Hansen, A.D.
1988-01-25
An improved aethalometer having a single light source and a single light detector and two light paths from the light source to the light detector. A quartz fiber filter is inserted in the device, the filter having a collection area in one light path and a reference area in the other light path. A gas flow path through the aethalometer housing allows ambient air to flow through the collection area of the filter so that aerosol particles can be collected on the filter. A rotating disk with an opening therethrough allows light for the light source to pass alternately through the two light paths. The voltage output of the detector is applied to a VCO and the VCO pulses for light transmission separately through the two light paths, are counted and compared to determine the absorption coefficient of the collected aerosol particles. 5 figs.
An axisymmetric single-path model for gas transport in the conducting airways.
Madasu, Srinath; Borhan, All; Ultman, James S
2006-02-01
In conventional one-dimensional single-path models, radially averaged concentration is calculated as a function of time and longitudinal position in the lungs, and coupled convection and diffusion are accounted for with a dispersion coefficient. The axisymmetric single-path model developed in this paper is a two-dimensional model that incorporates convective-diffusion processes in a more fundamental manner by simultaneously solving the Navier-Stokes and continuity equations with the convection-diffusion equation. A single airway path was represented by a series of straight tube segments interconnected by leaky transition regions that provide for flow loss at the airway bifurcations. As a sample application, the model equations were solved by a finite element method to predict the unsteady state dispersion of an inhaled pulse of inert gas along an airway path having dimensions consistent with Weibel's symmetric airway geometry. Assuming steady, incompressible, and laminar flow, a finite element analysis was used to solve for the axisymmetric pressure, velocity and concentration fields. The dispersion calculated from these numerical solutions exhibited good qualitative agreement with the experimental values, but quantitatively was in error by 20%-30% due to the assumption of axial symmetry and the inability of the model to capture the complex recirculatory flows near bifurcations.
Umari, A.; Earle, J.D.; Fahy, M.F.
2006-01-01
As part of the effort to understand the flow and transport characteristics downgradient from the proposed high-level radioactive waste geologic repository at Yucca Mountain, Nevada, single- and cross-hole tracer tests were conducted from December 2004 through October 2005 in boreholes at the Nye County 22 well complex. The results were analyzed for transport properties using both numerical and analytical solutions of the governing advection dispersion equation. Preliminary results indicate effective flow porosity values ranging from 1.0 ?? 10-2 for an individual flow path to 2.0 ?? 10 -1 for composite flow paths, longitudinal dispersivity ranging from 0.3 to 3 m, and a transverse horizontal dispersivity of 0.03 m. Individual flow paths identified from the cross-hole testing indicate some solute diffusion into the stagnant portion of the alluvial aquifer.
Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape
NASA Astrophysics Data System (ADS)
Zhu, Q.; Lin, H. S.
2009-08-01
The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage and thus is a useful indicator of possible subsurface flow path over a large area; and (3) observable Mn distribution in soil profiles can be used as a simple indicator of water flow paths in soils and over the landscape; however, it does require sufficient soil sampling (by excavation or augering) to possibly infer landscape-scale subsurface flow paths. In areas where subsurface interface topography varies similarly with surface topography, surface DEM can be used to simulate potential subsurface lateral flow path reasonably so the cost associated with obtaining depth to subsurface water-restricting layer can be minimized.
Hansen, Anthony D.
1990-01-01
An improved aethalometer (10) having a single light source (18) and a single light detector (20) and two light paths (21, 22) from the light source (18) to the light detector (20). A quartz fiber filter (13) is inserted in the device, the filter (13) having a collection area (23) in one light path (21) and a reference area (24) in the other light path (22). A gas flow path (46) through the aethalometer housing (11) allows ambient air to flow through the collection area (23) of the filter (13) so that aerosol particles can be collected on the filter. A rotating disk (31) with an opening (33) therethrough allows light for the light source (18) to pass alternately through the two light paths (21, 22). The voltage output of the detector (20) is applied to a VCO (52) and the VCO pulses for light transmission separately through the two light paths (21, 22 ) are counted and compared to determine the absorption coefficient of the collected aerosol particles.
Semianalytical computation of path lines for finite-difference models
Pollock, D.W.
1988-01-01
A semianalytical particle tracking method was developed for use with velocities generated from block-centered finite-difference ground-water flow models. Based on the assumption that each directional velocity component varies linearly within a grid cell in its own coordinate directions, the method allows an analytical expression to be obtained describing the flow path within an individual grid cell. Given the intitial position of a particle anywhere in a cell, the coordinates of any other point along its path line within the cell, and the time of travel between them, can be computed directly. For steady-state systems, the exit point for a particle entering a cell at any arbitrary location can be computed in a single step. By following the particle as it moves from cell to cell, this method can be used to trace the path of a particle through any multidimensional flow field generated from a block-centered finite-difference flow model. -Author
NASA Technical Reports Server (NTRS)
Hayden, Richard E.; Remington, Paul J.; Theobald, Mark A.; Wilby, John F.
1985-01-01
The sources and paths by which noise enters the cabin of a small single engine aircraft were determined through a combination of flight and laboratory tests. The primary sources of noise were found to be airborne noise from the propeller and engine casing, airborne noise from the engine exhaust, structureborne noise from the engine/propeller combination and noise associated with air flow over the fuselage. For the propeller, the primary airborne paths were through the firewall, windshield and roof. For the engine, the most important airborne path was through the firewall. Exhaust noise was found to enter the cabin primarily through the panels in the vicinity of the exhaust outlet although exhaust noise entering the cabin through the firewall is a distinct possibility. A number of noise control techniques were tried, including firewall stiffening to reduce engine and propeller airborne noise, to stage isolators and engine mounting spider stiffening to reduce structure-borne noise, and wheel well covers to reduce air flow noise.
Voltage instability in a simulated fuel cell stack correlated to cathode water accumulation
NASA Astrophysics Data System (ADS)
Owejan, J. P.; Trabold, T. A.; Gagliardo, J. J.; Jacobson, D. L.; Carter, R. N.; Hussey, D. S.; Arif, M.
Single fuel cells running independently are often used for fundamental studies of water transport. It is also necessary to assess the dynamic behavior of fuel cell stacks comprised of multiple cells arranged in series, thus providing many paths for flow of reactant hydrogen on the anode and air (or pure oxygen) on the cathode. In the current work, the flow behavior of a fuel cell stack is simulated by using a single-cell test fixture coupled with a bypass flow loop for the cathode flow. This bypass simulates the presence of additional cells in a stack and provides an alternate path for airflow, thus avoiding forced convective purging of cathode flow channels. Liquid water accumulation in the cathode is shown to occur in two modes; initially nearly all the product water is retained in the gas diffusion layer until a critical saturation fraction is reached and then water accumulation in the flow channels begins. Flow redistribution and fuel cell performance loss result from channel slug formation. The application of in-situ neutron radiography affords a transient correlation of performance loss to liquid water accumulation. The current results identify a mechanism whereby depleted cathode flow on a single cell leads to performance loss, which can ultimately cause an operating proton exchange membrane fuel cell stack to fail.
Computer code for predicting coolant flow and heat transfer in turbomachinery
NASA Technical Reports Server (NTRS)
Meitner, Peter L.
1990-01-01
A computer code was developed to analyze any turbomachinery coolant flow path geometry that consist of a single flow passage with a unique inlet and exit. Flow can be bled off for tip-cap impingement cooling, and a flow bypass can be specified in which coolant flow is taken off at one point in the flow channel and reintroduced at a point farther downstream in the same channel. The user may either choose the coolant flow rate or let the program determine the flow rate from specified inlet and exit conditions. The computer code integrates the 1-D momentum and energy equations along a defined flow path and calculates the coolant's flow rate, temperature, pressure, and velocity and the heat transfer coefficients along the passage. The equations account for area change, mass addition or subtraction, pumping, friction, and heat transfer.
Preferential paths in yield stress fluid flow through a porous medium
NASA Astrophysics Data System (ADS)
Guasto, Jeffrey; Waisbord, Nicolas; Stoop, Norbert; Dunkel, Jörn
2016-11-01
A broad range of biological, geological, and industrial materials with complex rheological properties are subjected to flow through porous media in applications ranging from oil recovery to food manufacturing. In this experimental study, we examine the flow of a model yield stress fluid (Carbopol micro-gel) through a quasi-2D porous medium, fabricated in a microfluidic channel. The flow is driven by applying a precisely-controlled pressure gradient and measured by particle tracking velocimetry, and our observations are complemented by a pore-network model of the yield stress fluid flow. While remaining unyielded at small applied pressure, the micro-gel begins to yield at a critical pressure gradient, exhibiting a single preferential flow path that percolates through the porous medium. As the applied pressure gradient increases, we observe a subsequent coarsening and invasion of the yielded, fluidized network. An examination of both the yielded network topology and pore-scale flow reveal that two cooperative phenomena are involved in sculpting the preferential flow paths: (1) the geometry of the porous microstructure, and (2) the adhesive surface interactions between the micro-gel and substrate. NSF CBET-1511340.
Optimization of Turbine Rim Seals
NASA Technical Reports Server (NTRS)
Wagner, J. H.; Tew, D. E.; Stetson, G. M.; Sabnis, J. S.
2006-01-01
Experiments are being conducted to gain an understanding of the physics of rim scale cavity ingestion in a turbine stage with the high-work, single-stage characteristics envisioned for Advanced Subsonic Transport (AST) aircraft gas turbine engines fo the early 21st century. Initial experimental measurements to be presented include time-averaged turbine rim cavity and main gas path static pressure measurements for rim seal coolant to main gas path mass flow ratios between 0 and 0.02. The ultimate objective of this work is develop improved rim seal design concepts for use in modern high-work, single sage turbines n order to minimize the use of secondary coolant flow. Toward this objective the time averaged and unsteady data to be obtained in these experiments will be used to 1) Quantify the impact of the rim cavity cooling air on the ingestion process. 2) Quantify the film cooling benefits of the rim cavity purge flow in the main gas path. 3) Quantify the impact of the cooling air on turbine efficiency. 4) Develop/evaluate both 3D CFD and analytical models of the ingestion/cooling process.
Dynamic response characteristics of dual flow-path integrally bladed rotors
NASA Astrophysics Data System (ADS)
Beck, Joseph A.; Brown, Jeffrey M.; Scott-Emuakpor, Onome E.; Cross, Charles J.; Slater, Joseph C.
2015-02-01
New turbine engine designs requiring secondary flow compression often look to dual flow-path integrally bladed rotors (DFIBRs) since these stages have the ability to perform work on the secondary, or bypassed, flow-field. While analogous to traditional integrally bladed rotor stages, DFIBR designs have many differences that result in unique dynamic response characteristics that must be understood to avoid fatigue. This work investigates these characteristics using reduced-order models (ROMs) that incorporate mistuning through perturbations to blade frequencies. This work provides an alternative to computationally intensive geometric-mistuning approaches for DFIBRs by utilizing tuned blade mode reductions and substructure coupling in cyclic coordinates. Free and forced response results are compared to full finite element model (FEM) solutions to determine if any errors are related to the reduced-order model formulation reduction methods. It is shown that DFIBRs have many more frequency veering regions than their single flow-path integrally blade rotor (IBR) counterparts. Modal families are shown to transition between system, inner-blade, and outer-blade motion. Furthermore, findings illustrate that while mode localization of traditional IBRs is limited to a single or small subset of blades, DFIBRs can have modal energy localized to either an inner- or outer-blade set resulting in many blades responding above tuned levels. Lastly, ROM forced response predictions compare well to full FEM predictions for the two test cases shown.
Ruhl, J.F.
2002-01-01
A steady state single layer, two-dimensional ground-water flow model constructed with the computer program MODFLOW,combined with the particle-tracking computer program MODPATH, was used to track water particles (upgradient) from the two well fields. A withdrawal rate of 625 m3/d was simulated for each well field. The ground-water flow paths delineated areas of contributing recharge that are 0.38 and 0.65 km2 based on 10- and 50-year travel times, respectively. The flow paths that define these areas extend for maximum distances of about 350 and 450 m, respectively, from the wells. At well field A the area of contributing recharge was delineated for each well as separate withdrawal points. At well field B the area of contributing recharge was delineated for the two wells as a single withdrawal point. Delineation of areas of contributing recharge to the well fields from land surface would require construction of a multi-layer ground-water flow model.
NASA Astrophysics Data System (ADS)
Sargent, S.; Somers, J. M.
2015-12-01
Trace-gas eddy covariance flux measurement can be made with open-path or closed-path analyzers. Traditional closed-path trace-gas analyzers use multipass absorption cells that behave as mixing volumes, requiring high sample flow rates to achieve useful frequency response. The high sample flow rate and the need to keep the multipass cell extremely clean dictates the use of a fine-pore filter that may clog quickly. A large-capacity filter cannot be used because it would degrade the EC system frequency response. The high flow rate also requires a powerful vacuum pump, which will typically consume on the order of 1000 W. The analyzer must measure water vapor for spectroscopic and dilution corrections. Open-path analyzers are available for methane, but not for nitrous oxide. The currently available methane analyzers have low power consumption, but are very large. Their large size degrades frequency response and disturbs the air flow near the sonic anemometer. They require significant maintenance to keep the exposed multipass optical surfaces clean. Water vapor measurements for dilution and spectroscopic corrections require a separate water vapor analyzer. A new closed-path eddy covariance system for measuring nitrous oxide or methane fluxes provides an elegant solution. The analyzer (TGA200A, Campbell Scientific, Inc.) uses a thermoelectrically-cooled interband cascade laser. Its small sample-cell volume and unique sample-cell configuration (200 ml, 1.5 m single pass) provide excellent frequency response with a low-power scroll pump (240 W). A new single-tube Nafion® dryer removes most of the water vapor, and attenuates fluctuations in the residual water vapor. Finally, a vortex intake assembly eliminates the need for an intake filter without adding volume that would degrade system frequency response. Laboratory testing shows the system attenuates the water vapor dilution term by more than 99% and achieves a half-power band width of 3.5 Hz.
Path selection in the growth of rivers
Cohen, Yossi; Devauchelle, Olivier; Seybold, Hansjörg F.; ...
2015-11-02
River networks exhibit a complex ramified structure that has inspired decades of studies. But, an understanding of the propagation of a single stream remains elusive. In this paper, we invoke a criterion for path selection from fracture mechanics and apply it to the growth of streams in a diffusion field. We show that, as it cuts through the landscape, a stream maintains a symmetric groundwater flow around its tip. The local flow conditions therefore determine the growth of the drainage network. We use this principle to reconstruct the history of a network and to find a growth law associated withmore » it. Finally, our results show that the deterministic growth of a single channel based on its local environment can be used to characterize the structure of river networks.« less
Thermal drawdown-induced flow channeling in a single fracture in EGS
Guo, Bin; Fu, Pengcheng; Hao, Yue; ...
2016-01-28
Here, the evolution of flow pattern along a single fracture and its effects on heat production is a fundamental problem in the assessments of engineered geothermal systems (EGS). The channelized flow pattern associated with ubiquitous heterogeneity in fracture aperture distribution causes non-uniform temperature decrease in the rock body, which makes the flow increasingly concentrated into some preferential paths through the action of thermal stress. This mechanism may cause rapid heat production deterioration of EGS reservoirs. In this study, we investigated the effects of aperture heterogeneity on flow pattern evolution in a single fracture in a low-permeability crystalline formation. We developedmore » a numerical model on the platform of GEOS to simulate the coupled thermo-hydro-mechanical processes in a penny-shaped fracture accessed via an injection well and a production well. We find that aperture heterogeneity generally exacerbates flow channeling and reservoir performance generally decreases with longer correlation length of aperture field. The expected production life is highly variable (5 years to beyond 30 years) when the aperture correlation length is longer than 1/5 of the well distance, whereas a heterogeneous fracture behaves similar to a homogeneous one when the correlation length is much shorter than the well distance. Besides, the mean production life decreases with greater aperture standard deviation only when the correlation length is relatively long. Although flow channeling is inevitable, initial aperture fields and well locations that enable tortuous preferential paths tend to deliver long heat production lives.« less
Bush, M L; Zhang, W; Ben-Jebria, A; Ultman, J S
2001-06-15
In the single-path model of the respiratory system, gas transport occurs within a conduit of progressively increasing cross-sectional and surface areas by a combination of flow, longitudinal dispersion, and lateral absorption. The purpose of this study was to use bolus inhalation data previously obtained for chlorine (Cl(2)) and for ozone (O(3)) to test the predictive capability of the single-path model and to adjust input parameters for applying the model to other exposure conditions. The data, consisting of uptake fraction as a function of bolus penetration volume, were recorded on 10 healthy nonsmokers breathing orally as well as nasally at alternative air flows of 150, 250, and 1000 ml/s. By employing published data for airway anatomy, gas-phase dispersion coefficients, and gas-phase mass transfer coefficients while neglecting diffusion limitations in the mucus phase, the single-path model was capable of predicting the uptake distribution for O(3) but not the steeper distribution that was observed for Cl(2). To simultaneously explain the data for these two gases, it was necessary to increase gas-phase mass transfer coefficients and to include a finite diffusion resistance of O(3) within the mucous layer. The O(3) reaction rate constants that accounted for this diffusion resistance, 2 x 10(6) s(-1) in the mouth and 8 x 10(6) s(-1) in the nose and lower airways, were much greater than previously reported reactivities of individual substrates found in mucus. Copyright 2001 Academic Press.
Study of aerodynamic technology for single-cruise engine V/STOL fighter/attack aircraft
NASA Technical Reports Server (NTRS)
Driggers, H. H.; Powers, S. A.; Roush, R. T.
1982-01-01
A conceptual design analysis is performed on a single engine V/STOL supersonic fighter/attack concept powered by a series flow tandem fan propulsion system. Forward and aft mounted fans have independent flow paths for V/STOL operation and series flow in high speed flight. Mission, combat and V/STOL performance is calculated. Detailed aerodynamic estimates are made and aerodynamic uncertainties associated with the configuration and estimation methods identified. A wind tunnel research program is developed to resolve principal uncertainties and establish a data base for the baseline configuration and parametric variations.
Internal electrolyte supply system for reliable transport throughout fuel cell stacks
Wright, Maynard K.; Downs, Robert E.; King, Robert B.
1988-01-01
An improved internal electrolyte supply system in a fuel cell stack employs a variety of arrangements of grooves and passages in bipolar plates of the multiplicity of repeating fuel cells to route gravity-assisted flowing electrolyte throughout the stack. The grooves route electrolyte flow along series of first paths which extend horizontally through the cells between the plates thereof. The passages route electrolyte flow along series of second paths which extend vertically through the stack so as to supply electrolyte to the first paths in order to expose the electrolyte to the matrices of the cells. Five different embodiments of the supply system are disclosed. Some embodiments employ wicks in the grooves for facilitating transfer of the electrolyte to the matrices as well as providing support for the matrices. Additionally, the passages of some embodiments by-pass certain of the grooves and supply electrolyte directly to other of the grooves. Some embodiments employ single grooves and others have dual grooves. Finally, in some embodiments the passages are connected to the grooves by a step which produces a cascading electrolyte flow.
Acoustic concentration of particles in fluid flow
Ward, Michael D.; Kaduchak, Gregory
2010-11-23
An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
NASA Astrophysics Data System (ADS)
Thomas, D.; Garing, C.; Zahasky, C.; Harrison, A. L.; Bird, D. K.; Benson, S. M.; Oelkers, E. H.; Maher, K.
2017-12-01
Predicting the timing and magnitude of CO2 storage in basaltic rocks relies partly on quantifying the dependence of reactivity on flow path and mineral distribution. Flow-through experiments that use intact cores are advantageous because the spatial heterogeneity of pore space and reactive phases is preserved. Combining aqueous geochemical analyses and petrologic characterization with non-destructive imaging techniques (e.g. micro-computed tomography) constrains the relationship between irreversible reactions, pore connectivity and accessible surface area. Our work enhances these capabilities by dynamically imaging flow through vesicular basalts with Positron Emission Tomography (PET) scanning. PET highlights the path a fluid takes by detecting photons produced during radioactive decay of an injected radiotracer (FDG). We have performed single-phase, CO2-saturated flow-through experiments with basaltic core from Iceland at CO2 sequestration conditions (50 °C; 76-90 bar Ptot). Constant flow rate and continuous pressure measurements at the inlet and outlet of the core constrain permeability. We monitor geochemical evolution through cation and anion analysis of outlet fluid sampled periodically. Before and after reaction, we perform PET scans and characterize the core using micro-CT. The PET scans indicate a discrete, localized flow path that appears to be a micro-crack connecting vesicles, suggesting that vesicle-lining minerals are immediately accessible and important reactants. Rapid increases in aqueous cation concentration, pH and HCO3- indicate that the rock reacts nearly immediately after CO2 injection. After 24 hours the solute release decreases, which may reflect a transition to reaction with phases with slower kinetic dissolution rates (e.g. zeolites and glasses to feldspar), a decrease in available reactive surface area or precipitation. We have performed batch experiments using crushed material of the same rock to elucidate the effect of flow path geometry and mineral accessibility on geochemical evolution. Interestingly, surface area-normalized dissolution rates as evinced by SiO2 release in all experiments approach similar values ( 10-15 mol/cm2/s). Our experiments show how imaging techniques are helpful in interpreting path-dependent processes in open systems.
Acoustic concentration of particles in fluid flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Michael W.; Kaduchak, Gregory
Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluidmore » flow path to the at least one pressure minima.« less
NASA Astrophysics Data System (ADS)
Assari, Amin; Mohammadi, Zargham
2017-09-01
Karst systems show high spatial variability of hydraulic parameters over small distances and this makes their modeling a difficult task with several uncertainties. Interconnections of fractures have a major role on the transport of groundwater, but many of the stochastic methods in use do not have the capability to reproduce these complex structures. A methodology is presented for the quantification of tortuosity using the single normal equation simulation (SNESIM) algorithm and a groundwater flow model. A training image was produced based on the statistical parameters of fractures and then used in the simulation process. The SNESIM algorithm was used to generate 75 realizations of the four classes of fractures in a karst aquifer in Iran. The results from six dye tracing tests were used to assign hydraulic conductivity values to each class of fractures. In the next step, the MODFLOW-CFP and MODPATH codes were consecutively implemented to compute the groundwater flow paths. The 9,000 flow paths obtained from the MODPATH code were further analyzed to calculate the tortuosity factor. Finally, the hydraulic conductivity values calculated from the dye tracing experiments were refined using the actual flow paths of groundwater. The key outcomes of this research are: (1) a methodology for the quantification of tortuosity; (2) hydraulic conductivities, that are incorrectly estimated (biased low) with empirical equations that assume Darcian (laminar) flow with parallel rather than tortuous streamlines; and (3) an understanding of the scale-dependence and non-normal distributions of tortuosity.
Clark, Allan K.; Journey, Celeste A.
2006-01-01
The U.S. Geological Survey, in cooperation with the San Antonio Water System, conducted a 4-year study during 2001– 04 to identify major ground-water flow paths in the Edwards aquifer in northern Medina and northeastern Uvalde Counties, Texas. The study involved use of geologic structure, surfacewater and ground-water data, and geochemistry to identify ground-water flow paths. Relay ramps and associated faulting in northern Medina County appear to channel ground-water flow along four distinct flow paths that move water toward the southwest. The northwestern Medina flow path is bounded on the north by the Woodard Cave fault and on the south by the Parkers Creek fault. Water moves downdip toward the southwest until the flow encounters a cross fault along Seco Creek. This barrier to flow might force part or most of the flow to the south. Departure hydrographs for two wells and discharge departure for a streamflow-gaging station provide evidence for flow in the northwestern Medina flow path. The north-central Medina flow path (northern part) is bounded by the Parkers Creek fault on the north and the Medina Lake fault on the south. The adjacent north-central Medina flow path (southern part) is bounded on the north by the Medina Lake fault and on the south by the Diversion Lake fault. The north-central Medina flow path is separated into a northern and southern part because of water-level differences. Ground water in both parts of the northcentral Medina flow path moves downgradient (and down relay ramp) from eastern Medina County toward the southwest. The north-central Medina flow path is hypothesized to turn south in the vicinity of Seco Creek as it begins to be influenced by structural features. Departure hydrographs for four wells and Medina Lake and discharge departure for a streamflow-gaging station provide evidence for flow in the north-central Medina flow path. The south-central Medina flow path is bounded on the north by the Seco Creek and Diversion Lake faults and on the south by the Haby Crossing fault. Because of bounding faults oriented northeast-southwest and adjacent flow paths directed south by other geologic structures, the south-central Medina flow path follows the configuration of the adjacent flow paths—oriented initially southwest and then south. Immediately after turning south, the south-central Medina flow path turns sharply east. Departure hydrographs for four wells and discharge departure for a streamflow-gaging station provide evidence for flow in the south-central Medina flow path. Statistical correlations between water-level departures for 11 continuously monitored wells provide additional evidence for the hypothesized flow paths. Of the 55 combinations of departure dataset pairs, the stronger correlations (those greater than .6) are all among wells in the same flow path, with one exception. Simulations of compositional differences in water chemistry along a hypothesized flow path in the Edwards aquifer and between ground-water and surface-water systems near Medina Lake were developed using the geochemical model PHREEQC. Ground-water chemistry for samples from five wells in the Edwards aquifer in the northwestern Medina flow path were used to evaluate the evolution of ground-water chemistry in the northwestern Medina flow path. Seven simulations were done for samples from pairs of these wells collected during 2001–03; three of the seven yielded plausible models. Ground-water samples from 13 wells were used to evaluate the evolution of ground-water chemistry in the north-central Medina flow path (northern and southern parts). Five of the wells in the most upgradient part of the flow path were completed in the Trinity aquifer; the remaining eight were completed in the Edwards aquifer. Nineteen simulations were done for samples from well pairs collected during 1995–2003; eight of the 19 yielded plausible models. Ground-water samples from seven wells were used to evaluate the evolution of ground-water chemistry in the south-central Medina flow path. One well was the Trinity aquifer end-member well upgradient from all flow paths, and another was a Trinity aquifer well in the most upgradient part of the flow path; all other wells were completed in the Edwards aquifer. Nine simulations were done for samples from well pairs collected during 1996–2003; seven of the nine yielded plausible models. The plausible models demonstrate that the four hypothesized flow paths can be partially supported geochemically.
The Seepage Simulation of Single Hole and Composite Gas Drainage Based on LB Method
NASA Astrophysics Data System (ADS)
Chen, Yanhao; Zhong, Qiu; Gong, Zhenzhao
2018-01-01
Gas drainage is the most effective method to prevent and solve coal mine gas power disasters. It is very important to study the seepage flow law of gas in fissure coal gas. The LB method is a simplified computational model based on micro-scale, especially for the study of seepage problem. Based on fracture seepage mathematical model on the basis of single coal gas drainage, using the LB method during coal gas drainage of gas flow numerical simulation, this paper maps the single-hole drainage gas, symmetric slot and asymmetric slot, the different width of the slot combined drainage area gas flow under working condition of gas cloud of gas pressure, flow path diagram and flow velocity vector diagram, and analyses the influence on gas seepage field under various working conditions, and also discusses effective drainage method of the center hole slot on both sides, and preliminary exploration that is related to the combination of gas drainage has been carried on as well.
Carroll, Carlos; McRae, Brad H; Brookes, Allen
2012-02-01
Centrality metrics evaluate paths between all possible pairwise combinations of sites on a landscape to rank the contribution of each site to facilitating ecological flows across the network of sites. Computational advances now allow application of centrality metrics to landscapes represented as continuous gradients of habitat quality. This avoids the binary classification of landscapes into patch and matrix required by patch-based graph analyses of connectivity. It also avoids the focus on delineating paths between individual pairs of core areas characteristic of most corridor- or linkage-mapping methods of connectivity analysis. Conservation of regional habitat connectivity has the potential to facilitate recovery of the gray wolf (Canis lupus), a species currently recolonizing portions of its historic range in the western United States. We applied 3 contrasting linkage-mapping methods (shortest path, current flow, and minimum-cost-maximum-flow) to spatial data representing wolf habitat to analyze connectivity between wolf populations in central Idaho and Yellowstone National Park (Wyoming). We then applied 3 analogous betweenness centrality metrics to analyze connectivity of wolf habitat throughout the northwestern United States and southwestern Canada to determine where it might be possible to facilitate range expansion and interpopulation dispersal. We developed software to facilitate application of centrality metrics. Shortest-path betweenness centrality identified a minimal network of linkages analogous to those identified by least-cost-path corridor mapping. Current flow and minimum-cost-maximum-flow betweenness centrality identified diffuse networks that included alternative linkages, which will allow greater flexibility in planning. Minimum-cost-maximum-flow betweenness centrality, by integrating both land cost and habitat capacity, allows connectivity to be considered within planning processes that seek to maximize species protection at minimum cost. Centrality analysis is relevant to conservation and landscape genetics at a range of spatial extents, but it may be most broadly applicable within single- and multispecies planning efforts to conserve regional habitat connectivity. ©2011 Society for Conservation Biology.
Global Qualitative Flow-Path Modeling for Local State Determination in Simulation and Analysis
NASA Technical Reports Server (NTRS)
Malin, Jane T. (Inventor); Fleming, Land D. (Inventor)
1998-01-01
For qualitative modeling and analysis, a general qualitative abstraction of power transmission variables (flow and effort) for elements of flow paths includes information on resistance, net flow, permissible directions of flow, and qualitative potential is discussed. Each type of component model has flow-related variables and an associated internal flow map, connected into an overall flow network of the system. For storage devices, the implicit power transfer to the environment is represented by "virtual" circuits that include an environmental junction. A heterogeneous aggregation method simplifies the path structure. A method determines global flow-path changes during dynamic simulation and analysis, and identifies corresponding local flow state changes that are effects of global configuration changes. Flow-path determination is triggered by any change in a flow-related device variable in a simulation or analysis. Components (path elements) that may be affected are identified, and flow-related attributes favoring flow in the two possible directions are collected for each of them. Next, flow-related attributes are determined for each affected path element, based on possibly conflicting indications of flow direction. Spurious qualitative ambiguities are minimized by using relative magnitudes and permissible directions of flow, and by favoring flow sources over effort sources when comparing flow tendencies. The results are output to local flow states of affected components.
Otero, Cassi L.
2007-01-01
The U.S. Geological Survey, in cooperation with the San Antonio Water System, conducted a 4-year study during 2002?06 to identify major flow paths in the Edwards aquifer in northeastern Bexar and southern Comal Counties (study area). In the study area, faulting directs ground water into three hypothesized flow paths that move water, generally, from the southwest to the northeast. These flow paths are identified as the southern Comal flow path, the central Comal flow path, and the northern Comal flow path. Statistical correlations between water levels for six observation wells and between the water levels and discharges from Comal Springs and Hueco Springs yielded evidence for the hypothesized flow paths. Strong linear correlations were evident between the datasets from wells and springs within the same flow path and the datasets from wells in areas where flow between flow paths was suspected. Geochemical data (major ions, stable isotopes, sulfur hexafluoride, and tritium and helium) were used in graphical analyses to obtain evidence of the flow path from which wells or springs derive water. Major-ion geochemistry in samples from selected wells and springs showed relatively little variation. Samples from the southern Comal flow path were characterized by relatively high sulfate and chloride concentrations, possibly indicating that the water in the flow path was mixing with small amounts of saline water from the freshwater/saline-water transition zone. Samples from the central Comal flow path yielded the most varied major-ion geochemistry of the three hypothesized flow paths. Central Comal flow path samples were characterized, in general, by high calcium concentrations and low magnesium concentrations. Samples from the northern Comal flow path were characterized by relatively low sulfate and chloride concentrations and high magnesium concentrations. The high magnesium concentrations characteristic of northern Comal flow path samples from the recharge zone in Comal County might indicate that water from the Trinity aquifer is entering the Edwards aquifer in the subsurface. A graph of the relation between the stable isotopes deuterium and delta-18 oxygen showed that, except for samples collected following an unusually intense rain storm, there was not much variation in stable isotope values among the flow paths. In the study area deuterium ranged from -36.00 to -20.89 per mil and delta-18 oxygen ranged from -6.03 to -3.70 per mil. Excluding samples collected following the intense rain storm, the deuterium range in the study area was -33.00 to -20.89 per mil and the delta-18 oxygen range was -4.60 to -3.70 per mil. Two ground-water age-dating techniques, sulfur hexafluoride concentrations and tritium/helium-3 isotope ratios, were used to compute apparent ages (time since recharge occurred) of water samples collected in the study area. In general, the apparent ages computed by the two methods do not seem to indicate direction of flow. Apparent ages computed for water samples in northeastern Bexar and southern Comal Counties do not vary greatly except for some very young water in the recharge zone in central Comal County.
Characterizing Reactive Flow Paths in Fractured Cement
NASA Astrophysics Data System (ADS)
Wenning, Q. C.; Huerta, N. J.; Hesse, M. A.; Bryant, S. L.
2011-12-01
Geologic carbon sequestration can be a viable method for reducing anthropogenic CO2 flux into the atmosphere. However, the technology must be economically feasible and pose acceptable risk to stakeholders. One key risk is CO2 leakage out of the storage reservoir. Potential driving forces for leakage are the overpressure due to CO2 injection and the buoyancy of free phase CO2. Potential hazards of leakage are contamination of Underground Sources of Drinking Water or the atmosphere and would be deemed an unacceptable risk. Wells potentially provide a fast path for leakage from the reservoir. While the well's cement casing is reactive with CO2 and CO2-saturated brine, the low cement matrix permeability and slow diffusion rate make it unlikely that CO2 will escape through a properly constructed wellbore. However, highly permeable fractures with micrometer scale apertures can occur in cement casings. Reactions that occur in the flow in these fractures can either be self-limiting or self-enhancing. Therefore, understanding the reactive flow is critical to understanding of leakage evolution through these fractures. The goal of our work is to characterize the modification of the flow paths in the fracture due to reaction with acidic brine. With this aim we have characterized both the initial flow path of un-reactive flow and the final flow path after introduction of low-pH acid along the same fracture. Class H cement cores 3-6 cm in length and 2.5 cm diameter are created and a single natural and unique fracture is produced in each core using the Brazilian method. Our experimental fluid is injected at a constant rate into the cement core housed in a Hassler Cell under confining pressure. A solution of red dye and deionized water is pumped through the fracture to stain the un-reactive flow paths. Deionized water is then pumped through the core to limit diffusion of the dye into non-flowing portions of the fracture. After staining the initial flow path, low pH water due to hydrochloric acid (HCL), is pumped through the core at the same rate as the dye. The low pH water is used as a proxy for acidic CO2-saturated brine. Both staining from the un-reactive dye and acid produce visible permanent color alterations on the cement fracture plane. Results show that nearly the entire fracture width is stained by the red dye, with only a few asperities un-dyed. However the low pH HCl forms restricted reacted channels that are a subset of the area open to un-reactive flow, occupying only 10-50% of the entire fracture width. Low pH HCl is believed to be the driving force for the reaction that causes channeling. As acid flows through the fracture, calcium is stripped from the low pH high velocity flow front and precipitates along of the edges of the channel where pH is higher due to the lower flow velocities outside the channel. It is hypothesized that this mineral precipitation restricts the flow into localized channels within the plane of fractures having apertures of tens of micrometers. Reactions restrict the flow path to a smaller fraction of the surface, which may be an indication of self-limiting behavior.
Availability Improvement of Layer 2 Seamless Networks Using OpenFlow
Molina, Elias; Jacob, Eduardo; Matias, Jon; Moreira, Naiara; Astarloa, Armando
2015-01-01
The network robustness and reliability are strongly influenced by the implementation of redundancy and its ability of reacting to changes. In situations where packet loss or maximum latency requirements are critical, replication of resources and information may become the optimal technique. To this end, the IEC 62439-3 Parallel Redundancy Protocol (PRP) provides seamless recovery in layer 2 networks by delegating the redundancy management to the end-nodes. In this paper, we present a combination of the Software-Defined Networking (SDN) approach and PRP topologies to establish a higher level of redundancy and thereby, through several active paths provisioned via the OpenFlow protocol, the global reliability is increased, as well as data flows are managed efficiently. Hence, the experiments with multiple failure scenarios, which have been run over the Mininet network emulator, show the improvement in the availability and responsiveness over other traditional technologies based on a single active path. PMID:25759861
Availability improvement of layer 2 seamless networks using OpenFlow.
Molina, Elias; Jacob, Eduardo; Matias, Jon; Moreira, Naiara; Astarloa, Armando
2015-01-01
The network robustness and reliability are strongly influenced by the implementation of redundancy and its ability of reacting to changes. In situations where packet loss or maximum latency requirements are critical, replication of resources and information may become the optimal technique. To this end, the IEC 62439-3 Parallel Redundancy Protocol (PRP) provides seamless recovery in layer 2 networks by delegating the redundancy management to the end-nodes. In this paper, we present a combination of the Software-Defined Networking (SDN) approach and PRP topologies to establish a higher level of redundancy and thereby, through several active paths provisioned via the OpenFlow protocol, the global reliability is increased, as well as data flows are managed efficiently. Hence, the experiments with multiple failure scenarios, which have been run over the Mininet network emulator, show the improvement in the availability and responsiveness over other traditional technologies based on a single active path.
Wilkison, D.H.; Blevins, D.W.
1999-01-01
A study site underlain by a claypan soil was instrumented to examine the transport of fertilizer nitrogen (N) under corn (Zea mays L.) cultivation. The study was designed to examine N transport within the unsaturated zone and in interflow (the saturated flow of water on top of the claypan). A 15N- labeled fertilizer (labeled N), bromide (Br), and chloride (Cl) were used as field tracers. Rapid or prolonged infiltration events allowed water and dissolved solutes to perch on the claypan for brief periods. However, a well- developed network of preferential flow paths quickly diverted water and solutes through the claypan and into the underlying glacial till aquifer. Excess fertilizer N in the unsaturated zone supplied a continuous, but declining input of N to ground water for a period of 15 mo after a single fertilizer application. Calculated solute velocities through the claypan matrix (6.4 x 10-6 cm s-1) were similar to horizontal transport rates along the claypan (3.5 to 7.3 x 10-6 cm s-1) but much slower than infiltration rates determined for preferential flow paths (1.67 x 10-3 cm s-1). These flow paths accounted for 35% of the transport. A seasonally variable, dual mode of transport (matrix and preferential flow) prevented the claypan from being an effective barrier to vertical transport. Simulations of selected field observations, conducted using the variably saturated two- dimensional flow and transport model, VS2DT, confirmed the presence of a dual flow regime in the claypan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khinkis, Mark J.; Kozlov, Aleksandr P.
A radiant, non-catalytic recuperative reformer has a flue gas flow path for conducting hot exhaust gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is positioned adjacent to the flue gas flow path to permit heat transfer from the hot exhaust gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorificmore » fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, a portion of the reforming mixture flow path is positioned outside of flue gas flow path for a relatively large residence time.« less
Impeller leakage flow modeling for mechanical vibration control
NASA Technical Reports Server (NTRS)
Palazzolo, Alan B.
1996-01-01
HPOTP and HPFTP vibration test results have exhibited transient and steady characteristics which may be due to impeller leakage path (ILP) related forces. For example, an axial shift in the rotor could suddenly change the ILP clearances and lengths yielding dynamic coefficient and subsequent vibration changes. ILP models are more complicated than conventional-single component-annular seal models due to their radial flow component (coriolis and centrifugal acceleration), complex geometry (axial/radial clearance coupling), internal boundary (transition) flow conditions between mechanical components along the ILP and longer length, requiring moment as well as force coefficients. Flow coupling between mechanical components results from mass and energy conservation applied at their interfaces. Typical components along the ILP include an inlet seal, curved shroud, and an exit seal, which may be a stepped labyrinth type. Von Pragenau (MSFC) has modeled labyrinth seals as a series of plain annular seals for leakage and dynamic coefficient prediction. These multi-tooth components increase the total number of 'flow coupled' components in the ILP. Childs developed an analysis for an ILP consisting of a single, constant clearance shroud with an exit seal represented by a lumped flow-loss coefficient. This same geometry was later extended to include compressible flow. The objective of the current work is to: supply ILP leakage-force impedance-dynamic coefficient modeling software to MSFC engineers, base on incompressible/compressible bulk flow theory; design the software to model a generic geometry ILP described by a series of components lying along an arbitrarily directed path; validate the software by comparison to available test data, CFD and bulk models; and develop a hybrid CFD-bulk flow model of an ILP to improve modeling accuracy within practical run time constraints.
Effects of Stochastic Traffic Flow Model on Expected System Performance
2012-12-01
NSWC-PCD has made considerable improvements to their pedestrian flow modeling . In addition to the linear paths, the 2011 version now includes...using stochastic paths. 2.2 Linear Paths vs. Stochastic Paths 2.2.1 Linear Paths and Direct Maximum Pd Calculation Modeling pedestrian traffic flow...as a stochastic process begins with the linear path model . Let the detec- tion area be R x C voxels. This creates C 2 total linear paths, path(Cs
NASA Technical Reports Server (NTRS)
Kadlec, R.
1979-01-01
The use of self synchronizing stroboscopic Schlieren and laser interferometer systems to obtain quantitative space time measurements of distinguished flow surfaces, steakline patterns, and the density field of two dimensional flows that exhibit a periodic content was investigated. A large field single path stroboscopic Schlieren system was designed, constructed and successfully applied to visualize four periodic flows: near wake behind an oscillating airfoil; edge tone sound generation; 2-D planar wall jet; and axisymmetric pulsed sonic jet. This visualization technique provides an effective means of studying quasi-periodic flows in real time. The image on the viewing screen is a spatial signal average of the coherent periodic motion rather than a single realization, the high speed motion of a quasi-periodic flow can be reconstructed by recording photographs of the flow at different fixed time delays in one cycle. The preliminary design and construction of a self synchronizing stroboscopic laser interferometer with a modified Mach-Zehnder optical system is also reported.
Catalytic reactor for low-Btu fuels
Smith, Lance; Etemad, Shahrokh; Karim, Hasan; Pfefferle, William C.
2009-04-21
An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.
Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.
2007-05-29
A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.
Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.
2005-05-31
A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.
NASA Astrophysics Data System (ADS)
Stahr, Donald W.; Law, Richard D.
2014-11-01
We model the development of shape preferred orientation (SPO) of a large population of two- and three-dimensional (2D and 3D) rigid clasts suspended in a linear viscous matrix deformed by superposed steady and continuously non-steady plane strain flows to investigate the sensitivity of clasts to changing boundary conditions during a single or superposed deformation events. Resultant clast SPOs are compared to one developed by an identical initial population that experienced a steady flow history of constant kinematic vorticity and reached an identical finite strain state, allowing examination of SPO sensitivity to deformation path. Rotation paths of individual triaxial inclusions are complex, even for steady plane strain flow histories. It has been suggested that the 3D nature of the system renders predictions based on 2D models inadequate for applied clast-based kinematic vorticity gauges. We demonstrate that for a large population of clasts, simplification to a 2D model does provide a good approximation to the SPO predicted by full 3D analysis for steady and non-steady plane strain deformation paths. Predictions of shape fabric development from 2D models are not only qualitatively similar to the more complex 3D analysis, but they display the same limitations of techniques based on clast SPO commonly used as a quantitative kinematic vorticity gauge. Our model results from steady, superposed, and non-steady flow histories with a significant pure shearing component at a wide range of finite strain resemble predictions for an identical initial population that experienced a single steady simple shearing deformation. We conclude that individual 2D and 3D clasts respond instantaneously to changes in boundary conditions, however, in aggregate, the SPO of a population of rigid inclusions does not reflect the late-stage kinematics of deformation, nor is it an indicator of the unique 'mean' kinematic vorticity experienced by a deformed rock volume.
Fuel cell repeater unit including frame and separator plate
Yamanis, Jean; Hawkes, Justin R; Chiapetta, Jr., Louis; Bird, Connie E; Sun, Ellen Y; Croteau, Paul F
2013-11-05
An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.
NASA Astrophysics Data System (ADS)
Galerkin, Y. B.; Voinov, I. B.; Drozdov, A. A.
2017-08-01
Computational Fluid Dynamics (CFD) methods are widely used for centrifugal compressors design and flow analysis. The calculation results are dependent on the chosen software, turbulence models and solver settings. Two of the most widely applicable programs are NUMECA Fine Turbo and ANSYS CFX. The objects of the study were two different stages. CFD-calculations were made for a single blade channel and for full 360-degree flow paths. Stage 1 with 3D impeller and vaneless diffuser was tested experimentally. Its flow coefficient is 0.08 and loading factor is 0.74. For stage 1 calculations were performed with different grid quality, a different number of cells and different models of turbulence. The best results have demonstrated the Spalart-Allmaras model and mesh with 1.854 million cells. Stage 2 with return channel, vaneless diffuser and 3D impeller with flow coefficient 0.15 and loading factor 0.5 was designed by the known Universal Modeling Method. Its performances were calculated by the well identified Math model. Stage 2 performances by CFD calculations shift to higher flow rate in comparison with design performances. The same result was obtained for stage 1 in comparison with measured performances. Calculated loading factor is higher in both cases for a single blade channel. Loading factor performance calculated for full flow path (“360 degrees”) by ANSYS CFX is in satisfactory agreement with the stage 2 design performance. Maximum efficiency is predicted accurately by the ANSYS CFX “360 degrees” calculation. “Sector” calculation is less accurate. Further research is needed to solve the problem of performances mismatch.
Flow through triple helical microchannel
NASA Astrophysics Data System (ADS)
Rajbanshi, Pravat; Ghatak, Animangsu
2018-02-01
Flow through helical tubes and channels have been examined in different contexts, for facilitating heat and mass transfer at low Reynolds number flow, for generating plug flow to minimize reactor volume for many reactions. The curvature and torsion of the helices have been shown to engender secondary flow in addition to the primary axial flow, which enhances passive in-plane mixing between different fluid streams. Most of these studies, however, involve a single spiral with circular cross-section, which in essence is symmetric. It is not known, however, how the coupled effect of asymmetry of cross-section and the curvature and torsion of channel would affect the flow profile inside such tubes or channels. In this context, we have presented here the analysis of fluid flow at low Reynolds number inside a novel triple helical channel that consists of three helical flow paths joined along their contour length forming a single channel. We have carried out both microparticle image velocimetry (micro-PIV) and 3D simulation in FLUENT of flow of a Newtonian fluid through such channels. Our analysis shows that whereas in conventional single helices, the secondary flow is characterized by two counter-rotating vortices, in the case of triple helical channels, number of such vortices increases with the helix angle. Such flow profile is expected to enhance possibility of mixing between the liquids, yet diminish the pressure drop.
Radial inlet guide vanes for a combustor
Zuo, Baifang; Simons, Derrick; York, William; Ziminsky, Willy S
2013-02-12
A combustor may include an interior flow path therethrough, a number of fuel nozzles in communication with the interior flow path, and an inlet guide vane system positioned about the interior flow path to create a swirled flow therein. The inlet guide vane system may include a number of windows positioned circumferentially around the fuel nozzles. The inlet guide vane system may also include a number of inlet guide vanes positioned circumferentially around the fuel nozzles and adjacent to the windows to create a swirled flow within the interior flow path.
Siphon flows in isolated magnetic flux tubes. III - The equilibrium path of the flux-tube arch
NASA Technical Reports Server (NTRS)
Thomas, John H.; Montesinos, Benjamin
1990-01-01
It is shown how to calculate the equilibrium path of a thin magnetic flux tube in a stratified, nonmagnetic atmosphere when the flux tube contains a steady siphon flow. The equilbrium path of a static thin flux tube in an infinite stratified atmosphere generally takes the form of a symmetric arch of finite width, with the flux tube becoming vertical at either end of the arch. A siphon flow within the flux tube increases the curvature of the arched equilibrium path in order that the net magnetic tension force can balance the inertial force of the flow, which tries to straighten the flux tube. Thus, a siphon flow reduces the width of the arched equilibrium path, with faster flows producing narrower arches. The effect of the siphon flow on the equilibrium path is generally greater for flux tubes of weaker magnetic field strength. Examples of the equilibrium are shown for both isothemal and adiabatic siphon flows in thin flux tubes in an isothermal external atmosphere.
Non-catalytic recuperative reformer
Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry
2015-12-22
A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.
Nonintrusive performance measurement of a gas turbine engine in real time
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul P.; Claussen, Heiko
Performance of a gas turbine engine is monitored by computing a mass flow rate through the engine. Acoustic time-of-flight measurements are taken between acoustic transmitters and receivers in the flow path of the engine. The measurements are processed to determine average speeds of sound and gas flow velocities along those lines-of-sound. A volumetric flow rate in the flow path is computed using the gas flow velocities together with a representation of the flow path geometry. A gas density in the flow path is computed using the speeds of sound and a measured static pressure. The mass flow rate is calculatedmore » from the gas density and the volumetric flow rate.« less
NASA Astrophysics Data System (ADS)
Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian
2017-04-01
Flow pattern and seasonal as well as diurnal temperature variations control ecological and biogeochemical conditions in hyporheic sediments. In particular, hyporheic temperatures have a great impact on many microbial processes. In this study we used 3-D coupled water flow and heat transport simulations applying the HydroGeoSphere code in combination with high frequent observations of hydraulic heads and temperatures for quantifying reach scale water and heat flux across the river groundwater interface and hyporheic temperature dynamics of a lowland gravel-bed river. The magnitude and dynamics of simulated temperatures matched the observed with an average mean absolute error of 0.7 °C and an average Nash Sutcliffe Efficiency of 0.87. Our results highlight that the average temperature in the hyporheic zone follows the temperature in the river which is characterized by distinct seasonal and daily temperature cycles. Individual hyporheic flow path temperature substantially varies around the average hyporheic temperature. Hyporheic flow path temperature was found to strongly depend on the flow path residence time and the temperature gradient between river and groundwater; that is, in winter the average flow path temperature of long flow paths is potentially higher compared to short flow paths. Based on the simulation results we derived a general empirical relationship, estimating the influence of hyporheic flow path residence time on hyporheic flow path temperature. Furthermore we used an empirical temperature relationship between effective temperature and respiration rate to estimate the influence of hyporheic flow path residence time and temperature on hyporheic oxygen consumption. This study highlights the relation between complex hyporheic temperature patterns, hyporheic residence times and their implications on temperature sensitive biogeochemical processes.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
...-WECC-1 summarizes the nine steps and related actions to address unscheduled flows. 10. NERC states that...] Western Electric Coordinating Council; Qualified Transfer Path Unscheduled Flow Relief Regional... Path Unscheduled Flow Relief) submitted to the Commission for approval by the North American Electric...
CT scanning and flow measurements of shale fractures after multiple shearing events
Crandall, Dustin; Moore, Johnathan; Gill, Magdalena; ...
2017-11-05
A shearing apparatus was used in conjunction with a Hassler-style core holder to incrementally shear fractured shale cores while maintaining various confining pressures. Computed tomography scans were performed after each shearing event, and were used to obtain information on evolving fracture geometry. Fracture transmissivity was measured after each shearing event to understand the hydrodynamic response to the evolving fracture structure. The digital fracture volumes were used to perform laminar single phase flow simulations (local cubic law with a tapered plate correction model) to qualitatively examine small scale flow path variations within the altered fractures. Fractures were found to generally increasemore » in aperture after several shear slip events, with corresponding transmissivity increases. Lower confining pressure resulted in a fracture more prone to episodic mechanical failure and sudden changes in transmissivity. Conversely, higher confining pressures resulted in a system where, after an initial setting of the fracture surfaces, changes to the fracture geometry and transmissivity occurred gradually. Flow paths within the fractures are largely controlled by the location and evolution of zero aperture locations. Lastly, a reduction in the number of primary flow pathways through the fracture, and an increase in their width, was observed during all shearing tests.« less
CT scanning and flow measurements of shale fractures after multiple shearing events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crandall, Dustin; Moore, Johnathan; Gill, Magdalena
A shearing apparatus was used in conjunction with a Hassler-style core holder to incrementally shear fractured shale cores while maintaining various confining pressures. Computed tomography scans were performed after each shearing event, and were used to obtain information on evolving fracture geometry. Fracture transmissivity was measured after each shearing event to understand the hydrodynamic response to the evolving fracture structure. The digital fracture volumes were used to perform laminar single phase flow simulations (local cubic law with a tapered plate correction model) to qualitatively examine small scale flow path variations within the altered fractures. Fractures were found to generally increasemore » in aperture after several shear slip events, with corresponding transmissivity increases. Lower confining pressure resulted in a fracture more prone to episodic mechanical failure and sudden changes in transmissivity. Conversely, higher confining pressures resulted in a system where, after an initial setting of the fracture surfaces, changes to the fracture geometry and transmissivity occurred gradually. Flow paths within the fractures are largely controlled by the location and evolution of zero aperture locations. Lastly, a reduction in the number of primary flow pathways through the fracture, and an increase in their width, was observed during all shearing tests.« less
NASA Technical Reports Server (NTRS)
Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.; Steinetz, B. M.
1995-01-01
A numerical analysis methodology and solutions of the interaction between the power stream and multiply-connected multi-cavity sealed secondary flow fields are presented. Flow solutions for a multi-cavity experimental rig were computed and compared with experimental data of Daniels and Johnson. The flow solutions illustrate the complex coupling between the main-path and the cavity flows as well as outline the flow thread that exists throughout the subplatform multiple cavities and seals. The analysis also shows that the de-coupled solutions on single cavities is inadequate. The present results show trends similar to the T-700 engine data that suggests the changes in the CDP seal altered the flow fields throughout the engine and affected the engine performance.
Werner, Kent; Bosson, Emma; Berglund, Sten
2006-12-01
Safety assessment related to the siting of a geological repository for spent nuclear fuel deep in the bedrock requires identification of potential flow paths and the associated travel times for radionuclides originating at repository depth. Using the Laxemar candidate site in Sweden as a case study, this paper describes modeling methodology, data integration, and the resulting water flow models, focusing on the Quaternary deposits and the upper 150 m of the bedrock. Example simulations identify flow paths to groundwater discharge areas and flow paths in the surface system. The majority of the simulated groundwater flow paths end up in the main surface waters and along the coastline, even though the particles used to trace the flow paths are introduced with a uniform spatial distribution at a relatively shallow depth. The calculated groundwater travel time, determining the time available for decay and retention of radionuclides, is on average longer to the coastal bays than to other biosphere objects at the site. Further, it is demonstrated how GIS-based modeling can be used to limit the number of surface flow paths that need to be characterized for safety assessment. Based on the results, the paper discusses an approach for coupling the present models to a model for groundwater flow in the deep bedrock.
The role of topography on catchment‐scale water residence time
McGuire, K.J.; McDonnell, Jeffery J.; Weiler, M.; Kendall, C.; McGlynn, B.L.; Welker, J.M.; Seibert, J.
2005-01-01
The age, or residence time, of water is a fundamental descriptor of catchment hydrology, revealing information about the storage, flow pathways, and source of water in a single integrated measure. While there has been tremendous recent interest in residence time estimation to characterize watersheds, there are relatively few studies that have quantified residence time at the watershed scale, and fewer still that have extended those results beyond single catchments to larger landscape scales. We examined topographic controls on residence time for seven catchments (0.085–62.4 km2) that represent diverse geologic and geomorphic conditions in the western Cascade Mountains of Oregon. Our primary objective was to determine the dominant physical controls on catchment‐scale water residence time and specifically test the hypothesis that residence time is related to the size of the basin. Residence times were estimated by simple convolution models that described the transfer of precipitation isotopic composition to the stream network. We found that base flow mean residence times for exponential distributions ranged from 0.8 to 3.3 years. Mean residence time showed no correlation to basin area (r2 < 0.01) but instead was correlated (r2 = 0.91) to catchment terrain indices representing the flow path distance and flow path gradient to the stream network. These results illustrate that landscape organization (i.e., topography) rather than basin area controls catchment‐scale transport. Results from this study may provide a framework for describing scale‐invariant transport across climatic and geologic conditions, whereby the internal form and structure of the basin defines the first‐order control on base flow residence time.
A Dynamic Resilience Approach for WDM Optical Networks
NASA Astrophysics Data System (ADS)
Garg, Amit Kumar
2017-12-01
Optical fibres have been developed as a transmission medium to carry traffic in order to provide various services in telecommunications platform. Failure of this fibre caused loss of data which can interrupt communication services. This paper has been focused only on survivable schemes in order to guarantee both protection and restoration in WDM optical networks. In this paper, a dynamic resilience approach has been proposed whose objective is to route the flows in a way which minimizes the total amount of bandwidth used for working and protection paths. In the proposed approach, path-based protection is utilized because it yields lower overhead and is also suitable for global optimization where, in case of a single link failure, all the flows utilizing the failed link are re-routed to a pre-computed set of paths. The simulation results demonstrate that proposed approach is much more efficient as it provides better quality of services (QoS) in terms of network resource utilization, blocking probability etc. as compared to conventional protection and restoration schemes. The proposed approach seems to offer an attractive combination of features, with both ring like speed and mesh-like efficiency.
Rankine cycle load limiting through use of a recuperator bypass
Ernst, Timothy C.
2011-08-16
A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.
Simulation and video animation of canal flushing created by a tide gate
Schoellhamer, David H.
1988-01-01
A tide-gate algorithm was added to a one-dimensional unsteady flow model that was calibrated, verified, and used to determine the locations of as many as five tide gates that would maximize flushing in two canal systems. Results from the flow model were used to run a branched Lagrangian transport model to simulate the flushing of a conservative constituent from the canal systems both with and without tide gates. A tide gate produces a part-time riverine flow through the canal system that improves flushing along the flow path created by the tide gate. Flushing with no tide gates and with a single optimally located tide gate are shown with a video animation.
Hoskinson, Reed L [Rigby, ID; Svoboda, John M [Idaho Falls, ID; Bauer, William F [Idaho Falls, ID; Elias, Gracy [Idaho Falls, ID
2008-05-06
A method and apparatus is provided for monitoring a flow path having plurality of different solid components flowing therethrough. For example, in the harvesting of a plant material, many factors surrounding the threshing, separating or cleaning of the plant material and may lead to the inadvertent inclusion of the component being selectively harvested with residual plant materials being discharged or otherwise processed. In accordance with the present invention the detection of the selectively harvested component within residual materials may include the monitoring of a flow path of such residual materials by, for example, directing an excitation signal toward of flow path of material and then detecting a signal initiated by the presence of the selectively harvested component responsive to the excitation signal. The detected signal may be used to determine the presence or absence of a selected plant component within the flow path of residual materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourcier, William L.; Roberts, Sarah K.; Roberts, Jeffery J.
A system for blocking fast flow paths in geological formations includes preparing a solution of colloidal silica having a nonviscous phase and a solid gel phase. The solution of colloidal silica is injected into the geological formations while the solution of colloidal silica is in the nonviscous phase. The solution of colloidal silica is directed into the fast flow paths and reaches the solid gel phase in the fast flow paths thereby blocking flow of fluid in the fast paths.
Wang, Sen; Feng, Qihong; Han, Xiaodong
2013-01-01
Due to the long-term fluid-solid interactions in waterflooding, the tremendous variation of oil reservoir formation parameters will lead to the widespread evolution of preferential flow paths, thereby preventing the further enhancement of recovery efficiency because of unstable fingering and premature breakthrough. To improve oil recovery, the characterization of preferential flow paths is essential and imperative. In efforts that have been previously documented, fluid flow characteristics within preferential paths are assumed to obey Darcy's equation. However, the occurrence of non-Darcy flow behavior has been increasingly suggested. To examine this conjecture, the Forchheimer number with the inertial coefficient estimated from different empirical formulas is applied as the criterion. Considering a 10% non-Darcy effect, the fluid flow in a preferential path may do experience non-Darcy behavior. With the objective of characterizing the preferential path with non-Darcy flow, a hybrid analytical/numerical model has been developed to investigate the pressure transient response, which dynamically couples a numerical model describing the non-Darcy effect of a preferential flow path with an analytical reservoir model. The characteristics of the pressure transient behavior and the sensitivities of corresponding parameters have also been discussed. In addition, an interpretation approach for pressure transient testing is also proposed, in which the Gravitational Search Algorithm is employed as a non-linear regression technology to match measured pressure with this hybrid model. Examples of applications from different oilfields are also presented to illustrate this method. This cost-effective approach provides more accurate characterization of a preferential flow path with non-Darcy flow, which will lay a solid foundation for the design and operation of conformance control treatments, as well as several other Enhanced Oil Recovery projects. PMID:24386224
Investigation of Preferential Flow in Low Impact Development Practice
NASA Astrophysics Data System (ADS)
Liu, L.; Cao, R.; Wang, C.; Jiang, W.; Wang, J.; Xia, Z.
2016-12-01
The characteristics of preferential flow in soil affect Low Impact Development (LID) practices in two aspects. On the one hand, preferential flow may facilitate drainage of stormwater by causing non-uniform movement of water through a small portion of media (such as cracks and holes), and thus leading to much faster transport of water and solutes in one specific direction than others. On the other hand, within a certain ranges, preferential flow may weaken the subgrade capacity of pressure and/or shear stress resistance. Therefore, for the purpose of improving LID practices, there may exist an optimum scenario with a high allowable flowrate and least negative impact of resistance capacity for a soil layer. This project aims to assist the LID design by exploring the features of preferential flow in different soil compositions, studying how different flow paths affect the stability of subgrade, preliminarily analyzing the sensitivity of preferential flow impacting on drainage capacity and subgrade stability in the LID, and further optimizing LID practices. Accordingly, the concepts of Essential Direction Path, Unessential Direction Path and the Sensitivity Coefficient are defined and analyzed to simulate a hypothetical funneling scenario in LID practice. Both irrigation apparatus experiments and numerical models are utilized in this research to investigate the features of preferential flow, effective strength and overall shear strength. The main conclusions include: (1) Investigation of preferential flow characteristics in essential direction path and unessential direction path, respectively; (2) Optimum design of preferential flow in LID practice; (3) Transport capacity determination of preferential flow path in different soils; (4) Study of preferential flow impact on roadbed stability. KEY WORDS: Preferential Flow, Subgrade stability, LID, Sensitivity Coefficient, Funneling Preferential Flow Path
Nishida, Masahiro; Nakayama, Kento; Sakota, Daisuke; Kosaka, Ryo; Maruyama, Osamu; Kawaguchi, Yasuo; Kuwana, Katsuyuki; Yamane, Takashi
2016-06-01
The effect of the flow path geometry of the impeller on the lift-off and tilt of the rotational axis of the impeller against the hydrodynamic force was investigated in a centrifugal blood pump with an impeller supported by a single-contact pivot bearing. Four types of impeller were compared: the FR model with the flow path having both front and rear cutouts on the tip, the F model with the flow path having only a front cutout, the R model with only a rear cutout, and the N model with a straight flow path. First, the axial thrust and the movement about the pivot point, which was loaded on the surface of the impeller, were calculated using computational fluid dynamics (CFD) analysis. Next, the lift-off point and the tilt of the rotational axis of the impeller were measured experimentally. The CFD analysis showed that the axial thrust increased gently in the FR and R models as the flow rate increased, whereas it increased drastically in the F and N models. This difference in axial thrust was likely from the higher pressure caused by the smaller circumferential velocity in the gap between the top surface of the impeller and the casing in the FR and R models than in the F and N models, which was caused by the rear cutout. These results corresponded with the experimental results showing that the impellers lifted off in the F and N models as the flow rate increased, whereas it did not in the FR and R models. Conversely, the movement about the pivot point increased in the direction opposite the side with the pump outlet as the flow rate increased. However, the tilt of the rotational axis of the impeller, which oriented away from the pump outlet, was less than 0.8° in any model under any conditions, and was considered to negligibly affect the rotational attitude of the impeller. These results confirm that a rear cutout prevents lift-off of the impeller caused by a decrease in the axial thrust. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Path Flow Estimation Using Time Varying Coefficient State Space Model
NASA Astrophysics Data System (ADS)
Jou, Yow-Jen; Lan, Chien-Lun
2009-08-01
The dynamic path flow information is very crucial in the field of transportation operation and management, i.e., dynamic traffic assignment, scheduling plan, and signal timing. Time-dependent path information, which is important in many aspects, is nearly impossible to be obtained. Consequently, researchers have been seeking estimation methods for deriving valuable path flow information from less expensive traffic data, primarily link traffic counts of surveillance systems. This investigation considers a path flow estimation problem involving the time varying coefficient state space model, Gibbs sampler, and Kalman filter. Numerical examples with part of a real network of the Taipei Mass Rapid Transit with real O-D matrices is demonstrated to address the accuracy of proposed model. Results of this study show that this time-varying coefficient state space model is very effective in the estimation of path flow compared to time-invariant model.
The stochastic thermodynamics of a rotating Brownian particle in a gradient flow
Lan, Yueheng; Aurell, Erik
2015-01-01
We compute the entropy production engendered in the environment from a single Brownian particle which moves in a gradient flow, and show that it corresponds in expectation to classical near-equilibrium entropy production in the surrounding fluid with specific mesoscopic transport coefficients. With temperature gradient, extra terms are found which result from the nonlinear interaction between the particle and the non-equilibrated environment. The calculations are based on the fluctuation relations which relate entropy production to the probabilities of stochastic paths and carried out in a multi-time formalism. PMID:26194015
NASA Technical Reports Server (NTRS)
Dorney, D. J.; Marci, Bogdan; Tran, Ken; Sargent, Scott
2003-01-01
Each single reusable Space Launch Initiative (SLI) booster rocket is an engine operating at a record vacuum thrust level of over 730,000 Ibf using LOX and LH2. This thrust is more than 10% greater than that of the Delta IV rocket, resulting in relatively large LOX and LH2 turbopumps. Since the SLI rocket employs a staged combustion cycle the level of pressure is very high (thousands of psia). This high pressure creates many engineering challenges, including the balancing of axial-forces on the turbopumps. One of the main parameters in the calculation of the axial force is the cavity pressure upstream of the turbine disk. The flow in this cavity is very complex. The lack of understanding of this flow environment hinders the accurate prediction of axial thrust. In order to narrow down the uncertainty band around the actual turbine axial force, a coupled, unsteady computational methodology has been developed to simulate the interaction between the turbine main flow path and the cavity flow. The CORSAIR solver, an unsteady three- dimensional Navier-Stokes code for turbomachinery applications, was used to solve for both the main and the secondary flow fields. Turbine axial thrust values are presented in conjunction with the CFD simulation, together with several considerations regarding the turbine instrumentation for axial thrust estimations during test.
Controlled pilot oxidizer for a gas turbine combustor
Laster, Walter R.; Bandaru, Ramarao V.
2010-07-13
A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.
Two-stage preconcentrator for vapor/particle detection
Linker, Kevin L.; Brusseau, Charles A.
2002-01-01
A device for concentrating particles from a high volume gas stream and delivering the particles for detection in a low volume gas stream includes first and second preconcentrators. The first preconcentrator has a first structure for retaining particles in a first gas flow path through which a first gas flows at a relatively high volume, valves for selectively stopping the first gas flow; and a second gas flow path through which gas flows at an intermediate flow volume for moving particles from the first structure. The second preconcentrator includes a second structure for retaining particles in the second gas flow path; a valve for selectively stopping the second gas flow; and a third gas flow path through which gas flows at a low volume for moving particles from the second structure to a detector. Each of the particle retaining structures is preferably a metal screen that may be resistively heated by application of an electric potential to release the particles.
Computational fluid dynamics analysis in support of the simplex turbopump design
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Griffin, Lisa W.; Benjamin, Theodore G.; Cornelison, Joni W.; Ruf, Joseph H.; Williams, Robert W.
1994-01-01
Simplex is a turbopump that is being developed at NASA/Marshall Space Flight Center (MSFC) by an in-house team. The turbopump consists of a single-stage centrifugal impeller, vaned-diffuser pump powered by a single-stage, axial, supersonic, partial admission turbine. The turbine is driven by warm gaseous oxygen tapped off of the hybrid motor to which it will be coupled. Rolling element bearings are cooled by the pumping fluid. Details of the configuration and operating conditions are given by Marsh. CFD has been used extensively to verify one-dimensional (1D) predictions, assess aerodynamic and hydrodynamic designs, and to provide flow environments. The complete primary flow path of the pump-end and the hot gas path of the turbine, excluding the inlet torus, have been analyzed. All CFD analyses conducted for the Simplex turbopump employed the pressure based Finite Difference Navier-Stokes (FDNS) code using a standard kappa-epsilon turbulence model with wall functions. More detailed results are presented by Garcia et. al. To support the team, loading and temperature results for the turbine rotor were provided as inputs to structural and thermal analyses, and blade loadings from the inducer were provided for structural analyses.
Topographic Controls on Landslide and Debris-Flow Mobility
NASA Astrophysics Data System (ADS)
McCoy, S. W.; Pettitt, S.
2014-12-01
Regardless of whether a granular flow initiates from failure and liquefaction of a shallow landslide or from overland flow that entrains sediment to form a debris flow, the resulting flow poses hazards to downslope communities. Understanding controls on granular-flow mobility is critical for accurate hazard prediction. The topographic form of granular-flow paths can vary significantly across different steeplands and is one of the few flow-path properties that can be readily altered by engineered control structures such as closed-type check dams. We use grain-scale numerical modeling (discrete element method simulations) of free-surface, gravity-driven granular flows to investigate how different topographic profiles with the same mean slope and total relief can produce notable differences in flow mobility due to strong nonlinearities inherent to granular-flow dynamics. We describe how varying the profile shape from planar, to convex up, to concave up, as well how varying the number, size, and location of check dams along a flow path, changes flow velocity, thickness, discharge, energy dissipation, impact force and runout distance. Our preliminary results highlight an important path dependence for this nonlinear system, show that caution should be used when predicting flow dynamics from path-averaged properties, and provide some mechanics-based guidance for engineering control structures.
A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chang, E-mail: cliuaa@ust.hk; Xu, Kun, E-mail: makxu@ust.hk; Sun, Quanhua, E-mail: qsun@imech.ac.cn
Fluid dynamic equations are valid in their respective modeling scales, such as the particle mean free path scale of the Boltzmann equation and the hydrodynamic scale of the Navier–Stokes (NS) equations. With a variation of the modeling scales, theoretically there should have a continuous spectrum of fluid dynamic equations. Even though the Boltzmann equation is claimed to be valid in all scales, many Boltzmann solvers, including direct simulation Monte Carlo method, require the cell resolution to the order of particle mean free path scale. Therefore, they are still single scale methods. In order to study multiscale flow evolution efficiently, themore » dynamics in the computational fluid has to be changed with the scales. A direct modeling of flow physics with a changeable scale may become an appropriate approach. The unified gas-kinetic scheme (UGKS) is a direct modeling method in the mesh size scale, and its underlying flow physics depends on the resolution of the cell size relative to the particle mean free path. The cell size of UGKS is not limited by the particle mean free path. With the variation of the ratio between the numerical cell size and local particle mean free path, the UGKS recovers the flow dynamics from the particle transport and collision in the kinetic scale to the wave propagation in the hydrodynamic scale. The previous UGKS is mostly constructed from the evolution solution of kinetic model equations. Even though the UGKS is very accurate and effective in the low transition and continuum flow regimes with the time step being much larger than the particle mean free time, it still has space to develop more accurate flow solver in the region, where the time step is comparable with the local particle mean free time. In such a scale, there is dynamic difference from the full Boltzmann collision term and the model equations. This work is about the further development of the UGKS with the implementation of the full Boltzmann collision term in the region where it is needed. The central ingredient of the UGKS is the coupled treatment of particle transport and collision in the flux evaluation across a cell interface, where a continuous flow dynamics from kinetic to hydrodynamic scales is modeled. The newly developed UGKS has the asymptotic preserving (AP) property of recovering the NS solutions in the continuum flow regime, and the full Boltzmann solution in the rarefied regime. In the mostly unexplored transition regime, the UGKS itself provides a valuable tool for the non-equilibrium flow study. The mathematical properties of the scheme, such as stability, accuracy, and the asymptotic preserving, will be analyzed in this paper as well.« less
Blood Pump Having a Magnetically Suspended Rotor
NASA Technical Reports Server (NTRS)
Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)
2002-01-01
A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.
Blood Pump Having a Magnetically Suspended Rotor
NASA Technical Reports Server (NTRS)
Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)
2001-01-01
A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.
Arkelyan, A.M.; Rickard, C.L.
1962-04-17
A gate valve for controlling the flow of fluid in separate concentric ducts or channels by means of a single valve is described. In one position, the valve sealing discs engage opposed sets of concentric ducts leading to the concentric pipes defining the flow channels to block flow therethrough. In another position, the discs are withdrawn from engagement with the opposed ducts and at the same time a bridging section is interposed therebetween to define concentric paths coextensive with and connecting the opposed ducts to facilitate flow therebetween. A wedge block arrangement is employed with each sealing disc to enable it to engage the ducts. The wedge block arrangement also facilitates unobstructcd withdrawal of the discs out of the intervening space between the sets of ducts. (AEC)
Laser direct-write for fabrication of three-dimensional paper-based devices.
He, P J W; Katis, I N; Eason, R W; Sones, C L
2016-08-16
We report the use of a laser-based direct-write (LDW) technique that allows the design and fabrication of three-dimensional (3D) structures within a paper substrate that enables implementation of multi-step analytical assays via a 3D protocol. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depths of hydrophobic barriers that are formed within a substrate which, when carefully designed and integrated, produce 3D flow paths. So far, we have successfully used this depth-variable patterning protocol for stacking and sealing of multi-layer substrates, for assembly of backing layers for two-dimensional (2D) lateral flow devices and finally for fabrication of 3D devices. Since the 3D flow paths can also be formed via a single laser-writing process by controlling the patterning parameters, this is a distinct improvement over other methods that require multiple complicated and repetitive assembly procedures. This technique is therefore suitable for cheap, rapid and large-scale fabrication of 3D paper-based microfluidic devices.
Brown, Shaun T.; Kennedy, B. Mack; DePaolo, Donald J.; Hurwitz, Shaul; Evans, William C.
2013-01-01
We present chemical and isotopic data for fluids, minerals and rocks from the Long Valley meteoric-hydrothermal system. The samples encompass the presumed hydrothermal upwelling zone in the west moat of the caldera, the Casa Diablo geothermal field, and a series of wells defining a nearly linear, ∼16 km long, west-to-east trend along the likely fluid flow path. Fluid samples were analyzed for the isotopes of water, Sr, and Ca, the concentrations of major cations and anions, alkalinity, and total CO2. Water isotope data conform to trends documented in earlier studies, interpreted as indicating a single hydrothermal fluid mixing with local groundwater. Sr isotopes show subtle changes along the flow path, which requires rapid fluid flow and minimal reaction between the channelized fluids and the wallrocks. Sr and O isotopes are used to calculate fracture spacing using a dual porosity model. Calculated fracture spacing and temperature data for hydrothermal fluids indicate the system is (approximately) at steady-state. Correlated variations among total CO2, and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2), which drives calcite precipitation as the fluid flows west-to-east and cools. The shifts in Ca isotopes require that calcite precipitated at temperatures of 150–180 °C is fractionated by ca. −0.3‰ to −0.5‰ relative to aqueous species. Our data are the first evidence that Ca isotopes undergo kinetic fractionation at high temperatures (>100 °C) and can be used to trace calcite precipitation along hydrothermal fluid flow paths.
Dissolution-induced preferential flow in a limestone fracture.
Liu, Jishan; Polak, Amir; Elsworth, Derek; Grader, Avrami
2005-06-01
Flow in a rock fracture is surprisingly sensitive to the evolution of flow paths that develop as a result of dissolution. Net dissolution may either increase or decrease permeability uniformly within the fracture, or may form a preferential flow path through which most of the injected fluid flows, depending on the prevailing ambient mechanical and chemical conditions. A flow-through test was completed on an artificial fracture in limestone at room temperature under ambient confining stress of 3.5 MPa. The sample was sequentially circulated by water of two different compositions through the 1500 h duration of the experiment; the first 935 h by tap groundwater, followed by 555 h of distilled water. Measurements of differential pressures between the inlet and the outlet, fluid and dissolved mass fluxes, and concurrent X-ray CT imaging and sectioning were used to characterize the evolution of flow paths within the limestone fracture. During the initial circulation of groundwater, the differential pressure increased almost threefold, and was interpreted as a net reduction in permeability as the contacting asperities across the fracture are removed, and the fracture closes. With the circulation of distilled water, permeability initially reduces threefold, and ultimately increases by two orders of magnitude. This spontaneous switch from net decrease in permeability, to net increase occurred with no change in flow rate or applied effective stress, and is attributed to the evolving localization of flow path as evidenced by CT images. Based on the X-ray CT characterizations, a flow path-dependent flow model was developed to simulate the evolution of flow paths within the fracture and its influence on the overall flow behaviors of the injected fluid in the fracture.
NASA Astrophysics Data System (ADS)
Kidmose, Jacob; Dahl, Mette; Engesgaard, Peter; Nilsson, Bertel; Christensen, Britt S. B.; Andersen, Stine; Hoffmann, Carl Christian
2010-05-01
SummaryA field-scale pulse-injection experiment with the herbicide Isoproturon was conducted in a Danish riparian wetland. A non-reactive tracer (bromide) experiment was also carried out to characterize the physical transport system. Groundwater flow and reactive transport modelling was used to simulate flow paths, residence times, as well as bromide and Isoproturon distributions. The wetland can be characterized by two distinct riparian flow paths; one flow path discharges 2/3 of the incoming groundwater directly to the free water surface of the wetland near the foot of the hillslope with an average residence time of 205 days, and another flow path diffusively discharging the remaining 1/3 of the incoming groundwater to the stream with an average residence time of 425 days. The reactive transport simulations reveal that Isoproturon is retarded by a factor of 2-4, which is explained by the high organic content in the peat layer of the wetland. Isoproturon was found to be aerobically degraded with a half-life in the order of 12-80 days. Based on the quantification of flow paths, residence times and half-lives it is estimated that about 2/3 of the injected Isoproturon is removed in the wetland. Thus, close to 1/3 may find its way to the stream through overland flow. It is also possible that high concentrations of metabolites will reach the stream.
Investigation of air stream from combustor-liner air entry holes, 3
NASA Technical Reports Server (NTRS)
Aiba, T.; Nakano, T.
1979-01-01
Jets flowing from air entry holes of the combustor liner of a gas turbine were investigated. Cold air was supplied through the air entry holes into the primary hot gas flows. The mass flow of the primary hot gas and issuing jets was measured, and the behavior of the air jets was studied by the measurement of the temperature distribution of the gas mixture. The air jets flowing from three circular air entry holes, single streamwise long holes, and two opposing circular holes, parallel to the primary flow were studied along with the effects of jet and gas stream velocities, and of gas temperature. The discharge coefficient, the maximum penetration of the jets, the jet flow path, the mixing of the jets, and temperature distribution across the jets were investigated. Empirical expressions which describe the characteristics of the jets under the conditions of the experiments were formulated.
Electrophoretic sample insertion. [device for uniformly distributing samples in flow path
NASA Technical Reports Server (NTRS)
Mccreight, L. R. (Inventor)
1974-01-01
Two conductive screens located in the flow path of an electrophoresis sample separation apparatus are charged electrically. The sample is introduced between the screens, and the charge is sufficient to disperse and hold the samples across the screens. When the charge is terminated, the samples are uniformly distributed in the flow path. Additionally, a first separation by charged properties has been accomplished.
Theory of porous catheters and their applications in intraparenchymal infusions.
Raghavan, Raghu; Odland, Rick M
2017-01-01
Multiport catheters and catheters with a porous surface have been proposed for intraparenchymal infusions of therapeutics in fluid suspensions. Target diseases include brain cancer and serious neurodegenerative diseases, as well as peripheral tumors, for example in the prostate and the liver. We set up the theory for infusions from such devices, in particular the fluid flow equations which demand a coupling between the flow within the catheter and that in tissue. (Such a coupling is not necessary in the theory of infusion from single port catheters.) The new feature of such catheters, treated by our model, is revealed by infusions into inhomogeneous media. Multiport designs have the potential to overcome the limitation of single port catheters, for which the path of the fluid leaving the port is dominated by the inhomogeneities. We solve these equations for some simple cases to illustrate the key design features of porous catheters that show such advantages. The mathematics required for numerical solution with more realistic assumptions is also developed. We confirm the robustness of such catheters, when the ports are sufficiently resistive, against leakage paths that would compromise the infusions from catheters with one or a few large ports. The methods of this paper can be incorporated into a larger planning system for intraparenchymal infusions involving such devices.
Fuel injection and mixing systems and methods of using the same
Mao, Chien-Pei; Short, John
2010-08-03
A fuel injection and mixing system is provided. The system includes an injector body having a fuel inlet and a fuel outlet, and defines a fuel flow path between the inlet and outlet. The fuel flow path may include a generally helical flow passage having an inlet end portion disposed proximate the fuel inlet of the injector body. The flow path also may include an expansion chamber downstream from and in fluid communication with the helical flow passage, as well as a fuel delivery device in fluid communication with the expansion chamber for delivering fuel. Heating means is also provided in thermal communication with the injector body. The heating means may be adapted and configured for maintaining the injector body at a predetermined temperature to heat fuel traversing the flow path. A method of preheating and delivering fuel is also provided.
Systems and methods for analyzing liquids under vacuum
Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua
2013-10-15
Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.
Balanced Flow Meters without Moving Parts
NASA Technical Reports Server (NTRS)
Kelley, Anthony R.; VanBuskirk, Paul
2008-01-01
Balanced flow meters are recent additions to an established class of simple, rugged flow meters that contain no moving parts in contact with flow and are based on measurement of pressure drops across objects placed in flow paths. These flow meters are highly accurate, minimally intrusive, easily manufacturable, and reliable. A balanced flow meter can be easily mounted in a flow path by bolting it between conventional pipe flanges. A balanced flow meter can be used to measure the flow of any of a variety of liquids or gases, provided that it has been properly calibrated. Relative to the standard orifice-plate flow meter, the balanced flow meter introduces less turbulence and two times less permanent pressure loss and is therefore capable of offering 10 times greater accuracy and repeatability with less dissipation of energy. A secondary benefit of the reduction of turbulence is the reduction of vibration and up to 15 times less acoustic noise generation. Both the balanced flow meter and the standard orifice-plate flow meter are basically disks that contain holes and are instrumented with pressure transducers on their upstream and downstream faces. The most obvious difference between them is that the standard orifice plate contains a single, central hole while the balanced flow meter contains multiple holes. The term 'balanced' signifies that in designing the meter, the sizes and locations of the holes are determined in an optimization procedure that involves balancing of numerous factors, including volumetric flow, mass flow, dynamic pressure, kinetic energy, all in an effort to minimize such undesired effects as turbulence, pressure loss, dissipation of kinetic energy, and non-repeatability and nonlinearity of response over the anticipated range of flow conditions. Due to proper balancing of these factors, recent testing demonstrated that the balanced flow-meter performance was similar to a Venturi tube in both accuracy and pressure recovery, but featured reduced cost and pipe-length requirements.
Analysis of the three-dimensional structure of a bubble wake using PIV and Galilean decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.
1999-07-01
Bubbly flow plays a key role in a variety of natural and industrial processes. An accurate and complete description of the phase interactions in two-phase bubbly flow is not available at this time. These phase interactions are, in general, always three-dimensional and unsteady. Therefore, measurement techniques utilized to obtain qualitative and quantitative data from two-phase flow should be able to acquire transient and three-dimensional data, in order to provide information to test theoretical models and numerical simulations. Even for dilute bubble flows, in which bubble interaction is at a minimum, the turbulent motion of the liquid generated by the bubblemore » is yet to be completely understood. For many years, the design of systems with bubbly flows was based primarily on empiricism. Dilute bubbly flows are an extension of single bubble dynamics, and therefore improvements in the description and modeling of single bubble motion, the flow field around the bubble, and the dynamical interactions between the bubble and the flow will consequently improve bubbly flow modeling. The improved understanding of the physical phenomena will have far-reaching benefits in upgrading the operation and efficiency of current processes and in supporting the development of new and innovative approaches. A stereoscopic particle image velocimetry measurement of the flow generated by the passage of a single air-bubble rising in stagnant water, in a circular pipe is presented. Three-dimensional velocity fields within the measurement zone were obtained. Ensemble-averaged instantaneous velocities for a specific bubble path were calculated and interpolated to obtain mean three-dimensional velocity fields. A Galilean velocity decomposition is used to study the vorticity generated in the flow.« less
Modelling information flow along the human connectome using maximum flow.
Lyoo, Youngwook; Kim, Jieun E; Yoon, Sujung
2018-01-01
The human connectome is a complex network that transmits information between interlinked brain regions. Using graph theory, previously well-known network measures of integration between brain regions have been constructed under the key assumption that information flows strictly along the shortest paths possible between two nodes. However, it is now apparent that information does flow through non-shortest paths in many real-world networks such as cellular networks, social networks, and the internet. In the current hypothesis, we present a novel framework using the maximum flow to quantify information flow along all possible paths within the brain, so as to implement an analogy to network traffic. We hypothesize that the connection strengths of brain networks represent a limit on the amount of information that can flow through the connections per unit of time. This allows us to compute the maximum amount of information flow between two brain regions along all possible paths. Using this novel framework of maximum flow, previous network topological measures are expanded to account for information flow through non-shortest paths. The most important advantage of the current approach using maximum flow is that it can integrate the weighted connectivity data in a way that better reflects the real information flow of the brain network. The current framework and its concept regarding maximum flow provides insight on how network structure shapes information flow in contrast to graph theory, and suggests future applications such as investigating structural and functional connectomes at a neuronal level. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hydrocarbon fluid, ejector refrigeration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, G.J.; Foster, A.R.
1993-08-31
A refrigeration system is described comprising: a vapor ejector cycle including a working fluid having a property such that entropy of the working fluid when in a saturated vapor state decreases as pressure decreases, the vapor ejector cycle comprising: a condenser located on a common fluid flow path; a diverter located downstream from the condenser for diverting the working fluid into a primary fluid flow path and a secondary fluid flow path parallel to the primary fluid flow path; an evaporator located on the secondary fluid flow path; an expansion device located on the secondary fluid flow path upstream ofmore » the evaporator; a boiler located on the primary fluid flow path parallel to the evaporator for boiling the working fluid, the boiler comprising an axially extending core region having a substantially constant cross sectional area and a porous capillary region surrounding the core region, the core region extending a length sufficient to produce a near sonic velocity saturated vapor; and an ejector having an outlet in fluid communication with the inlet of the condenser and an inlet in fluid communication with the outlet of the evaporator and the outlet of the boiler and in which the flows of the working fluid from the evaporator and the boiler are mixed and the pressure of the working fluid is increased to at least the pressure of the condenser, the ejector inlet, located downstream from the axially extending core region, including a primary nozzle located sufficiently close to the outlet of the boiler to minimize a pressure drop between the boiler and the primary nozzle, the primary nozzle of the ejector including a converging section having an included angle and length preselected to receive the working fluid from the boiler as a near sonic velocity saturated vapor.« less
Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths
Bianchi, M.; Zheng, C.; Wilson, C.; Tick, G.R.; Liu, Gaisheng; Gorelick, S.M.
2011-01-01
This study investigates connectivity in a small portion of the extremely heterogeneous aquifer at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi. A total of 19 fully penetrating soil cores were collected from a rectangular grid of 4 m by 4 m. Detailed grain size analysis was performed on 5 cm segments of each core, yielding 1740 hydraulic conductivity (K) estimates. Three different geostatistical simulation methods were used to generate 3-D conditional realizations of the K field for the sampled block. Particle tracking calculations showed that the fastest particles, as represented by the first 5% to arrive, converge along preferential flow paths and exit the model domain within preferred areas. These 5% fastest flow paths accounted for about 40% of the flow. The distribution of preferential flow paths and particle exit locations is clearly influenced by the occurrence of clusters formed by interconnected cells with K equal to or greater than the 0.9 decile of the data distribution (10% of the volume). The fraction of particle paths within the high-K clusters ranges from 43% to 69%. In variogram-based K fields, some of the fastest paths are through media with lower K values, suggesting that transport connectivity may not require fully connected zones of relatively homogenous K. The high degree of flow and transport connectivity was confirmed by the values of two groups of connectivity indicators. In particular, the ratio between effective and geometric mean K (on average, about 2) and the ratio between the average arrival time and the arrival time of the fastest particles (on average, about 9) are consistent with flow and advective transport behavior characterized by channeling along preferential flow paths. ?? 2011 by the American Geophysical Union.
Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks
NASA Astrophysics Data System (ADS)
Harvey, J. W.; Gomez-Velez, J. D.
2014-12-01
Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange beneath meandering river banks mainly has importance only in large rivers. For solutes entering networks in proportion to water inputs it is the lower order streams that tend to dominate cumulative reaction progress.
Theoretical analysis for scaling law of thermal blooming based on optical phase deference
NASA Astrophysics Data System (ADS)
Sun, Yunqiang; Huang, Zhilong; Ren, Zebin; Chen, Zhiqiang; Guo, Longde; Xi, Fengjie
2016-10-01
In order to explore the laser propagation influence of thermal blooming effect of pipe flow and to analysis the influencing factors, scaling law theoretical analysis of the thermal blooming effects in pipe flow are carry out in detail based on the optical path difference caused by thermal blooming effects in pipe flow. Firstly, by solving the energy coupling equation of laser beam propagation, the temperature of the flow is obtained, and then the optical path difference caused by the thermal blooming is deduced. Through the analysis of the influence of pipe size, flow field and laser parameters on the optical path difference, energy scaling parameters Ne=nTαLPR2/(ρɛCpπR02) and geometric scaling parameters Nc=νR2/(ɛL) of thermal blooming for the pipe flow are derived. Secondly, for the direct solution method, the energy coupled equations have analytic solutions only for the straight tube with Gauss beam. Considering the limitation of directly solving the coupled equations, the dimensionless analysis method is adopted, the analysis is also based on the change of optical path difference, same scaling parameters for the pipe flow thermal blooming are derived, which makes energy scaling parameters Ne and geometric scaling parameters Nc have good universality. The research results indicate that when the laser power and the laser beam diameter are changed, thermal blooming effects of the pipeline axial flow caused by optical path difference will not change, as long as you keep energy scaling parameters constant. When diameter or length of the pipe changes, just keep the geometric scaling parameters constant, the pipeline axial flow gas thermal blooming effects caused by optical path difference distribution will not change. That is to say, when the pipe size and laser parameters change, if keeping two scaling parameters with constant, the pipeline axial flow thermal blooming effects caused by the optical path difference will not change. Therefore, the energy scaling parameters and the geometric scaling parameters can really describe the gas thermal blooming effect in the axial pipe flow. These conclusions can give a good reference for the construction of the thermal blooming test system of laser system. Contrasted with the thermal blooming scaling parameters of the Bradley-Hermann distortion number ND and Fresnel number NF, which were derived based on the change of far field beam intensity distortion, the scaling parameters of pipe flow thermal blooming deduced from the optical path deference variation are very suitable for the optical system with short laser propagation distance, large Fresnel number and obviously changed optical path deference.
Sandrock, H.E.
1982-05-06
Static axial mixing apparatus includes a plurality of channels, forming flow paths of different dimensions. The axial mixer includes a flow adjusting device for adjustable selective control of flow resistance of various flow paths in order to provide substantially identical flows through the various channels, thereby reducing nonuniform coating of interior surfaces of the channels. The flow adjusting device may include diaphragm valves, and may further include a pressure regulating system therefor.
A portable meter for measuring low frequency currents in the human body.
Niple, J C; Daigle, J P; Zaffanella, L E; Sullivan, T; Kavet, R
2004-07-01
A portable meter has been developed for measuring low frequency currents that flow in the human body. Although the present version of the meter was specifically designed to measure 50/60 Hz "contact currents," the principles involved can be used with other low frequency body currents. Contact currents flow when the human body provides a conductive path between objects in the environment with different electrical potentials. The range of currents the meter detects is approximately 0.4-800 microA. This provides measurements of currents from the threshold of human perception (approximately 500 microA(RMS)) down to single microampere levels. The meter has a unique design, which utilizes the human subject's body impedance as the sensing element. Some of the advantages of this approach are high sensitivity, the ability to measure current flow in the majority of the body, and relative insensitivity to the current path connection points. Current measurement accuracy varies with the accuracy of the body impedance (resistance) measurement and different techniques can be used to obtain a desired level of accuracy. Techniques are available to achieve an estimated +/-20% accuracy. Copyright 2004 Wiley-Liss, Inc.
System and method for multi-stage bypass, low operating temperature suppressor for automatic weapons
Moss, William C.; Anderson, Andrew T.
2015-06-09
The present disclosure relates to a suppressor for use with a weapon. The suppressor may be formed to have a body portion having a bore extending concentric with a bore axis of the weapon barrel. An opening in the bore extends at least substantially circumferentially around the bore. A flow path communicates with the opening and defines a channel for redirecting gasses flowing in the bore out from the bore, through the opening, into a rearward direction in the flow path. The flow path raises a pressure at the opening to generate a Mach disk within the bore at a location approximately coincident with the opening. The Mach disk forms as a virtual baffle to divert at least a portion of the gasses into the opening and into the flow path.
Aanes, Magne; Kippersund, Remi Andre; Lohne, Kjetil Daae; Frøysa, Kjell-Eivind; Lunde, Per
2017-08-01
Transit-time flow meters based on guided ultrasonic wave propagation in the pipe spool have several advantages compared to traditional inline ultrasonic flow metering. The extended interrogation field, obtained by continuous leakage from guided waves traveling in the pipe wall, increases robustness toward entrained particles or gas in the flow. In reflective-path guided-wave ultrasonic flow meters (GW-UFMs), the flow equations are derived from signals propagating solely in the pipe wall and from signals passing twice through the fluid. In addition to the time-of-flight (TOF) through the fluid, the fluid path experiences an additional time delay upon reflection at the opposite pipe wall due to specular and non-specular reflections. The present work investigates the influence of these reflections on the TOF in a reflective-path GW-UFM as a function of transducer separation distance at zero flow conditions. Two models are used to describe the signal propagation through the system: (i) a transient full-wave finite element model, and (ii) a combined plane-wave and ray-tracing model. The study shows that a range-dependent time delay is associated with the reflection of the fluid path, introducing transmitter-receiver distance dependence. Based on these results, the applicability of the flow equations derived using model (ii) is discussed.
Radiant energy receiver having improved coolant flow control means
Hinterberger, H.
1980-10-29
An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.
NASA Astrophysics Data System (ADS)
Singh, Anant Bir
This study investigates a flow field with opposing channel design. Previous studies on flow field designs have been focused on improving fuel utilization which often leads to increased pressure drop. This increased pressure drop is typical because standard designs employ either a single flow channel to clear blockages or dead end condition to force the flow through the gas diffusion layer. The disadvantage with these designs is the increased resistance to the flow which requires higher pressure, which becomes a parasitic loss that lowers the system efficiency. For this study the focus was to reduce the pressure drop by providing a less resistive path to the flow. To achieve a less resistive path, the inlet channel was split into two opposing channels. These channels are then recombined only to be split again for the next leg. Therefore, the split channel design should reduce the pressure drop which reduces the parasitic load and ultimately contributes to higher system efficiency. In addition the recombining of the streams at each leg should induce mixing. Having opposing channels should also increase cross flow under the lands to reduce mass transfer loses. The cathode side of the fuel cell is especially sensitive to the mass transport losses since air (oxygen mixed with nitrogen) is used for supplying oxygen unlike the anode side which uses pure hydrogen. To test the hypothesis of having benefits from an opposing channel design, both an experimental and analytical approach was taken. For the experiment, a serpentine flow field and opposing channel flow field plates were compared over several flow rates with compressed air. To test the hypothesis of increased mass transfer, the two flow fields were modeled using a CFD software package, COMSOL. It was found that the opposing channel configuration for high flow rate with multiple entry and exit conditions exhibited significant improvement over the single serpentine channel. Pressure drop was ⅓ less than the serpentine channel with similar conditions. Simulations for mass transfer show that recombining of the flow streams generate more uniform current density unlike the serpentine configuration where the current density was concentrated at the entrance of the flow stream. The background section provides a brief overview of the governing equations, the theory of flow field operation and previous bodies of work on flow field design. Recommendations are made for further verification of the design using a real working cell based on the results.
Fuel cell assembly fluid flow plate having conductive fibers and rigidizing material therein
Walsh, Michael M.
2000-01-01
A fluid flow plate is preferably formed with three initial sections, for instance, two layers of conductive (e.g., metal) fibers and a barrier material (e.g., metal foil) which is interposed between the two layers. For example, sintering of these three sections can provide electrical path(s) between outer faces of the two layers. Then, the sintered sections can be, for instance, placed in a mold for forming of flow channel(s) into one or more of the outer faces. Next, rigidizing material (e.g., resin) can be injected into the mold, for example, to fill and/or seal space(s) about a conductive matrix of the electrical path(s). Preferably, abrading of surface(s) of the outer face(s) serves to expose electrical contact(s) to the electrical path(s).
NASA Astrophysics Data System (ADS)
Patrick, M. R.; Orr, T. R.; Trusdell, F.; Llewellin, E. W.; Kauahikaua, J. P.
2015-12-01
Kīlauea's East Rift Zone (ERZ) eruptive activity at Púu ´Ō´ō shifted to a new vent in June 2014, sparking a lava flow crisis that threatened critical infrastructure near the town of Pāhoa in east Hawaíi. The lava flow proved to be challenging to forecast because of the influence of ground cracks on flow direction, frequent fluctuations in lava supply, and the subtle interplay between ground slope and confining topography that prevented the flow from spreading laterally. After its onset, the "June 27th" flow, named informally for its start date, advanced northeast at up to several hundred m/day. The flow's path through heavy forest was forecast using steepest-descent paths derived from a digital elevation model (DEM). Flow path uncertainties were minimized using a multiple-run technique and built-in random DEM errors (modified from Favalli et al., 2005). In mid-August, the flow encountered and entered one of many deep, discontinuous ground cracks along Kīlauea's middle ERZ. The flow continued to advance out of sight in the crack, as inferred from a forward-progressing line of steam. A week later, lava spilled from the crack 1.3 km downslope, advancing along a different flow path than was forecast. By early September, the flow had entered and exited three more cracks sequentially, carrying the flow across slope, thus making flow path forecasts unreliable. Moreover, lava-occupied cracks dilated by up to 3 m. The lava accumulating in the ground cracks forced immense, but apparently mobile, blocks to shift. Thus, while an open crack was required to capture the lava, the lava was able to force its way beyond where the crack closed. In this way, the lava flow acted as an intruding dike. The flow eventually advanced beyond the area of cracks and onto a steepest-descent path that guided the flow toward the town of Pāhoa, where it destroyed one house, reached to within ~155 m of the main street in Pāhoa, and threatened the main highway and shopping center serving the east side of the Island of Hawaíi. The flow front stalled on March 13, 2015, owing to reservoir depressurization occurring at Kīlauea's summit. When the summit system recovered, activity withdrew to within ~9 km of the vent, ending the immediate threat to the Pāhoa area.
Dual Cavity Scramjet Operability and Performance Study (Postprint)
2009-08-01
K., and Schadow, K., “ Effect of Flame-Holding Cavities on Supersonic- Combustion Performance,” Journal of Propulsion and Power, Vol. 17, No. 6, 2001...numerical approaches will be used to explore the effects of various fueling schemes for both single and dual cavities. Discrete flight conditions from... effects of adding a second cavity to a scramjet flow path, and 2) determine and analyze the performance and operability of the dual cavity for
Stochastic Cell Fate Progression in Embryonic Stem Cells
NASA Astrophysics Data System (ADS)
Zou, Ling-Nan; Doyle, Adele; Jang, Sumin; Ramanathan, Sharad
2013-03-01
Studies on the directed differentiation of embryonic stem (ES) cells suggest that some early developmental decisions may be stochastic in nature. To identify the sources of this stochasticity, we analyzed the heterogeneous expression of key transcription factors in single ES cells as they adopt distinct germ layer fates. We find that under sufficiently stringent signaling conditions, the choice of lineage is unambiguous. ES cells flow into differentiated fates via diverging paths, defined by sequences of transitional states that exhibit characteristic co-expression of multiple transcription factors. These transitional states have distinct responses to morphogenic stimuli; by sequential exposure to multiple signaling conditions, ES cells are steered towards specific fates. However, the rate at which cells travel down a developmental path is stochastic: cells exposed to the same signaling condition for the same amount of time can populate different states along the same path. The heterogeneity of cell states seen in our experiments therefore does not reflect the stochastic selection of germ layer fates, but the stochastic rate of progression along a chosen developmental path. Supported in part by the Jane Coffin Childs Fund
Flow-Field Measurement of Device-Induced Embedded Streamwise Vortex on a Flat Plate
NASA Technical Reports Server (NTRS)
Yao, Chung-Sheng; Lin, John C.; Allan, Brian G.
2002-01-01
Detailed flow-field measurements were performed downstream of a single vortex generator (VG) using an advanced Stereo Digital Particle Image Velocimetry system. Thc passive flow-control devices examined consisted of a low-profile VG with a device height, h, approximately equal to 20 percent of the boundary-layer thickness, sigma, and a conventional VG with h is approximately sigma. Flow-field data were taken at twelve cross-flow planes downstream of the VG to document and quantify the evolution of embedded streamwise vortex. The effects of device angle of attack on vortex development downstream were compared between the low-profile VG and the conventional VG. Key parameters including vorticity, circulation, trajectory, and half-life radius - describing concentration, strength, path, and size, respectively--of the device-induced streamwise vortex were extracted from the flow-field data. The magnitude of maximum vorticity increases as angle of attack increases for the low-profile VG, but the trend is reversed for the conventional VG, probably due to flow stalling around the larger device at higher angles of attack. Peak vorticity and circulation for the low-profile VG decays exponentially and inversely proportional to the distance downstream from the device. The device-height normalized vortex trajectories for the low-profile VG, especially in the lateral direction, follow the general trends of the conventional VG. The experimental database was used to validate the predictive capability of computational fluid dynamics (CFD). CFD accurately predicts the vortex circulation and path; however, improvements are needed for predicting the vorticity strength and vortex size.
Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.
2000-01-01
The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.
Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.
2006-02-21
The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.
Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.
2004-08-24
The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.
Modeling heading and path perception from optic flow in the case of independently moving objects
Raudies, Florian; Neumann, Heiko
2013-01-01
Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMOs) in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE) in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no significant biases were found in the presence of IMOs. What makes humans robust in their estimation of heading or path using optic flow? We derive analytical models of optic flow for linear and curvilinear self-motion using geometric scene models. Heading biases of a linear least squares method, which builds upon these analytical models, are large, larger than those reported for humans. This motivated us to study segmentation cues that are available from optic flow. We derive models of accretion/deletion, expansion/contraction, acceleration/deceleration, local spatial curvature, and local temporal curvature, to be used as cues to segment an IMO from the background. Integrating these segmentation cues into our method of estimating heading or path now explains human psychophysical data and extends, as well as unifies, previous investigations. Our analysis suggests that various cues available from optic flow help to segment IMOs and, thus, make humans' heading and path perception robust in the presence of such IMOs. PMID:23554589
A Numerical Model of Exchange Chromatography Through 3D Lattice Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salloum, Maher; Robinson, David B.
Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less
A Numerical Model of Exchange Chromatography Through 3D Lattice Structures
Salloum, Maher; Robinson, David B.
2018-01-30
Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less
Yager, R.M.; Kappel, W.M.
1998-01-01
The spatial distribution of hydrogen and oxygen stable-isotope values in groundwater can be used to distinguish different sources of recharge and to trace groundwater flow directions from recharge boundaries. This method can be particularly useful in fractured-rock settings where multiple lines of evidence are required to delineate preferential flow paths that result from heterogeneity within fracture zones. Flow paths delineated with stable isotopes can be combined with hydraulic data to form a more complete picture of the groundwater flow system. In this study values of ??D and ??18O were used to delineate paths of river-water infiltration into the Lockport Group, a fractured dolomite aquifer, and to compute the percentage of fiver water in groundwater samples from shallow bedrock wells. Flow paths were correlated with areas of high hydraulic diffusivity in the shallow bedrock that were delineated from water-level fluctuations induced by diurnal stage fluctuations in man-made hydraulic structures. Flow paths delineated with the stable-isotope and hydraulic data suggest that fiver infiltration reaches an unlined storm sewer in the bedrock through a drainage system that surrounds aqueducts carrying river water to hydroelectric power plants. This finding is significant because the storm sewer is the discharge point for contaminated groundwater from several chemical waste-disposal sites and the cost of treating the storm sewer's discharge could be reduced if the volume of infiltration from the river were decreased.The spatial distribution of hydrogen and oxygen stable-isotope values in groundwater can be used to distinguish different sources of recharge and to trace groundwater flow directions from recharge boundaries. This method can be particularly useful in fractured-rock settings where multiple lines of evidence are required to delineate preferential flow paths that result from heterogeneity within fracture zones. Flow paths delineated with stable isotopes can be combined with hydraulic data to form a more complete picture of the groundwater flow system. In this study values of ??D and ??18O were used to delineate paths of river-water infiltration into the Lockport Group, a fractured dolomite aquifer, and to compute the percentage of river water in groundwater samples from shallow bedrock wells. Flow paths were correlated with areas of high hydraulic diffusivity in the shallow bedrock that were delineated from water-level fluctuations induced by diurnal stage fluctuations in man-made hydraulic structures. Flow paths delineated with the stable-isotope and hydraulic data suggest that river infiltration reaches an unlined storm sewer in the bedrock through a drainage system that surrounds aqueducts carrying river water to hydroelectric power plants. This finding is significant because the storm sewer is the discharge point for contaminated groundwater from several chemical waste-disposal sites and the cost of treating the storm sewer's discharge could be reduced if the volume of infiltration from the river were decreased.
Sonenshein, R.S.
1995-01-01
A hydrogeologic approach that integrates the use of hydrogeologic and spatial tools aids in the identification of land uses that overlie ground- water flow paths and permits a better understanding of ground-water flow systems. A mathematical model was used to simulate the ground-water flow system in Broward County, particle-tracking software was used to determine flow paths leading to the monitor wells in Broward County, and a Geographic Information System was used to identify which land uses overlie the flow paths. A procedure using a geographic information system to evaluate the output from a ground-water flow model has been documented. The ground-water flow model was used to represent steady-state conditions during selected wet- and dry-season months, and an advective flow particle- tracking program was used to simulate the direction of ground-water flow in the aquifer system. Digital spatial data layers were created from the particle pathlines that lead to the vicinity of the open interval of selected wells in the Broward County ground-water quality monitoring network. Buffer zone data layers were created, surrounding the particle pathlines to represent the area of contribution to the water sampled from the monitor wells. Spatial data layers, combined with a land-use data layer, were used to identify the land uses that overlie the ground-water flow paths leading to the monitor wells. The simulation analysis was performed on five Broward County wells with different hydraulic parameters to determine the source of ground-water stress, determine selected particle pathlines, and identify land use in buffer zones in the vicinity of the wells. The flow paths that lead to the grid cells containing wells G-2355, G-2373, and G-2373A did not vary between the wet- and dry-season conditions. Changes in the area of contribution for wells G-2345X and G-2369 were attributed to variations in rainfall patterns, well-field pumpage, and surface-water management practices. Additionally, using a different open interval at a site, such as for wells G-2373 and G-2373A, can result in a very different area that overlies the flow path leading to the monitor well.
Graph theory applied to noise and vibration control in statistical energy analysis models.
Guasch, Oriol; Cortés, Lluís
2009-06-01
A fundamental aspect of noise and vibration control in statistical energy analysis (SEA) models consists in first identifying and then reducing the energy flow paths between subsystems. In this work, it is proposed to make use of some results from graph theory to address both issues. On the one hand, linear and path algebras applied to adjacency matrices of SEA graphs are used to determine the existence of any order paths between subsystems, counting and labeling them, finding extremal paths, or determining the power flow contributions from groups of paths. On the other hand, a strategy is presented that makes use of graph cut algorithms to reduce the energy flow from a source subsystem to a receiver one, modifying as few internal and coupling loss factors as possible.
NASA Astrophysics Data System (ADS)
Johannesson, K. H.; Tang, J.
2003-12-01
Groundwater samples were collected in two different types of aquifer (i.e., Carrizo Sand Aquifer, Texas and Upper Floridan carbonate Aquifer, west-central Florida) to study the concentrations, fractionation, and speciation of rare earth elements (REE) along groundwater flow paths in each aquifer. Major solutes and dissolved organic carbon (DOC) were also measured in these groundwaters. The Carrizo Sand aquifer was sampled in October 2002 and June 2003, whereas, to date, we have only sampled the Floridan once (i.e., June 2003). The data reveal no significant seasonal differences in major solute and REE concentrations for the Carrizo. In Carrizo sand aquifer, groundwaters from relatively shallow wells (i.e., less than 167 m) in the recharge zone are chiefly Ca-Na-HCO3-Cl type waters. With flow down-gradient the groundwaters shift composition to the Na-HCO3 waters. pH and alkalinity initially decrease with flow away from the recharge zone before increasing again down-gradient. DOC is generally low (0.65 mg/L) along the flow path. REE concentrations are highest in groundwaters from the recharge zone (Nd 40.5 pmol/kg), and decrease substantially with flow down-gradient reaching relatively low and stable values (Nd 4.1-8.6 pmol/kg) roughly 10 km from the recharge zone. Generally, Carrizo groundwaters exhibit HREE-enriched shale-normalized patterns. The HREE enrichments are especially strong for waters from the recharge zone [(Yb/Nd)SN =1.7-5.6], whereas down-gradient (deep) groundwaters have flatter patterns [(Yb/Nd)SN =0.7-2.5]. All groundwaters have slightly positive Eu anomalies (Eu/Eu* 0.09-0.14) and negative Ce anomalies (Ce/Ce* -0.85 - -0.07). In the Upper Floridan Aquifer, Ca, Mg, SO4, and Cl concentrations generally increase along groundwater flow path, whereas pH and alkalinity generally decrease. DOC is higher (0.64 - 2.29 mg/L) than in the Carrizo and initially increases along the flow path and then decreases down-gradient. LREE (Nd) concentrations generally increase along groundwater flow path, however, MREE (Gd) exhibit little change and HREE (Yb) concentrations tend to decreases along the flow path. Floridan groundwaters have HREE enriched shale-normalized patterns, although (Yb/Nd)SN values decrease along groundwater flow path. Thus, REE patterns of Floridan groundwaters tend to flatten with flow down-gradient. All groundwaters show positive Eu anomalies (0.06 - 0.17) and negative Ce anomalies (-0.12 - -0.63).
NASA Astrophysics Data System (ADS)
Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian
2017-11-01
Flow patterns in conjunction with seasonal and diurnal temperature variations control ecological and biogeochemical conditions in hyporheic sediments. In particular, hyporheic temperatures have a great impact on many temperature-sensitive microbial processes. In this study, we used 3-D coupled water flow and heat transport simulations applying the HydroGeoSphere code in combination with high-resolution observations of hydraulic heads and temperatures to quantify reach-scale water and heat flux across the river-groundwater interface and hyporheic temperature dynamics of a lowland gravel bed river. The model was calibrated in order to constrain estimates of the most sensitive model parameters. The magnitude and variations of the simulated temperatures matched the observed ones, with an average mean absolute error of 0.7°C and an average Nash Sutcliffe efficiency of 0.87. Our results indicate that nonsubmerged streambed structures such as gravel bars cause substantial thermal heterogeneity within the saturated sediment at the reach scale. Individual hyporheic flow path temperatures strongly depend on the flow path residence time, flow path depth, river, and groundwater temperature. Variations in individual hyporheic flow path temperatures were up to 7.9°C, significantly higher than the daily average (2.8°C), but still lower than the average seasonal hyporheic temperature difference (19.2°C). The distribution between flow path temperatures and residence times follows a power law relationship with exponent of about 0.37. Based on this empirical relation, we further estimated the influence of hyporheic flow path residence time and temperature on oxygen consumption which was found to partly increase by up to 29% in simulations.
USDA-ARS?s Scientific Manuscript database
Vegetative treatment systems (VTSs) are one type of control structure that has shown potential to control runoff from open feedlots. To achieve maximum performance, sheet-flow over the width of the vegetative treatment area (VTA) is required. Tools, such as maps of flow paths through the VTA, are ne...
NASA Astrophysics Data System (ADS)
Charbonnier, S. J.; Gertisser, R.
2009-10-01
We present Titan2D simulations of two well-characterized block-and-ash flow (BAF) events of the 2006 eruption of Merapi (Java, Indonesia) that affected the Gendol valley on the volcano’s southern flank and adjacent, densely populated interfluve (non-valley) areas: (1) a single dome-collapse event to the south that generated one of the smaller, post-June 14 flows and (2) a sustained, multiple dome-collapse event, also directed to the south, that produced the largest flows of the 2006 eruption emplaced in the afternoon of June 14. Using spatially varying bed friction angles, Titan2D is capable of reproducing the paths, velocities, runout distance, areas covered and deposited volumes of these flows over highly complex topography. The model results provide the basis for estimating the areas and levels of hazards associated with BAFs generated during relatively short as well as prolonged dome-collapse periods and guidance during future eruptive crises at Merapi.
NASA Astrophysics Data System (ADS)
Wolosoff, S. E.; Duncan, J.; Endreny, T.
2001-05-01
The Croton water supply system, responsible for supplying approximately 10% of New York City's water, provides an opportunity for exploration into the impacts of significant terrestrial flow path alteration upon receiving water quality. Natural flow paths are altered during residential development in order to allow for construction at a given location, reductions in water table elevation in low lying areas and to provide drainage of increased overland flow volumes. Runoff conducted through an artificial drainage system, is prevented from being attenuated by the natural environment, thus the pollutant removal capacity inherent in most natural catchments is often limited to areas where flow paths are not altered by development. By contrasting the impacts of flow path alterations in two small catchments in the Croton system, with different densities of residential development, we can begin to identify appropriate limits to the re-routing of runoff in catchments draining into surface water supplies. The Stormwater and Wastewater Management Model (SWMM) will be used as a tool to predict the runoff quantity and quality generated from two small residential catchments and to simulate the potential benefits of changes to the existing drainage system design, which may improve water quality due to longer residence times.
Influence of Processing Parameters on the Flow Path in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, J. A.; Nunes, A. C., Jr.
2006-01-01
Friction stir welding (FSW) is a solid phase welding process that unites thermal and mechanical aspects to produce a high quality joint. The process variables are rpm, translational weld speed, and downward plunge force. The strain-temperature history of a metal element at each point on the cross-section of the weld is determined by the individual flow path taken by the particular filament of metal flowing around the tool as influenced by the process variables. The resulting properties of the weld are determined by the strain-temperature history. Thus to control FSW properties, improved understanding of the processing parameters on the metal flow path is necessary.
NASA Astrophysics Data System (ADS)
Mei, Guohui; Zhang, Jiu; Zhao, Shumao; Xie, Zhi
2017-03-01
Fume exhaust system is the main component of the novel blackbody cavity sensor with a single layer tube, which removes the fume by gas flow along the exhaust pipe to keep the light path clean. However, the gas flow may break the conditions of blackbody cavity and results in the poor measurement accuracy. In this paper, we analyzed the influence of the gas flow on the temperature distribution of the measuring cavity, and then calculated the integrated effective emissivity of the non-isothermal cavity based on Monte-Carlo method, accordingly evaluated the sensor measurement accuracy, finally obtained the maximum allowable flow rate for various length of the exhaust pipe to meet the measurement accuracy. These results will help optimize the novel blackbody cavity sensor design and use it better for measuring the temperature of molten steel.
Note: Ultrasonic gas flowmeter based on optimized time-of-flight algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X. F.; Tang, Z. A.
2011-04-15
A new digital signal processor based single path ultrasonic gas flowmeter is designed, constructed, and experimentally tested. To achieve high accuracy measurements, an optimized ultrasound driven method of incorporation of the amplitude modulation and the phase modulation of the transmit-receive technique is used to stimulate the transmitter. Based on the regularities among the received envelope zero-crossings, different received signal's signal-to-noise ratio situations are discriminated and optional time-of-flight algorithms are applied to take flow rate calculations. Experimental results from the dry calibration indicate that the designed flowmeter prototype can meet the zero-flow verification test requirements of the American Gas Association Reportmore » No. 9. Furthermore, the results derived from the flow calibration prove that the proposed flowmeter prototype can measure flow rate accurately in the practical experiments, and the nominal accuracies after FWME adjustment are lower than 0.8% throughout the calibration range.« less
Boiler using combustible fluid
Baumgartner, H.; Meier, J.G.
1974-07-03
A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.
Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Cheng, Larry
2015-01-01
This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design.
Izbicki, John A.; Stamos, Christina L.; Nishikawa, Tracy; Martin, Peter
2004-01-01
Flow-path and time-of-travel results for the Mojave River ground-water basin, southern California, calculated using the ground-water flow model MODFLOW and particle-tracking model MODPATH were similar to flow path and time-of-travel interpretations derived from delta-deuterium and carbon-14 data. Model and isotopic data both show short flow paths and young ground-water ages throughout the floodplain aquifer along most the Mojave River. Longer flow paths and older ground-water ages as great as 10,000 years before present were measured and simulated in the floodplain aquifer near the Mojave Valley. Model and isotopic data also show movement of water between the floodplain and regional aquifer and subsequent discharge of water from the river to dry lakes in some areas. It was not possible to simulate the isotopic composition of ground-water in the regional aquifer away from the front of the San Gabriel and San Bernardino Mountains - because recharge in these areas does not occur under the present-day climatic conditions used for calibration of the model.
Critical Velocities in Open Capillary Flow
NASA Technical Reports Server (NTRS)
Dreyer, Michael; Langbein, Dieter; Rath, Hans J.
1996-01-01
This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.
Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.
2004-01-01
In friction stir welding, a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld such as aluminum alloys. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and thus tracks the aluminum deformation flow paths in a unique 3-dimensional manner. CT scanning is a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.
Safety drain system for fluid reservoir
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)
2012-01-01
A safety drain system includes a plurality of drain sections, each of which defines distinct fluid flow paths. At least a portion of the fluid flow paths commence at a side of the drain section that is in fluid communication with a reservoir's fluid. Each fluid flow path at the side communicating with the reservoir's fluid defines an opening having a smallest dimension not to exceed approximately one centimeter. The drain sections are distributed over at least one surface of the reservoir. A manifold is coupled to the drain sections.
Siphon flows in isolated magnetic flux tubes. 3: The equilibrium path of the flux tube arch
NASA Technical Reports Server (NTRS)
Thomas, John H.; Montesinis, Benjamin
1989-01-01
The arched equilibrium path of a thin magnetic flux tube in a plane-stratified, nonmagnetic atmosphere is calculated for cases in which the flux tube contains a steady siphon flow. The large scale mechanical equilibrium of the flux tube involves a balance among the magnetic buoyancy force, the net magnetic tension force due to the curvature of the flux tube axis, and the inertial (centrifugal) force due to the siphon flow along curved streamlines. The ends of the flux tube are assumed to be pinned down by some other external force. Both isothermal and adiabatic siphon flows are considered for flux tubes in an isothermal external atmosphere. For the isothermal case, in the absence of a siphon flow the equilibrium path reduces to the static arch calculated by Parker (1975, 1979). The presence of a siphon flow causes the flux tube arch to bend more sharply, so that magnetic tension can overcome the additional straightening effect of the inertial force, and reduces the maximum width of the arch. The curvature of the arch increases as the siphon flow speed increases. For a critical siphon flow, with supercritical flow in the downstream leg, the arch is asymmetric, with greater curvature in the downstream leg of the arch. Adiabatic flow have qualitatively similar effects, except that adiabatic cooling reduces the buoyancy of the flux tube and thus leads to significantly wider arches. In some cases the cooling is strong enough to create negative buoyancy along sections of the flux tube, requiring upward curvature of the flux tube path along these sections and sometimes leading to unusual equilibrium paths of periodic, sinusoidal form.
Are preferential flow paths perpetuated by microbial activity in the soil matrix? A review
NASA Astrophysics Data System (ADS)
Morales, Verónica L.; Parlange, J.-Yves; Steenhuis, Tammo S.
2010-10-01
SummaryRecently, the interactions between soil structure and microbes have been associated with water transport, retention and preferential or column flow development. Of particular significance is the potential impact of microbial extracellular polymeric substances (EPS) on soil porosity (i.e., hydraulic conductivity reduction or bioclogging) and of exudates from biota, including bacteria, fungi, roots and earthworms on the degree of soil water repellency. These structural and surface property changes create points of wetting instability, which under certain infiltrating conditions can often result in the formation of persistent preferential flow paths. Moreover, distinct differences in physical and chemical properties between regions of water flow (preferential flow paths) and no-flow (soil matrix) provide a unique set of environmental living conditions for adaptable microorganisms to exist. In this review, special consideration is given to: (1) the functional significance of microbial activity in the host porous medium in terms of feedback mechanisms instigated by irregular water availability and (2) the related physical and chemical conditions that force the organization and formation of unique microbial habitats in unsaturated soils that prompt and potentially perpetuate the formation of preferential flow paths in the vadose zone.
NASA Astrophysics Data System (ADS)
Bittner, S.; Priesack, E.
2012-04-01
We apply a functional-structural model of tree water flow to single old-growth trees in a temperate broad-leaved forest stand. Roots, stems and branches are represented by connected porous cylinder elements further divided into the inner heartwood cylinders surrounded by xylem and phloem. Xylem water flow is simulated by applying a non-linear Darcy flow in porous media driven by the water potential gradient according to the cohesion-tension theory. The flow model is based on physiological input parameters such as the hydraulic conductivity, stomatal response to leaf water potential and root water uptake capability and, thus, can reflect the different properties of tree species. The actual root water uptake is calculated using also a non-linear Darcy law based on the gradient between root xylem water potential and rhizosphere soil water potential and by the simulation of soil water flow applying Richards equation. A leaf stomatal conductance model is combined with the hydrological tree and soil water flow model and a spatially explicit three-dimensional canopy light model. The structure of the canopy and the tree architectures are derived by applying an automatic tree skeleton extraction algorithm from point clouds obtained by use of a terrestrial laser scanner allowing an explicit representation of the water flow path in the stem and branches. The high spatial resolution of the root and branch geometry and their connectivity makes the detailed modelling of the water use of single trees possible and allows for the analysis of the interaction between single trees and the influence of the canopy light regime (including different fractions of direct sunlight and diffuse skylight) on the simulated sap flow and transpiration. The model can be applied at various sites and to different tree species, enabling the up-scaling of the water usage of single trees to the total transpiration of mixed stands. Examples are given to reveal differences between diffuse- and ring-porous tree species and to simulate the diurnal dynamics of transpiration, stem sap flux, and root water uptake observed during the vegetation period in the year 2009.
Hydrogeological characterization of flow system in a karstic aquifer, Seymareh dam, Iran
NASA Astrophysics Data System (ADS)
Behrouj Peely, Ahmad; Mohammadi, Zargham; Raeisi, Ezzatollah; Solgi, Khashayar; Mosavi, Mohammad J.; Kamali, Majid
2018-07-01
In order to determine the characteristics of the flow system in a karstic aquifer, an extensive hydrogeological study includes dye tracing test was conducted. The aquifer suited left abutment of Seymareh Dam, in Ravandi Anticline and discharges by more than 50 springs in the southern flank. Flow system in the aquifer is mainly controlled by the reservoir of Seymareh Dam. Time variations of the spring discharge and water table in the observation wells were highly correlated with the reservoir water level. The average groundwater velocity ranges from 0.2 to more than 14 m/h based on the dye tracing test. The probable flow paths were differentiated in two groups including the flow paths in the northern and southern flanks of Ravandi Anticline. Types of groundwater flow in the proposed flow paths are determined as diffuse or conduit flow type considering groundwater velocity and shape of the breakthrough curves. An index is proposed for differentiation of diffuse and conduit flow system based on relationship of groundwater velocity and hydraulic gradient. Dominant geometry of the flow routs (e.g., conduit diameter and fracture aperture) is estimated for the groundwater flow paths toward the springs. Based on velocity variations and variance coefficient of the water table and discharge of springs on map view a major karst conduit was probably developed in the aquifer. This research emphasizes applying of an extensive hydrogeological study for characterization of flow system in the karst aquifer.
Morton, Keith J.; Loutherback, Kevin; Inglis, David W.; Tsui, Ophelia K.; Sturm, James C.; Chou, Stephen Y.; Austin, Robert H.
2008-01-01
We show that it is possible to direct particles entrained in a fluid along trajectories much like rays of light in classical optics. A microstructured, asymmetric post array forms the core hydrodynamic element and is used as a building block to construct microfluidic metamaterials and to demonstrate refractive, focusing, and dispersive pathways for flowing beads and cells. The core element is based on the concept of deterministic lateral displacement where particles choose different paths through the asymmetric array based on their size: Particles larger than a critical size are displaced laterally at each row by a post and move along the asymmetric axis at an angle to the flow, while smaller particles move along streamline paths. We create compound elements with complex particle handling modes by tiling this core element using multiple transformation operations; we show that particle trajectories can be bent at an interface between two elements and that particles can be focused into hydrodynamic jets by using a single inlet port. Although particles propagate through these elements in a way that strongly resembles light rays propagating through optical elements, there are unique differences in the paths of our particles as compared with photons. The unusual aspects of these modular, microfluidic metamaterials form a rich design toolkit for mixing, separating, and analyzing cells and functional beads on-chip. PMID:18495920
Tortuous path chemical preconcentrator
Manginell, Ronald P.; Lewis, Patrick R.; Adkins, Douglas R.; Wheeler, David R.; Simonson, Robert J.
2010-09-21
A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.
High-Performance Water-Iodinating Cartridge
NASA Technical Reports Server (NTRS)
Sauer, Richard; Gibbons, Randall E.; Flanagan, David T.
1993-01-01
High-performance cartridge contains bed of crystalline iodine iodinates water to near saturation in single pass. Cartridge includes stainless-steel housing equipped with inlet and outlet for water. Bed of iodine crystals divided into layers by polytetrafluoroethylene baffles. Holes made in baffles and positioned to maximize length of flow path through layers of iodine crystals. Resulting concentration of iodine biocidal; suppresses growth of microbes in stored water or disinfects contaminated equipment. Cartridge resists corrosion and can be stored wet. Reused several times before necessary to refill with fresh iodine crystals.
Kingsbury, James A.; Barlow, Jeannie R.; Jurgens, Bryant; McMahon, Peter B.; Carmichael, John K.
2017-01-01
Wells along two regional flow paths were sampled to characterize changes in water quality and the vulnerability to contamination of the Memphis aquifer across a range of hydrologic and land-use conditions in the southeastern United States. The flow paths begin in the aquifer outcrop area and end at public supply wells in the confined parts of the aquifer at Memphis, Tennessee. Age-date tracer (e.g. SF6, 3H, 14C) data indicate that a component of young water is present in the aquifer at most locations along both flow paths, which is consistent with previous studies at Memphis that documented leakage of shallow water into the Memphis aquifer locally where the overlying confining unit is thin or absent. Mixtures of young and old water were most prevalent where long-term pumping for public supply has lowered groundwater levels and induced downward movement of young water. The occurrence of nitrate, chloride and synthetic organic compounds was correlated to the fraction of young water along the flow paths. Oxic conditions persisted for 10 km or more down dip of the confining unit, and the presence of young water in confined parts of the aquifer suggest that contaminants such as nitrate-N have the potential for transport. Long-term monitoring data for one of the flow-path wells screened in the confined part of the aquifer suggest that the vulnerability of the aquifer as indicated by the fraction of young water is increasing over time.
NASA Astrophysics Data System (ADS)
Kingsbury, James A.; Barlow, Jeannie R. B.; Jurgens, Bryant C.; McMahon, Peter B.; Carmichael, John K.
2017-09-01
Wells along two regional flow paths were sampled to characterize changes in water quality and the vulnerability to contamination of the Memphis aquifer across a range of hydrologic and land-use conditions in the southeastern United States. The flow paths begin in the aquifer outcrop area and end at public supply wells in the confined parts of the aquifer at Memphis, Tennessee. Age-date tracer (e.g. SF6, 3H, 14C) data indicate that a component of young water is present in the aquifer at most locations along both flow paths, which is consistent with previous studies at Memphis that documented leakage of shallow water into the Memphis aquifer locally where the overlying confining unit is thin or absent. Mixtures of young and old water were most prevalent where long-term pumping for public supply has lowered groundwater levels and induced downward movement of young water. The occurrence of nitrate, chloride and synthetic organic compounds was correlated to the fraction of young water along the flow paths. Oxic conditions persisted for 10 km or more down dip of the confining unit, and the presence of young water in confined parts of the aquifer suggest that contaminants such as nitrate-N have the potential for transport. Long-term monitoring data for one of the flow-path wells screened in the confined part of the aquifer suggest that the vulnerability of the aquifer as indicated by the fraction of young water is increasing over time.
Changes in water quality that occur as water flows along hyporheic flow paths may have important effects on surface water quality and aquatic habitat, yet very few studies have examined these hyporheic processes along large gravel bed rivers. To determine water quality changes as...
NASA Astrophysics Data System (ADS)
Wichmann, Volker
2017-09-01
The Gravitational Process Path (GPP) model can be used to simulate the process path and run-out area of gravitational processes based on a digital terrain model (DTM). The conceptual model combines several components (process path, run-out length, sink filling and material deposition) to simulate the movement of a mass point from an initiation site to the deposition area. For each component several modeling approaches are provided, which makes the tool configurable for different processes such as rockfall, debris flows or snow avalanches. The tool can be applied to regional-scale studies such as natural hazard susceptibility mapping but also contains components for scenario-based modeling of single events. Both the modeling approaches and precursor implementations of the tool have proven their applicability in numerous studies, also including geomorphological research questions such as the delineation of sediment cascades or the study of process connectivity. This is the first open-source implementation, completely re-written, extended and improved in many ways. The tool has been committed to the main repository of the System for Automated Geoscientific Analyses (SAGA) and thus will be available with every SAGA release.
NASA Astrophysics Data System (ADS)
Klepikova, M.; Le Borgne, T.; Bour, O.; Lavenant, N.
2011-12-01
In fractured aquifers flow generally takes place in a few fractured zones. The identification of these main flow paths is critical as it controls the transfer of fluids in the subsurface. For realistic modeling of the flow the knowledge about the spatial variability of hydraulic properties is required. Inverse problems based on hydraulic head data are generally strongly underconstrained. A possible way of reducing the uncertainty is to combine different type of data, such as flow measurements, temperature profiles or tracer test data. Here, we focus on the use of temperature, which can be seen as a natural tracer of ground water flow. Previous studies used temperature anomalies to quantify vertical or horizontal regional groundwater flow velocities. Most of these studies assume that water in the borehole is stagnant, and, thus, the temperature profile in the well is representative of the temperature in the aquifer. In fractured media, differences in hydraulic head between flow paths connected to a borehole generally create ambient vertical flow within the borehole. These differences in hydraulic head are in general due to regional flow conditions. Estimation of borehole vertical flow is of interest as it can be used to derive large scale hydraulic connections. Under a single-borehole configuration, the estimation of vertical flow can be used to estimate the local transimissivities and the hydraulic head differences driving the flow through the borehole. Under a cross-borehole set up, it can be used to characterize hydraulic connections and estimate their hydraulic properties. Using a flow and heat transfer numerical model, we find that the slope of the temperature profile is related directly to vertical borehole flow velocity. Thus, we propose a method to invert temperature measurements to derive borehole flow velocities and subsequently the fracture zone hydraulic and connectivity properties. The advantage of temperature measurements compared to flowmeter measurements is that temperature can be measured easily and very accurately, continuously in space and time. To test the methodology, we have performed a field experiment at a crystalline rocks field site, located in Ploemeur, Brittany (France). The site is composed of three 100 meters deep boreholes, located at 6-10 m distances from each other. The experiment consisted in measuring the borehole temperature profiles under all possible pumping configurations. Hence, the pumping and monitoring wells were successively changed. The thermal response in observation well induced by changes in pumping conditions is related to changes in vertical flow velocities and thus to the inter-borehole fracture connectivity. Based on this dataset, we propose a methodology to include temperature profiles in inverse problem for characterizing the spatial distribution of fracture zone hydraulic properties.
NASA Astrophysics Data System (ADS)
Gardner, W. P.
2016-12-01
In this presentation the definition of hydraulic connection will be explored with a focus on the role of deep groundwater in streamflow generation and its time and space limits. Regional groundwater flow paths can be important sources of baseflow and potentially event response in surface water systems. This deep groundwater discharge plays an important role in determining how the watershed responds to climatic forcing, whether watersheds are a carbon source or sink and can be significant for watershed geochemistry and nutrient loading. These flow paths potentially "connect" to surface water systems and saturated soil zones at large distances, and over long time scales. However, these flow paths are challenging to detect, especially with hydraulic techniques. Here we will discuss some of the basic physical processes that affect the hydraulic signal along a groundwater flow path and their implications for the definition of hydrologic connection. Methods of measuring hydraulic connection using groundwater head response and their application in detecting regional groundwater discharge will be discussed. Environmental tracers are also a powerful method for identifying connected flowpaths in groundwater systems, and are commonly used to determine flow connection and flow rates in groundwater studies. Isotopic tracer methods for detecting deep, regional flow paths in watersheds will be discussed, along with observations of deep groundwater discharge in shallow alluvial systems around the world. The goal of this talk is to discuss hydraulic and hydrologic connection from a groundwater hydrologist's perspective, spark conversation on the meaning of hydrologic connection, the processes which govern hydraulic response and methods to measure flow connections and flux.
NASA Astrophysics Data System (ADS)
Webb, R. W.; Williams, M. W.; Erickson, T. A.
2018-02-01
Snowmelt is an important part of the hydrologic cycle and ecosystem dynamics for headwater systems. However, the physical process of water flow through snow is a poorly understood aspect of snow hydrology as meltwater flow paths tend to be highly complex. Meltwater flow paths diverge and converge as percolating meltwater reaches stratigraphic layer interfaces creating high spatial variability. Additionally, a snowpack is temporally heterogeneous due to rapid localized metamorphism that occurs during melt. This study uses a snowmelt lysimeter array at tree line in the Niwot Ridge study area of northern Colorado. The array is designed to address the issue of spatial and temporal variability of basal discharge at 105 locations over an area of 1,300 m2. Observed coefficients of variation ranged from 0 to almost 10 indicating more variability than previously observed, though this variability decreased throughout each melt season. Snowmelt basal discharge also significantly increases as snow depth decreases displaying a cluster pattern that peaks during weeks 3-5 of the snowmelt season. These results are explained by the flow of meltwater along snow layer interfaces. As the snowpack becomes less stratified through the melt season, the pattern transforms from preferential flow paths to uniform matrix flow. Correlation ranges of the observed basal discharge correspond to a mean representative elementary area of 100 m2, or a characteristic length of 10 m. Snowmelt models representing processes at scales less than this will need to explicitly incorporate the spatial variability of snowmelt discharge and meltwater flow paths through snow between model pixels.
Herbst, Daniel P.
2017-01-01
Abstract: Conventional arterial-line filters commonly use a large volume circular shaped housing, a wetted micropore screen, and a purge port to trap, separate, and remove gas bubbles from extracorporeal blood flow. Focusing on the bubble trapping function, this work attempts to explore how the filter housing shape and its resulting blood flow path affect the clinical application of arterial-line filters in terms of gross air handling. A video camera was used in a wet-lab setting to record observations made during gross air-bolus injections in three different radially designed filters using a 30–70% glycerol–saline mixture flowing at 4.5 L/min. Two of the filters both had inlet ports attached near the filter-housing top with bottom oriented outlet ports at the bottom, whereas the third filter had its inlet and outlet ports both located at the bottom of the filter housing. The two filters with top-in bottom-out fluid paths were shown to direct the incoming flow downward as it passed through the filter, placing the forces of buoyancy and viscous drag in opposition to each other. This contrasted with the third filter's bottom-in bottom-out fluid path, which was shown to direct the incoming flow upward so that the forces of buoyancy and viscous drag work together. The direction of the blood flow path through a filter may be important to the application of arterial-line filter technology as it helps determine how the forces of buoyancy and flow are aligned with one another. PMID:28298665
Herbst, Daniel P
2017-03-01
Conventional arterial-line filters commonly use a large volume circular shaped housing, a wetted micropore screen, and a purge port to trap, separate, and remove gas bubbles from extracorporeal blood flow. Focusing on the bubble trapping function, this work attempts to explore how the filter housing shape and its resulting blood flow path affect the clinical application of arterial-line filters in terms of gross air handling. A video camera was used in a wet-lab setting to record observations made during gross air-bolus injections in three different radially designed filters using a 30-70% glycerol-saline mixture flowing at 4.5 L/min. Two of the filters both had inlet ports attached near the filter-housing top with bottom oriented outlet ports at the bottom, whereas the third filter had its inlet and outlet ports both located at the bottom of the filter housing. The two filters with top-in bottom-out fluid paths were shown to direct the incoming flow downward as it passed through the filter, placing the forces of buoyancy and viscous drag in opposition to each other. This contrasted with the third filter's bottom-in bottom-out fluid path, which was shown to direct the incoming flow upward so that the forces of buoyancy and viscous drag work together. The direction of the blood flow path through a filter may be important to the application of arterial-line filter technology as it helps determine how the forces of buoyancy and flow are aligned with one another.
Fractal topography and subsurface water flows from fluvial bedforms to the continental shield
Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.
2007-01-01
Surface-subsurface flow interactions are critical to a wide range of geochemical and ecological processes and to the fate of contaminants in freshwater environments. Fractal scaling relationships have been found in distributions of both land surface topography and solute efflux from watersheds, but the linkage between those observations has not been realized. We show that the fractal nature of the land surface in fluvial and glacial systems produces fractal distributions of recharge, discharge, and associated subsurface flow patterns. Interfacial flux tends to be dominated by small-scale features while the flux through deeper subsurface flow paths tends to be controlled by larger-scale features. This scaling behavior holds at all scales, from small fluvial bedforms (tens of centimeters) to the continental landscape (hundreds of kilometers). The fractal nature of surface-subsurface water fluxes yields a single scale-independent distribution of subsurface water residence times for both near-surface fluvial systems and deeper hydrogeological flows. Copyright 2007 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Wienhöfer, J.; Zehe, E.
2012-04-01
Rapid lateral flow processes via preferential flow paths are widely accepted to play a key role for rainfall-runoff response in temperate humid headwater catchments. A quantitative description of these processes, however, is still a major challenge in hydrological research, not least because detailed information about the architecture of subsurface flow paths are often impossible to obtain at a natural site without disturbing the system. Our study combines physically based modelling and field observations with the objective to better understand how flow network configurations influence the hydrological response of hillslopes. The system under investigation is a forested hillslope with a small perennial spring at the study area Heumöser, a headwater catchment of the Dornbirnerach in Vorarlberg, Austria. In-situ points measurements of field-saturated hydraulic conductivity and dye staining experiments at the plot scale revealed that shrinkage cracks and biogenic macropores function as preferential flow paths in the fine-textured soils of the study area, and these preferential flow structures were active in fast subsurface transport of artificial tracers at the hillslope scale. For modelling of water and solute transport, we followed the approach of implementing preferential flow paths as spatially explicit structures of high hydraulic conductivity and low retention within the 2D process-based model CATFLOW. Many potential configurations of the flow path network were generated as realisations of a stochastic process informed by macropore characteristics derived from the plot scale observations. Together with different realisations of soil hydraulic parameters, this approach results in a Monte Carlo study. The model setups were used for short-term simulation of a sprinkling and tracer experiment, and the results were evaluated against measured discharges and tracer breakthrough curves. Although both criteria were taken for model evaluation, still several model setups produced acceptable matches to the observed behaviour. These setups were selected for long-term simulation, the results of which were compared against water level measurements at two piezometers along the hillslope and the integral discharge response of the spring to reject some non-behavioural model setups and further reduce equifinality. The results of this study indicate that process-based modelling can provide a means to distinguish preferential flow networks on the hillslope scale when complementary measurements to constrain the range of behavioural model setups are available. These models can further be employed as a virtual reality to investigate the characteristics of flow path architectures and explore effective parameterisations for larger scale applications.
Cascading Tesla Oscillating Flow Diode for Stirling Engine Gas Bearings
NASA Technical Reports Server (NTRS)
Dyson, Rodger
2012-01-01
Replacing the mechanical check-valve in a Stirling engine with a micromachined, non-moving-part flow diode eliminates moving parts and reduces the risk of microparticle clogging. At very small scales, helium gas has sufficient mass momentum that it can act as a flow controller in a similar way as a transistor can redirect electrical signals with a smaller bias signal. The innovation here forces helium gas to flow in predominantly one direction by offering a clear, straight-path microchannel in one direction of flow, but then through a sophisticated geometry, the reversed flow is forced through a tortuous path. This redirection is achieved by using microfluid channel flow to force the much larger main flow into this tortuous path. While microdiodes have been developed in the past, this innovation cascades Tesla diodes to create a much higher pressure in the gas bearing supply plenum. In addition, the special shape of the leaves captures loose particles that would otherwise clog the microchannel of the gas bearing pads.
Axial Flow Conditioning Device for Mitigating Instabilities
NASA Technical Reports Server (NTRS)
Ahuja, Vineet (Inventor); Birkbeck, Roger M. (Inventor); Hosangadi, Ashvin (Inventor)
2017-01-01
A flow conditioning device for incrementally stepping down pressure within a piping system is presented. The invention includes an outer annular housing, a center element, and at least one intermediate annular element. The outer annular housing includes an inlet end attachable to an inlet pipe and an outlet end attachable to an outlet pipe. The outer annular housing and the intermediate annular element(s) are concentrically disposed about the center element. The intermediate annular element(s) separates an axial flow within the outer annular housing into at least two axial flow paths. Each axial flow path includes at least two annular extensions that alternately and locally direct the axial flow radially outward and inward or radially inward and outward thereby inducing a pressure loss or a pressure gradient within the axial flow. The pressure within the axial flow paths is lower than the pressure at the inlet end and greater than the vapor pressure for the axial flow. The invention minimizes fluidic instabilities, pressure pulses, vortex formation and shedding, and/or cavitation during pressure step down to yield a stabilized flow within a piping system.
Fluidic Oscillator Having Decoupled Frequency and Amplitude Control
NASA Technical Reports Server (NTRS)
Koklu, Mehti (Inventor)
2017-01-01
A fluidic oscillator having independent frequency and amplitude control includes a fluidic-oscillator main flow channel having a main flow inlet, a main flow outlet, and first and second control ports disposed at opposing sides thereof. A fluidic-oscillator controller has an inlet and outlet. A volume defined by the main flow channel is greater than the volume defined by the controller. A flow diverter coupled to the outlet of the controller defines a first fluid flow path from the controller's outlet to the first control port and defines a second fluid flow path from the controller's outlet to the second control port.
Fluidic Oscillator Having Decoupled Frequency and Amplitude Control
NASA Technical Reports Server (NTRS)
Koklu, Mehti (Inventor)
2016-01-01
A fluidic oscillator having independent frequency and amplitude control includes a fluidic-oscillator main flow channel having a main flow inlet, a main flow outlet, and first and second control ports disposed at opposing sides thereof. A fluidic-oscillator controller has an inlet and outlet. A volume defined by the main flow channel is greater than the volume defined by the controller. A flow diverter coupled to the outlet of the controller defines a first fluid flow path from the controller's outlet to the first control port and defines a second fluid flow path from the controller's outlet to the second control port.
Hybrid Donor-Dot Devices made using Top-down Ion Implantation for Quantum Computing
NASA Astrophysics Data System (ADS)
Bielejec, Edward; Bishop, Nathan; Carroll, Malcolm
2012-02-01
We present progress towards fabricating hybrid donor -- quantum dots (QD) for quantum computing. These devices will exploit the long coherence time of the donor system and the surface state manipulation associated with a QD. Fabrication requires detection of single ions implanted with 10's of nanometer precision. We show in this talk, 100% detection efficiency for single ions using a single ion Geiger mode avalanche (SIGMA) detector integrated into a Si MOS QD process flow. The NanoImplanter (nI) a focused ion beam system is used for precision top-down placement of the implanted ion. This machine has a 10 nm resolution combined with a mass velocity filter, allowing for the use of multi-species liquid metal ion sources (LMIS) to implant P and Sb ions, and a fast blanking and chopping system for single ion implants. The combination of the nI and integration of the SIGMA with the MOS QD process flow establishes a path to fabricate hybrid single donor-dot devices. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Thermo-Mechanical Processing in Friction Stir Welds
NASA Technical Reports Server (NTRS)
Schneider, J. A.; Nunes, A. C., Jr.
2002-01-01
In Friction Stir Welding (FSW) a rotating pin-tool inserted into a weld seam literally stirs the edges of the seam together. In this study, two flow paths are proposed that define the FWS zone. Studies using a longitudinal tungsten wire (0.0025 dia.) were used to visualize and document the material flow. The material flow path is described using a mathematical model.
NASA Astrophysics Data System (ADS)
Christensen, H.; Wooten, J. P.; Swanson, E.; Senison, J. J.; Myers, K. D.; Befus, K. M.; Warden, J.; Zamora, P. B.; Gomez, J. D.; Wilson, J. L.; Groffman, A.; Rearick, M. S.; Cardenas, M. B.
2012-12-01
A study by the 2012 Hydrogeology Field Methods class of the University of Texas at Austin implemented multiple approaches to evaluate and characterize local hyporheic zone flow and biogeochemical trends in a highly meandering reach of the of the East Fork of the Jemez River, a fourth order stream in northwestern New Mexico. This section of the Jemez River is strongly meandering and exhibits distinct riffle-pool morphology. The high stream sinuosity creates inter-meander hyporheic flow that is also largely influenced by local groundwater gradients. In this study, dozens of piezometers were used to map the water table and flow vectors were then calculated. Surface water and ground water samples were collected and preserved for later geochemical analysis by ICPMS and HPLC, and unstable parameters and alkalinity were measured on-site. Additionally, information was collected from thermal monitoring of the streambed, stream gauging, and from a series of electrical resistivity surveys forming a network across the site. Hyporheic flow paths are suggested by alternating gaining and losing sections of the stream as determined by stream gauging at multiple locations along the reach. Water table maps and calculated fluxes across the sediment-water interface also indicate hyporheic flow paths. We find variability in the distribution of biogeochemical constituents (oxidation-reduction potential, nitrate, ammonium, and phosphate) along interpreted flow paths which is partly consistent with hyporheic exchange. The variability and heterogeneity of reducing and oxidizing conditions is interpreted to be a result of groundwater-surface water interaction. Two-dimensional mapping of biogeochemical parameters show redox transitions along interpreted flow paths. Further analysis of various measured unstable chemical parameters results in observable trends strongly delineated along these preferential flow paths that are consistent with the direction of groundwater flow and the assumed direction of inter-meander hyporheic flow.
Solute transport along preferential flow paths in unsaturated fractures
Su, Grace W.; Geller, Jil T.; Pruess, Karsten; Hunt, James R.
2001-01-01
Laboratory experiments were conducted to study solute transport along preferential flow paths in unsaturated, inclined fractures. Qualitative aspects of solute transport were identified in a miscible dye tracer experiment conducted in a transparent replica of a natural granite fracture. Additional experiments were conducted to measure the breakthrough curves of a conservative tracer introduced into an established preferential flow path in two different fracture replicas and a rock‐replica combination. The influence of gravity was investigated by varying fracture inclination. The relationship between the travel times of the solute and the relative influence of gravity was substantially affected by two modes of intermittent flow that occurred: the snapping rivulet and the pulsating blob modes. The measured travel times of the solute were evaluated with three transfer function models: the axial dispersion, the reactors‐in‐series, and the lognormal models. The three models described the solute travel times nearly equally well. A mechanistic model was also formulated to describe transport when the pulsating blob mode occurred which assumed blobs of water containing solute mixed with residual pools of water along the flow path.
NASA Astrophysics Data System (ADS)
Alazard, M.; Boisson, A.; Maréchal, J.-C.; Perrin, J.; Dewandel, B.; Schwarz, T.; Pettenati, M.; Picot-Colbeaux, G.; Kloppman, W.; Ahmed, S.
2016-02-01
The recharge flow paths in a typical weathered hard-rock aquifer in a semi-arid area of southern India were investigated in relation to structures associated with a managed aquifer recharge (MAR) scheme. Despite the large number of MAR structures, the mechanisms of recharge in their vicinity are still unclear. The study uses a percolation tank as a tool to identify the input signal of the recharge and uses multiple measurements (piezometric time series, electrical conductivity profiles in boreholes) compared against heat-pulse flowmeter measurements and geochemical data (major ions and stable isotopes) to examine recharge flow paths. The recharge process is a combination of diffuse piston flow and preferential flow paths. Direct vertical percolation appears to be very limited, in contradiction to the conceptual model generally admitted where vertical flow through saprolite is considered as the main recharge process. The horizontal component of the flow leads to a strong geochemical stratification of the water column. The complex recharge pattern, presented in a conceptual model, leads to varied impacts on groundwater quality and availability in both time and space, inducing strong implications for water management, water quality evolution, MAR monitoring and longer-term socio-economic costs.
NASA Astrophysics Data System (ADS)
Guex, Guillaume
2016-05-01
In recent articles about graphs, different models proposed a formalism to find a type of path between two nodes, the source and the target, at crossroads between the shortest-path and the random-walk path. These models include a freely adjustable parameter, allowing to tune the behavior of the path toward randomized movements or direct routes. This article presents a natural generalization of these models, namely a model with multiple sources and targets. In this context, source nodes can be viewed as locations with a supply of a certain good (e.g. people, money, information) and target nodes as locations with a demand of the same good. An algorithm is constructed to display the flow of goods in the network between sources and targets. With again a freely adjustable parameter, this flow can be tuned to follow routes of minimum cost, thus displaying the flow in the context of the optimal transportation problem or, by contrast, a random flow, known to be similar to the electrical current flow if the random-walk is reversible. Moreover, a source-targetcoupling can be retrieved from this flow, offering an optimal assignment to the transportation problem. This algorithm is described in the first part of this article and then illustrated with case studies.
Heat exchanger efficiently operable alternatively as evaporator or condenser
Ecker, Amir L.
1981-01-01
A heat exchanger adapted for efficient operation alternatively as evaporator or condenser and characterized by flexible outer tube having a plurality of inner conduits and check valves sealingly disposed within the outer tube and connected with respective inlet and outlet master flow conduits and configured so as to define a parallel flow path for a first fluid such as a refrigerant when flowed in one direction and to define a serpentine and series flow path for the first fluid when flowed in the opposite direction. The flexible outer tube has a heat exchange fluid, such as water, flowed therethrough by way of suitable inlet and outlet connections. The inner conduits and check valves form a package that is twistable so as to define a spiral annular flow path within the flexible outer tube for the heat exchange fluid. The inner conduits have thin walls of highly efficient heat transfer material for transferring heat between the first and second fluids. Also disclosed are specific materials and configurations.
NASA Astrophysics Data System (ADS)
Meyer, Nele Kristin; Schwanghart, Wolfgang; Korup, Oliver
2014-05-01
Norwegian's road network is frequently affected by debris flows. Both damage repair and traffic interruption generate high economic losses and necessitate a rigorous assessment of where losses are expected to be high and where preventive measures should be focused on. In recent studies, we have developed susceptibility and trigger probability maps that serve as input into a hazard calculation at the scale of first-order watersheds. Here we combine these results with graph theory to assess the impact of debris flows on the road network of southern Norway. Susceptibility and trigger probability are aggregated for individual road sections to form a reliability index that relates to the failure probability of a link that connects two network vertices, e.g., road junctions. We define link vulnerability as a function of traffic volume and additional link failure distance. Additional link failure distance is the extra length of the alternative path connecting the two associated link vertices in case the network link fails and is calculated by a shortest-path algorithm. The product of network reliability and vulnerability indices represent the risk index. High risk indices identify critical links for the Norwegian road network and are investigated in more detail. Scenarios demonstrating the impact of single or multiple debris flow events are run for the most important routes between seven large cities in southern Norway. First results show that the reliability of the road network is lowest in the central and north-western part of the study area. Road network vulnerability is highest in the mountainous regions in central southern Norway where the road density is low and in the vicinity of cities where the traffic volume is large. The scenarios indicate that city connections that have their shortest path via routes crossing the central part of the study area have the highest risk of route failure.
Short paths in expander graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinberg, J.; Rubinfeld, R.
Graph expansion has proved to be a powerful general tool for analyzing the behavior of routing algorithms and the interconnection networks on which they run. We develop new routing algorithms and structural results for bounded-degree expander graphs. Our results are unified by the fact that they are all based upon, and extend, a body of work asserting that expanders are rich in short, disjoint paths. In particular, our work has consequences for the disjoint paths problem, multicommodify flow, and graph minor containment. We show: (i) A greedy algorithm for approximating the maximum disjoint paths problem achieves a polylogarithmic approximation ratiomore » in bounded-degree expanders. Although our algorithm is both deterministic and on-line, its performance guarantee is an improvement over previous bounds in expanders. (ii) For a multicommodily flow problem with arbitrary demands on a bounded-degree expander, there is a (1 + {epsilon})-optimal solution using only flow paths of polylogarithmic length. It follows that the multicommodity flow algorithm of Awerbuch and Leighton runs in nearly linear time per commodity in expanders. Our analysis is based on establishing the following: given edge weights on an expander G, one can increase some of the weights very slightly so the resulting shortest-path metric is smooth - the min-weight path between any pair of nodes uses a polylogarithmic number of edges. (iii) Every bounded-degree expander on n nodes contains every graph with O(n/log{sup O(1)} n) nodes and edges as a minor.« less
Study of Critical Heat Flux and Two-Phase Pressure Drop Under Reduced Gravity
NASA Technical Reports Server (NTRS)
Abdollahian, Davood; Quintal, Joseph; Barez, Fred; Zahm, Jennifer; Lohr, Victor
1996-01-01
The design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer phenomena in reduced gravities. This program was funded by NASA headquarters in response to NRA-91-OSSA-17 and was managed by Lewis Research Center. The main objective of this program was to design and construct a two-phase test loop, and perform a series of normal gravity and aircraft trajectory experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop was packaged on two aircraft racks and was also instrumented to generate data for two-phase pressure drop. The normal gravity tests were performed with vertical up and downflow configurations to bound the effect of gravity on the test parameters. One set of aircraft trajectory tests was performed aboard the NASA DC-9 aircraft. These tests were mainly intended to evaluate the test loop and its operational performance under actual reduced gravity conditions, and to produce preliminary data for the test parameters. The test results were used to demonstrate the applicability of the normal gravity models for prediction of the two-phase friction pressure drop. It was shown that the two-phase friction multipliers for vertical upflow and reduced gravity conditions can be successfully predicted by the appropriate normal gravity models. Limited critical heat flux data showed that the measured CHF under reduced gravities are of the same order of magnitude as the test results with vertical upflow configuration. A simplified correlation was only successful in predicting the measured CHF for low flow rates. Instability tests with vertical upflow showed that flow becomes unstable and critical heat flux occurs at smaller powers when a parallel flow path exists. However, downflow tests and a single reduced gravity instability experiment indicated that the system actually became more stable with a parallel single-phase flow path. Several design modifications have been identified which will improve the system performance for generating reduced gravity data. The modified test loop can provide two-phase flow data for a range of operating conditions and can serve as a test bed for component evaluation.
NASA Technical Reports Server (NTRS)
Izumi, K. H.; Thompson, J. L.; Groce, J. L.; Schwab, R. W.
1986-01-01
The design requirements for a 4D path definition algorithm are described. These requirements were developed for the NASA ATOPS as an extension of the Local Flow Management/Profile Descent algorithm. They specify the processing flow, functional and data architectures, and system input requirements, and recommended the addition of a broad path revision (reinitialization) function capability. The document also summarizes algorithm design enhancements and the implementation status of the algorithm on an in-house PDP-11/70 computer. Finally, the requirements for the pilot-computer interfaces, the lateral path processor, and guidance and steering function are described.
WATER QUALITY EFFECTS OF HYPORHEIC PROCESSING IN A LARGE RIVER
Water quality changes along hyporheic flow paths may have
important effects on river water quality and aquatic habitat. Previous
studies on the Willamette River, Oregon, showed that river water follows
hyporheic flow paths through highly porous deposits created by river...
CRT--Cascade Routing Tool to define and visualize flow paths for grid-based watershed models
Henson, Wesley R.; Medina, Rose L.; Mayers, C. Justin; Niswonger, Richard G.; Regan, R.S.
2013-01-01
The U.S. Geological Survey Cascade Routing Tool (CRT) is a computer application for watershed models that include the coupled Groundwater and Surface-water FLOW model, GSFLOW, and the Precipitation-Runoff Modeling System (PRMS). CRT generates output to define cascading surface and shallow subsurface flow paths for grid-based model domains. CRT requires a land-surface elevation for each hydrologic response unit (HRU) of the model grid; these elevations can be derived from a Digital Elevation Model raster data set of the area containing the model domain. Additionally, a list is required of the HRUs containing streams, swales, lakes, and other cascade termination features along with indices that uniquely define these features. Cascade flow paths are determined from the altitudes of each HRU. Cascade paths can cross any of the four faces of an HRU to a stream or to a lake within or adjacent to an HRU. Cascades can terminate at a stream, lake, or HRU that has been designated as a watershed outflow location.
NASA Astrophysics Data System (ADS)
Haque, S. E.; Johannesson, K. H.
2006-05-01
Arsenic (As) concentrations and speciation were determined in groundwaters along a flow-path in the Upper Floridan aquifer (UFA) to investigate the biogeochemical “evolution“ of As in this relatively pristine aquifer. Dissolved inorganic As species were separated in the field using anion-exchange chromatography and subsequently analyzed by inductively coupled plasma mass spectrometry. Total As concentrations are higher in the recharge area groundwaters compared to down-gradient portions of UFA. Redox conditions vary from relatively oxic to anoxic along the flow-path. Mobilization of As species in UFA groundwaters is influenced by ferric iron reduction and subsequent dissolution, sulfate reduction, and probable pyrite precipitation that are inferred from the data to occur along distinct regions of the flow-path. In general, the distribution of As species are consistent with equilibrium thermodynamics, such that arsenate dominates in more oxidizing waters near the recharge area, and arsenite predominates in the progressively reducing groundwaters beyond the recharge area.
Device for improved air and fuel distribution to a combustor
Laster, Walter R.; Schilp, Reinhard
2016-05-31
A flow conditioning device (30, 50, 70, 100, 150) for a can annular gas turbine engine, including a plurality of flow elements (32, 34, 52, 54, 72, 74, 102) disposed in a compressed air flow path (42, 60, 80, 114, 122) leading to a combustor (12), configured such that relative adjustment of at least one flow directing element (32, 52, 72, 110) with respect to an adjacent flow directing element (34, 54, 74, 112, 120) during operation of the gas turbine engine is effective to adjust a level of choking of the compressed air flow path (42, 60, 80, 114, 122).
Extended shortest path selection for package routing of complex networks
NASA Astrophysics Data System (ADS)
Ye, Fan; Zhang, Lei; Wang, Bing-Hong; Liu, Lu; Zhang, Xing-Yi
The routing strategy plays a very important role in complex networks such as Internet system and Peer-to-Peer networks. However, most of the previous work concentrates only on the path selection, e.g. Flooding and Random Walk, or finding the shortest path (SP) and rarely considering the local load information such as SP and Distance Vector Routing. Flow-based Routing mainly considers load balance and still cannot achieve best optimization. Thus, in this paper, we propose a novel dynamic routing strategy on complex network by incorporating the local load information into SP algorithm to enhance the traffic flow routing optimization. It was found that the flow in a network is greatly affected by the waiting time of the network, so we should not consider only choosing optimized path for package transformation but also consider node congestion. As a result, the packages should be transmitted with a global optimized path with smaller congestion and relatively short distance. Analysis work and simulation experiments show that the proposed algorithm can largely enhance the network flow with the maximum throughput within an acceptable calculating time. The detailed analysis of the algorithm will also be provided for explaining the efficiency.
NASA Astrophysics Data System (ADS)
Woodward, Simon J. R.; Wöhling, Thomas; Stenger, Roland
2016-03-01
Understanding the hydrological and hydrogeochemical responses of hillslopes and other small scale groundwater systems requires mapping the velocity and direction of groundwater flow relative to the controlling subsurface material features. Since point observations of subsurface materials and groundwater head are often the basis for modelling these complex, dynamic, three-dimensional systems, considerable uncertainties are inevitable, but are rarely assessed. This study explored whether piezometric head data measured at high spatial and temporal resolution over six years at a hillslope research site provided sufficient information to determine the flow paths that transfer nitrate leached from the soil zone through the shallow saturated zone into a nearby wetland and stream. Transient groundwater flow paths were modelled using MODFLOW and MODPATH, with spatial patterns of hydraulic conductivity in the three material layers at the site being estimated by regularised pilot point calibration using PEST, constrained by slug test estimates of saturated hydraulic conductivity at several locations. Subsequent Null Space Monte Carlo uncertainty analysis showed that this data was not sufficient to definitively determine the spatial pattern of hydraulic conductivity at the site, although modelled water table dynamics matched the measured heads with acceptable accuracy in space and time. Particle tracking analysis predicted that the saturated flow direction was similar throughout the year as the water table rose and fell, but was not aligned with either the ground surface or subsurface material contours; indeed the subsurface material layers, having relatively similar hydraulic properties, appeared to have little effect on saturated water flow at the site. Flow path uncertainty analysis showed that, while accurate flow path direction or velocity could not be determined on the basis of the available head and slug test data alone, the origin of well water samples relative to the material layers and site contour could still be broadly deduced. This study highlights both the challenge of collecting suitably informative field data with which to characterise subsurface hydrology, and the power of modern calibration and uncertainty modelling techniques to assess flow path uncertainty in hillslopes and other small scale systems.
Kim, Sung-Cheol; Wunsch, Benjamin H; Hu, Huan; Smith, Joshua T; Austin, Robert H; Stolovitzky, Gustavo
2017-06-27
Deterministic lateral displacement (DLD) is a technique for size fractionation of particles in continuous flow that has shown great potential for biological applications. Several theoretical models have been proposed, but experimental evidence has demonstrated that a rich class of intermediate migration behavior exists, which is not predicted. We present a unified theoretical framework to infer the path of particles in the whole array on the basis of trajectories in a unit cell. This framework explains many of the unexpected particle trajectories reported and can be used to design arrays for even nanoscale particle fractionation. We performed experiments that verify these predictions and used our model to develop a condenser array that achieves full particle separation with a single fluidic input.
The role of storm scale, position and movement in controlling urban flood response
NASA Astrophysics Data System (ADS)
ten Veldhuis, Marie-claire; Zhou, Zhengzheng; Yang, Long; Liu, Shuguang; Smith, James
2018-01-01
The impact of spatial and temporal variability of rainfall on hydrological response remains poorly understood, in particular in urban catchments due to their strong variability in land use, a high degree of imperviousness and the presence of stormwater infrastructure. In this study, we analyze the effect of storm scale, position and movement in relation to basin scale and flow-path network structure on urban hydrological response. A catalog of 279 peak events was extracted from a high-quality observational dataset covering 15 years of flow observations and radar rainfall data for five (semi)urbanized basins ranging from 7.0 to 111.1 km2 in size. Results showed that the largest peak flows in the event catalog were associated with storm core scales exceeding basin scale, for all except the largest basin. Spatial scale of flood-producing storm events in the smaller basins fell into two groups: storms of large spatial scales exceeding basin size or small, concentrated events, with storm core much smaller than basin size. For the majority of events, spatial rainfall variability was strongly smoothed by the flow-path network, increasingly so for larger basin size. Correlation analysis showed that position of the storm in relation to the flow-path network was significantly correlated with peak flow in the smallest and in the two more urbanized basins. Analysis of storm movement relative to the flow-path network showed that direction of storm movement, upstream or downstream relative to the flow-path network, had little influence on hydrological response. Slow-moving storms tend to be associated with higher peak flows and longer lag times. Unexpectedly, position of the storm relative to impervious cover within the basins had little effect on flow peaks. These findings show the importance of observation-based analysis in validating and improving our understanding of interactions between the spatial distribution of rainfall and catchment variability.
A Lagrangian Approach for Calculating Microsphere Deposition in a One-Dimensional Lung-Airway Model.
Vaish, Mayank; Kleinstreuer, Clement
2015-09-01
Using the open-source software openfoam as the solver, a novel approach to calculate microsphere transport and deposition in a 1D human lung-equivalent trumpet model (TM) is presented. Specifically, for particle deposition in a nonlinear trumpetlike configuration a new radial force has been developed which, along with the regular drag force, generates particle trajectories toward the wall. The new semi-empirical force is a function of any given inlet volumetric flow rate, micron-particle diameter, and lung volume. Particle-deposition fractions (DFs) in the size range from 2 μm to 10 μm are in agreement with experimental datasets for different laminar and turbulent inhalation flow rates as well as total volumes. Typical run times on a single processor workstation to obtain actual total deposition results at comparable accuracy are 200 times less than that for an idealized whole-lung geometry (i.e., a 3D-1D model with airways up to 23rd generation in single-path only).
Pin Tool Geometry Effects in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Querin, J. A.; Rubisoff, H. A.; Schneider, J. A.
2009-01-01
In friction stir welding (FSW) there is significant evidence that material can take one of two different flow paths when being displaced from its original position in front of the pin tool to its final position in the wake of the weld. The geometry of the pin tool, along with the process parameters, plays an important role in dictating the path that the material takes. Each flow path will impart a different thermomechanical history on the material, consequently altering the material microstructure and subsequent weld properties. The intention of this research is to isolate the effect that different pin tool attributes have on the flow paths imparted on the FSWed material. Based on published weld tool geometries, a variety of weld tools were fabricated and used to join AA2219. Results from the tensile properties and microstructural characterization will be presented.
Tracking trade transactions in water resource systems: A node-arc optimization formulation
NASA Astrophysics Data System (ADS)
Erfani, Tohid; Huskova, Ivana; Harou, Julien J.
2013-05-01
We formulate and apply a multicommodity network flow node-arc optimization model capable of tracking trade transactions in complex water resource systems. The model uses a simple node to node network connectivity matrix and does not require preprocessing of all possible flow paths in the network. We compare the proposed node-arc formulation with an existing arc-path (flow path) formulation and explain the advantages and difficulties of both approaches. We verify the proposed formulation model on a hypothetical water distribution network. Results indicate the arc-path model solves the problem with fewer constraints, but the proposed formulation allows using a simple network connectivity matrix which simplifies modeling large or complex networks. The proposed algorithm allows converting existing node-arc hydroeconomic models that broadly represent water trading to ones that also track individual supplier-receiver relationships (trade transactions).
Evaluation of the path integral for flow through random porous media
NASA Astrophysics Data System (ADS)
Westbroek, Marise J. E.; Coche, Gil-Arnaud; King, Peter R.; Vvedensky, Dimitri D.
2018-04-01
We present a path integral formulation of Darcy's equation in one dimension with random permeability described by a correlated multivariate lognormal distribution. This path integral is evaluated with the Markov chain Monte Carlo method to obtain pressure distributions, which are shown to agree with the solutions of the corresponding stochastic differential equation for Dirichlet and Neumann boundary conditions. The extension of our approach to flow through random media in two and three dimensions is discussed.
Low hydrostatic head electrolyte addition to fuel cell stacks
Kothmann, Richard E.
1983-01-01
A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces.
Propellant-Flow-Actuated Rocket Engine Igniter
NASA Technical Reports Server (NTRS)
Wollen, Mark
2013-01-01
A rocket engine igniter has been created that uses a pneumatically driven hammer that, by specialized geometry, is induced into an oscillatory state that can be used to either repeatedly impact a piezoelectric crystal with sufficient force to generate a spark capable of initiating combustion, or can be used with any other system capable of generating a spark from direct oscillatory motion. This innovation uses the energy of flowing gaseous propellant, which by means of pressure differentials and kinetic motion, causes a hammer object to oscillate. The concept works by mass flows being induced through orifices on both sides of a cylindrical tube with one or more vent paths. As the mass flow enters the chamber, the pressure differential is caused because the hammer object is supplied with flow on one side and the other side is opened with access to the vent path. The object then crosses the vent opening and begins to slow because the pressure differential across the ball reverses due to the geometry in the tube. Eventually, the object stops because of the increasing pressure differential on the object until all of the kinetic energy has been transferred to the gas via compression. This is the point where the object reverses direction because of the pressure differential. This behavior excites a piezoelectric crystal via direct impact from the hammer object. The hammer strikes a piezoelectric crystal, then reverses direction, and the resultant high voltage created from the crystal is transferred via an electrode to a spark gap in the ignition zone, thereby providing a spark to ignite the engine. Magnets, or other retention methods, might be employed to favorably position the hammer object prior to start, but are not necessary to maintain the oscillatory behavior. Various manifestations of the igniter have been developed and tested to improve device efficiency, and some improved designs are capable of operation at gas flow rates of a fraction of a gram per second (0.001 lb/s) and pressure drops on the order of 30 to 50 kilopascal (a few psi). An analytical model has been created and tested in conjunction with a precisely calibrated reference model. The analytical model accurately captures the overall behavior of this innovation. The model is a simple "volume-orifice" concept, with each chamber considered a single temperature and pressure "node" connected to adjacent nodes, or to vent paths through flow control orifices. Mass and energy balances are applied to each node, with gas flow predicted using simple compressible flow equations.
NASA Astrophysics Data System (ADS)
Baker, Chad; Vuppuluri, Prem; Shi, Li; Hall, Matthew
2012-06-01
The performance and operating characteristics of a hypothetical thermoelectric generator system designed to extract waste heat from the exhaust of a medium-duty turbocharged diesel engine were modeled. The finite-difference model consisted of two integrated submodels: a heat exchanger model and a thermoelectric device model. The heat exchanger model specified a rectangular cross-sectional geometry with liquid coolant on the cold side, and accounted for the difference between the heat transfer rate from the exhaust and that to the coolant. With the spatial variation of the thermoelectric properties accounted for, the thermoelectric device model calculated the hot-side and cold-side heat flux for the temperature boundary conditions given for the thermoelectric elements, iterating until temperature and heat flux boundary conditions satisfied the convection conditions for both exhaust and coolant, and heat transfer in the thermoelectric device. A downhill simplex method was used to optimize the parameters that affected the electrical power output, including the thermoelectric leg height, thermoelectric n-type to p-type leg area ratio, thermoelectric leg area to void area ratio, load electrical resistance, exhaust duct height, coolant duct height, fin spacing in the exhaust duct, location in the engine exhaust system, and number of flow paths within the constrained package volume. The calculation results showed that the configuration with 32 straight fins was optimal across the 30-cm-wide duct for the case of a single duct with total height of 5.5 cm. In addition, three counterflow parallel ducts or flow paths were found to be an optimum number for the given size constraint of 5.5 cm total height, and parallel ducts with counterflow were a better configuration than serpentine flow. Based on the reported thermoelectric properties of MnSi1.75 and Mg2Si0.5Sn0.5, the maximum net electrical power achieved for the three parallel flow paths in a counterflow arrangement was 1.06 kW for package volume of 16.5 L and exhaust flow enthalpy flux of 122 kW.
Multi-Point Interferometric Rayleigh Scattering using Dual-Pass Light Recirculation
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Danehy, Paul M.; Cutler, Andrew D.
2008-01-01
This paper describes for the first time an interferometric Rayleigh scattering system using dual-pass light recirculation (IRS-LR) capable of simultaneously measuring at multiple points two orthogonal components of flow velocity in combustion flows using single shot laser probing. An additional optical path containing the interferometer input mirror, a quarter-wave plate, a polarization dependent beam combiner, and a high reflectivity mirror partially recirculates the light that is rejected by the interferometer. Temporally- and spatially-resolved acquisitions of Rayleigh spectra in a large-scale combustion-heated supersonic axi-symmetric jet were performed to demonstrate the technique. Recirculating of Rayleigh scattered light increases the number of photons analyzed by the system up to a factor of 1.8 compared with previous configurations. This is equivalent to performing measurements with less laser energy or performing measurements with the previous system in gas flows at higher temperatures.
Investigation of modification design of the fan stage in axial compressor
NASA Astrophysics Data System (ADS)
Zhou, Xun; Yan, Peigang; Han, Wanjin
2010-04-01
The S2 flow path design method of the transonic compressor is used to design the one stage fan in order to replace the original designed blade cascade which has two-stage transonic fan rotors. In the modification design, the camber line is parameterized by a quartic polynomial curve and the thickness distribution of the blade profile is controlled by the double-thrice polynomial. Therefore, the inlet flow has been pre-compressed and the location and intensity of the shock wave at supersonic area have been controlled in order to let the new blade profiles have better aerodynamic performance. The computational results show that the new single stage fan rotor increases the efficiency by two percent at the design condition and the total pressure ratio is slightly higher than that of the original design. At the same time, it also meets the mass flow rate and the geometrical size requirements for the modification design.
Scaling Hydrologic Exchange Flows and Biogeochemical Reactions from Bedforms to Basins
NASA Astrophysics Data System (ADS)
Harvey, J. W.; Gomez-Velez, J. D.
2015-12-01
River water moves in and out of the main channel along pathways that are perpendicular to the channel's main axis that flow across or beneath the ground surface. These hydrologic exchange flows (HEFs) are difficult to measure, yet no less important than a river's downstream flow, or exchanges with the atmosphere and deeper groundwater (Harvey and Gooseff, 2015, WRR). There are very few comprehensive investigations of exchange fluxes to understand patterns with river size and relative importance of specific types of exchanges. We used the physically based model NEXSS to simulate multiple scales of hyporheic flow and their cumulative effects on solute reaction in large basins (on the order of Chesapeake Bay basin or larger). Our goal was to explain where and when particular types of hyporheic flow are important in enhancing key biogeochemical reactions, such as organic carbon respiration and denitrification. Results demonstrate that hyporheic flux (expressed per unit area of streambed) varies surprisingly little across the continuum of first-order streams to eighth-order rivers, and vertical exchange beneath small bedforms dominates in comparison with lateral flow beneath gravel bars and meanders. Also, the river's entire volume is exchanged many times with hyporheic flow within a basin, and the turnover length (after one entire river volume is exchanged) is strongly influenced by hydrogeomorphic differences between physiographic regions as well as by river size. The cumulative effects on biogeochemical reactions were assessed using a the reaction significance factor, RSF, which computes the cumulative potential for hyporheic reactions using a dimensionless index that balances reaction progress in a single hyporheic flow path against overall processing efficiency of river turnover through hyporheic flow paths of that type. Reaction significance appears to be strongly dominated by hydrologic factors rather than biogeochemical factors, and seems to be dominated by vertical exchange beneath small bedforms throughout river networks. Future implementations of NEXSS will expand the model to consider flow variation and to consider HEFs beyond hyporheic flow to include exchange with marginal surface waters such as riparian wetlands, floodplains, and ponded water.
A rotating bluff-body disc for reduced variability in wind tunnel aerosol studies.
Koehler, Kirsten A; Anthony, T Renee; van Dyke, Michael; Volckens, John
2011-01-01
A rotating bluff-body disc (RBD) was developed to reduce spatiotemporal variability associated with sampling supermicron aerosol in low-velocity wind tunnels. The RBD is designed to rotate eight personal aerosol samplers around a circular path in a forward-facing plane aligned with the wind tunnel cross section. Rotation of the RBD allows each sampler to traverse an identical path about the wind tunnel cross section, which reduces the effects of spatial heterogeneity associated with dispersing supermicron aerosol in low-velocity wind tunnels. Samplers are positioned on the face of the RBD via sampling ports, which connect to an air manifold on the back of the disc. Flow through each sampler was controlled with a critical orifice or needle valve, allowing air to be drawn through the manifold with a single pump. A metal tube, attached to this manifold, serves as both the axis of rotation and the flow conduction path (between the samplers and the vacuum source). Validation of the RBD was performed with isokinetic samplers and 37-mm cassettes. For facing-the-wind tests, the rotation of the RBD significantly decreased intra-sampler variability when challenged with particle diameters from 1 to 100 μm. The RBD was then employed to determine the aspiration efficiency of Institute of Occupational Medicine (IOM) personal samplers under a facing-the-wind condition. Operation of IOM samplers on the RBD reduced the between-sampler variability for all particle sizes tested.
NASA Technical Reports Server (NTRS)
Palazzolo, Alan; Bhattacharya, Avijit; Athavale, Mahesh; Venkataraman, Balaji; Ryan, Steve; Funston, Kerry
1997-01-01
This paper highlights bulk flow and CFD-based models prepared to calculate force and leakage properties for seals and shrouded impeller leakage paths. The bulk flow approach uses a Hir's based friction model and the CFD approach solves the Navier Stoke's (NS) equation with a finite whirl orbit or via analytical perturbation. The results show good agreement in most instances with available benchmarks.
NASA Astrophysics Data System (ADS)
Fienen, M.; Hunt, R.; Krabbenhoft, D.; Clemo, T.
2009-08-01
Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologic parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into facies associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (18O/16O ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained.
Fienen, M.; Hunt, R.; Krabbenhoft, D.; Clemo, T.
2009-01-01
Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologic parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into facies associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (18O/16O ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained.
Saddle-node bifurcation to jammed state for quasi-one-dimensional counter-chemotactic flow.
Fujii, Masashi; Awazu, Akinori; Nishimori, Hiraku
2010-07-01
The transition of a counter-chemotactic particle flow from a free-flow state to a jammed state in a quasi-one-dimensional path is investigated. One of the characteristic features of such a flow is that the constituent particles spontaneously form a cluster that blocks the path, called a path-blocking cluster (PBC), and causes a jammed state when the particle density is greater than a threshold value. Near the threshold value, the PBC occasionally collapses on itself to recover the free flow. In other words, the time evolution of the size of the PBC governs the flux of a counter-chemotactic flow. In this Rapid Communication, on the basis of numerical results of a stochastic cellular automata (SCA) model, we introduce a Langevin equation model for the size evolution of the PBC that reproduces the qualitative characteristics of the SCA model. The results suggest that the emergence of the jammed state in a quasi-one-dimensional counterflow is caused by a saddle-node bifurcation.
Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.
2005-01-01
In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.
Rosqvist, N H; Dollar, L H; Fourie, A B
2005-08-01
In this paper, we study and quantify pollutant concentrations after long-term leaching at relatively low flow rates and residual concentrations after heavy flushing of a 0.14 m3 municipal solid waste sample. Moreover, water flow and solute transport through preferential flow paths are studied by model interpretation of experimental break-through curves (BTCs), generated by tracer tests. In the study it was found that high concentrations of chloride remain after several pore volumes of water have percolated through the waste sample. The residual concentration was found to be considerably higher than can be predicted by degradation models. For model interpretations of the experimental BTCs, two probabilistic model approaches were applied, the transfer function model and the Lagrangian transport formulation. The experimental BTCs indicated the presence of preferential flow through the waste mass and the model interpretation of the BTCs suggested that between 19 and 41% of the total water content participated in the transport of solute through preferential flow paths. In the study, the occurrence of preferential flow was found to be dependent on the flow rate in the sense that a high flow rate enhances the preferential flow. However, to fully quantify the possible dependence between flow rate and preferential flow, experiments on a broader range of experimental conditions are suggested. The chloride washout curve obtained over the 4-year study period shows that as a consequence of the water flow in favoured flow paths, bypassing other parts of the solid waste body, the leachate quality may reflect only the flow paths and their surroundings. The results in this study thus show that in order to improve long-term prediction of the leachate quality and quantity the magnitude of the preferential water flow through a landfill must be taken into account.
Unraveling the Processing Parameters in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, Judy; Nunes, Arthur C., Jr.
2005-01-01
In friction stir welding (FSW), a rotating threaded pin tool is translated along a weld seam, literally stirring the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path or paths is required. In this study, various markers are used to trace the flow paths of the metal. X-ray radiographs record the segmentation and position of the wire. Several variations in the trajectories can be differentiated within the weld zone.
A New Kind of Single-Well Tracer Test for Assessing Subsurface Heterogeneity
NASA Astrophysics Data System (ADS)
Hansen, S. K.; Vesselinov, V. V.; Lu, Z.; Reimus, P. W.; Katzman, D.
2017-12-01
Single-well injection-withdrawal (SWIW) tracer tests have historically been interpreted using the idealized assumption of tracer path reversibility (i.e., negligible background flow), with background flow due to natural hydraulic gradient being an un-modeled confounding factor. However, we have recently discovered that it is possible to use background flow to our advantage to extract additional information about the subsurface. To wit: we have developed a new kind of single-well tracer test that exploits flow due to natural gradient to estimate the variance of the log hydraulic conductivity field of a heterogeneous aquifer. The test methodology involves injection under forced gradient and withdrawal under natural gradient, and makes use of a relationship, discovered using a large-scale Monte Carlo study and machine learning techniques, between power law breakthrough curve tail exponent and log-hydraulic conductivity variance. We will discuss how we performed the computational study and derived this relationship and then show an application example in which our new single-well tracer test interpretation scheme was applied to estimation of heterogeneity of a formation at the chromium contamination site at Los Alamos National Laboratory. Detailed core hole records exist at the same site, from which it was possible to estimate the log hydraulic conductivity variance using a Kozeny-Carman relation. The variances estimated using our new tracer test methodology and estimated by direct inspection of core were nearly identical, corroborating the new methodology. Assessment of aquifer heterogeneity is of critical importance to deployment of amendments associated with in-situ remediation strategies, since permeability contrasts potentially reduce the interaction between amendment and contaminant. Our new tracer test provides an easy way to obtain this information.
Path perception during rotation: influence of instructions, depth range, and dot density
NASA Technical Reports Server (NTRS)
Li, Li; Warren, William H Jr
2004-01-01
How do observers perceive their direction of self-motion when traveling on a straight path while their eyes are rotating? Our previous findings suggest that information from retinal flow and extra-retinal information about eye movements are each sufficient to solve this problem for both perception and active control of self-motion [Vision Res. 40 (2000) 3873; Psych. Sci. 13 (2002) 485]. In this paper, using displays depicting translation with simulated eye rotation, we investigated how task variables such as instructions, depth range, and dot density influenced the visual system's reliance on retinal vs. extra-retinal information for path perception during rotation. We found that path errors were small when observers expected to travel on a straight path or with neutral instructions, but errors increased markedly when observers expected to travel on a curved path. Increasing depth range or dot density did not improve path judgments. We conclude that the expectation of the shape of an upcoming path can influence the interpretation of the ambiguous retinal flow. A large depth range and dense motion parallax are not essential for accurate path perception during rotation, but reference objects and a large field of view appear to improve path judgments.
Scenarios for control and data flows in multiprotocol over ATM
NASA Astrophysics Data System (ADS)
Kujoory, Ali
1997-10-01
The multiprotocol over ATM (MPOA), specified by the ATM Forum, provides an architecture for transfer of Internetwork layer packets (Layer 3 datagram such as IP, IPX) over ATM subnets or across the emulated LANs. MPOA provides shortcuts that bypass routers to avoid router bottlenecks. It is a grand union of some of the existing standards such as LANE by the ATM Forum, NHRP by the IETF, and the Q.2931 by ITU. The intent of this paper is to clarify the data flows between pairs of source and destination hosts in an MPOA system. It includes scenarios for both the intra- and inter-subnet flows between different pairs of MPOA end-systems. The intrasubnet flows simply use LANE for address resolution or data transfer. The inter-subnet flows may use a default path for short-lived flows or a shortcut for long-lived flows. The default path uses the LANE and router capabilities. The shortcut path uses LANE plus NHRP for ATM address resoluton. An ATM virtual circuit is established before the data transfer. This allows efficient transfer of internetwork layer packets over ATM for real-time applications.
Apparatus for separating particles utilizing engineered acoustic contrast capture particles
Kaduchak, Gregory; Ward, Michael D
2014-10-21
An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.
Apparatus for separating particles utilizing engineered acoustic contrast capture particles
Kaduchak, Gregory [Los Alamos, NM; Ward, Michael D [Los Alamos, NM
2011-12-27
An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.
Funnel for localizing biological cell placement and arrangement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soscia, David; Benett, William J.; Mukerjee, Erik V.
2018-03-06
The present disclosure relates to a funnel apparatus for channeling cells onto a plurality of distinct, closely spaced regions of a seeding surface. The funnel apparatus has a body portion having an upper surface and a lower surface. The body portion forms a plurality of flow paths, at least one of which is shaped to have a decreasing cross-sectional area from the upper surface to the lower surface. The flow paths are formed at the lower surface to enable cells deposited into the flow paths at the upper surface of the funnel apparatus to be channeled into a plurality ofmore » distinct, closely spaced regions on the seeding surface positioned adjacent the lower surface.« less
Garner, Bradley D.; Mahler, Barbara J.
2007-01-01
Understanding of karst flow systems can be complicated by the presence of solution-enlarged conduits, which can transmit large volumes of water through the aquifer rapidly. If the geochemistry at a well can be related to streamflow or spring discharge (springflow), or both, the relations can indicate the presence of recent recharge in water at the well, which in turn might indicate that the well intersects a conduit (and thus a major flow path). Increasing knowledge of the occurrence and distribution of conduits in the aquifer can contribute to better understanding of aquifer framework and function. To that end, 26 wells in the Barton Springs segment of the Edwards aquifer, Austin, Texas, were investigated for potential intersection with conduits; 26 years of arbitrarily timed specific conductance measurements in the wells were compared to streamflow in five creeks that provide recharge to the aquifer and were compared to aquifer flow conditions as indicated by Barton Springs discharge. A nonparametric statistical test (Spearman's rho) was used to divide the 26 wells into four groups on the basis of correlation of specific conductance of well water to streamflow or spring discharge, or both. Potential relations between conduit intersection by wells and ground-water geochemistry were investigated through analysis of historical major ion and nitrate geochemistry for wells in each of the four groups. Specific conductance at nine wells was negatively correlated with both streamflow and spring discharge, or streamflow only. These correlations were interpreted as evidence of an influx of surface-water recharge during periods of high streamflow and the influence at the wells of water from a large, upgradient part of the aquifer; and further interpreted as indicating that four wells intersect major aquifer flow paths and five wells intersect minor aquifer flow paths (short, tributary conduits). Specific conductance at six wells was positively correlated with spring discharge, which was interpreted as not intersecting a flow path (conduit). Of the 11 wells for which specific conductance did not correlate with either streamflow or spring discharge, no interpretations regarding flow-path intersection by wells were made. In some cases, specific conductance data might not have indicated intersection with a flow path because of small sample sets. Water in the Barton Springs segment generally is a calcium-magnesium-bicarbonate type, although some water compositions deviate from this. Multiple geochemical processes were identified that might affect geochemistry at the wells, but in general the geochemical composition of ground water, except for dilution by surface-water recharge, was not related to intersection of a well with a flow path. Some samples from wells indicate inflow of water from the saline zone to the east; this inflow is associated with low streamflow and spring discharge. Other samples indicate that the aquifer at some wells might be receiving water that has been in contact with rocks of the Trinity aquifer; this mixing is most evident when spring discharge is high. Occurrence of nitrate in ground water was unrelated to intersection of flow paths by wells and appeared to be the result of localized contamination. However, most of the wells with one or more samples contaminated by nitrate are in the more densely populated parts of the study area.
Linear and nonlinear dynamic analysis of redundant load path bearingless rotor systems
NASA Technical Reports Server (NTRS)
Murthy, V. R.
1985-01-01
The bearingless rotorcraft offers reduced weight, less complexity and superior flying qualities. Almost all the current industrial structural dynamic programs of conventional rotors which consist of single load path rotor blades employ the transfer matrix method to determine natural vibration characteristics because this method is ideally suited for one dimensional chain like structures. This method is extended to multiple load path rotor blades without resorting to an equivalent single load path approximation. Unlike the conventional blades, it isk necessary to introduce the axial-degree-of-freedom into the solution process to account for the differential axial displacements in the different load paths. With the present extension, the current rotor dynamic programs can be modified with relative ease to account for the multiple load paths without resorting to the equivalent single load path modeling. The results obtained by the transfer matrix method are validated by comparing with the finite element solutions. A differential stiffness matrix due to blade rotation is derived to facilitate the finite element solutions.
The impact of self-driving cars on existing transportation networks
NASA Astrophysics Data System (ADS)
Ji, Xiang
2018-04-01
In this paper, considering the usage of self-driving, I research the congestion problems of traffic networks from both macro and micro levels. Firstly, the macroscopic mathematical model is established using the Greenshields function, analytic hierarchy process and Monte Carlo simulation, where the congestion level is divided into five levels according to the average vehicle speed. The roads with an obvious congestion situation is investigated mainly and the traffic flow and topology of the roads are analyzed firstly. By processing the data, I propose a traffic congestion model. In the model, I assume that half of the non-self-driving cars only take the shortest route and the other half can choose the path randomly. While self-driving cars can obtain vehicle density data of each road and choose the path more reasonable. When the path traffic density exceeds specific value, it cannot be selected. To overcome the dimensional differences of data, I rate the paths by BORDA sorting. The Monte Carlo simulation of Cellular Automaton is used to obtain the negative feedback information of the density of the traffic network, where the vehicles are added into the road network one by one. I then analyze the influence of negative feedback information on path selection of intelligent cars. The conclusion is that the increase of the proportion of intelligent vehicles will make the road load more balanced, and the self-driving cars can avoid the peak and reduce the degree of road congestion. Combined with other models, the optimal self-driving ratio is about sixty-two percent. From the microscopic aspect, by using the single-lane traffic NS rule, another model is established to analyze the road Partition scheme. The self-driving traffic is more intelligent, and their cooperation can reduce the random deceleration probability. By the model, I get the different self-driving ratio of space-time distribution. I also simulate the case of making a lane separately for self-driving, compared to the former model. It is concluded that a single lane is more efficient in a certain interval. However, it is not recommended to offer a lane separately. However, the self-driving also faces the problem of hacker attacks and greater damage after fault. So, when self-driving ratio is higher than a certain value, the increase of traffic flow rate is small. In this article, that value is discussed, and the optimal proportion is determined. Finally, I give a nontechnical explanation of the problem.
Separation of Hydrogen from Carbon Dioxide through Porous Ceramics
Shimonosono, Taro; Imada, Hikari; Maeda, Hikaru; Hirata, Yoshihiro
2016-01-01
The gas permeability of α-alumina, yttria-stabilized zirconia (YSZ), and silicon carbide porous ceramics toward H2, CO2, and H2–CO2 mixtures were investigated at room temperature. The permeation of H2 and CO2 single gases occurred above a critical pressure gradient, which was smaller for H2 gas than for CO2 gas. When the Knudsen number (λ/r ratio, λ: molecular mean free path, r: pore radius) of a single gas was larger than unity, Knudsen flow became the dominant gas transportation process. The H2 fraction for the mixed gas of (20%–80%) H2–(80%–20%) CO2 through porous Al2O3, YSZ, and SiC approached unity with decreasing pressure gradient. The high fraction of H2 gas was closely related to the difference in the critical pressure gradient values of H2 and CO2 single gas, the inlet mixed gas composition, and the gas flow mechanism of the mixed gas. Moisture in the atmosphere adsorbed easily on the porous ceramics and affected the critical pressure gradient, leading to the increased selectivity of H2 gas. PMID:28774051
Black Swans and the Effectiveness of Remediating Groundwater Contamination
NASA Astrophysics Data System (ADS)
Siegel, D. I.; Otz, M. H.; Otz, I.
2013-12-01
Black swans, outliers, dominate science far more than do predictable outcomes. Predictable success constitutes the Black Swan in groundwater remediation. Even the National Research Council concluded that remediating groundwater to drinking water standards has failed in typically complex hydrogeologic settings where heterogeneities and preferential flow paths deflect flow paths obliquely to hydraulic gradients. Natural systems, be they biological or physical, build upon a combination of large-scale regularity coupled to chaos at smaller scales. We show through a review of over 25 case studies that groundwater remediation efforts are best served by coupling parsimonious site characterization to natural and induced geochemical tracer tests to at least know where contamination advects with groundwater in the subsurface. In the majority of our case studies, actual flow paths diverge tens of degrees from anticipated flow paths because of unrecognized heterogeneities in the horizontal direction of transport, let alone the vertical direction. Consequently, regulatory agencies would better serve both the public and the environment by recognizing that long-term groundwater cleanup probably is futile in most hydrogeologic settings except to relaxed standards similar to brownfielding. A Black Swan
Opposed slant tube diabatic sorber
Erickson, Donald C.
2004-01-20
A sorber comprised of at least three concentric coils of tubing contained in a shell with a flow path for liquid sorbent in one direction, a flow path for heat transfer fluid which is in counter-current heat exchange relationship with sorbent flow, a sorbate vapor port in communication with at least one of sorbent inlet or exit ports, wherein each coil is coiled in opposite direction to those coils adjoining it, whereby the opposed slant tube configuration is achieved, with structure for flow modification in the core space inside the innermost coil.
2015-10-14
Kasei Valles is a valley system was likely carved by some combination of flowing water and lava. In some areas, erosion formed cliffs along the flow path resulting in water or lava falls. In some areas, erosion formed cliffs along the flow path resulting in water or lava falls. The flowing liquid is gone but the channels and "dry falls" remain. Since its formation, Kasei Valles has suffered impacts-resulting in craters-and has been mantled in dust, sand, and fine gravel as evidenced by the rippled textures. http://photojournal.jpl.nasa.gov/catalog/PIA20004
Unsteady flow characteristics in the near-wake of a two-dimensional obstacle
NASA Technical Reports Server (NTRS)
Dyment, A.; Gryson, P.
1984-01-01
The influence of the characteristics of the boundary layer separation on the formation of vortices and alternate paths in the wake of a bidimensional obstacle at high Reynolds numbers was studied by ultra fast visualization system. It is shown that there are alternate paths for laminar and turbulent flows, with similar flow characteristics. It is found that emission of vortices does not change substantially when the flow passes from laminar to turbulent. A film with a time scale change of 10,000 times illustrates some of the discussed phenomena.
NASA Astrophysics Data System (ADS)
Su, Xiaosi; Lu, Shuai; Yuan, Wenzhen; Woo, Nam Chil; Dai, Zhenxue; Dong, Weihong; Du, Shanghai; Zhang, Xinyue
2018-03-01
The spatial and temporal distribution of redox zones in an aquifer is important when designing groundwater supply systems. Redox zonation can have direct or indirect control of the biological and chemical reactions and mobility of pollutants. In this study, redox conditions are characterized by interpreting the hydrogeological conditions and water chemistry in groundwater during bank infiltration at a site in Shenyang, northeast China. The relevant redox processes and zonal differences in a shallow flow path and deeper flow path at the field scale were revealed by monitoring the redox parameters and chemistry of groundwater near the Liao River. The results show obvious horizontal and vertical components of redox zones during bank filtration. Variations in the horizontal extent of the redox zone were controlled by the different permeabilities of the riverbed sediments and aquifer with depth. Horizontally, the redox zone was situated within 17 m of the riverbank for the shallow flow path and within 200 m for the deep flow path. The vertical extent of the redox zone was affected by precipitation and seasonal river floods and extended to 10 m below the surface. During bank filtration, iron and manganese oxides or hydroxides were reductively dissolved, and arsenic that was adsorbed onto the medium surface or coprecipitated is released into the groundwater. This leads to increased arsenic content in groundwater, which poses a serious threat to water supply security.
NASA Astrophysics Data System (ADS)
Jimenez-Martinez, Joaquin; Porter, Mark; Carey, James; Guthrie, George; Viswanathan, Hari
2017-04-01
Geological sequestration of CO2 has been proposed in the last decades as a technology to reduce greenhouse gas emissions to the atmosphere and mitigate the global climate change. However, some questions such as the impact of the protocol of CO2 injection on the fluid-solid reactivity remain open. In our experiments, two different protocols of injection are compared at the same conditions (8.4 MPa and 45 C, and constant flow rate 0.06 ml/min): i) single phase injection, i.e., CO2-saturated brine; and ii) simultaneous injection of CO2-saturated brine and scCO2. For that purpose, we combine a unique high-pressure/temperature microfluidics experimental system, which allows reproducing geological reservoir conditions in geo-material substrates (i.e., limestone, Cisco Formation, Texas, US) and high resolution optical profilometry. Single and multiphase flow through etched fracture networks were optically recorded with a microscope, while processes of dissolution-precipitation in the etched channels were quantified by comparison of the initial and final topology of the limestone micromodels. Changes in hydraulic conductivity were quantified from pressure difference along the micromodel. The simultaneous injection of CO2-saturated brine and scCO2, reduced the brine-limestone contact area and also created a highly heterogeneous velocity field (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), reducing rock dissolution and enhancing calcite precipitation. The results illustrate the contrasting effects of single and multiphase flow on chemical reactivity and suggest that multiphase flow by isolating parts of the flow system can enhance CO2 mineralization.
Kinner, D.A.; Stallard, R.F.
2004-01-01
The hydrological model TOPMODEL is used to assess the water balance and describe flow paths for the 9??73 ha Lutz Creek Catchment in Central Panama. Monte Carlo results are evaluated based on their fit to the observed hydrograph, catchment-averaged soil moisture and stream chemistry. TOPMODEL, with a direct-flow mechanism that is intended to route water through rapid shallow-soil flow, matched observed chemistry and discharge better than the basic version of TOPMODEL and provided a reasonable fit to observed soil moisture and wet-season discharge at both 15-min and daily time-steps. The improvement of simulations with the implementation of a direct-flow component indicates that a storm flow path not represented in the original version of TOPMODEL plays a primary role in the response of Lutz Creek Catchment. This flow path may be consistent with the active and abundant pipeflow that is observed or delayed saturation overland flow. The 'best-accepted' simulations from 1991 to 1997 indicate that around 41% of precipitation becomes direct flow and around 10% is saturation overland flow. Other field observations are needed to constrain evaporative and groundwater losses in the model and to characterize chemical end-members posited in this paper. Published in 2004 by John Wiley and Sons, Ltd.
Using borehole flow data to characterize the hydraulics of flow paths in operating wellfields
Paillet, F.; Lundy, J.
2004-01-01
Understanding the flow paths in the vicinity of water well intakes is critical in the design of effective wellhead protection strategies for heterogeneous carbonate aquifers. High-resolution flow logs can be combined with geophysical logs and borehole-wall-image logs (acoustic televiewer) to identify the porous beds, solution openings, and fractures serving as conduits connecting the well bore to the aquifer. Qualitative methods of flow log analysis estimate the relative transmissivity of each water-producing zone, but do not indicate how those zones are connected to the far-field aquifer. Borehole flow modeling techniques can be used to provide quantitative estimates of both transmissivity and far-field hydraulic head in each producing zone. These data can be used to infer how the individual zones are connected with each other, and to the surrounding large-scale aquifer. Such information is useful in land-use planning and the design of well intakes to prevent entrainment of contaminants into water-supply systems. Specific examples of flow log applications in the identification of flow paths in operating wellfields are given for sites in Austin and Faribault, Minnesota. Copyright ASCE 2004.
NASA Astrophysics Data System (ADS)
Webb, Ryan W.; Fassnacht, Steven R.; Gooseff, Michael N.
2018-01-01
In many mountainous regions around the world, snow and soil moisture are key components of the hydrologic cycle. Preferential flow paths of snowmelt water through snow have been known to occur for years with few studies observing the effect on soil moisture. In this study, statistical analysis of the topographical and hydrological controls on the spatiotemporal variability of snow water equivalent (SWE) and soil moisture during snowmelt was undertaken at a subalpine forested setting with north, south, and flat aspects as a seasonally persistent snowpack melts. We investigated if evidence of preferential flow paths in snow can be observed and the effect on soil moisture through measurements of snow water equivalent and near-surface soil moisture, observing how SWE and near-surface soil moisture vary on hillslopes relative to the toes of hillslopes and flat areas. We then compared snowmelt infiltration beyond the near-surface soil between flat and sloping terrain during the entire snowmelt season using soil moisture sensor profiles. This study was conducted during varying snowmelt seasons representing above-normal, relatively normal, and below-normal snow seasons in northern Colorado. Evidence is presented of preferential meltwater flow paths at the snow-soil interface on the north-facing slope causing increases in SWE downslope and less infiltration into the soil at 20 cm depth; less association is observed in the near-surface soil moisture (top 7 cm). We present a conceptualization of the meltwater flow paths that develop based on slope aspect and soil properties. The resulting flow paths are shown to divert at least 4 % of snowmelt laterally, accumulating along the length of the slope, to increase the snow water equivalent by as much as 170 % at the base of a north-facing hillslope. Results from this study show that snow acts as an extension of the vadose zone during spring snowmelt and future hydrologic investigations will benefit from studying the snow and soil together.
NASA Technical Reports Server (NTRS)
Goldhirsh, J.
1984-01-01
Single and joint terminal slant path attenuation statistics at frequencies of 28.56 and 19.04 GHz have been derived, employing a radar data base obtained over a three-year period at Wallops Island, VA. Statistics were independently obtained for path elevation angles of 20, 45, and 90 deg for purposes of examining how elevation angles influences both single-terminal and joint probability distributions. Both diversity gains and autocorrelation function dependence on site spacing and elevation angles were determined employing the radar modeling results. Comparisons with other investigators are presented. An independent path elevation angle prediction technique was developed and demonstrated to fit well with the radar-derived single and joint terminal radar-derived cumulative fade distributions at various elevation angles.
Performance Capability of Single-Cavity Vortex Gaseous Nuclear Rockets
NASA Technical Reports Server (NTRS)
Ragsdale, Robert G.
1963-01-01
An analysis was made to determine the maximum powerplant thrust-to-weight ratio possible with a single-cavity vortex gaseous reactor in which all the hydrogen propellant must diffuse through a fuel-rich region. An assumed radial temperature profile was used to represent conduction, convection, and radiation heat-transfer effects. The effect of hydrogen property changes due to dissociation and ionization was taken into account in a hydrodynamic computer program. It is shown that, even for extremely optimistic assumptions of reactor criticality and operating conditions, such a system is limited to reactor thrust-to-weight ratios of about 1.2 x 10(exp -3) for laminar flow. For turbulent flow, the maximum thrust-to-weight ratio is less than 10(exp -3). These low thrusts result from the fact that the hydrogen flow rate is limited by the diffusion process. The performance of a gas-core system with a specific impulse of 3000 seconds and a powerplant thrust-to-weight ratio of 10(exp -2) is shown to be equivalent to that of a 1000-second advanced solid-core system. It is therefore concluded that a single-cavity vortex gaseous reactor in which all the hydrogen must diffuse through the nuclear fuel is a low-thrust device and offers no improvement over a solid-core nuclear-rocket engine. To achieve higher thrust, additional hydrogen flow must be introduced in such a manner that it will by-pass the nuclear fuel. Obviously, such flow must be heated by thermal radiation. An illustrative model of a single-cavity vortex system employing supplementary flow of hydrogen through the core region is briefly examined. Such a system appears capable of thrust-to-weight ratios of approximately 1 to 10. For a high-impulse engine, this capability would be a considerable improvement over solid-core performance. Limits imposed by thermal radiation heat transfer to cavity walls are acknowledged but not evaluated. Alternate vortex concepts that employ many parallel vortices to achieve higher hydrogen flow rates offer the possibility of sufficiently high thrust-to-weight ratios, if they are not limited by short thermal-radiation path lengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jung Hwa; Hyung, Seok-Won; Mun, Dong-Gi
2012-08-03
A multi-functional liquid chromatography system that performs 1-dimensional, 2-dimensional (strong cation exchange/reverse phase liquid chromatography, or SCX/RPLC) separations, and online phosphopeptides enrichment using a single binary nano-flow pump has been developed. With a simple operation of a function selection valve, which is equipped with a SCX column and a TiO2 (titanium dioxide) column, a fully automated selection of three different experiment modes was achieved. Because the current system uses essentially the same solvent flow paths, the same trap column, and the same separation column for reverse-phase separation of 1D, 2D, and online phosphopeptides enrichment experiments, the elution time information obtainedmore » from these experiments is in excellent agreement, which facilitates correlating peptide information from different experiments.« less
Kim, Sung-Cheol; Wunsch, Benjamin H.; Hu, Huan; Smith, Joshua T.; Stolovitzky, Gustavo
2017-01-01
Deterministic lateral displacement (DLD) is a technique for size fractionation of particles in continuous flow that has shown great potential for biological applications. Several theoretical models have been proposed, but experimental evidence has demonstrated that a rich class of intermediate migration behavior exists, which is not predicted. We present a unified theoretical framework to infer the path of particles in the whole array on the basis of trajectories in a unit cell. This framework explains many of the unexpected particle trajectories reported and can be used to design arrays for even nanoscale particle fractionation. We performed experiments that verify these predictions and used our model to develop a condenser array that achieves full particle separation with a single fluidic input. PMID:28607075
Barns, Gareth L; Thornton, Steven F; Wilson, Ryan D
2015-01-01
Heterogeneity in aquifer permeability, which creates paths of varying mass flux and spatially complex contaminant plumes, can complicate the interpretation of contaminant fate and transport in groundwater. Identifying the location of high mass flux paths is critical for the reliable estimation of solute transport parameters and design of groundwater remediation schemes. Dipole flow tracer tests (DFTTs) and push-pull tests (PPTs) are single well forced-gradient tests which have been used at field-scale to estimate aquifer hydraulic and transport properties. In this study, the potential for PPTs and DFTTs to resolve the location of layered high- and low-permeability layers in granular porous media was investigated with a pseudo 2-D bench-scale aquifer model. Finite element fate and transport modelling was also undertaken to identify appropriate set-ups for in situ tests to determine the type, magnitude, location and extent of such layered permeability contrasts at the field-scale. The characteristics of flow patterns created during experiments were evaluated using fluorescent dye imaging and compared with the breakthrough behaviour of an inorganic conservative tracer. The experimental results show that tracer breakthrough during PPTs is not sensitive to minor permeability contrasts for conditions where there is no hydraulic gradient. In contrast, DFTTs are sensitive to the type and location of permeability contrasts in the host media and could potentially be used to establish the presence and location of high or low mass flux paths. Numerical modelling shows that the tracer peak breakthrough time and concentration in a DFTT is sensitive to the magnitude of the permeability contrast (defined as the permeability of the layer over the permeability of the bulk media) between values of 0.01-20. DFTTs are shown to be more sensitive to deducing variations in the contrast, location and size of aquifer layered permeability contrasts when a shorter central packer is used. However, larger packer sizes are more likely to be practical for field-scale applications, with fewer tests required to characterise a given aquifer section. The sensitivity of DFTTs to identify layered permeability contrasts was not affected by test flow rate. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ogden, F. L.; Mojica, A.; Kempema, E. W.; Briceno, J. C.; Regina, J. A.
2014-12-01
Hydrological processes in the humid tropics are poorly understood and an important topic when it comes to water management in the seasonal tropics. The Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, seeks to understand these processes and quantify the long-term effects of different land cover and use across the Panama Canal Watershed. In this study we used an ARS-type rainfall simulator to apply rainfall rates up to 200 mm per hour over a 2m by 6m area on deep saprolitic soils in forest and pasture land covers. A salinity contrast added to the applied rainwater allowed observation of bulk flow paths and velocities in the subsurface. The observed effects of land cover and land use on hydrological response were striking. In the forest site, we were unable to produce surface runoff even after the application of 600 mm of rainfall in three hours, and observed flow in soils down to approximately 2 m depth, and no downslope macropore flow. In the pasture site, surface runoff was produced, and we measured the permeability of the area with applied rainfall. Observed flow paths were much shallower, less than 1 m depth, with significant macropore flow observed at downslope positions. We hypothesize that land use and land cover have significant impacts on flow paths as they affect creation, connectivity, and function of biologically created macropores in the soil.
Plasma flow patterns in and around magnetosheath jets
NASA Astrophysics Data System (ADS)
Plaschke, Ferdinand; Hietala, Heli
2018-05-01
The magnetosheath is commonly permeated by localized high-speed jets downstream of the quasi-parallel bow shock. These jets are much faster than the ambient magnetosheath plasma, thus raising the question of how that latter plasma reacts to incoming jets. We have performed a statistical analysis based on 662 cases of one THEMIS spacecraft observing a jet and another (second) THEMIS spacecraft providing context observations of nearby plasma to uncover the flow patterns in and around jets. The following results are found: along the jet's path, slower plasma is accelerated and pushed aside ahead of the fastest core jet plasma. Behind the jet core, plasma flows into the path to fill the wake. This evasive plasma motion affects the ambient magnetosheath, close to the jet's path. Diverging and converging plasma flows ahead and behind the jet are complemented by plasma flows opposite to the jet's propagation direction, in the vicinity of the jet. This vortical plasma motion results in a deceleration of ambient plasma when a jet passes nearby.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, J.; Bertschinger, V.; Aley, T.
1993-04-01
Areas underlain by karst aquifers are characterized by soluble rock with sinkholes, caves, and a complex underground drainage network. Groundwater issues such as flow direction, well pumping impacts, spring recharge areas, and potential contamination transport routes are greatly complicated by the unique structure of karst aquifers. Standard aquifer analysis techniques cannot be applied unless the structure of the karst aquifer is understood. Water soluble fluorescent dyes are a powerful tool for mapping the irregular subsurface connections and flow paths in karst aquifers. Mapping the subsurface connections allows reasonable estimates of the hydrologic behavior of the aquifer. Two different fluorescent dyesmore » were injected at two points in a limestone karst aquifer system beneath the University of California, Santa Cruz campus. Flow paths in the marble were thought to be closely tied to easily recognized geomorphic alignments of sinkholes associated with fault and fracture zones. The dye tests revealed unexpected and highly complex interconnections. These complex flow paths only partially corresponded to previous surface mapping and aerial photo analysis of fracture systems. Several interfingering but hydrologically unconnected flow paths evidently exist within the cavernous aquifer. For example, dye did not appear at some discharge springs close to the dye injection points, but did appear at more distant springs. This study shows how a dye tracing study in a small, well-defined limestone body can shed light on a variety of environmental and hydrological issues, including potential well pumping impact areas, wellhead protection and recharge areas, parking lot runoff injection to aquifers, and drainage routes from hazardous materials storage areas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaduchak, Gregory; Ward, Michael D.
An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minimamore » for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.« less
Apparatus for separating particles utilizing engineered acoustic contrast capture particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaduchak, Gregory; Ward, Michael D
An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minimamore » for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.« less
Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability
Hunsbedt, A.; Boardman, C.E.
1995-04-11
A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor is disclosed. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo`s structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated. 5 figures.
Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability
Hunsbedt, Anstein; Boardman, Charles E.
1995-01-01
A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo's structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated.
Dripping from Rough Multi-Segmented Fracture Sets into Unsaturated Rock Underground Excavations
NASA Astrophysics Data System (ADS)
Cesano, D.; Bagtzoglou, A. C.
2001-05-01
The aim of this paper is to present a probabilistic analytical formulation of unsaturated flow through a single rough multi-segmented fracture, with the ultimate goal to provide a numerical platform with which to perform calculations on the dripping initiation time and to explain the fast flow-paths detected and reported by Fabryka-Martin et al. (1996). To accomplish this, an enhanced version of the Wang and Narasimhan model (Wang and Narasimhan, 1985; 1993), the Enhanced Wang and Narasimhan Model (EWNM), has been used. In the EWNM, a fracture is formed by a finite number of connected fracture segments of given strike and dip. These parameters are sampled from hypothetical probability density functions. Unsaturated water flow occurs in these fracture segments, and in order for dripping to occur it is assumed that local saturation conditions exist at the surface and the tunnel level, where dripping occurs. The current version of the EWNM ignores transient flow processes, and thus it assumes the flow system being at equilibrium. The fracture segments are considered as rough fractures, with their roughness characterized by an aperture distribution function that can be derived from real field data. The roughness along each fracture segment is considered to be constant, leading to a constant effective aperture, and it is randomly assigned. An effective flow area is also included in the model, which accounts for three-dimensional variations of the fracture area that can be possibly occupied by water. The model takes into account the possibility that the fracture crosses multiple layers, each of which can have a different configuration in the values of the input parameters. Monte Carlo simulations calculate average times for water to flow from the top to the bottom of the fracture for a specified number of random realizations. The random component of the realizations comprises the different geometric configurations of the fracture flow path, while the value of all the input parameters and the statistical distribution they honor are kept constant from realization to realization. This travel time, called the dripping initiation time, is the cumulative sum of the time it takes for the water to drip through all fracture segments and eventually reach the tunnel. Based on the results of a sensitivity analysis, three different scenarios of input parameters were used to test the validity of the model with the fast flow-paths detected and reported in the Fabryka-Martin et al. (1996) study. The three scenarios differed from each other for the response of the dripping initiation times. These three different parameter configurations were then tested at three different depths. Each depth represented a different location where fast-flow has been detected at Yucca Mountain and reported by Fabryka-Martin et al. (1996). The first depth is considered representative of a location in correspondence to the Bow Ridge Fault. The second location represents a network of steep fractures and cooling joints with large variability in dip reaching the ESF at a depth of 180 meters. The third location, which is probably connected to the Diabolous Ridge Fault, is 290 meters deep and the flow path is low-dipping. Monte Carlo simulations were run for each configuration at each depth to calculate average dripping initiation times, so that results from 9 scenarios were produced. The final conclusion is that the model is able to produce results quite consistent with the Fabryka-Martin et al. (1996) study.
NASA Technical Reports Server (NTRS)
Ruf, Joseph H.
1992-01-01
Phase 2+ Space Shuttle Main Engine powerheads, E0209 and E0215 degraded their main combustion chamber (MCC) liners at a faster rate than is normal for phase 2 powerheads. One possible cause of the accelerated degradation was a reduction of coolant flow through the MCC. Hardware changes were made to the preburner fuel leg which may have reduced the resistance and, therefore, pulled some of the hydrogen from the MCC coolant leg. A computational fluid dynamics (CFD) analysis was performed to determine hydrogen flow path resistances of the phase 2+ fuel preburner injector elements relative to the phase 2 element. FDNS was implemented on axisymmetric grids with the hydrogen assumed to be incompressible. The analysis was performed in two steps: the first isolated the effect of the different inlet areas and the second modeled the entire injector element hydrogen flow path.
Voronin, Lois M.; Cauller, Stephen J.
2017-07-31
Elevated concentrations of nitrogen in groundwater that discharges to surface-water bodies can degrade surface-water quality and habitats in the New Jersey Coastal Plain. An analysis of groundwater flow in the Kirkwood-Cohansey aquifer system and deeper confined aquifers that underlie the Barnegat Bay–Little Egg Harbor (BB-LEH) watershed and estuary was conducted by using groundwater-flow simulation, in conjunction with a particle-tracking routine, to provide estimates of groundwater flow paths and travel times to streams and the BB-LEH estuary.Water-quality data from the Ambient Groundwater Quality Monitoring Network, a long-term monitoring network of wells distributed throughout New Jersey, were used to estimate the initial nitrogen concentration in recharge for five different land-use classes—agricultural cropland or pasture, agricultural orchard or vineyard, urban non-residential, urban residential, and undeveloped. Land use at the point of recharge within the watershed was determined using a geographic information system (GIS). Flow path starting locations were plotted on land-use maps for 1930, 1973, 1986, 1997, and 2002. Information on the land use at the time and location of recharge, time of travel to the discharge location, and the point of discharge were determined for each simulated flow path. Particle-tracking analysis provided the link from the point of recharge, along the particle flow path, to the point of discharge, and the particle travel time. The travel time of each simulated particle established the recharge year. Land use during the year of recharge was used to define the nitrogen concentration associated with each flow path. The recharge-weighted average nitrogen concentration for all flow paths that discharge to the Toms River upstream from streamflow-gaging station 01408500 or to the BB-LEH estuary was calculated.Groundwater input into the Barnegat Bay–Little Egg Harbor estuary from two main sources— indirect discharge from base flow to streams that eventually flow into the bay and groundwater discharge directly into the estuary and adjoining coastal wetlands— is summarized by quantity, travel time, and estimated nitrogen concentration. Simulated average groundwater discharge to streams in the watershed that flow into the BB-LEH estuary is approximately 400 million gallons per day. Particle-tracking results indicate that the travel time of 56 percent of this discharge is less than 7 years. Fourteen percent of the groundwater discharge to the streams in the BB-LEH watershed has a travel time of less than 7 years and originates in urban land. Analysis of flow-path simulations indicate that approximately 13 percent of the total groundwater flow through the study area discharges directly to the estuary and adjoining coastal wetlands (approximately 64 million gallons per day). The travel time of 19 percent of this discharge is less than 7 years. Ten percent of this discharge (1 percent of the total groundwater flow through the study area) originates in urban areas and has a travel time of less than 7 years. Groundwater that discharges to the streams that flow into the BB-LEH, in general, has shorter travel times, and a higher percentage of it originates in urban areas than does direct groundwater discharge to the Barnegat Bay–Little Egg Harbor estuary.The simulated average nitrogen concentration in groundwater that discharges to the Toms River, upstream from streamflow-gaging station 01408500 was computed and compared to summary concentrations determined from analysis of multiple surface-water samples. The nitrogen concentration in groundwater that discharges directly to the estuary and adjoining coastal wetlands is a current data gap. The particle tracking methodology used in this study provides an estimate of this concentration."
NASA Astrophysics Data System (ADS)
Qian, Jie; Cheng, Wei; Cao, Zhaoyuan; Chen, Xinjian; Mo, Jianhua
2017-02-01
Phase-resolved Doppler optical coherence tomography (PR-D-OCT) is a functional OCT imaging technique that can provide high-speed and high-resolution depth-resolved measurement on flow in biological materials. However, a common problem with conventional PR-D-OCT is that this technique often measures the flow motion projected onto the OCT beam path. In other words, it needs the projection angle to extract the absolute velocity from PR-D-OCT measurement. In this paper, we proposed a novel dual-beam PR-D-OCT method to measure absolute flow velocity without separate measurement on the projection angle. Two parallel light beams are created in sample arm and focused into the sample at two different incident angles. The images produced by these two beams are encoded to different depths in single B-scan. Then the Doppler signals picked up by the two beams together with the incident angle difference can be used to calculate the absolute velocity. We validated our approach in vitro on an artificial flow phantom with our home-built 1060 nm swept source OCT. Experimental results demonstrated that our method can provide an accurate measurement of absolute flow velocity with independency on the projection angle.
Understanding Information Flow Interaction along Separable Causal Paths in Environmental Signals
NASA Astrophysics Data System (ADS)
Jiang, P.; Kumar, P.
2017-12-01
Multivariate environmental signals reflect the outcome of complex inter-dependencies, such as those in ecohydrologic systems. Transfer entropy and information partitioning approaches have been used to characterize such dependencies. However, these approaches capture net information flow occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within an interested subsystem through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [2015] to develop a framework for quantifying information decomposition along separable causal paths. Momentary information transfer along causal paths captures the amount of information flow between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique and redundant information flow through separable causal paths. Multivariate analysis using this novel approach reveals precise understanding of causality and feedback. We illustrate our approach with synthetic and observed time series data. We believe the proposed framework helps better delineate the internal structure of complex systems in geoscience where huge amounts of observational datasets exist, and it will also help the modeling community by providing a new way to look at the complexity of real and modeled systems. Runge, Jakob. "Quantifying information transfer and mediation along causal pathways in complex systems." Physical Review E 92.6 (2015): 062829.
Hari, Ananda Rao; Katuri, Krishna P; Gorron, Eduardo; Logan, Bruce E; Saikaly, Pascal E
2016-07-01
Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57-96 %) was the largest electron sink and methane (0-2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.
Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N
2016-03-01
Exchange of water and solutes between contaminated soil matrix and bulk solution in preferential flow paths has been shown to contribute to the long-term release of dissolved contaminants in the subsurface, but whether and how this exchange can affect the release of colloids in a soil are unclear. To examine this, we applied rainfall solutions of different ionic strength on an intact soil core and compared the resulting changes in effluent colloid concentration through multiple sampling ports. The exchange of water between soil matrix and the preferential flow paths leading to each port was characterized on the basis of the bromide (conservative tracer) breakthrough time at the port. At individual ports, two rainfalls of a certain ionic strength mobilized different amounts of colloids when the soil was pre-exposed to a solution of lower or higher ionic strength. This result indicates that colloid mobilization depended on rainfall solution history, which is referred as colloid mobilization hysteresis. The extent of hysteresis was increased with increases in exchange of pore water and solutes between preferential flow paths and matrix. The results indicate that the soil matrix exchanged the old water from the previous infiltration with new infiltrating water during successive infiltration and changed the pore water chemistry in the preferential flow paths, which in turn affected the release of soil colloids. Therefore, rainfall solution history and soil heterogeneity must be considered to assess colloid mobilization in the subsurface. These findings have implications for the release of colloids, colloid-associated contaminants, and pathogens from soils.
Nano-iron Tracer Test for Characterizing Preferential Flow Path in Fractured Rock
NASA Astrophysics Data System (ADS)
Chia, Y.; Chuang, P. Y.
2015-12-01
Deterministic description of the discrete features interpreted from site characterization is desirable for developing a discrete fracture network conceptual model. It is often difficult, however, to delineate preferential flow path through a network of discrete fractures in the field. A preliminary cross-borehole nano-iron tracer test was conducted to characterize the preferential flow path in fractured shale bedrock at a hydrogeological research station. Prior to the test, heat-pulse flowmeter measurements were performed to detect permeable fracture zones at both the injection well and the observation well. While a few fracture zones are found permeable, most are not really permeable. Chemical reduction method was used to synthesize nano zero-valent iron particles with a diameter of 50~150 nm. The conductivity of nano-iron solution is about 3100 μs/cm. The recorded fluid conductivity shows the arrival of nano-iron solution in the observation well 11.5 minutes after it was released from the injection well. The magnetism of zero-valent iron enables it to be absorbed on magnet array designed to locate the depth of incoming tracer. We found nearly all of absorbed iron on the magnet array in the observation well were distributed near the most permeable fracture zone. The test results revealed a preferential flow path through a permeable fracture zone between the injection well and the observation well. The estimated hydraulic conductivity of the connected fracture is 2.2 × 10-3 m/s. This preliminary study indicated that nano-iron tracer test has the potential to characterize preferential flow path in fractured rock.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-25
... of the Western Electricity Coordinating Council (WECC) IRO-006-WECC-1 (Qualified Transfer Path... the Western Electricity Coordinating Council (WECC) IRO-006-WECC-1 (Qualified Transfer Path...: Balancing Authorities and Reliability Coordinator in the Western Electricity Coordinating Council. Frequency...
Pathogen transport in groundwater systems: contrasts with traditional solute transport
NASA Astrophysics Data System (ADS)
Hunt, Randall J.; Johnson, William P.
2017-06-01
Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.
PUMPS FOR LIQUID CURRENT-CONDUCTING MATERIAL
Watt, D.A.
1958-12-23
An induction-type liquid conductor pump is described wherein the induced current flow is substantially tnansverse to the flow of the liquid in the duct, thus eliminating parallel current flow that tends to cause unwanted pressures resulting in turbulence, eddy-flow, heating losses, and reduced pumping efficiency. This improvement is achieved by offering the parallel current a path of lower impedance along the duct than that offered by the liquid so that the induced currents remaining in the liquid flow in a substantially transverse directlon. Thick copper bars are brazed to the liquid duct parallel to the flow, and additional induced currents are created in the copper bars of appropriate magnitude to balance the ohmic drop ln the current paths outside of the liquid metal.
Numerical Simulation of the Working Process in the Twin Screw Vacuum Pump
NASA Astrophysics Data System (ADS)
Lu, Yang; Fu, Yu; Guo, Bei; Fu, Lijuan; Zhang, Qingqing; Chen, Xiaole
2017-08-01
Twin screw vacuum pumps inherit the advantages of screw machinery, such as high reliability, stable medium conveying, small vibration, simple and compact structures, convenient operation, etc, which have been widely used in petrochemical and air industry. On the basis of previous studies, this study analyzed the geometric features of variable pitch of the twin screw vacuum pump such as the sealing line, the meshing line and the volume between teeth. The mathematical model of numerical simulation of the twin screw vacuum pump was established. The leakage paths of the working volume including the sealing line and the addendum arc were comprehensively considered. The corresponding simplified geometric model of leakage flow was built up for different leak paths and the flow coefficients were calculated. The flow coefficient value range of different leak paths was given. The results showed that the flow coefficient of different leak paths can be taken as constant value for the studied geometry. The analysis of recorded indicator diagrams showed that the increasing rotational speed can dramatically decrease the exhaust pressure and the lower rotational speed can lead to over-compression. The pressure of the isentropic process which was affected by leakage was higher than the theoretical process.
NASA Astrophysics Data System (ADS)
Mallast, U.; Gloaguen, R.; Geyer, S.; Rödiger, T.; Siebert, C.
2011-08-01
In this paper we present a semi-automatic method to infer groundwater flow-paths based on the extraction of lineaments from digital elevation models. This method is especially adequate in remote and inaccessible areas where in-situ data are scarce. The combined method of linear filtering and object-based classification provides a lineament map with a high degree of accuracy. Subsequently, lineaments are differentiated into geological and morphological lineaments using auxiliary information and finally evaluated in terms of hydro-geological significance. Using the example of the western catchment of the Dead Sea (Israel/Palestine), the orientation and location of the differentiated lineaments are compared to characteristics of known structural features. We demonstrate that a strong correlation between lineaments and structural features exists. Using Euclidean distances between lineaments and wells provides an assessment criterion to evaluate the hydraulic significance of detected lineaments. Based on this analysis, we suggest that the statistical analysis of lineaments allows a delineation of flow-paths and thus significant information on groundwater movements. To validate the flow-paths we compare them to existing results of groundwater models that are based on well data.
NASA Technical Reports Server (NTRS)
Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)
1985-01-01
A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.
Control system and method for a universal power conditioning system
Lai, Jih-Sheng; Park, Sung Yeul; Chen, Chien-Liang
2014-09-02
A new current loop control system method is proposed for a single-phase grid-tie power conditioning system that can be used under a standalone or a grid-tie mode. This type of inverter utilizes an inductor-capacitor-inductor (LCL) filter as the interface in between inverter and the utility grid. The first set of inductor-capacitor (LC) can be used in the standalone mode, and the complete LCL can be used for the grid-tie mode. A new admittance compensation technique is proposed for the controller design to avoid low stability margin while maintaining sufficient gain at the fundamental frequency. The proposed current loop controller system and admittance compensation technique have been simulated and tested. Simulation results indicate that without the admittance path compensation, the current loop controller output duty cycle is largely offset by an undesired admittance path. At the initial simulation cycle, the power flow may be erratically fed back to the inverter causing catastrophic failure. With admittance path compensation, the output power shows a steady-state offset that matches the design value. Experimental results show that the inverter is capable of both a standalone and a grid-tie connection mode using the LCL filter configuration.
An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements.
Dabiri, John O; Bose, Sanjeeb; Gemmell, Brad J; Colin, Sean P; Costello, John H
2014-02-01
We describe and characterize a method for estimating the pressure field corresponding to velocity field measurements such as those obtained by using particle image velocimetry. The pressure gradient is estimated from a time series of velocity fields for unsteady calculations or from a single velocity field for quasi-steady calculations. The corresponding pressure field is determined based on median polling of several integration paths through the pressure gradient field in order to reduce the effect of measurement errors that accumulate along individual integration paths. Integration paths are restricted to the nodes of the measured velocity field, thereby eliminating the need for measurement interpolation during this step and significantly reducing the computational cost of the algorithm relative to previous approaches. The method is validated by using numerically simulated flow past a stationary, two-dimensional bluff body and a computational model of a three-dimensional, self-propelled anguilliform swimmer to study the effects of spatial and temporal resolution, domain size, signal-to-noise ratio and out-of-plane effects. Particle image velocimetry measurements of a freely swimming jellyfish medusa and a freely swimming lamprey are analyzed using the method to demonstrate the efficacy of the approach when applied to empirical data.
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2016-01-01
Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M = 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plume's axis. For sonic plumes this ratio is reduced to about 4/3. For high Mach number cases the maximum CND will be found along the axial centerline path. Keywords: column number density, plume flows, outgassing, free molecule flow.
Structures of dynamic particle accumulation in Marangoni convection in half-zone liquid bridge
NASA Astrophysics Data System (ADS)
Tanaka, S.; Ueno, I.; Kawamura, H.
Thermocapillary convection is induced by the temperature difference T between two cylindrical rods sustaining liquid bridge. It is well known that the induced flow exhibits a transition from 2-D steady to 3-D time-dependent oscillatory flows with the increasing T. These convections can be visualized by using fine particles as tracers. In a certain flow condition, the particles were found to get accumulated. This is called PAS, particle accumulation structure, after Schwabe et al. (Microgravity, sci. technol. 1996). The authors group (Ueno et al, Proc. TSFP-2, 2001) categorized the induced flow fields into several regimes by the particle motion, structures and the surface temperature variation. Two sets of pulsating and rotating flows appeared. It was observed clearly that the particle gathered along a closed single path. This kind of structure was named as TL-PAS, Twisted-loop particle accumulation structure, (Tanaka et al, J. Japan Soc. Microgravity Appl, 2000). Special attention was paid for this kind of PAS in this study. The TL-PAS exhibited several types of closed path lines. Its detailed structure changed even in the same regime with a slight change of T and aspect ratio. The experimental setup consisted of the transparent crystal top and aluminum bottom rods. Flow fields were observed from top and side through two CCD cameras. A laser-light-sheet was employed in order to grasp the 3-D structures of TL-PAS. The liquid bridge of Silicone oil of 2 cSt was formed between rods of 5mm in diameter. Several kinds of particles were tested as tracer. The surface temperature variation was measured simultaneously by use of a 25μm thermocouple up to 50Hz, or 2.5μm CCT probe (constant current thermometry) up to 100Hz. By use of this apparatus, 3-D structure of TL-PAS and motions of individual particles were captured.
NASA Astrophysics Data System (ADS)
Mrad, A.; Domec, J. C.; Huang, C. W.; Katul, G. G.
2017-12-01
Xylem tissues are specialized in offering the least possible resistance to water flow. However, this is not guaranteed when ascending sap reaches large negative pressures during periods of water stress when embolism within the xylem occurs, an inevitable step toward potential drought-induced mortality. Ongoing research into changing forest patterns and plant survival due to droughts rarely dispute the significance of Vulnerability Curves (VCs), plots that feature loss in relative conductance with declining liquid pressure (ψ). While Earth-Systems models routinely employ various VC functions, the theoretical underpinnings describing their shape remains lacking. VCs are the outcome of microscopic phenomena describing embolism formation, bubble-scale xylem properties allowing embolism spread, and hydraulic processes that dictate the water potential along the flow path. The work here explores how the upscaled version of these gives rise to popular mathematical shapes used to describe VC measurements: The Logistic and Weibull exceedance equations. Each of these two captures a distinct type of embolism spread: The Logistic VC arises when the probability that embolized vessels interact with intact ones describe embolism spread as water pressure decreases (labeled as a similarity law in botanic [1]). The Weibull VC arises when the aforementioned description includes the effects of ψ explicitly. Variability in xylem properties along the flow path is explored analytically using novel approaches borrowed from `super-statistics' and numerical simulations. The numerical simulations intend to single out which xylem network property is significant in describing the VC shape. The model results corroborate previous research (experimental and 3-dimensional high-resolution simulations) on the effect of vessel size and network topology. It is shown that (i) initial embolism locations alter air-seeding pressure and VC slope; (ii) redundancy and size variations decrease bubble propagation probability with decreasing ψ; and (iii) varying network properties spatially along the flow path delays total loss of conductance. The implications of these findings to linking VC shape to plant traits and the on-going debate about `r' vs `s' shape VCs are highlighted.
Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models
NASA Astrophysics Data System (ADS)
Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.
2013-12-01
Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.
Temporal dynamics in dominant runoff sources and flow paths in the Andean Páramo
NASA Astrophysics Data System (ADS)
Correa, Alicia; Windhorst, David; Tetzlaff, Doerthe; Crespo, Patricio; Célleri, Rolando; Feyen, Jan; Breuer, Lutz
2017-07-01
The relative importance of catchment's water provenance and flow paths varies in space and time, complicating the conceptualization of the rainfall-runoff responses. We assessed the temporal dynamics in source areas, flow paths, and age by End Member Mixing Analysis (EMMA), hydrograph separation, and Inverse Transit Time Proxies (ITTPs) estimation within a headwater catchment in the Ecuadorian Andes. Twenty-two solutes, stable isotopes, pH, and electrical conductivity from a stream and 12 potential sources were analyzed. Four end-members were required to satisfactorily represent the hydrological system, i.e., rainfall, spring water, and water from the bottom layers of Histosols and Andosols. Water from Histosols in and near the riparian zone was the highest source contributor to runoff throughout the year (39% for the drier season, 45% for the wetter season), highlighting the importance of the water that is stored in the riparian zone. Spring water contributions to streamflow tripled during the drier season, as evidenced by geochemical signatures that are consistent with deeper flow paths rather than shallow interflow through Andosols. Rainfall exhibited low seasonal variation in this contribution. Hydrograph separation revealed that 94% and 84% is preevent water in the drier and wetter seasons, respectively. From low-flow to high-flow conditions, all the sources increased their contribution except spring water. The relative age of stream water decreased during wetter periods, when the contributing area of the riparian zone expands. The multimethod and multitracer approach enabled to closely study the interchanging importance of flow processes and water source dynamics from an interannual perspective.
Influence of visual path information on human heading perception during rotation.
Li, Li; Chen, Jing; Peng, Xiaozhe
2009-03-31
How does visual path information influence people's perception of their instantaneous direction of self-motion (heading)? We have previously shown that humans can perceive heading without direct access to visual path information. Here we vary two key parameters for estimating heading from optic flow, the field of view (FOV) and the depth range of environmental points, to investigate the conditions under which visual path information influences human heading perception. The display simulated an observer traveling on a circular path. Observers used a joystick to rotate their line of sight until deemed aligned with true heading. Four FOV sizes (110 x 94 degrees, 48 x 41 degrees, 16 x 14 degrees, 8 x 7 degrees) and depth ranges (6-50 m, 6-25 m, 6-12.5 m, 6-9 m) were tested. Consistent with our computational modeling results, heading bias increased with the reduction of FOV or depth range when the display provided a sequence of velocity fields but no direct path information. When the display provided path information, heading bias was not influenced as much by the reduction of FOV or depth range. We conclude that human heading and path perception involve separate visual processes. Path helps heading perception when the display does not contain enough optic-flow information for heading estimation during rotation.
Chemseal 3808-A2 penetration into small leak path
NASA Technical Reports Server (NTRS)
Carruth, M. R., Jr.; Dehaye, R. F.
1988-01-01
A possible fix to a leak in the oxidizer system of the Space Shuttle Discovery's attitude control system was proposed by MSFC. This fix involved the passing of a shuttlecock past the leaking Dynaflow fitting and sealing the vent tube containing the fitting with Chemseal 3808-A2. The question of whether the Chemseal 3808-A2 can flow into the leak path and provide a better seal was addressed analytically and by experiment to verify the analytical formula used. The results show that the equations are applicable and that the Chemseal will flow into the expected leak path and seal.
Conceptual Model Evaluation using Advanced Parameter Estimation Techniques with Heat as a Tracer
NASA Astrophysics Data System (ADS)
Naranjo, R. C.; Morway, E. D.; Healy, R. W.
2016-12-01
Temperature measurements made at multiple depths beneath the sediment-water interface has proven useful for estimating seepage rates from surface-water channels and corresponding subsurface flow direction. Commonly, parsimonious zonal representations of the subsurface structure are defined a priori by interpretation of temperature envelopes, slug tests or analysis of soil cores. However, combining multiple observations into a single zone may limit the inverse model solution and does not take full advantage of the information content within the measured data. Further, simulating the correct thermal gradient, flow paths, and transient behavior of solutes may be biased by inadequacies in the spatial description of subsurface hydraulic properties. The use of pilot points in PEST offers a more sophisticated approach to estimate the structure of subsurface heterogeneity. This presentation evaluates seepage estimation in a cross-sectional model of a trapezoidal canal with intermittent flow representing four typical sedimentary environments. The recent improvements in heat as a tracer measurement techniques (i.e. multi-depth temperature probe) along with use of modern calibration techniques (i.e., pilot points) provides opportunities for improved calibration of flow models, and, subsequently, improved model predictions.
Multi-pulse shadowgraphic RGB illumination and detection for flow tracking
NASA Astrophysics Data System (ADS)
Menser, Jan; Schneider, Florian; Dreier, Thomas; Kaiser, Sebastian A.
2018-06-01
This work demonstrates the application of a multi-color LED and a consumer color camera for visualizing phase boundaries in two-phase flows, in particular for particle tracking velocimetry. The LED emits a sequence of short light pulses, red, green, then blue (RGB), and through its color-filter array, the camera captures all three pulses on a single RGB frame. In a backlit configuration, liquid droplets appear as shadows in each color channel. Color reversal and color cross-talk correction yield a series of three frozen-flow images that can be used for further analysis, e.g., determining the droplet velocity by particle tracking. Three example flows are presented, solid particles suspended in water, the penetrating front of a gasoline direct-injection spray, and the liquid break-up region of an "air-assisted" nozzle. Because of the shadowgraphic arrangement, long path lengths through scattering media lower image contrast, while visualization of phase boundaries with high resolution is a strength of this method. Apart from a pulse-and-delay generator, the overall system cost is very low.
Gas-Liquid Processing in Microchannels
DOE Office of Scientific and Technical Information (OSTI.GOV)
TeGrotenhuis, Ward E.; Stenkamp, Victoria S.; Twitchell, Alvin
Processing gases and liquids together in microchannels having at least one dimension <1 mm has unique advantages for rapid heat and mass transfer. One approach for managing the two phases is to use porous structures as wicks within microchannels to segregate the liquid phase from the gas phase. Gas-liquid processing is accomplished by providing a gas flow path and inducing flow of the liquid phase through or along the wick under an induced pressure gradient. A variety of unit operations are enabled, including phase separation, partial condensation, absorption, desorption, and distillation. Results are reported of an investigation of microchannel phasemore » separation in a transparent, single-channel device. Next, heat exchange is integrated with the microchannel wick approach to create a partial condenser that also separates the condensate. Finally, the scale-up to a multi-channel phase separator is described.« less
Flow of GE90 Turbofan Engine Simulated
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1999-01-01
The objective of this task was to create and validate a three-dimensional model of the GE90 turbofan engine (General Electric) using the APNASA (average passage) flow code. This was a joint effort between GE Aircraft Engines and the NASA Lewis Research Center. The goal was to perform an aerodynamic analysis of the engine primary flow path, in under 24 hours of CPU time, on a parallel distributed workstation system. Enhancements were made to the APNASA Navier-Stokes code to make it faster and more robust and to allow for the analysis of more arbitrary geometry. The resulting simulation exploited the use of parallel computations by using two levels of parallelism, with extremely high efficiency.The primary flow path of the GE90 turbofan consists of a nacelle and inlet, 49 blade rows of turbomachinery, and an exhaust nozzle. Secondary flows entering and exiting the primary flow path-such as bleed, purge, and cooling flows-were modeled macroscopically as source terms to accurately simulate the engine. The information on these source terms came from detailed descriptions of the cooling flow and from thermodynamic cycle system simulations. These provided boundary condition data to the three-dimensional analysis. A simplified combustor was used to feed boundary conditions to the turbomachinery. Flow simulations of the fan, high-pressure compressor, and high- and low-pressure turbines were completed with the APNASA code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph M. Fenelon; Randell J. Laczniak; and Keith J. Halford
2008-06-24
Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifersmore » underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types—volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in water-level altitudes within any single continuous aquifer range from a few hundred feet in a lower carbonate aquifer to just more than 1,100 feet in a volcanic aquifer. Flow directions throughout the study area are dominantly southward with minor eastward or westward deviations. Primary exceptions are westward flow in the northern part of the volcanic aquifer and eastward flow in the eastern part of the lower carbonate aquifer. Northward flow in the upper and lower carbonate aquifers in the northern part of the study area is possible but cannot be substantiated because data are lacking. Interflow between continuous aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form the regional ground-water flow system. The implications of these tributary flow paths in controlling transport away from the underground test areas at Rainier Mesa and Shoshone Mountain are discussed. The obvious data gaps contributing to uncertainties in the delineation of aquifers and development of water-level contours are identified and evaluated.« less
Fenelon, Joseph M.; Laczniak, Randell J.; Halford, Keith J.
2008-01-01
Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types?volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in water-level altitudes within any single continuous aquifer range from a few hundred feet in a lower carbonate aquifer to just more than 1,100 feet in a volcanic aquifer. Flow directions throughout the study area are dominantly southward with minor eastward or westward deviations. Primary exceptions are westward flow in the northern part of the volcanic aquifer and eastward flow in the eastern part of the lower carbonate aquifer. Northward flow in the upper and lower carbonate aquifers in the northern part of the study area is possible but cannot be substantiated because data are lacking. Interflow between continuous aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form the regional ground-water flow system. The implications of these tributary flow paths in controlling transport away from the underground test areas at Rainier Mesa and Shoshone Mountain are discussed. The obvious data gaps contributing to uncertainties in the delineation of aquifers and development of water-level contours are identified and evaluated.
Testing a Conception of How School Leadership Influences Student Learning
ERIC Educational Resources Information Center
Leithwood, Kenneth; Patten, Sarah; Jantzi, Doris
2010-01-01
Purpose: This article describes and reports the results of testing a new conception of how leadership influences student learning ("The Four Paths"). Framework: Leadership influence is conceptualized as flowing along four paths (Rational, Emotions, Organizational, and Family) toward student learning. Each path is populated by multiple…
NASA Astrophysics Data System (ADS)
Stark, Holger
2016-11-01
Microswimmers move autonomously but are subject to external fields, which influence their swimming path and their collective dynamics. With three concrete examples we illustrate swimming in external fields and explain the methodology to treat it. First, an active Brownian particle shows a conventional sedimentation profile in a gravitational field but with increased sedimentation length and some polar order along the vertical. Bottom-heavy swimmers are able to invert the sedimentation profile. Second, active Brownian particles interacting by hydrodynamic flow fields in a three-dimensional harmonic trap can spontaneously break the isotropic symmetry. They develop polar order, which one can describe by mean-field theory reminiscent to Weiss theory of ferromagnetism, and thereby pump fluid. Third, a single microswimmer shows interesting non-linear dynamics in Poiseuille flow including swinging and tumbling trajectories. For pushers, hydrodynamic interactions with bounding surfaces stabilize either straight swimming against the flow or tumbling close to the channel wall, while pushers always move on a swinging trajectory with a specific amplitude as limit cycle.
Schuldt, Bernhard; Leuschner, Christoph; Brock, Nicolai; Horna, Viviana
2013-02-01
It is generally assumed that the largest vessels are occurring in the roots and that vessel diameters and the related hydraulic conductance in the xylem are decreasing acropetally from roots to leaves. With this study in five tree species of a perhumid tropical rainforest in Sulawesi (Indonesia), we searched for patterns in hydraulic architecture and axial conductivity along the flow path from small-diameter roots through strong roots and the trunk to distal sun-canopy twigs. Wood density differed by not more than 10% across the different flow path positions in a species, and branch and stem wood density were closely related in three of the five species. Other than wood density, the wood anatomical and xylem hydraulic traits varied in dependence on the position along the flow path, but were unrelated to wood density within a tree. In contrast to reports from conifers and certain dicotyledonous species, we found a hump-shaped variation in vessel diameter and sapwood area--specific conductivity along the flow path in all five species with a maximum in the trunk and strong roots and minima in both small roots and twigs; the vessel size depended on the diameter of the organ. This pattern might be an adaptation to the perhumid climate with a low risk of hydraulic failure. Despite a similar mean vessel diameter in small roots and twigs, the two distal organs, hydraulically weighted mean vessel diameters were on average 30% larger in small roots, resulting in ∼ 85% higher empirical and theoretical specific conductivities. Relative vessel lumen area in percent of sapwood area decreased linearly by 70% from roots to twigs, reflecting the increase in sclerenchymatic tissue and tracheids in acropetal direction in the xylem. Vessel size was more closely related to the organ diameter than to the distance along the root-to-shoot flow path. We conclude that (i) the five co-occurring tree species show convergent patterns in their hydraulic architecture despite different growth strategies, and (ii) the paradigm assuming continuous acropetal vessel tapering and decrease in specific conductance from fine roots towards distal twigs needs reconsideration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprague, Michael A.; Boldyrev, Stanislav; Fischer, Paul
This report details the impact exascale will bring to turbulent-flow simulations in applied science and technology. The need for accurate simulation of turbulent flows is evident across the DOE applied-science and engineering portfolios, including combustion, plasma physics, nuclear-reactor physics, wind energy, and atmospheric science. The workshop brought together experts in turbulent-flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants defined a research agenda and path forward that will enable scientists and engineers to continually leverage, engage, and direct advances in computational systems on the path to exascale computing.
Thorogood, Robert M.
1986-01-01
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.
Thorogood, Robert M.
1983-01-01
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.
Thorogood, R.M.
1983-12-27
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.
Thermally determining flow and/or heat load distribution in parallel paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.
A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.
Thermally determining flow and/or heat load distribution in parallel paths
Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.
2016-12-13
A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.
Kresse, Timothy M.; Hays, Phillip D.; Merriman, Katherine R.; Gillip, Jonathan A.; Fugitt, D. Todd; Spellman, Jane L.; Nottmeier, Anna M.; Westerman, Drew A.; Blackstock, Joshua M.; Battreal, James L.
2014-01-01
The Interior Highlands of western Arkansas has less reported groundwater use than other areas of the State, reflecting a combination of factors. These factors include prevalent and increasing use of surface water, less intensive agricultural uses, lower population and industry densities, lesser potential yield of the resource, and lack of detailed reporting. The overall low yields of aquifers of the Interior Highlands result in domestic supply as the dominant use, with minor industrial, public, and commercial-supply use. Where greater volumes are required for growth of population and industry, surface water is the greatest supplier of water needs in the Interior Highlands. The various aquifers of the Interior Highlands generally occur in shallow, fractured, well-indurated, structurally modified bedrock of this mountainous region of the State, as compared to the relatively flat-lying, unconsolidated sediments of the Coastal Plain. In terms of age from youngest to oldest, the aquifers of the Interior Highlands include: the Arkansas River Valley alluvial aquifer, the Ouachita Mountains aquifer, the Western Interior Plains confining system, the Springfield Plateau aquifer, and the Ozark aquifer. Spatial trends in groundwater geochemistry in the Interior Highlands differ greatly from trends noted for aquifers of the Coastal Plain. In the Coastal Plain, the prevalence of long regional flow paths results in regionally predictable and mappable geochemical changes along the flow paths. In the Interior Highlands, short, topographically controlled flow paths (from hilltops to valleys) within small watersheds represent the predominant groundwater-flow system. As such, dense data coverage from numerous wells would be required to effectively characterize these groundwater basins and define small-scale geochemical changes along any given flow path for aquifers of the Interior Highlands. Changes in geochemistry generally were related to rock type and residence time along individual flow paths. Dominant changes in geochemistry for the Ouachita Mountains aquifer and the Western Interior Plains confining system are attributed to rock/water interaction and changes in redox zonation along the flow path. In these areas, groundwater evolves along flow paths from a calcium- to a sodium-bicarbonate water type with increasing reducing conditions resulting in denitrification, elevated iron and manganese concentrations, and production of methane in the more geochemically evolved and strongest reducing conditions. In the Ozark and Springfield Plateau aquifers, rapid influx of surface-derived contaminants, especially nitrogen, coupled with few to no attenuation processes was attributed to the karst landscape developed on Mississippian- and Ordovician-age carbonate rocks of the Ozark Plateaus. Increasing nitrate concentrations are related to increasing agricultural land use, and areas of mature karst development result in higher nitrate concentrations than areas with less karst features.
ARC Cell Science Validation (CS-V) Payload Overview
NASA Technical Reports Server (NTRS)
Gilkerson, Nikita
2017-01-01
Automated cell biology system for laboratory and International Space Station (ISS) National Laboratory research. Enhanced cell culture platform that provides undisturbed culture maintenance, including feedback temperature control, medical grade gas supply, perfusion nutrient delivery and removal of waste, and automated experiment manipulations. Programmable manipulations include: media feeds change out, injections, fraction collections, fixation, flow rate, and temperature modification within a one-piece sterile barrier flow path. Cassette provides 3 levels of containment and allows Crew access to the bioculture chamber and flow path assembly for experiment initiation, refurbishment, or sample retrieval and preservation.
NASA Astrophysics Data System (ADS)
Coe, D. B.; Wopat, M. A.; Lindsay, D.; Stanish, S.; Boone, M.; Beck, B.; Wyman, A.; Bull, J.
2012-12-01
The potential for water-quality impacts in intensively-managed forested watersheds depends partly upon the frequency of overland flow paths linking logging-related hillslope sediment sources to the channel network, as well as the volume of sediment delivered along these flow paths. In response to public concerns over perceived water-quality impacts from clearcut timber harvesting, the Battle Creek Task Force, composed of subject-matter experts from 4 different state agencies, performed a rapid assessment for visible evidence of sediment delivery pathways from multiple logging-associated features in the upper Battle Creek watershed - an area underlain predominantly by Holocene- and Late Pleistocene-aged volcanic rock types, with highly permeable soils, and relatively few streams. Logging-associated features were selected for assessment based on erosion potential and proximity to stream channels. Identified sediment-delivery pathways were then characterized by dominant erosion process and the relative magnitude of sediment delivery (i.e., low, moderate, and high) was estimated. Approximately 26 km of stream buffers adjacent to 55 clearcut harvest units were assessed, and the single detected instance of sediment delivery was found to be of low magnitude and the result of illegal encroachment by logging equipment into a 5-m wide stream-adjacent equipment-limitation zone. The proportion of sampled sites delivering sediment was found to be highest for tractor-stream crossings, followed by road-stream crossings, stream-adjacent road segments, stream-adjacent landings, and clearcut harvest units, respectively. All 5 tractor-stream crossings delivered sediment, but were generally delivering a low magnitude of sediment derived from sheetwash and rilling. Road-stream crossings (n=39) and stream-adjacent road segments (n=24) delivered observable sediment 69 and 67 percent of the time, respectively. The highest magnitudes of sediment delivery from roads were associated with substandard design or maintenance practices (e.g., poor road drainage) and/or poor location (e.g., roads less than 15 m from a stream), but the magnitude of sediment delivery was generally low or unobservable where Best Management Practices (BMPs) had been implemented. Conceptually, water-quality impacts are limited by the low density of streams in the watershed, relatively low hillslope gradients, relatively high permeability of the soils, and the implementation of BMPs. Assessment results suggest that direct water-quality impacts from overland flow paths in these types of watersheds are best minimized by disconnecting flow paths linking roads to streams, and by implementing BMPs.
Flow visualization study of the horseshoe vortex in a turbine stator cascade
NASA Technical Reports Server (NTRS)
Gaugler, R. E.; Russell, L. M.
1982-01-01
Flow visualization techniques were used to show the behavior of the horseshoe vortex in a large scale turbine stator cascade. Oil drops on the end wall surface flowed in response to local shear stresses, indicating the limiting flow streamlines at the surface. Smoke injected into the flow and photographed showed time averaged flow behavior. Neutrally bouyant helium filled soap bubbles followed the flow and showed up on photographs as streaks, indicating the paths followed by individual fluid particles. Preliminary attempts to control the vortex were made by injecting air through control jets drilled in the end wall near the vane leading edge. Seventeen different hole locations were tested, one at a time, and the effect of the control jets on the path follwed by smoke in the boundary layer was recorded photographically.
Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance
Harvey, Judson W.; Fuller, Christopher C.
1998-01-01
We determined the role of the hyporheic zone (the subsurface zone where stream water and shallow groundwater mix) in enhancing microbially mediated oxidation of dissolved manganese (to form manganese precipitates) in a drainage basin contaminated by copper mining. The fate of manganese is of overall importance to water quality in Pinal Creek Basin, Arizona, because manganese reactions affect the transport of trace metals. The basin-scale role of the hyporheic zone is difficult to quantify because stream-tracer studies do not always reliably characterize the cumulative effects of the hyporheic zone. This study determined cumulative effects of hyporheic reactions in Pinal Creek basin by characterizing manganese uptake at several spatial scales (stream-reach scale, hyporheic-flow-path scale, and sediment-grain scale). At the stream-reach scale a one-dimensional stream-transport model (including storage zones to represent hyporheic flow paths) was used to determine a reach-averaged time constant for manganese uptake in hyporheic zones, 1/λs, of 1.3 hours, which was somewhat faster but still similar to manganese uptake time constants that were measured directly in centimeter-scale hyporheic flow paths (1/λh= 2.6 hours), and in laboratory batch experiments using streambed sediment (1/λ = 2.7 hours). The modeled depths of subsurface storage zones (ds = 4–17 cm) and modeled residence times of water in storage zones (ts = 3–12 min) were both consistent with direct measurements in hyporheic flow paths (dh = 0–15 cm, th = 1–25 min). There was also good agreement between reach-scale modeling and direct measurements of the percentage removal of dissolved manganese in hyporheic flow paths (fs = 8.9%, andfh = 9.3%rpar;. Manganese uptake experiments in the laboratory using sediment from Pinal Creek demonstrated (through comparison of poisoned and unpoisoned treatments) that the manganese removal process was enhanced by microbially mediated oxidation. The cumulative effect of hyporheic exchange in Pinal Creek basin was to remove approximately 20% of the dissolved manganese flowing out of the drainage basin. Our results illustrate that the cumulative significance of reactive uptake in the hyporheic zone depends on the balance between chemical reaction rates, hyporheic porewater residence time, and turnover of streamflow through hyporheic flow paths. The similarity between the hyporheic reaction timescale (1/λs ≈ 1.3 hours), and the hyporheic porewater residence timescale (ts ≈ 8 min) ensured that there was adequate time for the reaction to progress. Furthermore, it was the similarity between the turnover length for stream water flow through hyporheic flow paths (Ls = stream velocity/storage-zone exchange coefficient ≈ 1.3 km) and the length of Pinal Creek (L ≈ 7 km), which ensured that all stream water passed through hyporheic flow paths several times. As a means to generalize our findings to other sites where similar types of hydrologic and chemical information are available, we suggest a cumulative significance index for hyporheic reactions, Rs = λstsL/Ls (dimensionless); higher values indicate a greater potential for hyporheic reactions to influence geochemical mass balance. Our experience in Pinal Creek basin suggests that values of Rs > 0.2 characterize systems where hyporheic reactions are likely to influence geochemical mass balance at the drainage-basin scale.
Electrical comparison of iN7 EUV hybrid and EUV single patterning BEOL metal layers
NASA Astrophysics Data System (ADS)
Larivière, Stéphane; Wilson, Christopher J.; Kutrzeba Kotowska, Bogumila; Versluijs, Janko; Decoster, Stefan; Mao, Ming; van der Veen, Marleen H.; Jourdan, Nicolas; El-Mekki, Zaid; Heylen, Nancy; Kesters, Els; Verdonck, Patrick; Béral, Christophe; Van den Heuvel, Dieter; De Bisschop, Peter; Bekaert, Joost; Blanco, Victor; Ciofi, Ivan; Wan, Danny; Briggs, Basoene; Mallik, Arindam; Hendrickx, Eric; Kim, Ryoung-han; McIntyre, Greg; Ronse, Kurt; Bömmels, Jürgen; Tőkei, Zsolt; Mocuta, Dan
2018-03-01
The semiconductor scaling roadmap shows the continuous node to node scaling to push Moore's law down to the next generations. In that context, the foundry N5 node requires 32nm metal pitch interconnects for the advanced logic Back- End of Line (BEoL). 193immersion usage now requires self-aligned and/or multiple patterning technique combinations to enable such critical dimension. On the other hand, EUV insertion investigation shows that 32nm metal pitch is still a challenge but, related to process flow complexity, presents some clear motivations. Imec has already evaluated on test chip vehicles with different patterning approaches: 193i SAQP (Self-Aligned Quadruple Patterning), LE3 (triple patterning Litho Etch), tone inversion, EUV SE (Single Exposure) with SMO (Source-mask optimization). Following the run path in the technology development for EUV insertion, imec N7 platform (iN7, corresponding node to the foundry N5) is developed for those BEoL layers. In this paper, following technical motivation and development learning, a comparison between the iArF SAQP/EUV block hybrid integration scheme and a single patterning EUV flow is proposed. These two integration patterning options will be finally compared from current morphological and electrical criteria.
NASA Astrophysics Data System (ADS)
Quick, Annika; Farrell, Tiffany B.; Reeder, William Jeffrey; Feris, Kevin P.; Tonina, Daniele; Benner, Shawn G.
2015-04-01
The hyporheic zone is a potentially important producer of nitrous oxide, a powerful greenhouse gas. The location and magnitude of nitrous oxide generation within the hyporheic zone involves complex interactions between multiple nitrogen species, redox conditions, microbial communities, and hydraulics. To better understand nitrous oxide generation and emissions from streams, we conducted large-scale flume experiments in which we monitored pore waters along hyporheic flow paths within stream dune structures. Measurements of dissolved oxygen, ammonia, nitrate, nitrite, and dissolved nitrous oxide showed distinct spatial relationships reflecting redox changes along flow paths. Using residence times along a flow path, clear trends in oxygen conditions and nitrogen species were observed. Three dune sizes were modeled, resulting in a range of residence times, carbon reactivity levels and respiration rates. We found that the magnitude and location of nitrous oxide production in the hyporheic zone is related to nitrate loading, dune morphology, and residence time. Specifically, increasing exogenous nitrate levels in surface water to approximately 3 mg/L resulted in an increase in dissolved N2O concentrations greater than 500% (up to 10 µg/L N-N2O) in distinct zones of specific residence times. We also found, however, that dissolved N2O concentrations decreased to background levels further along the flow path due to either reduction of nitrous oxide to dinitrogen gas or degassing. The decrease in measurable N2O along a flow path strongly suggests an important relationship between dune morphology, residence time, and nitrous oxide emissions from within stream sediments. Relating streambed morphology and loading of nitrogen species allows for prediction of nitrous oxide production in the hyporheic zone of natural systems.
Visual environment recognition for robot path planning using template matched filters
NASA Astrophysics Data System (ADS)
Orozco-Rosas, Ulises; Picos, Kenia; Díaz-Ramírez, Víctor H.; Montiel, Oscar; Sepúlveda, Roberto
2017-08-01
A visual approach in environment recognition for robot navigation is proposed. This work includes a template matching filtering technique to detect obstacles and feasible paths using a single camera to sense a cluttered environment. In this problem statement, a robot can move from the start to the goal by choosing a single path between multiple possible ways. In order to generate an efficient and safe path for mobile robot navigation, the proposal employs a pseudo-bacterial potential field algorithm to derive optimal potential field functions using evolutionary computation. Simulation results are evaluated in synthetic and real scenes in terms of accuracy of environment recognition and efficiency of path planning computation.
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor); Wang, Liang-Guo (Inventor)
1992-01-01
A non-mechanical optical switch is developed for alternately switching a monochromatic or quasi-monochromatic light beam along two optical paths. A polarizer polarizes light into a single, e.g., vertical component which is then rapidly modulated into vertical and horizontal components by a polarization modulator. A polarization beam splitter then reflects one of these components along one path and transmits the other along the second path. In the specific application of gas filter correlation radiometry, one path is directed through a vacuum cell and one path is directed through a gas correlation cell containing a desired gas. Reflecting mirrors cause these two paths to intersect at a second polarization beam splitter which reflects one component and transmits the other to recombine them into a polarization modulated beam which can be detected by an appropriate single sensor.
NASA Astrophysics Data System (ADS)
Gudmundsson, Agust
2015-04-01
Dykes are extension fractures and form when the magmatic overpressure is high enough to rupture (break) the host rock. Their formation is entirely analogous to that of many joints and human-made hydraulic fractures, such as are used to increase permeability in reservoirs. When generating their paths, dykes use existing weaknesses (e.g., cooling joints) in the host rock. The maximum depth of large tension fractures below the surface of a rift zone, however, is mostly less than a few hundred metres. If the fractures extend to greater depths, they must change into closed normal faults which are generally not used as magma paths. There are thus no large tension fractures or wide-open faults at great depths ready to be filled with magma to form a dyke. While magma flow in dykes, as in other fluid-driven fractures, is at any point in various directions dyke segmentation may indicate the overall large-scale flow direction. Thus, dykes composed of large-spaced disconnected segments in lateral sections are primarily formed in vertical magma flow at segmentation depth whereas those composed of large-spaced disconnected segments in vertical sections are primarily formed in lateral magma flow. The far-field displacement and stress fields of segmented dykes are similar to those generated by single, continuous dykes of similar dimensions, particularly when the distances between the nearby tips of the segments become small in comparison with segment lengths. Most dykes become arrested and never supply magma to eruptions. Feeder-dykes normally reach the surface only along parts of their lengths (strike-dimensions). The volumetric flow or effusion rate of magma through a feeder-dyke or volcanic fissure depends on the aperture (opening) of the dyke or fissure in the 3rd power. All these theoretical and observational results are here applied to the dyke emplacements associated with the eruptions of Eyjafjallajökull 2010 and Bardarbunga-Holuhraun 2014. The results make it possible to (1) explain, broadly, the propagation-paths of the associated dykes, (2) the arrest and deflection (into sills) of many dyke segments, (3) the dimensions of the dykes, in particular (4) the dyke thicknesses, (5) the volumetric flow or effusion rates of the volcanic fissures, and (6) the location of the magma sources of the dykes. Galindo, I., Gudmundsson, A., 2012. Basaltic feeder dykes in rift zones: geometry, emplacement, and effusion rates. Nat. Hazards Earth Syst. Sci., 12, 3683-3700. Becerril, L., Galindo, I., Gudmundsson, A., Morales, J.M., 2013. Depth of origin of magma in eruptions. Sci. Reports (Nature Publishing), 3, 2762, doi: 10.1038/srep02762. Gudmundsson, A., Lecoeur, N., Mohajeri, N., Thordarson, T., 2014. Dike emplacement at Bardarbunga, Iceland, induces unusual stress changes, caldera deformation, and earthquakes. Bull. Volcanol., 76, 869, doi: 10.1007/s00445-014-0869-8.
NASA Technical Reports Server (NTRS)
Moran, Robert P.
2013-01-01
Reactor fuel rod surface area that is perpendicular to coolant flow direction (+S) i.e. perpendicular to the P creates areas of coolant stagnation leading to increased coolant temperatures resulting in localized changes in fluid properties. Changes in coolant fluid properties caused by minor increases in temperature lead to localized reductions in coolant mass flow rates leading to localized thermal instabilities. Reductions in coolant mass flow rates result in further increases in local temperatures exacerbating changes to coolant fluid properties leading to localized thermal runaway. Unchecked localized thermal runaway leads to localized fuel melting. Reactor designs with randomized flow paths are vulnerable to localized thermal instabilities, localized thermal runaway, and localized fuel melting.
NASA Technical Reports Server (NTRS)
Veres, Joseph
2001-01-01
This report outlines the detailed simulation of Aircraft Turbofan Engine. The objectives were to develop a detailed flow model of a full turbofan engine that runs on parallel workstation clusters overnight and to develop an integrated system of codes for combustor design and analysis to enable significant reduction in design time and cost. The model will initially simulate the 3-D flow in the primary flow path including the flow and chemistry in the combustor, and ultimately result in a multidisciplinary model of the engine. The overnight 3-D simulation capability of the primary flow path in a complete engine will enable significant reduction in the design and development time of gas turbine engines. In addition, the NPSS (Numerical Propulsion System Simulation) multidisciplinary integration and analysis are discussed.
Stormflow generation: a meta-analysis of field studies and research catchments
NASA Astrophysics Data System (ADS)
Barthold, Frauke; Elsenbeer, Helmut
2014-05-01
Runoff characteristics are expressions of runoff generation mechanisms. In this study, we want to test the hypothesis if storm hydrographs of catchments with prevailing near-surface flow paths are dominated by new water. We aim to test this hypothesis using published data from the scientific literature. We developed a classification system based on three runoff characteristics: (1) hydrograph response (HR: slowly or quickly), (2) the temporal source of water that dominates the hydrograph (TS: pre-event vs. event water) and (3) the flow paths that the water takes until it is released to the stream (FP: subsurface vs. surface flow paths). We then performed a literature survey to collect information on these runoff characteristics for small, forested headwater catchments that served as study areas in runoff generation studies and assigned each study catchment to one of the 8 classes. For this purpose, we designed a procedure to objectively diagnose the predominant conceptual model of storm flow generation in each catchment and assess its temporal and spatial relevance for the catchment. Finally, we performed an explorative analysis of the classified research catchments and summarized field evidence. Our literature survey yielded a sample of 22 research catchments that fell within our defined criteria (small, naturally forested catchments which served as study areas in stormflow generation studies). We applied our classification procedure to all of these catchments. Among them were 14 catchments for which our meta-analysis yielded a complete set of stormflow characteristics resulting in one of the 8 model concepts and were assigned into our classification scheme. Of the 14 classified research catchments, 10 were dominated by subsurface flow paths while 4 were dominated by overland flow. The data also indicate that the spatial and temporal relevance is high for catchments with subsurface flow paths while often weak for surface flow paths dominated catchments. The catalogue of catchments supports our hypothesis; however, it is afflicted with a relative high degree of uncertainty. Two theories exist that may explain the imbalance between surface and subsurface dominated catchments: (1) the selection of research sites for stormflow generation studies was guided by the leading research question in hydrology, i.e. to address the "old water paradox", and (2) catchments with prevailing subsurface flow paths are much more common in nature. In a next step, the proposed catalogue of research catchments allows correlation of environmental characteristics with runoff characteristics to address questions of catchment organization and similarity. However, the successful application and relevance of such an approach depends on the range of conceptual models for which field support exist. Our results prompt us to highlight future research needs: (1) in order to cover a broader range of combinations of runoff characteristics a careful selection of research sites is necessary and (2) propose guidelines for field studies in order achieve higher comparability of resulting conceptual models of research sites and increase the spatial and temporal relevance of the dominant conceptual model.
Acoustic transducer in system for gas temperature measurement in gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul P.; Claussen, Heiko
An apparatus for controlling operation of a gas turbine engine including at least one acoustic transmitter/receiver device located on a flow path boundary structure. The acoustic transmitter/receiver device includes an elongated sound passage defined by a surface of revolution having opposing first and second ends and a central axis extending between the first and second ends, an acoustic sound source located at the first end, and an acoustic receiver located within the sound passage between the first and second ends. The boundary structure includes an opening extending from outside the boundary structure to the flow path, and the second endmore » of the surface of revolution is affixed to the boundary structure at the opening for passage of acoustic signals between the sound passage and the flow path.« less
NASA Astrophysics Data System (ADS)
Yanes, Enrique G.; Miller-Ihli, Nancy J.
2004-06-01
A low flow, parallel path Mira Mist CE nebulizer designed for capillary electrophoresis (CE) was evaluated as a function of make-up solution flow rate, composition, and concentration, as well as the nebulizer gas flow rate. This research was conducted in support of a project related to the separation and quantification of cobalamin (vitamin B-12) species using microseparation techniques combined with inductively coupled plasma mass spectrometry (ICP-MS) detection. As such, Co signals were monitored during the nebulizer characterization process. Transient effects in the ICP were studied to evaluate the suitability of using gradients for microseparations and the benefit of using methanol for the make-up solution was demonstrated. Co signal response changed significantly as a function of changing methanol concentrations of the make-up solution and maximum signal enhancement was seen at 20% methanol with a 15 μl/min flow rate. Evaluation of the effect of changing the nebulizer gas flow rates showed that argon flows from 0.8 to 1.2 l/min were equally effective. The Mira Mist CE parallel path nebulizer was then evaluated for interfacing capillary microseparation techniques including capillary electrophoresis (CE) and micro high performance liquid chromatography (μHPLC) to inductively coupled plasma mass spectrometry (ICP-MS). A mixture of four cobalamin species standards (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5' deoxyadenosylcobalamin) and the corrinoid analogue cobinamide dicyanide were successfully separated using both CE-ICP-MS and μHPLC-ICP-MS using the parallel path nebulizer with a make-up solution containing 20% methanol with a flow rate of 15 μl/min.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mace, R.E.
1993-02-01
Numerical models are useful tools for developing an understanding of ground-water flow in sparsely characterized low-permeability aquifers. Finite-difference, cross-sectional models of Cretaceous chalk and marl formations near the Superconducting Super Collider (SSC) were constructed using MODFLOW to evaluate ground-water circulation paths and travel times. Weathered and fractured zones with enhanced permeability were included to assess the effect these features had on flow paths and times. Pump tests, slug tests, packer tests, core tests, and estimates were used to define hydraulic properties for model input. The model was calibrated with water-level data from monitor wells and from wire-line piezometers near amore » test shaft excavated by the SSC project. A ratio of vertical-to-horizontal permeability of 0.0085 was estimated through model calibration. A chalk-to-marl permeability ratio of 18 was needed to reproduce artesian head in a well completed in chalk beneath marl. Hydraulic head distributions and ground-water flow paths reflected local, intermediate, and regional flow systems with recharge beneath upland surface-water divides and discharge in valleys. Most of the flow (99%) occurred in the weathered zone, with average residence times of 5 to 10 years. Residence time in unweathered chalk bedrock was substantially longer, at an average of 1.7 Ma. As expected, the model demonstrated that deep and rapid ground-water circulation might occur in fracture zones. Particle paths calculated using MODPATH showed that ground-water travel times from recharge areas to the SSC subsurface facilities might be 20 to 60 years where flow is through fracture zones.« less
NASA Technical Reports Server (NTRS)
Thomas, Randy; Stueber, Thomas J.
2013-01-01
The System Identification (SysID) Rack is a real-time hardware-in-the-loop data acquisition (DAQ) and control instrument rack that was designed and built to support inlet testing in the NASA Glenn Research Center 10- by 10-Foot Supersonic Wind Tunnel. This instrument rack is used to support experiments on the Combined-Cycle Engine Large-Scale Inlet for Mode Transition Experiment (CCE? LIMX). The CCE?LIMX is a testbed for an integrated dual flow-path inlet configuration with the two flow paths in an over-and-under arrangement such that the high-speed flow path is located below the lowspeed flow path. The CCE?LIMX includes multiple actuators that are designed to redirect airflow from one flow path to the other; this action is referred to as "inlet mode transition." Multiple phases of experiments have been planned to support research that investigates inlet mode transition: inlet characterization (Phase-1) and system identification (Phase-2). The SysID Rack hardware design met the following requirements to support Phase-1 and Phase-2 experiments: safely and effectively move multiple actuators individually or synchronously; sample and save effector control and position sensor feedback signals; automate control of actuator positioning based on a mode transition schedule; sample and save pressure sensor signals; and perform DAQ and control processes operating at 2.5 KHz. This document describes the hardware components used to build the SysID Rack including their function, specifications, and system interface. Furthermore, provided in this document are a SysID Rack effectors signal list (signal flow); system identification experiment setup; illustrations indicating a typical SysID Rack experiment; and a SysID Rack performance overview for Phase-1 and Phase-2 experiments. The SysID Rack described in this document was a useful tool to meet the project objectives.
Trinh, Lan Anh; Ekström, Mikael; Cürüklü, Baran
2018-01-01
Recent industrial developments in autonomous systems, or agents, which assume that humans and the agents share the same space or even work in close proximity, open for new challenges in robotics, especially in motion planning and control. In these settings, the control system should be able to provide these agents a reliable path following control when they are working in a group or in collaboration with one or several humans in complex and dynamic environments. In such scenarios, these agents are not only moving to reach their goals, i.e., locations, they are also aware of the movements of other entities to find a collision-free path. Thus, this paper proposes a dependable, i.e., safe, reliable and effective, path planning algorithm for a group of agents that share their working space with humans. Firstly, the method employs the Theta * algorithm to initialize the paths from a starting point to a goal for a set of agents. As Theta * algorithm is computationally heavy, it only reruns when there is a significant change of the environment. To deal with the movements of the agents, a static flow field along the configured path is defined. This field is used by the agents to navigate and reach their goals even if the planned trajectories are changed. Secondly, a dipole field is calculated to avoid the collision of agents with other agents and human subjects. In this approach, each agent is assumed to be a source of a magnetic dipole field in which the magnetic moment is aligned with the moving direction of the agent. The magnetic dipole-dipole interactions between these agents generate repulsive forces to help them to avoid collision. The effectiveness of the proposed approach has been evaluated with extensive simulations. The results show that the static flow field is able to drive agents to the goals with a small number of requirements to update the path of agents. Meanwhile, the dipole flow field plays an important role to prevent collisions. The combination of these two fields results in a safe path planning algorithm, with a deterministic outcome, to navigate agents to their desired goals.
Tortuous Pore Path Through the Glaucomatous Lamina Cribrosa.
Wang, Bo; Lucy, Katie A; Schuman, Joel S; Sigal, Ian A; Bilonick, Richard A; Lu, Chen; Liu, Jonathan; Grulkowski, Ireneusz; Nadler, Zachary; Ishikawa, Hiroshi; Kagemann, Larry; Fujimoto, James G; Wollstein, Gadi
2018-05-08
The lamina cribrosa is a primary site of damage in glaucoma. While mechanical distortion is hypothesized to cause reduction of axoplasmic flow, little is known about how the pores, which contains the retinal ganglion cell axons, traverse the lamina cribrosa. We investigated lamina cribrosa pore paths in vivo to quantify differences in tortuosity of pore paths between healthy and glaucomatous eyes. We imaged 16 healthy, 23 glaucoma suspect and 48 glaucomatous eyes from 70 subjects using a swept source optical coherence tomography system. The lamina cribrosa pores were automatically segmented using a previously described segmentation algorithm. Individual pore paths were automatically tracked through the depth of the lamina cribrosa using custom software. Pore path convergence to the optic nerve center and tortuosity was quantified for each eye. We found that lamina cribrosa pore pathways traverse the lamina cribrosa closer to the optic nerve center along the depth of the lamina cribrosa regardless of disease severity or diagnostic category. In addition, pores of glaucoma eyes take a more tortuous path through the lamina cribrosa compared to those of healthy eyes, suggesting a potential mechanism for reduction of axoplasmic flow in glaucoma.
NASA Astrophysics Data System (ADS)
Chuang, Po-Yu; Chia, Yeeping; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping
2016-11-01
Recent advances in borehole geophysical techniques have improved characterization of cross-hole fracture flow. The direct detection of preferential flow paths in fractured rock, however, remains to be resolved. In this study, a novel approach using nanoscale zero-valent iron (nZVI or `nano-iron') as a tracer was developed for detecting fracture flow paths directly. Generally, only a few rock fractures are permeable while most are much less permeable. A heat-pulse flowmeter can be used to detect changes in flow velocity for delineating permeable fracture zones in the borehole and providing the design basis for the tracer test. When nano-iron particles are released in an injection well, they can migrate through the connecting permeable fracture and be attracted to a magnet array when arriving in an observation well. Such an attraction of incoming iron nanoparticles by the magnet can provide quantitative information for locating the position of the tracer inlet. A series of field experiments were conducted in two wells in fractured rock at a hydrogeological research station in Taiwan, to test the cross-hole migration of the nano-iron tracer through permeable connected fractures. The fluid conductivity recorded in the observation well confirmed the arrival of the injected nano-iron slurry. All of the iron nanoparticles attracted to the magnet array in the observation well were found at the depth of a permeable fracture zone delineated by the flowmeter. This study has demonstrated that integrating the nano-iron tracer test with flowmeter measurement has the potential to characterize preferential flow paths in fractured rock.
Turbulent Flow Structure Inside a Canopy with Complex Multi-Scale Elements
NASA Astrophysics Data System (ADS)
Bai, Kunlun; Katz, Joseph; Meneveau, Charles
2015-06-01
Particle image velocimetry laboratory measurements are carried out to study mean flow distributions and turbulent statistics inside a canopy with complex geometry and multiple scales consisting of fractal, tree-like objects. Matching the optical refractive indices of the tree elements with those of the working fluid provides unobstructed optical paths for both illuminations and image acquisition. As a result, the flow fields between tree branches can be resolved in great detail, without optical interference. Statistical distributions of mean velocity, turbulence stresses, and components of dispersive fluxes are documented and discussed. The results show that the trees leave their signatures in the flow by imprinting wake structures with shapes similar to the trees. The velocities in both wake and non-wake regions significantly deviate from the spatially-averaged values. These local deviations result in strong dispersive fluxes, which are important to account for in canopy-flow modelling. In fact, we find that the streamwise normal dispersive flux inside the canopy has a larger magnitude (by up to four times) than the corresponding Reynolds normal stress. Turbulent transport in horizontal planes is studied in the framework of the eddy viscosity model. Scatter plots comparing the Reynolds shear stress and mean velocity gradient are indicative of a linear trend, from which one can calculate the eddy viscosity and mixing length. Similar to earlier results from the wake of a single tree, here we find that inside the canopy the mean mixing length decreases with increasing elevation. This trend cannot be scaled based on a single length scale, but can be described well by a model, which considers the coexistence of multi-scale branches. This agreement indicates that the multi-scale information and the clustering properties of the fractal objects should be taken into consideration in flows inside multi-scale canopies.
NASA Astrophysics Data System (ADS)
Akinwumiju, Akinola S.; Olorunfemi, Martins O.
2018-05-01
This study attempted to model the groundwater flow system of a drainage basin within the Basement Complex environment of Southwestern Nigeria. Four groundwater models were derived from Vertical Electrical Sounding (VES) Data, remotely sensed data, geological information (hydrolineaments and lithology) and borehole data. Subsequently, two sub-surface (local and regional) flow systems were delineated in the study area. While the local flow system is controlled by surface topography, the regional flow system is controlled by the networks of intermediate and deep seated faults/fractures. The local flow system is characterized by convergence, divergence, inflow and outflow in places, while the regional flow system is dominated by NNE-SSW and W-E flow directions. Minor flow directions include NNW-SSE and E-W with possible linkages to the main flow-paths. The NNE-SSW regional flow system is a double open ended flow system with possible linkage to the Niger Trough. The W-E regional flow system is a single open ended system that originates within the study area (with possible linkage to the NNE-SSW regional flow system) and extends to Ikogosi in the adjoining drainage basin. Thus, the groundwater drainage basin of the study area is much larger and extensive than its surface drainage basin. The all year round flowing (perennial) rivers are linked to groundwater outcrops from faults/fractures and contact zones. Consequently, larger percentage of annual rainwater usually leaves the basin in form of runoff and base flow. Therefore, the basin is categorized as a donor basin but with suspected subsurface water input at its northeastern axis.
Review of numerical models of cavitating flows with the use of the homogeneous approach
NASA Astrophysics Data System (ADS)
Niedźwiedzka, Agnieszka; Schnerr, Günter H.; Sobieski, Wojciech
2016-06-01
The focus of research works on cavitation has changed since the 1960s; the behaviour of a single bubble is no more the area of interest for most scientists. Its place was taken by the cavitating flow considered as a whole. Many numerical models of cavitating flows came into being within the space of the last fifty years. They can be divided into two groups: multi-fluid and homogeneous (i.e., single-fluid) models. The group of homogenous models contains two subgroups: models based on transport equation and pressure based models. Several works tried to order particular approaches and presented short reviews of selected studies. However, these classifications are too rough to be treated as sufficiently accurate. The aim of this paper is to present the development paths of numerical investigations of cavitating flows with the use of homogeneous approach in order of publication year and with relatively detailed description. Each of the presented model is accompanied by examples of the application area. This review focuses not only on the list of the most significant existing models to predict sheet and cloud cavitation, but also on presenting their advantages and disadvantages. Moreover, it shows the reasons which inspired present authors to look for new ways of more accurate numerical predictions and dimensions of cavitation. The article includes also the division of source terms of presented models based on the transport equation with the use of standardized symbols.
NASA Astrophysics Data System (ADS)
Sjöqvist, Lars; Allard, Lars; Gustafsson, Ove; Henriksson, Markus; Pettersson, Magnus
2011-11-01
Atmospheric turbulence effects close to ground may affect the performance of laser based systems severely. The variations in the refractive index along the propagation path cause effects such as beam wander, intensity fluctuations (scintillations) and beam broadening. Typical geometries of interest for optics detection include nearly horizontal propagation paths close to the ground and up to kilometre distance to the target. The scintillations and beam wander affect the performance in terms of detection probability and false alarm rate. Of interest is to study the influence of turbulence in optics detection applications. In a field trial atmospheric turbulence effects along a 1 kilometre horizontal propagation path were studied using a diode laser with a rectangular beam profile operating at 0.8 micrometer wavelength. Single-path beam characteristics were registered and analysed using photodetectors arranged in horizontal and vertical directions. The turbulence strength along the path was determined using a scintillometer and single-point ultrasonic anemometers. Strong scintillation effects were observed as a function of the turbulence strength and amplitude characteristics were fitted to model distributions. In addition to the single-path analysis double-path measurements were carried out on different targets. Experimental results are compared with existing theoretical turbulence laser beam propagation models. The results show that influence from scintillations needs to be considered when predicting performance in optics detection applications.
NASA Technical Reports Server (NTRS)
Patterson, J. C., Jr.; Jordan, F. L., Jr.
1975-01-01
A recently proposed method of flow visualization was investigated at the National Aeronautics and Space Administration's Langley Research Center. This method of flow visualization is particularly applicable to the study of lift-induced wing tip vortices through which it is possible to record the entire life span of the vortex. To accomplish this, a vertical screen of smoke was produced perpendicular to the flight path and allowed to become stationary. A model was then driven through the screen of smoke producing the circular vortex motion made visible as the smoke was induced along the path taken by the flow and was recorded by highspeed motion pictures.
Development of the Circulation Control Flow Scheme Used in the NTF Semi-Span FAST-MAC Model
NASA Technical Reports Server (NTRS)
Jones, Gregory S.; Milholen, William E., II; Chan, David T.; Allan, Brian G.; Goodliff, Scott L.; Melton, Latunia P.; Anders, Scott G.; Carter, Melissa B.; Capone, Francis J.
2013-01-01
The application of a circulation control system for high Reynolds numbers was experimentally validated with the Fundamental Aerodynamic Subsonic Transonic Modular Active Control semi-span model in the NASA Langley National Transonic Facility. This model utilized four independent flow paths to modify the lift and thrust performance of a representative advanced transport type of wing. The design of the internal flow paths highlights the challenges associated with high Reynolds number testing in a cryogenic pressurized wind tunnel. Weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions ranging from 0.1 to 10 lbm/sec. Results from the test verified system performance and identified solutions associated with the weight-flow metering system that are linked to internal perforated plates used to achieve flow uniformity at the jet exit.
A Dynamic Bayesian Observer Model Reveals Origins of Bias in Visual Path Integration.
Lakshminarasimhan, Kaushik J; Petsalis, Marina; Park, Hyeshin; DeAngelis, Gregory C; Pitkow, Xaq; Angelaki, Dora E
2018-06-20
Path integration is a strategy by which animals track their position by integrating their self-motion velocity. To identify the computational origins of bias in visual path integration, we asked human subjects to navigate in a virtual environment using optic flow and found that they generally traveled beyond the goal location. Such a behavior could stem from leaky integration of unbiased self-motion velocity estimates or from a prior expectation favoring slower speeds that causes velocity underestimation. Testing both alternatives using a probabilistic framework that maximizes expected reward, we found that subjects' biases were better explained by a slow-speed prior than imperfect integration. When subjects integrate paths over long periods, this framework intriguingly predicts a distance-dependent bias reversal due to buildup of uncertainty, which we also confirmed experimentally. These results suggest that visual path integration in noisy environments is limited largely by biases in processing optic flow rather than by leaky integration. Copyright © 2018 Elsevier Inc. All rights reserved.
Path planning in uncertain flow fields using ensemble method
NASA Astrophysics Data System (ADS)
Wang, Tong; Le Maître, Olivier P.; Hoteit, Ibrahim; Knio, Omar M.
2016-10-01
An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.
Osuga, T; Obata, T; Ikehira, H
2004-04-01
A small degree of nonuniformity in dialysate flow in a hollow-fiber dialyzer was detected using proton magnetic resonance imaging (MRI). Since paramagnetic ions reduce the spin-lattice relaxation time of protons around them, MRI can detect Gd in water. An aqueous solution of a chelate compound of Gd was impulsively injected into the dialysate flow path at a flow rate of 500 cm(3) /m, which is that utilized in actual dialysis. Despite the apparent elimination of Gd from the dialysate flow path by the newly injected dialysate fluid after the injection of Gd was terminated, MRI revealed that Gd remained in the interior of the hollow fiber. The observed structure pattern of the Gd concentration profile revealed that the dialysate flow had a small degree of nonuniformity despite the currently established design to restrict channeling in dialysate flow. Local nonuniformity of the hollow-fiber density and vortex generation in the dialysate flow were considered to cause the nonuniformity in the dialysate flow.
Pathogen transport in groundwater systems: Contrasts with traditional solute transport
Hunt, Randall J.; Johnson, William P.
2017-01-01
Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in “Colloid Filtration Theory”, a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.
Myers, Nathan C.
2000-01-01
Hydrologic data and a ground-water flow model were used to characterize ground-water flow in the Kansas River alluvial aquifer at Fort Riley in northeast Kansas. The ground-water flow model was developed as a tool to project ground-water flow and potential contaminant-transport paths in the alluvial aquifer on the basis of past hydrologic conditions. The model also was used to estimate historical and hypothetical ground-water flow paths with respect to a private- and several public-supply wells. The ground-water flow model area extends from the Smoky Hill and Republican Rivers downstream to about 2.5 miles downstream from the city of Ogden. The Kansas River Valley has low relief and, except for the area within the Fort Riley Military Reservation, is used primarily for crop production. Sedimentary deposits in the Kansas River Valley, formed after the ancestral Kansas River eroded into bedrock, primarily are alluvial sediment deposited by the river during Quaternary time. The alluvial sediment consists of as much as about 75 feet of poorly sorted, coarse-to-fine sand, silt, and clay, 55 feet of which can be saturated with ground water. The alluvial aquifer is unconfined and is bounded on the sides and bottom by Permian-age shale and limestone bedrock. Hydrologic data indicate that ground water in the Kansas River Valley generally flows in a downstream direction, but flow direction can be quite variable near the Kansas River due to changes in river stage. Ground-water-level changes caused by infiltration of precipitation are difficult to detect because they are masked by larger changes caused by fluctuation in Kansas River stage. Ratios of strontium isotopes Sr87 and Sr86 in water collected from wells in the Camp Funston Area indicate that the ground water along the northern valley wall originates, in part, from upland areas north of the river valley. Water from Threemile Creek, which flows out of the uplands north of the river valley, had Sr87:Sr86 ratios similar to those in ground water from wells in the northern Camp Funston Area. In addition, comparison of observed water levels from wells CF90-06, CF97-101, and CF97-401 in the Camp Funston Area and ground-water levels simulated for these wells using floodwave-response analysis indicates that ground-water inflow from bedrock is a hydraulic stress that, in addition to the changing stage in the Kansas River, acts on the aquifer. This hydraulic stress seems to be located near the northern valley wall because the effect of this stress is greater for well CF97-101, which is the well closest to the valley wall. Ground-water flow was simulated using a modular, three-dimensional, finite-difference ground-water flow model (MODFLOW). Particle tracking, used to visualize ground-water flow paths in the alluvial aquifer, was accomplished using MODPATH. Forward-in-time particle tracking indicated that, in general, particles released near the Kansas River followed much more variable paths than particles released near the valley wall. Although particle tracking does not simulate solute transport, this increased path variability indicates that, near the river, ground-water contaminants could follow many possible paths towards the river, whereas more distant from the river, ground-water contaminants likely would follow a narrower corridor. Particle tracks in the Camp Funston Area indicate that, for the 1990-98 simulation period, contaminants from the ground-water study sites in the Camp Funston Area would be unlikely to move into the vicinity of Ogden's supply wells. Backward-in-time particle tracking indicated that the flow-path and recharge areas for model cells corresponding to Ogden's supply wells lie near the northern valley wall and extend into the northern Camp Funston Area. The flow-path and recharge areas for model cells corresponding to Morris County Rural Water District wells lie within Clarks Creek Valley and probably extend outside the model area. Three hypothetical simulations, i
Systems and methods of manufacturing microchannel arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Brian K.; Brannon, Samuel T.
The present application relates to apparatus and methods of reducing the cost of microchannel array production and operation. In a representative embodiment, a microchannel array can comprise a first lamina having one or more flanges and a plurality of elongated bosses. The one or more flanges can extend along a perimeter of the first lamina, the plurality of elongated bosses can at least partially define a plurality of first flow paths, and the first lamina can define at least one opening. The microchannel array can also comprise a second lamina having a plurality of second flow paths, and can definemore » at least one opening. The second lamina can be disposed above the first lamina such that the second lamina encloses the first flow paths of the first lamina and the at least one opening of the first lamina is coaxial with the at least one opening of the second lamina.« less
Fuel cell generator with fuel electrodes that control on-cell fuel reformation
Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA
2011-10-25
A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.
The path to COVIS: A review of acoustic imaging of hydrothermal flow regimes
NASA Astrophysics Data System (ADS)
Bemis, Karen G.; Silver, Deborah; Xu, Guangyu; Light, Russ; Jackson, Darrell; Jones, Christopher; Ozer, Sedat; Liu, Li
2015-11-01
Acoustic imaging of hydrothermal flow regimes started with the incidental recognition of a plume on a routine sonar scan for obstacles in the path of the human-occupied submersible ALVIN. Developments in sonar engineering, acoustic data processing and scientific visualization have been combined to develop technology which can effectively capture the behavior of focused and diffuse hydrothermal discharge. This paper traces the development of these acoustic imaging techniques for hydrothermal flow regimes from their conception through to the development of the Cabled Observatory Vent Imaging Sonar (COVIS). COVIS has monitored such flow eight times a day for several years. Successful acoustic techniques for estimating plume entrainment, bending, vertical rise, volume flux, and heat flux are presented as is the state-of-the-art in diffuse flow detection.
Self-regulating fuel staging port for turbine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Nieuwenhuizen, William F.; Fox, Timothy A.; Williams, Steven
2014-07-08
A port (60) for axially staging fuel and air into a combustion gas flow path 28 of a turbine combustor (10A). A port enclosure (63) forms an air path through a combustor wall (30). Fuel injectors (64) in the enclosure provide convergent fuel streams (72) that oppose each other, thus converting velocity pressure to static pressure. This forms a flow stagnation zone (74) that acts as a valve on airflow (40, 41) through the port, in which the air outflow (41) is inversely proportion to the fuel flow (25). The fuel flow rate is controlled (65) in proportion to enginemore » load. At high loads, more fuel and less air flow through the port, making more air available to the premixing assemblies (36).« less
Kirol, Lance D.
1988-01-01
A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.
Kirol, L.D.
1987-02-11
A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.
National Aerospace Plane Engine Seals: High Temperature Seal Performance Evaluation
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
1991-01-01
The key to the successful development of the single stage to orbit National Aerospace Plane (NASP) is the successful development of combined cycle ramjet/scramjet engines that can propel the vehicle to 17,000 mph to reach low Earth orbit. To achieve engine performance over this speed range, movable engine panels are used to tailor engine flow that require low leakage, high temperature seals around their perimeter. NASA-Lewis is developing a family of new high temperature seals to form effective barriers against leakage of extremely hot (greater than 2000 F), high pressure (up to 100 psi) flow path gases containing hydrogen and oxygen. Preventing backside leakage of these explosive gas mixtures is paramount in preventing the potential loss of the engine or the entire vehicle. Seal technology development accomplishments are described in the three main areas of concept development, test, and evaluation and analytical development.
NASA Technical Reports Server (NTRS)
Jenkins, R. M.
1983-01-01
The present effort represents an extension of previous work wherein a calculation model for performing rapid pitchline optimization of axial gas turbine geometry, including blade profiles, is developed. The model requires no specification of geometric constraints. Output includes aerodynamic performance (adiabatic efficiency), hub-tip flow-path geometry, blade chords, and estimates of blade shape. Presented herein is a verification of the aerodynamic performance portion of the model, whereby detailed turbine test-rig data, including rig geometry, is input to the model to determine whether tested performance can be predicted. An array of seven (7) NASA single-stage axial gas turbine configurations is investigated, ranging in size from 0.6 kg/s to 63.8 kg/s mass flow and in specific work output from 153 J/g to 558 J/g at design (hot) conditions; stage loading factor ranges from 1.15 to 4.66.
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Cheng, Larry
2015-01-01
This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.
Geophysical Assessment of the Control of a Jetty on a Barrier Beach and Estuary System
NASA Astrophysics Data System (ADS)
Ulrich, C.; Hubbard, S. S.; Peterson, J.; Blom, K.; Black, W.; Delaney, C.; Mendoza, J.
2014-12-01
An evaluation is underway at the Goat Rock State Park, located at the mouth of the Russian River near Jenner, CA, to quantify the influence of a man made jetty on the functioning of a barrier beach and associated implications for estuary fish habitat and flood control. Flow through the beach results from water level differences between the estuary and the ocean. When the estuary is closed or perched, one of the major sources of outflow from the lagoon is seepage flow through the barrier beach. The location and design of the jetty could be altering subsurface flow paths through the jetty and possibly impeding subsurface flow where the jetty is still intact. This will result in unnatural connectivity between the ocean and the estuary leading to atypical surface water elevations and possibly salinity imbalance. We are monitoring seepage through the jetty and beach berm with multiple surface and borehole geophysical methods, including: electrical resistivity (ERT), seismic refraction (SR), ground penetrating radar (GPR), and electromagnetic methods (EM). We use SR data to characterize deeper bedrock controls on beach barrier functioning; ERT and EM methods to characterize the beach sediment layers that could contribute to preferential flow paths during tide cycles in addition to preferential flow paths created by the jetty structure; time-lapse ERT and EM data to monitor moisture changes and mixing of saline and fresh water within the beach berm, and borehole ERT and GPR data to delineate the geometry of the (often buried) jetty. Preliminary ERT and EM results indicate two preferential flow paths through zones of missing jetty structure, while time-lapse borehole ERT data is expected to image saltwater flow impedance in zones of intact jetty structure. All data are being integrated with topography, tidal, borehole, and hydrological information and the results of the assessment will enable the Sonoma County Water Agency to develop the feasibility of alternatives to the existing jetty that may help achieve target estuarine water surface elevations.
Experimental investigation of turbine disk cavity aerodynamics and heat transfer
NASA Technical Reports Server (NTRS)
Daniels, W. A.; Johnson, B. V.
1993-01-01
An experimental investigation of turbine disk cavity aerodynamics and heat transfer was conducted to provide an experimental data base that can guide the aerodynamic and thermal design of turbine disks and blade attachments for flow conditions and geometries simulating those of the space shuttle main engine (SSME) turbopump drive turbines. Experiments were conducted to define the nature of the aerodynamics and heat transfer of the flow within the disk cavities and blade attachments of a large scale model simulating the SSME turbopump drive turbines. These experiments include flow between the main gas path and the disk cavities, flow within the disk cavities, and leakage flows through the blade attachments and labyrinth seals. Air was used to simulate the combustion products in the gas path. Air and carbon dioxide were used to simulate the coolants injected at three locations in the disk cavities. Trace amounts of carbon dioxide were used to determine the source of the gas at selected locations on the rotors, the cavity walls, and the interstage seal. The measurements on the rotor and stationary walls in the forward and aft cavities showed that the coolant effectiveness was 90 percent or greater when the coolant flow rate was greater than the local free disk entrainment flow rate and when room temperature air was used as both coolant and gas path fluid. When a coolant-to-gas-path density ratio of 1.51 was used in the aft cavity, the coolant effectiveness on the rotor was also 90 percent or greater at the aforementioned condition. However, the coolant concentration on the stationary wall was 60 to 80 percent at the aforementioned condition indicating a more rapid mixing of the coolant and flow through the rotor shank passages. This increased mixing rate was attributed to the destabilizing effects of the adverse density gradients.
Path selection rules for droplet trains in single-lane microfluidic networks
NASA Astrophysics Data System (ADS)
Amon, A.; Schmit, A.; Salkin, L.; Courbin, L.; Panizza, P.
2013-07-01
We investigate the transport of periodic trains of droplets through microfluidic networks having one inlet, one outlet, and nodes consisting of T junctions. Variations of the dilution of the trains, i.e., the distance between drops, reveal the existence of various hydrodynamic regimes characterized by the number of preferential paths taken by the drops. As the dilution increases, this number continuously decreases until only one path remains explored. Building on a continuous approach used to treat droplet traffic through a single asymmetric loop, we determine selection rules for the paths taken by the drops and we predict the variations of the fraction of droplets taking these paths with the parameters at play including the dilution. Our results show that as dilution decreases, the paths are selected according to the ascending order of their hydrodynamic resistance in the absence of droplets. The dynamics of these systems controlled by time-delayed feedback is complex: We observe a succession of periodic regimes separated by a wealth of bifurcations as the dilution is varied. In contrast to droplet traffic in single asymmetric loops, the dynamical behavior in networks of loops is sensitive to initial conditions because of extra degrees of freedom.
A study of interior noise levels, noise sources and transmission paths in light aircraft
NASA Technical Reports Server (NTRS)
Hayden, R. E.; Murray, B. S.; Theobald, M. A.
1983-01-01
The interior noise levels and spectral characteristics of 18 single-and twin-engine propeller-driven light aircraft, and source-path diagnosis of a single-engine aircraft which was considered representative of a large part of the fleet were studied. The purpose of the flight surveys was to measure internal noise levels and identify principal noise sources and paths under a carefully controlled and standardized set of flight procedures. The diagnostic tests consisted of flights and ground tests in which various parts of the aircraft, such as engine mounts, the engine compartment, exhaust pipe, individual panels, and the wing strut were instrumented to determine source levels and transmission path strengths using the transfer function technique. Predominant source and path combinations are identified. Experimental techniques are described. Data, transfer function calculations to derive source-path contributions to the cabin acoustic environment, and implications of the findings for noise control design are analyzed.
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1998-01-01
Multidisciplinary tools for prediction of single rectangular-tail buffet are extended to single swept-back-tail buffet in transonic-speed flow, and multidisciplinary tools for prediction and control of twin-tail buffet are developed and presented. The configuration model consists of a sharp-edged delta wing with single or twin tails that are oriented normal to the wing surface. The tails are treated as cantilevered beams fixed at the root and allowed to oscillate in both bending and torsion. This complex multidisciplinary problem is solved sequentially using three sets of equations on a dynamic single or multi-block grid structure. The first set is the unsteady, compressible, Reynolds-averaged Navier-Stokes equations which are used for obtaining the flow field vector and the aerodynamic loads on the tails. The Navier-Stokes equations are solved accurately in time using the implicit, upwind, flux-difference splitting, finite volume scheme. The second set is the coupled bending and torsion aeroelastic equations of cantilevered beams which are used for obtaining the bending and torsion deflections of the tails. The aeroelastic equations'are solved accurately in time using, a fifth-order-accurate Runge-Kutta scheme. The third set is the grid-displacement equations and the rigid-body dynamics equations, which are used for updating the grid coordinates due to the tail deflections and rigid-body motions. The tail-buffet phenomenon is predicted for highly-swept, single vertical tail placed at the plane of geometric symmetry, and for highly-swept, vertical twin tails placed at three different spanwise separation distances. The investigation demonstrates the effects of structural inertial coupling and uncoupling of the bending and torsion modes of vibration, spanwise positions of the twin-tail, angle of attack, and pitching and rolling dynamic motions of the configuration model on the tail buffet loading and response. The fundamental issue of twin-tail buffet alleviation is addressed using two active flow-control methods. These methods are the tangential leading-edge blowing and the flow suction from the leading-edge vortex cores along their paths. Qualitative and quantitative comparisons with the available experimental data are presented. The comparisons indicate that the present multidisciplinary aeroelastic analysis tools are robust, accurate and efficient.
NASA Astrophysics Data System (ADS)
Cevik, Mert
Tip clearance is the necessary small gap left between the moving rotor tip and stationary shroud of a turbomachine. In a compressor, the pressure driven flow through this gap, called tip clearance flow, has a major and generally detrimental impact on compressor performance (pressure ratio and efficiency) and aerodynamic stability (stall margin). The increase in tip clearance, either temporary during transient engine operations or permanent from wear, leads to a drop in compressor performance and aerodynamic stability which results in a fuel consumption increase and a reduced operating envelope for a gas turbine engine. While much research has looked into increasing compressor performance and stall margin at the design (minimum or nominal) tip clearance, very little attention has been paid for reducing the sensitivity of these parameters to tip clearance size increase. The development of technologies that address this issue will lead to aircraft engines whose performance and operating envelope are more robust to operational demands and wear. The current research is the second phase of a research programme to develop design strategies to reduce the sensitivity of axial compressor performance and aerodynamic stability to tip clearance. The first phase had focused on blade design strategies and had led to the discovery and explanation of two flow features that reduces tip sensitivity, namely increased incoming meridional momentum in the rotor tip region and reduction/elimination of double leakage. Double leakage is the flow that exits one tip clearance and enters the tip clearance of the adjacent blade instead of convecting downstream out of the rotor passage. This flow was shown to be very detrimental to compressor performance and stall margin. Two rotor design strategies involving sweep and tip stagger reduction were proposed and shown by CFD simulations to exploit these features to reduce sensitivity. As the second phase, the objectives of the current research project are to develop gas path design strategies for axial compressors to achieve the same goal, to assess their ability to be combined with desensitizing axial compressor blade design strategies and to be applied to non-axial compressors. The search for gas path design strategies was based on the exploitation of the two flow desensitizing features listed above. Two gas path design strategies were proposed and analyzed. The first was gas path contouring in the form of a concave gas path to increase incoming tip meridional momentum.
NASA Technical Reports Server (NTRS)
2011-01-01
NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control system developed with the data obtained from the first two phases. Plans for a fourth phase include mode transition experiments with a turbine engine. This paper, focusing on the first two phases of experiments, presents developed operational and analysis tools for streamlined testing and data reduction procedures.
Hinckley, Eve-Lyn S.; Kendall, Carol; Loague, Keith
2009-01-01
California's widespread and economically important vineyards offer substantial opportunities to understand the interface between hydrology and biogeochemistry in agricultural soils. The common use of native sulfur (S) as a fumigant or soil additive provides a novel way to isotopically differentiate among sulfate (SO42−) pools, allowing the estimation of water and SO42− budgets. The objectives of this study were (1) to characterize the near‐surface hydrological flow paths in a vineyard during irrigation and storm events and (2) to determine how those flow paths affect the fate and transport of SO42− across seasons. Integrating hydrological theory with measurements of SO42−concentration and sulfate‐S isotopic ratios (expressed as [SO42−] and δ34S, respectively) in inputs, soil water, and leachate provided a means of determining flow paths. Low [SO42−] and δ34S in leachate during 4‐h irrigation events reflect minimal engagement of the soil matrix, indicating that preferential flow was the dominant path for water in the near surface. In contrast, high [SO42−] and δ34S values during 8‐h irrigation and storm events reflect near‐complete engagement of the soil matrix, indicating that lateral flow was the dominant pathway. Because hydrologic response and SO42− mobility are tightly coupled in these soils, the magnitude of water fluxes through the near surface controls S cycling both on and off site. These results indicate that preferential flow is an important loss pathway to consider in managing both water resources and water quality (reactive elements) in vineyard land use systems.
NASA Astrophysics Data System (ADS)
Gardner, Christopher B.; Litt, Guy F.; Lyons, W. Berry; Ogden, Fred L.
2017-10-01
In humid tropical watersheds, the hydrologic flow paths taken by rain event waters and how they interact with groundwater and soil matrix water to form streamflow are poorly understood. Preferential flow paths (PFPs) confound storm infiltration processes, especially in the humid tropics where PFPs are common. This work applies germanium (Ge) and silicon (Si) as natural flow path tracers in conjunction with water stable isotopes and electrical conductivity to examine the rapid delivery of shallow soil water, the activation of PFPs, and event water partitioning in an experimental catchment in central Panama. We employed a three-component mixing model for hydrograph separation using the following end-member waters: (i) base flow (high [Si], low [Ge], and low Ge/Si ratio), (ii) dilute canopy throughfall (low [Si] and low [Ge]), and (iii) shallow (<15 cm) soil matrix water (low [Si], high [Ge], and high Ge/Si ratio). These three end-members bounded all observed Ge/Si streamflow ratios. During small rain events (<˜24 mm), base flow and dilute canopy throughfall components dominated stormflow. During larger precipitation events (>˜35 mm), we detected the third shallow soil water component with an elevated [Ge] and Ge/Si ratio. This component reached its maximum during the hydrograph's receding limb coincident with the maximum event fraction, and increased proportionally to the total storm rainfall exceeding ˜35 mm. Only shallow (<15 cm) soil matrix water exhibited elevated Ge concentrations and high Ge/Si ratios. This third component represents rapidly delivered soil matrix water combined with shallow lateral PFP activation through which event waters interact with soil minerals.
NASA Astrophysics Data System (ADS)
Hale, C. A.; Carling, G. T.; Fernandez, D. P.; Nelson, S.; Aanderud, Z.; Tingey, D. G.; Dastrup, D.
2017-12-01
Water chemistry in mountain streams is variable during spring snowmelt as shallow groundwater flow paths are activated in the watershed, introducing solutes derived from soil water. Sr isotopes and other tracers can be used to differentiate waters that have interacted with soils and dust (shallow groundwater) and bedrock (deep groundwater). To investigate processes controlling water chemistry during snowmelt, we analyzed 87Sr/86Sr ratios, Sr and other trace element concentrations in bulk snowpack, dust, soil, soil water, ephemeral channels, and river water during snowmelt runoff in the upper Provo River watershed in northern Utah, USA, over four years (2014-2017). Strontium concentrations in the river averaged 20 ppb during base flow and decreased to 10 ppb during snowmelt runoff. 87Sr/86Sr ratios were around 0.717 during base flow and decreased to 0.715 in 2014 and 0.713 in 2015 and 2016 during snowmelt, trending towards less radiogenic values of mineral dust inputs in the Uinta Mountain soils. Ephemeral channels, representing shallow flow paths with soil water inputs, had Sr concentrations between 7-20 ppb and 87Sr/86Sr ratios between 0.713-0.716. Snowpack Sr concentrations were generally <2 ppb with 87Sr/86Sr ratios between 0.710-711, similar to atmospheric dust inputs. The less radiogenic 87Sr/86Sr ratios and lower Sr concentrations in the river during snowmelt are likely a result of activating shallow groundwater flow paths, which allows melt water to interact with shallow soils that contain accumulated dust deposits with a less radiogenic 87Sr/86Sr ratio. These results suggest that flow paths and atmospheric dust are important to consider when investigating variable solute loads in mountain streams.
Wolock, D.M.; Hornberger, G.M.; Beven, K.J.; Campbell, W.G.
1989-01-01
We undertook the task of determining whether base flow alkalinity of surface waters in the northeastern United States is related to indices of soil contact time and flow path partitioning that are derived from topographic and soils information. The influence of topography and soils on catchment hydrology has been incorporated previously in the variable source area model TOPMODEL as the relative frequency distribution of ln (a/Kb tan B), where ln is the Naperian logarithm, “a” is the area drained per unit contour, K is the saturated hydraulic conductivity, b is the soil depth, and tan B is the slope. Using digital elevation and soil survey data, we calculated the ln (a/Kb tan B) distribution for 145 catchments. Indices of flow path partitioning and soil contact time were derived from the ln (a/Kb tan B) distributions and compared to measurements of alkalinity in lakes to which the catchments drain. We found that alkalinity was, in general, positively correlated with the index of soil contact time, whereas the correlation between alkalinity and the flow path partitioning index was weak at best. A portion of the correlation between the soil contact time index and alkalinity was attributable to covariation with soil base saturation and cation exchange capacity, while another portion was found to be independent of these factors. Although our results indicate that catchments with long soil contact time indices are most likely to produce high alkalinity base flow, a sensitivity analysis of TOPMODEL suggests that surface waters of these same watersheds may be susceptible to alkalinity depressions during storm events, due to the role of flow paths.
NASA Astrophysics Data System (ADS)
Dvory, Noam Zach; Livshitz, Yakov; Kuznetsov, Michael; Adar, Eilon; Yakirevich, Alexander
2016-04-01
Groundwater recharge in fractured karstic aquifers is particularly difficult to quantify due to the rock mass's heterogeneity and complexity that include preferential flow paths along karst conduits. The present study's major goals were to assess how the changes in lithology, as well as the fractured karst systems, influence the flow mechanism in the unsaturated zone, and to define the spatial variation of the groundwater recharge at local scale. The study area is located within the fractured carbonate Western Mountain aquifer (Yarkon-Taninim), west of the city of Jerusalem at the Ein Karem (EK) production well field. Field monitoring included groundwater level observations in nine locations in the study area during years 1990-2014. The measured groundwater level series were analyzed with the aid of one-dimensional, dual permeability numerical model of water flow in variably saturated fractured-porous media, which was calibrated and used to estimate groundwater recharge at nine locations. The recharge values exhibit significant spatial and temporal variation with mean and standard deviation values of 216 and 113 mm/year, respectively. Based on simulations, relationships were established between precipitation and groundwater recharge in each of the nine studied sites and compared with similar ones obtained in earlier regional studies. Simulations show that fast and slow flow paths conditions also influence annual cumulative groundwater recharge dynamic. In areas where fast flow paths exist, most of the groundwater recharge occurs during the rainy season (60-80% from the total recharge for the tested years), while in locations with slow flow path conditions the recharge rate stays relatively constant with a close to linear pattern and continues during summer.
NASA Astrophysics Data System (ADS)
Patrick, William P.; Bryant, Rebecca S.; Greenwald, Larry E.
2002-05-01
A unique low-pressure-drop muffler is described which has been designed to attenuate low frequency tonal noise in ducts. Flow through the muffler is divided into two noncommunicating paths in the cylindrical configuration which was designed, built, and tested. Half of the flow is ducted through a straight central annulus and the other half is ducted through a partitioned outer annulus which directs the flow in a spiral flow pattern around the inner annulus. Thus the outer flow has a longer path length and the sound within the outer annulus is phase-delayed relative to the inner flow causing destructive interference between the inner and outer waves with resulting strong attenuation at the tuned frequencies. A procedure will be described for designing a muffler (with flow) to produce high attenuation at the fundamental noise tone and all harmonics (up to the first cross mode). Results will be presented which show that the muffler achieved over 20 dB attenuation for the first five harmonics of the incident noise in a flowing duct.
Aeropropulsion Technology (APT). Task 23 - Stator Seal Cavity Flow Investigation
NASA Technical Reports Server (NTRS)
Heidegger, N. J.; Hall, E. J.; Delaney, R. A.
1996-01-01
The focus of NASA Contract NAS3-25950 Task 23 was to numerically investigate the flow through an axial compressor inner-banded stator seal cavity. The Allison/NASA developed ADPAC code was used to obtain all flow predictions. Flow through a labyrinth stator seal cavity of a high-speed compressor was modeled by coupling the cavity flow path and the main flow path of the compressor. A grid resolution study was performed to guarantee adequate grid spacing was used. Both unsteady rotor-stator-rotor interactions and steady-state isolated blade calculations were performed with and without the seal cavity present. A parameterized seal cavity study of the high-speed stator seal cavity collected a series of solutions for geometric variations. The parameter list included seal tooth gap, cavity depth, wheel speed, radial mismatch of hub flowpath, axial trench gap, hub corner treatments, and land edge treatments. Solution data presented includes radial and pitchwise distributions of flow variables and particle traces describing the flow character.
Method, apparatus and system for controlling fluid flow
McMurtrey, Ryan D.; Ginosar, Daniel M.; Burch, Joesph V.
2007-10-30
A system, apparatus and method of controlling the flow of a fluid are provided. In accordance with one embodiment of the present invention, a flow control device includes a valve having a flow path defined therethrough and a valve seat in communication with the flow path with a valve stem disposed in the valve seat. The valve stem and valve seat are cooperatively configured to cause mutual relative linear displacement thereof in response to rotation of the valve stem. A gear member is coupled with the rotary stem and a linear positioning member includes a portion which complementarily engages the gear member. Upon displacement of the linear positioning member along a first axis, the gear member and rotary valve stem are rotated about a second axis and the valve stem and valve seat are mutually linearly displaced to alter the flow of fluid through the valve.
Three Dimensional Flow and Pressure Patterns in a Single Pocket of a Hydrostatic Journal Bearing
NASA Technical Reports Server (NTRS)
Braun, M. Jack; Dzodzo, Milorad B.
1996-01-01
The flow in a hydrostatic pocket is described by a mathematical model that uses the three dimensional Navier-Stokes equations written in terms of the primary variables, u, v, w, and p. Using a conservative formulation, a finite volume multi-block method is applied through a collocated, body fitted grid. The flow is simulated in a shallow pocket with a depth/length ratio of 0.02. The flow structures obtained and described by the authors in their previous two dimensional models are made visible in their three dimensional aspect for the Couette flow. It has been found that the flow regimes formed central and secondary vortical cells with three dimensional corkscrew-like structures that lead the fluid on an outward bound path in the axial direction of the pocket. The position of the central vortical cell center is at the exit region of the capillary restrictor feedline. It has also been determined that a fluid turn around zone occupies all the upstream space between the floor of the pocket and the runner, thus preventing any flow exit through the upstream port. The corresponding pressure distribution under the shaft presented as well. It was clearly established that for the Couette dominated case the pressure varies significantly in the pocket in the circumferential direction, while its variation is less pronounced axially.
Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei
2014-11-01
Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Generating Performance Models for Irregular Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friese, Ryan D.; Tallent, Nathan R.; Vishnu, Abhinav
2017-05-30
Many applications have irregular behavior --- non-uniform input data, input-dependent solvers, irregular memory accesses, unbiased branches --- that cannot be captured using today's automated performance modeling techniques. We describe new hierarchical critical path analyses for the \\Palm model generation tool. To create a model's structure, we capture tasks along representative MPI critical paths. We create a histogram of critical tasks with parameterized task arguments and instance counts. To model each task, we identify hot instruction-level sub-paths and model each sub-path based on data flow, instruction scheduling, and data locality. We describe application models that generate accurate predictions for strong scalingmore » when varying CPU speed, cache speed, memory speed, and architecture. We present results for the Sweep3D neutron transport benchmark; Page Rank on multiple graphs; Support Vector Machine with pruning; and PFLOTRAN's reactive flow/transport solver with domain-induced load imbalance.« less
Sobel, E.; Lange, K.
1996-01-01
The introduction of stochastic methods in pedigree analysis has enabled geneticists to tackle computations intractable by standard deterministic methods. Until now these stochastic techniques have worked by running a Markov chain on the set of genetic descent states of a pedigree. Each descent state specifies the paths of gene flow in the pedigree and the founder alleles dropped down each path. The current paper follows up on a suggestion by Elizabeth Thompson that genetic descent graphs offer a more appropriate space for executing a Markov chain. A descent graph specifies the paths of gene flow but not the particular founder alleles traveling down the paths. This paper explores algorithms for implementing Thompson's suggestion for codominant markers in the context of automatic haplotyping, estimating location scores, and computing gene-clustering statistics for robust linkage analysis. Realistic numerical examples demonstrate the feasibility of the algorithms. PMID:8651310
Durner, Bernhard; Ehmann, Thomas; Matysik, Frank-Michael
2018-06-05
The adaption of an parallel-path poly(tetrafluoroethylene)(PTFE) ICP-nebulizer to an evaporative light scattering detector (ELSD) was realized. This was done by substituting the originally installed concentric glass nebulizer of the ELSD. The performance of both nebulizers was compared regarding nebulizer temperature, evaporator temperature, flow rate of nebulizing gas and flow rate of mobile phase of different solvents using caffeine and poly(dimethylsiloxane) (PDMS) as analytes. Both nebulizers showed similar performances but for the parallel-path PTFE nebulizer the performance was considerably better at low LC flow rates and the nebulizer lifetime was substantially increased. In general, for both nebulizers the highest sensitivity was obtained by applying the lowest possible evaporator temperature in combination with the highest possible nebulizer temperature at preferably low gas flow rates. Besides the optimization of detector parameters, response factors for various PDMS oligomers were determined and the dependency of the detector signal on molar mass of the analytes was studied. The significant improvement regarding long-term stability made the modified ELSD much more robust and saved time and money by reducing the maintenance efforts. Thus, especially in polymer HPLC, associated with a complex matrix situation, the PTFE-based parallel-path nebulizer exhibits attractive characteristics for analytical studies of polymers. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Slama, Fairouz; Bouhlila, Rachida
2017-11-01
Groundwater sampling and piezometric measurements were carried out along two flow paths (corresponding to two transects) in Korba coastal plain (Northeast of Tunisia). The study aims to identify hydrochemical processes occurring when seawater and freshwater mix. Those processes can be used as indicators of seawater intrusion progression and freshwater flushing into seawater accompanying Submarine Groundwater Discharge (SGD). Seawater fractions in the groundwater were calculated using the chloride concentration. Hierarchical cluster analysis (HCA) was applied to isolate wells potentially affected by seawater. In addition, PHREEQC was used to simulate the theoretical mixing between two end members: seawater and a fresh-brackish groundwater sample. Geochemical conventional diagrams showed that the groundwater chemistry is explained by a mixing process between two end members. Results also revealed the presence of other geochemical processes, correlated to the hydrodynamic flow paths. Direct cation exchange was linked to seawater intrusion, and reverse cation exchange was associated to the freshwater flushing into seawater. The presence of these processes indicated that seawater intrusion was in progress. An excess of Ca, that could not be explained by only cation exchange processes, was observed in both transects. Dedolomitization combined to gypsum leaching is the possible explanation of the groundwater Ca enrichment. Finally, redox processes were also found to contribute to the groundwater composition along flow paths.
A Unified Model of Heading and Path Perception in Primate MSTd
Layton, Oliver W.; Browning, N. Andrew
2014-01-01
Self-motion, steering, and obstacle avoidance during navigation in the real world require humans to travel along curved paths. Many perceptual models have been proposed that focus on heading, which specifies the direction of travel along straight paths, but not on path curvature, which humans accurately perceive and is critical to everyday locomotion. In primates, including humans, dorsal medial superior temporal area (MSTd) has been implicated in heading perception. However, the majority of MSTd neurons respond optimally to spiral patterns, rather than to the radial expansion patterns associated with heading. No existing theory of curved path perception explains the neural mechanisms by which humans accurately assess path and no functional role for spiral-tuned cells has yet been proposed. Here we present a computational model that demonstrates how the continuum of observed cells (radial to circular) in MSTd can simultaneously code curvature and heading across the neural population. Curvature is encoded through the spirality of the most active cell, and heading is encoded through the visuotopic location of the center of the most active cell's receptive field. Model curvature and heading errors fit those made by humans. Our model challenges the view that the function of MSTd is heading estimation, based on our analysis we claim that it is primarily concerned with trajectory estimation and the simultaneous representation of both curvature and heading. In our model, temporal dynamics afford time-history in the neural representation of optic flow, which may modulate its structure. This has far-reaching implications for the interpretation of studies that assume that optic flow is, and should be, represented as an instantaneous vector field. Our results suggest that spiral motion patterns that emerge in spatio-temporal optic flow are essential for guiding self-motion along complex trajectories, and that cells in MSTd are specifically tuned to extract complex trajectory estimation from flow. PMID:24586130
Griffiths, Natalie A.; Jackson, C. Rhett; McDonnell, Jeffrey J.; ...
2016-02-08
Nitrogen (N) is an important nutrient as it often limits productivity but in excess can impair water quality. Most studies on watershed N cycling have occurred in upland forested catchments where snowmelt dominates N export; fewer studies have focused on low-relief watersheds that lack snow. We examined watershed N cycling in three adjacent, low-relief watersheds in the Upper Coastal Plain of the southeastern United States to better understand the role of hydrological flow paths and biological transformations of N at the watershed scale. Groundwater was the dominant source of nitrified N to stream water in two of the three watersheds,more » while atmospheric deposition comprised 28% of stream water nitrate in one watershed. The greater atmospheric contribution may have been due to the larger stream channel area relative to total watershed area or the dominance of shallow subsurface flow paths contributing to stream flow in this watershed. There was a positive relationship between temperature and stream water ammonium concentrations and a negative relationship between temperature and stream water nitrate concentrations in each watershed suggesting that N cycling processes (i.e., nitrification and denitrification) varied seasonally. However, there were no clear patterns in the importance of denitrification in different water pools possibly because a variety of factors (i.e., assimilatory uptake, dissimilatory uptake, and mixing) affected nitrate concentrations. In conclusion, together, these results highlight the hydrological and biological controls on N cycling in low-gradient watersheds and variability in N delivery flow paths among adjacent watersheds with similar physical characteristics.« less
NASA Astrophysics Data System (ADS)
Wolock, David M.
1995-08-01
The effects of subbasin size on topographic characteristics and simulated flow paths were determined for the 111.5-km2 Sleepers River Research Watershed in Vermont using the watershed model TOPMODEL. Topography is parameterized in TOPMODEL as the spatial and statistical distribution of the index ln (a/tan B), where In is the Napierian logarithm, a is the upslope area per unit contour length, and tan B is the slope gradient. The mean, variance, and skew of the ln (a/tan B) distribution were computed for several sets of nested subbasins (0.05 to 111.5 km2)) along streams in the watershed and used as input to TOPMODEL. In general, the statistics of the ln (a/tan B) distribution and the simulated percentage of overland flow in total streamflow increased rapidly for some nested subbasins and decreased rapidly for others as subbasin size increased from 0.05 to 1 km2, generally increased up to a subbasin size of 5 km2, and remained relatively constant at a subbasin size greater than 5 km2. Differences in simulated flow paths among subbasins of all sizes (0.05 to 111.5 km2) were caused by differences in the statistics of the ln (a/tan B) distribution, not by differences in the explicit spatial arrangement of ln (a/tan B) values within the subbasins. Analysis of streamflow chemistry data from the Neversink River watershed in southeastern New York supports the hypothesis that subbasin size affects flow-path characteristics.
Effect of travel speed on the visual control of steering toward a goal.
Chen, Rongrong; Niehorster, Diederick C; Li, Li
2018-03-01
Previous studies have proposed that people can use visual cues such as the instantaneous direction (i.e., heading) or future path trajectory of travel specified by optic flow or target visual direction in egocentric space to steer or walk toward a goal. In the current study, we examined what visual cues people use to guide their goal-oriented locomotion and whether their reliance on such visual cues changes as travel speed increases. We presented participants with optic flow displays that simulated their self-motion toward a target at various travel speeds under two viewing conditions in which we made target egocentric direction available or unavailable for steering. We found that for both viewing conditions, participants did not steer along a curved path toward the target such that the actual and the required path curvature to reach the target would converge when approaching the target. At higher travel speeds, participants showed a faster and larger reduction in target-heading angle and more accurate and precise steady-state control of aligning their heading specified by optic flow with the target. These findings support the claim that people use heading and target egocentric direction but not path for goal-oriented locomotion control, and their reliance on heading increases at higher travel speeds. The increased reliance on heading for goal-oriented locomotion control could be due to an increased reliability in perceiving heading from optic flow as the magnitude of flow increases with travel speed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Understanding and applying open-path optical sensing data
NASA Astrophysics Data System (ADS)
Virag, Peter; Kricks, Robert J.
1999-02-01
During the last 10 years, open-path air monitors have evolved to yield reliable and effective measurements of single and multiple compounds on a real-time basis. To many individuals within the optical remote sensing community, the attributes of open-path and its the potential uses seem unlimited. Then why has the market has been stagnant for the last few years? The reason may center on how open-path information is applied and how well the end user understands that information. We constantly try to compare open-path data to risk/health or safety levels that are based for use at a single point and for a specific averaging period often far longer than a typical open-path data point. Often this approach is perceived as putting a square peg in a round hole. This perception may be well founded, as open-path data at times may need to go through extensive data manipulation and assumptions before it can be applied. This paper will review pervious open-path monitoring programs and their success in applying the data collected. We will also look at how open-path data is being currently used, some previous pitfalls in data use, alternate methods of data interpretation, and how open-path data can be best practically applied to fit current needs.
Aydin, Ugur; Karataslioglu, Emrah
2017-01-01
Canal transportation is a common sequel caused by rotary instruments. The purpose of the present study is to evaluate the degree of transportation after the use of Reciproc single-file instruments with or without glide path files. Thirty resin blocks with L-shaped canals were divided into three groups ( n = 10). Group 1 - canals were prepared with Reciproc-25 file. Group 2 - glide path file-G1 was used before Reciproc. Group 3 - glide path files-G1 and G2 were used before Reciproc. Pre- and post-instrumentation images were superimposed under microscope, and resin removed from the inner and outer surfaces of the root canal was calculated throughout 10 points. Statistical analysis was performed with Kruskal-Wallis test and post hoc Dunn test. For coronal and middle one-thirds, there was no significant difference among groups ( P > 0.05). For apical section, transportation of Group 1 was significantly higher than other groups ( P < 0.05). Using glide path files before Reciproc single-file system reduced the degree of apical canal transportation.
Demers, Jason D.; Blum, Joel D.; Brooks, Scott C.; ...
2018-03-01
In this paper, natural abundance stable Hg isotope measurements were used to place new constraints on sources, transport, and transformations of Hg along the flow path of East Fork Poplar Creek (EFPC), a point-source contaminated headwater stream in Oak Ridge, Tennessee. Particulate-bound Hg in the water column of EFPC within the Y-12 National Security Complex, was isotopically similar to average metallic Hg(0) used in industry, having a mean δ 202Hg value of -0.42 ± 0.09‰ (1SD) and near-zero Δ 199Hg. On average, particulate fraction δ 202Hg values increased downstream by 0.53‰, while Δ 199Hg decreased by -0.10‰, converging with themore » Hg isotopic composition of the fine fraction of streambed sediment along the 26 km flow path. The dissolved fraction behaved differently. Although initial Δ 199Hg values of the dissolved fraction were also near-zero, these values increased transiently along the flow path. Initial δ 202Hg values of the dissolved fraction were more variable than in the particulate fraction, ranging from -0.44 to 0.18‰ among three seasonal sampling campaigns, but converged to an average δ 202Hg value of 0.01 ± 0.10‰ (1SD) downstream. Dissolved Hg in the hyporheic and riparian pore water had higher and lower δ 202Hg values, respectively, compared to dissolved Hg in stream water. Finally, variations in Hg isotopic composition of the dissolved and suspended fractions along the flow path suggest that: (1) physical processes such as dilution and sedimentation do not fully explain decreases in total mercury concentrations along the flow path; (2) in-stream processes include photochemical reduction, but microbial reduction is likely more dominant; and (3) additional sources of dissolved mercury inputs to EFPC at baseflow during this study predominantly arise from the hyporheic zone.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demers, Jason D.; Blum, Joel D.; Brooks, Scott C.
In this paper, natural abundance stable Hg isotope measurements were used to place new constraints on sources, transport, and transformations of Hg along the flow path of East Fork Poplar Creek (EFPC), a point-source contaminated headwater stream in Oak Ridge, Tennessee. Particulate-bound Hg in the water column of EFPC within the Y-12 National Security Complex, was isotopically similar to average metallic Hg(0) used in industry, having a mean δ 202Hg value of -0.42 ± 0.09‰ (1SD) and near-zero Δ 199Hg. On average, particulate fraction δ 202Hg values increased downstream by 0.53‰, while Δ 199Hg decreased by -0.10‰, converging with themore » Hg isotopic composition of the fine fraction of streambed sediment along the 26 km flow path. The dissolved fraction behaved differently. Although initial Δ 199Hg values of the dissolved fraction were also near-zero, these values increased transiently along the flow path. Initial δ 202Hg values of the dissolved fraction were more variable than in the particulate fraction, ranging from -0.44 to 0.18‰ among three seasonal sampling campaigns, but converged to an average δ 202Hg value of 0.01 ± 0.10‰ (1SD) downstream. Dissolved Hg in the hyporheic and riparian pore water had higher and lower δ 202Hg values, respectively, compared to dissolved Hg in stream water. Finally, variations in Hg isotopic composition of the dissolved and suspended fractions along the flow path suggest that: (1) physical processes such as dilution and sedimentation do not fully explain decreases in total mercury concentrations along the flow path; (2) in-stream processes include photochemical reduction, but microbial reduction is likely more dominant; and (3) additional sources of dissolved mercury inputs to EFPC at baseflow during this study predominantly arise from the hyporheic zone.« less
Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2005-01-01
The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.
NASA Astrophysics Data System (ADS)
Shao, X.; Cui, B.; Zhang, Z.; Fang, Y.; Jawitz, J. W.
2016-12-01
Freshwater in a delta is often at risk of saltwater intrusion, which has been a serious issue in estuarine deltas all over the world. Salinity gradients and hydrologic connectivity in the deltas can be disturbed by saltwater intrusion, which can fluctuate frequently and locally in time and space to affect biotic processes and then to affect the distribution patterns of the riverine fishes throughout the river network. Therefore, identifying the major flow paths or locations at risk of saltwater intrusion in estuarine ecosystems is necessary for saltwater intrusion mitigation and fish species diversity conservation. In this study, we use the betweenness centrality (BC) as the weighted attribute of the river network to identify the critical confluences and detect the preferential flow paths for saltwater intrusion through the least-cost-path algorithm from graph theory approach. Moreover, we analyse the responses of the salinity and fish species diversity to the BC values of confluences calculated in the river network. Our results show that the most likely location of saltwater intrusion is not a simple gradient change from sea to land, but closely dependent on the river segments' characteristics. In addition, a significant positive correlation between the salinity and the BC values of confluences is determined in the Pearl River Delta. Changes in the BC values of confluences can produce significant variation in the fish species diversity. Therefore, the dynamics of saltwater intrusion are a growing consideration for understanding the patterns and subsequent processes driving fish community structure. Freshwater can be diverted into these major flow paths and critical confluences to improve river network management and conservation of fish species diversity under saltwater intrusion.
Subsurface drainage processes and management impacts
Elizabeth T. Keppeler; David Brown
1998-01-01
Storm-induced streamflow in forested upland watersheds is linked to rainfall by transient, variably saturated flow through several different flow paths. In the absence of exposed bedrock, shallow flow-restrictive layers, or compacted soil surfaces, virtually all of the infiltrated rainfall reaches the stream as subsurface flow. Subsurface runoff can occur within...
Soil pipe flow tracer experiments: 2. Application of a transient storage zone model
USDA-ARS?s Scientific Manuscript database
Soil pipes, defined here as discrete preferential flow paths generally parallel to the slope, are important subsurface flow pathways that play a role in many soil erosion phenomena. However, limited research has been performed on quantifying and characterizing their flow and transport characteristic...
Current-flow efficiency of networks
NASA Astrophysics Data System (ADS)
Liu, Kai; Yan, Xiaoyong
2018-02-01
Many real-world networks, from infrastructure networks to social and communication networks, can be formulated as flow networks. How to realistically measure the transport efficiency of these networks is of fundamental importance. The shortest-path-based efficiency measurement has limitations, as it assumes that flow travels only along those shortest paths. Here, we propose a new metric named current-flow efficiency, in which we calculate the average reciprocal effective resistance between all pairs of nodes in the network. This metric takes the multipath effect into consideration and is more suitable for measuring the efficiency of many real-world flow equilibrium networks. Moreover, this metric can handle a disconnected graph and can thus be used to identify critical nodes and edges from the efficiency-loss perspective. We further analyze how the topological structure affects the current-flow efficiency of networks based on some model and real-world networks. Our results enable a better understanding of flow networks and shed light on the design and improvement of such networks with higher transport efficiency.
Graphene-based battery electrodes having continuous flow paths
Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu
2014-05-24
Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.
Systems and methods for separating a multiphase fluid
NASA Technical Reports Server (NTRS)
Weislogel, Mark M. (Inventor); Thomas, Evan A. (Inventor); Graf, John C. (Inventor)
2011-01-01
Apparatus and methods for separating a fluid are provided. The apparatus can include a separator and a collector having an internal volume defined at least in part by one or more surfaces narrowing toward a bottom portion of the volume. The separator can include an exit port oriented toward the bottom portion of the volume. The internal volume can receive a fluid expelled from the separator into a flow path in the collector and the flow path can include at least two directional transitions within the collector.
Hinde, Elizabeth; Cardarelli, Francesco; Digman, Michelle A.; Gratton, Enrico
2012-01-01
We present a quantitative fluctuation-based assay to measure the degree of local chromatin compaction and investigate how chromatin density regulates the diffusive path adopted by an inert protein in dividing cells. The assay uses CHO-K1 cells coexpressing untagged enhanced green fluorescent protein (EGFP) and histone H2B tagged mCherry. We measure at the single-cell level the EGFP localization and molecular flow patterns characteristic of each stage of chromatin compaction from mitosis through interphase by means of pair-correlation analysis. We find that the naturally occurring changes in chromatin organization impart a regulation on the spatial distribution and temporal dynamics of EGFP within the nucleus. Combined with the analysis of Ca2+ intracellular homeostasis during cell division, EGFP flow regulation can be interpreted as the result of controlled changes in chromatin compaction. For the first time, to our knowledge, we were able to probe chromatin compaction on the micrometer scale, where the regulation of molecular diffusion may become relevant for many cellular processes. PMID:22325293
Engineering fluidic delays in paper-based devices using laser direct-writing.
He, P J W; Katis, I N; Eason, R W; Sones, C L
2015-10-21
We report the use of a new laser-based direct-write technique that allows programmable and timed fluid delivery in channels within a paper substrate which enables implementation of multi-step analytical assays. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depth and/or the porosity of hydrophobic barriers which, when fabricated in the fluid path, produce controllable fluid delay. We have patterned these flow delaying barriers at pre-defined locations in the fluidic channels using either a continuous wave laser at 405 nm, or a pulsed laser operating at 266 nm. Using this delay patterning protocol we generated flow delays spanning from a few minutes to over half an hour. Since the channels and flow delay barriers can be written via a common laser-writing process, this is a distinct improvement over other methods that require specialist operating environments, or custom-designed equipment. This technique can therefore be used for rapid fabrication of paper-based microfluidic devices that can perform single or multistep analytical assays.
Inverse modeling of flow tomography experiments in fractured media
NASA Astrophysics Data System (ADS)
Klepikova, Maria; Le Borgne, Tanguy; Bour, Olivier; de Dreuzy, Jean-Raynald
2014-05-01
Inverse modeling of fracture hydraulic properties and connectivity is a very challenging objective due to the strong heterogeneity of the medium at multiple scales and the scarcity of data. Cross-borehole flowmeter tests, which consist of measuring changes in vertical borehole flows when pumping a neighboring borehole, were shown to be an efficient technique to provide information on the properties of the flow zones that connect borehole pairs (Paillet, 1998, Le Borgne et al., 2007). The interpretation of such experiments may, however, be quite uncertain when multiple connections exist. We propose the flow tomography approach (i.e., sequential cross-borehole flowmeter tests) to characterize the connectivity and transmissivity of preferential permeable flow paths in fractured aquifers (Klepikova et al., 2013). An inverse model approach is developed to estimate log-transformed transmissivity values of hydraulically active fractures between the pumping and observation wells by inverting cross-borehole flow and water level data. Here a simplified discrete fracture network approach that highlights main connectivity structures is used. This conceptual model attempts to reproduce fracture network connectivity without taking fracture geometry (length, orientation, dip) into account. We demonstrate that successively exchanging the roles of pumping and observation boreholes improves the quality of available information and reduces the under-determination of the problem. The inverse method is validated for several synthetic flow scenarios. It is shown to provide a good estimation of connectivity patterns and transmissivities of main flow paths. It also allows the estimation of the transmissivity of fractures that connect the flow paths but do not cross the boreholes, although the associated uncertainty may be high for some geometries. The results of this investigation encourage the application of flow tomography to natural fractured aquifers.
Transient PVT measurements and model predictions for vessel heat transfer. Part II.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felver, Todd G.; Paradiso, Nicholas Joseph; Winters, William S., Jr.
2010-07-01
Part I of this report focused on the acquisition and presentation of transient PVT data sets that can be used to validate gas transfer models. Here in Part II we focus primarily on describing models and validating these models using the data sets. Our models are intended to describe the high speed transport of compressible gases in arbitrary arrangements of vessels, tubing, valving and flow branches. Our models fall into three categories: (1) network flow models in which flow paths are modeled as one-dimensional flow and vessels are modeled as single control volumes, (2) CFD (Computational Fluid Dynamics) models inmore » which flow in and between vessels is modeled in three dimensions and (3) coupled network/CFD models in which vessels are modeled using CFD and flows between vessels are modeled using a network flow code. In our work we utilized NETFLOW as our network flow code and FUEGO for our CFD code. Since network flow models lack three-dimensional resolution, correlations for heat transfer and tube frictional pressure drop are required to resolve important physics not being captured by the model. Here we describe how vessel heat transfer correlations were improved using the data and present direct model-data comparisons for all tests documented in Part I. Our results show that our network flow models have been substantially improved. The CFD modeling presented here describes the complex nature of vessel heat transfer and for the first time demonstrates that flow and heat transfer in vessels can be modeled directly without the need for correlations.« less
Spatial interpolation of river channel topography using the shortest temporal distance
NASA Astrophysics Data System (ADS)
Zhang, Yanjun; Xian, Cuiling; Chen, Huajin; Grieneisen, Michael L.; Liu, Jiaming; Zhang, Minghua
2016-11-01
It is difficult to interpolate river channel topography due to complex anisotropy. As the anisotropy is often caused by river flow, especially the hydrodynamic and transport mechanisms, it is reasonable to incorporate flow velocity into topography interpolator for decreasing the effect of anisotropy. In this study, two new distance metrics defined as the time taken by water flow to travel between two locations are developed, and replace the spatial distance metric or Euclidean distance that is currently used to interpolate topography. One is a shortest temporal distance (STD) metric. The temporal distance (TD) of a path between two nodes is calculated by spatial distance divided by the tangent component of flow velocity along the path, and the STD is searched using the Dijkstra algorithm in all possible paths between two nodes. The other is a modified shortest temporal distance (MSTD) metric in which both the tangent and normal components of flow velocity were combined. They are used to construct the methods for the interpolation of river channel topography. The proposed methods are used to generate the topography of Wuhan Section of Changjiang River and compared with Universal Kriging (UK) and Inverse Distance Weighting (IDW). The results clearly showed that the STD and MSTD based on flow velocity were reliable spatial interpolators. The MSTD, followed by the STD, presents improvement in prediction accuracy relative to both UK and IDW.
Holtschlag, David J.; Shively, Dawn; Whitman, Richard L.; Haack, Sheridan K.; Fogarty, Lisa R.
2008-01-01
Regression analyses and hydrodynamic modeling were used to identify environmental factors and flow paths associated with Escherichia coli (E. coli) concentrations at Memorial and Metropolitan Beaches on Lake St. Clair in Macomb County, Mich. Lake St. Clair is part of the binational waterway between the United States and Canada that connects Lake Huron with Lake Erie in the Great Lakes Basin. Linear regression, regression-tree, and logistic regression models were developed from E. coli concentration and ancillary environmental data. Linear regression models on log10 E. coli concentrations indicated that rainfall prior to sampling, water temperature, and turbidity were positively associated with bacteria concentrations at both beaches. Flow from Clinton River, changes in water levels, wind conditions, and log10 E. coli concentrations 2 days before or after the target bacteria concentrations were statistically significant at one or both beaches. In addition, various interaction terms were significant at Memorial Beach. Linear regression models for both beaches explained only about 30 percent of the variability in log10 E. coli concentrations. Regression-tree models were developed from data from both Memorial and Metropolitan Beaches but were found to have limited predictive capability in this study. The results indicate that too few observations were available to develop reliable regression-tree models. Linear logistic models were developed to estimate the probability of E. coli concentrations exceeding 300 most probable number (MPN) per 100 milliliters (mL). Rainfall amounts before bacteria sampling were positively associated with exceedance probabilities at both beaches. Flow of Clinton River, turbidity, and log10 E. coli concentrations measured before or after the target E. coli measurements were related to exceedances at one or both beaches. The linear logistic models were effective in estimating bacteria exceedances at both beaches. A receiver operating characteristic (ROC) analysis was used to determine cut points for maximizing the true positive rate prediction while minimizing the false positive rate. A two-dimensional hydrodynamic model was developed to simulate horizontal current patterns on Lake St. Clair in response to wind, flow, and water-level conditions at model boundaries. Simulated velocity fields were used to track hypothetical massless particles backward in time from the beaches along flow paths toward source areas. Reverse particle tracking for idealized steady-state conditions shows changes in expected flow paths and traveltimes with wind speeds and directions from 24 sectors. The results indicate that three to four sets of contiguous wind sectors have similar effects on flow paths in the vicinity of the beaches. In addition, reverse particle tracking was used for transient conditions to identify expected flow paths for 10 E. coli sampling events in 2004. These results demonstrate the ability to track hypothetical particles from the beaches, backward in time, to likely source areas. This ability, coupled with a greater frequency of bacteria sampling, may provide insight into changes in bacteria concentrations between source and sink areas.
Slot configuration for axial-flow turbomachinery blades
NASA Technical Reports Server (NTRS)
Taylor, W. E.
1972-01-01
Machining of slot in turbine blades of axial flow turbines to provide flow path between pressure and suction surfaces is discussed. Slot configuration and improvements in blade performance are described. Diagram of blade slot to show geometry of modification is included.
Groundwater Flow Through a Constructed Treatment Wetland
2002-03-01
sediments or has the water found preferential flow paths? (2) Does the behavior of groundwater flow change with varying loading rates or environmental...surface of the wetland. Water flows through a subsurface flow wetland in a similar fashion as groundwater flows through an aquifer. The concept is...circuiting of the wetland media. Groundwater Flow Various physical properties influence the flow of water through soil. In wetlands, the type of soil
Lin, P.-S.; Chiou, B.; Abrahamson, N.; Walling, M.; Lee, C.-T.; Cheng, C.-T.
2011-01-01
In this study, we quantify the reduction in the standard deviation for empirical ground-motion prediction models by removing ergodic assumption.We partition the modeling error (residual) into five components, three of which represent the repeatable source-location-specific, site-specific, and path-specific deviations from the population mean. A variance estimation procedure of these error components is developed for use with a set of recordings from earthquakes not heavily clustered in space.With most source locations and propagation paths sampled only once, we opt to exploit the spatial correlation of residuals to estimate the variances associated with the path-specific and the source-location-specific deviations. The estimation procedure is applied to ground-motion amplitudes from 64 shallow earthquakes in Taiwan recorded at 285 sites with at least 10 recordings per site. The estimated variance components are used to quantify the reduction in aleatory variability that can be used in hazard analysis for a single site and for a single path. For peak ground acceleration and spectral accelerations at periods of 0.1, 0.3, 0.5, 1.0, and 3.0 s, we find that the singlesite standard deviations are 9%-14% smaller than the total standard deviation, whereas the single-path standard deviations are 39%-47% smaller.
User guide for MODPATH version 6 - A particle-tracking model for MODFLOW
Pollock, David W.
2012-01-01
MODPATH is a particle-tracking post-processing model that computes three-dimensional flow paths using output from groundwater flow simulations based on MODFLOW, the U.S. Geological Survey (USGS) finite-difference groundwater flow model. This report documents MODPATH version 6. Previous versions were documented in USGS Open-File Reports 89-381 and 94-464. The program uses a semianalytical particle-tracking scheme that allows an analytical expression of a particle's flow path to be obtained within each finite-difference grid cell. A particle's path is computed by tracking the particle from one cell to the next until it reaches a boundary, an internal sink/source, or satisfies another termination criterion. Data input to MODPATH consists of a combination of MODFLOW input data files, MODFLOW head and flow output files, and other input files specific to MODPATH. Output from MODPATH consists of several output files, including a number of particle coordinate output files intended to serve as input data for other programs that process, analyze, and display the results in various ways. MODPATH is written in FORTRAN and can be compiled by any FORTRAN compiler that fully supports FORTRAN-2003 or by most commercially available FORTRAN-95 compilers that support the major FORTRAN-2003 language extensions.
NASA Astrophysics Data System (ADS)
Sanaga, S.; Vijay, S.; Kbvn, P.; Peddinti, S. R.; P S L, S.
2017-12-01
Fractured geologic media poses formidable challenges to hydrogeologists due of the strenuous mapping of fracture-matrix system and quantification of flow and transport processes. In this research, we demonstrated the efficacy of tracer-ERT studies coupled with numerical simulations to delineate preferential flow paths in a fractured granite aquifer of Deccan traps in India. A series of natural gradient saline tracer experiments were conducted from a depth window of 18 to 22 m in an injection well located inside the IIT Hyderabad campus. Tracer migration was monitored in a time-lapse mode using two cross-sectional surface ERT profiles placed in the direction of flow gradient. Dynamic changes in sub-surface electrical properties inferred via resistivity anomalies were used to highlight preferential flow paths of the study area. ERT-derived tracer breakthrough curves were in agreement with geochemical sample measurements (R2=0.74). Fracture geometry and hydraulic properties derived from ERT and pumping tests were then used to evaluate two mathematical conceptualizations that are relevant to fractured aquifers. Results of numerical analysis conclude that a dual continuum model that combines matrix and fracture systems through a flow exchange term has outperformed equivalent continuum model in reproducing tracer concentrations at the monitoring wells (evident by decrease in RMSE from 199 mg/l to 65 mg/l). A sensitivity analysis of the model parameters reveals that spatial variability in hydraulic conductivity, local-scale dispersion, and flow exchange at fracture-matrix interface have a profound effect on model simulations. Keywords: saline tracer, ERT, fractured granite, groundwater, preferential flow, numerical simulation
Ducting arrangement for cooling a gas turbine structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ching-Pang; Morrison, Jay A.
2015-07-21
A ducting arrangement (10) for a can annular gas turbine engine, including: a duct (12, 14) disposed between a combustor (16) and a first row of turbine blades and defining a hot gas path (30) therein, the duct (12, 14) having raised geometric features (54) incorporated into an outer surface (80); and a flow sleeve (72) defining a cooling flow path (84) between an inner surface (78) of the flow sleeve (72) and the duct outer surface (80). After a cooling fluid (86) traverses a relatively upstream raised geometric feature (90), the inner surface (78) of the flow sleeve (72)more » is effective to direct the cooling fluid (86) toward a landing (94) separating the relatively upstream raised geometric feature (90) from a relatively downstream raised geometric feature (94).« less
Senior, Lisa A.; Goode, Daniel J.
2017-06-06
A previously developed regional groundwater flow model was used to simulate the effects of changes in pumping rates on groundwater-flow paths and extent of recharge discharging to wells for a contaminated fractured bedrock aquifer in southeastern Pennsylvania. Groundwater in the vicinity of the North Penn Area 7 Superfund site, Montgomery County, Pennsylvania, was found to be contaminated with organic compounds, such as trichloroethylene (TCE), in 1979. At the time contamination was discovered, groundwater from the underlying fractured bedrock (shale) aquifer was the main source of supply for public drinking water and industrial use. As part of technical support to the U.S. Environmental Protection Agency (EPA) during the Remedial Investigation of the North Penn Area 7 Superfund site from 2000 to 2005, the U.S. Geological Survey (USGS) developed a model of regional groundwater flow to describe changes in groundwater flow and contaminant directions as a result of changes in pumping. Subsequently, large decreases in TCE concentrations (as much as 400 micrograms per liter) were measured in groundwater samples collected by the EPA from selected wells in 2010 compared to 2005‒06 concentrations.To provide insight on the fate of potentially contaminated groundwater during the period of generally decreasing pumping rates from 1990 to 2010, steady-state simulations were run using the previously developed groundwater-flow model for two conditions prior to extensive remediation, 1990 and 2000, two conditions subsequent to some remediation 2005 and 2010, and a No Pumping case, representing pre-development or cessation of pumping conditions. The model was used to (1) quantify the amount of recharge, including potentially contaminated recharge from sources near the land surface, that discharged to wells or streams and (2) delineate the areas contributing recharge that discharged to wells or streams for the five conditions.In all simulations, groundwater divides differed from surface-water divides, partly because of differences in stream elevations and because of geologic structure and pumping. In the 1990 and 2000 simulations, all recharge in and near the vicinity of North Penn Area 7 discharged to wells, but in the 2005 and 2010 simulations some recharge in this area discharged to streams, indicating possible discharge of contaminated groundwater from North Penn Area 7 sources to streams. As the amount of groundwater withdrawals by wells has declined since 1990, the area contributing recharge to wells in the vicinity of North Penn Area 7 has decreased.To determine the effect of changes in pumping on flow paths and possible flow-path-related contributions to the observed changes in spatial distribution of contaminants in groundwater from 2005 to 2010, the USGS conducted simulations using the previously developed regional groundwater-flow model using reported pumping and estimated recharge rates for 2005 and 2010. Flow paths from recharge at known contaminant source areas to discharge locations at wells or streams were simulated under steady-state conditions for the two periods. Simulated groundwater-flow paths shifted only slightly from 2005 to 2010 as a result of changes in pumping rates. These slight changes in groundwater-flow paths from known sources of contamination are not coincident with the spatial distribution of observed changes in TCE concentrations from 2005 to 2010, indicating that the decreases of TCE concentrations may be a result of other processes, such as source removal or degradation. Results of the simulations and the absence of increases in TCE-degradation-product concentrations indicate that the decreases of TCE concentrations observed in 2010 may be at least partly related to contaminant-source removal by soil excavation completed in 2005, although additional data would be needed to confirm this preliminary explanation.
Validation of model predictions of pore-scale fluid distributions during two-phase flow
NASA Astrophysics Data System (ADS)
Bultreys, Tom; Lin, Qingyang; Gao, Ying; Raeini, Ali Q.; AlRatrout, Ahmed; Bijeljic, Branko; Blunt, Martin J.
2018-05-01
Pore-scale two-phase flow modeling is an important technology to study a rock's relative permeability behavior. To investigate if these models are predictive, the calculated pore-scale fluid distributions which determine the relative permeability need to be validated. In this work, we introduce a methodology to quantitatively compare models to experimental fluid distributions in flow experiments visualized with microcomputed tomography. First, we analyzed five repeated drainage-imbibition experiments on a single sample. In these experiments, the exact fluid distributions were not fully repeatable on a pore-by-pore basis, while the global properties of the fluid distribution were. Then two fractional flow experiments were used to validate a quasistatic pore network model. The model correctly predicted the fluid present in more than 75% of pores and throats in drainage and imbibition. To quantify what this means for the relevant global properties of the fluid distribution, we compare the main flow paths and the connectivity across the different pore sizes in the modeled and experimental fluid distributions. These essential topology characteristics matched well for drainage simulations, but not for imbibition. This suggests that the pore-filling rules in the network model we used need to be improved to make reliable predictions of imbibition. The presented analysis illustrates the potential of our methodology to systematically and robustly test two-phase flow models to aid in model development and calibration.
Label-free high-throughput imaging flow cytometry
NASA Astrophysics Data System (ADS)
Mahjoubfar, A.; Chen, C.; Niazi, K. R.; Rabizadeh, S.; Jalali, B.
2014-03-01
Flow cytometry is an optical method for studying cells based on their individual physical and chemical characteristics. It is widely used in clinical diagnosis, medical research, and biotechnology for analysis of blood cells and other cells in suspension. Conventional flow cytometers aim a laser beam at a stream of cells and measure the elastic scattering of light at forward and side angles. They also perform single-point measurements of fluorescent emissions from labeled cells. However, many reagents used in cell labeling reduce cellular viability or change the behavior of the target cells through the activation of undesired cellular processes or inhibition of normal cellular activity. Therefore, labeled cells are not completely representative of their unaltered form nor are they fully reliable for downstream studies. To remove the requirement of cell labeling in flow cytometry, while still meeting the classification sensitivity and specificity goals, measurement of additional biophysical parameters is essential. Here, we introduce an interferometric imaging flow cytometer based on the world's fastest continuous-time camera. Our system simultaneously measures cellular size, scattering, and protein concentration as supplementary biophysical parameters for label-free cell classification. It exploits the wide bandwidth of ultrafast laser pulses to perform blur-free quantitative phase and intensity imaging at flow speeds as high as 10 meters per second and achieves nanometer-scale optical path length resolution for precise measurements of cellular protein concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumbser, Michael, E-mail: michael.dumbser@unitn.it; Balsara, Dinshaw S., E-mail: dbalsara@nd.edu
In this paper a new, simple and universal formulation of the HLLEM Riemann solver (RS) is proposed that works for general conservative and non-conservative systems of hyperbolic equations. For non-conservative PDE, a path-conservative formulation of the HLLEM RS is presented for the first time in this paper. The HLLEM Riemann solver is built on top of a novel and very robust path-conservative HLL method. It thus naturally inherits the positivity properties and the entropy enforcement of the underlying HLL scheme. However, with just the slight additional cost of evaluating eigenvectors and eigenvalues of intermediate characteristic fields, we can represent linearlymore » degenerate intermediate waves with a minimum of smearing. For conservative systems, our paper provides the easiest and most seamless path for taking a pre-existing HLL RS and quickly and effortlessly converting it to a RS that provides improved results, comparable with those of an HLLC, HLLD, Osher or Roe-type RS. This is done with minimal additional computational complexity, making our variant of the HLLEM RS also a very fast RS that can accurately represent linearly degenerate discontinuities. Our present HLLEM RS also transparently extends these advantages to non-conservative systems. For shallow water-type systems, the resulting method is proven to be well-balanced. Several test problems are presented for shallow water-type equations and two-phase flow models, as well as for gas dynamics with real equation of state, magnetohydrodynamics (MHD & RMHD), and nonlinear elasticity. Since our new formulation accommodates multiple intermediate waves and has a broader applicability than the original HLLEM method, it could alternatively be called the HLLI Riemann solver, where the “I” stands for the intermediate characteristic fields that can be accounted for. -- Highlights: •New simple and general path-conservative formulation of the HLLEM Riemann solver. •Application to general conservative and non-conservative hyperbolic systems. •Inclusion of sub-structure and resolution of intermediate characteristic fields. •Well-balanced for single- and two-layer shallow water equations and multi-phase flows. •Euler equations with real equation of state, MHD equations, nonlinear elasticity.« less
Stoner, D. L.; Watson, S. M.; Stedtfeld, R. D.; Meakin, P.; Griffel, L. K.; Tyler, T. L.; Pegram, L. M.; Barnes, J. M.; Deason, V. A.
2005-01-01
Here we introduce the use of transparent experimental models fabricated by stereolithography for studying the impacts of biomass accumulation, minerals precipitation, and physical configuration of flow paths on liquid flow in fracture apertures. The internal configuration of the models ranged in complexity from simple geometric shapes to those that incorporate replicated surfaces of natural fractures and computationally derived fracture surfaces. High-resolution digital time-lapse imaging was employed to qualitatively observe the migration of colloidal and soluble dyes through the flow models. In this study, a Sphingomonas sp. and Sporosarcina (Bacillus) pasteurii influenced the fluid dynamics by physically altering flow paths. Microbial colonization and calcite deposition enhanced the stagnant regions adjacent to solid boundaries. Microbial growth and calcite precipitation occurred to a greater extent in areas behind the fabricated obstacles and less in high-velocity orifices. PMID:16332867
Stoner, D L; Watson, S M; Stedtfeld, R D; Meakin, P; Griffel, L K; Tyler, T L; Pegram, L M; Barnes, J M; Deason, V A
2005-12-01
Here we introduce the use of transparent experimental models fabricated by stereolithography for studying the impacts of biomass accumulation, minerals precipitation, and physical configuration of flow paths on liquid flow in fracture apertures. The internal configuration of the models ranged in complexity from simple geometric shapes to those that incorporate replicated surfaces of natural fractures and computationally derived fracture surfaces. High-resolution digital time-lapse imaging was employed to qualitatively observe the migration of colloidal and soluble dyes through the flow models. In this study, a Sphingomonas sp. and Sporosarcina (Bacillus) pasteurii influenced the fluid dynamics by physically altering flow paths. Microbial colonization and calcite deposition enhanced the stagnant regions adjacent to solid boundaries. Microbial growth and calcite precipitation occurred to a greater extent in areas behind the fabricated obstacles and less in high-velocity orifices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. L. Stoner; S. M. Watson; R. D. Stedtfeld
Here we introduce the use of transparent experimental models fabricated by stereolithography for studying the impacts of biomass accumulation, minerals precipitation, and physical configuration of flow paths on liquid flow in fracture apertures. The internal configuration of the models ranged in complexity from simple geometric shapes to those that incorporate replicated surfaces of natural fractures and computationally derived fracture surfaces. High-resolution digital time-lapse imaging was employed to qualitatively observe the migration of colloidal and soluble dyes through the flow models. In this study, a Sphingomonas sp. and Sporosarcina (Bacillus) pasteurii influenced the fluid dynamics by physically altering flow paths. Microbialmore » colonization and calcite deposition enhanced the stagnant regions adjacent to solid boundaries. Microbial growth and calcite precipitation occurred to a greater extent in areas behind the fabricated obstacles and less in high-velocity orifices.« less
Development and Demonstration of an Ada Test Generation System
NASA Technical Reports Server (NTRS)
1996-01-01
In this project we have built a prototype system that performs Feasible Path Analysis on Ada programs: given a description of a set of control flow paths through a procedure, and a predicate at a program point feasible path analysis determines if there is input data which causes execution to flow down some path in the collection reaching the point so that tile predicate is true. Feasible path analysis can be applied to program testing, program slicing, array bounds checking, and other forms of anomaly checking. FPA is central to most applications of program analysis. But, because this problem is formally unsolvable, syntactic-based approximations are used in its place. For example, in dead-code analysis the problem is to determine if there are any input values which cause execution to reach a specified program point. Instead an approximation to this problem is computed: determine whether there is a control flow path from the start of the program to the point. This syntactic approximation is efficiently computable and conservative: if there is no such path the program point is clearly unreachable, but if there is such a path, the analysis is inconclusive, and the code is assumed to be live. Such conservative analysis too often yields unsatisfactory results because the approximation is too weak. As another example, consider data flow analysis. A du-pair is a pair of program points such that the first point is a definition of a variable and the second point a use and for which there exists a definition-free path from the definition to the use. The sharper, semantic definition of a du-pair requires that there be a feasible definition-free path from the definition to the use. A compiler using du-pairs for detecting dead variables may miss optimizations by not considering feasibility. Similarly, a program analyzer computing program slices to merge parallel versions may report conflicts where none exist. In the context of software testing, feasibility analysis plays an important role in identifying testing requirements which are infeasible. This is especially true for data flow testing and modified condition/decision coverage. Our system uses in an essential way symbolic analysis and theorem proving technology, and we believe this work represents one of the few successful uses of a theorem prover working in a completely automatic fashion to solve a problem of practical interest. We believe this work anticipates an important trend away from purely syntactic-based methods for program analysis to semantic methods based on symbolic processing and inference technology. Other results demonstrating the practical use of automatic inference is being reported in hardware verification, although there are significant differences between the hardware work and ours. However, what is common and important is that general purpose theorem provers are being integrated with more special-purpose decision procedures to solve problems in analysis and verification. We are pursuina commercial opportunities for this work, and will use and extend the work in other projects we are engaged in. Ultimately we would like to rework the system to analyze C, C++, or Java as a key step toward commercialization.
Light aircraft sound transmission studies - Noise reduction model
NASA Technical Reports Server (NTRS)
Atwal, Mahabir S.; Heitman, Karen E.; Crocker, Malcolm J.
1987-01-01
Experimental tests conducted on the fuselage of a single-engine Piper Cherokee light aircraft suggest that the cabin interior noise can be reduced by increasing the transmission loss of the dominant sound transmission paths and/or by increasing the cabin interior sound absorption. The validity of using a simple room equation model to predict the cabin interior sound-pressure level for different fuselage and exterior sound field conditions is also presented. The room equation model is based on the sound power flow balance for the cabin space and utilizes the measured transmitted sound intensity data. The room equation model predictions were considered good enough to be used for preliminary acoustical design studies.
Nanostructuring superconductors by ion beams: A path towards materials engineering
NASA Astrophysics Data System (ADS)
Gerbaldo, Roberto; Ghigo, Gianluca; Gozzelino, Laura; Laviano, Francesco; Amato, Antonino; Rovelli, Alberto; Cherubini, Roberto
2013-07-01
The paper deals with nanostructuring of superconducting materials by means of swift heavy ion beams. The aim is to modify their structural, optical and electromagnetic properties in a controlled way, to provide possibility of making them functional for specific applications. Results are presented concerning flux pinning effects (implantation of columnar defects with nanosize cross section to enhance critical currents and irreversibility fields), confined flux-flow and vortex guidance, design of devices by locally tailoring the superconducting material properties, analysis of disorder-induced effects in multi-band superconductors. These studies were carried out on different kinds of superconducting samples, from single crystals to thin films, from superconducting oxides to magnesium diboride, to recently discovered iron-based superconductors.
Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N
2015-08-04
In subsurface soils, colloids are mobilized by infiltrating rainwater, but the source of colloids and the process by which colloids are generated between rainfalls are not clear. We examined the effect of drying duration and the spatial variation of soil permeability on the mobilization of in situ colloids in intact soil cores (fractured and heavily weathered saprolite) during dry-wet cycles. Measuring water flux at multiple sampling ports at the core base, we found that water drained through flow paths of different permeability. The duration of antecedent drying cycles affected the amount of mobilized colloids, particularly in high-flux ports that received water from soil regions with a large number of macro- and mesopores. In these ports, the amount of mobilized colloids increased with increased drying duration up to 2.5 days. For drying durations greater than 2.5 days, the amount of mobilized colloids decreased. In contrast, increasing drying duration had a limited effect on colloid mobilization in low-flux ports, which presumably received water from soil regions with fewer macro- and mesopores. On the basis of these results, we attribute this dependence of colloid mobilization upon drying duration to colloid generation from dry pore walls and distribution of colloids in flow paths, which appear to be sensitive to the moisture content of soil after drying and flow path permeability. The results are useful for improving the understanding of colloid mobilization during fluctuating weather conditions.
Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures.
de Lucas, Manuela; Ferrer, Miguel; Janss, Guyonne F E
2012-01-01
Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.
Quantification and Control of Wall Effects in Porous Media Experiments
NASA Astrophysics Data System (ADS)
Roth, E. J.; Mays, D. C.; Neupauer, R.; Crimaldi, J. P.
2017-12-01
Fluid flow dynamics in porous media are dominated by media heterogeneity. This heterogeneity can create preferential pathways in which local seepage velocities dwarf system seepage velocities, further complicating an already incomplete understanding of dispersive processes. In physical models of porous media flows, apparatus walls introduce preferential flow paths (i.e., wall effects) that may overwhelm other naturally occurring preferential pathways within the apparatus, leading to deceptive results. We used planar laser-induced fluorescence (PLIF) in conjunction with refractive index matched (RIM) porous media and pore fluid to observe fluid dynamics in the porous media, with particular attention to the region near the apparatus walls in a 17 cm x 8 cm x 7 cm uniform flow cell. Hexagonal close packed spheres were used to create an isotropic, homogenous porous media field in the interior of the apparatus. Visualization of the movement of a fluorescent dye revealed the influence of the wall in creating higher permeability preferential flow paths in an otherwise homogenous media packing. These preferential flow paths extended approximately one half of one sphere diameter from the wall for homogenously packed regions, with a quickly diminishing effect on flow dynamics for homogenous media adjacent to the preferential pathway, but with major influence on flow dynamics for adjoining heterogeneous regions. Multiple approaches to mitigate wall effects were investigated, and a modified wall was created such that the fluid dynamics near the wall mimics the fluid dynamics within the homogenous porous media. This research supports the design of a two-dimensional experimental apparatus that will simulate engineered pumping schemes for use in contaminant remediation. However, this research could benefit the design of fixed bed reactors or other engineering challenges in which vessel walls contribute to unwanted preferential flow.
Swimming behaviour and ascent paths of brook trout in a corrugated culvert
Goerig, Elsa; Bergeron, Normand E.; Castro-Santos, Theodore R.
2017-01-01
Culverts may restrict fish movements under some hydraulic conditions such as shallow flow depths or high velocities. Although swimming capacity imposes limits to passage performance, behaviour also plays an important role in the ability of fish to overcome velocity barriers. Corrugated metal culverts are characterized by unsteady flow and existence of low‐velocity zones, which can improve passage success. Here, we describe swimming behaviour and ascent paths of 148 wild brook trout in a 1.5‐m section of a corrugated metal culvert located in Raquette Stream, Québec, Canada. Five passage trials were conducted in mid‐August, corresponding to specific mean cross‐sectional flow velocities ranging from 0.30 to 0.63 m/s. Fish were individually introduced to the culvert and their movements recorded with a camera located above the water. Lateral and longitudinal positions were recorded at a rate of 3 Hz in order to identify ascent paths. These positions were related to the distribution of flow depths and velocities in the culvert. Brook trout selected flow velocities from 0.2 to 0.5 m/s during their ascents, which corresponded to the available flow velocities in the culvert at the low‐flow conditions. This however resulted in the use of low‐velocity zones at higher flows, mainly located along the walls of the culvert. Some fish also used the corrugations for sheltering, although the behaviour was marginal and did not occur at the highest flow condition. This study improves knowledge on fish behaviour during culvert ascents, which is an important aspect for developing reliable and accurate estimates of fish passage ability.
Concentrated flow paths in riparian buffer zones of southern Illinois
R.C. Pankau; J.E. Schoonover; K.W.J. Willard; P.J. Edwards
2012-01-01
Riparian buffers in agricultural landscapes should be designed to trap pollutants in overland flow by slowing, filtering, and infiltrating surface runoff entering the buffer via sheet flow. However, observational evidence suggests that concentrated flow is prevalent from agricultural fields. Over time sediment can accumulate in riparian buffers forming berms that...
Using Clay Models to Understand Volcanic Mudflows
ERIC Educational Resources Information Center
Laney, Eric; Mattox, Steve
2007-01-01
Gravity is a subtle but ubiquitous force that influences nearly all geologic processes from the formation of ores to the flow of glaciers and rivers. Gravity also determines the path some materials take as they flow down volcanoes. Lava flows, mudflows (also called lahars), and pyroclastic flows are three such materials. Understanding the factors…
Flow path oscillations in transient ground-water simulations of large peatland systems
Reeve, A.S.; Evensen, R.; Glaser, P.H.; Siegel, D.I.; Rosenberry, D.
2006-01-01
Transient numerical simulations of the Glacial Lake Agassiz Peatland near the Red Lakes in Northern Minnesota were constructed to evaluate observed reversals in vertical ground-water flow. Seasonal weather changes were introduced to a ground-water flow model by varying evapotranspiration and recharge over time. Vertical hydraulic reversals, driven by changes in recharge and evapotranspiration were produced in the simulated peat layer. These simulations indicate that the high specific storage associated with the peat is an important control on hydraulic reversals. Seasonally driven vertical flow is on the order of centimeters in the deep peat, suggesting that seasonal vertical advective fluxes are not significant and that ground-water flow into the deep peat likely occurs on decadal or longer time scales. Particles tracked within the ground-water flow model oscillate over time, suggesting that seasonal flow reversals will enhance vertical mixing in the peat column. The amplitude of flow path oscillations increased with increasing peat storativity, with amplitudes of about 5 cm occurring when peat specific storativity was set to about 0.05 m-1. ?? 2005 Elsevier B.V. All rights reserved.
Probabilistically modeling lava flows with MOLASSES
NASA Astrophysics Data System (ADS)
Richardson, J. A.; Connor, L.; Connor, C.; Gallant, E.
2017-12-01
Modeling lava flows through Cellular Automata methods enables a computationally inexpensive means to quickly forecast lava flow paths and ultimate areal extents. We have developed a lava flow simulator, MOLASSES, that forecasts lava flow inundation over an elevation model from a point source eruption. This modular code can be implemented in a deterministic fashion with given user inputs that will produce a single lava flow simulation. MOLASSES can also be implemented in a probabilistic fashion where given user inputs define parameter distributions that are randomly sampled to create many lava flow simulations. This probabilistic approach enables uncertainty in input data to be expressed in the model results and MOLASSES outputs a probability map of inundation instead of a determined lava flow extent. Since the code is comparatively fast, we use it probabilistically to investigate where potential vents are located that may impact specific sites and areas, as well as the unconditional probability of lava flow inundation of sites or areas from any vent. We have validated the MOLASSES code to community-defined benchmark tests and to the real world lava flows at Tolbachik (2012-2013) and Pico do Fogo (2014-2015). To determine the efficacy of the MOLASSES simulator at accurately and precisely mimicking the inundation area of real flows, we report goodness of fit using both model sensitivity and the Positive Predictive Value, the latter of which is a Bayesian posterior statistic. Model sensitivity is often used in evaluating lava flow simulators, as it describes how much of the lava flow was successfully modeled by the simulation. We argue that the positive predictive value is equally important in determining how good a simulator is, as it describes the percentage of the simulation space that was actually inundated by lava.
NASA Astrophysics Data System (ADS)
Klaus, Julian; Zehe, Erwin
2010-05-01
Rapid water flow along spatially connected - often biologically mediated - flow paths of minimum flow resistance is widely acknowledged to play a key role in runoff generation at the hillslope and small catchment scales but also in the transport of solutes like agro chemicals and nutrients in cohesive soils. Especially at tile drained fields site connected vertical flow structures such as worm burrows, roots or shrinkage cracks act as short cuts allowing water flow to bypass the soil matrix. In the present study we propose a spatially explicit approach to represent worm burrows as connected structures of high conductivity and low retention capacity in a 2D physically model. With this approach tile drain discharge and preferential flow patterns in soil observed during the irrigation of a tile drained hillslope in the Weiherbach catchment were modelled. The model parameters derived from measurements and are considered to be uncertain. Given this uncertainty of key factors that organise flow and transport at tile drained sites the main objectives of the present studies are to shed light on the following three questions: 1. Does a simplified approach that explicitly represents worm burrows as continuous flow paths of small flow resistance and low retention properties in a 2D physically model allow successful reproduction of event flow response at a tile drained field site in the Weiherbach catchment? 2. Does the above described uncertainty in key factors cause equifinality i.e. are there several model structural setups that reproduce event flow response in an acceptable manner without compromising our physical understanding of the system? 3. If so, what are the key factors that have to be known at high accuracy to reduce the equifinality of model structures? The issue of equifinality is usually discussed in catchment modelling to indicate that often a large set of conceptual model parameter sets allows acceptable reproduction of the behaviour of the system of interest - in many cases catchment stream flow response. Beven and Binley (1992) suggest that these model structures should be considered to be equally likely to account for predictive uncertainty. In this study we show that the above outline approach allows successful prediction of the tile drain discharge and preferential flow patterns in soil observed during the irrigation of a tile drained hillslope in the Weiherbach catchment flow event. Strikingly we a found a considerable equifinality in the model structural setup, when key parameters such as the area density of worm burrows, their hydraulic conductivity and the conductivity of the tile drains were varied within the ranges of either our measurements or measurements reported in the literature. Thirteen different model setups yielded a normalised time-shifted Nash-Sutcliffe of more than 0.9, which means that more than 90% of the flow variability is explained by the model. Also the flow volumes were in good accordance and timing errors were less or equal than 20 min (which corresponds to two simulation output time steps). It is elaborated that this uncertainty/equifinality could be reduced when more precise data on initial states of the subsurface and on the drainage area of a single drainage tube could be made available. However, such data are currently most difficult to assess even at very well investigated site as the one that is dealt with here. We thus suggest non uniqueness of process based model structures seems thus to be an important factor causing predictive uncertainty at many sites where preferential flow dominates systems response. References Beven, K.J. and Binley, A.M., 1992. The future of distributed models: model calibration and uncertainty prediction, Hydrological Processes, 6, p.279-298.
Extended charge banking model of dual path shocks for implantable cardioverter defibrillators
Dosdall, Derek J; Sweeney, James D
2008-01-01
Background Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. Methods The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. Results The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Discussion Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters. PMID:18673561
Electron mean free path dependence of the vortex surface impedance
Checchin, M.; Martinello, M.; Grassellino, A.; ...
2017-01-17
In the present study the radio-frequency complex response of trapped vortices in superconductors is calculated and compared to experimental data previously published. The motion equation for a magnetic flux line is solved assuming a bi-dimensional and mean-free-path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the unprecedented bell-shaped trend as a function of the mean-free-path observed in our previous experimental work. We demonstrate that such bell-shaped trend of the surface resistance as a function of the mean-free-path may be described as the interplay of the two limiting regimes of the surface resistance, for low and large mean-free-path values: pinning andmore » flux-flow regimes respectively. Since the possibility of defining the pinning potential at different locations from the surface and with different strengths, we discuss how the surface resistance is affected by different configurations of pinning sites. By tackling the frequency dependence of the surface resistance, we also demonstrate that the separation between pinning- and flux-flow-dominated regimes cannot be determined only by the depinning frequency. As a result, the dissipation regime can be tuned either by acting on the frequency or on the mean-free-path value.« less
Electron mean free path dependence of the vortex surface impedance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Checchin, M.; Martinello, M.; Grassellino, A.
In the present study the radio-frequency complex response of trapped vortices in superconductors is calculated and compared to experimental data previously published. The motion equation for a magnetic flux line is solved assuming a bi-dimensional and mean-free-path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the unprecedented bell-shaped trend as a function of the mean-free-path observed in our previous experimental work. We demonstrate that such bell-shaped trend of the surface resistance as a function of the mean-free-path may be described as the interplay of the two limiting regimes of the surface resistance, for low and large mean-free-path values: pinning andmore » flux-flow regimes respectively. Since the possibility of defining the pinning potential at different locations from the surface and with different strengths, we discuss how the surface resistance is affected by different configurations of pinning sites. By tackling the frequency dependence of the surface resistance, we also demonstrate that the separation between pinning- and flux-flow-dominated regimes cannot be determined only by the depinning frequency. As a result, the dissipation regime can be tuned either by acting on the frequency or on the mean-free-path value.« less
Wetzel, L.R.; Raffensperger, Jeff P.; Shock, E.L.
2001-01-01
Coordinated geochemical and hydrological calculations guide our understanding of the composition, fluid flow patterns, and thermal structure of near-ridge oceanic crust. The case study presented here illustrates geochemical and thermal changes taking place as oceanic crust ages from 0.2 to 1.0 Myr. Using a finite element code, we model fluid flow and heat transport through the upper few hundred meters of an abyssal hill created at an intermediate spreading rate. We use a reaction path model with a customized database to calculate equilibrium fluid compositions and mineral assemblages of basalt and seawater at 500 bars and temperatures ranging from 150 to 400??C. In one scenario, reaction path calculations suggest that volume increases on the order of 10% may occur within portions of the basaltic basement. If this change in volume occurred, it would be sufficient to fill all primary porosity in some locations, effectively sealing off portions of the oceanic crust. Thermal profiles resulting from fluid flow simulations indicate that volume changes along this possible reaction path occur primarily within the first 0.4 Myr of crustal aging. ?? 2001 Elsevier Science B.V. All rights reserved.
Simplified, inverse, ejector design tool
NASA Technical Reports Server (NTRS)
Dechant, Lawrence J.
1993-01-01
A simple lumped parameter based inverse design tool has been developed which provides flow path geometry and entrainment estimates subject to operational, acoustic, and design constraints. These constraints are manifested through specification of primary mass flow rate or ejector thrust, fully-mixed exit velocity, and static pressure matching. Fundamentally, integral forms of the conservation equations coupled with the specified design constraints are combined to yield an easily invertible linear system in terms of the flow path cross-sectional areas. Entrainment is computed by back substitution. Initial comparison with experimental and analogous one-dimensional methods show good agreement. Thus, this simple inverse design code provides an analytically based, preliminary design tool with direct application to High Speed Civil Transport (HSCT) design studies.
Gas flow path for a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Matthew D.; Charron, Richard C.; Snyder, Gary D.
A duct arrangement in a can annular gas turbine engine. The gas turbine engine has a gas delivery structure for delivering gases from a plurality of combustors to an annular chamber that extends circumferentially and is oriented concentric to a gas turbine engine longitudinal axis for delivering the gas flow to a first row of blades A gas flow path is formed by the duct arrangement between a respective combustor and the annular chamber for conveying gases from each combustor to the first row of turbine blades The duct arrangement includes at least one straight section having a centerline thatmore » is misaligned with a centerline of the combustor.« less
Open-path Fourier transform infrared (OP/FTIR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric gasses around an integrated industrial swine production facility in eastern North Carolina. Several single-path measurements were made ove...
Preferential flow paths in fractured rock detected by cross-borehole nano-iron tracer test
NASA Astrophysics Data System (ADS)
Chia, Yeeping; Chuang, Po-Yu
2017-04-01
Characterization of the preferential flow paths and their hydraulic properties is desirable for developing a hydrogeological conceptual model in fractured rock. However, the heterogeneity and anisotropy of the hydraulic property often make it difficult to understand groundwater flow paths through fractures. In this study, we adopted nanoscale zero-valent iron (nZVI) as a tracer to characterize fracture connectivity and hydraulic properties. A magnet array was placed in an observation well to attract arriving nZVI particles for identifying the location of incoming tracer. This novel approach was developed for the investigation of fracture flow at a hydrogeological research station in central Taiwan. A heat-pulse flowmeter test was performed to delineate the vertical distribution of permeable fractures in two boreholes, making it possible to design a field tracer test. The nZVI slurry was released in the sealed injection well. The arrival of the slurry in the observation well was evidenced by a breakthrough curve recorded by the fluid conductivity sensor as well as the nZVI particles attracted to the magnets. The iron nanoparticles attracted to the magnets provide the quantitative criteria for locating the position of tracer inlet in the observation well. The position of the magnet attracting the maximum weight of iron nanoparticles agrees well with the depth of a permeable fracture zone delineated by the flowmeter. Besides, a conventional saline tracer test was conducted in the field, producing a similar outcome as the nZVI tracer test. Our study results indicate that the nano-iron tracer test could be a promising method for the characterization of the preferential flow paths in fractured rock.
Assessment of the Performance of a Dual-Frequency Surface Reference Technique
NASA Technical Reports Server (NTRS)
Meneghini, Robert; Liao, Liang; Tanelli, Simone; Durden, Stephen
2013-01-01
The high correlation of the rain-free surface cross sections at two frequencies implies that the estimate of differential path integrated attenuation (PIA) caused by precipitation along the radar beam can be obtained to a higher degree of accuracy than the path-attenuation at either frequency. We explore this finding first analytically and then by examining data from the JPL dual-frequency airborne radar using measurements from the TC4 experiment obtained during July-August 2007. Despite this improvement in the accuracy of the differential path attenuation, solving the constrained dual-wavelength radar equations for parameters of the particle size distribution requires not only this quantity but the single-wavelength path attenuation as well. We investigate a simple method of estimating the single-frequency path attenuation from the differential attenuation and compare this with the estimate derived directly from the surface return.
NASA Astrophysics Data System (ADS)
Shults, D.; Brooks, E. S.; Heinse, R.; Keller, C. K.
2017-12-01
Over the last several years growers have experienced increasingly wet spring conditions in the Palouse Region located in North Idaho, Eastern Washington and Eastern Oregon. As a result more artificial drain lines are being installed so growers can access their fields earlier in the growing season. Additionally there has been increasing adoption of no-tillage practices among growers in order minimize erosion and runoff in the region. There is a growing body of evidence that suggests long-term no-tillage may lead to the establishment of large macropore networks through increased earthworm activity and the preservation of root channels. These macropore networks, in conjunctions with the presence of artificial drains lines, may create connected preferential flow paths from agricultural fields to receiving streams. This connectivity of flow paths from agricultural fields to receiving water bodies may increase the loading of nutrients and agricultural chemicals as some flow paths may largely bypass soil matrix interaction where materials can be sequestered. Our primary objective for this study was to characterize subsurface flow to two artificial drain lines, one under conventional tillage and the other under no-tillage, using distributed temperature sensing (DTS) technology. During the study (November 2016-April 2017) the near surface soil-water temperature was consistently colder than that of deeper depths. Temperature was thus used as a tracer as snow melt and soil-water moved from the near surface to the drain lines during snowmelt and precipitation events. The spatial and temporal variability of the temperature along the artificial drain line under no-tillage practices was found to be greater than that of the conventional tilled field. It is hypothesized that preferential flow paths are responsible for the increased variability of temperature seen in the drain line under long term no-till management. The temperature along the conventional till drain line showed a dampened response to snow melt and precipitation events during the winter indicating matrix flow was the predominate flow mechanism. In addition to temperature traces, water chemistry (electrical conductivity, pH and nitrate) and discharge measurements were collected at the outlet of each drain line as well as at access ports along the drain lines.
Robson, Stanley G.
1978-01-01
This study investigated the use of a two-dimensional profile-oriented water-quality model for the simulation of head and water-quality changes through the saturated thickness of an aquifer. The profile model is able to simulate confined or unconfined aquifers with nonhomogeneous anisotropic hydraulic conductivity, nonhomogeneous specific storage and porosity, and nonuniform saturated thickness. An aquifer may be simulated under either steady or nonsteady flow conditions provided that the ground-water flow path along which the longitudinal axis of the model is oriented does not move in the aquifer during the simulation time period. The profile model parameters are more difficult to quantify than are the corresponding parameters for an areal-oriented water-fluality model. However, the sensitivity of the profile model to the parameters may be such that the normal error of parameter estimation will not preclude obtaining acceptable model results. Although the profile model has the advantage of being able to simulate vertical flow and water-quality changes in a single- or multiple-aquifer system, the types of problems to which it can be applied is limited by the requirements that (1) the ground-water flow path remain oriented along the longitudinal axis of the model and (2) any subsequent hydrologic factors to be evaluated using the model must be located along the land-surface trace of the model. Simulation of hypothetical ground-water management practices indicates that the profile model is applicable to problem-oriented studies and can provide quantitative results applicable to a variety of management practices. In particular, simulations of the movement and dissolved-solids concentration of a zone of degraded ground-water quality near Barstow, Calif., indicate that halting subsurface disposal of treated sewage effluent in conjunction with pumping a line of fully penetrating wells would be an effective means of controlling the movement of degraded ground water.
NASA Astrophysics Data System (ADS)
Smethie, W. M., Jr.; Smith, J.; Curry, R. G.; Yashayaev, I.; Azetsu-Scott, K.
2016-02-01
129I released to the North Sea from two nuclear fuel reprocessing plants is transported through the Nordic Seas and the Arctic Ocean and is entering the deep North Atlantic, predominantly in dense Denmark Strait Overflow Water (DSOW). CFCs enter the surface ocean and also become incorporated in DSOW. Measurements of temperature, salinity, CFCs and 129I have been made at least annually along WOCE/CLIVAR line AR7W in the Labrador Sea from the mid 1990s to present, along Line W extending from the continental slope southeast of Cape Cod toward Bermuda from 2003 to 2014, and along a single occupation of a line extending from Bermuda southeast across the Bermuda Rise in 2010. The measurements in the Labrador Sea were used as input to DSOW flowing from there to the subtropical western Atlantic Ocean. We compared the temporal changes along Line W to the temporal changes along the AR7W line and applied the boundary current model of Waugh and Hall (J. Phys. Oceanogr. 35,1538-1552, 2005) to the Line W and Bermuda Rise line observations to determine the transit time of DSOW transported to Line W in the Deep Western Boundary Current (DWBC) and transported to the southeastern flank of Bermuda via interior flow paths. The lateral mixing time scale along these two flow paths was also estimated with this model. CFC-11 and 129I increase monotonically in the DSOW in the Labrador Sea and salinity oscillates on a 5-year cycle. The boundary current model reproduces all of these trends. The transit time and lateral mixing time constant for DSOW transported to Line W are 7 years (mean flow velocity of 2.1 cm/sec) and 3-6 years, respectively, and for DSOW transported to the southeast flank of Bermuda are 6-10 years and 2-5 years.
LAV@HAZARD: a Web-GIS Framework for Real-Time Forecasting of Lava Flow Hazards
NASA Astrophysics Data System (ADS)
Del Negro, C.; Bilotta, G.; Cappello, A.; Ganci, G.; Herault, A.
2014-12-01
Crucial to lava flow hazard assessment is the development of tools for real-time prediction of flow paths, flow advance rates, and final flow lengths. Accurate prediction of flow paths and advance rates requires not only rapid assessment of eruption conditions (especially effusion rate) but also improved models of lava flow emplacement. Here we present the LAV@HAZARD web-GIS framework, which combines spaceborne remote sensing techniques and numerical simulations for real-time forecasting of lava flow hazards. By using satellite-derived discharge rates to drive a lava flow emplacement model, LAV@HAZARD allows timely definition of parameters and maps essential for hazard assessment, including the propagation time of lava flows and the maximum run-out distance. We take advantage of the flexibility of the HOTSAT thermal monitoring system to process satellite images coming from sensors with different spatial, temporal and spectral resolutions. HOTSAT was designed to ingest infrared satellite data acquired by the MODIS and SEVIRI sensors to output hot spot location, lava thermal flux and discharge rate. We use LAV@HAZARD to merge this output with the MAGFLOW physics-based model to simulate lava flow paths and to update, in a timely manner, flow simulations. Thus, any significant changes in lava discharge rate are included in the predictions. A significant benefit in terms of computational speed was obtained thanks to the parallel implementation of MAGFLOW on graphic processing units (GPUs). All this useful information has been gathered into the LAV@HAZARD platform which, due to the high degree of interactivity, allows generation of easily readable maps and a fast way to explore alternative scenarios. We will describe and demonstrate the operation of this framework using a variety of case studies pertaining to Mt Etna, Sicily. Although this study was conducted on Mt Etna, the approach used is designed to be applicable to other volcanic areas around the world.
10 CFR 434.402 - Building envelope assemblies and materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...
10 CFR 434.402 - Building envelope assemblies and materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...
10 CFR 434.402 - Building envelope assemblies and materials.
Code of Federal Regulations, 2013 CFR
2013-01-01
... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...
10 CFR 434.402 - Building envelope assemblies and materials.
Code of Federal Regulations, 2012 CFR
2012-01-01
... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...
10 CFR 434.402 - Building envelope assemblies and materials.
Code of Federal Regulations, 2014 CFR
2014-01-01
... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...
Topçuoğlu, H S; Düzgün, S; Akpek, F; Topçuoğlu, G; Aktı, A
2016-06-01
To evaluate the effect of a glide path on the amount of apically extruded debris during canal preparation using single-file systems in curved canals. Ninety extracted mandibular molar teeth were randomly assigned to six groups (n = 15 for each group) for canal instrumentation. Endodontic access cavities were prepared in each tooth. In three of the six groups, a glide path was not created whereas a glide path was created using PathFile instruments on the mesial canals of all teeth in the remaining three groups. The mesial canals of the teeth were then instrumented with the following single-file instrument systems: WaveOne, Reciproc and OneShape. Debris extruded apically during instrumentation was collected into pre-weighed Eppendorf tubes. The tubes were then stored in an incubator at 70 °C for 5 days. The weight of the dry extruded debris was established by subtracting the pre-instrumentation and post-instrumentation weight of the Eppendorf tubes for each group. The data obtained were analysed using one-way analysis of variance (anova) and Tukey's post hoc tests. The OneShape file was associated with less debris extrusion than the Reciproc and WaveOne files when canal instrumentation was performed without a glide path (P < 0.05). However, no significant difference was found between the Reciproc and WaveOne files (P > 0.05). There was no significant difference amongst the OneShape, Reciproc and WaveOne files when a glide path was created before canal preparation in curved root canals (P > 0.05). All systems extruded significantly less debris in groups with a glide path than in groups without a glide path (P < 0.05). All instruments were associated with apical extrusion of debris. Creating a glide path prior to canal instrumentation reduced the amount of apically extruded debris in curved canals. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Lim, Y.; Kim, W.
2015-12-01
Meandering rivers are extremely ubiquitous on Earth, yet it is only recently that single-thread experimental channels with low sinuosity have been created. In these recent experiments, as well as in natural rivers, vegetation plays a crucial role in maintaining a meandering pattern by adding cohesion to the bank and inhibiting erosion. The ancient, highly sinuous channels found on Mars are enigmatic because presumably vegetation did not exist on ancient Mars. Under the hypothesis that Martian meandering rivers formed by chemical precipitation on levees and flood plain deposits, we conducted carbonate flume experiments to investigate the formation and evolution of a single-thread meander pattern without vegetation. The flow recirculating in the flume is designed to accelerate chemical reactions - dissolution of limestone using CO2 gas to produce artificial spring water and precipitation of carbonates to increase cohesion- with precise control of water discharge, sediment discharge, and temperature. Preliminary experiments successfully created a single-thread meandering pattern through chemical processes. Carbonate deposits focused along the channel sides improved the bank stability and made them resistant to erosion, which led to a stream confined in a narrow path. The experimental channels showed lateral migration of the bend through cut bank and point bar deposits; intermittent floods created overbank flow and encouraged cut bank erosion, which enhanced lateral migration of the channel, while increase in sediment supply improved lateral point bar deposition, which balanced erosion and deposition rates. This mechanism may be applied to terrestrial single-thread and/or meandering rivers with little to no vegetation or before its introduction to Earth and also provide the link between meandering river records on Mars to changes in Martian surface conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiebe, David J.
A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) for receiving a gas flow from a respective combustor. A straight ceramic liner (40) may be inwardly disposed onto a metal outer shell (38) along the straight path segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems ismore » realizable since the liner can be readily removed and replaced as needed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, James E.; Alvarez, Marcelo A., E-mail: jowen@ias.edu
2016-01-01
We have investigated the evaporation of close-in exoplanets irradiated by ionizing photons. We find that the properties of the flow are controlled by the ratio of the recombination time to the flow timescale. When the recombination timescale is short compared to the flow timescale, the flow is in approximate local ionization equilibrium with a thin ionization front where the photon mean free path is short compared to the flow scale. In this “recombination-limited” flow the mass-loss scales roughly with the square root of the incident flux. When the recombination time is long compared to the flow timescale the ionization frontmore » becomes thick and encompasses the entire flow with the mass-loss rate scaling linearly with flux. If the planet's potential is deep, then the flow is approximately “energy-limited”; however, if the planet's potential is shallow, then we identify a new limiting mass-loss regime, which we term “photon-limited.” In this scenario, the mass-loss rate is purely limited by the incoming flux of ionizing photons. We have developed a new numerical approach that takes into account the frequency dependence of the incoming ionizing spectrum and performed a large suite of 1D simulations to characterize UV driven mass-loss around low-mass planets. We find that the flow is “recombination-limited” at high fluxes but becomes “energy-limited” at low fluxes; however, the transition is broad occurring over several orders of magnitude in flux. Finally, we point out that the transitions between the different flow types do not occur at a single flux value but depend on the planet's properties, with higher-mass planets becoming “energy-limited” at lower fluxes.« less
Lacy, Benjamin Paul; Kraemer, Gilbert Otto; Yilmaz, Ertan; Melton, Patrick Benedict
2012-10-30
A turbomachine includes a compressor, a combustor operatively connected to the compressor, and an injection nozzle operatively connected to the combustor. The injection nozzle includes a main body having a first end section that extends to a second end section to define an inner flow path. The injection nozzle further includes an outlet arranged at the second end section of the main body, at least one passage that extends within the main body and is fluidly connected to the outlet, and at least one conduit extending between the inner flow path and the at least one passage.
Staged membrane oxidation reactor system
Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh
2014-05-20
Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.
Staged membrane oxidation reactor system
Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh
2013-04-16
Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.
Staged membrane oxidation reactor system
Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh
2012-09-11
Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.
Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.
1976-01-01
A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.
NASA Astrophysics Data System (ADS)
Welch, N.; Crawshaw, J.; Boek, E.
2014-12-01
The successful storage of carbon dioxide in geologic formations requires an in-depth understanding of all reservoir characteristics and morphologies. An intact and substantial seal formation above a storage reservoir is required for a significant portion of the initial sealing mechanisms believed to occur during carbon dioxide storage operations. Shales are a common seal formation rock types found above numerous hydrocarbon reservoirs, as well as potential saline aquifer storage locations. Shales commonly have very low permeability, however they also have the tendency to be quite fissile, and the formation of fractures within these seals can have a significant detrimental effect on the sealing potential of a reservoir and amount to large areas of high permeability and low capillary pressures compared to the surrounding intact rock. Fractured shales also have an increased current interest due to the increasing development of shale gas reservoirs using hydraulic fracturing techniques. This work shows the observed changes that occur within fractured pieces of reservoir seal shale samples, along with quarry analogues, using an in-situ micro-CT fluid flow imaging apparatus with a Hassler type core holder. Changes within the preferential flow path under different stress regimes as well as physical changes to the fracture geometry are reported. Lattice Boltzmann flow simulations were then performed on the extracted flow paths and compared to experiment permeability measurements. The preferential flow path of carbon dioxide through the fracture network is also observed and compared to the results two-phase Lattice Boltzmann fluid flow simulations.
NASA Astrophysics Data System (ADS)
Kittilä, Anniina; Evans, Keith; Puddu, Michela; Mikutis, Gediminas; Grass, Robert N.; Deuber, Claudia; Saar, Martin O.
2016-04-01
Groundwater flow in fractured media is heterogeneous and takes place in structures with complex geometry and scale effects, which make the characterization and modeling of the groundwater flow technically challenging. Surface geophysical surveys have limited resolution of permeable structures, and often provide ambiguous results, whereas the interpretation of borehole flow logs to infer hydraulic flow paths within fractured reservoirs is usually non-unique. Nonetheless, knowledge of the hydraulic properties of individual fractures and the role they play in determining the larger-scale flow within the fracture network (i.e. the overall flow conditions) is required in many hydrogeological and geo-engineering situations, such as in geothermal reservoir studies. Tracer tests can overcome some of the aforementioned limitations by providing strong constraints on the geometry and characteristics of flow paths linking boreholes within both porous media and fracture-dominated types of reservoirs. In the case of geothermal reservoirs, tracer tests are often used to provide estimates of the pore/fracture volume swept by flow between injection and production wells. This in turn places constraints on the swept surface area, a parameter that is key for estimating the commercial longevity of the geothermal system. A problem with conventional tracer tests is that the solute species used as the tracer tend to persist in detectable quantities within the reservoir for a long time, thereby impeding repeat tracer tests. DNA nanotracers do not suffer from this problem as they can be designed with a unique signature for each test. DNA nanotracers are environmentally friendly, sub-micron sized silica particles encapsulating small fragments of synthetic DNA which can be fabricated to have a specified, uniquely detectable configuration. For this reason, repeat tracer tests conducted with a differently-encoded DNA fragment to that used in the original will not suffer interference from the earlier test. In this study, we present the results of tests of applying novel DNA nanotracers to characterize groundwater flow properties and the flow pathways in a fracture-dominated reservoir in the Deep Underground Geothermal (DUG) Laboratory at the Grimsel Test Site in the Swiss Alps. This study is motivated by subsequent comparisons of similar characterizations of fractured rock masses after hydraulic stimulation. These will take place at the DUG Lab at the end of 2016. The results of the flow-path characterization are also compared with those obtained from classical solute tracer tests.
Delineating Area of Review in a System with Pre-injection Relative Overpressure
Oldenburg, Curtis M.; Cihan, Abdullah; Zhou, Quanlin; ...
2014-12-31
The Class VI permit application for geologic carbon sequestration (GCS) requires delineation of an area of review (AoR), defined as the region surrounding the (GCS) project where underground sources of drinking water (USDWs) may be endangered. The methods for estimating AoR under the Class VI regulation were developed assuming that GCS reservoirs would be in hydrostatic equilibrium with overlying aquifers. Here we develop and apply an approach to estimating AoR for sites with preinjection relative overpressure for which standard AoR estimation methods produces an infinite AoR. The approach we take is to compare brine leakage through a hypothetical open flowmore » path in the base-case scenario (no-injection) to the incrementally larger leakage that would occur in the CO 2-injection case. To estimate AoR by this method, we used semi-analytical solutions to single-phase flow equations to model reservoir pressurization and flow up (single) leaky wells located at progressively greater distances from the injection well. We found that the incrementally larger flow rates for hypothetical leaky wells located 6 km and 4 km from the injection well are ~20% and 30% greater, respectively, than hypothetical baseline leakage rates. If total brine leakage is considered, the results depend strongly on how the incremental increase in total leakage is calculated, varying from a few percent to up to 40% greater (at most at early time) than base-case total leakage.« less
Holtschlag, D.J.; Koschik, J.A.
2005-01-01
Upper St. Clair River, which receives outflow from Lake Huron, is characterized by flow velocities that exceed 7 feet per second and significant channel curvature that creates complex flow patterns downstream from the Blue Water Bridge in the Port Huron, Michigan, and Sarnia, Ontario, area. Discrepancies were detected between depth-averaged velocities previously simulated by a two-dimensional (2D) hydrodynamic model and surface velocities determined from drifting buoy deployments. A detailed ADCP (acoustic Doppler current profiler) survey was done on Upper St. Clair River during July 1–3, 2003, to help resolve these discrepancies. As part of this study, a refined finite-element mesh of the hydrodynamic model used to identify source areas to public water intakes was developed for Upper St. Clair River. In addition, a numerical procedure was used to account for radial accelerations, which cause secondary flow patterns near channel bends. The refined model was recalibrated to better reproduce local velocities measured in the ADCP survey. ADCP data also were used to help resolve the remaining discrepancies between simulated and measured velocities and to describe variations in velocity with depth. Velocity data from ADCP surveys have significant local variability, and statistical processing is needed to compute reliable point estimates. In this study, velocity innovations were computed for seven depth layers posited within the river as the differences between measured and simulated velocities. For each layer, the spatial correlation of velocity innovations was characterized by use of variogram analysis. Results were used with kriging to compute expected innovations within each layer at applicable model nodes. Expected innovations were added to simulated velocities to form integrated velocities, which were used with reverse particle tracking to identify the expected flow path near a sewage outfall as a function of flow depth. Expected particle paths generated by use of the integrated velocities showed that surface velocities in the upper layers tended to originate nearer the Canadian shoreline than velocities near the channel bottom in the lower layers. Therefore, flow paths to U.S. public water intakes located on the river bottom are more likely to be in the United States than withdrawals near the water surface. Integrated velocities in the upper layers are generally consistent with the surface velocities indicated by drifting-buoy deployments. Information in the 2D hydrodynamic model and the ADCP measurements was insufficient to describe the vertical flow component. This limitation resulted in the inability to account for vertical movements on expected flow paths through Upper St. Clair River. A three dimensional hydrodynamic model would be needed to account for these effects.
NASA Astrophysics Data System (ADS)
Kordilla, J.; Terrell, A. N.; Veltri, M.; Sauter, M.; Schmidt, S.
2017-12-01
In this study we model saturated and unsaturated flow in the karstified Weendespring catchment, located within the Leinetal graben in Goettingen, Germany. We employ the finite element COMSOL Multiphysics modeling software to model variably saturated flow using the Richards equation with a van Genuchten type parameterization. As part of the graben structure, the Weende spring catchment is intersected by seven fault zones along the main flow path of the 7400 m cross section of the catchment. As the Weende spring is part of the drinking water supply in Goettingen, it is particularly important to understand the vulnerability of the catchment and effect of fault zones on rapid transport of contaminants. Nitrate signals have been observed at the spring only a few days after the application of fertilizers within the catchment at a distance of approximately 2km. As the underlying layers are known to be highly impermeable, fault zones within the area are likely to create rapid flow paths to the water table and the spring. The model conceptualizes the catchment as containing three hydrogeological limestone units with varying degrees of karstification: the lower Muschelkalk limestone as a highly conductive layer, the middle Muschelkalk as an aquitard, and the upper Muschelkalk as another conductive layer. The fault zones are parameterized based on a combination of field data from quarries, remote sensing and literary data. The fault zone is modeled considering the fracture core as well as the surrounding damage zone with separate, specific hydraulic properties. The 2D conceptual model was implemented in COMSOL to study unsaturated flow at the catchment scale using van Genuchten parameters. The study demonstrates the importance of fault zones for preferential flow within the catchment and its effect on the spatial distribution of vulnerability.
Peng, Wen Yu; Goldenstein, Christopher S; Mitchell Spearrin, R; Jeffries, Jay B; Hanson, Ronald K
2016-11-20
The development and demonstration of a four-color single-ended mid-infrared tunable laser-absorption sensor for simultaneous measurements of H2O, CO2, CO, and temperature in combustion flows is described. This sensor operates by transmitting laser light through a single optical port and measuring the backscattered radiation from within the combustion device. Scanned-wavelength-modulation spectroscopy with second-harmonic detection and first-harmonic normalization (scanned-WMS-2f/1f) was used to account for variable signal collection and nonabsorption losses in the harsh environment. Two tunable diode lasers operating near 2551 and 2482 nm were utilized to measure H2O concentration and temperature, while an interband cascade laser near 4176 nm and a quantum cascade laser near 4865 nm were used for measuring CO2 and CO, respectively. The lasers were modulated at either 90 or 112 kHz and scanned across the peaks of their respective absorption features at 1 kHz, leading to a measurement rate of 2 kHz. A hybrid demultiplexing strategy involving both spectral filtering and frequency-domain demodulation was used to decouple the backscattered radiation into its constituent signals. Demonstration measurements were made in the exhaust of a laboratory-scale laminar methane-air flat-flame burner at atmospheric pressure and equivalence ratios ranging from 0.7 to 1.2. A stainless steel reflective plate was placed 0.78 cm away from the sensor head within the combustion exhaust, leading to a total absorption path length of 1.56 cm. Detection limits of 1.4% H2O, 0.6% CO2, and 0.4% CO by mole were reported. To the best of the authors' knowledge, this work represents the first demonstration of a mid-infrared laser-absorption sensor using a single-ended architecture in combustion flows.
Attenuation and source properties at the Coso Geothermal area, California
Hough, S.E.; Lees, J.M.; Monastero, F.
1999-01-01
We use a multiple-empirical Green's function method to determine source properties of small (M -0.4 to 1.3) earthquakes and P- and S-wave attenuation at the Coso Geothermal Field, California. Source properties of a previously identified set of clustered events from the Coso geothermal region are first analyzed using an empirical Green's function (EGF) method. Stress-drop values of at least 0.5-1 MPa are inferred for all of the events; in many cases, the corner frequency is outside the usable bandwidth, and the stress drop can only be constrained as being higher than 3 MPa. P- and S-wave stress-drop estimates are identical to the resolution limits of the data. These results are indistinguishable from numerous EGF studies of M 2-5 earthquakes, suggesting a similarity in rupture processes that extends to events that are both tiny and induced, providing further support for Byerlee's Law. Whole-path Q estimates for P and S waves are determined using the multiple-empirical Green's function (MEGF) method of Hough (1997), whereby spectra from clusters of colocated events at a given station are inverted for a single attenuation parameter, ??, with source parameters constrained from EGF analysis. The ?? estimates, which we infer to be resolved to within 0.01 sec or better, exhibit almost as much scatter as a function of hypocentral distance as do values from previous single-spectrum studies for which much higher uncertainties in individual ?? estimates are expected. The variability in ?? estimates determined here therefore suggests real lateral variability in Q structure. Although the ray-path coverage is too sparse to yield a complete three-dimensional attenuation tomographic image, we invert the inferred ?? value for three-dimensional structure using a damped least-squares method, and the results do reveal significant lateral variability in Q structure. The inferred attenuation variability corresponds to the heat-flow variations within the geothermal region. A central low-Q region corresponds well with the central high-heat flow region; additional detailed structure is also suggested.
NASA Astrophysics Data System (ADS)
Meneveau, Charles; Johnson, Perry; Hamilton, Stephen; Burns, Randal
2016-11-01
An intrinsic property of turbulent flows is the exponential deformation of fluid elements along Lagrangian paths. The production of enstrophy by vorticity stretching follows from a similar mechanism in the Lagrangian view, though the alignment statistics differ and viscosity prevents unbounded growth. In this paper, the stretching properties of fluid elements and vorticity along Lagrangian paths are studied in a channel flow at Reτ = 1000 and compared with prior, known results from isotropic turbulence. To track Lagrangian paths in a public database containing Direct Numerical Simulation (DNS) results, the task-parallel approach previously employed in the isotropic database is extended to the case of flow in a bounded domain. It is shown that above 100 viscous units from the wall, stretching statistics are equal to their isotropic values, in support of the local isotropy hypothesis. Normalized by dissipation rate, the stretching in the buffer layer and below is less efficient due to less favorable alignment statistics. The Cramér function characterizing cumulative Lagrangian stretching statistics shows that overall the channel flow has about half of the stretching per unit dissipation compared with isotropic turbulence. Supported by a National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1232825, and by National Science Foundation Grants CBET-1507469, ACI-1261715, OCI-1244820 and by JHU IDIES.
Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process
NASA Astrophysics Data System (ADS)
Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.
2018-03-01
A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.
Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process
NASA Astrophysics Data System (ADS)
Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.
2018-06-01
A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.
Energy Optimal Path Planning: Integrating Coastal Ocean Modelling with Optimal Control
NASA Astrophysics Data System (ADS)
Subramani, D. N.; Haley, P. J., Jr.; Lermusiaux, P. F. J.
2016-02-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. To set up the energy optimization, the relative vehicle speed and headings are considered to be stochastic, and new stochastic Dynamically Orthogonal (DO) level-set equations that govern their stochastic time-optimal reachability fronts are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. The accuracy and efficiency of the DO level-set equations for solving the governing stochastic level-set reachability fronts are quantitatively assessed, including comparisons with independent semi-analytical solutions. Energy-optimal missions are studied in wind-driven barotropic quasi-geostrophic double-gyre circulations, and in realistic data-assimilative re-analyses of multiscale coastal ocean flows. The latter re-analyses are obtained from multi-resolution 2-way nested primitive-equation simulations of tidal-to-mesoscale dynamics in the Middle Atlantic Bight and Shelbreak Front region. The effects of tidal currents, strong wind events, coastal jets, and shelfbreak fronts on the energy-optimal paths are illustrated and quantified. Results showcase the opportunities for longer-duration missions that intelligently utilize the ocean environment to save energy, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.
One-dimensional acoustic standing waves in rectangular channels for flow cytometry.
Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W
2012-07-01
Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.
Soil pipe flow tracer experiments: 1. Connectivity and transport characteristics
USDA-ARS?s Scientific Manuscript database
Much debate has occurred in catchment hydrology regarding the connectivity of flow paths from upslope areas to catchment outlets. This study was conducted in two catchments, one with three upper branches, in a loess soil with a fragipan that fosters lateral flow and exhibits an extensive distributio...
Application of a Transient Storage Zone Model o Soil Pipeflow Tracer Injection Experiments
USDA-ARS?s Scientific Manuscript database
Soil pipes, defined here as discrete preferential flow paths generally parallel to the slope, are important subsurface flow pathways that play a role in many soil erosion phenomena. However, limited research has been performed on quantifying and characterizing their flow and transport characteristic...
Geng, Xuhui; Shi, Meng; Ning, Haijing; Feng, Chunbo; Guan, Yafeng
2018-05-15
A compact and low-cost laser induced fluorescence (LIF) detector based on confocal structure for capillary flow systems was developed and applied for analysis of Her2 protein on single Hela cells. A low-power and low-cost 450 nm laser diode (LD) instead of a high quality laser was used as excitation light source. A compact optical design together with shortened optical path length improved the optical efficiency and detection sensitivity. A superior silicon based photodetector assembly was used for fluorescence detection instead of a photomultiplier (PMT). The limit of detection (LOD) for fluorescein sodium was 3 × 10 -12 M or 165 fluorescein molecules in detection volume measured on a homemade capillary electroosmotic driven (EOD)-LIF system, which was similar to commercial LIFs. Compared to commercial LIFs, the whole volume of our LIF was reduced to 1/2-1/3, and the cost was less than 1/3 of them. Copyright © 2018 Elsevier B.V. All rights reserved.
Measurement of transient gas flow parameters by diode laser absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolshov, M A; Kuritsyn, Yu A; Liger, V V
2015-04-30
An absorption spectrometer based on diode lasers is developed for measuring two-dimension maps of temperature and water vapour concentration distributions in the combustion zones of two mixing supersonic flows of fuel and oxidiser in the single run regime. The method of measuring parameters of hot combustion zones is based on detection of transient spectra of water vapour absorption. The design of the spectrometer considerably reduces the influence of water vapour absorption along the path of a sensing laser beam outside the burning chamber. The optical scheme is developed, capable of matching measurement results in different runs of mixture burning. Amore » new algorithm is suggested for obtaining information about the mixture temperature by constructing the correlation functions of the experimental spectrum with those simulated from databases. A two-dimensional map of temperature distribution in a test chamber is obtained for the first time under the conditions of plasma-induced combusion of the ethylene – air mixture. (laser applications and other topics in quantum electronics)« less
Cracking the chocolate egg problem: polymeric films coated on curved substrates
NASA Astrophysics Data System (ADS)
Brun, Pierre-Thomas; Lee, Anna; Marthelot, Joel; Balestra, Gioele; Gallaire, François; Reis, Pedro
2015-11-01
Inspired by the traditional chocolate egg recipe, we show that pouring a polymeric solution onto spherical molds yields a simple and robust path of fabrication of thin elastic curved shells. The drainage dynamics naturally leads to uniform coatings frozen in time as the polymer cures, which are subsequently peeled off their mold. We show how the polymer curing affects the drainage dynamics and eventually selects the shell thickness and sets its uniformity. To this end, we perform coating experiments using silicon based elastomers, Vinylpolysiloxane (VPS) and Polydimethylsiloxane (PDMS). These results are rationalized combining numerical simulations of the lubrication flow field to a theoretical model of the dynamics yielding an analytical prediction of the formed shell characteristics. In particular, the robustness of the coating technique and its flexibility, two critical features for providing a generic framework for future studies, are shown to be an inherent consequence of the flow field (memory loss). The shell structure is both independent of initial conditions and tailorable by changing a single experimental parameter.
Manckoundia, Patrick; Pfitzenmeyer, Pierre; d'Athis, Philippe; Dubost, Véronique; Mourey, France
2006-02-01
The aims of this study were to analyze the effects of cognitive task on static posture in Alzheimer's disease (AD) and in healthy elderly (HE) subjects and to evaluate whether those effects were greater in AD subjects than in HE subjects. We performed a posturographic analysis on 13 subjects with mild AD (mean age, 79.7+/-5.1 years, Mini-Mental State Examination scores between 18 and 23) and on 17 HE subjects (mean age, 78.5+/-4.4 years). After watching a video sequence, the subjects were asked to maintain a stable upright posture while standing on a force platform. Then, the postural sway was measured during the following two conditions: (1) quiet standing and (2) both standing and answering questions about the video sequence. We were interested in the center of pressure (CoP) area and path. For each group, the single task was compared to the dual task for the CoP area and path. We also compared the variability of both CoP area (variation of the CoP area between the single and the dual task) and path (variation of the CoP path between the single and the dual task) between the two groups. We showed that there was no significant difference between the single and the dual task in HE subjects concerning the CoP area and path, in contrast to the AD group, and that variability of both the CoP area and path were significantly greater in the AD subjects than in the HE subjects. This finding may contribute to the risk of falls in AD patients. Copyright (c) 2005 Movement Disorder Society.
Barriers Keep Drops Of Water Out Of Infrared Gas Sensors
NASA Technical Reports Server (NTRS)
Murray, Sean K.
1996-01-01
Infrared-sensor cells used for measuring partial pressures of CO(2) and other breathable gases modified to prevent entry of liquid water into sensory optical paths of cells. Hydrophobic membrane prevents drops of water entrained in flow from entering optical path from lamp to infrared detectors.
40 CFR 1033.525 - Smoke testing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... measure smoke emissions using a full-flow, open path light extinction smokemeter. A light extinction meter... path length equal to the hydraulic diameter. The light extinction meter must meet the requirements of... apertures (or windows and lenses) and on the axis of the light beam. (8) You may use light extinction meters...
40 CFR 1033.525 - Smoke testing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... measure smoke emissions using a full-flow, open path light extinction smokemeter. A light extinction meter... path length equal to the hydraulic diameter. The light extinction meter must meet the requirements of... apertures (or windows and lenses) and on the axis of the light beam. (8) You may use light extinction meters...
40 CFR 1033.525 - Smoke testing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... measure smoke emissions using a full-flow, open path light extinction smokemeter. A light extinction meter... path length equal to the hydraulic diameter. The light extinction meter must meet the requirements of... apertures (or windows and lenses) and on the axis of the light beam. (8) You may use light extinction meters...
40 CFR 1033.525 - Smoke testing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... measure smoke emissions using a full-flow, open path light extinction smokemeter. A light extinction meter... path length equal to the hydraulic diameter. The light extinction meter must meet the requirements of... apertures (or windows and lenses) and on the axis of the light beam. (8) You may use light extinction meters...
Code of Federal Regulations, 2010 CFR
2010-01-01
... fittings, or the identical water-passage design features that use the same path of water in the highest... the same path of water in the highest-flow mode. (20) With respect to water closets, which have...-foot high output lamps) with recessed double contact bases of nominal overall length of 96 inches; (4...
USDA-ARS?s Scientific Manuscript database
Critical path analysis (CPA) is a method for estimating macroscopic transport coefficients of heterogeneous materials that are highly disordered at the micro-scale. Developed originally to model conduction in semiconductors, numerous researchers have noted that CPA might also have relevance to flow ...
Using Wind Tunnels to Predict Bird Mortality in Wind Farms: The Case of Griffon Vultures
de Lucas, Manuela; Ferrer, Miguel; Janss, Guyonne F. E.
2012-01-01
Background Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. Methodology/Principal Findings As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. Conclusions Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality. PMID:23152764
NASA Astrophysics Data System (ADS)
Zimmer, Margaret A.; McGlynn, Brian L.
2018-03-01
Watersheds are three-dimensional hydrologic systems where the longitudinal expansion/contraction of stream networks, vertical connection/disconnection between shallow and deep groundwater systems, and lateral connectivity of these water sources to streams mediate runoff production and nutrient export. The connectivity of runoff source areas during both baseflow and stormflow conditions and their combined influence on biogeochemical fluxes remain poorly understood. Here we focused on a set of 3.3 and 48.4 ha nested watersheds (North Carolina, USA). These watersheds comprise ephemeral and intermittent runoff-producing headwaters and perennial runoff-producing lowlands. Within these landscape elements, we characterized the timing and magnitude of precipitation, runoff, and runoff-generating flow paths. The active surface drainage network (ASDN) reflected connectivity to, and contributions from, source areas that differed under baseflow and stormflow conditions. The baseflow-associated ASDN expanded and contracted seasonally, driven by the rise and fall of the seasonal water table. Superimposed on this were event-activated source area contributions driven by connectivity to surficial and shallow subsurface flow paths. Frequently activated shallow flow paths also caused increased in-stream dissolved organic carbon (DOC) concentrations with increases in runoff across both watershed scales. The spread and variability within this DOC-runoff relationship was driven by a seasonal depletion of DOC from continual shallow subsurface flow path activation and subsequent replenishment from autumn litterfall. Our findings suggest that hydrobiogeochemical signals at larger watershed outlets can be driven by the expansion, contraction, and connection of lateral, longitudinal, and vertical source areas with distinct runoff generation processes.
NASA Astrophysics Data System (ADS)
Turnbull, L.; Wainwright, J.
2012-04-01
The invasion of desert grasslands by shrubs is a process that is associated with strong ecohydrological feedbacks. As shrubs invade into grasslands, runoff-generating areas become more connected, due to changes in vegetation cover and distribution. Previous field-based experimentation has demonstrated that runoff-generating areas over grassland can become highly connected, but only under extremely large rainfall events that tend to occur infrequently. In contrast, on shrub-dominated hillslopes, it has been observed that bare areas become connected even under relatively small rainfall events. In this study we carry out a scenario-based modelling analysis, using Model for Assessing Hillslope to Landscape Erosion, Runofff, And Nutrients (MAHLERAN), to investigate changes in hydrological connectivity at over a trajectory of shrub invasion, from a grassland end member to a shrubland end member under different rainfall and antecedent soil-moisture conditions. We hypothesize that (i) as shrubs invade into grasslands the connectivity of flow paths will increase, transporting water, sediment and nutrients over greater distances leading to an increased loss of essential resources from hillslopes and (ii) the extent to which flow paths become connected will be sensitive to antecedent soil-moisture conditions, and therefore that the timing as well as magnitude of runoff events will be important, but less so with increasing levels of shrub encroachment. We quantify hydrological connectivity by using a metric to calculate the maximum length of runoff-generating cells contributing flow to a point, to quantify the connectivity of runoff and entrained sediment. The metric is normalized relative to the maximum potential flow-path length to enable standardized comparisons between plots of different types. Results show that there are critical thresholds for large flow- and sediment-production events, which are a function of both rainfall type and antecedent moisture. The implication is that the pattern of rainfall events throughout a monsoon season in the US Southwest can be critical in reinforcing feedbacks that lead to desertification by producing enhanced connectivity of flow and erosion processes.
Spatial variation of vessel grouping in the xylem of Betula platyphylla Roth.
Zhao, Xiping
2016-01-01
Vessel grouping in angiosperms may improve hydraulic integration and increase the spread of cavitations through redundancy pathways. Although disputed, it is increasingly attracting research interest as a potentially significant hydraulic trait. However, the variation of vessel grouping in a tree is poorly understood. I measured the number of solitary and grouped vessels in the xylem of Betula platyphylla Roth. from the pith to the bark along the water flow path. The vessel grouping parameters included the mean number of vessels per vessel group (VG), percentage of solitary vessels (SVP), percentage of radial multiple vessels (MVP), and percentage of cluster vessels (CVP). The effects of cambial age (CA) and flow path-length (PL) on the vessel grouping were analyzed using a linear mixed model.VG and CVP increased nonlinearly, SVP decreased nonlinearly with PL. In trunks and branches, VG and CVP decreased nonlinearly, and SVP increased nonlinearly with CA. In roots, the parameters had no change with CA. MVP was almost constant with PL or CA. The results suggest that vessel grouping has a nonrandom variation pattern, which is affected deeply by cambial age and water flow path.
Simulation of Runoff Concentration on Arable Fields and the Impact of Adapted Tillage Practises
NASA Astrophysics Data System (ADS)
Winter, F.; Disse, M.
2012-04-01
Conservational tillage can reduce runoff on arable fields. Due to crop residues remaining on the fields a seasonal constant ground cover is achieved. This additional soil cover not only decreases the drying of the topsoil but also reduces the mechanical impact of raindrops and the possibly resulting soil crust. Further implications of the mulch layer can be observed during heavy precipitation events and occurring surface runoff. The natural roughness of the ground surface is further increased and thus the flow velocity is decreased, resulting in an enhanced ability of runoff to infiltrate into the soil (so called Runon-Infiltration). The hydrological model system WaSiM-ETH hitherto simulates runoff concentration by a flow time grid in the catchment, which is derived from topographical features of the catchment during the preprocessing analysis. The retention of both surface runoff and interflow is modelled by a single reservoir in every discrete flow time zone until the outlet of a subcatchment is reached. For a more detailed analysis of the flow paths in catchments of the lower mesoscale (< 1 km2) the model was extended by a kinematic wave approach for the surface runoff concentration. This allows the simulation of small-scale variation in runoff generation and its temporal distribution in detail. Therefore the assessment of adapted tillage systems can be derived. On singular fields of the Scheyern research farm north-west of Munich it can be shown how different crops and tillage practises can influence runoff generation and concentration during single heavy precipitation events. From the simulation of individual events in agricultural areas of the lower mesoscale hydrologically susceptible areas can be identified and the positive impact of an adapted agricultural management on runoff generation and concentration can be quantifed.
Micromachined Active Magnetic Regenerator for Low-Temperature Magnetic Coolers
NASA Technical Reports Server (NTRS)
Chen, Weibo; Jaeger, Michael D.
2013-01-01
A design of an Active Magnetic Regenerative Refrigeration (AMRR) system has been developed for space applications. It uses an innovative 3He cryogenic circulator to provide continuous remote/distributed cooling at temperatures in the range of 2 K with a heat sink at about 15 K. A critical component technology for this cooling system is a highly efficient active magnetic regenerator, which is a regenerative heat exchanger with its matrix material made of magnetic refrigerant gadolinium gallium garnet (GGG). Creare Inc. is developing a microchannel GGG regenerator with an anisotropic structured bed for high system thermal efficiency. The regenerator core consists of a stack of thin, single-crystal GGG disks alternating with thin polymer insulating layers. The insulating layers help minimize the axial conduction heat leak, since GGG has a very high thermal conductivity in the regenerator s operating temperature range. The GGG disks contain micro channels with width near 100 micrometers, which enhance the heat transfer between the circulating flow and the refrigerant bed. The unique flow configuration of the GGG plates ensures a uniform flow distribution across the plates. The main fabrication challenges for the regenerator are the machining of high-aspect-ratio microchannels in fragile, single-crystal GGG disks and fabrication and assembly of the GGG insulation layers. Feasibility demonstrations to date include use of an ultrashort- pulse laser to machine microchannels without producing unacceptable microcracking or deposition of recast material, as shown in the figure, and attachment of a thin insulation layer to a GGG disk without obstructing the flow paths. At the time of this reporting, efforts were focused on improving the laser machining process to increase machining speed and further reduce microcracking.
Optical system and method for gas detection and monitoring
NASA Technical Reports Server (NTRS)
Polzin, Kurt A. (Inventor); Sinko, John Elihu (Inventor); Korman, Valentin (Inventor); Witherow, William K. (Inventor); Hendrickson, Adam Gail (Inventor)
2011-01-01
A free-space optical path of an optical interferometer is disposed in an environment of interest. A light beam is guided to the optical interferometer using a single-mode optical fiber. The light beam traverses the interferometer's optical path. The light beam guided to the optical path is combined with the light beam at the end of the optical path to define an output light. A temporal history of the output light is recorded.
Groundwater Flow Through a Constructed Treatment Wetland
2003-03-01
the treatment wetland is to biodegrade perchloroethylene, which is present in the groundwater as a contaminant. Contaminated water enters the...characterizing groundwater flow through a constructed treatment wetland, one can visualize the flow paths of water through various types of soil. With...flowing groundwater and are now appearing in drinking water wells. Since contamination originated from government practices at many of these sites
Methodology for Augmenting Existing Paths with Additional Parallel Transects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, John E.
2013-09-30
Visual Sample Plan (VSP) is sample planning software that is used, among other purposes, to plan transect sampling paths to detect areas that were potentially used for munition training. This module was developed for application on a large site where existing roads and trails were to be used as primary sampling paths. Gap areas between these primary paths needed to found and covered with parallel transect paths. These gap areas represent areas on the site that are more than a specified distance from a primary path. These added parallel paths needed to optionally be connected together into a single path—themore » shortest path possible. The paths also needed to optionally be attached to existing primary paths, again with the shortest possible path. Finally, the process must be repeatable and predictable so that the same inputs (primary paths, specified distance, and path options) will result in the same set of new paths every time. This methodology was developed to meet those specifications.« less
Outcomes from the DOE Workshop on Turbulent Flow Simulation at the Exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprague, Michael; Boldyrev, Stanislav; Chang, Choong-Seock
This paper summarizes the outcomes from the Turbulent Flow Simulation at the Exascale: Opportunities and Challenges Workshop, which was held 4-5 August 2015, and was sponsored by the U.S. Department of Energy Office of Advanced Scientific Computing Research. The workshop objective was to define and describe the challenges and opportunities that computing at the exascale will bring to turbulent-flow simulations in applied science and technology. The need for accurate simulation of turbulent flows is evident across the U.S. Department of Energy applied-science and engineering portfolios, including combustion, plasma physics, nuclear-reactor physics, wind energy, and atmospheric science. The workshop brought togethermore » experts in turbulent-flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants defined a research agenda and path forward that will enable scientists and engineers to continually leverage, engage, and direct advances in computational systems on the path to exascale computing.« less
Plane Poiseuille Flow of a Rarefied Gas in the Presence of a Strong Gravitation
NASA Astrophysics Data System (ADS)
Doi, Toshiyuki
2010-11-01
Poiseuille flow of a rarefied gas between two horizontal planes in the presence of a strong gravitation is considered, where the gravity is so strong that the path of a molecule is curved considerably as it ascends or descends the distance of the planes. The gas behavior is studied based on the Boltzmann equation. An asymptotic analysis for a slow variation in the longitudinal direction is carried out and the problem is reduced to a spatially one dimensional problem, as was in the Poiseuille flow problem in the absence of the gravitation. The mass flow rate as well as the macroscopic variables is obtained for a wide range of the mean free path of the gas and the gravity. A numerical analysis of a two dimensional problem is also carried out and the result of the asymptotic analysis is verified.
A multi-agent system for monitoring patient flow.
Rosati, Samanta; Tralli, Augusta; Balestra, Gabriella
2013-01-01
Patient flow within a healthcare facility may follow different and, sometimes, complicated paths. Each path phase is associated with the documentation of the activities carried out during it and may require the consultation of clinical guidelines, medical literature and the use of specific software and decision aid systems. In this study we present the design of a Patient Flow Management System (PFMS) based on Multi Agent Systems (MAS) methodology. System requirements were identified by means of process modeling tools and a MAS consisting of six agents was designed and is under construction. Its main goal is to support both the medical staff during the health care process and the hospital managers in assuring that all the required documentation is completed and available. Moreover, such a tool can be used for the assessment and comparison of different clinical pathways, in order to identify possible improvementsand the optimum patient flow.
Axially Tapered And Bilayer Microchannels For Evaporative Cooling Devices
Nilson, Robert; Griffiths, Stewart
2005-10-04
The invention consists of an evaporative cooling device comprising one or more microchannels whose cross section is axially reduced to control the maximum capillary pressure differential between liquid and vapor phases. In one embodiment, the evaporation channels have a rectangular cross section that is reduced in width along a flow path. In another embodiment, channels of fixed width are patterned with an array of microfabricated post-like features such that the feature size and spacing are gradually reduced along the flow path. Other embodiments incorporate bilayer channels consisting of an upper cover plate having a pattern of slots or holes of axially decreasing size and a lower fluid flow layer having channel widths substantially greater than the characteristic microscale dimensions of the patterned cover plate. The small dimensions of the cover plate holes afford large capillary pressure differentials while the larger dimensions of the lower region reduce viscous flow resistance.
Turbine exhaust diffuser flow path with region of reduced total flow area
Orosa, John A.
2012-12-25
An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub that has an upstream end and a downstream end. The outer boundary has a region in which the outer boundary extends radially inward toward the hub. The region can begin at a point that is substantially aligned with the downstream end of the hub or, alternatively, at a point that is proximately upstream of the downstream end of the hub. The region directs at least a portion of an exhaust flow in the diffuser toward the hub. As a result, the exhaust diffuser system and method can achieve the performance of a long hub system while enjoying the costs of a short hub system.
FAST - A multiprocessed environment for visualization of computational fluid dynamics
NASA Technical Reports Server (NTRS)
Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin
1991-01-01
The paper presents the Flow Analysis Software Toolset (FAST) to be used for fluid-mechanics analysis. The design criteria for FAST including the minimization of the data path in the computational fluid-dynamics (CFD) process, consistent user interface, extensible software architecture, modularization, and the isolation of three-dimensional tasks from the application programmer are outlined. Each separate process communicates through the FAST Hub, while other modules such as FAST Central, NAS file input, CFD calculator, surface extractor and renderer, titler, tracer, and isolev might work together to generate the scene. An interprocess communication package making it possible for FAST to operate as a modular environment where resources could be shared among different machines as well as a single host is discussed.
Aeroelastic Tailoring via Tow Steered Composites
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Jutte, Christine V.
2014-01-01
The use of tow steered composites, where fibers follow prescribed curvilinear paths within a laminate, can improve upon existing capabilities related to aeroelastic tailoring of wing structures, though this tailoring method has received relatively little attention in the literature. This paper demonstrates the technique for both a simple cantilevered plate in low-speed flow, as well as the wing box of a full-scale high aspect ratio transport configuration. Static aeroelastic stresses and dynamic flutter boundaries are obtained for both cases. The impact of various tailoring choices upon the aeroelastic performance is quantified: curvilinear fiber steering versus straight fiber steering, certifiable versus noncertifiable stacking sequences, a single uniform laminate per wing skin versus multiple laminates, and identical upper and lower wing skins structures versus individual tailoring.
Planning Paths Through Singularities in the Center of Mass Space
NASA Technical Reports Server (NTRS)
Doggett, William R.; Messner, William C.; Juang, Jer-Nan
1998-01-01
The center of mass space is a convenient space for planning motions that minimize reaction forces at the robot's base or optimize the stability of a mechanism. A unique problem associated with path planning in the center of mass space is the potential existence of multiple center of mass images for a single Cartesian obstacle, since a single center of mass location can correspond to multiple robot joint configurations. The existence of multiple images results in a need to either maintain multiple center of mass obstacle maps or to update obstacle locations when the robot passes through a singularity, such as when it moves from an elbow-up to an elbow-down configuration. To illustrate the concepts presented in this paper, a path is planned for an example task requiring motion through multiple center of mass space maps. The object of the path planning algorithm is to locate the bang- bang acceleration profile that minimizes the robot's base reactions in the presence of a single Cartesian obstacle. To simplify the presentation, only non-redundant robots are considered and joint non-linearities are neglected.
Direct simulation of high-vorticity gas flows
NASA Technical Reports Server (NTRS)
Bird, G. A.
1987-01-01
The computational limitations associated with the molecular dynamics (MD) method and the direct simulation Monte Carlo (DSMC) method are reviewed in the context of the computation of dilute gas flows with high vorticity. It is concluded that the MD method is generally limited to the dense gas case in which the molecular diameter is one-tenth or more of the mean free path. It is shown that the cell size in DSMC calculations should be small in comparison with the mean free path, and that this may be facilitated by a new subcell procedure for the selection of collision partners.
Design of supercritical cascades with high solidity
NASA Technical Reports Server (NTRS)
Sanz, J. M.
1982-01-01
The method of complex characteristics of Garabedian and Korn was successfully used to design shockless cascades with solidities of up to one. A code was developed using this method and a new hodograph transformation of the flow onto an ellipse. This code allows the design of cascades with solidities of up to two and larger turning angles. The equations of potential flow are solved in a complex hodograph like domain by setting a characteristic initial value problem and integrating along suitable paths. The topology that the new mapping introduces permits a simpler construction of these paths of integration.
THE INTERACTION MEAN FREE PATH OF PROTONS AT 3 Tev
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, G.; Gauld, C.F.; McCusker, C.B.A.
1963-02-16
The mean free path ( F ) of singly charged primary particles in the energy region of 3 Tev is determined using a maximum-likelihood technique. With all events taken into account a value of F = 22 cm is obtained. Considering only those events with a potential path greater than 20 cm, F becomes 27 cm. (auth)
NASA Astrophysics Data System (ADS)
Frey, Karen E.; Sobczak, William V.; Mann, Paul J.; Holmes, Robert M.
2016-04-01
The Kolyma River in northeast Siberia is among the six largest Arctic rivers and drains a region underlain by vast deposits of Holocene-aged peat and Pleistocene-aged loess known as yedoma, most of which is currently stored in ice-rich permafrost throughout the region. These peat and yedoma deposits are important sources of dissolved organic matter (DOM) to inland waters that in turn play a significant role in the transport and ultimate remineralization of organic carbon to CO2 and CH4 along the terrestrial flow-path continuum. The turnover and fate of terrigenous DOM during offshore transport largely depends upon the composition and amount of carbon released to inland and coastal waters. Here, we measured the ultraviolet-visible optical properties of chromophoric DOM (CDOM) from a geographically extensive collection of waters spanning soil pore waters, streams, rivers, and the Kolyma River mainstem throughout a ˜ 250 km transect of the northern Kolyma River basin. During the period of study, CDOM absorption coefficients were found to be robust proxies for the concentration of DOM, whereas additional CDOM parameters such as spectral slopes (S) were found to be useful indicators of DOM quality along the flow path. In particular, the spectral slope ratio (SR) of CDOM demonstrated statistically significant differences between all four water types and tracked changes in the concentration of bioavailable DOC, suggesting that this parameter may be suitable for clearly discriminating shifts in organic matter characteristics among water types along the full flow-path continuum across this landscape. However, despite our observations of downstream shifts in DOM composition, we found a relatively constant proportion of DOC that was bioavailable ( ˜ 3-6 % of total DOC) regardless of relative water residence time along the flow path. This may be a consequence of two potential scenarios allowing for continual processing of organic material within the system, namely (a) aquatic microorganisms are acclimating to a downstream shift in DOM composition and/or (b) photodegradation is continually generating labile DOM for continued microbial processing of DOM along the flow-path continuum. Without such processes, we would otherwise expect to see a declining fraction of bioavailable DOC downstream with increasing residence time of water in the system. With ongoing and future permafrost degradation, peat and yedoma deposits throughout the northeast Siberian region will become more hydrologically active, providing greater amounts of DOM to fluvial networks and ultimately to the Arctic Ocean. The ability to rapidly and comprehensively monitor shifts in the quantity and quality of DOM across the landscape is therefore critical for understanding potential future feedbacks within the Arctic carbon cycle.
Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia
2012-01-01
Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.
NASA Astrophysics Data System (ADS)
Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David A.; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia
2012-05-01
Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu`u `Ō`ō-Kupaianaha eruption at Kīlauea, Hawai`i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.
Zeiri, Offer M; Storey, Andrew P; Ray, Steven J; Hieftje, Gary M
2017-02-01
A new direct-current microplasma-based flowing atmospheric pressure afterglow (FAPA) source was developed for use in ambient desorption-ionization mass spectrometry. The annular-shaped microplasma is formed in helium between two concentric stainless-steel capillaries that are separated by an alumina tube. Current-voltage characterization of the source shows that this version of the FAPA operates in the normal glow-discharge regime. A glass surface placed in the path of the helium afterglow reaches temperatures of up to approximately 400 °C; the temperature varies with distance from the source and helium flow rate through the source. Solid, liquid, and vapor samples were examined by means of a time-of-flight mass spectrometer. Results suggest that ionization occurs mainly through protonation, with only a small amount of fragmentation and adduct formation. The mass range of the source was shown to extend up to at least m/z 2722 for singly charged species. Limits of detection for several small organic molecules were in the sub-picomole range. Examination of competitive ionization revealed that signal suppression occurs only at high (mM) concentrations of competing substances. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of tillage on macropore flow and phosphorus transport to tile drains
USDA-ARS?s Scientific Manuscript database
Elevated phosphorus (P) concentrations in subsurface drainage water are thought to be the result of P bypassing the soil matrix via macropore flow. The objectives of this study were to quantify event water delivery to tile drains via macropore flow paths during storm events and to determine the effe...
Diakunchak, Ihor S.
2013-03-05
A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.
Lefschetz thimbles in fermionic effective models with repulsive vector-field
NASA Astrophysics Data System (ADS)
Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira
2018-06-01
We discuss two problems in complexified auxiliary fields in fermionic effective models, the auxiliary sign problem associated with the repulsive vector-field and the choice of the cut for the scalar field appearing from the logarithmic function. In the fermionic effective models with attractive scalar and repulsive vector-type interaction, the auxiliary scalar and vector fields appear in the path integral after the bosonization of fermion bilinears. When we make the path integral well-defined by the Wick rotation of the vector field, the oscillating Boltzmann weight appears in the partition function. This "auxiliary" sign problem can be solved by using the Lefschetz-thimble path-integral method, where the integration path is constructed in the complex plane. Another serious obstacle in the numerical construction of Lefschetz thimbles is caused by singular points and cuts induced by multivalued functions of the complexified scalar field in the momentum integration. We propose a new prescription which fixes gradient flow trajectories on the same Riemann sheet in the flow evolution by performing the momentum integration in the complex domain.
NASA Astrophysics Data System (ADS)
Gordon, T. D.; Wagner, N. L.; Richardson, M.; Law, D. C.; Wolfe, D. E.; Brock, C. A.; Erdesz, F.; Murphy, D. M.
2014-12-01
The ability to frame effective climate change policy depends strongly on reducing the uncertainty in aerosol radiative forcing, which is currently nearly as great as best estimates of its magnitude. Achieving this goal will require significant progress in measuring aerosol properties, including aerosol optical depth, single scattering albedo and the effect of relative humidity on these properties for both fine and coarse particles. However both ground- and space-based instruments fail or are highly biased in the presence of clouds, severely limiting quantitative estimates of the radiative effects of aerosols where they are advected over low-level clouds. Moreover, many in situ aerosol measurements exclude the coarse fraction, which can be very important in and downwind of desert regions. By measuring the decay rate of a pulsed laser in an optically resonant cavity, cavity ringdown spectrometers (CRDSs) have been employed successfully in measuring aerosol extinction for particles in relative humidities below 90%. At very high humidities (as found in and near clouds), however, existing CRDSs perform poorly, diverging significantly from theoretical extinction values as humidities approach 100%. The new open-path aerosol extinction CRDS described in this poster measures extinction as aerosol is drawn through the sample cavity directly without inlets or tubing for channeling the flow, which cause particle losses, condensation at high RH and other artifacts. This poster presents the key elements of the new open-path CRDS design as well as comparisons with an earlier generation closed-path CRDS and preliminary data obtained during a field study at the 300 meter tower at NOAA's Boulder Atmospheric Observatory (BAO) in Colorado.
Flow-path textures and mineralogy in tuffs of the unsaturated zone
Levy, Schön; Chipera, Steve; WoldeGabriel, Giday; Fabryka-Martin, June; Roach, Jeffrey; Sweetkind, Donald S.; Haneberg, William C.; Mozley, Peter S.; Moore, J. Casey; Goodwin, Laurel B.
1999-01-01
The high concentration of chlorine-36 (36Cl) produced by above-ground nuclear tests (bomb-pulse) provides a fortuitous tracer for infiltration during the last 50 years, and is used to detect fast flow in the unsaturated zone at Yucca Mountain, Nevada, a thick deposit of welded and nonwelded tuffs. Evidence of fast flow as much as 300 m into the mountain has been found in several zones in a 7.7-km tunnel. Many zones are associated with faults that provide continuous fracture flow paths from the surface. In the Sundance fault zone, water with the bomb-pulse signature has moved into subsidiary fractures and breccia zones. We found no highly distinctive mineralogic associations of fault and fracture samples containing bomb-pulse 36Cl. Bomb-pulse sites are slightly more likely to have calcite deposits than are non-bomb-pulse sites. Most other mineralogic and textural associations of fast-flow paths reflect the structural processes leading to locally enhanced permeability rather than the effects of ground-water percolation. Water movement through the rock was investigated by isotopic analysis of paired samples representing breccia zones and fractured wall rock bounding the breccia zones. Where bomb-pulse 36Cl is present, the waters in bounding fractures and intergranular pores of the fast pathways are not in equilibrium with respect to the isotopic signal. In structural domains that have experienced extensional deformation, fluid flow within a breccia is equivalent to matrix flow in a particulate rock, whereas true fracture flow occurs along the boundaries of a breccia zone. Where shearing predominated over extension, the boundary between wall rock and breccia is rough and irregular with a tight wallrock/breccia contact. The absence of a gap between the breccia and the wall rock helps maintain fluid flow within the breccia instead of along the wallrock/breccia boundary, leading to higher 36Cl/Cl values in the breccia than in the wall rock.
NASA Astrophysics Data System (ADS)
Henson, W.; De Rooij, R.; Graham, W. D.
2016-12-01
The Upper Floridian Aquifer is hydrogeologically complex; limestone dissolution has led to vertical and horizontal preferential flow paths. Locations of karst conduits are unknown and conduit properties are poorly constrained. Uncertainty in effects of conduit location, size, and density, network geometry and connectivity on hydrologic and transport responses is not well quantified, leading to limited use of discrete-continuum models that incorporate conduit networks for regional-scale hydrologic regulatory models. However, conduit networks typically dominate flow and contaminant transport in karst aquifers. We evaluated sensitivity of simulated water and nitrate fluxes and flow paths to karst conduit geometry in a springshed representative of Silver Springs, Florida, using a novel calcite dissolution conduit-generation algorithm coupled with a discrete-continuum flow and transport model (DisCo). Monte Carlo simulations of conduit generation, groundwater flow, and conservative solute transport indicate that, if a first magnitude spring system conduit network developed (i.e., spring flow >2.8 m3/s), the uncertainty in hydraulic and solute pulse response metrics at the spring vent was minimally related to locational uncertainty of network elements. Across the ensemble of realizations for various distributions of conduits, first magnitude spring hydraulic pulse metrics (e.g., steady-flow, peak flow, and recession coefficients) had < 0.01 coefficient of variation (CV). Similarly, spring solute breakthrough curve moments had low CV (<0.08); peak arrival had CV=0.06, mean travel time had CV=0.05, and travel time standard deviation had CV=0.08. Nevertheless, hydraulic and solute pulse response metrics were significantly different than those predicted by an equivalent porous-media model. These findings indicate that regional-scale decision models that incorporate karst preferential flow paths within an uncertainty framework can be used to better constrain aquifer-vulnerability estimates, despite lacking information about actual conduit locations.
Gaseous detonation initiation via wave implosion
NASA Astrophysics Data System (ADS)
Jackson, Scott Irving
Efficient detonation initiation is a topic of intense interest to designers of pulse detonation engines. This experimental work is the first to detonate propane-air mixtures with an imploding detonation wave and to detonate a gas mixture with a non-reflected, imploding shock. In order to do this, a unique device has been developed that is capable of generating an imploding toroidal detonation wave inside of a tube from a single ignition point without any obstruction to the tube flow path. As part of this study, an initiator that creates a large-aspect-ratio planar detonation wave in gas-phase explosive from a single ignition point has also been developed. The effectiveness of our initiation devices has been evaluated. The minimum energy required by the imploding shock for initiation was determined to scale linearly with the induction zone length, indicating the presence of a planar initiation mode. The imploding toroidal detonation initiator was found to be more effective at detonation initiation than the imploding shock initiator, using a comparable energy input to that of current initiator tubes.
NASA Technical Reports Server (NTRS)
Dollar, M.; Bernstein, I. M.; Walston, S.; Prinz, F.; Domnanovich, A.
1987-01-01
Material used in this study was a heat of the alloy CMSX-2. This nickel-based superalloy was provided in the form of oriented single crystals, solutionized for 3 hrs at 1315 C. It was then usually heat treated as follows: 1050 C/16h/air cool + 850 C/48h/air cool. The resulting microstructure is dominated by cuboidal, ordered gamma precipitates with a volume fraction of about 75% and an average size of 0.5 microns. In brief, the most compelling hydrogen induced-changes in deformation structure are: (1) enhanced dislocation accumulation in the gamma matrix; and (2) more extensive cross-slip of superdislocations in the gamma precipitates. The enhanced dislocation density in gamma acts to decrease the mean free path of a superdislocation, while easier cross slip hinders superdislocation movement by providing pinning points in the form of sessile jobs. Both processes contribute to the increase of flow stress and the notable work hardening that occurs prior to fracture.
EGR distribution and fluctuation probe based on CO.sub.2 measurements
Parks, II, James E; Partridge, Jr., William P; Yoo, Ji Hyung
2015-04-07
A diagnostic system having a single-port EGR probe and a method for using the same. The system includes a light source, an EGR probe, a detector and a processor. The light source may provide a combined light beam composed of light from a mid-infrared signal source and a mid-infrared reference source. The signal source may be centered at 4.2 .mu.m and the reference source may be centered at 3.8 .mu.m. The EGR probe may be a single-port probe with internal optics and a sampling chamber with two flow cells arranged along the light path in series. The optics may include a lens for focusing the light beam and a mirror for reflecting the light beam received from a pitch optical cable to a catch optical cable. The signal and reference sources are modulated at different frequencies, thereby allowing them to be separated and the signal normalized by the processor.
Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado
Cannon, S.H.; Kirkham, R.M.; Parise, M.
2001-01-01
A torrential rainstorm on September 1, 1994 at the recently burned hillslopes of Storm King Mountain, CO, resulted in the generation of debris flows from every burned drainage basin. Maps (1:5000 scale) of bedrock and surficial materials and of the debris-flow paths, coupled with a 10-m Digital Elevation Model (DEM) of topography, are used to evaluate the processes that generated fire-related debris flows in this setting. These evaluations form the basis for a descriptive model for fire-related debris-flow initiation. The prominent paths left by the debris flows originated in 0- and 1st-order hollows or channels. Discrete soil-slip scars do not occur at the heads of these paths. Although 58 soil-slip scars were mapped on hillslopes in the burned basins, material derived from these soil slips accounted for only about 7% of the total volume of material deposited at canyon mouths. This fact, combined with observations of significant erosion of hillslope materials, suggests that a runoff-dominated process of progressive sediment entrainment by surface runoff, rather than infiltration-triggered failure of discrete soil slips, was the primary mechanism of debris-flow initiation. A paucity of channel incision, along with observations of extensive hillslope erosion, indicates that a significant proportion of material in the debris flows was derived from the hillslopes, with a smaller contribution from the channels. Because of the importance of runoff-dominated rather than infiltration-dominated processes in the generation of these fire-related debris flows, the runoff-contributing area that extends upslope from the point of debris-flow initiation to the drainage divide, and its gradient, becomes a critical constraint in debris-flow initiation. Slope-area thresholds for fire-related debris-flow initiation from Storm King Mountain are defined by functions of the form Acr(tan ??)3 = S, where Acr is the critical area extending upslope from the initiation location to the drainage divide, and tan ?? is its gradient. The thresholds vary with different materials. ?? 2001 Elsevier Science B.V. All rights reserved.
A judging principle of crucial vibrational transmission paths in plates
NASA Astrophysics Data System (ADS)
Wang, Bin; Li, Dong-Xu; Jiang, Jian-Ping; Liao, Yi-Huan
2016-10-01
This paper developed a judging principle of crucial vibrational transmission path (VTP) in plates. Novel generalized definitions of VTPs are given referred to the meaning of streamlines. And by comparing governing equations, the similarity between energy flow and fluid motion is firstly found so that an analytic method of VTPs in plates is proposed by analogy with fluid motion. Hereafter, the crucial VTP is defined for energy flows at objective points and relative judging criteria is given. Finally, based on two numerical experiments of passive control, the judging principle is indirectly verified by comparing the reduction effects of energy flows at focused points and relative judgment results of crucial VTPs. This paper is meaningful for analyzing and applying the VTPs in plates to guide the control design in future.
NASA Astrophysics Data System (ADS)
Boutchko, Rostyslav; Rayz, Vitaliy L.; Vandehey, Nicholas T.; O'Neil, James P.; Budinger, Thomas F.; Nico, Peter S.; Druhan, Jennifer L.; Saloner, David A.; Gullberg, Grant T.; Moses, William W.
2012-01-01
This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99mTc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.
Boutchko, Rostyslav; Rayz, Vitaliy L; Vandehey, Nicholas T; O'Neil, James P; Budinger, Thomas F; Nico, Peter S; Druhan, Jennifer L; Saloner, David A; Gullberg, Grant T; Moses, William W
2012-01-01
This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18 F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99m Tc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.
Experimental Investigation of Actuators for Flow Control in Inlet Ducts
NASA Astrophysics Data System (ADS)
Vaccaro, John; Elimelech, Yossef; Amitay, Michael
2010-11-01
Attractive to aircraft designers are compact inlets, which implement curved flow paths to the compressor face. These curved flow paths could be employed for multiple reasons. One of which is to connect the air intake to the engine embedded in the aircraft body. A compromise must be made between the compactness of the inlet and its aerodynamic performance. The aerodynamic purpose of inlets is to decelerate the oncoming flow before reaching the engine while minimizing total pressure loss, unsteadiness and distortion. Low length-to-diameter ratio inlets have a high degree of curvature, which inevitably causes flow separation and secondary flows. Currently, the length of the propulsion system is constraining the overall size of Unmanned Air Vehicles (UAVs), thus, smaller more efficient aircrafts could be realized if the propulsion system could be shortened. Therefore, active flow control is studied in a compact (L/D=1.5) inlet to improve performance metrics. Actuation from a spanwise varying coanda type ejector actuator and a hybrid coanda type ejector / vortex generator jet actuator is investigated. Special attention will be given to the pressure recovery at the AIP along with unsteady pressure signatures along the inlet surface and at the AIP.
Potential paths for male-mediated gene flow to and from an isolated grizzly bear population
Peck, Christopher P.; van Manen, Frank T.; Costello, Cecily M.; Haroldson, Mark A.; Landenburger, Lisa; Roberts, Lori L.; Bjornlie, Daniel D.; Mace, Richard D.
2017-01-01
For several decades, grizzly bear populations in the Greater Yellowstone Ecosystem (GYE) and the Northern Continental Divide Ecosystem (NCDE) have increased in numbers and range extent. The GYE population remains isolated and although effective population size has increased since the early 1980s, genetic connectivity between these populations remains a long-term management goal. With only ~110 km distance separating current estimates of occupied range for these populations, the potential for gene flow is likely greater now than it has been for many decades. We sought to delineate potential paths that would provide the opportunity for male-mediated gene flow between the two populations. We first developed step-selection functions to generate conductance layers using ecological, physical, and anthropogenic landscape features associated with non-stationary GPS locations of 124 male grizzly bears (199 bear-years). We then used a randomized shortest path (RSP) algorithm to estimate the average number of net passages for all grid cells in the study region, when moving from an origin to a destination node. Given habitat characteristics that were the basis for the conductance layer, movements follow certain grid cell sequences more than others and the resulting RSP values thus provide a measure of movement potential. Repeating this process for 100 pairs of random origin and destination nodes, we identified paths for three levels of random deviation (θ) from the least-cost path. We observed broad-scale concordance between model predictions for paths originating in the NCDE and those originating in the GYE for all three levels of movement exploration. Model predictions indicated that male grizzly bear movement between the ecosystems could involve a variety of routes, and verified observations of grizzly bears outside occupied range supported this finding. Where landscape features concentrated paths into corridors (e.g., because of anthropogenic influence), they typically followed neighboring mountain ranges, of which several could serve as pivotal stepping stones. The RSP layers provide detailed, spatially explicit information for land managers and organizations working with land owners to identify and prioritize conservation measures that maintain or enhance the integrity of potential areas conducive to male grizzly bear dispersal.
Assessment of Hybrid RANS/LES Turbulence Models for Aeroacoustics Applications
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Lockard, David P.
2010-01-01
Predicting the noise from aircraft with exposed landing gear remains a challenging problem for the aeroacoustics community. Although computational fluid dynamics (CFD) has shown promise as a technique that could produce high-fidelity flow solutions, generating grids that can resolve the pertinent physics around complex configurations can be very challenging. Structured grids are often impractical for such configurations. Unstructured grids offer a path forward for simulating complex configurations. However, few unstructured grid codes have been thoroughly tested for unsteady flow problems in the manner needed for aeroacoustic prediction. A widely used unstructured grid code, FUN3D, is examined for resolving the near field in unsteady flow problems. Although the ultimate goal is to compute the flow around complex geometries such as the landing gear, simpler problems that include some of the relevant physics, and are easily amenable to the structured grid approaches are used for testing the unstructured grid approach. The test cases chosen for this study correspond to the experimental work on single and tandem cylinders conducted in the Basic Aerodynamic Research Tunnel (BART) and the Quiet Flow Facility (QFF) at NASA Langley Research Center. These configurations offer an excellent opportunity to assess the performance of hybrid RANS/LES turbulence models that transition from RANS in unresolved regions near solid bodies to LES in the outer flow field. Several of these models have been implemented and tested in both structured and unstructured grid codes to evaluate their dependence on the solver and mesh type. Comparison of FUN3D solutions with experimental data and numerical solutions from a structured grid flow solver are found to be encouraging.
Spatial characterization of riparian buffer effects on sediment loads from watershed systems.
Momm, Henrique G; Bingner, Ronald L; Yuan, Yongping; Locke, Martin A; Wells, Robert R
2014-09-01
Understanding all watershed systems and their interactions is a complex, but critical, undertaking when developing practices designed to reduce topsoil loss and chemical/nutrient transport from agricultural fields. The presence of riparian buffer vegetation in agricultural landscapes can modify the characteristics of overland flow, promoting sediment deposition and nutrient filtering. Watershed simulation tools, such as the USDA-Annualized Agricultural Non-Point Source (AnnAGNPS) pollution model, typically require detailed information for each riparian buffer zone throughout the watershed describing the location, width, vegetation type, topography, and possible presence of concentrated flow paths through the riparian buffer zone. Research was conducted to develop GIS-based technology designed to spatially characterize riparian buffers and to estimate buffer efficiency in reducing sediment loads in a semiautomated fashion at watershed scale. The methodology combines modeling technology at different scales, at individual concentrated flow paths passing through the riparian zone, and at watershed scales. At the concentrated flow path scale, vegetative filter strip models are applied to estimate the sediment-trapping efficiency for each individual flow path, which are aggregated based on the watershed subdivision and used in the determination of the overall impact of the riparian vegetation at the watershed scale. This GIS-based technology is combined with AnnAGNPS to demonstrate the effect of riparian vegetation on sediment loadings from sheet and rill and ephemeral gully sources. The effects of variability in basic input parameters used to characterize riparian buffers, onto generated outputs at field scale (sediment trapping efficiency) and at watershed scale (sediment loadings from different sources) were evaluated and quantified. The AnnAGNPS riparian buffer component represents an important step in understanding and accounting for the effect of riparian vegetation, existing and/or managed, in reducing sediment loads at the watershed scale. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Retrofitting Steam Turbines with Expired Service Life
NASA Astrophysics Data System (ADS)
Dubrovskii, V. G.; Zubov, A. P.; Koshelev, S. A.; Babiev, A. N.; Kremer, V. L.
2018-06-01
Many pieces of equipment installed at thermal power stations (TPS) have an expired service life or are close to expiry and are obsolete. In addition, the structure of heat consumption by end users has changed. Among the ways for solving the problem of aging equipment is the retrofitting of turbines that allows for service life recovery and improvement of their performance to the modern level. The service life is recovered through replacement of high-temperature assemblies and parts of a turbine, and the performance is improved by retrofitting and major overhaul of low-temperature assemblies. Implementation of modern engineering solutions and numerical methods in designing upgraded flow paths of steam turbines considerably improves the turbine effectiveness. New flow paths include sabre-like guide vanes, integrally-machined shrouds, and effective honeycomb or axial-radial seals. The flow paths are designed using optimization and hydraulic simulation methods as well as approaches for improving the performance on the turbine blading and internal steam flow paths. Retrofitting of turbines should be performed to meet the customers' needs. The feasibility of implementation of one or another alternative must be determined on a case-by-case basis depending on the turbine conditions, the availability of reserves for generating live steam and supplying circulation water, and the demands and capacities for generation and delivery of power and heat. The main principle of retrofitting is to retain the foundation and the auxiliary and heat-exchange equipment that is fit for further operation. With the example of PT-60-130 and T-100-130, the experience is presented of a comprehensive approach to retrofitting considering the customer's current needs and the actual equipment conditions. Due to the use of modern engineering solutions and procedures, retrofitting yields updating and upgrading of the turbine at a relatively low cost.
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2017-01-01
Providers of payloads carried aboard the International Space Station must conduct analyses to demonstrate that any planned gaseous venting events generate no more than a certain level of material that may interfere with optical measurements from other experiments or payloads located nearby. This requirement is expressed in terms of a maximum column number density (CND). Depending on the level of rarefaction, such venting may be characterized by effusion for low flow rates, or by a sonic distribution at higher levels. Since the relative locations of other sensitive payloads are often unknown because they may refer to future projects, this requirement becomes a search for the maximum CND along any path.In another application, certain astronomical observations make use of CND to estimate light attenuation from a distant star through gaseous plumes, such as the Fermi Bubbles emanating from the vicinity of the black hole at the center of our Milky Way galaxy, in order to infer the amount of material being expelled via those plumes.This paper presents analytical CND expressions developed for general straight paths based upon a free molecule point source model for steady effusive flow and for a distribution fitted to model flows from a sonic orifice. Among other things, in this Mach number range it is demonstrated that the maximum CND from a distant location occurs along the path parallel to the source plane that intersects the plume axis. For effusive flows this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plumes axis. For sonic plumes this ratio is reduced to about 43.
Assessment of Crack Path Prediction in Non-Proportional Mixed-Mode Fatigue
NASA Technical Reports Server (NTRS)
Highsmith, Shelby, Jr.; Johnson, Steve; Swanson, Gregory; Sayyah, Tarek; Pettit, Richard
2008-01-01
Non-proportional mixed-mode loading is present in many systems and a growing crack can experience any manner of mixed-mode loading. Prediction of the resulting crack path is important when assessing potential failure modes or when performing a failure investigation. Current crack path selection criteria are presented along with data for Inconel 718 under non-proportional mixed-mode loading. Mixed-mode crack growth can transition between path deflection mechanisms with very different orientations. Non-proportional fatigue loadings lack a single parameter for input to current crack path criteria. Crack growth transitions were observed in proportional and non-proportional FCG tests. Different paths displayed distinct fracture surface morphologies. New crack path drivers & transition criteria must be developed.
An empirical relationship for path diversity gain. [earth-space microwave propagation attenuation
NASA Technical Reports Server (NTRS)
Hodge, D. B.
1976-01-01
Existing 15.3 and 16 GHz path diversity gain data for earth-space propagation paths are used to generate an empirical relationship for diversity gain as a function of terminal separation distance and single terminal fade depth. The agreement between the resulting closed form expression and the data is within 0.75 dB in all cases.
NASA Astrophysics Data System (ADS)
Alva-Valdivia, L. M.; Goguitchaichvili, A.; Urrutia-Fucugauchi, J.
2001-09-01
A rock-magnetic, paleomagnetic and paleointensity study was carried out on 13 Plio-Pleistocene volcanic flows from the Los Tuxtlas volcanic field (Trans Mexican Volcanic Belt) in order to obtain some decisive constraints for the geomagnetic field strength during the Plio-Pleistocene time. The age of the volcanic units, which yielded reliable paleointensity estimates, lies between 2.2 and 0.8 Ma according to the available K/Ar radiometric data. Thermomagnetic investigations reveal that remanence is carried in most cases by Ti-poor titanomagnetite, resulting from oxy-exsolution that probably occurred during the initial flow cooling. Unblocking temperature spectra and relatively high coercivity point to 'small' pseudo-single domain magnetic grains for these (titano)magnetites. Single-component, linear demagnetization plots were observed in most cases. Six flows yield reverse polarity magnetization, five flows are normally magnetized, and one flow shows intermediate polarity magnetization. Evidence of a strong lightning-produced magnetization overprint was detected for one site. The mean pole position obtained in this study is Plat = 83.7°, Plong = 178.1°, K = 36, A95 = 8.1°, N =10 and the corresponding mean paleodirection is I = 31.3°, D = 352°, k = 37, a95 = 8.2°, which is not significantly different from the expected direction estimated from the North American apparent polar wander path. Thirty-nine samples were pre-selected for Thellier palaeointensity experiments because of their stable remanent magnetization and relatively weak-within-site dispersion. Only 21 samples, coming from four individual basaltic lava flows, yielded reliable paleointensity estimates with the flow-mean virtual dipole moments (VDM) ranging from 6.4 to 9.1 × 1022 Am2. Combining the coeval Mexican data with the available comparable quality Pliocene paleointensity results yield a mean VDM of 6.4 × 1022 Am2, which is almost 80% of the present geomagnetic axial dipole. Reliable paleointensity results for the last 5~Ma are still scarce and are of dissimilar quality. Additional high-quality absolute intensity determinations are needed to better constraint the geomagnetic field strength during the Plio-Pleistocene time.
Compact atom interferometer using single laser
NASA Astrophysics Data System (ADS)
Chiow, Sheng-wey; Yu, Nan
2018-06-01
A typical atom interferometer requires vastly different laser frequencies at different stages of operation, e.g., near resonant light for laser cooling and far detuned light for atom optics, such that multiple lasers are typically employed. The number of laser units constrains the achievable minimum size and power in practical devices for resource critical environments such as space. We demonstrate a compact atom interferometer accelerometer operated by a single diode laser. This is achieved by dynamically changing the laser output frequency in GHz range while maintaining spectroscopic reference to an atomic transition via a sideband generated by phase modulation. At the same time, a beam path sharing configuration is also demonstrated for a compact sensor head design, in which atom interferometer beams share the same path as that of the cooling beam. This beam path sharing also significantly simplifies three-axis atomic accelerometry in microgravity using single sensor head.
Congestion patterns of electric vehicles with limited battery capacity.
Jing, Wentao; Ramezani, Mohsen; An, Kun; Kim, Inhi
2018-01-01
The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm.
Congestion patterns of electric vehicles with limited battery capacity
2018-01-01
The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm. PMID:29543875
An analysis of transient flow in upland watersheds: interactions between structure and process
David Lawrence Brown
1995-01-01
The physical structure and hydrological processes of upland watersheds interact in response to forcing functions such as rainfall, leading to storm runoff generation and pore pressure evolution. Transient fluid flow through distinct flow paths such as the soil matrix, macropores, saprolite, and bedrock may be viewed as a consequence of such interactions. Field...
Effect of faulting on ground-water movement in the Death Valley Region, Nevada and California
Faunt, Claudia C.
1997-01-01
The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional groundwater flow regime. Numerous examples of faultcontrolled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths.
NASA Astrophysics Data System (ADS)
Maries, Alexandru; Sayer, Ryan; Singh, Chandralekha
2017-12-01
Research suggests that introductory physics students often have difficulty using a concept in contexts different from the ones in which they learned it without explicit guidance to help them make the connection between the different contexts. We have been investigating advanced students' learning of quantum mechanics concepts and have developed interactive tutorials which strive to help students learn these concepts. Two such tutorials, focused on the Mach-Zehnder interferometer (MZI) and the double-slit experiment (DSE), help students learn how to use the concept of "which-path" information to reason about the presence or absence of interference in these two experiments in different situations. After working on a pretest that asked students to predict interference in the MZI with single photons and polarizers of various orientations placed in one or both paths of the MZI, students worked on the MZI tutorial which, among other things, guided them to reason in terms of which-path information in order to predict interference in similar situations. We investigated the extent to which students were able to use reasoning related to which-path information learned in the MZI tutorial to answer analogous questions on the DSE (before working on the DSE tutorial). After students worked on the DSE pretest they worked on a DSE tutorial in which they learned to use the concept of which-path information to answer questions about interference in the DSE with single particles with mass sent through the two slits and a monochromatic lamp placed between the slits and the screen. We investigated if this additional exposure to the concept of which-path information promoted improved learning and performance on the DSE questions with single photons and polarizers placed after one or both slits. We find evidence that both tutorials promoted which-path information reasoning and helped students use this reasoning appropriately in contexts different from the ones in which they had learned it.
Multiple frequency optical mixer and demultiplexer and apparatus for remote sensing
NASA Technical Reports Server (NTRS)
Chen, Jeffrey R. (Inventor)
2010-01-01
A pulsed laser system includes a modulator module configured to provide pulsed electrical signals and a plurality of solid-state seed sources coupled to the modulator module and configured to operate, responsive to the pulsed electrical signals, in a pulse mode. Each of the plurality of solid-state seed sources is tuned to a different frequency channel separated from any adjacent frequency channel by a frequency offset. The pulsed laser system also includes a combiner that combines outputs from each of the solid state seed sources into a single optical path and an optical doubler and demultiplexer coupled to the single optical path and providing each doubled seed frequency on a separate output path.
NASA Astrophysics Data System (ADS)
Taguchi, K.; Sugiyama, J.; Totsuka, M.; Imanaka, S.
2012-03-01
In this paper, we proposed a high lateral resolution common-path Fourier domain optical coherence tomography(OCT) system with the use of a chemically etched single mode fiber. In our experiments, single mode optical fiber for 1310nm was used for preparing the tapered tips. Our system used a conical microlens that was chemically etched by selective chemical etching technique using an etching solution of buffered hydrofluoric acid (BHF). From experimental results, we verified that our proposed optical coherence tomography system could operate as a common-path Fourier domain OCT system and conical tip lens fiber was very useful for a high lateral resolution common-path Fourier domain OCT system. Furthermore, we could observe a surface of paramecium bursaria and symbiotic chlorella in the paramecium bursaria using gold coated conical-tip fiber in the water.
An Anatomically Constrained Model for Path Integration in the Bee Brain.
Stone, Thomas; Webb, Barbara; Adden, Andrea; Weddig, Nicolai Ben; Honkanen, Anna; Templin, Rachel; Wcislo, William; Scimeca, Luca; Warrant, Eric; Heinze, Stanley
2017-10-23
Path integration is a widespread navigational strategy in which directional changes and distance covered are continuously integrated on an outward journey, enabling a straight-line return to home. Bees use vision for this task-a celestial-cue-based visual compass and an optic-flow-based visual odometer-but the underlying neural integration mechanisms are unknown. Using intracellular electrophysiology, we show that polarized-light-based compass neurons and optic-flow-based speed-encoding neurons converge in the central complex of the bee brain, and through block-face electron microscopy, we identify potential integrator cells. Based on plausible output targets for these cells, we propose a complete circuit for path integration and steering in the central complex, with anatomically identified neurons suggested for each processing step. The resulting model circuit is thus fully constrained biologically and provides a functional interpretation for many previously unexplained architectural features of the central complex. Moreover, we show that the receptive fields of the newly discovered speed neurons can support path integration for the holonomic motion (i.e., a ground velocity that is not precisely aligned with body orientation) typical of bee flight, a feature not captured in any previously proposed model of path integration. In a broader context, the model circuit presented provides a general mechanism for producing steering signals by comparing current and desired headings-suggesting a more basic function for central complex connectivity, from which path integration may have evolved. Copyright © 2017 Elsevier Ltd. All rights reserved.
Design and Calibration of the X-33 Flush Airdata Sensing (FADS) System
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Cobleigh, Brent R.; Haering, Edward A.
1998-01-01
This paper presents the design of the X-33 Flush Airdata Sensing (FADS) system. The X-33 FADS uses a matrix of pressure orifices on the vehicle nose to estimate airdata parameters. The system is designed with dual-redundant measurement hardware, which produces two independent measurement paths. Airdata parameters that correspond to the measurement path with the minimum fit error are selected as the output values. This method enables a single sensor failure to occur with minimal degrading of the system performance. The paper shows the X-33 FADS architecture, derives the estimating algorithms, and demonstrates a mathematical analysis of the FADS system stability. Preliminary aerodynamic calibrations are also presented here. The calibration parameters, the position error coefficient (epsilon), and flow correction terms for the angle of attack (delta alpha), and angle of sideslip (delta beta) are derived from wind tunnel data. Statistical accuracy of' the calibration is evaluated by comparing the wind tunnel reference conditions to the airdata parameters estimated. This comparison is accomplished by applying the calibrated FADS algorithm to the sensed wind tunnel pressures. When the resulting accuracy estimates are compared to accuracy requirements for the X-33 airdata, the FADS system meets these requirements.
Setting Goals and Achieving Aggressing Energy Savings
2010-11-30
Path to a Low Energy Building Typical 90.1 Compliant Building National Renewable Energy Laboratory Innovation for Our...flow 1 2 The Path to a Low Energy Building National Renewable Energy Laboratory Innovation for Our Energy Future 0 0% 100...to a Low Energy Building National Renewable Energy Laboratory Innovation for Our Energy Future 0 0% 100% Source Energy
Quasi-2D Unsteady Flow Procedure for Real Fluids (PREPRINT)
2006-05-17
water /steam/ oil piping networks, refinery systems, gas-turbine secondary flow -path and cooling networks...friction factor, f, which is a function of the local Reynolds number and the wall surface roughness . For the viscous flow examples presented below, the...3.5 4 4.5 Time ( s ) V el oc ity (m / s ) Line 2 Inlet 25% 50% 75% Exit Velocity Figure 4. Water transient viscous pipe flow using
Overland Flow Analysis Using Time Series of Suas-Derived Elevation Models
NASA Astrophysics Data System (ADS)
Jeziorska, J.; Mitasova, H.; Petrasova, A.; Petras, V.; Divakaran, D.; Zajkowski, T.
2016-06-01
With the advent of the innovative techniques for generating high temporal and spatial resolution terrain models from Unmanned Aerial Systems (UAS) imagery, it has become possible to precisely map overland flow patterns. Furthermore, the process has become more affordable and efficient through the coupling of small UAS (sUAS) that are easily deployed with Structure from Motion (SfM) algorithms that can efficiently derive 3D data from RGB imagery captured with consumer grade cameras. We propose applying the robust overland flow algorithm based on the path sampling technique for mapping flow paths in the arable land on a small test site in Raleigh, North Carolina. By comparing a time series of five flights in 2015 with the results of a simulation based on the most recent lidar derived DEM (2013), we show that the sUAS based data is suitable for overland flow predictions and has several advantages over the lidar data. The sUAS based data captures preferential flow along tillage and more accurately represents gullies. Furthermore the simulated water flow patterns over the sUAS based terrain models are consistent throughout the year. When terrain models are reconstructed only from sUAS captured RGB imagery, however, water flow modeling is only appropriate in areas with sparse or no vegetation cover.
NASA Astrophysics Data System (ADS)
Nelson, Stephen T.; Mayo, Alan L.
2014-06-01
In the Great Basin, USA, bedrock interbasin flow is conceptualized as the mechanism by which large groundwater fluxes flow through multiple basins and intervening mountains. Interbasin flow is propounded based on: (1) water budget imbalances, (2) potential differences between basins, (3) stable isotope evidence, and (4) modeling studies. However, water budgets are too imprecise to discern interbasin transfers and potential differences may exist with or without interbasin fluxes. Potentiometric maps are dependent on conceptual underpinnings, leading to possible false inferences regarding interbasin transfers. Isotopic evidence is prone to non-unique interpretation and may be confounded by the effects of climate change. Structural and stratigraphic considerations in a geologically complex region like the Great Basin should produce compartmentalization, where increasing aquifer size increases the odds of segmentation along a given flow path. Initial conceptual hypotheses should explain flow with local recharge and short flow paths. Where bedrock interbasin flow is suspected, it is most likely controlled by diversion of water into the damage zones of normal faults, where fault cores act as barriers. Large-scale bedrock interbasin flow where fluxes must transect multiple basins, ranges, and faults at high angles should be the conceptual model of last resort.
NASA Astrophysics Data System (ADS)
Warger, William C., II; Newmark, Judith A.; Zhao, Bing; Warner, Carol M.; DiMarzio, Charles A.
2006-02-01
Present imaging techniques used in in vitro fertilization (IVF) clinics are unable to produce accurate cell counts in developing embryos past the eight-cell stage. We have developed a method that has produced accurate cell counts in live mouse embryos ranging from 13-25 cells by combining Differential Interference Contrast (DIC) and Optical Quadrature Microscopy. Optical Quadrature Microscopy is an interferometric imaging modality that measures the amplitude and phase of the signal beam that travels through the embryo. The phase is transformed into an image of optical path length difference, which is used to determine the maximum optical path length deviation of a single cell. DIC microscopy gives distinct cell boundaries for cells within the focal plane when other cells do not lie in the path to the objective. Fitting an ellipse to the boundary of a single cell in the DIC image and combining it with the maximum optical path length deviation of a single cell creates an ellipsoidal model cell of optical path length deviation. Subtracting the model cell from the Optical Quadrature image will either show the optical path length deviation of the culture medium or reveal another cell underneath. Once all the boundaries are used in the DIC image, the subtracted Optical Quadrature image is analyzed to determine the cell boundaries of the remaining cells. The final cell count is produced when no more cells can be subtracted. We have produced exact cell counts on 5 samples, which have been validated by Epi-Fluorescence images of Hoechst stained nuclei.
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Jackisch, Conrad; Rodriguez, Nicolas; Klaus, Julian
2017-04-01
Only a minute amount of global fresh water is stored in the unsaturated zone. Yet this tiny compartment controls soil microbial activity and associated trace gas emissions, transport and transformations of contaminants, plant productivity, runoff generation and groundwater recharge. To date, the processes controlling renewal and age of different fractions of the soil water stock are far from being understood. Current theories and process concepts were largely inferred either from over-simplified laboratory experiments, or non-exhaustive point observations and tracer data in the field. Tracer data provide key but yet integrated information about the distribution of travel times of the tracer molecules to a certain depth or on their travel depth distribution within a given time. We hence are able to observe the "effect" of soil structure i.e. partitioning of infiltrating water between fast preferential and slow flow paths and imperfect subsequent mixing between these flow paths in the subsurface and the related plant water uptake. However, we are not able to study the "cause" - because technologies for in-situ observations of flow, flow path topology and exchange processes at relevant interfaces have up to now not been at hand. In the present study we will make use of a Lagrangian model for subsurface water dynamics to explore how subsurface heterogeneity and mixing among different storage fractions affects residence time distribution in the unsaturated zone in a forward approach. Soil water is represented by particles of constant mass, which travel according to the Itô form of the Fokker Planck equation. The model concept builds on established soil physics by estimating the drift velocity and the diffusion term based on the soil water characteristics. The model has been shown to simulate capillary driven soil moisture dynamics in good accordance with a) the Richards equation and b) observed soil moisture data in different soil. The particle model may furthermore account for preferential non equilibrium infiltration in a straightforward manner by treating event water as different type of particle, which travel initially in a macropore/ coarse pore fraction and experience a slow diffusive mixing with the pre-event water particles within a characteristic mixing time. In the present study we will particularly use the last approach in combination with artificial tracer data and stable isotopes to explore how different assumptions on mixing between different flow paths affect the travel time and residence time distributions of water particles in different fractions of the pore space.
Two arm robot path planning in a static environment using polytopes and string stretching. Thesis
NASA Technical Reports Server (NTRS)
Schima, Francis J., III
1990-01-01
The two arm robot path planning problem has been analyzed and reduced into components to be simplified. This thesis examines one component in which two Puma-560 robot arms are simultaneously holding a single object. The problem is to find a path between two points around obstacles which is relatively fast and minimizes the distance. The thesis involves creating a structure on which to form an advanced path planning algorithm which could ideally find the optimum path. An actual path planning method is implemented which is simple though effective in most common situations. Given the limits of computer technology, a 'good' path is currently found. Objects in the workspace are modeled with polytopes. These are used because they can be used for rapid collision detection and still provide a representation which is adequate for path planning.
Control of reactor coolant flow path during reactor decay heat removal
Hunsbedt, Anstein N.
1988-01-01
An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.
NASA Astrophysics Data System (ADS)
Saraceno, J.; Shanley, J. B.; Pellerin, B. A.; Hansen, A. M.
2016-12-01
Changes in dissolved organic matter (DOM) quality may result from unusual and extreme precipitation patterns such as floods and droughts. In order to study DOM quality changes, we collected several hundred surface water samples during the past eight years from the W-9 watershed of the Sleepers River Research Watershed in Danville, Vermont for optical analysis of dissolved organic matter. We present the results of parallel factor (PARAFAC) and principal component analysis (PCA) on excitation emission matrices (EEMs). This analysis revealed that peaks T, C and M as identified by PARAFAC were the most prominent EEM features. The intensity of these peaks varied on inter-annual, seasonal and event time periods and these shifts reflect changes in DOM quality. Likely drivers of this variability in DOM chemistry are seasonal shifts in flow paths, antecedent moisture conditions, and precipitation duration and intensity. For example, during events, the relative proportion of protein-like, peak T fluorophores increased, likely from flushing of fresh polyphenols from surficial and shallow flow paths. During the winter, when groundwater dominates flow, EEMs were strong in humic-like peak C and peak M fluorophores, reflecting deeper soil sources and longer flow paths. Our analyses will reveal how DOM quality responds to climatic drivers, and thus how we can expect DOM quality to evolve under projected climate change scenarios.
Impact of heterogeneity on groundwater salinization due to coastal pumping
NASA Astrophysics Data System (ADS)
Yu, X.; Michael, H. A.
2017-12-01
Groundwater abstraction causes and accelerates seawater intrusion in many coastal areas. In heterogeneous aquifers, preferential flow paths can lead to fast intrusion, while low permeability layers can serve as barriers. The extent to which different types of heterogeneous aquifers are vulnerable to pumping-induced seawater intrusion has not been well studied. Here we show that the connectedness of pumping location and local boundary condition drive salinization patterns. Salinization patterns in homogeneous aquifers were relatively simple and only related to the hydraulic properties and pumping rate. The salinization rates and patterns in heterogeneous aquifers were much more complicated and related to pumping location, rate and depth, preferential flow path locations, and local boundary conditions. An intrusion classification approach was developed with three types in homogeneous aquifers and four types in heterogeneous aquifers. After classification the main factors of salinized areas, intrusion rates and salinization time could be identified. The ranges of these salinization assessment criteria suggested different aspect of groundwater vulnerability in each class. We anticipate the classification approach to be a starting point for more comprehensive groundwater abstraction vulnerability assessment (including consideration of pumping rates, locations and depths, connectivity, preferential flow paths, etc.), which is critical for coastal water resources management.
NASA Astrophysics Data System (ADS)
Lathabai, Hiran H.; Prabhakaran, Thara; Changat, Manoj
2015-07-01
Biotechnology, ever since its inception has had a huge impact on the society and its various applications have been intricately woven into the human web of life. Its evolution amidst all the other research realms vital to mankind is remarkable. In this paper, we intend to identify the radical innovations in Biotechnology for Engineering using network analyses. Centrality analysis and Path analysis are used for identifying important works. Existence of Flow Vergence effect in the scientific literature is revealed. Flow Vergence gradient, an arc metric derived from FV model, is utilised for Path analysis which detects pivotal papers of paradigm shift more accurately. A major paradigm shift has been identified in the business models of Biotechnology for Engineering - 'Capability to Connectivity' model. Evidence towards the adoption of business practices in BT firms by nanotechnology start-ups is also identified. The notion of critical divergence is introduced and the exhibition of interdisciplinary interaction in emerging fields due to critical divergence is discussed. Implications of above analyses which target: (i) Science and technology policy makers, (ii) industrialists and investors, (iii) researchers in academia as well as industry, are also discussed.
Time-Distance Helioseismology with the MDI Instrument: Initial Results
NASA Technical Reports Server (NTRS)
Duvall, T. L., Jr.; Kosovichev, A. G.; Scherrer, P. H.; Bogart, R. S.; Bush, R. I.; DeForest, C.; Hoeksema, J. T.; Schou, J.; Saba, J. L. R.; Tarbell, T. D.;
1997-01-01
In time-distance helioseismology, the travel time of acoustic waves is measured between various points on the solar surface. To some approximation, the waves can be considered to follow ray paths that depend only on a mean solar model, with the curvature of the ray paths being caused by the increasing sound speed with depth below the surface. The travel time is effected by various inhomogeneities along the ray path, including flows, temperature inhomogeneities, and magnetic fields. By measuring a large number of times between different locations and using an inversion method, it is possible to construct 3-dimensional maps of the subsurface inhomogeneities. The SOI/MDI experiment on SOHO has several unique capabilities for time-distance helioseismology. The great stability of the images observed without benefit of an intervening atmosphere is quite striking. It his made it possible for us to detect the travel time fo separations of points as small as 2.4 Mm in the high-resolution mode of MDI (0.6 arc sec 1/pixel). This has enabled the detection of the supergranulation flow. Coupled with the inversion technique, we can now study the 3-dimensional evolution of the flows near the solar surface.
NASA Technical Reports Server (NTRS)
Moran, Robert P.
2013-01-01
A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.
NASA Astrophysics Data System (ADS)
Quick, A. M.; Farrell, T. B.; Reeder, W. J.; Feris, K. P.; Tonina, D.; Benner, S. G.
2014-12-01
The hyporheic zone is a potentially important producer of nitrous oxide, a powerful greenhouse gas. The location and magnitude of nitrous oxide generation within the hyporheic zone involves complex interactions between multiple nitrogen species, redox conditions, microbial communities, and hydraulics. To better understand nitrous oxide generation and emissions from streams, we conducted large-scale flume experiments in which we monitored pore waters along hyporheic flow paths within stream dune structures. Measured dissolved oxygen, ammonia, nitrate, nitrite, and dissolved nitrous oxide showed distinct spatial relationships reflecting redox changes along flow paths. Denitrifying genes (nosZ, nirS, and nirK), determined using qPCR, were spatially associated with abundances of nitrogen species. Using residence times along a flow path, clear trends in oxygen conditions, genes encoding for microbial catalysis, and nitrogen species were observed. Hotspots of targeted genes correlated with hotspots for conversion of nitrogen species, including nitrous oxide production and conversion to dinitrogen. Trends were apparent regardless of dune size, allowing for the possibility to apply observed relationships to multiple streambed morphologies. Relating streambed morphology and loading of nitrogen species allows for prediction of nitrous oxide production in the hyporheic zone.
Energy conversion system involving change in the density of an upwardly moving liquid
Petrick, Michael
1989-01-01
A system for converting thermal energy into electrical energy includes a fluid reservoir, a relatively high boiling point fluid such as lead or a lead alloy within the reservoir, a downcomer defining a vertical fluid flow path communicating at its upper end with the reservoir and an upcomer defining a further vertical fluid flow path communicating at its upper end with the reservoir. A variable area nozzle of rectangular section may terminate the upper end of the upcomer and the lower end of the of the downcomer communicates with the lower end of the upcomer. A mixing chamber is located at the lower end portion of the upcomer and receives a second relatively low boiling point fluid such as air, the mixing chamber serving to introduce the low boiling point fluid into the upcomer so as to produce bubbles causing the resultant two-phase fluid to move at high velocity up the upcomer. Means are provided for introducing heat into the system preferably between the lower end of the downcomer and the lower end of the upcomer. Power generating means are associated with the one of the vertical fluid flow paths one such power generating means being a magneto hydrodynamic electrical generator.
Coal slurry fuel supply and purge system
McDowell, Robert E.; Basic, Steven L.; Smith, Russel M.
1994-01-01
A coal slurry fuel supply and purge system for a locomotive engines is disclosed which includes a slurry recirculation path, a stand-by path for circulating slurry during idle or states of the engine when slurry fuel in not required by the engine, and an engine header fluid path connected to the stand-by path, for supplying and purging slurry fuel to and from fuel injectors. A controller controls the actuation of valves to facilitate supply and purge of slurry to and from the fuel injectors. A method for supplying and purging coal slurry in a compression ignition engine is disclosed which includes controlling fluid flow devices and valves in a plurality of fluid paths to facilitate continuous slurry recirculation and supply and purge of or slurry based on the operating state of the engine.
Non-Newtonian fluid flow in 2D fracture networks
NASA Astrophysics Data System (ADS)
Zou, L.; Håkansson, U.; Cvetkovic, V.
2017-12-01
Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.
Research Strategy for Modeling the Complexities of Turbine Heat Transfer
NASA Technical Reports Server (NTRS)
Simoneau, Robert J.
1996-01-01
The subject of this paper is a NASA research program, known as the Coolant Flow Management Program, which focuses on the interaction between the internal coolant channel and the external film cooling of a turbine blade and/or vane in an aircraft gas turbine engine. The turbine gas path is really a very complex flow field. The combination of strong pressure gradients, abrupt geometry changes and intersecting surfaces, viscous forces, rotation, and unsteady blade/vane interactions all combine to offer a formidable challenge. To this, in the high pressure turbine, we add the necessity of film cooling. The ultimate goal of the turbine designer is to maintain or increase the high level of turbine performance and at the same time reduce the amount of coolant flow needed to achieve this end. Simply stated, coolant flow is a penalty on the cycle and reduces engine thermal efficiency. Accordingly, understanding the flow field and heat transfer associated with the coolant flow is a priority goal. It is important to understand both the film cooling and the internal coolant flow, particularly their interaction. Thus, the motivation for the Coolant Flow Management Program. The paper will begin with a brief discussion of the management and research strategy, will then proceed to discuss the current attack from the internal coolant side, and will conclude by looking at the film cooling effort - at all times keeping sight of the primary goal the interaction between the two. One of the themes of this paper is that complex heat transfer problems of this nature cannot be attacked by single researchers or even groups of researchers, each working alone. It truly needs the combined efforts of a well-coordinated team to make an impact. It is important to note that this is a government/industry/university team effort.
Ohta, Yoshihiro; Nishiyama, Akinobu; Wada, Yoichiro; Ruan, Yijun; Kodama, Tatsuhiko; Tsuboi, Takashi; Tokihiro, Tetsuji; Ihara, Sigeo
2012-08-01
We all use path routing everyday as we take shortcuts to avoid traffic jams, or by using faster traffic means. Previous models of traffic flow of RNA polymerase II (RNAPII) during transcription, however, were restricted to one dimension along the DNA template. Here we report the modeling and application of traffic flow in transcription that allows preferential paths of different dimensions only restricted to visit some transit points, as previously introduced between the 5' and 3' end of the gene. According to its position, an RNAPII protein molecule prefers paths obeying two types of time-evolution rules. One is an asymmetric simple exclusion process (ASEP) along DNA, and the other is a three-dimensional jump between transit points in DNA where RNAPIIs are staying. Simulations based on our model, and comparison experimental results, reveal how RNAPII molecules are distributed at the DNA-loop-formation-related protein binding sites as well as CTCF insulator proteins (or exons). As time passes after the stimulation, the RNAPII density at these sites becomes higher. Apparent far-distance jumps in one dimension are realized by short-range three-dimensional jumps between DNA loops. We confirm the above conjecture by applying our model calculation to the SAMD4A gene by comparing the experimental results. Our probabilistic model provides possible scenarios for assembling RNAPII molecules into transcription factories, where RNAPII and related proteins cooperatively transcribe DNA.
Diverter/bop system and method for a bottom supported offshore drilling rig
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roche, J.R.; Alexander, G.G.; Carbaugh, W.L.
1986-07-01
A system is described adapted for alternative use as a diverter or a blowout preventer for a bottom supported drilling rig and adapted for connection to a permanent housing attached to rig structural members beneath a drilling rig rotary table, the permanent housing having an outlet connectable to a rig fluid system flow line. The system consists of: a fluid flow controller having a controller housing with a lower cylindrical opening and an upper cylindrical opening and a vertical path therebetween and a first outlet passage and a second outlet passage provided in its wall, a packing element disposed withinmore » the controller housing, and annular piston means adapted for moving from a first position to a second position, whereby in the first position the piston means wall prevents interior fluid from communicating with the outlet passages in the controller housing wall and in the second position the piston means wall allows fluid communication of interior fluid with the outlet passages and urges the annular packing element to close about an object extending through the bore of the controller housing or to close the vertical flow path through through the controller housing in the absence of any object in the vertical flow path, means for connecting a vent line to the outlet passage provided in the controller housing wall, a lower telescoping spool having a lower joining means at its lower end for joining alternatively to structural casing or to a mandrel connected to a conductor string cemented within the structural casing and an upper connection means at its upper end for connection to the lower cylindrical opening of the fluid flow controller, and an upper telescoping spool having a lower connection means for connection to the upper cylindrical opening of the fluid flow controller.« less
NASA Astrophysics Data System (ADS)
Wei, Hai-Rui; Long, Gui Lu
2015-03-01
We propose two compact, economic, and scalable schemes for implementing optical controlled-phase-flip and controlled-controlled-phase-flip gates by using the input-output process of a single-sided cavity strongly coupled to a single nitrogen-vacancy-center defect in diamond. Additional photonic qubits, necessary for procedures based on the parity-check measurement or controlled-path and merging gates, are not employed in our schemes. In the controlled-path gate, the paths of the target photon are conditionally controlled by the control photon, and these two paths can be merged back into one by using a merging gate. Only one half-wave plate is employed in our scheme for the controlled-phase-flip gate. Compared with the conventional synthesis procedures for constructing a controlled-controlled-phase-flip gate, the cost of which is two controlled-path gates and two merging gates, or six controlled-not gates, our scheme is more compact and simpler. Our schemes could be performed with a high fidelity and high efficiency with current achievable experimental techniques.
Debris flow runup on vertical barriers and adverse slopes
Iverson, Richard M.; George, David L.; Logan, Matthew
2016-01-01
Runup of debris flows against obstacles in their paths is a complex process that involves profound flow deceleration and redirection. We investigate the dynamics and predictability of runup by comparing results from large-scale laboratory experiments, four simple analytical models, and a depth-integrated numerical model (D-Claw). The experiments and numerical simulations reveal the important influence of unsteady, multidimensional flow on runup, and the analytical models highlight key aspects of the underlying physics. Runup against a vertical barrier normal to the flow path is dominated by rapid development of a shock, or jump in flow height, associated with abrupt deceleration of the flow front. By contrast, runup on sloping obstacles is initially dominated by a smooth flux of mass and momentum from the flow body to the flow front, which precedes shock development and commonly increases the runup height. D-Claw simulations that account for the emergence of shocks show that predicted runup heights vary systematically with the adverse slope angle and also with the Froude number and degree of liquefaction (or effective basal friction) of incoming flows. They additionally clarify the strengths and limitations of simplified analytical models. Numerical simulations based on a priori knowledge of the evolving dynamics of incoming flows yield quite accurate runup predictions. Less predictive accuracy is attained in ab initio simulations that compute runup based solely on knowledge of static debris properties in a distant debris flow source area. Nevertheless, the paucity of inputs required in ab initio simulations enhances their prospective value in runup forecasting.
Local efficiency in fluvial systems: Lessons from Icicle Bend
NASA Astrophysics Data System (ADS)
Jerin, Tasnuba; Phillips, Jonathan
2017-04-01
Development of fluvial systems is often described and modeled in terms of principles related to maxima, minima, or optima of various hydraulic or energy parameters that can generally be encompassed by a principle of efficiency selection (more efficient flow routes tend to be preferentially selected and enhanced). However, efficiency selection is highly localized, and the cumulative effects of these local events may or may not produce more efficient pathways at a broader scale. This is illustrated by the case of Icicle Bend on Shawnee Run, a limestone bedrock stream in central Kentucky. Field evidence indicates that a paleochannel was abandoned during downcutting of the stream, and the relocation was analyzed using a flow partitioning model. The bend represents abandonment of a steeper, straighter, more efficient channel at the reach scale in favor of a longer, currently less steep and less efficient flow path. This apparently occurred owing to capture of Shawnee Run flow by a subsurface karst flow path that was subsequently exhumed. The development of Icicle Bend illustrates the local nature of efficiency selection and the role of historical contingency in geomorphic evolution.
Ultrasound Attenuation in Normal Fluid 3He in 98% Aerogel: Knudsen-to-Hydrodynamic Crossover
NASA Astrophysics Data System (ADS)
Lee, Yoonseok; Choi, H. C.; Moon, B. H.; Masuhara, N.; Meisel, M. W.; Takeuchi, H.; Higashitani, S.; Nagai, K.; Mulders, N.
2014-03-01
Mass flow in porous media is a widely occurring phenomenon as in water flow in aquifers, blood flow in vessels, and petroleum flow through sandstones. However, the understanding of these phenomena is a challenging task. In particular, when the mean free path of the fluid particles exceeds the pore size, the hydrodynamic description breaks down and the fluid mass is carried by the Knudsen diffusion. The 3He-aerogel system offers an opportunity that allows a systematic investigation of a wide range flow phenomena from the hydrodynamic to Knudsen regime owing to the strongly temperature dependent mean free path in liquid 3He at low temperatures. In this paper, we present ultrasound attenuation measurements of liquid 3He in 98% aerogel. The Knudsen-hydrodynamic crossover is clearly demonstrated in a drastic change in the temperature dependence in attenuation observed in this system. H. Takeuchi et al., Phys. Rev. Lett. 108, 225307 (2012). Grant-in-Aid for Scientific Research No. 21540365 and No. 22103003 by MEXT of Japan and NSF DMR-0803516, DMR-0654118, and the State of Florida.
NASA Astrophysics Data System (ADS)
Chaudhuri, A.; Rajaram, H.; Viswanathan, H. S.; Zyvoloski, G.
2011-12-01
Hypogene karst systems are believed to develop when water flowing upward against the geothermal gradient dissolves limestone as it cools. We present a comprehensive THC model incorporating time-evolving fluid flow, heat transfer, buoyancy effects, multi-component reactive transport and aperture/permeability change to investigate the origin of hypogene karst systems. Our model incorporates the temperature and pressure dependence of the solubility and dissolution kinetics of calcite. It also allows for rigorous representation of temperature-dependent fluid density and its influence on buoyancy forces at various stages of karstification. The model is applied to investigate karstification over geological time scales in a prototype mountain hydrologic system. In this system, a high water table maintained by mountain recharge, drives flow downward through the country rock and upward via a high-permeability fault/fracture. The pressure boundary conditions are maintained constant in time. The fluid flux through the fracture remains nearly constant even though the fracture aperture and permeability increase by dissolution, largely because the permeability of the country rock is not altered significantly due to slower dissolution rates. However, karstification by fracture dissolution is not impeded even though the fluid flux stays nearly constant. Forced and buoyant convection effects arise due to the increased permeability of the evolving fracture system. Since in reality the aperture varies significantly within the fracture plane, the initial fracture aperture is modeled as a heterogeneous random field. In such a heterogeneous aperture field, the water initially flows at a significant rate mainly through preferential flow paths connecting the relatively large aperture zones. Dissolution is more prominent at early time along these flow paths, and the aperture grows faster within these paths. With time, the aperture within small sub-regions of these preferential flow paths grows to a point where the permeability is large enough for the onset of buoyant convection. As a result, a multitude of buoyant convection cells form that take on a two-dimensional (2D) maze-like appearance, which could represent a 2D analog of the three-dimensional (3D) mazework pattern widely thought to be characteristic of hypogene cave systems. Although computational limitations limited us to 2D, we suggest that similar process interactions in a 3D network of fractures and faults could produce a 3D mazework.
Energy consumption of ProTaper Next X1 after glide path with PathFiles and ProGlider.
Berutti, Elio; Alovisi, Mario; Pastorelli, Michele Angelo; Chiandussi, Giorgio; Scotti, Nicola; Pasqualini, Damiano
2014-12-01
Instrument failure caused by excessive torsional stress can be controlled by creating a manual or mechanical glide path. The ProGlider single-file system (Dentsply Maillefer, Ballaigues, Switzerland) was recently introduced to perform a mechanical glide path. This study was designed to compare the effect of a glide path performed with PathFiles (Dentsply Maillefer) and ProGlider on torque, time, and pecking motion required for ProTaper Next X1 (Dentsply Maillefer) to reach the full working length in simulated root canals. Forty Endo Training Blocks (Dentsply Maillefer) were used. Twenty were prepared with a mechanical glide path using PathFiles 1 and 2 (the PathFile group), and 20 were prepared with a mechanical glide path using a ProGlider single file (the ProGlider group). All samples were shaped with ProTaper Next X1 driven by an endodontic motor connected to a digital wattmeter. The required torque for root canal instrumentation was analyzed by evaluating the electrical power consumption of the endodontic engine. Electric power consumption (mW/h), elapsed time (seconds), and number of pecking motions required to reach the full working length with ProTaper Next X1 were calculated. Differences among groups were analyzed with the parametric Student t test for independent data (P < .05). Elapsed time and electric power consumption were significantly different between groups (P = .0001 for both). ProGlider appears to perform more efficiently than PathFiles in decreasing electric power consumption of ProTaper Next X1 to reach the full working length. This study confirmed the ability of ProGlider to reduce stress in ProTaper Next X1 during shaping through a glide path and preliminary middle and coronal preflaring. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Motes, Keith R.; Olson, Jonathan P.; Rabeaux, Evan J.; Dowling, Jonathan P.; Olson, S. Jay; Rohde, Peter P.
2015-05-01
Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place—typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer—fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection—is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.
Motes, Keith R; Olson, Jonathan P; Rabeaux, Evan J; Dowling, Jonathan P; Olson, S Jay; Rohde, Peter P
2015-05-01
Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place--typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer--fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection--is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.
Influence of Flow Gradients on Mach Stem Initiation of PBX-9502
NASA Astrophysics Data System (ADS)
Hull, Lawrence; Miller, Phillip; Mas, Eric; Focused Experiments Team
2017-06-01
Recent experiments and theory explore the effect of flow gradients on reaction acceleration and stability in the pressure-enhanced region between colliding sub-detonative shock waves in PBX-9502. The experiments are designed to produce divergent curved incident shock waves that interact in a convergent irregular reflection, or ``Mach stem'', configuration. Although this flow is fundamentally unsteady, such a configuration does feature particle paths having a single shock wave that increases the pressure from zero to the wave-reflected enhanced pressure. Thus, the possibility of pre-shock desensitization is precluded in this interaction region. Diagnostics record arrival wave velocity, shape, and material velocity along the angled free surface face of a large wedge. The wedge is large enough to allow observation of the wave structure for distances much larger than the run-to-detonation derived from classical ``Pop plot'' data. The explosive driver system produces the incident shocks and allows some control of the flow gradients in the collision region. Further, the incident shocks are very weak and do not transition to detonation. The experiments discussed feature incident shock waves that would be expected to cause initiation in the Mach stem, based on the Pop plot. Results show that the introduction of pressure/velocity gradients in the reaction zone strongly influences the ability of the flow to build to a steady ``CJ'' detonation. As expected, the ability of the Mach stem to stabilize or accelerate is strongly influenced by the incident shock pressure.
Steering liquid metal flow in microchannels using low voltages.
Tang, Shi-Yang; Lin, Yiliang; Joshipura, Ishan D; Khoshmanesh, Khashayar; Dickey, Michael D
2015-10-07
Liquid metals based on gallium, such as eutectic gallium indium (EGaIn) and Galinstan, have been integrated as static components in microfluidic systems for a wide range of applications including soft electrodes, pumps, and stretchable electronics. However, there is also a possibility to continuously pump liquid metal into microchannels to create shape reconfigurable metallic structures. Enabling this concept necessitates a simple method to control dynamically the path the metal takes through branched microchannels with multiple outlets. This paper demonstrates a novel method for controlling the directional flow of EGaIn liquid metal in complex microfluidic networks by simply applying a low voltage to the metal. According to the polarity of the voltage applied between the inlet and an outlet, two distinct mechanisms can occur. The voltage can lower the interfacial tension of the metal via electrocapillarity to facilitate the flow of the metal towards outlets containing counter electrodes. Alternatively, the voltage can drive surface oxidation of the metal to form a mechanical impediment that redirects the movement of the metal towards alternative pathways. Thus, the method can be employed like a 'valve' to direct the pathway chosen by the metal without mechanical moving parts. The paper elucidates the operating mechanisms of this valving system and demonstrates proof-of-concept control over the flow of liquid metal towards single or multiple directions simultaneously. This method provides a simple route to direct the flow of liquid metal for applications in microfluidics, optics, electronics, and microelectromechanical systems.
Near-wall serpentine cooled turbine airfoil
Lee, Ching-Pang
2014-10-28
A serpentine coolant flow path is formed by inner walls in a cavity between pressure and suction side walls of a turbine airfoil, the cavity partitioned by one or more transverse partitions into a plurality of continuous serpentine cooling flow streams each having a respective coolant inlet.
USDA-ARS?s Scientific Manuscript database
Numerous soil erosion models compute concentrated flow hydraulics based on the Manning–Strickler equation (v = kSt R2/3 I1/2) even though the range of the application on rill flow is unclear. Unconfined rill morphologies generate local friction effects and consequently spatially variable rill roughn...
40 CFR 1065.650 - Emission calculations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... from a changing flow rate or a constant flow rate (including discrete-mode steady-state testing), as...·hr e NOx = 64.975/25.783 e NOx = 2.520 g/(kW·hr) (2) For discrete-mode steady-state testing, you may... method not be used if there are any work flow paths described in § 1065.210 that cross the system...
A.S. Ward; M. Fitzgerald; M.N. Gooseff; A.M. Binley; K. Singha
2012-01-01
Hyporheic hydrodynamics are a control on stream ecosystems, yet we lack a thorough understanding of catchment controls on these flow paths, including valley constraint and hydraulic gradients in the valley bottom. We performed four whole-stream solute tracer injections under steady state flow conditions at the H. J. Andrews Experimental Forest (Oregon, United States)...