Whitney U and Student's t-test (P<0.05). Patients treated with rotary instruments experienced significantly less post-endodontic pain than those treated with hand instruments (P<0.001). The use of Mtwo (NiTi) rotary instruments in root canal preparation contributed to lower incidence of postoperative pain than hand K-files.
CONNJUR spectrum translator: an open source application for reformatting NMR spectral data.
Nowling, Ronald J; Vyas, Jay; Weatherby, Gerard; Fenwick, Matthew W; Ellis, Heidi J C; Gryk, Michael R
2011-05-01
NMR spectroscopists are hindered by the lack of standardization for spectral data among the file formats for various NMR data processing tools. This lack of standardization is cumbersome as researchers must perform their own file conversion in order to switch between processing tools and also restricts the combination of tools employed if no conversion option is available. The CONNJUR Spectrum Translator introduces a new, extensible architecture for spectrum translation and introduces two key algorithmic improvements. This first is translation of NMR spectral data (time and frequency domain) to a single in-memory data model to allow addition of new file formats with two converter modules, a reader and a writer, instead of writing a separate converter to each existing format. Secondly, the use of layout descriptors allows a single fid data translation engine to be used for all formats. For the end user, sophisticated metadata readers allow conversion of the majority of files with minimum user configuration. The open source code is freely available at http://connjur.sourceforge.net for inspection and extension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacKinnon, R.J.; Sullivan, T.M.; Kinsey, R.R.
1997-05-01
The BLT-EC computer code has been developed, implemented, and tested. BLT-EC is a two-dimensional finite element computer code capable of simulating the time-dependent release and reactive transport of aqueous phase species in a subsurface soil system. BLT-EC contains models to simulate the processes (container degradation, waste-form performance, transport, chemical reactions, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is provided through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste-form performancemore » considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, and solubility. Transport considers the processes of advection, dispersion, diffusion, chemical reaction, radioactive production and decay, and sources (waste form releases). Chemical reactions accounted for include complexation, sorption, dissolution-precipitation, oxidation-reduction, and ion exchange. Radioactive production and decay in the waste form is simulated. To improve the usefulness of BLT-EC, a pre-processor, ECIN, which assists in the creation of chemistry input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. BLT-EC also includes an extensive database of thermodynamic data that is also accessible to ECIN. This document reviews the models implemented in BLT-EC and serves as a guide to creating input files and applying BLT-EC.« less
Dispersive—diffusive transport of non-sorbed solute in multicomponent solutions
NASA Astrophysics Data System (ADS)
Hu, Qinhong; Brusseau, Mark L.
1995-10-01
The composition of fuels, mixed-solvent wastes and other contaminants that find their way into the subsurface are frequently chemically complex. The dispersion and diffusion characteristics of multicomponent solutions in soil have rarely been compared to equivalent single-solute systems. The purpose of this work was to examine the diffusive and dispersive transport of single- and multi-component solutions in homogeneous porous media. The miscible displacement technique was used to investigate the transport behavior of 14C-labelled 2,4-dichlorophenoxyacetic acid ( 2,4-D) in two materials for which sorption of 2,4-D was minimal. Comparison of breakthrough curves collected for 2,4-D in single- and multi-component solutions shows that there is little, if any, difference in transport behavior over a wide range of pore-water velocities (70, 7, 0.66 and 0.06 cm h -1). Thus, dispersivities measured with a non-sorbing single-solute solution should be applicable to multicomponent systems.
Ximenes, Marcos; Cavalcanti Taguchi, Carolina Mayumi; Triches, Thaisa Cezaria; Sartori, Neimar; Pereira Dias, Luis Alberto; de Araujo, Elaine Bortoleti; Cardoso, Mariane
2016-01-01
Proper cleaning of the root canal is key to the success of endodontic treatment as it allows more effective diffusion of medication throughout the dentinal tubules. The aim of this in vitro study was to investigate the efficacy of 17% ethylenediaminetetraacetic acid (EDTA) in enhancing diffusion of hydroxyl (OH(-)) and calcium ions (Ca(2+)) throughout the root canal in primary teeth. The canals of 25 primary tooth roots were cleaned with endodontic files and 1% sodium hypochlorite. Three groups (G) were then established: GI, in which final irrigation was performed with 1% sodium hypochlorite; GII, in which 17% EDTA was used; and GIII, in which no irrigation was performed. The roots canals in GI and GII were filled with a calcium hydroxide-based paste labeled with the radioisotope calcium-45. Diffusion of OH(-) was detected with pH strips and Ca(2+) analyzed by measuring radioactivity in counts per min. Group II differed statistically from the other groups in diffusion of OH(-) at 24 hr (p<0.05), but no significant difference among groups was found at the day 7 evaluation; GII also differed statistically from the other groups in diffusion of Ca(2+) at 24 hr (p<0.05). These results suggest that application of 17% EDTA in primary tooth enhances diffusion of OH(-) and Ca(2+).
NUMERICAL ANALYSES FOR TREATING DIFFUSION IN SINGLE-, TWO-, AND THREE-PHASE BINARY ALLOY SYSTEMS
NASA Technical Reports Server (NTRS)
Tenney, D. R.
1994-01-01
This package consists of a series of three computer programs for treating one-dimensional transient diffusion problems in single and multiple phase binary alloy systems. An accurate understanding of the diffusion process is important in the development and production of binary alloys. Previous solutions of the diffusion equations were highly restricted in their scope and application. The finite-difference solutions developed for this package are applicable for planar, cylindrical, and spherical geometries with any diffusion-zone size and any continuous variation of the diffusion coefficient with concentration. Special techniques were included to account for differences in modal volumes, initiation and growth of an intermediate phase, disappearance of a phase, and the presence of an initial composition profile in the specimen. In each analysis, an effort was made to achieve good accuracy while minimizing computation time. The solutions to the diffusion equations for single-, two-, and threephase binary alloy systems are numerically calculated by the three programs NAD1, NAD2, and NAD3. NAD1 treats the diffusion between pure metals which belong to a single-phase system. Diffusion in this system is described by a one-dimensional Fick's second law and will result in a continuous composition variation. For computational purposes, Fick's second law is expressed as an explicit second-order finite difference equation. Finite difference calculations are made by choosing the grid spacing small enough to give convergent solutions of acceptable accuracy. NAD2 treats diffusion between pure metals which form a two-phase system. Diffusion in the twophase system is described by two partial differential equations (a Fick's second law for each phase) and an interface-flux-balance equation which describes the location of the interface. Actual interface motion is obtained by a mass conservation procedure. To account for changes in the thicknesses of the two phases as diffusion progresses, a variable grid technique developed by Murray and Landis is employed. These equations are expressed in finite difference form and solved numerically. Program NAD3 treats diffusion between pure metals which form a two-phase system with an intermediate third phase. Diffusion in the three-phase system is described by three partial differential expressions of Fick's second law and two interface-flux-balance equations. As with the two-phase case, a variable grid finite difference is used to numerically solve the diffusion equations. Computation time is minimized without sacrificing solution accuracy by treating the three-phase problem as a two-phase problem when the thickness of the intermediate phase is less than a preset value. Comparisons between these programs and other solutions have shown excellent agreement. The programs are written in FORTRAN IV for batch execution on the CDC 6600 with a central memory requirement of approximately 51K (octal) 60 bit words.
Computational methods for diffusion-influenced biochemical reactions.
Dobrzynski, Maciej; Rodríguez, Jordi Vidal; Kaandorp, Jaap A; Blom, Joke G
2007-08-01
We compare stochastic computational methods accounting for space and discrete nature of reactants in biochemical systems. Implementations based on Brownian dynamics (BD) and the reaction-diffusion master equation are applied to a simplified gene expression model and to a signal transduction pathway in Escherichia coli. In the regime where the number of molecules is small and reactions are diffusion-limited predicted fluctuations in the product number vary between the methods, while the average is the same. Computational approaches at the level of the reaction-diffusion master equation compute the same fluctuations as the reference result obtained from the particle-based method if the size of the sub-volumes is comparable to the diameter of reactants. Using numerical simulations of reversible binding of a pair of molecules we argue that the disagreement in predicted fluctuations is due to different modeling of inter-arrival times between reaction events. Simulations for a more complex biological study show that the different approaches lead to different results due to modeling issues. Finally, we present the physical assumptions behind the mesoscopic models for the reaction-diffusion systems. Input files for the simulations and the source code of GMP can be found under the following address: http://www.cwi.nl/projects/sic/bioinformatics2007/
Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging
Yeh, Fang-Cheng; Verstynen, Timothy D.
2016-01-01
Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions. PMID:27683539
Dhingra, Annil; Ruhal, Nidhi; Miglani, Anjali
2015-04-01
Successful endodontic therapy depends on many factor, one of the most important step in any root canal treatment is root canal preparation. In addition, respecting the original shape of the canal is of the same importance; otherwise, canal aberrations such as transportation will be created. The purpose of this study is to compare and evaluate Reciprocating WaveOne ,Reciproc and Rotary Oneshape Single File Instrumentation System On Cervical Dentin Thickness, Cross Sectional Area and Canal Transportation on First Mandibular Molar Using Cone Beam Computed Tomography. Sixty Mandibular First Molars extracted due to periodontal reason was collected from the Department of Oral and Maxillofacial. Teeth were prepared using one rotary and two reciprocating single file system. Teeth were divided into 3 groups 20 teeth in each group. Pre instrumentation and Post instrumentation scans was done and evaluated for three parameters Canal Transportation, Cervical Dentinal Thickness, Cross-sectional Area. Results were analysed statistically using ANOVA, Post-Hoc Tukey analysis. The change in cross-sectional area after filing showed significant difference at 0mm, 1mm, 2mm and 7mm (p<0.001, p =0.006, 0.004 & <0.001 respectively). There was significant difference between wave one and oneshape; oneshape and reciproc at 0mm, 1mm, 2mm & 7mm (p-values for waveone and Oneshape <0.001, 0.022, 0.011 & <0.001 resp. and for oneshape and reciproc < 0.001, p= 0.011, p=0.008 & <0.001). On assessing the transportation of the three file system over a distance of 7 mm (starting from 0mm and then evaluation at 1mm, 2mm, 3mm, 5mm and 7mm), the results showed a significant difference among the file systems at various lengths (p= 0.014, 0.046, 0.004, 0.028, 0.005 & 0.029 respectively). Mean value of cervical dentinal removal is maximum at all the levels for oneshape and minimum for waveone showing the better quality of waveone and reciproc over oneshape file system. Significant difference was found at 9mm, 11mm and 12mm between all the three file systems (p<0.001,< 0.001, <0.001). It was concluded that reciprocating motion is better than rotary motion in all the three parameters Canal Transportation, Cross-sectional Area, Cervical Dentinal Thickness.
Monte Carlo event generators in atomic collisions: A new tool to tackle the few-body dynamics
NASA Astrophysics Data System (ADS)
Ciappina, M. F.; Kirchner, T.; Schulz, M.
2010-04-01
We present a set of routines to produce theoretical event files, for both single and double ionization of atoms by ion impact, based on a Monte Carlo event generator (MCEG) scheme. Such event files are the theoretical counterpart of the data obtained from a kinematically complete experiment; i.e. they contain the momentum components of all collision fragments for a large number of ionization events. Among the advantages of working with theoretical event files is the possibility to incorporate the conditions present in a real experiment, such as the uncertainties in the measured quantities. Additionally, by manipulating them it is possible to generate any type of cross sections, specially those that are usually too complicated to compute with conventional methods due to a lack of symmetry. Consequently, the numerical effort of such calculations is dramatically reduced. We show examples for both single and double ionization, with special emphasis on a new data analysis tool, called four-body Dalitz plots, developed very recently. Program summaryProgram title: MCEG Catalogue identifier: AEFV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2695 No. of bytes in distributed program, including test data, etc.: 18 501 Distribution format: tar.gz Programming language: FORTRAN 77 with parallelization directives using scripting Computer: Single machines using Linux and Linux servers/clusters (with cores with any clock speed, cache memory and bits in a word) Operating system: Linux (any version and flavor) and FORTRAN 77 compilers Has the code been vectorised or parallelized?: Yes RAM: 64-128 kBytes (the codes are very cpu intensive) Classification: 2.6 Nature of problem: The code deals with single and double ionization of atoms by ion impact. Conventional theoretical approaches aim at a direct calculation of the corresponding cross sections. This has the important shortcoming that it is difficult to account for the experimental conditions when comparing results to measured data. In contrast, the present code generates theoretical event files of the same type as are obtained in a real experiment. From these event files any type of cross sections can be easily extracted. The theoretical schemes are based on distorted wave formalisms for both processes of interest. Solution method: The codes employ a Monte Carlo Event Generator based on theoretical formalisms to generate event files for both single and double ionization. One of the main advantages of having access to theoretical event files is the possibility of adding the conditions present in real experiments (parameter uncertainties, environmental conditions, etc.) and to incorporate additional physics in the resulting event files (e.g. elastic scattering or other interactions absent in the underlying calculations). Additional comments: The computational time can be dramatically reduced if a large number of processors is used. Since the codes has no communication between processes it is possible to achieve an efficiency of a 100% (this number certainly will be penalized by the queuing waiting time). Running time: Times vary according to the process, single or double ionization, to be simulated, the number of processors and the type of theoretical model. The typical running time is between several hours and up to a few weeks.
Optimal estimation of diffusion coefficients from single-particle trajectories
NASA Astrophysics Data System (ADS)
Vestergaard, Christian L.; Blainey, Paul C.; Flyvbjerg, Henrik
2014-02-01
How does one optimally determine the diffusion coefficient of a diffusing particle from a single-time-lapse recorded trajectory of the particle? We answer this question with an explicit, unbiased, and practically optimal covariance-based estimator (CVE). This estimator is regression-free and is far superior to commonly used methods based on measured mean squared displacements. In experimentally relevant parameter ranges, it also outperforms the analytically intractable and computationally more demanding maximum likelihood estimator (MLE). For the case of diffusion on a flexible and fluctuating substrate, the CVE is biased by substrate motion. However, given some long time series and a substrate under some tension, an extended MLE can separate particle diffusion on the substrate from substrate motion in the laboratory frame. This provides benchmarks that allow removal of bias caused by substrate fluctuations in CVE. The resulting unbiased CVE is optimal also for short time series on a fluctuating substrate. We have applied our estimators to human 8-oxoguanine DNA glycolase proteins diffusing on flow-stretched DNA, a fluctuating substrate, and found that diffusion coefficients are severely overestimated if substrate fluctuations are not accounted for.
Analytical approximations for spatial stochastic gene expression in single cells and tissues
Smith, Stephen; Cianci, Claudia; Grima, Ramon
2016-01-01
Gene expression occurs in an environment in which both stochastic and diffusive effects are significant. Spatial stochastic simulations are computationally expensive compared with their deterministic counterparts, and hence little is currently known of the significance of intrinsic noise in a spatial setting. Starting from the reaction–diffusion master equation (RDME) describing stochastic reaction–diffusion processes, we here derive expressions for the approximate steady-state mean concentrations which are explicit functions of the dimensionality of space, rate constants and diffusion coefficients. The expressions have a simple closed form when the system consists of one effective species. These formulae show that, even for spatially homogeneous systems, mean concentrations can depend on diffusion coefficients: this contradicts the predictions of deterministic reaction–diffusion processes, thus highlighting the importance of intrinsic noise. We confirm our theory by comparison with stochastic simulations, using the RDME and Brownian dynamics, of two models of stochastic and spatial gene expression in single cells and tissues. PMID:27146686
NASA Astrophysics Data System (ADS)
Klotsman, S. M.; Tatarinova, G. N.
2008-12-01
The coefficients and parameters of the temperature dependences of the coefficients of bulk diffusion of Fe, Co, Rh, and Au atomic probes (APs) in iridium single crystals (mono-Ir) have been determined from the diffusion profiles obtained using secondary-ion mass spectrometry of the diffusion zones. The enthalpies of activation of diffusion of Fe, Co, and Rh APs are considerably lower than the enthalpy of activation of selfdiffusion in mono-Ir. This is caused by the negative contributions of the intraatomic exchange energy and energy of relaxation of the environment of the d transition APs to the enthalpy of interaction of magnetically active APs with the vacancies in the iridium lattice. The interaction energy of partners in such complexes and the relationships between the magnetic moments of d transition APs in complexes with vacancies have been estimated. The Rh APs in complexes with vacancies in iridium possess stable magnetic moments.
Ultrafast lithium diffusion in bilayer graphene
NASA Astrophysics Data System (ADS)
Kühne, Matthias; Paolucci, Federico; Popovic, Jelena; Ostrovsky, Pavel M.; Maier, Joachim; Smet, Jurgen H.
2017-09-01
Solids that simultaneously conduct electrons and ions are key elements for the mass transfer and storage required in battery electrodes. Single-phase materials with a high electronic and high ionic conductivity at room temperature are hard to come by, and therefore multiphase systems with separate ion and electron channels have been put forward instead. Here we report on bilayer graphene as a single-phase mixed conductor that demonstrates Li diffusion faster than in graphite and even surpassing the diffusion of sodium chloride in liquid water. To measure Li diffusion, we have developed an on-chip electrochemical cell architecture in which the redox reaction that forces Li intercalation is localized only at a protrusion of the device so that the graphene bilayer remains unperturbed from the electrolyte during operation. We performed time-dependent Hall measurements across spatially displaced Hall probes to monitor the in-plane Li diffusion kinetics within the graphene bilayer and measured a diffusion coefficient as high as 7 × 10-5 cm2 s-1.
Protein gradients in single cells induced by their coupling to "morphogen"-like diffusion
NASA Astrophysics Data System (ADS)
Nandi, Saroj Kumar; Safran, Sam A.
2018-05-01
One of the many ways cells transmit information within their volume is through steady spatial gradients of different proteins. However, the mechanism through which proteins without any sources or sinks form such single-cell gradients is not yet fully understood. One of the models for such gradient formation, based on differential diffusion, is limited to proteins with large ratios of their diffusion constants or to specific protein-large molecule interactions. We introduce a novel mechanism for gradient formation via the coupling of the proteins within a single cell with a molecule, that we call a "pronogen," whose action is similar to that of morphogens in multi-cell assemblies; the pronogen is produced with a fixed flux at one side of the cell. This coupling results in an effectively non-linear diffusion degradation model for the pronogen dynamics within the cell, which leads to a steady-state gradient of the protein concentration. We use stability analysis to show that these gradients are linearly stable with respect to perturbations.
Radiance and polarization in the diffusion region with an arbitrary scattering phase matrix
NASA Astrophysics Data System (ADS)
Sun, Bingqiang; Kattawar, George W.; Yang, Ping
2016-11-01
Radiance and polarization patterns in an optically deep region, the so-called diffusion region or asymptotic region, of a homogeneous atmosphere or ocean, depend mainly on the scattering phase matrix and the single-scattering albedo of the medium. The radiance and polarization properties in the diffusion region for an arbitrary scattering phase matrix can be obtained in terms of a series of the generalized spherical functions. The number of terms is closely related to the single-scattering albedo of the medium. If the medium is conservative, the radiance is isotropic in conjunction with no polarization. If the single-scattering albedo is close to 1, several terms are sufficient to obtain the patterns, in which the degree of polarization feature is less than 1%. If the medium is highly absorptive, more expansion terms are required to obtain the diffusion patterns. The examples of simulated radiance and polarization patterns for Rayleigh scattering, Henyey-Greenstein-Rayleigh scattering, and haze L and cloud C1 scattering, defined by Deirmendjian, are calculated.
Probing the type of anomalous diffusion with single-particle tracking.
Ernst, Dominique; Köhler, Jürgen; Weiss, Matthias
2014-05-07
Many reactions in complex fluids, e.g. signaling cascades in the cytoplasm of living cells, are governed by a diffusion-driven encounter of reactants. Yet, diffusion in complex fluids often exhibits an anomalous characteristic ('subdiffusion'). Since different types of subdiffusion have distinct effects on timing and equilibria of chemical reactions, a thorough determination of the reactants' type of random walk is key to a quantitative understanding of reactions in complex fluids. Here we introduce a straightforward and simple approach for determining the type of subdiffusion from single-particle tracking data. Unlike previous approaches, our method also is sensitive to transient subdiffusion phenomena, e.g. obstructed diffusion below the percolation threshold. We validate our strategy with data from experiment and simulation.
Construction of image database for newspapaer articles using CTS
NASA Astrophysics Data System (ADS)
Kamio, Tatsuo
Nihon Keizai Shimbun, Inc. developed a system of making articles' image database automatically by use of CTS (Computer Typesetting System). Besides the articles and the headlines inputted in CTS, it reproduces the image of elements of such as photography and graphs by article in accordance with information of position on the paper. So to speak, computer itself clips the articles out of the newspaper. Image database is accumulated in magnetic file and optical file and is output to the facsimile of users. With diffusion of CTS, newspaper companies which start to have structure of articles database are increased rapidly, the said system is the first attempt to make database automatically. This paper describes the device of CTS which supports this system and outline.
NASA Astrophysics Data System (ADS)
Woo, Mino; Wörner, Martin; Tischer, Steffen; Deutschmann, Olaf
2018-03-01
The multicomponent model and the effective diffusivity model are well established diffusion models for numerical simulation of single-phase flows consisting of several components but are seldom used for two-phase flows so far. In this paper, a specific numerical model for interfacial mass transfer by means of a continuous single-field concentration formulation is combined with the multicomponent model and effective diffusivity model and is validated for multicomponent mass transfer. For this purpose, several test cases for one-dimensional physical or reactive mass transfer of ternary mixtures are considered. The numerical results are compared with analytical or numerical solutions of the Maxell-Stefan equations and/or experimental data. The composition-dependent elements of the diffusivity matrix of the multicomponent and effective diffusivity model are found to substantially differ for non-dilute conditions. The species mole fraction or concentration profiles computed with both diffusion models are, however, for all test cases very similar and in good agreement with the analytical/numerical solutions or measurements. For practical computations, the effective diffusivity model is recommended due to its simplicity and lower computational costs.
Diffusivity of the interstitial hydrogen shallow donor in In2O3
NASA Astrophysics Data System (ADS)
Qin, Ying; Weiser, Philip; Villalta, Karla; Stavola, Michael; Fowler, W. Beall; Biaggio, Ivan; Boatner, Lynn
2018-04-01
Hydrogen has been found to be an n-type dopant in In2O3 that gives rise to unintentional conductivity. An infrared (IR) absorption line observed at 3306 cm-1 has been assigned to the Hi+ center. Two types of experiments have been performed to determine the diffusivity of Hi+ in In2O3 from its IR absorption spectra. (i) At temperatures near 700 K, the O-H line at 3306 cm-1 has been used to determine the diffusivity of Hi+ from its in-diffusion and out-diffusion behaviors. (ii) At temperatures near 160 K, stress has been used to produce a preferential alignment of the Hi+ center that has been detected in IR absorption experiments made with polarized light. With the help of theory, the kinetics with which a stress-induced alignment can be produced yield the time constant for a single jump of the Hi+ center and also the diffusivity of Hi+ near 160 K. The combination of the diffusivity of Hi+ found near 700 K by mass-transport measurements and that found near 160 K from the time constant for a single Hi+ jump determines the diffusivity for Hi+ over eleven decades!
Wear of the Primary WaveOne single file when shaping vestibular root canals of first maxillary molar
Borie, Eduardo; Betancourt, Pablo; Aracena, Angella; Guzmán, Mario
2017-01-01
Background It is very important for a clinician to know the increased wear of mechanized files when establishing endodontic therapy. The aim of this study was to check the wear of the Primary WaveOne file upon shaping two, four and six maxillary molar vestibular canals. Material and Methods The deterioration of 40 files, divided into four groups, was evaluated microscopically: group 1, control (unused); group 2, two canals; group 3, four canals; and group 4, six canals. After instrumentation, the files were embedded in resin and sectioned at their apical third into three equal parts. To analyze the wear of edges in the different sections, AutoCAD software was used and analysis of variance (ANOVA) was then performed to compare the mean rake angles. Results The files with two and four uses showed slight wear, whereas those with six applications showed significant wear (p<0.05). Conclusions Primary WaveOne files can be used in up to four root canals without their edges losing effectiveness. Key words:Files wear, reciprocating motion, shaping capacity, WaveOne. PMID:28298976
Aracena, Daniel; Borie, Eduardo; Betancourt, Pablo; Aracena, Angella; Guzmán, Mario
2017-03-01
It is very important for a clinician to know the increased wear of mechanized files when establishing endodontic therapy. The aim of this study was to check the wear of the Primary WaveOne file upon shaping two, four and six maxillary molar vestibular canals. The deterioration of 40 files, divided into four groups, was evaluated microscopically: group 1, control (unused); group 2, two canals; group 3, four canals; and group 4, six canals. After instrumentation, the files were embedded in resin and sectioned at their apical third into three equal parts. To analyze the wear of edges in the different sections, AutoCAD software was used and analysis of variance (ANOVA) was then performed to compare the mean rake angles. The files with two and four uses showed slight wear, whereas those with six applications showed significant wear ( p <0.05). Primary WaveOne files can be used in up to four root canals without their edges losing effectiveness. Key words: Files wear, reciprocating motion, shaping capacity, WaveOne.
de Carvalho, Guilherme Moreira; Sponchiado Junior, Emílio Carlos; Garrido, Angela Delfina Bittencourt; Lia, Raphael Carlos Comelli; Garcia, Lucas da Fonseca Roberti; Marques, André Augusto Franco
2015-12-01
The aim of this study was to evaluate the apical transportation, the centering ability, and the cleaning effectiveness of a reciprocating single-file system associated to different glide path techniques. The mesial root canals of 52 mandibular molars were randomly distributed into 4 groups (n = 13) according to the different glide path techniques used before biomechanical preparation with Reciproc System (RS): KF/RS (sizes 10 and 15 K-files), NGP/RS (no glide path, only reciprocating system), PF/RS (sizes 13, 16, and 19 PathFile instruments), and NP (no preparation). Cone-beam computed tomography analysis was performed before and after instrumentation for apical third images acquisition. Apical transportation and its direction were evaluated by using the formula D = (X1 - X2) - (Y1 - Y2), and the centering ability was analyzed by the formula CC = (X1 - X2/Y1 - Y2 or Y1 - Y2/X1 - X2). The samples were submitted to histologic processing and analyzed under a digital microscope for debris quantification. The values were statistically analyzed (Kruskal-Wallis, the Dunn multiple comparisons test, P < .05). All groups had similar apical transportation values, with no significant difference among them (P > .05). Groups had a tendency toward transportation in the mesial direction. No technique had perfect centering ability (=1.0), with no significant difference among them. KF/RS had larger amount of debris, with statistically significant difference in comparison with NGP/RS (P > .05). The different glide path techniques promoted minimal apical transportation, and the reciprocating single-file system tested remained relatively centralized within the root canal. Also, the different techniques interfered in the cleaning effectiveness of the reciprocating system. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Efficient image data distribution and management with application to web caching architectures
NASA Astrophysics Data System (ADS)
Han, Keesook J.; Suter, Bruce W.
2003-03-01
We present compact image data structures and associated packet delivery techniques for effective Web caching architectures. Presently, images on a web page are inefficiently stored, using a single image per file. Our approach is to use clustering to merge similar images into a single file in order to exploit the redundancy between images. Our studies indicate that a 30-50% image data size reduction can be achieved by eliminating the redundancies of color indexes. Attached to this file is new metadata to permit an easy extraction of images. This approach will permit a more efficient use of the cache, since a shorter list of cache references will be required. Packet and transmission delays can be reduced by 50% eliminating redundant TCP/IP headers and connection time. Thus, this innovative paradigm for the elimination of redundancy may provide valuable benefits for optimizing packet delivery in IP networks by reducing latency and minimizing the bandwidth requirements.
Self-averaging and weak ergodicity breaking of diffusion in heterogeneous media
NASA Astrophysics Data System (ADS)
Russian, Anna; Dentz, Marco; Gouze, Philippe
2017-08-01
Diffusion in natural and engineered media is quantified in terms of stochastic models for the heterogeneity-induced fluctuations of particle motion. However, fundamental properties such as ergodicity and self-averaging and their dependence on the disorder distribution are often not known. Here, we investigate these questions for diffusion in quenched disordered media characterized by spatially varying retardation properties, which account for particle retention due to physical or chemical interactions with the medium. We link self-averaging and ergodicity to the disorder sampling efficiency Rn, which quantifies the number of disorder realizations a noise ensemble may sample in a single disorder realization. Diffusion for disorder scenarios characterized by a finite mean transition time is ergodic and self-averaging for any dimension. The strength of the sample to sample fluctuations decreases with increasing spatial dimension. For an infinite mean transition time, particle motion is weakly ergodicity breaking in any dimension because single particles cannot sample the heterogeneity spectrum in finite time. However, even though the noise ensemble is not representative of the single-particle time statistics, subdiffusive motion in q ≥2 dimensions is self-averaging, which means that the noise ensemble in a single realization samples a representative part of the heterogeneity spectrum.
Ambiguity in measuring matrix diffusion with single-well injection/recovery tracer tests
Lessoff, S.C.; Konikow, Leonard F.
1997-01-01
Single-well injection/recovery tracer tests are considered for use in characterizing and quantifying matrix diffusion in dual-porosity aquifers. Numerical modeling indicates that neither regional drift in homogeneous aquifers, nor heterogeneity in aquifers having no regional drift, nor hydrodynamic dispersion significantly affects these tests. However, when drift is coupled simultaneously with heterogeneity, they can have significant confounding effects on tracer return. This synergistic effect of drift and heterogeneity may help explain irreversible flow and inconsistent results sometimes encountered in previous single-well injection/recovery tracer tests. Numerical results indicate that in a hypothetical single-well injection/recovery tracer test designed to demonstrate and measure dual-porosity characteristics in a fractured dolomite, the simultaneous effects of drift and heterogeneity sometimes yields responses similar to those anticipated in a homogeneous dual-porosity formation. In these cases, tracer recovery could provide a false indication of the occurrence of matrix diffusion. Shortening the shut-in period between injection and recovery periods may make the test less sensitive to drift. Using multiple tracers having different diffusion characteristics, multiple tests having different pumping schedules, and testing the formation at more than one location would decrease the ambiguity in the interpretation of test data.
Liu, Fangchao; Dong, Chaoqing; Ren, Jicun
2018-03-15
Colloidal gold nanospheres (GNSs) have become important nanomaterials in biomedical applications due to their special optical properties, good chemical stability, and biocompatibility. However, measuring the diffusion coefficients or concentration distribution of GNSs within live cells accurately without any extra fluorescent labeling in situ has still not been resolved. In this work, a single particle method is developed to study the concentration distribution of folic acid-modified GNSs (FA-GNSs) internalized via folate receptors, and investigates their diffusion dynamics within live cells using single particle fluorescence correlation spectroscopy (FCS). We optimized the experimental conditions and verified the feasibility of 30 nm GNSs without extra fluorescence labeling being used for single particle detection inside live cells. Then, the FCS characterization strategy was used to measure the concentration and diffusion coefficient distributions of GNSs inside live cells and the obtained results were basically in agreement with those obtained by TEM. The results demonstrate that our strategy is characterized as an in situ, nondestructive, rapid and dynamic method for the assay of live cells, and it may be widely used in the further design of GNP-based drug delivery and therapeutics.
Using compressed images in multimedia education
NASA Astrophysics Data System (ADS)
Guy, William L.; Hefner, Lance V.
1996-04-01
The classic radiologic teaching file consists of hundreds, if not thousands, of films of various ages, housed in paper jackets with brief descriptions written on the jackets. The development of a good teaching file has been both time consuming and voluminous. Also, any radiograph to be copied was unavailable during the reproduction interval, inconveniencing other medical professionals needing to view the images at that time. These factors hinder motivation to copy films of interest. If a busy radiologist already has an adequate example of a radiological manifestation, it is unlikely that he or she will exert the effort to make a copy of another similar image even if a better example comes along. Digitized radiographs stored on CD-ROM offer marked improvement over the copied film teaching files. Our institution has several laser digitizers which are used to rapidly scan radiographs and produce high quality digital images which can then be converted into standard microcomputer (IBM, Mac, etc.) image format. These images can be stored on floppy disks, hard drives, rewritable optical disks, recordable CD-ROM disks, or removable cartridge media. Most hospital computer information systems include radiology reports in their database. We demonstrate that the reports for the images included in the users teaching file can be copied and stored on the same storage media as the images. The radiographic or sonographic image and the corresponding dictated report can then be 'linked' together. The description of the finding or findings of interest on the digitized image is thus electronically tethered to the image. This obviates the need to write much additional detail concerning the radiograph, saving time. In addition, the text on this disk can be indexed such that all files with user specified features can be instantly retrieve and combined in a single report, if desired. With the use of newer image compression techniques, hundreds of cases may be stored on a single CD-ROM depending on the quality of image required for the finding in question. This reduces the weight of a teaching file from that of a baby elephant to that of a single CD-ROM disc. Thus, with this method of teaching file preparation and storage the following advantages are realized: (1) Technically easier and less time consuming image reproduction. (2) Considerably less unwieldy and substantially more portable teaching files. (3) Novel ability to index files and then retrieve specific cases of choice based on descriptive text.
Single-shot ADC imaging for fMRI.
Song, Allen W; Guo, Hua; Truong, Trong-Kha
2007-02-01
It has been suggested that apparent diffusion coefficient (ADC) contrast can be sensitive to cerebral blood flow (CBF) changes during brain activation. However, current ADC imaging techniques have an inherently low temporal resolution due to the requirement of multiple acquisitions with different b-factors, as well as potential confounds from cross talk between the deoxyhemoglobin-induced background gradients and the externally applied diffusion-weighting gradients. In this report a new method is proposed and implemented that addresses these two limitations. Specifically, a single-shot pulse sequence that sequentially acquires one gradient-echo (GRE) and two diffusion-weighted spin-echo (SE) images was developed. In addition, the diffusion-weighting gradient waveform was numerically optimized to null the cross terms with the deoxyhemoglobin-induced background gradients to fully isolate the effect of diffusion weighting from that of oxygenation-level changes. The experimental results show that this new single-shot method can acquire ADC maps with sufficient signal-to-noise ratio (SNR), and establish its practical utility in functional MRI (fMRI) to complement the blood oxygenation level-dependent (BOLD) technique and provide differential sensitivity for different vasculatures to better localize neural activity originating from the small vessels. Copyright (c) 2007 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koumetz, Serge D., E-mail: Serge.Koumetz@univ-rouen.fr; Martin, Patrick; Murray, Hugues
Experimental results on the diffusion of grown-in beryllium (Be) in indium gallium arsenide (In{sub 0.53}Ga{sub 0.47}As) and indium gallium arsenide phosphide (In{sub 0.73}Ga{sub 0.27}As{sub 0.58}P{sub 0.42}) gas source molecular beam epitaxy alloys lattice-matched to indium phosphide (InP) can be successfully explained in terms of a combined kick-out and dissociative diffusion mechanism, involving neutral Be interstitials (Be{sub i}{sup 0}), singly positively charged gallium (Ga), indium (In) self-interstitials (I{sub III}{sup +}) and singly positively charged Ga, In vacancies (V{sub III}{sup +}). A new numerical method of solution to the system of diffusion equations, based on the finite difference approximations and Bairstow's method,more » is proposed.« less
Diffusion of CO2 in Large Crystals of Cu-BTC MOF.
Tovar, Trenton M; Zhao, Junjie; Nunn, William T; Barton, Heather F; Peterson, Gregory W; Parsons, Gregory N; LeVan, M Douglas
2016-09-14
Carbon dioxide adsorption in metal-organic frameworks has been widely studied for applications in carbon capture and sequestration. A critical component that has been largely overlooked is the measurement of diffusion rates. This paper describes a new reproducible procedure to synthesize millimeter-scale Cu-BTC single crystals using concentrated reactants and an acetic acid modulator. Microscopic images, X-ray diffraction patterns, Brunauer-Emmett-Teller surface areas, and thermogravimetric analysis results all confirm the high quality of these Cu-BTC single crystals. The large crystal size aids in the accurate measurement of micropore diffusion coefficients. Concentration-swing frequency response performed at varying gas-phase concentrations gives diffusion coefficients that show very little dependence on the loading up to pressures of 0.1 bar. The measured micropore diffusion coefficient for CO2 in Cu-BTC is 1.7 × 10(-9) m(2)/s.
Effects of sorption competition on caesium diffusion through compacted argillaceous rock
NASA Astrophysics Data System (ADS)
Jakob, Andreas; Pfingsten, Wilfried; Van Loon, Luc
2009-05-01
We carried out a small-scale laboratory diffusion experiment on a disk-like sample of Opalinus clay from the Mont Terri underground laboratory (Switzerland) using 134Cs as tracer. A through-diffusion phase was followed by an out-diffusion phase where the tracer taken up by the sample was released again. Since the tracer concentration at both boundaries was monitored, careful mass-balance considerations were feasible. A first analysis of the experimental data was done in the frame of a single-species model accounting only for transport and non-linear sorption of caesium. The model could match the data of the through-diffusion phase, however only, when strongly reducing the sorption data based on batch sorption experiments. Yet, such a procedure was in strong contradiction with sorption measurements performed on dispersed and compacted systems. In addition, predictions concerning tracer out-diffusion and mass-balance considerations clearly revealed the shortcomings of this type of model. In a second attempt we applied a multi-species transport model where now the whole water chemistry and a sorption model for caesium were considered. First, the value for the diffusion coefficient was fixed to the best-fit value of the single-species model. But again, the sorption site densities had to be reduced strongly albeit the reduction factor was smaller. Only when fixing the sorption site densities to those values of the sorption model and letting the effective diffusion coefficient D e free for the adjustment, could through-diffusion data be reasonably well fitted and out-diffusion as well as mass-balances be predicted in a satisfying manner. The main results are: (1) The best-fit could be achieved with a value for D e of 1.8 × 10 -10 m 2 s -1 which is rather high but corroborated by results of a molecular modelling study. (2) If caesium arrives in the Opalinus clay sample potassium and sodium (calcium etc.) ions are released and caesium ions are sorbed. The released cations diffuse to lower concentration regions according to their individual concentration gradients. Since locally the cation concentration for potassium, (sodium and calcium) is increased, sorption of these cations is also locally enhanced, affecting in return the sorption behaviour of migrating caesium. Consequently, the sorption process of caesium in such diffusion experiments cannot be addressed by a non-linear isotherm formalism any longer. (3) A reasonable analysis of such single tracer diffusion experiments therefore requires the combined description of transport (diffusion) and sorption of many cations and the whole complex water chemistry of the system. Thus, single-species models can only be applied with care in the considered concentration ranges.
Diffusivity of the interstitial hydrogen shallow donor in In 2 O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Ying; Weiser, Philip; Villalta, Karla
Hydrogen has been found to be an n-type dopant in In2O3 that gives rise to unintentional conductivity. An infrared (IR) absorption line observed at 3306 cm-1 has been assigned to the Hi+ center. Two types of experiments have been performed to determine the diffusivity of Hi+ in In2O3 from its IR absorption spectra. (i) At temperatures near 700 K, the O-H line at 3306 cm-1 has been used to determine the diffusivity of Hi+ from its in-diffusion and out-diffusion behavior. (ii) At temperatures near 160 K, stress has been used to produce a preferential alignment of the Hi+ center thatmore » has been detected in IR absorption experiments made with polarized light. With the help of theory, the kinetics with which a stress-induced alignment can be produced yield the time constant for a single jump of the Hi+ center and also the diffusivity of Hi+ near 160 K. The combination of the diffusivity of Hi+ found near 700 K by mass-transport measurements along with the diffusivity found near 160 K from the time constant for a single Hi+ jump determines the diffusivity for Hi+ over eleven decades!« less
An Ab Initio and Kinetic Monte Carlo Simulation Study of Lithium Ion Diffusion on Graphene
Zhong, Kehua; Yang, Yanmin; Xu, Guigui; Zhang, Jian-Min; Huang, Zhigao
2017-01-01
The Li+ diffusion coefficients in Li+-adsorbed graphene systems were determined by combining first-principle calculations based on density functional theory with Kinetic Monte Carlo simulations. The calculated results indicate that the interactions between Li ions have a very important influence on lithium diffusion. Based on energy barriers directly obtained from first-principle calculations for single-Li+ and two-Li+ adsorbed systems, a new equation predicting energy barriers with more than two Li ions was deduced. Furthermore, it is found that the temperature dependence of Li+ diffusion coefficients fits well to the Arrhenius equation, rather than meeting the equation from electrochemical impedance spectroscopy applied to estimate experimental diffusion coefficients. Moreover, the calculated results also reveal that Li+ concentration dependence of diffusion coefficients roughly fits to the equation from electrochemical impedance spectroscopy in a low concentration region; however, it seriously deviates from the equation in a high concentration region. So, the equation from electrochemical impedance spectroscopy technique could not be simply used to estimate the Li+ diffusion coefficient for all Li+-adsorbed graphene systems with various Li+ concentrations. Our work suggests that interactions between Li ions, and among Li ion and host atoms will influence the Li+ diffusion, which determines that the Li+ intercalation dependence of Li+ diffusion coefficient should be changed and complex. PMID:28773122
Classification of Dynamical Diffusion States in Single Molecule Tracking Microscopy
Bosch, Peter J.; Kanger, Johannes S.; Subramaniam, Vinod
2014-01-01
Single molecule tracking of membrane proteins by fluorescence microscopy is a promising method to investigate dynamic processes in live cells. Translating the trajectories of proteins to biological implications, such as protein interactions, requires the classification of protein motion within the trajectories. Spatial information of protein motion may reveal where the protein interacts with cellular structures, because binding of proteins to such structures often alters their diffusion speed. For dynamic diffusion systems, we provide an analytical framework to determine in which diffusion state a molecule is residing during the course of its trajectory. We compare different methods for the quantification of motion to utilize this framework for the classification of two diffusion states (two populations with different diffusion speed). We found that a gyration quantification method and a Bayesian statistics-based method are the most accurate in diffusion-state classification for realistic experimentally obtained datasets, of which the gyration method is much less computationally demanding. After classification of the diffusion, the lifetime of the states can be determined, and images of the diffusion states can be reconstructed at high resolution. Simulations validate these applications. We apply the classification and its applications to experimental data to demonstrate the potential of this approach to obtain further insights into the dynamics of cell membrane proteins. PMID:25099798
Diffusion Milieus as a Focus of Research on Innovation in the Public Sector
ERIC Educational Resources Information Center
Feller, Irwin; Menzel, Donald C.
1977-01-01
Presents an approach to the diffusion of technological innovations in state and local governments that is organized around the concept of "diffusion milieus." Available from: Elsevier Scientific Publishing Company, Box 211, Amsterdam, The Netherlands; single issues supplied upon request. (Author/JG)
Code of Federal Regulations, 2014 CFR
2014-01-01
..., dedicated toll-free telephone number; and (iii) Mail directed to a single address; (2) Be designed, funded... Web site or telephone number for ordering free annual credit reports as required by Federal law; and... the file disclosure is delivered to the consumer through the Internet, and the nationwide consumer...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., dedicated toll-free telephone number; and (iii) Mail directed to a single address; (2) Be designed, funded... Web site or telephone number for ordering free annual credit reports as required by Federal law; and... the file disclosure is delivered to the consumer through the Internet, and the nationwide consumer...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., dedicated toll-free telephone number; and (iii) Mail directed to a single address; (2) Be designed, funded... Web site or telephone number for ordering free annual credit reports as required by Federal law; and... the file disclosure is delivered to the consumer through the Internet, and the nationwide consumer...
Coastal bathymetry data collected in 2011 from the Chandeleur Islands, Louisiana
DeWitt, Nancy T.; Pfeiffer, William R.; Bernier, Julie C.; Buster, Noreen A.; Miselis, Jennifer L.; Flocks, James G.; Reynolds, Billy J.; Wiese, Dana S.; Kelso, Kyle W.
2014-01-01
This report serves as an archive of processed interferometric swath and single-beam bathymetry data. Geographic Iinformation System data products include a 50-meter cell-size interpolated bathymetry grid surface, trackline maps, and point data files. Additional files include error analysis maps, Field Activity Collection System logs, and formal Federal Geographic Data Committee metadata.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-20
... system; (2) a single lower reservoir dam constructed of earth fill materials with an internal dam drainage system; (3) concrete inlet-outlet structures at both upper reservoirs equipped with trash racks..., using the eComment system at http://www.ferc.gov/docs-filing/ecomment.asp . You must include your name...
Decrypting God's Language, and Other Items from Professors' Crackpot Files
ERIC Educational Resources Information Center
Monastersky, Richard
2008-01-01
This article describes how professors became magnets for crackpots bearing pet theories and searching for validation. Scott A. Hughes, an associate professor of physics at the Massachusetts Institute of Technology, received a 22-page, single-spaced screed this May just begging for a place in the crackpot file. The subject line read, in part,…
Diffusion of One-Dimensional Crystals in Channels of Single-Walled Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Zhigalina, V. G.; Kumskov, A. S.; Falaleev, N. S.; Vasiliev, A. L.; Kiselev, N. A.
2018-05-01
The transport of one-dimensional CuI crystals in channels of single-walled carbon nanotubes (SWCNTs) has been studied by high resolution electron microscopy. The diffusion kinetics has been investigated by counting the number of CuI atoms escaping from the nanotube channel. The diffusivity is calculated to be 6.8 × 10-21 m2/s, which corresponds to an activation-barrier height of 1 eV/atom. A comparison with the theoretically estimated height of the energy barrier for molecular transport through a graphene layer is indicative of mass transfer through vacancy defects in graphene.
Thermal diffusivity of diamond nanowires studied by laser assisted atom probe tomography
NASA Astrophysics Data System (ADS)
Arnoldi, L.; Spies, M.; Houard, J.; Blum, I.; Etienne, A.; Ismagilov, R.; Obraztsov, A.; Vella, A.
2018-04-01
The thermal properties of single-crystal diamond nanowires (NWs) have been calculated from first principles but have never been measured experimentally. Taking advantage of the sharp geometry of samples analyzed in a laser assisted atom probe, this technique is used to measure the thermal diffusivity of a single NW at low temperature (<300 K). The obtained value is in good agreement with the ab-initio calculations and confirms that thermal diffusivity in nanoscale samples is lower than in bulk samples. The results impact the design and integration of diamond NWs and nanoneedles in nanoscale devices for heat dissipation.
NASA Astrophysics Data System (ADS)
Bai, M.; Miskowiec, A.; Hansen, F. Y.; Taub, H.; Jenkins, T.; Tyagi, M.; Diallo, S. O.; Mamontov, E.; Herwig, K. W.; Wang, S.-K.
2012-05-01
High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules.
First-principles multiple-barrier diffusion theory. The case study of interstitial diffusion in CdTe
Yang, Ji -Hui; Park, Ji -Sang; Kang, Joongoo; ...
2015-02-17
The diffusion of particles in solid-state materials generally involves several sequential thermal-activation processes. However, presently, diffusion coefficient theory only deals with a single barrier, i.e., it lacks an accurate description to deal with multiple-barrier diffusion. Here, we develop a general diffusion coefficient theory for multiple-barrier diffusion. Using our diffusion theory and first-principles calculated hopping rates for each barrier, we calculate the diffusion coefficients of Cd, Cu, Te, and Cl interstitials in CdTe for their full multiple-barrier diffusion pathways. As a result, we found that the calculated diffusivity agrees well with the experimental measurement, thus justifying our theory, which is generalmore » for many other systems.« less
Kal, Betül Ilhan; Baksi, B Güniz; Dündar, Nesrin; Sen, Bilge Hakan
2007-02-01
The aim of this study was to compare the accuracy of endodontic file lengths after application of various image enhancement modalities. Endodontic files of three different ISO sizes were inserted in 20 single-rooted extracted permanent mandibular premolar teeth and standardized images were obtained. Original digital images were then enhanced using five processing algorithms. Six evaluators measured the length of each file on each image. The measurements from each processing algorithm and each file size were compared using repeated measures ANOVA and Bonferroni tests (P = 0.05). Paired t test was performed to compare the measurements with the true lengths of the files (P = 0.05). All of the processing algorithms provided significantly shorter measurements than the true length of each file size (P < 0.05). The threshold enhancement modality produced significantly higher mean error values (P < 0.05), while there was no significant difference among the other enhancement modalities (P > 0.05). Decrease in mean error value was observed with increasing file size (P < 0.05). Invert, contrast/brightness and edge enhancement algorithms may be recommended for accurate file length measurements when utilizing storage phosphor plates.
Kalra, Pinky; Suman, Ethel; Shenoy, Ramya; Suprabha, Baranya-Shrikrishna
2017-01-01
Background Endodontic instrumentation carries the risk of over extrusion of debris and bacteria. The technique used and the type of instrumentation influences this risk. Aim The purpose of this study was to evaluate and compare the K-file, ProTaper hand and ProTaper rotary instrumentation systems for the amount of apically extruded debris, irrigant solution and intracanal bacteria. Design Experimental single blinded randomized type of in vitro study with sample of 30 single rooted teeth. Endodontic access cavities were prepared and the root canals were filled with the suspension of E. faecalis. Myers and Montogomery Model was used to collect apically extruded debris and irrigant. Canals were prepared using K files, Hand protapers and Protaper rotary files. Statistical analysis Non Parametric test like Kruskal-Wallis and Mann-Whitney U test were applied to determine the significant differences among the group. Results Tests revealed statistically significant difference between the amount of debris and number of bacteria extruded by the ProTaper hand and the K-files. No statistically significant difference was observed between the amounts of irrigant extruded by the ProTaper hand and the K-file system. Statistically significant differences were observed between the amounts of bacteria and irrigant extruded by the ProTaper rotary and the Protaper hand. No statistically significant difference was observed between the amounts of debris extruded by the ProTaper hand and the K-file system. Conclusions Amount of apical extrusion of irrigant solution, bacteria and debris are significantly greater with K File instruments and least with Protaper rotary instruments. Key words:Protaper, rotary, periapical extrusion. PMID:28210445
BOREAS RSS-14 Level-1a GOES-8 Visible, IR and Water Vapor Images
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Newcomer, Jeffrey A.; Faysash, David; Cooper, Harry J.; Smith, Eric A.
2000-01-01
The BOREAS RSS-14 team collected and processed several GOES-7 and GOES-8 image data sets that covered the BOREAS study region. The level-1a GOES-8 images were created by BORIS personnel from the level-1 images delivered by FSU personnel. The data cover 14-Jul-1995 to 21-Sep-1995 and 12-Feb-1996 to 03-Oct-1996. The data start out as three bands with 8-bit pixel values and end up as five bands with 10-bit pixel values. No major problems with the data have been identified. The differences between the level-1 and level-1a GOES-8 data are the formatting and packaging of the data. The images missing from the temporal series of level-1 GOES-8 images were zero-filled by BORIS staff to create files consistent in size and format. In addition, BORIS staff packaged all the images of a given type from a given day into a single file, removed the header information from the individual level-1 files, and placed it into a single descriptive ASCII header file. The data are contained in binary image format files. Due to the large size of the images, the level-1a GOES-8 data are not contained on the BOREAS CD-ROM set. An inventory listing file is supplied on the CD-ROM to inform users of what data were collected. The level-1a GOES-8 image data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). See sections 15 and 16 for more information. The data files are available on a CD-ROM (see document number 20010000884).
Basmaci, F; Oztan, M D; Kiyan, M
2013-09-01
To evaluate ex vivo the effectiveness of single-file instrumentation techniques compared with serial Ni-Ti rotary instrumentation with several irrigation regimens in reducing E. faecalis within root canals. A total of 81 extracted human mandibular premolar teeth with a single root canal were infected with E. faecalis before and after canal preparation. Samples were divided randomly into 9 groups, as follows: group 1-A: sterile phosphate-buffered saline + Self-adjusting file, group 1-B: 5% sodium hypochlorite + 15% EDTA + Self-adjusting file, group 1-C: 5% sodium hypochlorite + 7% maleic acid + Self-adjusting file, group 2-A: sterile phosphate-buffered saline + Reciproc (R25), group 2-B: 5% sodium hypochlorite + 15% EDTA + Reciproc (R25), group 2-C: 5% sodium hypochlorite + 7% maleic acid + Reciproc (R25), group 3-A: sterile phosphate-buffered saline + ProTaper, group 3-B: 5% sodium hypochlorite + 15% EDTA + ProTaper, group 3-C: 5% sodium hypochlorite + 7% maleic acid + ProTaper. anova was used to analyse statistically the differences in terms of reduction in colony counts between the groups, and Dunn's post hoc test was used for multiple comparisons. All techniques and irrigation regimens significantly reduced the number of bacterial cells in the root canal (P < 0.001). Comparisons amongst the groups revealed significant differences between group 1A (sterile phosphate-buffered saline + Self-adjusting file)/group 1B (5% sodium hypochlorite + 15% EDTA + Self-adjusting file) (P = 0.031), group 1A (sterile phosphate-buffered saline + Self-adjusting file)/group 2C (5% sodium hypochlorite + 7% maleic acid + Reciproc) (P = 0.003), group 2A (sterile phosphate-buffered saline + Reciproc)/group 3B (5% sodium hypochlorite + 15% EDTA + ProTaper) (P = 0.036), group 3B (5% sodium hypochlorite + 15% EDTA + ProTaper)/group 1A (sterile phosphate-buffered saline + Self-adjusting file) (P < 0.001), and group 3C (5% sodium hypochlorite + 7% maleic acid + ProTaper)/group 1A (sterile phosphate-buffered saline + Self-adjusting file) (P = 0.033). No significant differences in terms of reduction in microbial counts were observed between single-file techniques (SAF and Reciproc) and serial Ni-Ti instrumentation technique (ProTaper) in combination with irrigants. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.
QX MAN: Q and X file manipulation
NASA Technical Reports Server (NTRS)
Krein, Mark A.
1992-01-01
QX MAN is a grid and solution file manipulation program written primarily for the PARC code and the GRIDGEN family of grid generation codes. QX MAN combines many of the features frequently encountered in grid generation, grid refinement, the setting-up of initial conditions, and post processing. QX MAN allows the user to manipulate single block and multi-block grids (and their accompanying solution files) by splitting, concatenating, rotating, translating, re-scaling, and stripping or adding points. In addition, QX MAN can be used to generate an initial solution file for the PARC code. The code was written to provide several formats for input and output in order for it to be useful in a broad spectrum of applications.
Martinho, Frederico C; Gomes, Ana P M; Fernandes, Aletéia M M; Ferreira, Nádia S; Endo, Marcos S; Freitas, Lilian F; Camões, Izabel C G
2014-05-01
This clinical study was conducted to compare the effectiveness of single-file reciprocating systems and rotary systems in removing endotoxins and cultivable bacteria from primarily infected root canals. Forty-eight primarily infected root canals were selected and randomly divided into 4 groups: WaveOne (Dentsply Maillefer, Ballaigues, Switzerland) (n = 12); Reciproc (VDW, Munich, Germany) (n = 12), ProTaper (Dentsply Maillefer) (n = 12), and Mtwo (VDW) (n = 12). Samples were collected before and after chemomechanical preparation. The irrigation was performed by using 2.5% sodium hypochlorite. A chromogenic limulus amebocyte lysate assay test was used to quantify endotoxins. Culture techniques were used to determine bacterial colony-forming unit counts. In the baseline samples (ie, samples collected before chemomechanical preparation), endotoxins and cultivable bacteria were recovered from 100% of the root canal samples. No differences were found in the median percentage values of endotoxin reduction achieved with reciprocating systems (ie, WaveOne [95.15%] and Reciproc [96.21%]) and with rotary systems (ie, ProTaper [97.98%] and Mtwo [96.34%]) (P < .05). Both single-file reciprocating systems (ie, WaveOne [99.45%] and Reciproc [99.93%]) and rotary systems (ProTaper [99.85%] and Mtwo [99.41%]) were effective in reducing the cultivable bacteria (all P < .05). Moreover, the culture analysis revealed no differences in bacterial load reduction (P > .05). Both single-file reciprocating systems (ie, WaveOne and Reciproc instruments) and rotary systems (ie, ProTaper and Mtwo instruments) showed similar effectiveness in reducing endotoxins and cultivable bacteria from primarily infected root canals, but they were not able to eliminate them from all root canals analyzed. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier
2017-01-01
Archival of experimental data in public databases has increasingly become a requirement for most funding agencies and journals. These data-sharing policies have the potential to maximize data reuse, and to enable confirmatory as well as novel studies. However, the lack of standard data formats can severely hinder data reuse. In photon-counting-based single-molecule fluorescence experiments, data is stored in a variety of vendor-specific or even setup-specific (custom) file formats, making data interchange prohibitively laborious, unless the same hardware-software combination is used. Moreover, the number of available techniques and setup configurations make it difficult to find a common standard. To address this problem, we developed Photon-HDF5 (www.photon-hdf5.org), an open data format for timestamp-based single-molecule fluorescence experiments. Building on the solid foundation of HDF5, Photon-HDF5 provides a platform- and language-independent, easy-to-use file format that is self-describing and supports rich metadata. Photon-HDF5 supports different types of measurements by separating raw data (e.g. photon-timestamps, detectors, etc) from measurement metadata. This approach allows representing several measurement types and setup configurations within the same core structure and makes possible extending the format in backward-compatible way. Complementing the format specifications, we provide open source software to create and convert Photon-HDF5 files, together with code examples in multiple languages showing how to read Photon-HDF5 files. Photon-HDF5 allows sharing data in a format suitable for long term archival, avoiding the effort to document custom binary formats and increasing interoperability with different analysis software. We encourage participation of the single-molecule community to extend interoperability and to help defining future versions of Photon-HDF5. PMID:28649160
Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier
2016-02-13
Archival of experimental data in public databases has increasingly become a requirement for most funding agencies and journals. These data-sharing policies have the potential to maximize data reuse, and to enable confirmatory as well as novel studies. However, the lack of standard data formats can severely hinder data reuse. In photon-counting-based single-molecule fluorescence experiments, data is stored in a variety of vendor-specific or even setup-specific (custom) file formats, making data interchange prohibitively laborious, unless the same hardware-software combination is used. Moreover, the number of available techniques and setup configurations make it difficult to find a common standard. To address this problem, we developed Photon-HDF5 (www.photon-hdf5.org), an open data format for timestamp-based single-molecule fluorescence experiments. Building on the solid foundation of HDF5, Photon-HDF5 provides a platform- and language-independent, easy-to-use file format that is self-describing and supports rich metadata. Photon-HDF5 supports different types of measurements by separating raw data (e.g. photon-timestamps, detectors, etc) from measurement metadata. This approach allows representing several measurement types and setup configurations within the same core structure and makes possible extending the format in backward-compatible way. Complementing the format specifications, we provide open source software to create and convert Photon-HDF5 files, together with code examples in multiple languages showing how to read Photon-HDF5 files. Photon-HDF5 allows sharing data in a format suitable for long term archival, avoiding the effort to document custom binary formats and increasing interoperability with different analysis software. We encourage participation of the single-molecule community to extend interoperability and to help defining future versions of Photon-HDF5.
NASA Astrophysics Data System (ADS)
Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier
2016-02-01
Archival of experimental data in public databases has increasingly become a requirement for most funding agencies and journals. These data-sharing policies have the potential to maximize data reuse, and to enable confirmatory as well as novel studies. However, the lack of standard data formats can severely hinder data reuse. In photon-counting-based single-molecule fluorescence experiments, data is stored in a variety of vendor-specific or even setup-specific (custom) file formats, making data interchange prohibitively laborious, unless the same hardware-software combination is used. Moreover, the number of available techniques and setup configurations make it difficult to find a common standard. To address this problem, we developed Photon-HDF5 (www.photon-hdf5.org), an open data format for timestamp-based single-molecule fluorescence experiments. Building on the solid foundation of HDF5, Photon- HDF5 provides a platform- and language-independent, easy-to-use file format that is self-describing and supports rich metadata. Photon-HDF5 supports different types of measurements by separating raw data (e.g. photon-timestamps, detectors, etc) from measurement metadata. This approach allows representing several measurement types and setup configurations within the same core structure and makes possible extending the format in backward-compatible way. Complementing the format specifications, we provide open source software to create and convert Photon- HDF5 files, together with code examples in multiple languages showing how to read Photon-HDF5 files. Photon- HDF5 allows sharing data in a format suitable for long term archival, avoiding the effort to document custom binary formats and increasing interoperability with different analysis software. We encourage participation of the single-molecule community to extend interoperability and to help defining future versions of Photon-HDF5.
Two-Oxide Disequilibrium: A New Geospeedometer Based on Diffusion in Ilmenite
NASA Astrophysics Data System (ADS)
Williams, K. B.; Krawczynski, M. J.; Van Orman, J. A.
2016-12-01
Diffusion-annealing experiments were conducted in a 0.5" piston cylinder apparatus to investigate diffusivity of Fe2+, Mg2+, and Mn2+ in ilmenite solid solutions between 800ºC and 1000ºC. Polycrystalline ilmenite (FeTiO3) was juxtaposed against either an oriented geikielite (MgTiO3) single crystal or polycrystalline Mn-bearing (5 mol% Mn) ilmenite, in a "diffusion-couple" geometry. Geikielite single crystals were synthesized at Los Alamos National Laboratory, cut into 1 mm edge-length cubes, and polished either perpendicular or parallel to the c-axis. Polycrystalline ilmenite starting materials were synthesized by mixing high purity reagent-grade oxides (FeO, MnO, and TiO2) and sintering in a piston cylinder apparatus, then cut into wafers and polished. Experimental run products were analyzed by electron microprobe at Washington University in St. Louis. Microprobe analyses were obtained perpendicularly across the diffusion interface for each experiment. Experimental diffusion profiles create smooth curves that, when fit with an error function, define Fe-Mg and Fe-Mn interdiffusion coefficients in ilmenite. The diffusion coefficients do not appear compositionally dependent, but do show significant anisotropy. Preliminary results suggest diffusion activation energies are lower in ilmenite than in titanomagnetite [1]. Ilmenite-titanomagnetite equilibria define pre-eruptive temperatures and oxygen fugacities. However, oxides often exist out of equilibrium [2]. We use the cation diffusion data for ilmenite and existing data on titanomagnetite to establish two-oxide disequilibrium as a geospeedometer. Our data constrain oxide-oxide re-equilibration timescales at Mt. Unzen to months, consistent with estimates from zoned, single crystals of magnetite [3,4]. Future experiments will examine the effect of oxygen fugacity on diffusivity in ilmenite solid solutions. References:[1] Van Orman & Crispin (2010) RiMG 72, 757-825.[2] Bacon & Hirschmann (1988) Am. Min. 73, 57-61.[3] Nakamura (1995) Geology 23, 807-810.[4] Venezky & Rutherford (1999) J. Volc. Geo. Res. 89, 213-230.
Study of Oxygen Diffusion in Reduced LiNbO3 Crystals
NASA Astrophysics Data System (ADS)
Yatsenko, A. V.; Pritulenko, A. S.; Yagupov, S. V.; Sugak, D. Yu.; Sol'skii, I. M.
2018-03-01
Using the method of impedance spectroscopy and optical density measurements, the diffusion of oxygen in single crystals of lithium niobate of the congruent composition after the reductive thermochemical processing is studied. The parameters describing the diffusion of oxygen in the temperature range 493-693 K are established.
Nunez, Michael D.; Vandekerckhove, Joachim; Srinivasan, Ramesh
2016-01-01
Perceptual decision making can be accounted for by drift-diffusion models, a class of decision-making models that assume a stochastic accumulation of evidence on each trial. Fitting response time and accuracy to a drift-diffusion model produces evidence accumulation rate and non-decision time parameter estimates that reflect cognitive processes. Our goal is to elucidate the effect of attention on visual decision making. In this study, we show that measures of attention obtained from simultaneous EEG recordings can explain per-trial evidence accumulation rates and perceptual preprocessing times during a visual decision making task. Models assuming linear relationships between diffusion model parameters and EEG measures as external inputs were fit in a single step in a hierarchical Bayesian framework. The EEG measures were features of the evoked potential (EP) to the onset of a masking noise and the onset of a task-relevant signal stimulus. Single-trial evoked EEG responses, P200s to the onsets of visual noise and N200s to the onsets of visual signal, explain single-trial evidence accumulation and preprocessing times. Within-trial evidence accumulation variance was not found to be influenced by attention to the signal or noise. Single-trial measures of attention lead to better out-of-sample predictions of accuracy and correct reaction time distributions for individual subjects. PMID:28435173
Nunez, Michael D; Vandekerckhove, Joachim; Srinivasan, Ramesh
2017-02-01
Perceptual decision making can be accounted for by drift-diffusion models, a class of decision-making models that assume a stochastic accumulation of evidence on each trial. Fitting response time and accuracy to a drift-diffusion model produces evidence accumulation rate and non-decision time parameter estimates that reflect cognitive processes. Our goal is to elucidate the effect of attention on visual decision making. In this study, we show that measures of attention obtained from simultaneous EEG recordings can explain per-trial evidence accumulation rates and perceptual preprocessing times during a visual decision making task. Models assuming linear relationships between diffusion model parameters and EEG measures as external inputs were fit in a single step in a hierarchical Bayesian framework. The EEG measures were features of the evoked potential (EP) to the onset of a masking noise and the onset of a task-relevant signal stimulus. Single-trial evoked EEG responses, P200s to the onsets of visual noise and N200s to the onsets of visual signal, explain single-trial evidence accumulation and preprocessing times. Within-trial evidence accumulation variance was not found to be influenced by attention to the signal or noise. Single-trial measures of attention lead to better out-of-sample predictions of accuracy and correct reaction time distributions for individual subjects.
Symmetrical and overloaded effect of diffusion in information filtering
NASA Astrophysics Data System (ADS)
Zhu, Xuzhen; Tian, Hui; Chen, Guilin; Cai, Shimin
2017-10-01
In physical dynamics, mass diffusion theory has been applied to design effective information filtering models on bipartite network. In previous works, researchers unilaterally believe objects' similarities are determined by single directional mass diffusion from the collected object to the uncollected, meanwhile, inadvertently ignore adverse influence of diffusion overload. It in some extent veils the essence of diffusion in physical dynamics and hurts the recommendation accuracy and diversity. After delicate investigation, we argue that symmetrical diffusion effectively discloses essence of mass diffusion, and high diffusion overload should be published. Accordingly, in this paper, we propose an symmetrical and overload penalized diffusion based model (SOPD), which shows excellent performances in extensive experiments on benchmark datasets Movielens and Netflix.
Observation of Spectral Diffusion in Crystals Using Single Impurity Molecules
1990-10-31
from 12pentacene photophysical parameters including intersystem crossing . Apparently (and not surprisingly), the local pentacene environment this... pentacene molecules inp-terphenyl, both stable as well as spectrally diffusing single molecules can be observed. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 121...with ultrathin sublimed crystals have removed this obstacle. For the case of pentacene impurities in crystals of p-terphenyl, we observe two radically
Wu, Hao; Noé, Frank
2011-03-01
Diffusion processes are relevant for a variety of phenomena in the natural sciences, including diffusion of cells or biomolecules within cells, diffusion of molecules on a membrane or surface, and diffusion of a molecular conformation within a complex energy landscape. Many experimental tools exist now to track such diffusive motions in single cells or molecules, including high-resolution light microscopy, optical tweezers, fluorescence quenching, and Förster resonance energy transfer (FRET). Experimental observations are most often indirect and incomplete: (1) They do not directly reveal the potential or diffusion constants that govern the diffusion process, (2) they have limited time and space resolution, and (3) the highest-resolution experiments do not track the motion directly but rather probe it stochastically by recording single events, such as photons, whose properties depend on the state of the system under investigation. Here, we propose a general Bayesian framework to model diffusion processes with nonlinear drift based on incomplete observations as generated by various types of experiments. A maximum penalized likelihood estimator is given as well as a Gibbs sampling method that allows to estimate the trajectories that have caused the measurement, the nonlinear drift or potential function and the noise or diffusion matrices, as well as uncertainty estimates of these properties. The approach is illustrated on numerical simulations of FRET experiments where it is shown that trajectories, potentials, and diffusion constants can be efficiently and reliably estimated even in cases with little statistics or nonequilibrium measurement conditions.
Li, Mei-Lin; Liao, Wei-Li; Cai, Hua-Xiong
2018-01-01
The aim of the present study was to evaluate the length of dentinal microcracks observed prior to and following root canal preparation with different single-file nickel-titanium (Ni-Ti) systems using micro-computed tomography (micro-CT) analysis. A total of 80 mesial roots of mandibular first molars presenting with type II Vertucci canal configurations were scanned at an isotropic resolution of 7.4 µm. The samples were randomly assigned into four groups (n=20 per group) according to the system used for root canal preparation, including the WaveOne (WO), OneShape (OS), Reciproc (RE) and control groups. A second micro-CT scan was conducted after the root canals were prepared with size 25 instruments. Pre- and postoperative cross-section images of the roots (n=237,760) were then screened to identify the lengths of the microcracks. The results indicated that the microcrack lengths were notably increased following root canal preparation (P<0.05). The alterations in microcrack length in the OS group were more significant compared with those in the WO, RE and control groups (P<0.05). In conclusion, the formation and development of dentinal microcracks may be associated with the movement caused by preparation rather than the taper of the files. Among the single-file Ni-Ti systems, WO and RE were not observed to cause notable microcracks, while the OS system resulted in evident microcracks.
Pawar, Ajinkya M.; Pawar, Mansing G.; Metzger, Zvi; Kokate, Sharad R.
2015-01-01
Aim: The present ex vivo study aimed to evaluate the debris extrusion after instrumenting the root canals by three different files systems. Materials and Methods: Sixty extracted human mandibular premolars with single canals were selected and randomly divided into three groups (n = 20) for instrumentation with three different files. Group 1: WaveOne (primary) single reciprocating file (WO; Dentsply Maillefer, Ballaigues, Switzerland) (25/08), Group 2: Self-adjusting file (SAF; ReDent-Nova, Ra’anana, Israel) (1.5 mm), and Group 3: ProTaper NEXT X1 and X2 (PTN; Dentsply Tulsa Dental, Tulsa, OK) (25/06). Debris extruding by instrumentation were collected into pre-weighed Eppendorf tubes. These tubes were then stored in an incubator at 70°C for 5 days. The tubes were then weighed to obtain the final weight, with the extruded debris. Statistical analysis for the debris extruded apically was performed using one-way analysis of variance and post hoc Tukey's test. Results: The statistical analysis showed a significant difference between all the three groups tested (P < 0.01). The following post hoc Tukey's test confirmed that Group 2 (SAF) exhibited significantly least (P < 0.01) debris extrusion between the three groups tested. Conclusions: The SAF resulted in significantly less extrusion of debris when compared to reciprocating WO and rotary PTN. PMID:25829683
Striped tertiary storage arrays
NASA Technical Reports Server (NTRS)
Drapeau, Ann L.
1993-01-01
Data stripping is a technique for increasing the throughput and reducing the response time of large access to a storage system. In striped magnetic or optical disk arrays, a single file is striped or interleaved across several disks; in a striped tape system, files are interleaved across tape cartridges. Because a striped file can be accessed by several disk drives or tape recorders in parallel, the sustained bandwidth to the file is greater than in non-striped systems, where access to the file are restricted to a single device. It is argued that applying striping to tertiary storage systems will provide needed performance and reliability benefits. The performance benefits of striping for applications using large tertiary storage systems is discussed. It will introduce commonly available tape drives and libraries, and discuss their performance limitations, especially focusing on the long latency of tape accesses. This section will also describe an event-driven tertiary storage array simulator that is being used to understand the best ways of configuring these storage arrays. The reliability problems of magnetic tape devices are discussed, and plans for modeling the overall reliability of striped tertiary storage arrays to identify the amount of error correction required are described. Finally, work being done by other members of the Sequoia group to address latency of accesses, optimizing tertiary storage arrays that perform mostly writes, and compression is discussed.
Hariadi, Rizal F.; Yurke, Bernard
2015-01-01
DNA nanotubes provide a programmable architecture for molecular self-assembly and can serve as model systems for one-dimensional biomolecular assemblies. While a variety of DNA nanotubes have been synthesized and employed as models for natural biopolymers, an extensive investigation of DNA nanotube kinetics and thermodynamics has been lacking. Using total internal reflection microscopy, DNA nanotube polymerization was monitored in real time at the single filament level over a wide range of free monomer concentrations and temperatures. The measured polymerization rates were subjected to a global nonlinear fit based on polymerization theory in order to simultaneously extract kinetic and thermodynamic parameters. For the DNA nanotubes used in this study, the association rate constant is (5.99 ± 0.15) × 105 M–1 s–1, the enthalpy is 87.9 ± 2.0 kcal mol–1, and the entropy is 0.252 ± 0.006 kcal mol–1 K–1. The qualitative and quantitative similarities between the kinetics of DNA nanotubes, actin filaments, and microtubules polymerization highlight the prospect of building complex dynamic systems from DNA molecules inspired by biological architecture. PMID:29308139
Image editing with Adobe Photoshop 6.0.
Caruso, Ronald D; Postel, Gregory C
2002-01-01
The authors introduce Photoshop 6.0 for radiologists and demonstrate basic techniques of editing gray-scale cross-sectional images intended for publication and for incorporation into computerized presentations. For basic editing of gray-scale cross-sectional images, the Tools palette and the History/Actions palette pair should be displayed. The History palette may be used to undo a step or series of steps. The Actions palette is a menu of user-defined macros that save time by automating an action or series of actions. Converting an image to 8-bit gray scale is the first editing function. Cropping is the next action. Both decrease file size. Use of the smallest file size necessary for the purpose at hand is recommended. Final file size for gray-scale cross-sectional neuroradiologic images (8-bit, single-layer TIFF [tagged image file format] at 300 pixels per inch) intended for publication varies from about 700 Kbytes to 3 Mbytes. Final file size for incorporation into computerized presentations is about 10-100 Kbytes (8-bit, single-layer, gray-scale, high-quality JPEG [Joint Photographic Experts Group]), depending on source and intended use. Editing and annotating images before they are inserted into presentation software is highly recommended, both for convenience and flexibility. Radiologists should find that image editing can be carried out very rapidly once the basic steps are learned and automated. Copyright RSNA, 2002
Woodward, Xinxin; Stimpson, Eric E; Kelly, Christopher V
2018-05-29
Nanoscale membrane curvature in cells is critical for endocytosis/exocytosis and membrane trafficking. However, the biophysical ramifications of nanoscale membrane curvature on the behavior of lipids remain poorly understood. Here, we created an experimental model system of membrane curvature at a physiologically-relevant scale and obtained nanoscopic information on single-lipid distributions and dynamics. Supported lipid bilayers were created over 50 and 70 nm radius nanoparticles to create membrane buds. Single-molecule localization microscopy was performed with diverse mixtures of fluorescent and non-fluorescent lipids. Variations in lipid acyl tales length, saturation, head-group, and fluorescent labeling strategy were tested while maintaining a single fluid lipid phase throughout the membrane. Monte Carlo simulations were used to fit our experimental results and quantify the effects of curvature on the lipid diffusion and sorting. Whereas varying the composition of the non-fluorescent lipids yielded minimal changes to the curvature effects, the labeling strategy of the fluorescent lipids yielded highly varying effects of curvature. Most conditions yield single-population Brownian diffusion throughout the membrane; however, curvature-induced lipid sorting, slowing, and aggregation were observed in some conditions. Head-group labeled lipids such as DPPE-Texas Red and POPE-Rhodamine diffused >2.4× slower on the curved vs. the planar membranes; tail-labeled lipids such as NBD-PPC, TopFluor-PPC, TopFluor-PIP2, DiIC 12 , and DiIC 18 displayed no significant changes in diffusion due to the membrane curvature. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. Copyright © 2018. Published by Elsevier B.V.
Vargas, Hebert Alberto; Lakhman, Yulia; Sudre, Romain; Do, Richard K. G.; Bibeau, Frederic; Azria, David; Assenat, Eric; Molinari, Nicolas; Pierredon, Marie-Ange; Rouanet, Philippe; Guiu, Boris
2016-01-01
Purpose To determine the diagnostic performance of intravoxel incoherent motion (IVIM) parameters and apparent diffusion coefficient (ADC) to assess response to combined chemotherapy and radiation therapy (CRT) in patients with rectal cancer by using histogram analysis derived from whole-tumor volumes and single-section regions of interest (ROIs). Materials and Methods The institutional review board approved this retrospective study of 31 patients with rectal cancer who underwent magnetic resonance (MR) imaging before and after CRT, including diffusion-weighted imaging with 34 b values prior to surgery. Patient consent was not required. ADC, perfusion-related diffusion fraction (f), slow diffusion coefficient (D), and fast diffusion coefficient (D*) were calculated on MR images acquired before and after CRT by using biexponential fitting. ADC and IVIM histogram metrics and median values were obtained by using whole-tumor volume and single-section ROI analyses. All ADC and IVIM parameters obtained before and after CRT were compared with histopathologic findings by using t tests with Holm-Sidak correction. Receiver operating characteristic curves were generated to evaluate the diagnostic performance of IVIM parameters derived from whole-tumor volume and single-section ROIs for prediction of histopathologic response. Results Extreme values aside, results of histogram analysis of ADC and IVIM were equivalent to median values for tumor response assessment (P > .06). Prior to CRT, none of the median ADC and IVIM diffusion metrics correlated with subsequent tumor response (P > .36). Median D and ADC values derived from either whole-volume or single-section analysis increased significantly after CRT (P ≤ .01) and were significantly higher in good versus poor responders (P ≤ .02). Median IVIM f and D* values did not significantly change after CRT and were not associated with tumor response to CRT (P > .36). Interobserver agreement was excellent for whole-tumor volume analysis (range, 0.91–0.95) but was only moderate for single-section ROI analysis (range, 0.50–0.63). Conclusion Median D and ADC values obtained after CRT were useful for discrimination between good and poor responders. Histogram metrics did not add to the median values for assessment of tumor response. Volumetric analysis demonstrated better interobserver reproducibility when compared with single-section ROI analysis. © RSNA, 2016 Online supplemental material is available for this article. PMID:26919562
NASA Technical Reports Server (NTRS)
Srivastava, R.; Reddy, T. S. R.
1996-01-01
This guide describes the input data required, for steady or unsteady aerodynamic and aeroelastic analysis of propellers and the output files generated, in using PROP3D. The aerodynamic forces are obtained by solving three dimensional unsteady, compressible Euler equations. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either time domain or frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis of single and counter-rotation propellers, and aeroelastic analysis of single-rotation propeller.
Gschwind, Michael K [Chappaqua, NY
2011-03-01
Mechanisms for implementing a floating point only single instruction multiple data instruction set architecture are provided. A processor is provided that comprises an issue unit, an execution unit coupled to the issue unit, and a vector register file coupled to the execution unit. The execution unit has logic that implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA). The floating point vector registers of the vector register file store both scalar and floating point values as vectors having a plurality of vector elements. The processor may be part of a data processing system.
Distributed File System Utilities to Manage Large DatasetsVersion 0.5
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-05-21
FileUtils provides a suite of tools to manage large datasets typically created by large parallel MPI applications. They are written in C and use standard POSIX I/Ocalls. The current suite consists of tools to copy, compare, remove, and list. The tools provide dramatic speedup over existing Linux tools, which often run as a single process.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
... with a total installed capacity of 1,230 kilowatts; (5) a 1,600-foot-long tailrace canal; (6) a 2.2... intends to prepare a single environmental assessment (EA). Commission staff determined that the issues that need to be addressed in its EA have been adequately identified during the pre-filing period, which...
Kashefinejad, Mohamad; Harandi, Azade; Bijani, Ali
2016-01-01
Objectives: Pain is an unpleasant outcome of endodontic treatment that can be unbearable to patients. Instrumentation techniques may affect the frequency and intensity of post-endodontic pain. This study aimed to compare single visit post endodontic pain using Mtwo (NiTi) rotary and hand K-file instruments. Materials and Methods: In this randomized controlled trial, 60 teeth with symptomatic irreversible pulpitis in 53 patients were selected and randomly assigned into two groups of 30 teeth. In group A, the root canals were prepared with Mtwo (NiTi) rotary instruments. In group B, the root canals were prepared with hand K-file instruments. Pain assessment was implemented using visual analog scale (VAS) at four, eight, 12 and 24 hours after treatment. The acquired data were analyzed using chi-square, Mann-Whitney U and Student’s t-test (P<0.05). Results: Patients treated with rotary instruments experienced significantly less post-endodontic pain than those treated with hand instruments (P<0.001). Conclusions: The use of Mtwo (NiTi) rotary instruments in root canal preparation contributed to lower incidence of postoperative pain than hand K-files. PMID:27536323
Nanoscale Rheology and Anisotropic Diffusion Using Single Gold Nanorod Probes
NASA Astrophysics Data System (ADS)
Molaei, Mehdi; Atefi, Ehsan; Crocker, John C.
2018-03-01
The complex rotational and translational Brownian motion of anisotropic particles depends on their shape and the viscoelasticity of their surroundings. Because of their strong optical scattering and chemical versatility, gold nanorods would seem to provide the ultimate probes of rheology at the nanoscale, but the suitably accurate orientational tracking required to compute rheology has not been demonstrated. Here we image single gold nanorods with a laser-illuminated dark-field microscope and use optical polarization to determine their three-dimensional orientation to better than one degree. We convert the rotational diffusion of single nanorods in viscoelastic polyethylene glycol solutions to rheology and obtain excellent agreement with bulk measurements. Extensions of earlier models of anisotropic translational diffusion to three dimensions and viscoelastic fluids give excellent agreement with the observed motion of single nanorods. We find that nanorod tracking provides a uniquely capable approach to microrheology and provides a powerful tool for probing nanoscale dynamics and structure in a range of soft materials.
Silva, E J N L; Ferreira, V M; Silva, C C; Herrera, D R; De-Deus, G; Gomes, B P
2017-07-01
To compare the effectiveness of large apical preparations and complementary canal preparation with the Self-Adjusting File (SAF) in removing endotoxins from the root canal of teeth with apical periodontitis. Ten single-rooted and single-canaled teeth with post-treatment apical periodontitis were selected. Endotoxin samples were taken after removal of the root filling (S1), after chemomechanical preparation (CMP) using 2.5% NaOCl and an R25 file (S2), after CMP using 2.5% NaOCl and an R40 file (S3) and after complementary CMP using the SAF system (S4). Limulus amebocyte lysate (LAL) was used to measure endotoxin levels. The Friedman and Wilcoxon tests were used to compare endotoxin levels at each clinical intervention (P < 0.05). After root filling removal, endotoxin was detected in 100% of the root canals (S1, 4.84 EU mL -1 ). CMP with the R25 file was able to significantly reduce endotoxin levels (P < 0.05). Increased levels of endotoxin removal were achieved by apical preparation with the R40 file (P < 0.05). Complementary CMP with SAF did not significantly reduce endotoxin levels (P > 0.05) following the use of the R40 instrument. Apical enlargement protocols were effective in significantly reducing endotoxin levels. Complementary preparation with the SAF system failed to eliminate residual endotoxin contents beyond those obtained with the R40 instrument. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Nogueira d'Eurydice, Marcel; Galvosas, Petrik
2014-11-01
Single-sided NMR systems are becoming a relevant tool in industry and laboratory environments due to their low cost, low maintenance and capacity to evaluate quantity and quality of hydrogen based materials. The performance of such devices has improved significantly over the last decade, providing increased field homogeneity, field strength and even controlled static field gradients. For a class of these devices, the configuration of the permanent magnets provides a linear variation of the magnetic field and can be used in diffusion measurements. However, magnet design depends directly on its application and, according to the purpose, the field homogeneity may significantly be compromised. This may prevent the determination of diffusion properties of fluids based on the natural inhomogeneity of the field using known techniques. This work introduces a new approach that extends the applicability of diffusion-editing CPMG experiments to NMR devices with highly inhomogeneous magnetic fields, which do not vary linearly in space. Herein, we propose a method to determine a custom diffusion kernel based on the gradient distribution, which can be seen as a signature of each NMR device. This new diffusion kernel is then utilised in the 2D inverse Laplace transform (2D ILT) in order to determine diffusion-relaxation correlation maps of homogeneous multi-phasic fluids. The experiments were performed using NMR MObile Lateral Explore (MOLE), which is a single-sided NMR device designed to maximise the volume at the sweet spot with enhanced depth penetration. Copyright © 2014 Elsevier Inc. All rights reserved.
Three mechanisms model of shale gas in real state transport through a single nanopore
NASA Astrophysics Data System (ADS)
Li, Dongdong; Zhang, Yanyu; Sun, Xiaofei; Li, Peng; Zhao, Fengkai
2018-02-01
At present, the apparent permeability models of shale gas consider only the viscous flow and Knudsen diffusion of free gas, but do not take into account the influence of surface diffusion. Moreover, it is assumed that shale gas is in ideal state. In this paper, shale gas is assumed in real state, a new apparent permeability model for shale gas transport through a single nanopore is developed that captures many important migration mechanisms, such as viscous flow and Knudsen diffusion of free gas, surface diffusion of adsorbed gas. According to experimental data, the accuracy of apparent permeability model was verified. What’s more, the effects of pressure and pore radius on apparent permeability, and the effects on the permeability fraction of viscous flow, Knudsen diffusion and surface diffusion were analysed, separately. Finally, the results indicate that the error of the developed model in this paper was 3.02%, which is less than the existing models. Pressure and pore radius seriously affect the apparent permeability of shale gas. When the pore radius is small or pressure is low, the surface diffusion cannot be ignored. When the pressure and the pore radius is big, the viscous flow occupies the main position.
Bini, Fabiano; Pica, Andrada; Marinozzi, Andrea; Marinozzi, Franco
2017-01-01
Bone tissue at nanoscale is a composite mainly made of apatite crystals, collagen molecules and water. This work is aimed to study the diffusion within bone nanostructure through Monte-Carlo simulations. To this purpose, an idealized geometric model of the apatite-collagen structure was developed. Gaussian probability distribution functions were employed to design the orientation of the apatite crystals with respect to the axes (length L, width W and thickness T) of a plate-like trabecula. We performed numerical simulations considering the influence of the mineral arrangement on the effective diffusion coefficient of water. To represent the hindrance of the impermeable apatite crystals on the water diffusion process, the effective diffusion coefficient was scaled with the tortuosity, the constrictivity and the porosity factors of the structure. The diffusion phenomenon was investigated in the three main directions of the single trabecula and the introduction of apatite preferential orientation allowed the creation of an anisotropic medium. Thus, different diffusivities values were observed along the axes of the single trabecula. We found good agreement with previous experimental results computed by means of a genetic algorithm. PMID:29220377
NASA Astrophysics Data System (ADS)
Akimoto, Takuma; Yamamoto, Eiji
2016-12-01
Local diffusion coefficients in disordered systems such as spin glass systems and living cells are highly heterogeneous and may change over time. Such a time-dependent and spatially heterogeneous environment results in irreproducibility of single-particle-tracking measurements. Irreproducibility of time-averaged observables has been theoretically studied in the context of weak ergodicity breaking in stochastic processes. Here, we provide rigorous descriptions of equilibrium and non-equilibrium diffusion processes for the annealed transit time model, which is a heterogeneous diffusion model in living cells. We give analytical solutions for the mean square displacement (MSD) and the relative standard deviation of the time-averaged MSD for equilibrium and non-equilibrium situations. We find that the time-averaged MSD grows linearly with time and that the time-averaged diffusion coefficients are intrinsically random (irreproducible) even in the long-time measurements in non-equilibrium situations. Furthermore, the distribution of the time-averaged diffusion coefficients converges to a universal distribution in the sense that it does not depend on initial conditions. Our findings pave the way for a theoretical understanding of distributional behavior of the time-averaged diffusion coefficients in disordered systems.
Application of semiconductor diffusants to solar cells by screen printing
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr.; Brandhorst, H. W., Jr.; Mazaris, G. A.; Scudder, L. R. (Inventor)
1978-01-01
Diffusants were applied onto semiconductor solar cell substrates, using screen printing techniques. The method was applicable to square and rectangular cells and can be used to apply dopants of opposite types to the front and back of the substrate. Then, simultaneous diffusion of both dopants can be performed with a single furnace pass.
Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Razo, Mauricio; Pan, Wenxiao; Qian, Hong
2014-05-30
The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde [Biopolymers (1974) 13:1-27]. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems there are no closedmore » solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Extending Delbrück-Gillespie’s theory for stochastic nonlinear reactions with rapidly stirring to reaction-diffusion systems provides a mesoscopic model for chemical and biochemical reactions at nanometric and mesoscopic level such as a single biological cell.« less
Impact of morphology on diffusive dynamics on curved surfaces
NASA Astrophysics Data System (ADS)
Kusters, Remy; Storm, Cornelis
2014-03-01
Diffusive processes on nonplanar substrates are deeply relevant for cellular function and transport and increasingly used to probe and characterize the behavior of proteins in membranes. We present analytical and numerical analyses of in-plane diffusion of discrete particles on curved geometries reflecting various generic motifs in biology and explore, in particular, the effect that the shape of the substrate has on the characteristic time scales of diffusive processes. To this end, we consider both collective measures (the relaxation of concentration profiles towards equilibrium) and single-particle measures (escape rates and first passage times of individual diffusing molecules): the first relevant for the correct interpretation of FRAP experiments in curved environments; the second, for single-particle tracking probes. Each of these measures is sensitively affected by the morphology of the substrate, and we find that the exit rate out of a domain is not uniquely set by the size of its boundary, illustrating the general principle we reveal: By varying the shape of a substrate, Nature can control the diffusive time scales in a microenvironment without changing the bare substrate properties.
VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system. Version 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, A.; Huria, H.C.; Cho, K.W.
1991-12-01
VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing tomore » disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.« less
Topcu, K Meltem; Karatas, Ertugrul; Ozsu, Damla; Ersoy, Ibrahim
2014-07-01
The aim of this study was to compare the canal debridement capabilities of three single file systems, ProTaper, and K-files in oval-shaped canals. Seventy-five extracted human mandibular central incisors with oval-shaped root canals were selected. A radiopaque contrast medium (Metapex; Meta Biomed Co. Ltd., Chungcheongbuk-do, Korea) was introduced into the canal systems and the self-adjusting file (SAF), WaveOne, Reciproc, ProTaper, and K-files were used for the instrumentation of the canals. The percentage of removed contrast medium was calculated using pre- and post-operative radiographs. An overall comparison between the groups revealed that the hand file (HF) and SAF groups presented the lowest percentage of removed contrast medium, whereas the WaveOne group showed the highest percentage (P < 0.001). The ProTaper group removed more contrast medium than the SAF and HF groups (P < 0.05). None of the instruments was able to remove the contrast medium completely. WaveOne performed significantly better than other groups.
Topcu, K. Meltem; Karatas, Ertugrul; Ozsu, Damla; Ersoy, Ibrahim
2014-01-01
Objectives: The aim of this study was to compare the canal debridement capabilities of three single file systems, ProTaper, and K-files in oval-shaped canals. Materials and Methods: Seventy-five extracted human mandibular central incisors with oval-shaped root canals were selected. A radiopaque contrast medium (Metapex; Meta Biomed Co. Ltd., Chungcheongbuk-do, Korea) was introduced into the canal systems and the self-adjusting file (SAF), WaveOne, Reciproc, ProTaper, and K-files were used for the instrumentation of the canals. The percentage of removed contrast medium was calculated using pre- and post-operative radiographs. Results: An overall comparison between the groups revealed that the hand file (HF) and SAF groups presented the lowest percentage of removed contrast medium, whereas the WaveOne group showed the highest percentage (P < 0.001). The ProTaper group removed more contrast medium than the SAF and HF groups (P < 0.05). Conclusions: None of the instruments was able to remove the contrast medium completely. WaveOne performed significantly better than other groups. PMID:25202211
The connectome mapper: an open-source processing pipeline to map connectomes with MRI.
Daducci, Alessandro; Gerhard, Stephan; Griffa, Alessandra; Lemkaddem, Alia; Cammoun, Leila; Gigandet, Xavier; Meuli, Reto; Hagmann, Patric; Thiran, Jean-Philippe
2012-01-01
Researchers working in the field of global connectivity analysis using diffusion magnetic resonance imaging (MRI) can count on a wide selection of software packages for processing their data, with methods ranging from the reconstruction of the local intra-voxel axonal structure to the estimation of the trajectories of the underlying fibre tracts. However, each package is generally task-specific and uses its own conventions and file formats. In this article we present the Connectome Mapper, a software pipeline aimed at helping researchers through the tedious process of organising, processing and analysing diffusion MRI data to perform global brain connectivity analyses. Our pipeline is written in Python and is freely available as open-source at www.cmtk.org.
NASA Astrophysics Data System (ADS)
Flomenbom, Ophir; Castañeda-Priego, Ramón; Peeters, François
2014-11-01
In this document, we present the Special Issue's projects; these include reviews and articles about mathematical solutions and formulations of single-file dynamics (SFD), yet also its computational modeling, experimental evidence, and value in explaining real life occurrences. In particular, we introduce projects focusing on electron dynamics on liquid helium in channels with changing width, on the zig-zag configuration in files with longitudinal movement, on expanding files, on both heterogeneous and slow files, on files with external forces, and on the importance of the interaction potential shape on the particle dynamics along the file. Applications of SFD are of intrinsic value in life sciences, biophysics, physics, and materials science, since they can explain a large diversity of many-body systems, e.g., biological channels, biological motors, membranes, crowding, electron motion in proteins, etc. These systems are explained in all the projects that participate in this topical issue. This Special Issue can therefore intrigue, inspire and advance scientifically young people, yet also those scientists that actively work in this field.
Dielectrophoresis enhances the whitening effect of carbamide peroxide on enamel.
Ivanoff, Chris S; Hottel, Timothy L; Garcia-Godoy, Franklin; Riga, Alan T
2011-10-01
To compare the enamel whitening effect of a 20-minute dielectrophoresis enhanced electrochemical delivery to a 20-minute diffusion treatment. Forty freshly extracted human teeth without detectable caries or restoration were stored in distilled water at 4 degrees C and used within 1 month of extraction. Two different bleaching gels (Plus White 5 Minute Speed Whitening Gel and 35% Opalescence PF gel) were tested. The study had two parts: Part 1--Quantitative comparison of hydrogen peroxide (H2O2, HP) absorption--following application of an over-the-counter 35% HP whitening gel (Plus White 5 Minute Speed Whitening Gel) to 30 (n = 30) extracted human teeth by conventional diffusion or dielectrophoresis. The amount of H2O2 that diffused from the dentin was measured by a colorimetric oxidation-reduction reaction kit. HP concentration was measured by UV-Vis spectroscopy at 550 nm. Part 2--HP diffusion in stained teeth--35% carbamide peroxide whitening gel (35% Opalescence PF gel) was applied to 10 extracted human teeth (n = 10) stained by immersion in a black tea solution for 48 hours. The teeth were randomly assigned to the 20-minute dielectrophoresis or diffusion treatment group; whitening was evaluated by a dental spectrophotometer and macro-photography. Part 1: The analysis found significant differences between both groups with relative percent errors of 3% or less (a single outlier had an RPE of 12%). The average absorbance for the dielectrophoresis group in round 1 was 79% greater than the diffusion group. The average absorbance for the dielectrophoresis group in round 2 was 130% greater than the diffusion group. A single-factor ANOVA found a statistically significant difference between the diffusion and dielectrophoresis groups (P = 0.01). Part 2--The average change in Shade Guide Units (SGU) was 0.6 for the diffusion group, well under the error of measurement of 0.82 SGU. The average change in SGU for the dielectrophoresis group was 9, significantly above the error of measurement and 14 times or 1,400% greater than the diffusion group average. A single-factor ANOVA found a statistically significant difference between the diffusion and dielectrophoresis treatment groups (P < 0.001).
NASA Astrophysics Data System (ADS)
Rätzke, K.; Hüppe, P. W.; Faupel, F.
1992-04-01
The isotope effect E=(Dα/Dβ-1)/[(mβ/mα)1/2-1] of cobalt diffusion has been measured in melt-spun amorphous Co76.7Fe2Nb14.3B7 ribbon at different stages of structural relaxation. A drastic drop of the isotope effect from E>0.5 in the as-quenched glass to E=0.1 in the relaxed state wass observed. While the latter value relflects highly cooperative diffusion, the large isotope effect in the as-quenched ribbon points to the prevalence of single-atom jumps and vacancylike holes of excess volume.
Diffusion welding. [heat treatment of nickel alloys following single step vacuum welding process
NASA Technical Reports Server (NTRS)
Holko, K. H. (Inventor)
1974-01-01
Dispersion-strengthened nickel alloys are sanded on one side and chemically polished. This is followed by a single-step welding process wherein the polished surfaces are forced into intimate contact at 1,400 F for one hour in a vacuum. Diffusion, recrystallization, and grain growth across the original weld interface are obtained during postheating at 2,150 F for two hours in hydrogen.
Letters, S; Smith, A J; McHugh, S; Bagg, J
2005-10-22
This study examined methods used for reprocessing endodontic instruments in general dental practice and determined the degree of residual visual contamination and blood contamination on 250 reprocessed files collected from 25 general dental practices. A questionnaire was administered to 25 general dental practitioners to obtain information on the re-processing of used endodontic files. Ten files which had been used and reprocessed were also collected from each practice. These were examined visually under a dissecting light microscope for residual contamination and then tested for blood deposits using the Kastle-Meyer test. Nineteen of the 25 practices used stainless steel hand files. No practitioners used endodontic files as single use devices. Ninety-two per cent of the practitioners discarded and replaced files when they were bent or damaged. Several decontamination methods were reported. The two combinations employed most frequently were manual cleaning and autoclaving or manual cleaning, followed by ultrasonic cleaning and autoclaving. Of the 250 files, 75% showed some degree of visual contamination and seven percent tested positive for residual blood. Blood contaminated files were significantly more heavily contaminated when examined visually. Large variations were found in residual contamination of files collected from practices using the same methods of decontamination. While all practitioners re-used endodontic files, the variations in decontamination methods reported indicate a lack of clarity on best practice. This study demonstrates that endodontic files are not reliably decontaminated by methods currently employed in dental practice.
destiny: diffusion maps for large-scale single-cell data in R.
Angerer, Philipp; Haghverdi, Laleh; Büttner, Maren; Theis, Fabian J; Marr, Carsten; Buettner, Florian
2016-04-15
: Diffusion maps are a spectral method for non-linear dimension reduction and have recently been adapted for the visualization of single-cell expression data. Here we present destiny, an efficient R implementation of the diffusion map algorithm. Our package includes a single-cell specific noise model allowing for missing and censored values. In contrast to previous implementations, we further present an efficient nearest-neighbour approximation that allows for the processing of hundreds of thousands of cells and a functionality for projecting new data on existing diffusion maps. We exemplarily apply destiny to a recent time-resolved mass cytometry dataset of cellular reprogramming. destiny is an open-source R/Bioconductor package "bioconductor.org/packages/destiny" also available at www.helmholtz-muenchen.de/icb/destiny A detailed vignette describing functions and workflows is provided with the package. carsten.marr@helmholtz-muenchen.de or f.buettner@helmholtz-muenchen.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascalchi, Patrice; Lamort, Anne Sophie; Salome, Laurence
2012-01-06
Highlights: Black-Right-Pointing-Pointer We studied the diffusion of single CD4 receptors on living lymphocytes. Black-Right-Pointing-Pointer This study reveals that CD4 receptors have either a random or confined diffusion. Black-Right-Pointing-Pointer The dynamics of unconfined CD4 receptors was accelerated by a temperature raise. Black-Right-Pointing-Pointer The dynamics of confined CD4 receptors was unchanged by a temperature raise. Black-Right-Pointing-Pointer Our results suggest the existence of two different environments for CD4 receptors. -- Abstract: We investigated the lateral diffusion of the HIV receptor CD4 at the surface of T lymphocytes at 20 Degree-Sign C and 37 Degree-Sign C by Single Particle Tracking using Quantum Dots. Wemore » found that the receptors presented two major distinct behaviors that were not equally affected by temperature changes. About half of the receptors showed a random diffusion with a diffusion coefficient increasing upon raising the temperature. The other half of the receptors was permanently or transiently confined with unchanged dynamics on raising the temperature. These observations suggest that two distinct subpopulations of CD4 receptors with different environments are present at the surface of living T lymphocytes.« less
NASA Astrophysics Data System (ADS)
Vinnakota, Kalyan C.; Mitchell, David A.; Deschenes, Robert J.; Wakatsuki, Tetsuro; Beard, Daniel A.
2010-06-01
Binding, lateral diffusion and exchange are fundamental dynamic processes involved in protein association with cellular membranes. In this study, we developed numerical simulations of lateral diffusion and exchange of fluorophores in membranes with arbitrary bleach geometry and exchange of the membrane-localized fluorophore with the cytosol during fluorescence recovery after photobleaching (FRAP) experiments. The model simulations were used to design FRAP experiments with varying bleach region sizes on plasma membrane-localized wild-type GFP-Ras2 with a dual lipid anchor and mutant GFP-Ras2C318S with a single lipid anchor in live yeast cells to investigate diffusional mobility and the presence of any exchange processes operating in the time scale of our experiments. Model parameters estimated using data from FRAP experiments with a 1 µm × 1 µm bleach region-of-interest (ROI) and a 0.5 µm × 0.5 µm bleach ROI showed that GFP-Ras2, single or dual lipid modified, diffuses as single species with no evidence of exchange with a cytoplasmic pool. This is the first report of Ras2 mobility in the yeast plasma membrane. The methods developed in this study are generally applicable for studying diffusion and exchange of membrane-associated fluorophores using FRAP on commercial confocal laser scanning microscopes.
Welberry, T R; Goossens, D J; Edwards, A J; David, W I
2001-01-01
A recently developed method for fitting a Monte Carlo computer-simulation model to observed single-crystal diffuse X-ray scattering has been used to study the diffuse scattering in benzil, diphenylethanedione, C(6)H(5)-CO-CO-C(6)H(5). A model involving 13 parameters consisting of 11 intermolecular force constants, a single intramolecular torsional force constant and a local Debye-Waller factor was refined to give an agreement factor, R = [summation operator omega(Delta I)(2)/summation operator omega I(obs)(2)](1/2), of 14.5% for 101,324 data points. The model was purely thermal in nature. The analysis has shown that the diffuse lines, which feature so prominently in the observed diffraction patterns, are due to strong longitudinal displacement correlations. These are transmitted from molecule to molecule via a network of contacts involving hydrogen bonding of an O atom on one molecule and the para H atom of the phenyl ring of a neighbouring molecule. The analysis also allowed the determination of a torsional force constant for rotations about the single bonds in the molecule. This is the first diffuse scattering study in which measurement of such internal molecular torsion forces has been attempted.
Developments in Science and Technology.
1980-01-01
control. Sucessful completion of the testing and cer- a single unduplicated track file, thereby reducing tification of readiness represents a...Navy shipboard surveillance radar systems Service Corp., is called the single radar performance has been successfully designed, developed, and tested at...for Navy deteciion/disclosure ranges. The single radar per- shipboard surveillance radar systems are reduced by formance prediction system can be
Membrane Diffusion Occurs by Continuous-Time Random Walk Sustained by Vesicular Trafficking.
Goiko, Maria; de Bruyn, John R; Heit, Bryan
2018-06-19
Diffusion in cellular membranes is regulated by processes that occur over a range of spatial and temporal scales. These processes include membrane fluidity, interprotein and interlipid interactions, interactions with membrane microdomains, interactions with the underlying cytoskeleton, and cellular processes that result in net membrane movement. The complex, non-Brownian diffusion that results from these processes has been difficult to characterize, and moreover, the impact of factors such as membrane recycling on membrane diffusion remains largely unexplored. We have used a careful statistical analysis of single-particle tracking data of the single-pass plasma membrane protein CD93 to show that the diffusion of this protein is well described by a continuous-time random walk in parallel with an aging process mediated by membrane corrals. The overall result is an evolution in the diffusion of CD93: proteins initially diffuse freely on the cell surface but over time become increasingly trapped within diffusion-limiting membrane corrals. Stable populations of freely diffusing and corralled CD93 are maintained by an endocytic/exocytic process in which corralled CD93 is selectively endocytosed, whereas freely diffusing CD93 is replenished by exocytosis of newly synthesized and recycled CD93. This trafficking not only maintained CD93 diffusivity but also maintained the heterogeneous distribution of CD93 in the plasma membrane. These results provide insight into the nature of the biological and biophysical processes that can lead to significantly non-Brownian diffusion of membrane proteins and demonstrate that ongoing membrane recycling is critical to maintaining steady-state diffusion and distribution of proteins in the plasma membrane. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Gschwind, Michael K
2013-04-16
Mechanisms for generating and executing programs for a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA) are provided. A computer program product comprising a computer recordable medium having a computer readable program recorded thereon is provided. The computer readable program, when executed on a computing device, causes the computing device to receive one or more instructions and execute the one or more instructions using logic in an execution unit of the computing device. The logic implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA), based on data stored in a vector register file of the computing device. The vector register file is configured to store both scalar and floating point values as vectors having a plurality of vector elements.
On Large Time Behavior and Selection Principle for a Diffusive Carr-Penrose Model
NASA Astrophysics Data System (ADS)
Conlon, Joseph G.; Dabkowski, Michael; Wu, Jingchen
2016-04-01
This paper is concerned with the study of a diffusive perturbation of the linear LSW model introduced by Carr and Penrose. A main subject of interest is to understand how the presence of diffusion acts as a selection principle, which singles out a particular self-similar solution of the linear LSW model as determining the large time behavior of the diffusive model. A selection principle is rigorously proven for a model which is a semiclassical approximation to the diffusive model. Upper bounds on the rate of coarsening are also obtained for the full diffusive model.
Dhingra, Annil; Miglani, Anjali
2015-01-01
Background Successful endodontic therapy depends on many factor, one of the most important step in any root canal treatment is root canal preparation. In addition, respecting the original shape of the canal is of the same importance; otherwise, canal aberrations such as transportation will be created. Aim The purpose of this study is to compare and evaluate Reciprocating WaveOne ,Reciproc and Rotary Oneshape Single File Instrumentation System On Cervical Dentin Thickness, Cross Sectional Area and Canal Transportation on First Mandibular Molar Using Cone Beam Computed Tomography. Materials and Methods Sixty Mandibular First Molars extracted due to periodontal reason was collected from the Department of Oral and Maxillofacial. Teeth were prepared using one rotary and two reciprocating single file system. Teeth were divided into 3 groups 20 teeth in each group. Pre instrumentation and Post instrumentation scans was done and evaluated for three parameters Canal Transportation, Cervical Dentinal Thickness, Cross-sectional Area. Results were analysed statistically using ANOVA, Post-Hoc Tukey analysis. Results The change in cross-sectional area after filing showed significant difference at 0mm, 1mm, 2mm and 7mm (p<0.001, p =0.006, 0.004 & <0.001 respectively). There was significant difference between wave one and oneshape; oneshape and reciproc at 0mm, 1mm, 2mm & 7mm (p-values for waveone and Oneshape <0.001, 0.022, 0.011 & <0.001 resp. and for oneshape and reciproc < 0.001, p= 0.011, p=0.008 & <0.001). On assessing the transportation of the three file system over a distance of 7 mm (starting from 0mm and then evaluation at 1mm, 2mm, 3mm, 5mm and 7mm), the results showed a significant difference among the file systems at various lengths (p= 0.014, 0.046, 0.004, 0.028, 0.005 & 0.029 respectively). Mean value of cervical dentinal removal is maximum at all the levels for oneshape and minimum for waveone showing the better quality of waveone and reciproc over oneshape file system. Significant difference was found at 9mm, 11mm and 12mm between all the three file systems (p<0.001,< 0.001, <0.001). Conclusion It was concluded that reciprocating motion is better than rotary motion in all the three parameters Canal Transportation, Cross-sectional Area, Cervical Dentinal Thickness. PMID:26023639
Pawar, Ajinkya M; Pawar, Mansing G; Kokate, Sharad R
2014-01-01
The vital steps in any endodontic treatment are thorough mechanical shaping and chemical cleaning followed by obtaining a fluid tight impervious seal by an inert obturating material. For the past two decades, introduction and use of rotary nickel-titanium (Ni-Ti) files have changed our concepts of endodontic treatment from conventional to contemporary. They have reported good success rates, but still have many drawbacks. The Self-Adjusting File (SAF) introduces a new era in endodontics by performing the vital steps of shaping and cleaning simultaneously. The SAF is a hollow file in design that adapts itself three-dimensionally to the root canal and is a single file system, made up of Ni-Ti lattice. The case series presented in the paper report the clinical experience, while treating primary endodontic cases with the SAF system in India.
Diffuse Scattering from Lead-Containing Ferroelectric Perovskite Oxides
Goossens, D. J.
2013-01-01
Ferroelectric materials rely on some type of non-centrosymmetric displacement correlations to give rise to a macroscopic polarisation. These displacements can show short-range order (SRO) that is reflective of the local chemistry, and so studying it reveals important information about how the structure gives rise to the technologically useful properties. A key means of exploring this SRO is diffuse scattering. Conventional structural studies use Bragg peak intensitiesto determine the average structure. In a single crystal diffuse scattering (SCDS) experiment, the coherent scattered intensity is measured at non-integer Miller indices, and can be used to examine the population of local configurations. Thismore » is because the diffuse scattering is sensitive to two-body averages, whereas the Bragg intensity gives single-body averages. This review outlines key results of SCDS studies on several materials and explores the similarities and differences in their diffuse scattering. Random strains are considered, as are models based on a phonon-like picture or a more local-chemistry oriented picture. Limitations of the technique are discussed.« less
Li, Baowen; Wang, Jiao; Wang, Lei; Zhang, Gang
2005-03-01
We study anomalous heat conduction and anomalous diffusion in low-dimensional systems ranging from nonlinear lattices, single walled carbon nanotubes, to billiard gas channels. We find that in all discussed systems, the anomalous heat conductivity can be connected with the anomalous diffusion, namely, if energy diffusion is sigma(2)(t)=2Dt(alpha) (0
Oxygen diffusion in alpha-Al2O3. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Cawley, J. D.; Halloran, J. W.; Cooper, A. R.
1984-01-01
Oxygen self diffusion coefficients were determined in single crystal alpha-Al2O3 using the gas exchange technique. The samples were semi-infinite slabs cut from five different boules with varying background impurities. The diffusion direction was parallel to the c-axis. The tracer profiles were determined by two techniques, single spectrum proton activation and secondary ion mass spectrometry. The SIMS proved to be a more useful tool. The determined diffusion coefficients, which were insensitive to impurity levels and oxygen partial pressure, could be described by D = .00151 exp (-572kJ/RT) sq m/s. The insensitivities are discussed in terms of point defect clustering. Two independent models are consistent with the findings, the first considers the clusters as immobile point defect traps which buffer changes in the defect chemistry. The second considers clusters to be mobile and oxygen diffusion to be intrinsic behavior, the mechanism for oxygen transport involving neutral clusters of Schottky quintuplets.
Effective optical path length for tandem diffuse cubic cavities as gas absorption cell
NASA Astrophysics Data System (ADS)
Yu, J.; Gao, Q.; Zhang, Y. G.; Zhang, Z. G.; Wu, S. H.
2014-12-01
Tandem diffuse cubic cavities designed by connecting two single diffuse cubic-shaped cavities, A and B, with an aperture (port fraction fap) in the middle of the connecting baffle was developed as a gas absorption cell. The effective optical path length (EOPL) was evaluated by comparing the oxygen absorption signal in the cavity and in air based on tunable diode laser absorption spectroscopy (TDLAS). Experimental results manifested an enhancement of EOPL for the tandem diffuse cubic cavities as the decrease of fap and can be expressed as the sum of EOPL of two single cubic cavities at fap < 0.01, which coincided well with theoretical analysis. The simulating EOPL was smaller than experimental results at fap > 0.01, which indicated that back scattering light from cavity B to cavity A cannot be ignored at this condition.
Katge, Farhin; Chimata, Vamsi Krishna; Poojari, Manohar; Shetty, Shilpa; Rusawat, Bhavesh
2016-01-01
The aim of this study was to compare the cleaning efficacy and instrumentation time between manual Hedstrom files (H-files) and rotary Mtwo files in primary molar root canals. A total of 90 primary root canals were selected using standardized radiographs. The canals were injected with India ink with 30 gauge insulin syringe and divided into three groups. Group I-30 root canals instrumented with H-files, group II-30 root canals instrumented with Mtwo files, and group III-control group in which no canal instrumentation was done. The teeth were cleared in various solutions and then observed under a stereomicroscope. No significant difference was seen in cleaning efficacy between H-files and Mtwo files in coronal, middle, and apical thirds of the root canal. The instrumentation time recorded for H-files (3.41 ± 0.38 minutes) was significantly less than that of Mtwo files (4.81 ± 0.52). Although there was no significant difference in cleaning capacity, further studies should be carried out using the single file systems. How to cite this article: Katge F, Chimata VK, Poojari M, Shetty S, Rusawat B. Comparison of cleaning Efficacy and Instrumentation Time between Rotary and Manual Instrumentation Techniques in Primary Teeth: An in vitro Study. Int J Clin Pediatr Dent 2016;9(2):124-127.
Çiçek, Ersan; Koçak, Mustafa Murat; Koçak, Sibel; Sağlam, Baran Can
2016-01-01
The type of instrument affects the amount of debris extruded. The aim of this study was to compare the effect of retreatment systems and supplementary file application on the amount of apical debris extrusion. Forty-eight extracted mandibular premolars with a single canal and similar length were selected. The root canals were prepared with the ProTaper Universal system with a torque-controlled engine. The root canals were dried and were obturated using Gutta-percha and sealer. The specimens were randomly divided into four equal groups according to the retreatment procedures (Group 1, Mtwo retreatment files; Group 2, Mtwo retreatment files + Mtwo rotary file #30 supplementary file; Group 3, ProTaper Universal retreatment (PTUR) files; and Group 4, PTUR files + ProTaper F3 supplementary file). The extruded debris during instrumentation were collected into preweighed Eppendorf tubes. The amount of apically extruded debris was calculated by subtracting the initial weight of the tube from the final weight. Three consecutive weights were obtained for each tube. No statistically significant difference was found in the amount of apically extruded debris between Groups 1 and 3 (P = 0.590). A significant difference was observed between Groups 1 and 2 (P < 0.05), and between Groups 3 and 4 (P < 0.05). The use of supplementary file significantly increased the amount of apically extruded debris.
Advanced Laboratory and Field Arrays (ALFA) OWC Phase 1 Test
Bret Bosma
2016-11-07
Data from Phase 1 testing of a single ALFA OWC device at the O.H. Hinsdale Wave Research Laboratory (HWRL) at Oregon State University in Fall of 2016. Contains two zip files of raw data, one of project data ("array"), and a diagram of the device with dimensions. A "readme" file in the project data archive under "Docs" helps to explains the project data.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
...-foot-wide and 10 to 12-foot-deep; (3) a new powerhouse equipped with a single 0.9 megawatt Kaplan... electronically via the Internet. See 18 CFR 385.2001(a)(1)(iii) and the instructions on the Commission's Web site...Library'' link of the Commission's Web site at http://www.ferc.gov/docs-filing/elibrary.asp . Enter the...
Multiple-file vs. single-file endodontics in dental practice: a study in routine care.
Bartols, Andreas; Laux, Gunter; Walther, Winfried
2016-01-01
Little is known about the differences of rotary multiple file endodontic therapy and single-file reciprocating endodontic treatment under routine care conditions in dental practice. This multicenter study was performed to compare the outcome of multiple-file (MF) and single-file (SF) systems for primary root canal treatment under conditions of general dental practice regarding reduction of pain with a visual analogue scale (VAS 100), improvement of oral-health-related quality of life (OHRQoL) with the german short version of the oral health impact profile (OHIP-G-14) and the speed of root canal preparation. Ten general dental practitioners (GDPs) participated in the study as practitioner-investigators (PI). In the first five-month period of the study, the GDPs treated patients with MF systems. After that, the GDPs treated the patients in the second five-month period with a SF system (WaveOne). The GDPs documented the clinical findings at the beginning and on completion of treatment. The patients documented their pain and OHRQoL before the beginning and before completion of treatment. A total of 599 patients were included in the evaluation. 280 patients were in the MF group, 319 were in the SF WaveOne group. In terms of pain reduction and improvement in OHIP-G-14, the improvement in both study groups (MF and SF) was very similar based on univariate analysis methods. Pain reduction was 34.4 (SD 33.7) VAS (MF) vs. 35.0 (SD 35.4) VAS (SF) ( p = 0.840) and the improvement in OHIP-G-14 score was 9.4 (SD 10.3) (MF) vs. 8.5 (SD 10.2) (SF) ( p = 0.365). The treatment time per root canal was 238.9 s (SD 206.2 s) (MF) vs. 146.8 sec. (SD 452.8 sec) (SF) ( p = 0.003). Regarding improvement of endodontic pain and OHRQoL measure with OHIP-G-14, there were no statistical significant differences between the SF und the MF systems. WaveOne-prepared root canals significantly faster than MF systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anovitz, Lawrence; Mamontov, Eugene; Ishai, Paul ben
2013-01-01
The properties of fluids can be significantly altered by the geometry of their confining environments. While there has been significant work on the properties of such confined fluids, the properties of fluids under ultraconfinement, environments where, at least in one plane, the dimensions of the confining environment are similar to that of the confined molecule, have not been investigated. This paper investigates the dynamic properties of water in beryl (Be3Al2Si6O18), the structure of which contains approximately 5-A-diam channels parallel to the c axis. Three techniques, inelastic neutron scattering, quasielastic neutron scattering, and dielectric spectroscopy, have been used to quantify thesemore » properties over a dynamic range covering approximately 16 orders of magnitude. Because beryl can be obtained in large single crystals we were able to quantify directional variations, perpendicular and parallel to the channel directions, in the dynamics of the confined fluid. These are significantly anisotropic and, somewhat counterintuitively, show that vibrations parallel to the c-axis channels are significantly more hindered than those perpendicular to the channels. The effective potential for vibrations in the c direction is harder than the potential in directions perpendicular to it. There is evidence of single-file diffusion of water molecules along the channels at higher temperatures, but below 150 K this diffusion is strongly suppressed. No such suppression, however, has been observed in the channel-perpendicular direction. Inelastic neutron scattering spectra include an intramolecular stretching O-H peak at 465 meV. As this is nearly coincident with that known for free water molecules and approximately 30 meV higher than that in liquid water or ice, this suggests that there is no hydrogen bonding constraining vibrations between the channel water and the beryl structure. However, dielectric spectroscopic measurements at higher temperatures and lower frequencies yield an activation energy for the dipole reorientation of 16.4 0.14 kJ/mol, close to the energy required to break a hydrogen bond in bulk water. This may suggest the presence of some other form of bonding between the water molecules and the structure, but the resolution of the apparent contradiction between the inelastic neutron and dielectric spectroscopic results remains uncertain.« less
Mechanisms limiting the performance of large grain polycrystalline silicon solar cells
NASA Technical Reports Server (NTRS)
Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.
1984-01-01
The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.
Diffusion models of the flanker task: Discrete versus gradual attentional selection
White, Corey N.; Ratcliff, Roger; Starns, Jeffrey S.
2011-01-01
The present study tested diffusion models of processing in the flanker task, in which participants identify a target that is flanked by items that indicate the same (congruent) or opposite response (incongruent). Single- and dual-process flanker models were implemented in a diffusion-model framework and tested against data from experiments that manipulated response bias, speed/accuracy tradeoffs, attentional focus, and stimulus configuration. There was strong mimcry among the models, and each captured the main trends in the data for the standard conditions. However, when more complex conditions were used, a single-process spotlight model captured qualitative and quantitative patterns that the dual-process models could not. Since the single-process model provided the best balance of fit quality and parsimony, the results indicate that processing in the simple versions of the flanker task is better described by gradual rather than discrete narrowing of attention. PMID:21964663
Subliminal mere exposure: specific, general, and diffuse effects.
Monahan, J L; Murphy, S T; Zajonc, R B
2000-11-01
The present research examined the possibility that repeated exposure may simultaneously produce specific and diffuse effects. In Study 1, participants were presented with 5-ms exposures of 25 stimuli each shown once (single-exposure condition) or with five repetitions of 5 stimuli (repeated-exposure condition). Participants in the repeated-exposure condition subsequently rated their own mood more positively than those in the single-exposure condition. Study 2 examined whether affect generated by subliminal repeated exposures transfers to unrelated stimuli. After a subliminal exposure phase, affective reactions to previously exposed stimuli, to new but similar stimuli, and to stimuli from a different category were obtained. Previously exposed stimuli were rated most positively and novel different stimuli least positively. All stimuli were rated more positively in the repeated-exposure condition than in the single-exposure condition. These findings suggest that affect generated by subliminal repeated exposure is sufficiently diffuse to influence ratings of unrelated stimuli and mood.
Binary Mixtures of Particles with Different Diffusivities Demix.
Weber, Simon N; Weber, Christoph A; Frey, Erwin
2016-02-05
The influence of size differences, shape, mass, and persistent motion on phase separation in binary mixtures has been intensively studied. Here we focus on the exclusive role of diffusivity differences in binary mixtures of equal-sized particles. We find an effective attraction between the less diffusive particles, which are essentially caged in the surrounding species with the higher diffusion constant. This effect leads to phase separation for systems above a critical size: A single close-packed cluster made up of the less diffusive species emerges. Experiments for testing our predictions are outlined.
Study of diffusion coefficient of anhydrous trehalose glasses by using PFG-NMR spectroscopy
NASA Astrophysics Data System (ADS)
Kwon, Hyun-Joung; Takekawa, Reiji; Kawamura, Junichi; Tokuyama, Michio
2013-02-01
We investigated the temperature dependent long time self-diffusion coefficient of the anhydrous trehalose supercooled liquids by using pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy. At the same temperature ranges, the diffusion coefficient convoluted from the α-relaxation time as Einstein-Smoluchowski relaxation, measured by using the dielectric loss spectroscopy are well overlapped with diffusion coefficients within experimental error. The temperature dependent diffusion coefficients obtained from different methods are normalized by fictive temperature and well satisfied the single master curve, proposed by Tokuyama.
NMReDATA, a standard to report the NMR assignment and parameters of organic compounds.
Pupier, Marion; Nuzillard, Jean-Marc; Wist, Julien; Schlörer, Nils E; Kuhn, Stefan; Erdelyi, Mate; Steinbeck, Christoph; Williams, Antony J; Butts, Craig; Claridge, Tim D W; Mikhova, Bozhana; Robien, Wolfgang; Dashti, Hesam; Eghbalnia, Hamid R; Farès, Christophe; Adam, Christian; Kessler, Pavel; Moriaud, Fabrice; Elyashberg, Mikhail; Argyropoulos, Dimitris; Pérez, Manuel; Giraudeau, Patrick; Gil, Roberto R; Trevorrow, Paul; Jeannerat, Damien
2018-04-14
Even though NMR has found countless applications in the field of small molecule characterization, there is no standard file format available for the NMR data relevant to structure characterization of small molecules. A new format is therefore introduced to associate the NMR parameters extracted from 1D and 2D spectra of organic compounds to the proposed chemical structure. These NMR parameters, which we shall call NMReDATA (for nuclear magnetic resonance extracted data), include chemical shift values, signal integrals, intensities, multiplicities, scalar coupling constants, lists of 2D correlations, relaxation times, and diffusion rates. The file format is an extension of the existing Structure Data Format, which is compatible with the commonly used MOL format. The association of an NMReDATA file with the raw and spectral data from which it originates constitutes an NMR record. This format is easily readable by humans and computers and provides a simple and efficient way for disseminating results of structural chemistry investigations, allowing automatic verification of published results, and for assisting the constitution of highly needed open-source structural databases. Copyright © 2018 John Wiley & Sons, Ltd.
Das, Raibatak; Cairo, Christopher W.; Coombs, Daniel
2009-01-01
The extraction of hidden information from complex trajectories is a continuing problem in single-particle and single-molecule experiments. Particle trajectories are the result of multiple phenomena, and new methods for revealing changes in molecular processes are needed. We have developed a practical technique that is capable of identifying multiple states of diffusion within experimental trajectories. We model single particle tracks for a membrane-associated protein interacting with a homogeneously distributed binding partner and show that, with certain simplifying assumptions, particle trajectories can be regarded as the outcome of a two-state hidden Markov model. Using simulated trajectories, we demonstrate that this model can be used to identify the key biophysical parameters for such a system, namely the diffusion coefficients of the underlying states, and the rates of transition between them. We use a stochastic optimization scheme to compute maximum likelihood estimates of these parameters. We have applied this analysis to single-particle trajectories of the integrin receptor lymphocyte function-associated antigen-1 (LFA-1) on live T cells. Our analysis reveals that the diffusion of LFA-1 is indeed approximately two-state, and is characterized by large changes in cytoskeletal interactions upon cellular activation. PMID:19893741
Self-thermophoresis and thermal self-diffusion in liquids and gases.
Brenner, Howard
2010-09-01
This paper demonstrates the existence of self-thermophoresis, a phenomenon whereby a virtual thermophoretic force arising from a temperature gradient in a quiescent single-component liquid or gas acts upon an individual molecule of that fluid in much the same manner as a "real" thermophoretic force acts upon a macroscopic, non-Brownian body immersed in that same fluid. In turn, self-thermophoresis acting in concert with Brownian self-diffusion gives rise to the phenomenon of thermal self-diffusion in single-component fluids. The latter furnishes quantitative explanations of both thermophoresis in pure fluids and thermal diffusion in binary mixtures (the latter composed of a dilute solution of a physicochemically inert solute whose molecules are large compared with those of the solvent continuum). Explicitly, the self-thermophoretic theory furnishes a simple expression for both the thermophoretic velocity U of a macroscopic body in a single-component fluid subjected to a temperature gradient ∇T , and the intimately related binary thermal diffusion coefficient D{T} for a two-component colloidal or macromolecular mixture. The predicted expressions U=-D{T}∇T≡-βD{S}∇T and D{T}=βD{S} (with β and D{S} the pure solvent's respective thermal expansion and isothermal self-diffusion coefficients) are each noted to accord reasonably well with experimental data for both liquids and gases. The likely source of systematic deviations of the predicted values of D{T} from these data is discussed. This appears to be the first successful thermodiffusion theory applicable to both liquids and gases, a not insignificant achievement considering that the respective thermal diffusivities and thermophoretic velocities of these two classes of fluids differ by as much as six orders of magnitude.
A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers: Microscopic Approach
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)
2001-01-01
Starting from the microscopic semiconductor Bloch equations (SBEs) including the Boltzmann transport terms in the distribution function equations for electrons and holes, we derived a closed set of diffusion equations for carrier densities and temperatures with self-consistent coupling to Maxwell's equation and to an effective optical polarization equation. The coherent many-body effects are included within the screened Hartree-Fock approximation, while scatterings are treated within the second Born approximation including both the in- and out-scatterings. Microscopic expressions for electron-hole (e-h) and carrier-LO (c-LO) phonon scatterings are directly used to derive the momentum and energy relaxation rates. These rates expressed as functions of temperatures and densities lead to microscopic expressions for self- and mutual-diffusion coefficients in the coupled density-temperature diffusion equations. Approximations for reducing the general two-component description of the electron-hole plasma (EHP) to a single-component one are discussed. In particular, we show that a special single-component reduction is possible when e-h scattering dominates over c-LO phonon scattering. The ambipolar diffusion approximation is also discussed and we show that the ambipolar diffusion coefficients are independent of e-h scattering, even though the diffusion coefficients of individual components depend sensitively on the e-h scattering rates. Our discussions lead to new perspectives into the roles played in the single-component reduction by the electron-hole correlation in momentum space induced by scatterings and the electron-hole correlation in real space via internal static electrical field. Finally, the theory is completed by coupling the diffusion equations to the lattice temperature equation and to the effective optical polarization which in turn couples to the laser field.
NASA Astrophysics Data System (ADS)
Digman, Michelle
Fluorescence fluctuation spectroscopy has evolved from single point detection of molecular diffusion to a family of microscopy imaging correlation tools (i.e. ICS, RICS, STICS, and kICS) useful in deriving spatial-temporal dynamics of proteins in living cells The advantage of the imaging techniques is the simultaneous measurement of all points in an image with a frame rate that is increasingly becoming faster with better sensitivity cameras and new microscopy modalities such as the sheet illumination technique. A new frontier in this area is now emerging towards a high level of mapping diffusion rates and protein dynamics in the 2 and 3 dimensions. In this talk, I will discuss the evolution of fluctuation analysis from the single point source to mapping diffusion in whole cells and the technology behind this technique. In particular, new methods of analysis exploit correlation of molecular fluctuations originating from measurement of fluctuation correlations at distant points (pair correlation analysis) and methods that exploit spatial averaging of fluctuations in small regions (iMSD). For example the pair correlation fluctuation (pCF) analyses done between adjacent pixels in all possible radial directions provide a window into anisotropic molecular diffusion. Similar to the connectivity atlas of neuronal connections from the MRI diffusion tensor imaging these new tools will be used to map the connectome of protein diffusion in living cells. For biological reaction-diffusion systems, live single cell spatial-temporal analysis of protein dynamics provides a mean to observe stochastic biochemical signaling in the context of the intracellular environment which may lead to better understanding of cancer cell invasion, stem cell differentiation and other fundamental biological processes. National Institutes of Health Grant P41-RRO3155.
Spirometry, Static Lung Volumes, and Diffusing Capacity.
Vaz Fragoso, Carlos A; Cain, Hilary C; Casaburi, Richard; Lee, Patty J; Iannone, Lynne; Leo-Summers, Linda S; Van Ness, Peter H
2017-09-01
Spirometric Z-scores from the Global Lung Initiative (GLI) rigorously account for age-related changes in lung function and are thus age-appropriate when establishing spirometric impairments, including a restrictive pattern and air-flow obstruction. However, GLI-defined spirometric impairments have not yet been evaluated regarding associations with static lung volumes (total lung capacity [TLC], functional residual capacity [FRC], and residual volume [RV]) and gas exchange (diffusing capacity). We performed a retrospective review of pulmonary function tests in subjects ≥40 y old (mean age 64.6 y), including pre-bronchodilator measures for: spirometry ( n = 2,586), static lung volumes by helium dilution with inspiratory capacity maneuver ( n = 2,586), and hemoglobin-adjusted single-breath diffusing capacity ( n = 2,508). Using multivariable linear regression, adjusted least-squares means (adj LS Means) were calculated for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity. The adj LS Means were expressed with and without height-cubed standardization and stratified by GLI-defined spirometry, including normal ( n = 1,251), restrictive pattern ( n = 663), and air-flow obstruction (mild, [ n = 128]; moderate, [ n = 150]; and severe, [ n = 394]). Relative to normal spirometry, restrictive-pattern had lower adj LS Means for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity ( P ≤ .001). Conversely, relative to normal spirometry, mild, moderate, and severe air-flow obstruction had higher adj LS Means for FRC and RV ( P < .001). However, only mild and moderate air-flow obstruction had higher adj LS Means for TLC ( P < .001), while only moderate and severe air-flow obstruction had higher adj LS Means for RV/TLC ( P < .001) and lower adj LS Means for hemoglobin-adjusted single-breath diffusing capacity ( P < .001). Notably, TLC (calculated as FRC + inspiratory capacity) was not increased in severe air-flow obstruction ( P ≥ .11) because inspiratory capacity decreased with increasing air-flow obstruction ( P < .001), thus opposing the increased FRC ( P < .001). Finally, P values were similar whether adj LS Means were height-cubed standardized. A GLI-defined spirometric restrictive pattern is strongly associated with a restrictive ventilatory defect (decreased TLC, FRC, and RV), while GLI-defined spirometric air-flow obstruction is strongly associated with hyperinflation (increased FRC) and air trapping (increased RV and RV/TLC). Both spirometric impairments were strongly associated with impaired gas exchange (decreased hemoglobin-adjusted single-breath diffusing capacity). Copyright © 2017 by Daedalus Enterprises.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-01
... penstock intake at the powerhouse site; (2) a new powerhouse with a single turbine/generator unit at an... powerhouse site; (2) a new powerhouse with a single turbine/generator unit at an installed capacity of 0.5 MW... Franzen reservoir to the Fairmount reservoir; (2) a new powerhouse with a single turbine/ generator unit...
Muñoz, Estefanía; Forner, Leopoldo; Llena, Carmen
2014-04-01
The aim of this study was to evaluate the influence of the operator's experience on the shaping of double-curvature simulated root canals with a nickel-titanium single-file reciprocating motion system. Sixty double-curvature root canals simulated in methacrylate blocks were prepared by 10 students without any experience in endodontics and by 10 professionals who had studied endodontics at the postgraduate level. The Reciproc-VDW system's R25 file was used in the root canal preparation. The blocks were photographed before and after the instrumentation, and the time of instrumentation was also evaluated. Changes in root canal dimensions were analyzed in 6 positions. Significant differences (P < .05) were found in the apical transport of the first root canal curvature, with a larger percentage of increase of the root canal occurring in the novice group than in the expert one, as well as in the canal deviation at the beginning of the curvatures, whereas no significant results were obtained in the growth rate of the canal area. There was difference in the time of instrumentation, with 3.76 minutes observed in the novice group, as opposed to 2.05 minutes in the expert group. The use of the single-file reciprocating motion system Reciproc is not seen to be influenced by the operator's experience regarding the increase of the canal area. Previous training and the need to acquire experience are important in the use of this system, in spite of its apparent simplicity. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
The stepping behavior analysis of pedestrians from different age groups via a single-file experiment
NASA Astrophysics Data System (ADS)
Cao, Shuchao; Zhang, Jun; Song, Weiguo; Shi, Chang'an; Zhang, Ruifang
2018-03-01
The stepping behavior of pedestrians with different age compositions in single-file experiment is investigated in this paper. The relation between step length, step width and stepping time are analyzed by using the step measurement method based on the calculation of curvature of the trajectory. The relations of velocity-step width, velocity-step length and velocity-stepping time for different age groups are discussed and compared with previous studies. Finally effects of pedestrian gender and height on stepping laws and fundamental diagrams are analyzed. The study is helpful for understanding pedestrian dynamics of movement. Meanwhile, it offers experimental data to develop a microscopic model of pedestrian movement by considering stepping behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simunovic, Srdjan
2015-02-16
CASL's modeling and simulation technology, the Virtual Environment for Reactor Applications (VERA), incorporates coupled physics and science-based models, state-of-the-art numerical methods, modern computational science, integrated uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs), single-effect experiments, and integral tests. The computational simulation component of VERA is the VERA Core Simulator (VERA-CS). The core simulator is the specific collection of multi-physics computer codes used to model and deplete a LWR core over multiple cycles. The core simulator has a single common input file that drives all of the different physics codes. The parser code, VERAIn, converts VERAmore » Input into an XML file that is used as input to different VERA codes.« less
NASA Technical Reports Server (NTRS)
Tenney, D. R.; Unnam, J.
1978-01-01
Diffusion calculations were performed to establish the conditions under which concentration dependence of the diffusion coefficient was important in single, two, and three phase binary alloy systems. Finite-difference solutions were obtained for each type of system using diffusion coefficient variations typical of those observed in real alloy systems. Solutions were also obtained using average diffusion coefficients determined by taking a logarithmic average of each diffusion coefficient variation considered. The constant diffusion coefficient solutions were used as reference in assessing diffusion coefficient variation effects. Calculations were performed for planar, cylindrical, and spherical geometries in order to compare the effect of diffusion coefficient variations with the effect of interface geometries. In most of the cases considered, the diffusion coefficient of the major-alloy phase was the key parameter that controlled the kinetics of interdiffusion.
Evaluating Transportation by Comparing Several uses of Rotary Endodontic Files.
Elemam, Ranya F; Capelas, J A; Vaz, Mário A P; Viriato, Nuno; Pereira, M L; Azevedo, A; West, John
2015-12-01
To evaluate the frequent use of ProTaper Next (PTN; Dentsply Maillefer, Ballaigues, Switzerland) systems on shaping ability of root canal utilizing Solidworks (2014, Dassault Systemes) software. Thirty-six root canals in clear resin blocks (Dentsply-Maillefer) were allocated into six experimental groups (n = 36). Six new sets of PTN instruments (Dentsply Maillefer, Ballaigues, Switzerland) were used six times to shape the resin blocks. A #15 K-file was inserted to the working length (WL), followed by ProGlider (PG) to create a glide path. Sequential use of PTN instrumentation in a crown-down technique was used to reach size (30/07) apically. Macroscopic photos of the blocks were taken before and after instrumentation, layered by Paint Shop Pro 9 from JascSoftware, and then canal transportation was measured using Solidwork 2014. The data were analyzed by SPSS software version 22. Multivariate statistical analysis general linear model (GLM) was also applied. Bonferroni correction test was used in multiple comparisons and the statistical significance was set to 0.05. There was no difference in canal transportation resulted from utilizing PTN files after six multiple uses; in addition, the PTN files showed ability to maintain the original canal anatomy, especially in the apical level, where lowest total mean value of canal center displacement was seen (3 mm level) (0.019 ± 0.017). ProTaper Next files can be used to prepare single and multiple canals in a single furcated tooth. ProTaper Next nickel-titanium (NiTi) file system is a safe instrument that respects the canal shape, allows practitioners to treat difficult cases with good results, and low risk of separation.
NASA Astrophysics Data System (ADS)
Boccali, T.; Donvito, G.; Diacono, D.; Marzulli, G.; Pompili, A.; Della Ricca, G.; Mazzoni, E.; Argiro, S.; Gregori, D.; Grandi, C.; Bonacorsi, D.; Lista, L.; Fabozzi, F.; Barone, L. M.; Santocchia, A.; Riahi, H.; Tricomi, A.; Sgaravatto, M.; Maron, G.
2014-06-01
The Italian community in CMS has built a geographically distributed network in which all the data stored in the Italian region are available to all the users for their everyday work. This activity involves at different level all the CMS centers: the Tier1 at CNAF, all the four Tier2s (Bari, Rome, Legnaro and Pisa), and few Tier3s (Trieste, Perugia, Torino, Catania, Napoli, ...). The federation uses the new network connections as provided by GARR, our NREN (National Research and Education Network), which provides a minimum of 10 Gbit/s to all the sites via the GARR-X[2] project. The federation is currently based on Xrootd[1] technology, and on a Redirector aimed to seamlessly connect all the sites, giving the logical view of a single entity. A special configuration has been put in place for the Tier1, CNAF, where ad-hoc Xrootd changes have been implemented in order to protect the tape system from excessive stress, by not allowing WAN connections to access tape only files, on a file-by-file basis. In order to improve the overall performance while reading files, both in terms of bandwidth and latency, a hierarchy of xrootd redirectors has been implemented. The solution implemented provides a dedicated Redirector where all the INFN sites are registered, without considering their status (T1, T2, or T3 sites). An interesting use case were able to cover via the federation are disk-less Tier3s. The caching solution allows to operate a local storage with minimal human intervention: transfers are automatically done on a single file basis, and the cache is maintained operational by automatic removal of old files.
Requirement of spatiotemporal resolution for imaging intracellular temperature distribution
NASA Astrophysics Data System (ADS)
Hiroi, Noriko; Tanimoto, Ryuichi; , Kaito, Ii; Ozeki, Mitsunori; Mashimo, Kota; Funahashi, Akira
2017-04-01
Intracellular temperature distribution is an emerging target in biology nowadays. Because thermal diffusion is rapid dynamics in comparison with molecular diffusion, we need a spatiotemporally high-resolution imaging technology to catch this phenomenon. We demonstrate that time-lapse imaging which consists of single-shot 3D volume images acquired at high-speed camera rate is desired for the imaging of intracellular thermal diffusion based on the simulation results of thermal diffusion from a nucleus to cytosol.
Photospheric Magnetic Diffusion by Measuring Moments of Active Regions
NASA Astrophysics Data System (ADS)
Engell, Alexander; Longcope, D.
2013-07-01
Photospheric magnetic surface diffusion is an important constraint for the solar dynamo. The HMI Active Region Patches (HARPs) program automatically identify all magnetic regions above a certain flux. In our study we measure the moments of ARs that are no longer actively emerging and can thereby give us good statistical constraints on photospheric diffusion. We also present the diffusion properties as a function of latitude, flux density, and single polarity (leading or following) within each HARP.
A new approach to the film library: time-unit filing.
Palmucci, J A
2000-01-01
The installation of a new radiology information system (RIS) at Children's Hospital Medical Center of Akron in Akron, Ohio, took the radiology department into a new world of technology, but raised issues we never anticipated. The major problem the new RIS forced the department to overcome was how to eliminate the film file's reliance on a proprietary radiology numbering system. Previously, the department had used its own numbering system--a proprietary x-ray number--to file film jackets and had used the hospital-issued medical record number to access patient and payer information from the hospital information system. It became clear that we should use a single number--the medical record number--to access all data, but we wondered how that would affect our film file room. An RIS consultant suggested that we consider filing films by last date of service, a system called "time-unit filing." Time-unit filing means keeping the most recent two-weeks worth of films in the main file room. They are organized by gender in blue or pink jackets and marked alphabetically by the patient's last name in a way that makes mis-files easy to see. If a patient's film jacket is activated again, it is refiled in the current two-week time unit. Inactive jackets remain in their two-week time unit indefinitely. Time-unit filing has had many benefits for the radiology department at Children's Hospital Medical Center of Akron: fewer mis-files, less time needed for filing and searching, and successful implementation of the new RIS.
Diffusion Tensor Magnetic Resonance Imaging Strategies for Color Mapping of Human Brain Anatomy
Boujraf, Saïd
2018-01-01
Background: A color mapping of fiber tract orientation using diffusion tensor imaging (DTI) can be prominent in clinical practice. The goal of this paper is to perform a comparative study of visualized diffusion anisotropy in the human brain anatomical entities using three different color-mapping techniques based on diffusion-weighted imaging (DWI) and DTI. Methods: The first technique is based on calculating a color map from DWIs measured in three perpendicular directions. The second technique is based on eigenvalues derived from the diffusion tensor. The last technique is based on three eigenvectors corresponding to sorted eigenvalues derived from the diffusion tensor. All magnetic resonance imaging measurements were achieved using a 1.5 Tesla Siemens Vision whole body imaging system. A single-shot DW echoplanar imaging sequence used a Stejskal–Tanner approach. Trapezoidal diffusion gradients are used. The slice orientation was transverse. The basic measurement yielded a set of 13 images. Each series consists of a single image without diffusion weighting, besides two DWIs for each of the next six noncollinear magnetic field gradient directions. Results: The three types of color maps were calculated consequently using the DWI obtained and the DTI. Indeed, we established an excellent similarity between the image data in the color maps and the fiber directions of known anatomical structures (e.g., corpus callosum and gray matter). Conclusions: In the meantime, rotationally invariant quantities such as the eigenvectors of the diffusion tensor reflected better, the real orientation found in the studied tissue. PMID:29928631
28 CFR 542.14 - Initial filing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... place a single complaint or a reasonable number of closely related issues on the form. If the inmate includes on a single form multiple unrelated issues, the submission shall be rejected and returned without... of informal resolution and submission of a formal written Administrative Remedy Request, on the...
Rapid-Prototyping of Application Specific Signal Processors (RASSP) Education and Facilitation
2000-12-01
Digest 4. User/ passwd /deskey authentication required. o single point RASSP contractor release o phone call authentication required...o user/ passwd /deskey assign over phone 5. WWW user/ passwd used to access release for in component datasheet. o single file for each model
Matsuki, Yuka; Iwamoto, Masayuki; Mita, Kenichiro; Shigemi, Kenji; Matsunaga, Shigeki; Oiki, Shigetoshi
2016-03-30
A hydrogen-bonded water-chain in a nanotube is highly proton conductive, and examining the proton flux under electric fields is crucial to understanding the one-dimensional Grotthuss conduction. Here, we exploited a nanotube-forming natural product, the peptide polytheonamide B (pTB), to examine proton conduction mechanisms at a single-molecule level. The pTB nanotube has a length of ∼40 Å that spans the membrane and a uniform inner diameter of 4 Å that holds a single-file water-chain. Single-channel proton currents were measured using planar lipid bilayers in various proton concentrations and membrane potentials (±400 mV). We found, surprisingly, that the current-voltage curves were asymmetric with symmetric proton concentrations in both solutions across the membrane (rectification). The proton flux from the C-terminal to the N-terminal end was 1.6 times higher than that from the opposite. At lower proton concentrations, the degree of rectification was attenuated, but with the addition of a pH-buffer (dichloroacetate) that supplies protons near the entrance, the rectification emerged. These results indicate that the permeation processes inside the pore generate the rectification, which is masked at low concentrations by the diffusion-limited access of protons to the pore entrance. The permeation processes were characterized by a discrete-state Markov model, in which hops of a proton followed by water-chain turnovers were implemented. The optimized model revealed that the water-chain turnover exhibited unusual voltage dependence, and the distinct voltage-dependencies of the forward and backward transition rates yielded the rectification. The pTB nanotube serves as a rectified proton conductor, and the design principles can be exploited for proton-conducting materials.
Seasonal Variability in Global Eddy Diffusion and the Effect on Thermospheric Neutral Density
NASA Astrophysics Data System (ADS)
Pilinski, M.; Crowley, G.
2014-12-01
We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time between January 2004 and January 2008 were estimated from residuals of neutral density measurements made by the CHallenging Minisatellite Payload (CHAMP) and simulations made using the Thermosphere Ionosphere Mesosphere Electrodynamics - Global Circulation Model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy-diffusivity models. The eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the RMS difference between the TIME-GCM model and density data from a variety of satellites is reduced by an average of 5%. This result, indicates that global thermospheric density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates how eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are some limitations of this method, which are discussed, including that the latitude-dependence of the seasonal neutral-density signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion consistent with diffusion observations made by other techniques.
Seasonal variability in global eddy diffusion and the effect on neutral density
NASA Astrophysics Data System (ADS)
Pilinski, M. D.; Crowley, G.
2015-04-01
We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time were estimated from residuals of neutral density measurements made by the Challenging Minisatellite Payload (CHAMP) and simulations made using the thermosphere-ionosphere-mesosphere electrodynamics global circulation model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy diffusivity models. Eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the root-mean-square sum for the TIME-GCM model is reduced by an average of 5% when compared to density data from a variety of satellites, indicating that the fidelity of global density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates that eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are limitations to this method, which are discussed, including that the latitude dependence of the seasonal neutral-density signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion which is also consistent with diffusion observations made by other techniques.
Energy consumption of ProTaper Next X1 after glide path with PathFiles and ProGlider.
Berutti, Elio; Alovisi, Mario; Pastorelli, Michele Angelo; Chiandussi, Giorgio; Scotti, Nicola; Pasqualini, Damiano
2014-12-01
Instrument failure caused by excessive torsional stress can be controlled by creating a manual or mechanical glide path. The ProGlider single-file system (Dentsply Maillefer, Ballaigues, Switzerland) was recently introduced to perform a mechanical glide path. This study was designed to compare the effect of a glide path performed with PathFiles (Dentsply Maillefer) and ProGlider on torque, time, and pecking motion required for ProTaper Next X1 (Dentsply Maillefer) to reach the full working length in simulated root canals. Forty Endo Training Blocks (Dentsply Maillefer) were used. Twenty were prepared with a mechanical glide path using PathFiles 1 and 2 (the PathFile group), and 20 were prepared with a mechanical glide path using a ProGlider single file (the ProGlider group). All samples were shaped with ProTaper Next X1 driven by an endodontic motor connected to a digital wattmeter. The required torque for root canal instrumentation was analyzed by evaluating the electrical power consumption of the endodontic engine. Electric power consumption (mW/h), elapsed time (seconds), and number of pecking motions required to reach the full working length with ProTaper Next X1 were calculated. Differences among groups were analyzed with the parametric Student t test for independent data (P < .05). Elapsed time and electric power consumption were significantly different between groups (P = .0001 for both). ProGlider appears to perform more efficiently than PathFiles in decreasing electric power consumption of ProTaper Next X1 to reach the full working length. This study confirmed the ability of ProGlider to reduce stress in ProTaper Next X1 during shaping through a glide path and preliminary middle and coronal preflaring. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Anomalous Diffusion of Single Particles in Cytoplasm
Regner, Benjamin M.; Vučinić, Dejan; Domnisoru, Cristina; Bartol, Thomas M.; Hetzer, Martin W.; Tartakovsky, Daniel M.; Sejnowski, Terrence J.
2013-01-01
The crowded intracellular environment poses a formidable challenge to experimental and theoretical analyses of intracellular transport mechanisms. Our measurements of single-particle trajectories in cytoplasm and their random-walk interpretations elucidate two of these mechanisms: molecular diffusion in crowded environments and cytoskeletal transport along microtubules. We employed acousto-optic deflector microscopy to map out the three-dimensional trajectories of microspheres migrating in the cytosolic fraction of a cellular extract. Classical Brownian motion (BM), continuous time random walk, and fractional BM were alternatively used to represent these trajectories. The comparison of the experimental and numerical data demonstrates that cytoskeletal transport along microtubules and diffusion in the cytosolic fraction exhibit anomalous (nonFickian) behavior and posses statistically distinct signatures. Among the three random-walk models used, continuous time random walk provides the best representation of diffusion, whereas microtubular transport is accurately modeled with fractional BM. PMID:23601312
Markov Chain Monte Carlo in the Analysis of Single-Molecule Experimental Data
NASA Astrophysics Data System (ADS)
Kou, S. C.; Xie, X. Sunney; Liu, Jun S.
2003-11-01
This article provides a Bayesian analysis of the single-molecule fluorescence lifetime experiment designed to probe the conformational dynamics of a single DNA hairpin molecule. The DNA hairpin's conformational change is initially modeled as a two-state Markov chain, which is not observable and has to be indirectly inferred. The Brownian diffusion of the single molecule, in addition to the hidden Markov structure, further complicates the matter. We show that the analytical form of the likelihood function can be obtained in the simplest case and a Metropolis-Hastings algorithm can be designed to sample from the posterior distribution of the parameters of interest and to compute desired estiamtes. To cope with the molecular diffusion process and the potentially oscillating energy barrier between the two states of the DNA hairpin, we introduce a data augmentation technique to handle both the Brownian diffusion and the hidden Ornstein-Uhlenbeck process associated with the fluctuating energy barrier, and design a more sophisticated Metropolis-type algorithm. Our method not only increases the estimating resolution by several folds but also proves to be successful for model discrimination.
2009-02-01
extension) that contain the airframe geometry specific to a single configuration. Results from a MissileLab run will be stored in a directory...re)created and contain all APE results and associated input files. C. Background In the early stages of missile system design, it is necessary to...Copying the AeroEngine Files After installation, the subdirectories in the “AeroEngine” directory contain contact information on how to obtain valid
Diffusion pseudotime robustly reconstructs lineage branching.
Haghverdi, Laleh; Büttner, Maren; Wolf, F Alexander; Buettner, Florian; Theis, Fabian J
2016-10-01
The temporal order of differentiating cells is intrinsically encoded in their single-cell expression profiles. We describe an efficient way to robustly estimate this order according to diffusion pseudotime (DPT), which measures transitions between cells using diffusion-like random walks. Our DPT software implementations make it possible to reconstruct the developmental progression of cells and identify transient or metastable states, branching decisions and differentiation endpoints.
Harandi, Azadeh; Mirzaeerad, Sina; Mehrabani, Mahgol; Mahmoudi, Elham; Bijani, Ali
2017-01-01
Introduction: This study aimed to compare the incidence of dentinal crack formation by instrumentation with ProTaper Universal system (rotary, multi-file system), SafeSider (reciprocation movement, multi-file system) and Neolix (rotary, single-file system). Methods and Materials: In this in vitro study, 60 freshly extracted mandibular first molars were randomly divided into three experimental groups (n=15) and a control group containing unprepared teeth (n=15). Instrumentation in different groups was accomplished using either ProTaper, Neolix or SafeSider systems up to 25/0.08. The teeth were then sectioned at 3, 6 and 9 mm from the apex, and observed under a stereomicroscope for presence of dentinal cracks. Data were analyzed with Chi square test, Fisher’s exact test and Bonferroni correction. Results: Micro cracks were seen in all experimental groups (13.3% in ProTaper, 26.7% in SafeSider and 40% in Neolix). There was a significant difference between Neolix and the control groups in microcrack formation (P=0.042). Micro cracks mainly occurred in the coronal section (9 mm). No microcrack occurred in the control group. Conclusion: Neolix rotary single-file system caused more dentinal cracks compared to the unprepared roots. All the instrumentation systems increased the number of micro cracks compared to unprepared teeth. PMID:29225637
Dynamic phase coexistence in glass-forming liquids.
Pastore, Raffaele; Coniglio, Antonio; Ciamarra, Massimo Pica
2015-07-09
One of the most controversial hypotheses for explaining the heterogeneous dynamics of glasses postulates the temporary coexistence of two phases characterized by a high and by a low diffusivity. In this scenario, two phases with different diffusivities coexist for a time of the order of the relaxation time and mix afterwards. Unfortunately, it is difficult to measure the single-particle diffusivities to test this hypothesis. Indeed, although the non-Gaussian shape of the van-Hove distribution suggests the transient existence of a diffusivity distribution, it is not possible to infer from this quantity whether two or more dynamical phases coexist. Here we provide the first direct observation of the dynamical coexistence of two phases with different diffusivities, by showing that in the deeply supercooled regime the distribution of the single-particle diffusivities acquires a transient bimodal shape. We relate this distribution to the heterogeneity of the dynamics and to the breakdown of the Stokes-Einstein relation, and we show that the coexistence of two dynamical phases occurs up to a timescale growing faster than the relaxation time on cooling, for some of the considered models. Our work offers a basis for rationalizing the dynamics of supercooled liquids and for relating their structural and dynamical properties.
NASA Astrophysics Data System (ADS)
Chu, Peter C.
2018-03-01
SOund Fixing And Ranging (RAFOS) floats deployed by the Naval Postgraduate School (NPS) in the California Current system from 1992 to 2001 at depth between 150 and 600 m (http://www.oc.nps.edu/npsRAFOS/) are used to study 2-D turbulent characteristics. Each drifter trajectory is adaptively decomposed using the empirical mode decomposition (EMD) into a series of intrinsic mode functions (IMFs) with corresponding specific scale for each IMF. A new steepest ascent low/non-low-frequency ratio is proposed in this paper to separate a Lagrangian trajectory into low-frequency (nondiffusive, i.e., deterministic) and high-frequency (diffusive, i.e., stochastic) components. The 2-D turbulent (or called eddy) diffusion coefficients are calculated on the base of the classical turbulent diffusion with mixing length theory from stochastic component of a single drifter. Statistical characteristics of the calculated 2-D turbulence length scale, strength, and diffusion coefficients from the NPS RAFOS data are presented with the mean values (over the whole drifters) of the 2-D diffusion coefficients comparable to the commonly used diffusivity tensor method.
Koutsopoulos, Sotirios; Unsworth, Larry D.; Nagai, Yusuke; Zhang, Shuguang
2009-01-01
The release kinetics for a variety of proteins of a wide range of molecular mass, hydrodynamic radii, and isoelectric points through a nanofiber hydrogel scaffold consisting of designer self-assembling peptides were studied by using single-molecule fluorescence correlation spectroscopy (FCS). In contrast to classical diffusion experiments, the single-molecule approach allowed for the direct determination of diffusion coefficients for lysozyme, trypsin inhibitor, BSA, and IgG both inside the hydrogel and after being released into the solution. The results of the FCS analyses and the calculated pristine in-gel diffusion coefficients were compared with the values obtained from the Stokes–Einstein equation, Fickian diffusion models, and the literature. The release kinetics suggested that protein diffusion through nanofiber hydrogels depended primarily on the size of the protein. Protein diffusivities decreased, with increasing hydrogel nanofiber density providing a means of controlling the release kinetics. Secondary and tertiary structure analyses and biological assays of the released proteins showed that encapsulation and release did not affect the protein conformation and functionality. Our results show that this biocompatible and injectable designer self-assembling peptide hydrogel system may be useful as a carrier for therapeutic proteins for sustained release applications. PMID:19273853
NASA Astrophysics Data System (ADS)
Sirorattanakul, Krittanon; Shen, Chong; Ou-Yang, Daniel
Diffusivity governs the dynamics of interacting particles suspended in a solvent. At high particle concentration, the interactions between particles become non-negligible, making the values of self and collective diffusivity diverge and concentration-dependent. Conventional methods for measuring this dependency, such as forced Rayleigh scattering, fluorescence correlation spectroscopy (FCS), and dynamic light scattering (DLS) require preparation of multiple samples. We present a new technique to measure this dependency by using only a single sample. Dielectrophoresis (DEP) is used to create concentration gradient in the solution. Across this concentration distribution, we use FCS to measure the concentration-dependent self diffusivity. Then, we switch off DEP to allow the particles to diffuse back to equilibrium. We obtain the time series of concentration distribution from fluorescence microscopy and use them to determine the concentration-dependent collective diffusivity. We compare the experimental results with computer simulations to verify the validity of this technique. Time and spatial resolution limits of FCS and imaging are also analyzed to estimate the limitation of the proposed technique. NSF DMR-0923299, Lehigh College of Arts and Sciences Undergraduate Research Grant, Lehigh Department of Physics, Emulsion Polymers Institute.
Vermorel, Romain; Oulebsir, Fouad; Galliero, Guillaume
2017-09-14
The computation of diffusion coefficients in molecular systems ranks among the most useful applications of equilibrium molecular dynamics simulations. However, when dealing with the problem of fluid diffusion through vanishingly thin interfaces, classical techniques are not applicable. This is because the volume of space in which molecules diffuse is ill-defined. In such conditions, non-equilibrium techniques allow for the computation of transport coefficients per unit interface width, but their weak point lies in their inability to isolate the contribution of the different physical mechanisms prone to impact the flux of permeating molecules. In this work, we propose a simple and accurate method to compute the diffusional transport coefficient of a pure fluid through a planar interface from equilibrium molecular dynamics simulations, in the form of a diffusion coefficient per unit interface width. In order to demonstrate its validity and accuracy, we apply our method to the case study of a dilute gas diffusing through a smoothly repulsive single-layer porous solid. We believe this complementary technique can benefit to the interpretation of the results obtained on single-layer membranes by means of complex non-equilibrium methods.
NASA Technical Reports Server (NTRS)
Runnels, Tyson D.
1993-01-01
This is a case study. It deals with the use of a 'virtual file system' (VFS) for Boeing's UNIX-based Product Standards Data System (PSDS). One of the objectives of PSDS is to store digital standards documents. The file-storage requirements are that the files must be rapidly accessible, stored for long periods of time - as though they were paper, protected from disaster, and accumulative to about 80 billion characters (80 gigabytes). This volume of data will be approached in the first two years of the project's operation. The approach chosen is to install a hierarchical file migration system using optical disk cartridges. Files are migrated from high-performance media to lower performance optical media based on a least-frequency-used algorithm. The optical media are less expensive per character stored and are removable. Vital statistics about the removable optical disk cartridges are maintained in a database. The assembly of hardware and software acts as a single virtual file system transparent to the PSDS user. The files are copied to 'backup-and-recover' media whose vital statistics are also stored in the database. Seventeen months into operation, PSDS is storing 49 gigabytes. A number of operational and performance problems were overcome. Costs are under control. New and/or alternative uses for the VFS are being considered.
Modeling the effect of glutamate diffusion and uptake on NMDA and non-NMDA receptor saturation.
Holmes, W R
1995-01-01
One- and two-dimensional models of glutamate diffusion, uptake, and binding in the synaptic cleft were developed to determine if the release of single vesicles of glutamate would saturate NMDA and non-NMDA receptors. Ranges of parameter values were used in the simulations to determine the conditions when saturation could occur. Single vesicles of glutamate did not saturate NMDA receptors unless diffusion was very slow and the number of glutamate molecules in a vesicle was large. However, the release of eight vesicles at 400 Hz caused NMDA receptor saturation for all parameter values tested. Glutamate uptake was found to reduce NMDA receptor saturation, but the effect was smaller than that of changes in the diffusion coefficient or in the number of glutamate molecules in a vesicle. Non-NMDA receptors were not saturated unless diffusion was very slow and the number of glutamate molecules in a vesicle was large. The release of eight vesicles at 400 Hz caused significant non-NMDA receptor desensitization. The results suggest that NMDA and non-NMDA receptors are not saturated by single vesicles of glutamate under usual conditions, and that tetanic input, of the type typically used to induce long-term potentiation, will increase calcium influx by increasing receptor binding as well as by reducing voltage-dependent block of NMDA receptors. Images FIGURE 1 PMID:8580317
A numerical solution for the diffusion equation in hydrogeologic systems
Ishii, A.L.; Healy, R.W.; Striegl, Robert G.
1989-01-01
The documentation of a computer code for the numerical solution of the linear diffusion equation in one or two dimensions in Cartesian or cylindrical coordinates is presented. Applications of the program include molecular diffusion, heat conduction, and fluid flow in confined systems. The flow media may be anisotropic and heterogeneous. The model is formulated by replacing the continuous linear diffusion equation by discrete finite-difference approximations at each node in a block-centered grid. The resulting matrix equation is solved by the method of preconditioned conjugate gradients. The conjugate gradient method does not require the estimation of iteration parameters and is guaranteed convergent in the absence of rounding error. The matrixes are preconditioned to decrease the steps to convergence. The model allows the specification of any number of boundary conditions for any number of stress periods, and the output of a summary table for selected nodes showing flux and the concentration of the flux quantity for each time step. The model is written in a modular format for ease of modification. The model was verified by comparison of numerical and analytical solutions for cases of molecular diffusion, two-dimensional heat transfer, and axisymmetric radial saturated fluid flow. Application of the model to a hypothetical two-dimensional field situation of gas diffusion in the unsaturated zone is demonstrated. The input and output files are included as a check on program installation. The definition of variables, input requirements, flow chart, and program listing are included in the attachments. (USGS)
Nosql for Storage and Retrieval of Large LIDAR Data Collections
NASA Astrophysics Data System (ADS)
Boehm, J.; Liu, K.
2015-08-01
Developments in LiDAR technology over the past decades have made LiDAR to become a mature and widely accepted source of geospatial information. This in turn has led to an enormous growth in data volume. The central idea for a file-centric storage of LiDAR point clouds is the observation that large collections of LiDAR data are typically delivered as large collections of files, rather than single files of terabyte size. This split of the dataset, commonly referred to as tiling, was usually done to accommodate a specific processing pipeline. It makes therefore sense to preserve this split. A document oriented NoSQL database can easily emulate this data partitioning, by representing each tile (file) in a separate document. The document stores the metadata of the tile. The actual files are stored in a distributed file system emulated by the NoSQL database. We demonstrate the use of MongoDB a highly scalable document oriented NoSQL database for storing large LiDAR files. MongoDB like any NoSQL database allows for queries on the attributes of the document. As a specialty MongoDB also allows spatial queries. Hence we can perform spatial queries on the bounding boxes of the LiDAR tiles. Inserting and retrieving files on a cloud-based database is compared to native file system and cloud storage transfer speed.
Khemani, S; Lingam, R K; Kalan, A; Singh, A
2011-08-01
To evaluate the diagnostic performance of half-Fourier-acquisition single-shot turbo-spin-echo (HASTE) diffusion-weighted magnetic resonance imaging in the detection, localisation and prediction of extent of cholesteatoma following canal wall up mastoid surgery. Prospective blinded observational study. University affiliated teaching hospital. Forty-eight patients undergoing second-look surgery after previous canal wall up mastoid surgery for primary acquired cholesteatoma. All patients underwent non-echo planar HASTE diffusion-weighted imaging prior to being offered 'second-look' surgery. Radiological findings were correlated with second-look intra-operative findings in 38 cases with regard to presence, location and maximum dimensions of cholesteatoma. Half-Fourier-acquisition single-shot turbo-spin-echo diffusion-weighted imaging accurately predicted the presence of cholesteatoma in 23 of 28 cases, and it correctly excluded in nine of 10 cases. Five false negatives were caused by keratin pearls of <2 mm and in one case 5 mm. Overall sensitivity and specificity for detection of cholesteatoma were 82% (95% confidence interval [CI] 62-94%) and 90% (CI 55-100%), respectively. Positive predictive value and negative predictive value were 96% (CI 79-100%) and 64% (CI 35-87%), respectively. Overall accuracy for detection of cholesteatoma was 84% (CI 69-94%). Half-Fourier-acquisition single-shot turbo-spin-echo diffusion-weighted imaging has good performance in localising cholesteatoma to a number of anatomical sub-sites within the middle ear and mastoid (sensitivity ranging from 75% to 88% and specificity ranging from 94% to 100%). There was no statistically significant difference in the size of cholesteatoma detected radiologically and that found during surgery (paired t-test, P = 0.16). However, analysis of size agreement suggests possible radiological underestimation of size when using HASTE diffusion-weighted imaging (mean difference -0.6 mm, CI -5.3 to 4.6 mm). Half-Fourier-acquisition single-shot turbo-spin-echo diffusion-weighted imaging performs reasonably well in predicting the presence and location of postoperative cholesteatoma but may miss small foci of disease and may underestimate the true size of cholesteatoma. © 2011 Blackwell Publishing Ltd.
Kuthan, Hartmut
2003-03-07
The location of distinct sites is mandatory for many cellular processes. In the subcompartments of the cell nucleus, only very small numbers of diffusing macromolecules and specific target sites of some types may be present. In this case, we are faced with the Brownian movement of individual macromolecules and their "random search" for single/few specific target sites, rather than bulk-averaged diffusion and multiple sites. In this article, I consider the location of a distant central target site, e.g. a globular protein, by individual macromolecules executing unbiased (i.e. drift-free) random walks in a spherical compartment. For this walk-and-capture model, the closed-form analytic solution of the first passage time probability density function (p.d.f.) has been obtained as well as the first and second moment. In the limit of a large ratio of the radii of the spherical diffusion space and central target, well-known relations for the variance and the first two moments for the exponential p.d.f. were found to hold with high accuracy. These calculations reinforce earlier numerical results and Monte Carlo simulations. A major implication derivable from the model is that non-directed random movement is an effective means for locating single sites in submicron-sized compartments, even when the diffusion coefficients are comparatively small and the diffusing species are present in one copy only. These theoretical conclusions are underscored numerically for effective diffusion constants ranging from 0.5 to 10.0 microm(2) s(-1), which have been reported for a couple of nuclear proteins in their physiological environment. Spherical compartments of submicron size are, for example, the Cajal bodies (size: 0.1-1.0 microm), which are present in 1-5 copies in the cell nucleus. Within a small Cajal body of radius 0.1 microm a single diffusing protein molecule (with D=0.5 microm(2) s(-1)) would encounter a medium-sized protein of radius 2.5 nm within 1 s with a probability near certainty (p=0.98).
77 FR 28391 - Announcement of Requirements and Registration for “Ocular Imaging Challenge”
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-14
..., color, zoom, pan) Integrate with existing EHRs (e.g. ``single sign-on'') Where applicable, leverage and... existing office hardware platforms, and to integrate with existing EHR systems (e.g. ``single sign-on... on the acquisition devices in proprietary databases and file formats, and therefore have limited...
Thermodynamics of confined gallium clusters.
Chandrachud, Prachi
2015-11-11
We report the results of ab initio molecular dynamics simulations of Ga13 and Ga17 clusters confined inside carbon nanotubes with different diameters. The cluster-tube interaction is simulated by the Lennard-Jones (LJ) potential. We discuss the geometries, the nature of the bonding and the thermodynamics under confinement. The geometries as well as the isomer spectra of both the clusters are significantly affected. The degree of confinement decides the dimensionality of the clusters. We observe that a number of low-energy isomers appear under moderate confinement while some isomers seen in the free space disappear. Our finite-temperature simulations bring out interesting aspects, namely that the heat capacity curve is flat, even though the ground state is symmetric. Such a flat nature indicates that the phase change is continuous. This effect is due to the restricted phase space available to the system. These observations are supported by the mean square displacement of individual atoms, which are significantly smaller than in free space. The nature of the bonding is found to be approximately jellium-like. Finally we note the relevance of the work to the problem of single file diffusion for the case of the highest confinement.
SPRAYTRAN 1.0 User’s Guide: A GIS-Based Atmospheric Spray Droplet Dispersion Modeling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allwine, K Jerry; Rutz, Frederick C.; Droppo, James G.
SPRAY TRANsport (SPRAYTRAN) is a comprehensive dispersion modeling system that is used to simulate the offsite drift of pesticides from spray applications. SPRAYTRAN functions as a console application within Environmental System Research Institute’s ArcMap Geographic Information System (Version 9.x) and integrates the widely-used, U.S. Environmental Protection Agency (EPA)-approved CALifornia PUFF (CALPUFF) dispersion model and model components to simulate longer-range transport and diffusion in variable terrain and spatially/temporally varying meteorological (e.g., wind) fields. Area sources, which are used to define spray blocks in SPRAYTRAN, are initialized using output files generated from a separate aerial-spray-application model called AGDISP (AGricultural DISPersal). The AGDISPmore » model is used for estimating the amount of pesticide deposited to the spray block based on spraying characteristics (e.g., pesticide type, spray nozzles, and aircraft type) and then simulating the near-field (less than 300-m) drift from a single pesticide application. The fraction of pesticide remaining airborne from the AGDISP near-field simulation is then used by SPRAYTRAN for simulating longer-range (greater than 300 m) drift and deposition of the pesticide.« less
Akbulut, Makbule Bilge; Akman, Melek; Terlemez, Arslan; Magat, Guldane; Sener, Sevgi; Shetty, Heeresh
2016-01-01
The aim of this study was to evaluate the efficacy of Twisted File (TF) Adaptive, Reciproc, and ProTaper Universal Retreatment (UR) System instruments for removing root-canal-filling. Sixty single rooted teeth were decoronated, instrumented and obturated. Preoperative CBCT scans were taken and the teeth were retreated with TF Adaptive, Reciproc, ProTaper UR, or hand files (n=15). Then, the teeth were rescanned, and the percentage volume of the residual root-canal-filling material was established. The total time for retreatment was recorded, and the data was statistically analyzed. The statistical ranking of the residual filling material volume was as follows: hand file=TF Adaptive>ProTaper UR=Reciproc. The ProTaper UR and Reciproc systems required shorter periods of time for retreatment. Root canal filling was more efficiently removed by using Reciproc and ProTaper UR instruments than TF Adaptive instruments and hand files. The TF Adaptive system was advantageous over hand files with regard to operating time.
Clustering and optimal arrangement of enzymes in reaction-diffusion systems.
Buchner, Alexander; Tostevin, Filipe; Gerland, Ulrich
2013-05-17
Enzymes within biochemical pathways are often colocalized, yet the consequences of specific spatial enzyme arrangements remain poorly understood. We study the impact of enzyme arrangement on reaction efficiency within a reaction-diffusion model. The optimal arrangement transitions from a cluster to a distributed profile as a single parameter, which controls the probability of reaction versus diffusive loss of pathway intermediates, is varied. We introduce the concept of enzyme exposure to explain how this transition arises from the stochastic nature of molecular reactions and diffusion.
Colaert, Niklaas; Barsnes, Harald; Vaudel, Marc; Helsens, Kenny; Timmerman, Evy; Sickmann, Albert; Gevaert, Kris; Martens, Lennart
2011-08-05
The Thermo Proteome Discoverer program integrates both peptide identification and quantification into a single workflow for peptide-centric proteomics. Furthermore, its close integration with Thermo mass spectrometers has made it increasingly popular in the field. Here, we present a Java library to parse the msf files that constitute the output of Proteome Discoverer. The parser is also implemented as a graphical user interface allowing convenient access to the information found in the msf files, and in Rover, a program to analyze and validate quantitative proteomics information. All code, binaries, and documentation is freely available at http://thermo-msf-parser.googlecode.com.
Purple L1 Milestone Review Panel GPFS Functionality and Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loewe, W E
2006-12-01
The GPFS deliverable for the Purple system requires the functionality and performance necessary for ASC I/O needs. The functionality includes POSIX and MPIIO compatibility, and multi-TB file capability across the entire machine. The bandwidth performance required is 122.15 GB/s, as necessary for productive and defensive I/O requirements, and the metadata performance requirement is 5,000 file stats per second. To determine success for this deliverable, several tools are employed. For functionality testing of POSIX, 10TB-files, and high-node-count capability, the parallel file system bandwidth performance test IOR is used. IOR is an MPI-coordinated application that can write and then read to amore » single shared file or to an individual file per process and check the data integrity of the file(s). The MPIIO functionality is tested with the MPIIO test suite from the MPICH library. Bandwidth performance is tested using IOR for the required 122.15 GB/s sustained write. All IOR tests are performanced with data checking enabled. Metadata performance is tested after ''aging'' the file system with 80% data block usage and 20% inode usage. The fdtree metadata test is expected to create/remove a large directory/file structure in under 20 minutes time, akin to interactive metadata usage. Multiple (10) instances of ''ls -lR'', each performing over 100K stats, are run concurrently in different large directories to demonstrate 5,000 stats/sec.« less
SnopViz, an interactive snow profile visualization tool
NASA Astrophysics Data System (ADS)
Fierz, Charles; Egger, Thomas; gerber, Matthias; Bavay, Mathias; Techel, Frank
2016-04-01
SnopViz is a visualization tool for both simulation outputs of the snow-cover model SNOWPACK and observed snow profiles. It has been designed to fulfil the needs of operational services (Swiss Avalanche Warning Service, Avalanche Canada) as well as offer the flexibility required to satisfy the specific needs of researchers. This JavaScript application runs on any modern browser and does not require an active Internet connection. The open source code is available for download from models.slf.ch where examples can also be run. Both the SnopViz library and the SnopViz User Interface will become a full replacement of the current research visualization tool SN_GUI for SNOWPACK. The SnopViz library is a stand-alone application that parses the provided input files, for example, a single snow profile (CAAML file format) or multiple snow profiles as output by SNOWPACK (PRO file format). A plugin architecture allows for handling JSON objects (JavaScript Object Notation) as well and plugins for other file formats may be added easily. The outputs are provided either as vector graphics (SVG) or JSON objects. The SnopViz User Interface (UI) is a browser based stand-alone interface. It runs in every modern browser, including IE, and allows user interaction with the graphs. SVG, the XML based standard for vector graphics, was chosen because of its easy interaction with JS and a good software support (Adobe Illustrator, Inkscape) to manipulate graphs outside SnopViz for publication purposes. SnopViz provides new visualization for SNOWPACK timeline output as well as time series input and output. The actual output format for SNOWPACK timelines was retained while time series are read from SMET files, a file format used in conjunction with the open source data handling code MeteoIO. Finally, SnopViz is able to render single snow profiles, either observed or modelled, that are provided as CAAML-file. This file format (caaml.org/Schemas/V5.0/Profiles/SnowProfileIACS) is an international standard to exchange snow profile data. It is supported by the International Association of Cryospheric Sciences (IACS) and was developed in collaboration with practitioners (Avalanche Canada).
NASA Astrophysics Data System (ADS)
Cichy, S. B.; Till, C. B.; Roggensack, K.; Hervig, R. L.; Clarke, A. B.
2015-12-01
The aim of this work is to extend the existing database of experimentally-determined lithium diffusion coefficients to more natural cases of water-bearing melts at the pressure-temperature range of the upper crust. In particular, we are investigating Li intra-melt and melt-vapor diffusion and Li isotope fractionation, which have the potential to record short-lived magmatic processes (seconds to hours) in the shallow crust, especially during decompression-induced magma degassing. Hydrated intra-melt Li diffusion-couple experiments on Los Posos rhyolite glass [1] were performed in a piston cylinder at 300 MPa and 1050 °C. The polished interfaces between the diffusion couples were marked by addition of Pt powder for post-run detection. Secondary ion mass spectrometry analyses indicate that lithium diffuses extremely fast in the presence of water. Re-equilibration of a hydrated ~2.5 mm long diffusion-couple experiment was observed during the heating period from room temperature to the final temperature of 1050 °C at a rate of ~32 °C/min. Fractionation of ~40‰ δ7Li was also detected in this zero-time experiment. The 0.5h and 3h runs show progressively higher degrees of re-equilibration, while the isotope fractionation becomes imperceptible. Li contamination was observed in some experiments when flakes filed off Pt tubing were used to mark the diffusion couple boundary, while the use of high purity Pt powder produced better results and allowed easier detection of the diffusion-couple boundary. The preliminary lithium isotope fractionation results (δ7Li vs. distance) support findings from [2] that 6Li diffuses substantially faster than 7Li. Further experimental sets are in progress, including lower run temperatures (e.g. 900 °C), faster heating procedure (~100 °C/min), shorter run durations and the extension to mafic systems. [1] Stanton (1990) Ph.D. thesis, Arizona State Univ., [2] Richter et al. (2003) GCA 67, 3905-3923.
Observations of Ag diffusion in ion implanted SiC
Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; ...
2015-03-17
The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated,more » including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.« less
NASA Astrophysics Data System (ADS)
Tang, Liangliang; Xu, Chang; Liu, Zhuming
2017-01-01
Zn diffusion in III-V compound semiconductorsare commonly processed under group V-atoms rich conditions because the vapor pressure of group V-atoms is relatively high. In this paper, we found that group V-atoms in the diffusion sources would not change the shaped of Zn profiles, while the Zn diffusion would change dramatically undergroup III-atoms rich conditions. The Zn diffusions were investigated in typical III-V semiconductors: GaAs, GaSb and InAs. We found that under group V-atoms rich or pure Zn conditions, the double-hump Zn profiles would be formed in all materials except InAs. While under group III-atoms rich conditions, single-hump Zn profiles would be formed in all materials. Detailed diffusion models were established to explain the Zn diffusion process; the surface self-diffusion of matrix atoms is the origin of the abnormal Zn diffusion phenomenon.
Karampinos, Dimitrios C; Banerjee, Suchandrima; King, Kevin F; Link, Thomas M; Majumdar, Sharmila
2012-05-01
Previous studies have shown that skeletal muscle diffusion tensor imaging (DTI) can noninvasively probe changes in the muscle fiber architecture and microstructure in diseased and damaged muscles. However, DTI fiber reconstruction in small muscles and in muscle regions close to aponeuroses and tendons remains challenging because of partial volume effects. Increasing the spatial resolution of skeletal muscle single-shot diffusion-weighted echo planar imaging (DW-EPI) can be hindered by the inherently low signal-to-noise ratio (SNR) of muscle DW-EPI because of the short muscle T(2) and the high sensitivity of single-shot EPI to off-resonance effects and T(2)* blurring. In this article, eddy current-compensated diffusion-weighted stimulated-echo preparation is combined with sensitivity encoding (SENSE) to maintain good SNR properties and to reduce the sensitivity to distortions and T(2)* blurring in high-resolution skeletal muscle single-shot DW-EPI. An analytical framework is developed to optimize the reduction factor and diffusion weighting time to achieve maximum SNR. Arguments for the selection of the experimental parameters are then presented considering the compromise between SNR, B(0)-induced distortions, T(2)* blurring effects and tissue incoherent motion effects. On the basis of the selected parameters in a high-resolution skeletal muscle single-shot DW-EPI protocol, imaging protocols at lower acquisition matrix sizes are defined with matched bandwidth in the phase-encoding direction and SNR. In vivo results show that high-resolution skeletal muscle DTI with minimized sensitivity to geometric distortions and T(2)* blurring is feasible using the proposed methodology. In particular, a significant benefit is demonstrated from a reduction in partial volume effects for resolving multi-pennate muscles and muscles with small cross-sections in calf muscle DTI. Copyright © 2011 John Wiley & Sons, Ltd.
Colegrove, Eric; Harvey, Steven P.; Yang, Ji -Hui; ...
2017-02-08
Group V dopants may be used for next-generation high-voltage cadmium telluride (CdTe) solar photovoltaics, but fundamental defect energetics and kinetics need to be understood. Here, antimony (Sb) diffusion is studied in single-crystal and polycrystalline CdTe under Cd-rich conditions. Diffusion profiles are determined by dynamic secondary ion mass spectroscopy and analyzed with analytical bulk and grain-boundary diffusion models. Slow bulk and fast grain-boundary diffusion are found. Density functional theory is used to understand formation energy and mechanisms. Lastly, the theory and experimental results create new understanding of group V defect kinetics in CdTe.
Single-Molecule Resolution of Antimicrobial Peptide Interactions with Supported Lipid A Bilayers.
Nelson, Nathaniel; Schwartz, Daniel K
2018-06-05
The molecular interactions between antimicrobial peptides (AMPs) and lipid A-containing supported lipid bilayers were probed using single-molecule total internal reflection fluorescence microscopy. Hybrid supported lipid bilayers with lipid A outer leaflets and phospholipid (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)) inner leaflets were prepared and characterized, and the spatiotemporal trajectories of individual fluorescently labeled LL37 and Melittin AMPs were determined as they interacted with the bilayer surfaces comprising either monophosphoryl or diphosphoryl lipid A (from Escherichia coli) to determine the impact of electrostatic interactions. Large numbers of trajectories were obtained and analyzed to obtain the distributions of surface residence times and the statistics of the spatial trajectories. Interestingly, the AMP species were sensitive to subtle differences in the charge of the lipid, with both peptides diffusing more slowly and residing longer on the diphosphoryl lipid A. Furthermore, the single-molecule dynamics indicated a qualitative difference between the behavior of AMPs on hybrid Lipid A bilayers and on those composed entirely of DOPE. Whereas AMPs interacting with a DOPE bilayer exhibited two-dimensional Brownian diffusion with a diffusion coefficient of ∼1.7 μm 2 /s, AMPs adsorbed to the lipid A surface exhibited much slower apparent diffusion (on the order of ∼0.1 μm 2 /s) and executed intermittent trajectories that alternated between two-dimensional Brownian diffusion and desorption-mediated three-dimensional flights. Overall, these findings suggested that bilayers with lipid A in the outer leaflet, as it is in bacterial outer membranes, are valuable model systems for the study of the initial stage of AMP-bacterium interactions. Furthermore, single-molecule dynamics was sensitive to subtle differences in electrostatic interactions between cationic AMPs and monovalent or divalent anionic lipid A moieties. Copyright © 2018 Biophysical Society. All rights reserved.
Impact of homogeneous strain on uranium vacancy diffusion in uranium dioxide
Goyal, Anuj; Phillpot, Simon R.; Subramanian, Gopinath; ...
2015-03-03
We present a detailed mechanism of, and the effect of homogeneous strains on, the migration of uranium vacancies in UO 2. Vacancy migration pathways and barriers are identified using density functional theory and the effect of uniform strain fields are accounted for using the dipole tensor approach. We report complex migration pathways and noncubic symmetry associated with the uranium vacancy in UO 2 and show that these complexities need to be carefully accounted for to predict the correct diffusion behavior of uranium vacancies. We show that under homogeneous strain fields, only the dipole tensor of the saddle with respect tomore » the minimum is required to correctly predict the change in the energy barrier between the strained and the unstrained case. Diffusivities are computed using kinetic Monte Carlo simulations for both neutral and fully charged state of uranium single and divacancies. We calculate the effect of strain on migration barriers in the temperature range 800–1800 K for both vacancy types. Homogeneous strains as small as 2% have a considerable effect on diffusivity of both single and divacancies of uranium, with the effect of strain being more pronounced for single vacancies than divacancies. In contrast, the response of a given defect to strain is less sensitive to changes in the charge state of the defect. Further, strain leads to anisotropies in the mobility of the vacancy and the degree of anisotropy is very sensitive to the nature of the applied strain field for strain of equal magnitude. Our results indicate that the influence of strain on vacancy diffusivity will be significantly greater when single vacancies dominate the defect structure, such as sintering, while the effects will be much less substantial under irradiation conditions where divacancies dominate.« less
High density diffusion-free nanowell arrays.
Takulapalli, Bharath R; Qiu, Ji; Magee, D Mitchell; Kahn, Peter; Brunner, Al; Barker, Kristi; Means, Steven; Miersch, Shane; Bian, Xiaofang; Mendoza, Alex; Festa, Fernanda; Syal, Karan; Park, Jin G; LaBaer, Joshua; Wiktor, Peter
2012-08-03
Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA) is a robust in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced interspot spacing. To address this limitation, we have developed an innovative platform using photolithographically etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8000 nanowell arrays. This is the highest density of individual proteins in nanovessels demonstrated on a single slide. We further present proof of principle results on ultrahigh density protein arrays capable of up to 24000 nanowells on a single slide.
Continuous-tone applications in digital hard-copy output devices
NASA Astrophysics Data System (ADS)
Saunders, Jeffrey C.
1990-11-01
Dye diffusion technology has made a recent entry into the hardcopy printer arena making it now possible to achieve near-photographic quality images from digital raster image data. Whereas the majority of low cost printers utilizing ink-jet, thermal wax, or dotmatrix technologies advertise high resolution printheads, the restrictions which dithering algorithms apply to these inherently binary printing systems force them to sacrifice spatial resolution capability for tone scale reproduction. Dye diffusion technology allows a fully continuous range of density at each pixel location thus preserving the full spatial resolution capability of the printhead; spatial resolution is not sacrificed for tone scale. This results in images whose quality is far superior to the ink-jet or wax-transfer products; image quality so high in fact, to the unaided eye, dye diffusion images are indistinguishable from their silver-halide counterparts. Eastman Kodak Co. offers a highly refined application of dye diffusion technology in the Kodak XL 7700 Digital Continuous Tone Printer and Kodak EKTATHERM media products. The XL . 7700 Printer represents a serious alternative to expensive laser-based film recorders for applications which require high quality image output from digital data files. This paper presents an explanation of dye diffusion printing, what distinguishes it from other technologies, sensitometric control and image quality parameters, and applications within the industry, particularly that of Airborne Reconnaissance and Remote Sensing.
Han, Xu; Suo, Shiteng; Sun, Yawen; Zu, Jinyan; Qu, Jianxun; Zhou, Yan; Chen, Zengai; Xu, Jianrong
2017-03-01
To compare four methods of region-of-interest (ROI) placement for apparent diffusion coefficient (ADC) measurements in distinguishing low-grade gliomas (LGGs) from high-grade gliomas (HGGs). Two independent readers measured ADC parameters using four ROI methods (single-slice [single-round, five-round and freehand] and whole-volume) on 43 patients (20 LGGs, 23 HGGs) who had undergone 3.0 Tesla diffusion-weighted imaging and time required for each method of ADC measurements was recorded. Intraclass correlation coefficients (ICCs) were used to assess interobserver variability of ADC measurements. Mean and minimum ADC values and time required were compared using paired Student's t-tests. All ADC parameters (mean/minimum ADC values of three single-slice methods, mean/minimum/standard deviation/skewness/kurtosis/the10 th and 25 th percentiles/median/maximum of whole-volume method) were correlated with tumor grade (low versus high) by unpaired Student's t-tests. Discriminative ability was determined by receiver operating characteristic curves. All ADC measurements except minimum, skewness, and kurtosis of whole-volume ROI differed significantly between LGGs and HGGs (all P < 0.05). Mean ADC value of single-round ROI had the highest effect size (0.72) and the greatest areas under the curve (0.872). Three single-slice methods had good to excellent ICCs (0.67-0.89) and the whole-volume method fair to excellent ICCs (0.32-0.96). Minimum ADC values differed significantly between whole-volume and single-round ROI (P = 0.003) and, between whole-volume and five-round ROI (P = 0.001). The whole-volume method took significantly longer than all single-slice methods (all P < 0.001). ADC measurements are influenced by ROI determination methods. Whole-volume histogram analysis did not yield better results than single-slice methods and took longer. Mean ADC value derived from single-round ROI is the most optimal parameter for differentiating LGGs from HGGs. 3 J. Magn. Reson. Imaging 2017;45:722-730. © 2016 International Society for Magnetic Resonance in Medicine.
Decoding the Regulatory Network for Blood Development from Single-Cell Gene Expression Measurements
Haghverdi, Laleh; Lilly, Andrew J.; Tanaka, Yosuke; Wilkinson, Adam C.; Buettner, Florian; Macaulay, Iain C.; Jawaid, Wajid; Diamanti, Evangelia; Nishikawa, Shin-Ichi; Piterman, Nir; Kouskoff, Valerie; Theis, Fabian J.; Fisher, Jasmin; Göttgens, Berthold
2015-01-01
Here we report the use of diffusion maps and network synthesis from state transition graphs to better understand developmental pathways from single cell gene expression profiling. We map the progression of mesoderm towards blood in the mouse by single-cell expression analysis of 3,934 cells, capturing cells with blood-forming potential at four sequential developmental stages. By adapting the diffusion plot methodology for dimensionality reduction to single-cell data, we reconstruct the developmental journey to blood at single-cell resolution. Using transitions between individual cellular states as input, we develop a single-cell network synthesis toolkit to generate a computationally executable transcriptional regulatory network model that recapitulates blood development. Model predictions were validated by showing that Sox7 inhibits primitive erythropoiesis, and that Sox and Hox factors control early expression of Erg. We therefore demonstrate that single-cell analysis of a developing organ coupled with computational approaches can reveal the transcriptional programs that control organogenesis. PMID:25664528
Giuliani, Valentina; Cocchetti, Roberto; Pagavino, Gabriella
2008-11-01
The aim of this study was to evaluate the efficacy of the ProTaper Universal System rotary retreatment system and of Profile 0.06 and hand instruments (K-file) in the removal of root filling materials. Forty-two extracted single-rooted anterior teeth were selected. The root canals were enlarged with nickel-titanium (NiTi) rotary files, filled with gutta-percha and sealer, and randomly divided into 3 experimental groups. The filling materials were removed with solvent in conjunction with one of the following devices and techniques: the ProTaper Universal System for retreatment, ProFile 0.06, and hand instruments (K-file). The roots were longitudinally sectioned, and the image of the root surface was photographed. The images were captured in JPEG format; the areas of the remaining filling materials and the time required for removing the gutta-percha and sealer were calculated by using the nonparametric one-way Kruskal-Wallis test and Tukey-Kramer tests, respectively. The group that showed better results for removing filling materials was the ProTaper Universal System for retreatment files, whereas the group of ProFile rotary instruments yielded better root canal cleanliness than the hand instruments, even though there was no statistically significant difference. The ProTaper Universal System for retreatment and ProFile rotary instruments worked significantly faster than the K-file. The ProTaper Universal System for retreatment files left cleaner root canal walls than the K-file hand instruments and the ProFile Rotary instruments, although none of the devices used guaranteed complete removal of the filling materials. The rotary NiTi system proved to be faster than hand instruments in removing root filling materials.
Lab Streaming Layer Enabled Myo Data Collection Software User Manual
2017-06-07
time - series data over a local network. LSL handles the networking, time -synchronization, (near-) real- time access as well as, optionally, the... series data collection (e.g., brain activity, heart activity, muscle activity) using the LSL application programming interface (API). Time -synchronized...saved to a single extensible data format (XDF) file. Once the time - series data are collected in a Lab Recorder XDF file, users will be able to query
A Database of Computer Attacks for the Evaluation of Intrusion Detection Systems
1999-06-01
administrator whenever a system binary file (such as the ps, login , or ls program) is modified. Normal users have no legitimate reason to alter these files...development of EMERALD [46], which combines statistical anomaly detection from NIDES with signature verification. Specification-based intrusion detection...the creation of a single host that can act as many hosts. Daemons that provide network services—including telnetd, ftpd, and login — display banners
1993-08-01
on the Lempel - Ziv [44] algo- rithm. Zip is compressing a single 8,017 byte file. " RTLSim An register transfer language simulator for the Message...package. gordoni@cs.adelaide.edu.au, Wynn Vale, 5127, Australia, 1.0 edition, October 1991. [44] Ziv J. and Lempel A. "A universal algorithm for...fixed hardware algorithm . Some data caches allow the program to explicitly allocate cache lines [68]. This allocation is only useful in writing new data
WIS Implementation Study Report. Volume 3. Background Information.
1983-10-01
similar representations so that a single schema interpreter can serve in either environment. Examples of schema intepreters exist in all databases...Unfortunately, programs expect ing ;L VSA M file caninot accept a similar, non-VSAM file instead. In practice, a tile written using any of tire 6 film ...Thomas Kaczmarek USC/Information Sciences Institute 4676 Admiralty Way Marina del Rey, CA 90292 14 September 1983 247 PAiIECDIG PAMI &~A -NOT FILM
Radiology Teacher: a free, Internet-based radiology teaching file server.
Talanow, Roland
2009-12-01
Teaching files are an essential ingredient in residency education. The online program Radiology Teacher was developed to allow the creation of interactive and customized teaching files in real time. Online access makes it available anytime and anywhere, and it is free of charge, user tailored, and easy to use. No programming skills, additional plug-ins, or installations are needed, allowing its use even on protected intranets. Special effects for enhancing the learning experience as well as the linking and the source code are created automatically by the program. It may be used in different modes by individuals and institutions to share cases from multiple authors in a single database. Radiology Teacher is an easy-to-use automatic teaching file program that may enhance users' learning experiences by offering different modes of user-defined presentations.
Frost, Robert; Porter, David A; Miller, Karla L; Jezzard, Peter
2012-08-01
Single-shot echo-planar imaging has been used widely in diffusion magnetic resonance imaging due to the difficulties in correcting motion-induced phase corruption in multishot data. Readout-segmented EPI has addressed the multishot problem by introducing a two-dimensional nonlinear navigator correction with online reacquisition of uncorrectable data to enable acquisition of high-resolution diffusion data with reduced susceptibility artifact and T*(2) blurring. The primary shortcoming of readout-segmented EPI in its current form is its long acquisition time (longer than similar resolution single-shot echo-planar imaging protocols by approximately the number of readout segments), which limits the number of diffusion directions. By omitting readout segments at one side of k-space and using partial Fourier reconstruction, readout-segmented EPI imaging times could be reduced. In this study, the effects of homodyne and projection onto convex sets reconstructions on estimates of the fractional anisotropy, mean diffusivity, and diffusion orientation in fiber tracts and raw T(2)- and trace-weighted signal are compared, along with signal-to-noise ratio results. It is found that projections onto convex sets reconstruction with 3/5 segments in a 2 mm isotropic diffusion tensor image acquisition and 9/13 segments in a 0.9 × 0.9 × 4.0 mm(3) diffusion-weighted image acquisition provide good fidelity relative to the full k-space parameters. This allows application of readout-segmented EPI to tractography studies, and clinical stroke and oncology protocols. Copyright © 2011 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, S.F.; Splendiani, A.; Freitas dos Santos, L.M.
A novel technique has been used to determine the effective diffusion coefficients for 1,1,2-trichloroethane (TCE), a nonreacting tracer, in biofilms growing on the external surface of a silicone rubber membrane tube during degradation of 1,2-dichloroethane (DCE) by Xanthobacter autotrophicus GJ10 and monochlorobenzene (MCB) by Pseudomonas JS150. Experiments were carried out in a single tube extractive membrane bioreactor (STEMB), whose configuration makes it possible to measure the transmembrane flux of substrates. A video imaging technique (VIT) was employed for in situ biofilm thickness measurement and recording. Diffusion coefficients of TCE in the biofilms and TCE mass transfer coefficients in the liquidmore » films adjacent to the biofilms were determined simultaneously using a resistances-in-series diffusion model. It was found that the flux and overall mass transfer coefficient of TCE decrease with increasing biofilm thickness, showing the importance of biofilm diffusion on the mass transfer process. Similar fluxes were observed for the nonreacting tracer (TCE) and the reactive substrates (MCB or DCE), suggesting that membrane-attached biofilm systems can be rate controlled primarily by substrate diffusion. The TCE diffusion coefficient in the JS150 biofilm appeared to be dependent on biofilm thickness, decreasing markedly for biofilm thicknesses of >1 mm. The values of the TCE diffusion coefficients in the JS150 biofilms <1-mm thick are approximately twice those in water and fall to around 30% of the water value for biofilms >1-mm thick.« less
Sharma, Dharmendar Kumar; Hirata, Shuzo; Bujak, Lukasz; Biju, Vasudevanpillai; Kameyama, Tatsuya; Kishi, Marino; Torimoto, Tsukasa; Vacha, Martin
2016-07-14
Ternary I-III-VI semiconductor nanocrystals have been explored as non-toxic alternatives to II-VI semiconductors for optoelectronic and sensing applications, but large photoluminescence spectral width and moderate brightness restrict their practical use. Here, using single-particle photoluminescence spectroscopy on nanocrystals of (AgIn)xZn2(1-x)S2 we show that the photoluminescence band is inhomogeneously broadened and that size distribution is the dominant factor in the broadening. The residual homogeneous linewidth of individual nanocrystals reaches up to 75% of the ensemble spectral width. Single nanocrystals undergo spectral diffusion which also contributes to the inhomogeneous band. Excitation with two lasers with energies above and below the bandgap reveals coexistence of two emitting donor states within one particle. Spectral diffusion in such particles is due to temporal activation and deactivation of one such state. Filling of a trap state with a lower-energy laser enables optical modulation of photoluminescence intermittency (blinking) and leads to an almost two-fold increase in brightness.
Robust model-based analysis of single-particle tracking experiments with Spot-On
Grimm, Jonathan B; Lavis, Luke D
2018-01-01
Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce ‘Spot-On’, an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. PMID:29300163
Robust model-based analysis of single-particle tracking experiments with Spot-On.
Hansen, Anders S; Woringer, Maxime; Grimm, Jonathan B; Lavis, Luke D; Tjian, Robert; Darzacq, Xavier
2018-01-04
Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce 'Spot-On', an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. © 2018, Hansen et al.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... Change Relating to the Equity Options Fees and Singly Listed Option Fee March 28, 2012. Pursuant to... entitled ``Equity Options Fees'' to assess Professionals an Options Surcharge in certain Multiply Listed Options; (ii) amend Section III \\4\\ of the Fee Schedule entitled ``Singly Listed Options'' to specify...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-10
... highly correlated relationship between long-short positions in CDS Indices and the underlying CDS Single... currently clear CDS Single Names for customer-related transactions. Accordingly, currently, there are no customer-related positions that would qualify for portfolio margining treatment. ICC does not believe that...
Microfabricated particle focusing device
Ravula, Surendra K.; Arrington, Christian L.; Sigman, Jennifer K.; Branch, Darren W.; Brener, Igal; Clem, Paul G.; James, Conrad D.; Hill, Martyn; Boltryk, Rosemary June
2013-04-23
A microfabricated particle focusing device comprises an acoustic portion to preconcentrate particles over large spatial dimensions into particle streams and a dielectrophoretic portion for finer particle focusing into single-file columns. The device can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.
ABM Drag_Pass Report Generator
NASA Technical Reports Server (NTRS)
Fisher, Forest; Gladden, Roy; Khanampornpan, Teerapat
2008-01-01
dragREPORT software was developed in parallel with abmREPORT, which is described in the preceding article. Both programs were built on the capabilities created during that process. This tool generates a drag_pass report that summarizes vital information from the MRO aerobreaking drag_pass build process to facilitate both sequence reviews and provide a high-level summarization of the sequence for mission management. The script extracts information from the ENV, SSF, FRF, SCMFmax, and OPTG files, presenting them in a single, easy-to-check report providing the majority of parameters needed for cross check and verification as part of the sequence review process. Prior to dragReport, all the needed information was spread across a number of different files, each in a different format. This software is a Perl script that extracts vital summarization information and build-process details from a number of source files into a single, concise report format used to aid the MPST sequence review process and to provide a high-level summarization of the sequence for mission management reference. This software could be adapted for future aerobraking missions to provide similar reports, review and summarization information.
Planar-integrated single-crystalline perovskite photodetectors
Saidaminov, Makhsud I.; Adinolfi, Valerio; Comin, Riccardo; Abdelhady, Ahmed L.; Peng, Wei; Dursun, Ibrahim; Yuan, Mingjian; Hoogland, Sjoerd; Sargent, Edward H.; Bakr, Osman M.
2015-01-01
Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 104 electrons per photon) and high gain-bandwidth product (above 108 Hz) relative to other perovskite-based optical sensors. PMID:26548941
NASA Astrophysics Data System (ADS)
Sieben, Anne; Kaminski, Tim; Kubitscheck, Ulrich; Häberlein, Hanns
2011-02-01
G-protein-coupled receptors are important targets for various drugs. After signal transduction, regulatory processes, such as receptor desensitization and internalization, change the lateral receptor mobility. In order to study the lateral diffusion of β2-adrenergic receptors (β2AR) complexed with fluorescently labeled noradrenaline (Alexa-NA) in plasma membranes of A549 cells, trajectories of single receptor-ligand complexes were monitored using single-particle tracking. We found that a fraction of 18% of all β2ARs are constitutively immobile. About 2/3 of the β2ARs moved with a diffusion constant of D2 = 0.03+/-0.001 μm2/s and about 17% were diffusing five-fold faster (D3 = 0.15+/-0.02 μm2/s). The mobile receptors moved within restricted domains and also showed a discontinuous diffusion behavior. Analysis of the trajectory lengths revealed two different binding durations with τ1 = 77+/-1 ms and τ2 = 388+/-11 ms. Agonistic stimulation of the β2AR-Alexa-NA complexes with 1 μM terbutaline caused immobilization of almost 50% of the receptors within 35 min. Simultaneously, the mean area covered by the mobile receptors decreased significantly. Thus, we demonstrated that agonistic stimulation followed by cell regulatory processes results in a change in β2AR mobility suggesting that different receptor dynamics characterize different receptor states.
Single Molecule Fluorescence Measurements of Complex Systems
NASA Astrophysics Data System (ADS)
Sadegh, Sanaz
Single molecule methods are powerful tools for investigating the properties of complex systems that are generally concealed by ensemble measurements. Here we use single molecule fluorescent measurements to study two different complex systems: 1/ƒ noise in quantum dots and diffusion of the membrane proteins in live cells. The power spectrum of quantum dot (QD) fluorescence exhibits 1/ƒ beta noise, related to the intermittency of these nanosystems. As in other systems exhibiting 1/ƒ noise, this power spectrum is not integrable at low frequencies, which appears to imply infinite total power. We report measurements of individual QDs that address this long-standing paradox. We find that the level of 1/ƒbeta noise for QDs decays with the observation time. We show that the traditional description of the power spectrum with a single exponent is incomplete and three additional critical exponents characterize the dependence on experimental time. A broad range of membrane proteins display anomalous diffusion on the cell surface. Different methods provide evidence for obstructed subdiffusion and diffusion on a fractal space, but the underlying structure inducing anomalous diffusion has never been visualized due to experimental challenges. We addressed this problem by imaging the cortical actin at high resolution while simultaneously tracking individual membrane proteins in live mammalian cells. Our data show that actin introduces barriers leading to compartmentalization of the plasma membrane and that membrane proteins are transiently confined within actin fences. Furthermore, superresolution imaging shows that the cortical actin is organized into a self-similar fractal.
Huang, Kuan-Chun; White, Ryan J
2013-08-28
We develop a random walk model to simulate the Brownian motion and the electrochemical response of a single molecule confined to an electrode surface via a flexible molecular tether. We use our simple model, which requires no prior knowledge of the physics of the molecular tether, to predict and better understand the voltammetric response of surface-confined redox molecules when motion of the redox molecule becomes important. The single molecule is confined to a hemispherical volume with a maximum radius determined by the flexible molecular tether (5-20 nm) and is allowed to undergo true three-dimensional diffusion. Distance- and potential-dependent electron transfer probabilities are evaluated throughout the simulations to generate cyclic voltammograms of the model system. We find that at sufficiently slow cyclic voltammetric scan rates the electrochemical reaction behaves like an adsorbed redox molecule with no mass transfer limitation; thus, the peak current is proportional to the scan rate. Conversely, at faster scan rates the diffusional motion of the molecule limits the simulated peak current, which exhibits a linear dependence on the square root of the scan rate. The switch between these two limiting regimes occurs when the diffusion layer thickness, (2Dt)(1/2), is ~10 times the tether length. Finally, we find that our model predicts the voltammetric behavior of a redox-active methylene blue tethered to an electrode surface via short flexible single-stranded, polythymine DNAs, allowing the estimation of diffusion coefficients for the end-tethered molecule.
Pawar, Ajinkya M; Thakur, Bhagyashree; Metzger, Zvi; Kfir, Anda; Pawar, Mansing
2016-01-01
Aim: The current ex vivo study compared the efficacy of removing root fillings using ProTaper retreatment files followed by either WaveOne reciprocating file or the Self-Adjusting File (SAF). Materials and Methods: Forty maxillary canines with single oval root canal were selected and sectioned to obtain 18-mm root segments. The root canals were instrumented with WaveOne primary files, followed by obturation using warm lateral compaction, and the sealer was allowed to fully set. The teeth were then divided into two equal groups (N = 20). Initial removal of the bulk of root filling material was performed with ProTaper retreatment files, followed by either WaveOne files (Group 1) or SAF (Group 2). Endosolv R was used as a gutta-percha softener. Preoperative and postoperative high-resolution cone-beam computed tomography (CBCT) was used to measure the volume of the root filling residue that was left after the procedure. Statistical analysis was performed using t-test. Results: The mean volume of root filling residue in Group 1 was 9.4 (±0.5) mm3, whereas in Group 2 the residue volume was 2.6 (±0.4) mm3, (P < 0.001; t-test). Conclusions: When SAF was used after ProTaper retreatment files, significantly less root filling residue was left in the canals compared to when WaveOne was used. PMID:26957798
Maryam, Ehsani; Farida, Abesi; Farhad, Akbarzade; Soraya, Khafri
2013-11-01
Obtaining the proper working length in endodontic treatment is essential. The aim of this study was to compare the working length (WL) assessment of small diameter K-files using the two different digital imaging methods. The samples for this in-vitro experimental study consisted of 40 extracted single-rooted premolars. After access cavity preparation, the ISO files no. 6, 8, and 10 stainless steel K-files were inserted in the canals in the three different lengths to evaluate the results in a blinded manner: At the level of apical foramen(actual)1 mm short of apical foramen2 mm short of apical foramen A digital caliper was used to measure the length of the files which was considered as the Gold Standard. Five observers (two oral and maxillofacial radiologists and three endodontists) observed the digital radiographs which were obtained using PSP and CCD digital imaging sensors. The collected data were analyzed by SPSS 17 and Repeated Measures Paired T-test. In WL assessment of small diameter K-files, a significant statistical relationship was seen among the observers of two digital imaging techniques (P<0.001). However, no significant difference was observed between the two digital techniques in WL assessment of small diameter K-files (P<0.05). PSP and CCD digital imaging techniques were similar in WL assessment of canals using no. 6, 8, and 10 K-files.
pH-dependence of single-protein adsorption and diffusion at a liquid chromatographic interface.
Kisley, Lydia; Poongavanam, Mohan-Vivekanandan; Kourentzi, Katerina; Willson, Richard C; Landes, Christy F
2016-02-01
pH is a common mobile phase variable used to control protein separations due to the tunable nature of amino acid and adsorbent charge. Like other column variables such as column density and ligand loading density, pH is usually optimized empirically. Single-molecule spectroscopy extracts molecular-scale data to provide a framework for mechanistic optimization of pH. The adsorption and diffusion of a model globular protein, α-lactalbumin, was studied by single-molecule microscopy at a silica-aqueous interface analogous to aqueous normal phase and hydrophilic interaction chromatography and capillary electrophoresis interfaces at varied pH. Electrostatic repulsion resulting in free diffusion was observed at pH above the isoelectric point of the protein. In contrast, at low pH strong adsorption and surface diffusion with either no (D ∼ 0.01 μm(2) /s) or translational (D ∼ 0.3 μm(2) /s) motion was observed where the protein likely interacted with the surface through electrostatic, hydrophobic, and hydrogen bonding forces. The fraction of proteins immobilized could be increased by lowering the pH. These results show that retention of proteins at the silica interface cannot be viewed solely as an adsorption/desorption process and that the type of surface diffusion, which ultimately leads to ensemble chromatographic separations, can be controlled by tuning long-range electrostatic and short-range hydrophobic and hydrogen bonding forces with pH. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Millius, Arthur; Watanabe, Naoki; Weiner, Orion D
2012-03-01
The SCAR/WAVE complex drives lamellipodium formation by enhancing actin nucleation by the Arp2/3 complex. Phosphoinositides and Rac activate the SCAR/WAVE complex, but how SCAR/WAVE and Arp2/3 complexes converge at sites of nucleation is unknown. We analyzed the single-molecule dynamics of WAVE2 and p40 (subunits of the SCAR/WAVE and Arp2/3 complexes, respectively) in XTC cells. We observed lateral diffusion of both proteins and captured the transition of p40 from diffusion to network incorporation. These results suggest that a diffusive 2D search facilitates binding of the Arp2/3 complex to actin filaments necessary for nucleation. After nucleation, the Arp2/3 complex integrates into the actin network and undergoes retrograde flow, which results in its broad distribution throughout the lamellipodium. By contrast, the SCAR/WAVE complex is more restricted to the cell periphery. However, with single-molecule imaging, we also observed WAVE2 molecules undergoing retrograde motion. WAVE2 and p40 have nearly identical speeds, lifetimes and sites of network incorporation. Inhibition of actin retrograde flow does not prevent WAVE2 association and disassociation with the membrane but does inhibit WAVE2 removal from the actin cortex. Our results suggest that membrane binding and diffusion expedites the recruitment of nucleation factors to a nucleation site independent of actin assembly, but after network incorporation, ongoing actin polymerization facilitates recycling of SCAR/WAVE and Arp2/3 complexes.
Millius, Arthur; Watanabe, Naoki; Weiner, Orion D.
2012-01-01
The SCAR/WAVE complex drives lamellipodium formation by enhancing actin nucleation by the Arp2/3 complex. Phosphoinositides and Rac activate the SCAR/WAVE complex, but how SCAR/WAVE and Arp2/3 complexes converge at sites of nucleation is unknown. We analyzed the single-molecule dynamics of WAVE2 and p40 (subunits of the SCAR/WAVE and Arp2/3 complexes, respectively) in XTC cells. We observed lateral diffusion of both proteins and captured the transition of p40 from diffusion to network incorporation. These results suggest that a diffusive 2D search facilitates binding of the Arp2/3 complex to actin filaments necessary for nucleation. After nucleation, the Arp2/3 complex integrates into the actin network and undergoes retrograde flow, which results in its broad distribution throughout the lamellipodium. By contrast, the SCAR/WAVE complex is more restricted to the cell periphery. However, with single-molecule imaging, we also observed WAVE2 molecules undergoing retrograde motion. WAVE2 and p40 have nearly identical speeds, lifetimes and sites of network incorporation. Inhibition of actin retrograde flow does not prevent WAVE2 association and disassociation with the membrane but does inhibit WAVE2 removal from the actin cortex. Our results suggest that membrane binding and diffusion expedites the recruitment of nucleation factors to a nucleation site independent of actin assembly, but after network incorporation, ongoing actin polymerization facilitates recycling of SCAR/WAVE and Arp2/3 complexes. PMID:22349699
Experiments with a Supersonic Multi-Channel Radial Diffuser.
1980-09-01
unlimited. 17 . DISTRIBUTION STATEMENT (o the *bsta~c entered nRItok 20, it dffttt Iton, Report) IS. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue o...Improvements 17 VI SIGNIFICANT TEST RESULTS 20 1. General Considerations 20 2. Typical Radial Diffuser Performance 20 3. Flow Stability Experiments 22 VIII...Adjustments Indicated 39 16 Comparison of the Single Channel Performances for Two Extreme Channel Geometries 40 17 Typical Radial Diffuser Performance
Angular intensity and polarization dependence of diffuse transmission through random media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliyahu, D.; Rosenbluh, M.; Feund, I.
1993-03-01
A simple theoretical model involving only a single sample parameter, the depolarization ratio [rho] for linearly polarized normally incident and normally scattered light, is developed to describe the angular intensity and all other polarization-dependent properties of diffuse transmission through multiple-scattering media. Initial experimental results that tend to support the theory are presented. Results for diffuse reflection are also described. 63 refs., 15 figs.
Reference values for pulmonary diffusing capacity for adult native Finns.
Kainu, Annette; Toikka, Jyri; Vanninen, Esko; Timonen, Kirsi L
2017-04-01
Measurement standards for pulmonary diffusing capacity were updated in 2005 by the ATS/ERS Task Force. However, in Finland reference values published in 1982 by Viljanen et al. have been used to date. The main aim of this study was to produce updated reference models for single-breath diffusing capacity for carbon monoxide for Finnish adults. Single-breath diffusing capacity for carbon monoxide was measured in 631 healthy non-smoking volunteers (41.5% male). Reference values for diffusing capacity (DLCO), alveolar volume (VA), diffusing capacity per unit of lung volume (DLCO/VA), and lung volumes were calculated using a linear regression model. Previously used Finnish reference values were found to produce too low predicted values, with mean predicted DLCO 111.0 and 104.4%, and DLCO/VA of 103.5 and 102.7% in males and females, respectively. With the European Coalition for Steel and Coal (ECSC) reference values there was a significant sex difference in DLCO/VA with mean predicted 105.4% in males and 92.8% in females (p < .001). New reference values for DLCO, DLCO/VA, VA, vital capacity (VC), inspiratory vital capacity (IVC), and inspiratory capacity (IC) are suggested for clinical use to replace technically outdated reference values for clinical applications.
CONTRIBUTIONS OF CHEMICAL AND DIFFUSIVE EXCHANGE TO T1ρ DISPERSION
Cobb, Jared Guthrie; Xie, Jingping; Gore, John C.
2012-01-01
Variations in local magnetic susceptibility may induce magnetic field gradients that affect the signals acquired for MR imaging. Under appropriate diffusion conditions, such fields produce effects similar to slow chemical exchange. These effects may also be found in combination with other chemical exchange processes at multiple time scales. We investigate these effects with simulations and measurements to determine their contributions to rotating frame (R1ρ) relaxation in model systems. Simulations of diffusive and chemical exchange effects on R1ρ dispersion were performed using the Bloch equations. Additionally, R1ρ dispersion was measured in suspensions of Sephadex and latex beads with varying spin locking fields at 9.4T. A novel analysis method was used to iteratively fit for apparent chemical and diffusive exchange rates with a model by Chopra et al. Single- and double-inflection points in R1ρ dispersion profiles were observed, respectively, in simulations of slow diffusive exchange alone and when combined with rapid chemical exchange. These simulations were consistent with measurements of R1ρ in latex bead suspensions and small-diameter Sephadex beads that showed single- and double-inflection points, respectively. These observations, along with measurements following changes in temperature and pH, are consistent with the combined effects of slow diffusion and rapid −OH exchange processes. PMID:22791589
Smith, Matthew B; Karatekin, Erdem; Gohlke, Andrea; Mizuno, Hiroaki; Watanabe, Naoki; Vavylonis, Dimitrios
2011-10-05
Analysis of particle trajectories in images obtained by fluorescence microscopy reveals biophysical properties such as diffusion coefficient or rates of association and dissociation. Particle tracking and lifetime measurement is often limited by noise, large mobilities, image inhomogeneities, and path crossings. We present Speckle TrackerJ, a tool that addresses some of these challenges using computer-assisted techniques for finding positions and tracking particles in different situations. A dynamic user interface assists in the creation, editing, and refining of particle tracks. The following are results from application of this program: 1), Tracking single molecule diffusion in simulated images. The shape of the diffusing marker on the image changes from speckle to cloud, depending on the relationship of the diffusion coefficient to the camera exposure time. We use these images to illustrate the range of diffusion coefficients that can be measured. 2), We used the program to measure the diffusion coefficient of capping proteins in the lamellipodium. We found values ∼0.5 μm(2)/s, suggesting capping protein association with protein complexes or the membrane. 3), We demonstrate efficient measuring of appearance and disappearance of EGFP-actin speckles within the lamellipodium of motile cells that indicate actin monomer incorporation into the actin filament network. 4), We marked appearance and disappearance events of fluorescently labeled vesicles to supported lipid bilayers and tracked single lipids from the fused vesicle on the bilayer. This is the first time, to our knowledge, that vesicle fusion has been detected with single molecule sensitivity and the program allowed us to perform a quantitative analysis. 5), By discriminating between undocking and fusion events, dwell times for vesicle fusion after vesicle docking to membranes can be measured. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Ellington, Benjamin M; Schmit, Brian D; Gourab, Krishnaj; Sieber-Blum, Maya; Hu, Yao F; Schmainda, Kathleen M
2009-01-01
Diffusion weighted magnetic resonance imaging (DWI) is a powerful tool for evaluation of microstructural anomalies in numerous central nervous system pathologies. Diffusion tensor imaging (DTI) allows for the magnitude and direction of water self diffusion to be estimated by sampling the apparent diffusion coefficient (ADC) in various directions. Clinical DWI and DTI performed at a single level of diffusion weighting, however, does not allow for multiple diffusion compartments to be elicited. Furthermore, assumptions made regarding the precise number of diffusion compartments intrinsic to the tissue of interest have resulted in a lack of consensus between investigations. To overcome these challenges, a stretched-exponential model of diffusion was applied to examine the diffusion coefficient and "heterogeneity index" within highly compartmentalized brain tumors. The purpose of the current study is to expand on the stretched-exponential model of diffusion to include directionality of both diffusion heterogeneity and apparent diffusion coefficient. This study develops the mathematics of this new technique along with an initial application in quantifying spinal cord regeneration following acute injection of epidermal neural crest stem cell (EPI-NCSC) grafts.
NASA Astrophysics Data System (ADS)
Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.
1998-12-01
We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.
NASA Astrophysics Data System (ADS)
Wang, Huan-Hua; Shi, Yi-Jian; William, Chu; Yigal, Blum
2008-01-01
Different from usual glancing-angle deposition where low surface diffusion is necessary to form nanorods, strong surface diffusion mediated glancing-angle deposition is exemplified by growing tin nanorod films on both silicon and glass substrates simultaneously via thermal evaporation. During growth, the nanorods were simultaneously baked by the high-temperature evaporator, and therefore re-crystallized into single crystals in consequence of strong surface diffusion. The monocrystalline tin nanorods have a preferred orientation perpendicular to the substrate surface, which is quite different from the usual uniformly oblique nanorods without recrystallization.
Priya, N Tulasi; Chandrasekhar, Veeramachaneni; Anita, S; Tummala, Muralidhar; Raj, T B Phanindhar; Badami, Vijetha; Kumar, Pradeep; Soujanya, E
2014-12-01
The purpose of this study was to compare the incidence of dentinal micro cracks after instrumentation with various types of NiTi files in rotary and reciprocating motion. One hundred human extracted mandibular central incisors were taken and divided into 10 groups (n=10 teeth per group). Group 1- No preparation, Group 2 - Hand instrumentation, Groups 3,4 - ProTaper files in rotary and reciprocating motion, Groups 5,6 - ProTaper Next files in rotary and reciprocating motion, Groups 7,8 - Oneshape files in rotary and reciprocating motion, Groups 9,10 - Reciproc files in rotary and reciprocating motion. Specimens were sectioned horizontally at 3,6 and 9 mm from the apex and dentinal micro cracks were observed under a stereomicroscope. There was a statistically significant difference between the groups (p<0.05). There were no significant differences in crack formation between the groups (Protaper Next - Rot, Protaper Next - Rec, Reciproc - Rec); (ProTaper - Rot, ProTaper - Rec, Oneshape - Rot), (Oneshape - Rot, Reciproc - Rot), (One shape Reciproc, Reciproc - Rec); (p >.05). Least cracks were seen in canals instrumented with Pro Taper Next files both in rotary and reciprocating motion. Full sequence rotary systems showed less cracks than single file systems and full sequence rotary systems showed less cracks in reciprocating motion than in rotary motion.
Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport.
Farjoo, Afrooz; Kuznicki, Steve M; Sadrzadeh, Mohtada
2017-10-06
Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene) was studied within the temperature and pressure ranges of 25-600 °C and 110-160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption-diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons.
Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport
Farjoo, Afrooz; Kuznicki, Steve M.
2017-01-01
Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene) was studied within the temperature and pressure ranges of 25–600 °C and 110–160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption–diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons. PMID:28984833
Cyclic fatigue of nickel-titanium rotary instruments in a double (S-shaped) simulated curvature.
Al-Sudani, Dina; Grande, Nicola M; Plotino, Gianluca; Pompa, Giorgio; Di Carlo, Stefano; Testarelli, Luca; Gambarini, Gianluca
2012-07-01
The goal of the present study was to test the fatigue resistance of nickel-titanium rotary files in a double curvature (S-shaped) artificial root canal and to compare those results with single curvature artificial root canals. Two nickel-titanium endodontic instruments consisting of identical instrument sizes (constant .06 taper and 0.25 tip diameter) were tested, ProFile instruments and Vortex instruments. Both instruments were tested for fatigue inside an artificial canal with a double curvature and inside a curved artificial canal with a single curvature. Ten instruments for each group were tested to fracture in continuous rotary motion at 300 rpm. Number of cycles to failure (NCF) was calculated to the nearest whole number, and the length of the fractured fragment was measured in millimeters. Data were statistically analyzed with a level of significance set at 95% confidence level. The NCF value was always statistically lower in the double curved artificial canal when compared with the single curve (P < .05) in both the apical and coronal curvatures. Statistically significant differences (P < .05) were noted between instruments of the same size of different brand only in the single curve; ProFile registered a mean of 633.5 ± 75.1 NCF, whereas Vortex registered a mean of 548 ± 48.9 NCF. Regardless of the differences between the instruments used in the present study, the results suggest that the more complex is the root canal, the more adverse are the effects on the cyclic fatigue resistance of the instruments. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Tinoco, J M; De-Deus, G; Tinoco, E M B; Saavedra, F; Fidel, R A S; Sassone, L M
2014-06-01
To evaluate ex vivo, apical bacterial extrusion associated with two reciprocating single-file systems (WaveOne and Reciproc) compared with a conventional multifile rotary system (BioRace). Forty-five human single-rooted mandibular incisors were used. Endodontic access cavities were prepared, and root canals were contaminated with an Enterococcus faecalis suspension. Following incubation at 37 °C for thirty days, the contaminated teeth were divided into three groups of 15 specimens each (G1 - Reciproc, G2 - WaveOne and G3 - BioRace). Positive and negative controls consisted of 5 infected teeth and 3 uninfected incisors that were instrumented with one of the tested NiTi systems, respectively. Bacteria extruded from the apical foramen during instrumentation were collected into vials containing 0.9% NaCl. The microbiological samples were taken from the vials and incubated in brain heart agar medium for 24 h. The resulting bacterial titre, in colony-forming units (CFU) per mL, was determined, and these data were analysed by Wilcoxon matched-pairs signed rank test and Kruskal-Wallis H-test. The level of significance was set at α = 0.05. No significant difference was found in the number of CFU between the two reciprocating systems (P = 0.41). The conventional multifile rotary system group was associated with significantly higher CFU than both of the two reciprocating groups (P = 0.01). All instrumentation systems extruded bacteria beyond the foramen. However, both reciprocating single-file systems extruded fewer bacteria apically than the conventional multifile rotary system. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Karampinos, Dimitrios C.; Banerjee, Suchandrima; King, Kevin F.; Link, Thomas M.; Majumdar, Sharmila
2011-01-01
Previous studies have shown that skeletal muscle diffusion tensor imaging (DTI) can non-invasively probe changes in the muscle fiber architecture and microstructure in diseased and damaged muscles. However, DTI fiber reconstruction in small muscles and in muscle regions close to aponeuroses and tendons remains challenging because of partial volume effects. Increasing the spatial resolution of skeletal muscle single-shot diffusion weighted (DW)-EPI can be hindered by the inherently low SNR of muscle DW-EPI due to the short muscle T2 and the high sensitivity of single-shot EPI to off-resonance effects and T2* blurring. In the present work, eddy-current compensated diffusion-weighted stimulated echo preparation is combined with sensitivity encoding (SENSE) to maintain good SNR properties and reduce the sensitivity to distortions and T2* blurring in high resolution skeletal muscle single-shot DW-EPI. An analytical framework is developed for optimizing the reduction factor and diffusion weighting time to achieve maximum SNR. Arguments for the selection of the experimental parameters are then presented considering the compromise between SNR, B0-induced distortions, T2* blurring effects and tissue incoherent motion effects. Based on the selected parameters in a high resolution skeletal muscle single-shot DW-EPI protocol, imaging protocols at lower acquisition matrix sizes are defined with matched bandwidth in the phase-encoding direction and SNR. In vivo results show that high resolution skeletal muscle DTI with minimized sensitivity to geometric distortions and T2* blurring is feasible using the proposed methodology. In particular, a significant benefit is demonstrated from reducing partial volume effects on resolving multi-pennate muscles and muscles with small cross sections in calf muscle DTI. PMID:22081519
``The Legal Bit's in Russian'': Making Sense of Downloaded Music
NASA Astrophysics Data System (ADS)
Kibby, Marjorie D.
Peer-to-peer sharing of music files grew in the face of consumer dissatisfaction with the compact disc and the absence of any real alternative. Many users were more or less “forced” to turn to illegal file sharing to access single tracks, back catalogues, and niche genres. Recently the almost simultaneous arrival of broadband internet and the iPod has seen music downloading become a respectable activity and a multi-billion dollar industry.
2011-05-01
iTunes illustrate the difference between the centralized approach of digital library systems and the distributed approach of container file formats...metadata in a container file format. Apple’s iTunes uses a centralized metadata approach and allows users to maintain song metadata in a single...one iTunes library to another the metadata must be copied separately or reentered in the new library. This demonstrates the utility of storing metadata
[PAH Cations as Viable Carriers of DIBs
NASA Technical Reports Server (NTRS)
Snow, Ted
1998-01-01
This report is intended to fill in the blanks in NASA's file system for our lab astro study of molecular ions of astrophysical interest. In order to give NASA what it needs for its files, I attach below the text of the section from our recent proposal to continue this work, in which we describe progress to date, including a large number of publications. Our initial studies were focused on PAH cations, which appear to be viable candidates as the carriers of the DIBs, an idea that has been supported by laboratory spectroscopy of PAH cations in inert matrices. Beginning with the simplest aromatic (benzene; C6H6) and moving progressively to larger species (naphthalene, C10OH8; pyrene, C16H10; and most recently chrysene, C18H12), we have been able to derive rate coefficients for reactions with neutral spices that are abundant in the diffuse interstellar medium.
Modeling the Movement of Homicide by Type to Inform Public Health Prevention Efforts.
Zeoli, April M; Grady, Sue; Pizarro, Jesenia M; Melde, Chris
2015-10-01
We modeled the spatiotemporal movement of hotspot clusters of homicide by motive in Newark, New Jersey, to investigate whether different homicide types have different patterns of clustering and movement. We obtained homicide data from the Newark Police Department Homicide Unit's investigative files from 1997 through 2007 (n = 560). We geocoded the address at which each homicide victim was found and recorded the date of and the motive for the homicide. We used cluster detection software to model the spatiotemporal movement of statistically significant homicide clusters by motive, using census tract and month of occurrence as the spatial and temporal units of analysis. Gang-motivated homicides showed evidence of clustering and diffusion through Newark. Additionally, gang-motivated homicide clusters overlapped to a degree with revenge and drug-motivated homicide clusters. Escalating dispute and nonintimate familial homicides clustered; however, there was no evidence of diffusion. Intimate partner and robbery homicides did not cluster. By tracking how homicide types diffuse through communities and determining which places have ongoing or emerging homicide problems by type, we can better inform the deployment of prevention and intervention efforts.
Roll diffusion bonding of titanium alloy panels
NASA Technical Reports Server (NTRS)
Bennett, J.; De Witt, T. E.; Jones, A. G.; Koeller, F.; Muser, C.
1968-01-01
Roll diffusion bonding technique is used for fabricating T-stiffened panel assemblies from titanium alloy. The single unit fabrication exhibits excellent strength characteristics under tensile and compressive loads. This program is applied to structures in which weight/strength ratio and integral construction are important considerations.
Gerhard, Stephan; Daducci, Alessandro; Lemkaddem, Alia; Meuli, Reto; Thiran, Jean-Philippe; Hagmann, Patric
2011-01-01
Advanced neuroinformatics tools are required for methods of connectome mapping, analysis, and visualization. The inherent multi-modality of connectome datasets poses new challenges for data organization, integration, and sharing. We have designed and implemented the Connectome Viewer Toolkit - a set of free and extensible open source neuroimaging tools written in Python. The key components of the toolkit are as follows: (1) The Connectome File Format is an XML-based container format to standardize multi-modal data integration and structured metadata annotation. (2) The Connectome File Format Library enables management and sharing of connectome files. (3) The Connectome Viewer is an integrated research and development environment for visualization and analysis of multi-modal connectome data. The Connectome Viewer's plugin architecture supports extensions with network analysis packages and an interactive scripting shell, to enable easy development and community contributions. Integration with tools from the scientific Python community allows the leveraging of numerous existing libraries for powerful connectome data mining, exploration, and comparison. We demonstrate the applicability of the Connectome Viewer Toolkit using Diffusion MRI datasets processed by the Connectome Mapper. The Connectome Viewer Toolkit is available from http://www.cmtk.org/
Gerhard, Stephan; Daducci, Alessandro; Lemkaddem, Alia; Meuli, Reto; Thiran, Jean-Philippe; Hagmann, Patric
2011-01-01
Advanced neuroinformatics tools are required for methods of connectome mapping, analysis, and visualization. The inherent multi-modality of connectome datasets poses new challenges for data organization, integration, and sharing. We have designed and implemented the Connectome Viewer Toolkit – a set of free and extensible open source neuroimaging tools written in Python. The key components of the toolkit are as follows: (1) The Connectome File Format is an XML-based container format to standardize multi-modal data integration and structured metadata annotation. (2) The Connectome File Format Library enables management and sharing of connectome files. (3) The Connectome Viewer is an integrated research and development environment for visualization and analysis of multi-modal connectome data. The Connectome Viewer's plugin architecture supports extensions with network analysis packages and an interactive scripting shell, to enable easy development and community contributions. Integration with tools from the scientific Python community allows the leveraging of numerous existing libraries for powerful connectome data mining, exploration, and comparison. We demonstrate the applicability of the Connectome Viewer Toolkit using Diffusion MRI datasets processed by the Connectome Mapper. The Connectome Viewer Toolkit is available from http://www.cmtk.org/ PMID:21713110
Elevated Temperature Creep Deformation in Solid Solution <001> NiAL-3.6Ti Single Crystals
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Noebe, Ronald D.; Darolia, Ram
2003-01-01
The 1100 to 1500 K slow plastic strain rate compressive properties of <001> oriented NiAl-3.6Ti single crystals have been measured, and the results suggests that two deformation processes exist. While the intermediate temperature/faster strain rate mechanism is uncertain, plastic flow at elevated temperature/slower strain rates in NiAl-3.6Ti appears to be controlled by solute drag as described by the Cottrell-Jaswon solute drag model for gliding b = a(sub 0)<101> dislocations. While the calculated activation energy of deformation is much higher (approximately 480 kJ/mol) than the activation energy for diffusion (approximately 290 kJ/mol) used in the Cottrell-Jaswon creep model, a forced temperature compensated - power law fit using the activation energy for diffusion was able to adequately (greater than 90%) predict the observed creep properties. Thus we conclude that the rejection of a diffusion controlled mechanism can not be simply based on a large numerical difference between the activation energies for deformation and diffusion.
Ernst, Dominique; Köhler, Jürgen
2013-01-21
We provide experimental results on the accuracy of diffusion coefficients obtained by a mean squared displacement (MSD) analysis of single-particle trajectories. We have recorded very long trajectories comprising more than 1.5 × 10(5) data points and decomposed these long trajectories into shorter segments providing us with ensembles of trajectories of variable lengths. This enabled a statistical analysis of the resulting MSD curves as a function of the lengths of the segments. We find that the relative error of the diffusion coefficient can be minimized by taking an optimum number of points into account for fitting the MSD curves, and that this optimum does not depend on the segment length. Yet, the magnitude of the relative error for the diffusion coefficient does, and achieving an accuracy in the order of 10% requires the recording of trajectories with about 1000 data points. Finally, we compare our results with theoretical predictions and find very good qualitative and quantitative agreement between experiment and theory.
Apparent diffusion coefficient in glioblastoma with PNET-like components, a GBM variant.
Ali, Saad; Joseph, Nancy M; Perry, Arie; Barajas, Ramon F; Cha, Soonmee
2014-09-01
Glioblastoma (GBM) with primitive neuroectodermal tumor (PNET)-like (GBM-PNET) components is a rare variant of GBM. Recent studies describe PNET-like clinical behavior in these patients-with significantly increased propensity for CSF dissemination and a benefit of "PNET-like" chemotherapy. The imaging appearance of GBM-PNET is not well-described and given areas of marked cellularity in the PNET components one might expect significantly reduced diffusion on MRI. The purpose of this study is to quantitatively evaluate the diffusion characteristics in GBM-PNET and compare them with conventional GBMs. Nine patients with surgical specimens yielding GBM-PNET were identified from the UCSF Pathology files. MR images of these patients were reviewed retrospectively. DWI (diffusion-weighted imaging) sequences were analyzed with multiple regions of interests placed within the tumor, and ADC (apparent diffusion coefficient) values were measured. Results were compared to previously published ADC values in pathology-proven conventional GBM cases from our institution. Reduced ADC was seen in GBM-PNET (mean 581 × 10(-6) mm(2)/s, range 338-817) compared to previously published mean of 1,030 × 10(-6) mm(2)/s in the enhancing components of conventional GBMs. We report substantially reduced ADC values in GBM-PNETs compared to conventional GBMs. If demonstrated in a larger sample, when areas of marked reduced diffusion are seen in a suspected GBM, MRI may appropriately direct tissue sampling and can advocate a thorough search for PNET-like components on histopathology. These patients may have a higher chance of developing CSF dissemination and may benefit from "PNET-like" platinum-based chemotherapy.
Jeurissen, Ben; Leemans, Alexander; Sijbers, Jan
2014-10-01
Ensuring one is using the correct gradient orientations in a diffusion MRI study can be a challenging task. As different scanners, file formats and processing tools use different coordinate frame conventions, in practice, users can end up with improperly oriented gradient orientations. Using such wrongly oriented gradient orientations for subsequent diffusion parameter estimation will invalidate all rotationally variant parameters and fiber tractography results. While large misalignments can be detected by visual inspection, small rotations of the gradient table (e.g. due to angulation of the acquisition plane), are much more difficult to detect. In this work, we propose an automated method to align the coordinate frame of the gradient orientations with that of the corresponding diffusion weighted images, using a metric based on whole brain fiber tractography. By transforming the gradient table and measuring the average fiber trajectory length, we search for the transformation that results in the best global 'connectivity'. To ensure a fast calculation of the metric we included a range of algorithmic optimizations in our tractography routine. To make the optimization routine robust to spurious local maxima, we use a stochastic optimization routine that selects a random set of seed points on each evaluation. Using simulations, we show that our method can recover the correct gradient orientations with high accuracy and precision. In addition, we demonstrate that our technique can successfully recover rotated gradient tables on a wide range of clinically realistic data sets. As such, our method provides a practical and robust solution to an often overlooked pitfall in the processing of diffusion MRI. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Renny; Supriyanto
2018-04-01
Nutrition is the chemical compounds that needed by the organism for the growth process. In plants, nutrients are organic or inorganic compounds that are absorbed from the roots of the soil. It consist of macro and micro nutrient. Macro nutrients are nutrition that needed by plants in large quantities, such as, nitrogen, calcium, pottacium, magnesium, and sulfur. The total soil nutrient is the difference between the input nutrient and the output nutrients. Input nutrients are nutrient that derived from the decomposition of organic substances. Meanwhile, the output nutrient consists of the nutrients that absorbed by plant roots (uptake), the evaporated nutrients (volatilized) and leached nutrients. The nutrient transport can be done through diffusion process. The diffusion process is essential in removing the nutrient from one place to the root surface. It will cause the rate of absorption of nutrient by the roots will be greater. Nutrient concept in paddy filed can be represented into a mathematical modelling, by making compartment models. The rate of concentration change in the compartment model forms a system of homogeneous linear differential equations. In this research, we will use Laplaces transformation to solve the compartment model and determined the dynamics of macro nutrition due to diffusion process.
A Radiosity Approach to Realistic Image Synthesis
1992-12-01
AD-A259 082 AFIT/GCE/ENG/92D-09 A RADIOSITY APPROACH TO REALISTIC IMAGE SYNTHESIS THESIS Richard L. Remington Captain, USAF fl ECTE AFIT/GCE/ENG/92D...09 SJANl 1993U 93-00134 Approved for public release; distribution unlimited 93& 1! A -A- AFIT/GCE/ENG/92D-09 A RADIOSITY APPROACH TO REALISTIC IMAGE...assistance in creating the input geometry file for the AWACS aircraft interior. Without his assistance, a good model for the diffuse radiosity implementation
NASA Technical Reports Server (NTRS)
Fijany, Amir (Inventor); Bejczy, Antal K. (Inventor)
1994-01-01
In a computer having a large number of single-instruction multiple data (SIMD) processors, each of the SIMD processors has two sets of three individual processor elements controlled by a master control unit and interconnected among a plurality of register file units where data is stored. The register files input and output data in synchronism with a minor cycle clock under control of two slave control units controlling the register file units connected to respective ones of the two sets of processor elements. Depending upon which ones of the register file units are enabled to store or transmit data during a particular minor clock cycle, the processor elements within an SIMD processor are connected in rings or in pipeline arrays, and may exchange data with the internal bus or with neighboring SIMD processors through interface units controlled by respective ones of the two slave control units.
Profex: a graphical user interface for the Rietveld refinement program BGMN.
Doebelin, Nicola; Kleeberg, Reinhard
2015-10-01
Profex is a graphical user interface for the Rietveld refinement program BGMN . Its interface focuses on preserving BGMN 's powerful and flexible scripting features by giving direct access to BGMN input files. Very efficient workflows for single or batch refinements are achieved by managing refinement control files and structure files, by providing dialogues and shortcuts for many operations, by performing operations in the background, and by providing import filters for CIF and XML crystal structure files. Refinement results can be easily exported for further processing. State-of-the-art graphical export of diffraction patterns to pixel and vector graphics formats allows the creation of publication-quality graphs with minimum effort. Profex reads and converts a variety of proprietary raw data formats and is thus largely instrument independent. Profex and BGMN are available under an open-source license for Windows, Linux and OS X operating systems.
Profex: a graphical user interface for the Rietveld refinement program BGMN
Doebelin, Nicola; Kleeberg, Reinhard
2015-01-01
Profex is a graphical user interface for the Rietveld refinement program BGMN. Its interface focuses on preserving BGMN’s powerful and flexible scripting features by giving direct access to BGMN input files. Very efficient workflows for single or batch refinements are achieved by managing refinement control files and structure files, by providing dialogues and shortcuts for many operations, by performing operations in the background, and by providing import filters for CIF and XML crystal structure files. Refinement results can be easily exported for further processing. State-of-the-art graphical export of diffraction patterns to pixel and vector graphics formats allows the creation of publication-quality graphs with minimum effort. Profex reads and converts a variety of proprietary raw data formats and is thus largely instrument independent. Profex and BGMN are available under an open-source license for Windows, Linux and OS X operating systems. PMID:26500466
Data storage and retrieval system
NASA Technical Reports Server (NTRS)
Nakamoto, Glen
1991-01-01
The Data Storage and Retrieval System (DSRS) consists of off-the-shelf system components integrated as a file server supporting very large files. These files are on the order of one gigabyte of data per file, although smaller files on the order of one megabyte can be accommodated as well. For instance, one gigabyte of data occupies approximately six 9 track tape reels (recorded at 6250 bpi). Due to this large volume of media, it was desirable to shrink the size of the proposed media to a single portable cassette. In addition to large size, a key requirement was that the data needs to be transferred to a (VME based) workstation at very high data rates. One gigabyte (GB) of data needed to be transferred from an archiveable media on a file server to a workstation in less than 5 minutes. Equivalent size, on-line data needed to be transferred in less than 3 minutes. These requirements imply effective transfer rates on the order of four to eight megabytes per second (4-8 MB/s). The DSRS also needed to be able to send and receive data from a variety of other sources accessible from an Ethernet local area network.
Data storage and retrieval system
NASA Technical Reports Server (NTRS)
Nakamoto, Glen
1992-01-01
The Data Storage and Retrieval System (DSRS) consists of off-the-shelf system components integrated as a file server supporting very large files. These files are on the order of one gigabyte of data per file, although smaller files on the order of one megabyte can be accommodated as well. For instance, one gigabyte of data occupies approximately six 9-track tape reels (recorded at 6250 bpi). Due to this large volume of media, it was desirable to 'shrink' the size of the proposed media to a single portable cassette. In addition to large size, a key requirement was that the data needs to be transferred to a (VME based) workstation at very high data rates. One gigabyte (GB) of data needed to be transferred from an archiveable media on a file server to a workstation in less than 5 minutes. Equivalent size, on-line data needed to be transferred in less than 3 minutes. These requirements imply effective transfer rates on the order of four to eight megabytes per second (4-8 MB/s). The DSRS also needed to be able to send and receive data from a variety of other sources accessible from an Ethernet local area network.
Metzger, Zvi; Teperovich, Ehud; Zary, Raviv; Cohen, Raphaela; Hof, Rafael
2010-04-01
To introduce a new concept, the self-adjusting file (SAF), and discuss its unique features compared with current rotary nickel-titanium file systems. The SAF file is hollow and designed as a thin cylindrical nickel-titanium lattice that adapts to the cross-section of the root canal. A single file is used throughout the procedure. It is inserted into a path initially prepared by a # 20 K-file and operated with a transline- (in-and-out) vibration. The resulting circumferential pressure allows the file's abrasive surface to gradually remove a thin uniform hard-tissue layer from the entire root canal surface, resulting in a canal with a similar cross-section but of larger dimensions. This holds also for canals with an oval or flat cross-section, which will be enlarged to a flat or oval cross-section of larger dimensions. The straightening of curved canals is also reduced because of the high pliability of the file and the absence of a rigid metal core. Thus, the original shape of the root canal is respected both longitudinally and in cross-section. The hollow SAF file is operated with a constant flow of irrigant that enters the full length of the canal and that is activated by the vibration and is replaced continuously throughout the procedure. This results in effective cleaning even at the cul de sac apical part of the canal. The SAF has high mechanical endurance; file separation does not occur; and mechanical failure, if it occurs, is limited to small tears in the latticework. The SAF represents a new step forward in endodontic file development that may overcome many of the shortcomings of current rotary nickel-titanium file systems. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Lempert, W.; Kumar, V.; Glesk, I.; Miles, R.; Diskin, G.
1991-01-01
The use of a tunable ArF laser at 193.26 nm to record simultaneous single-laser-shot, planar images of molecular hydrogen and hot oxygen in a turbulent H2-air diffusion flame. Excitation spectra of fuel and oxidant-rich flame zones confirm a partial overlap of the two-photon H2 and single-photon O2 Schumann-Runge absorption bands. UV Rayleigh scattering images of flame structure and estimated detection limits for the H2 two-photon imaging are also presented.
DOCU-TEXT: A tool before the data dictionary
NASA Technical Reports Server (NTRS)
Carter, B.
1983-01-01
DOCU-TEXT, a proprietary software package that aids in the production of documentation for a data processing organization and can be installed and operated only on IBM computers is discussed. In organizing information that ultimately will reside in a data dictionary, DOCU-TEXT proved to be a useful documentation tool in extracting information from existing production jobs, procedure libraries, system catalogs, control data sets and related files. DOCU-TEXT reads these files to derive data that is useful at the system level. The output of DOCU-TEXT is a series of user selectable reports. These reports can reflect the interactions within a single job stream, a complete system, or all the systems in an installation. Any single report, or group of reports, can be generated in an independent documentation pass.
Yu, Haiming; Cheng, Weimin; Xie, Yao; Peng, Huitian
2018-05-23
In order to investigate the diffuse pollution mechanisms of high-concentration dusts in the blasting driving face, the airflow-dust coupled model was constructed based on CFD-DEM coupled model; the diffusion rules of the dusts with different diameters at microscopic scale were analyzed in combination with the field measured results. The simulation results demonstrate that single-exhaust ventilation exhibited more favorable dust suppression performance than single-forced ventilation. Under single-exhaust ventilation condition, the motion trajectories of the dusts with the diameter smaller than 20 μm were close to the airflow streamline and these dusts were mainly distributed near the footway walls; by contrast, under single-forced ventilation condition, the motion trajectories of the dust particles with a diameter range of 20~40 μm were close to the airflow streamlines, and a large number of dusts with the diameter smaller than 20 μm accumulated in the regions 5 m and 17~25 m away from the head-on section. Moreover, under the single-exhaust ventilation, the relationship between dust diameter D and negative-pressured-induced dust emission ratio P can be expressed as P = - 25.03ln(D) + 110.39, and the dust emission ratio was up to 74.36% for 7-μm dusts, and the path-dependent settling behaviors of the dusts mainly occurred around the head-on section; under single-forced ventilation condition, the z value of the dusts with the diameter over 20 μm decreased and the dusts with a diameter smaller than 7 μm are particularly harmful to human health, but their settling ratios were below 22.36%. Graphical abstract The airflow-dust CFD-DEM coupling model was established. The numerical simulation results were verified. The migration laws of airflow field were obtained in a blasting driving face. The diffusion laws of dusts were obtained after blasting.
High Density Diffusion-Free Nanowell Arrays
Takulapalli, Bharath R; Qiu, Ji; Magee, D. Mitchell; Kahn, Peter; Brunner, Al; Barker, Kristi; Means, Steven; Miersch, Shane; Bian, Xiaofang; Mendoza, Alex; Festa, Fernanda; Syal, Karan; Park, Jin; LaBaer, Joshua; Wiktor, Peter
2012-01-01
Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA), is a robust, in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced inter-spot spacing. To address this limitation, we have developed an innovative platform using photolithographically-etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8,000 nanowell arrays. This is the highest density of individual proteins in nano-vessels demonstrated on a single slide. We further present proof of principle results on ultra-high density protein arrays capable of up to 24,000 nanowells on a single slide. PMID:22742968
Acoustic-noise-optimized diffusion-weighted imaging.
Ott, Martin; Blaimer, Martin; Grodzki, David M; Breuer, Felix A; Roesch, Julie; Dörfler, Arnd; Heismann, Björn; Jakob, Peter M
2015-12-01
This work was aimed at reducing acoustic noise in diffusion-weighted MR imaging (DWI) that might reach acoustic noise levels of over 100 dB(A) in clinical practice. A diffusion-weighted readout-segmented echo-planar imaging (EPI) sequence was optimized for acoustic noise by utilizing small readout segment widths to obtain low gradient slew rates and amplitudes instead of faster k-space coverage. In addition, all other gradients were optimized for low slew rates. Volunteer and patient imaging experiments were conducted to demonstrate the feasibility of the method. Acoustic noise measurements were performed and analyzed for four different DWI measurement protocols at 1.5T and 3T. An acoustic noise reduction of up to 20 dB(A) was achieved, which corresponds to a fourfold reduction in acoustic perception. The image quality was preserved at the level of a standard single-shot (ss)-EPI sequence, with a 27-54% increase in scan time. The diffusion-weighted imaging technique proposed in this study allowed a substantial reduction in the level of acoustic noise compared to standard single-shot diffusion-weighted EPI. This is expected to afford considerably more patient comfort, but a larger study would be necessary to fully characterize the subjective changes in patient experience.