Sample records for single fluid code

  1. Two-fluid 2.5D code for simulations of small scale magnetic fields in the lower solar atmosphere

    NASA Astrophysics Data System (ADS)

    Piantschitsch, Isabell; Amerstorfer, Ute; Thalmann, Julia Katharina; Hanslmeier, Arnold; Lemmerer, Birgit

    2015-08-01

    Our aim is to investigate magnetic reconnection as a result of the time evolution of magnetic flux tubes in the solar chromosphere. A new numerical two-fluid code was developed, which will perform a 2.5D simulation of the dynamics from the upper convection zone up to the transition region. The code is based on the Total Variation Diminishing Lax-Friedrichs method and includes the effects of ion-neutral collisions, ionisation/recombination, thermal/resistive diffusivity as well as collisional/resistive heating. What is innovative about our newly developed code is the inclusion of a two-fluid model in combination with the use of analytically constructed vertically open magnetic flux tubes, which are used as initial conditions for our simulation. First magnetohydrodynamic (MHD) tests have already shown good agreement with known results of numerical MHD test problems like e.g. the Orszag-Tang vortex test, the Current Sheet test or the Spherical Blast Wave test. Furthermore, the single-fluid approach will also be applied to the initial conditions, in order to compare the different rates of magnetic reconnection in both codes, the two-fluid code and the single-fluid one.

  2. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces.

    PubMed

    Chan, B; Donzelli, P S; Spilker, R L

    2000-06-01

    The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.

  3. Validation of Extended MHD Models using MST RFP Plasmas

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Chapman, B. E.; Craig, D.; McCollam, K. J.; Sovinec, C. R.

    2016-10-01

    Significant effort has been devoted to improvement of computational models used in fusion energy sciences. Rigorous validation of these models is necessary in order to increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation over a wide range of parameters. In particular, the Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), can be varied over a wide range and provide substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 5 ×104 for single-fluid runs, with the magnetic Prandtl number Pm = 1 . Experiments with plasma current IP ranging from 60 kA to 500 kA result in S from 4 ×104 to 8 ×106 . Validation metric comparisons are presented, focusing on how magnetic fluctuations b scale with S. Single-fluid NIMROD results give S b - 0.21 , and experiments give S b - 0.28 for the dominant m = 1 , n = 6 mode. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.

  4. Heat transfer in rocket engine combustion chambers and regeneratively cooled nozzles

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A conjugate heat transfer computational fluid dynamics (CFD) model to describe regenerative cooling in the main combustion chamber and nozzle and in the injector faceplate region for a launch vehicle class liquid rocket engine was developed. An injector model for sprays which treats the fluid as a variable density, single-phase media was formulated, incorporated into a version of the FDNS code, and used to simulate the injector flow typical of that in the Space Shuttle Main Engine (SSME). Various chamber related heat transfer analyses were made to verify the predictive capability of the conjugate heat transfer analysis provided by the FDNS code. The density based version of the FDNS code with the real fluid property models developed was successful in predicting the streamtube combustion of individual injector elements.

  5. Gigaflop performance on a CRAY-2: Multitasking a computational fluid dynamics application

    NASA Technical Reports Server (NTRS)

    Tennille, Geoffrey M.; Overman, Andrea L.; Lambiotte, Jules J.; Streett, Craig L.

    1991-01-01

    The methodology is described for converting a large, long-running applications code that executed on a single processor of a CRAY-2 supercomputer to a version that executed efficiently on multiple processors. Although the conversion of every application is different, a discussion of the types of modification used to achieve gigaflop performance is included to assist others in the parallelization of applications for CRAY computers, especially those that were developed for other computers. An existing application, from the discipline of computational fluid dynamics, that had utilized over 2000 hrs of CPU time on CRAY-2 during the previous year was chosen as a test case to study the effectiveness of multitasking on a CRAY-2. The nature of dominant calculations within the application indicated that a sustained computational rate of 1 billion floating-point operations per second, or 1 gigaflop, might be achieved. The code was first analyzed and modified for optimal performance on a single processor in a batch environment. After optimal performance on a single CPU was achieved, the code was modified to use multiple processors in a dedicated environment. The results of these two efforts were merged into a single code that had a sustained computational rate of over 1 gigaflop on a CRAY-2. Timings and analysis of performance are given for both single- and multiple-processor runs.

  6. Finite Element Modeling of Coupled Flexible Multibody Dynamics and Liquid Sloshing

    DTIC Science & Technology

    2006-09-01

    tanks is presented. The semi-discrete combined solid and fluid equations of motions are integrated using a time- accurate parallel explicit solver...Incompressible fluid flow in a moving/deforming container including accurate modeling of the free-surface, turbulence, and viscous effects ...paper, a single computational code which uses a time- accurate explicit solution procedure is used to solve both the solid and fluid equations of

  7. Validation of MHD Models using MST RFP Plasmas

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Chapman, B. E.; den Hartog, D. J.; McCollam, K. J.; Sarff, J. S.; Sovinec, C. R.

    2017-10-01

    Rigorous validation of computational models used in fusion energy sciences over a large parameter space and across multiple magnetic configurations can increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation with plasma current ranging from 60 kA to 500 kA. The resulting Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), ranges from 4 ×104 to 8 ×106 for standard RFP plasmas and provides substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 105 for single-fluid runs, and the magnetic Prandtl number Pm = 1 . Validation metric comparisons are presented, focusing on how normalized magnetic fluctuations at the edge b scale with S. Preliminary results for the dominant n = 6 mode are b S - 0 . 20 +/- 0 . 02 for single-fluid NIMROD, b S - 0 . 25 +/- 0 . 05 for DEBS, and b S - 0 . 20 +/- 0 . 02 for experimental measurements, however there is a significant discrepancy in mode amplitudes. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.

  8. Unsteady Cascade Aerodynamic Response Using a Multiphysics Simulation Code

    NASA Technical Reports Server (NTRS)

    Lawrence, C.; Reddy, T. S. R.; Spyropoulos, E.

    2000-01-01

    The multiphysics code Spectrum(TM) is applied to calculate the unsteady aerodynamic pressures of oscillating cascade of airfoils representing a blade row of a turbomachinery component. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena, in the present case being between fluids and structures. Interaction constraints are enforced in a fully coupled manner using the augmented-Lagrangian method. The arbitrary Lagrangian-Eulerian method is utilized to account for deformable fluid domains resulting from blade motions. Unsteady pressures are calculated for a cascade designated as the tenth standard, and undergoing plunging and pitching oscillations. The predicted unsteady pressures are compared with those obtained from an unsteady Euler co-de refer-red in the literature. The Spectrum(TM) code predictions showed good correlation for the cases considered.

  9. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.; Shi, Y.

    1991-01-01

    The development of a comprehensive fluid-structure interaction capability within a boundary element computer code is described. This new capability is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach. A number of detailed numerical examples are included at the end of these two sections to validate the formulations and to emphasize both the accuracy and generality of the computer code. A brief review of the recent applicable boundary element literature is included for completeness. The fluid-structure interaction facility is discussed. Once again, several examples are provided to highlight this unique capability. A collection of potential boundary element applications that have been uncovered as a result of work related to the present grant is given. For most of those problems, satisfactory analysis techniques do not currently exist.

  10. An Idealized, Single Radial Swirler, Lean-Direct-Injection (LDI) Concept Meshing Script

    NASA Technical Reports Server (NTRS)

    Iannetti, Anthony C.; Thompson, Daniel

    2008-01-01

    To easily study combustor design parameters using computational fluid dynamics codes (CFD), a Gridgen Glyph-based macro (based on the Tcl scripting language) dubbed BladeMaker has been developed for the meshing of an idealized, single radial swirler, lean-direct-injection (LDI) combustor. BladeMaker is capable of taking in a number of parameters, such as blade width, blade tilt with respect to the perpendicular, swirler cup radius, and grid densities, and producing a three-dimensional meshed radial swirler with a can-annular (canned) combustor. This complex script produces a data format suitable for but not specific to the National Combustion Code (NCC), a state-of-the-art CFD code developed for reacting flow processes.

  11. ALE3D: An Arbitrary Lagrangian-Eulerian Multi-Physics Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, Charles R.; Anderson, Andrew T.; Barton, Nathan R.

    ALE3D is a multi-physics numerical simulation software tool utilizing arbitrary-Lagrangian- Eulerian (ALE) techniques. The code is written to address both two-dimensional (2D plane and axisymmetric) and three-dimensional (3D) physics and engineering problems using a hybrid finite element and finite volume formulation to model fluid and elastic-plastic response of materials on an unstructured grid. As shown in Figure 1, ALE3D is a single code that integrates many physical phenomena.

  12. Production Level CFD Code Acceleration for Hybrid Many-Core Architectures

    NASA Technical Reports Server (NTRS)

    Duffy, Austen C.; Hammond, Dana P.; Nielsen, Eric J.

    2012-01-01

    In this work, a novel graphics processing unit (GPU) distributed sharing model for hybrid many-core architectures is introduced and employed in the acceleration of a production-level computational fluid dynamics (CFD) code. The latest generation graphics hardware allows multiple processor cores to simultaneously share a single GPU through concurrent kernel execution. This feature has allowed the NASA FUN3D code to be accelerated in parallel with up to four processor cores sharing a single GPU. For codes to scale and fully use resources on these and the next generation machines, codes will need to employ some type of GPU sharing model, as presented in this work. Findings include the effects of GPU sharing on overall performance. A discussion of the inherent challenges that parallel unstructured CFD codes face in accelerator-based computing environments is included, with considerations for future generation architectures. This work was completed by the author in August 2010, and reflects the analysis and results of the time.

  13. Modeling and comparative study of fluid velocities in heterogeneous rocks

    NASA Astrophysics Data System (ADS)

    Hingerl, Ferdinand F.; Romanenko, Konstantin; Pini, Ronny; Balcom, Bruce; Benson, Sally

    2013-04-01

    Detailed knowledge of the distribution of effective porosity and fluid velocities in heterogeneous rock samples is crucial for understanding and predicting spatially resolved fluid residence times and kinetic reaction rates of fluid-rock interactions. The applicability of conventional MRI techniques to sedimentary rocks is limited by internal magnetic field gradients and short spin relaxation times. The approach developed at the UNB MRI Centre combines the 13-interval Alternating-Pulsed-Gradient Stimulated-Echo (APGSTE) scheme and three-dimensional Single Point Ramped Imaging with T1 Enhancement (SPRITE). These methods were designed to reduce the errors due to effects of background gradients and fast transverse relaxation. SPRITE is largely immune to time-evolution effects resulting from background gradients, paramagnetic impurities and chemical shift. Using these techniques quantitative 3D porosity maps as well as single-phase fluid velocity fields in sandstone core samples were measured. Using a new Magnetic Resonance Imaging technique developed at the MRI Centre at UNB, we created 3D maps of porosity distributions as well as single-phase fluid velocity distributions of sandstone rock samples. Then, we evaluated the applicability of the Kozeny-Carman relationship for modeling measured fluid velocity distributions in sandstones samples showing meso-scale heterogeneities using two different modeling approaches. The MRI maps were used as reference points for the modeling approaches. For the first modeling approach, we applied the Kozeny-Carman relationship to the porosity distributions and computed respective permeability maps, which in turn provided input for a CFD simulation - using the Stanford CFD code GPRS - to compute averaged velocity maps. The latter were then compared to the measured velocity maps. For the second approach, the measured velocity distributions were used as input for inversely computing permeabilities using the GPRS CFD code. The computed permeabilities were then correlated with the ones based on the porosity maps and the Kozeny-Carman relationship. The findings of the comparative modeling study are discussed and its potential impact on the modeling of fluid residence times and kinetic reaction rates of fluid-rock interactions in rocks containing meso-scale heterogeneities are reviewed.

  14. Application of a single-fluid model for the steam condensing flow prediction

    NASA Astrophysics Data System (ADS)

    Smołka, K.; Dykas, S.; Majkut, M.; Strozik, M.

    2016-10-01

    One of the results of many years of research conducted in the Institute of Power Engineering and Turbomachinery of the Silesian University of Technology are computational algorithms for modelling steam flows with a non-equilibrium condensation process. In parallel with theoretical and numerical research, works were also started on experimental testing of the steam condensing flow. This paper presents a comparison of calculations of a flow field modelled by means of a single-fluid model using both an in-house CFD code and the commercial Ansys CFX v16.2 software package. The calculation results are compared to inhouse experimental testing.

  15. Development of a dynamic coupled hydro-geomechanical code and its application to induced seismicity

    NASA Astrophysics Data System (ADS)

    Miah, Md Mamun

    This research describes the importance of a hydro-geomechanical coupling in the geologic sub-surface environment from fluid injection at geothermal plants, large-scale geological CO2 sequestration for climate mitigation, enhanced oil recovery, and hydraulic fracturing during wells construction in the oil and gas industries. A sequential computational code is developed to capture the multiphysics interaction behavior by linking a flow simulation code TOUGH2 and a geomechanics modeling code PyLith. Numerical formulation of each code is discussed to demonstrate their modeling capabilities. The computational framework involves sequential coupling, and solution of two sub-problems- fluid flow through fractured and porous media and reservoir geomechanics. For each time step of flow calculation, pressure field is passed to the geomechanics code to compute effective stress field and fault slips. A simplified permeability model is implemented in the code that accounts for the permeability of porous and saturated rocks subject to confining stresses. The accuracy of the TOUGH-PyLith coupled simulator is tested by simulating Terzaghi's 1D consolidation problem. The modeling capability of coupled poroelasticity is validated by benchmarking it against Mandel's problem. The code is used to simulate both quasi-static and dynamic earthquake nucleation and slip distribution on a fault from the combined effect of far field tectonic loading and fluid injection by using an appropriate fault constitutive friction model. Results from the quasi-static induced earthquake simulations show a delayed response in earthquake nucleation. This is attributed to the increased total stress in the domain and not accounting for pressure on the fault. However, this issue is resolved in the final chapter in simulating a single event earthquake dynamic rupture. Simulation results show that fluid pressure has a positive effect on slip nucleation and subsequent crack propagation. This is confirmed by running a sensitivity analysis that shows an increase in injection well distance results in delayed slip nucleation and rupture propagation on the fault.

  16. LB3D: A parallel implementation of the Lattice-Boltzmann method for simulation of interacting amphiphilic fluids

    NASA Astrophysics Data System (ADS)

    Schmieschek, S.; Shamardin, L.; Frijters, S.; Krüger, T.; Schiller, U. D.; Harting, J.; Coveney, P. V.

    2017-08-01

    We introduce the lattice-Boltzmann code LB3D, version 7.1. Building on a parallel program and supporting tools which have enabled research utilising high performance computing resources for nearly two decades, LB3D version 7 provides a subset of the research code functionality as an open source project. Here, we describe the theoretical basis of the algorithm as well as computational aspects of the implementation. The software package is validated against simulations of meso-phases resulting from self-assembly in ternary fluid mixtures comprising immiscible and amphiphilic components such as water-oil-surfactant systems. The impact of the surfactant species on the dynamics of spinodal decomposition are tested and quantitative measurement of the permeability of a body centred cubic (BCC) model porous medium for a simple binary mixture is described. Single-core performance and scaling behaviour of the code are reported for simulations on current supercomputer architectures.

  17. Helium 2 slosh in low gravity

    NASA Technical Reports Server (NTRS)

    Ross, Graham O.

    1994-01-01

    This paper describes the status and plans for the work being performed under NASA NRA contract NASW-4803 so that members of the Microgravity Fluid Dynamics Discipline Working Group are aware of this program. The contract is a cross-disciplinary research program and is administered under the Low Temperature Microgravity Research Program at the Jet Propulsion Laboratory. The purpose of the project is to perform low-gravity verification experiments on the slosh behavior of He II to use in the development of a CFD model that incorporates the two-fluid physics of He II. The two-fluid code predicts a different fluid motion response in low-gravity environment from that predicted by a single-fluid model, while the 1g response is identical for the both types of model.

  18. Simulations of a molecular plasma in collisional-radiative nonequilibrium

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc; Moreau, Stephane

    1993-01-01

    A code for the simulation of nonequilibrium plasmas is being developed, with the capability to couple the plasma fluid-dynamics for a single fluid with a collisional-radiative model, where electronic states are treated as separate species. The model allows for non-Boltzmann distribution of the electronic states. Deviations from the Boltzmann distributions are expected to occur in the rapidly ionizing regime behind a strong shock or in the recombining regime during a fast expansion. This additional step in modeling complexity is expected to yield more accurate predictions of the nonequilibrium state and the radiation spectrum and intensity. An attempt at extending the code to molecular plasma flows is presented. The numerical techniques used, the thermochemical model, and the results of some numerical tests are described.

  19. Validation of hydrogen gas stratification and mixing models

    DOE PAGES

    Wu, Hsingtzu; Zhao, Haihua

    2015-05-26

    Two validation benchmarks confirm that the BMIX++ code is capable of simulating unintended hydrogen release scenarios efficiently. The BMIX++ (UC Berkeley mechanistic MIXing code in C++) code has been developed to accurately and efficiently predict the fluid mixture distribution and heat transfer in large stratified enclosures for accident analyses and design optimizations. The BMIX++ code uses a scaling based one-dimensional method to achieve large reduction in computational effort compared to a 3-D computational fluid dynamics (CFD) simulation. Two BMIX++ benchmark models have been developed. One is for a single buoyant jet in an open space and another is for amore » large sealed enclosure with both a jet source and a vent near the floor. Both of them have been validated by comparisons with experimental data. Excellent agreements are observed. The entrainment coefficients of 0.09 and 0.08 are found to fit the experimental data for hydrogen leaks with the Froude number of 99 and 268 best, respectively. In addition, the BIX++ simulation results of the average helium concentration for an enclosure with a vent and a single jet agree with the experimental data within a margin of about 10% for jet flow rates ranging from 1.21 × 10⁻⁴ to 3.29 × 10⁻⁴ m³/s. In conclusion, computing time for each BMIX++ model with a normal desktop computer is less than 5 min.« less

  20. Computer program for prediction of the deposition of material released from fixed and rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    Teske, M. E.

    1984-01-01

    This is a user manual for the computer code ""AGDISP'' (AGricultural DISPersal) which has been developed to predict the deposition of material released from fixed and rotary wing aircraft in a single-pass, computationally efficient manner. The formulation of the code is novel in that the mean particle trajectory and the variance about the mean resulting from turbulent fluid fluctuations are simultaneously predicted. The code presently includes the capability of assessing the influence of neutral atmospheric conditions, inviscid wake vortices, particle evaporation, plant canopy and terrain on the deposition pattern.

  1. Fracturing And Liquid CONvection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-02-29

    FALCON has been developed to enable simulation of the tightly coupled fluid-rock behavior in hydrothermal and engineered geothermal system (EGS) reservoirs, targeting the dynamics of fracture stimulation, fluid flow, rock deformation, and heat transport in a single integrated code, with the ultimate goal of providing a tool that can be used to test the viability of EGS in the United States and worldwide. Reliable reservoir performance predictions of EGS systems require accurate and robust modeling for the coupled thermal­hydrological­mechanical processes.

  2. Adaptive EAGLE dynamic solution adaptation and grid quality enhancement

    NASA Technical Reports Server (NTRS)

    Luong, Phu Vinh; Thompson, J. F.; Gatlin, B.; Mastin, C. W.; Kim, H. J.

    1992-01-01

    In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code.

  3. A hybrid gyrokinetic ion and isothermal electron fluid code for astrophysical plasma

    NASA Astrophysics Data System (ADS)

    Kawazura, Y.; Barnes, M.

    2018-05-01

    This paper describes a new code for simulating astrophysical plasmas that solves a hybrid model composed of gyrokinetic ions (GKI) and an isothermal electron fluid (ITEF) Schekochihin et al. (2009) [9]. This model captures ion kinetic effects that are important near the ion gyro-radius scale while electron kinetic effects are ordered out by an electron-ion mass ratio expansion. The code is developed by incorporating the ITEF approximation into AstroGK, an Eulerian δf gyrokinetics code specialized to a slab geometry Numata et al. (2010) [41]. The new code treats the linear terms in the ITEF equations implicitly while the nonlinear terms are treated explicitly. We show linear and nonlinear benchmark tests to prove the validity and applicability of the simulation code. Since the fast electron timescale is eliminated by the mass ratio expansion, the Courant-Friedrichs-Lewy condition is much less restrictive than in full gyrokinetic codes; the present hybrid code runs ∼ 2√{mi /me } ∼ 100 times faster than AstroGK with a single ion species and kinetic electrons where mi /me is the ion-electron mass ratio. The improvement of the computational time makes it feasible to execute ion scale gyrokinetic simulations with a high velocity space resolution and to run multiple simulations to determine the dependence of turbulent dynamics on parameters such as electron-ion temperature ratio and plasma beta.

  4. Erosion of tungsten armor after multiple intense transient events in ITER

    NASA Astrophysics Data System (ADS)

    Bazylev, B. N.; Janeschitz, G.; Landman, I. S.; Pestchanyi, S. E.

    2005-03-01

    Macroscopic erosion by melt motion is the dominating damage mechanism for tungsten armour under high-heat loads with energy deposition W > 1 MJ/m 2 and τ > 0.1 ms. For ITER divertor armour the results of a fluid dynamics simulation of the melt motion erosion after repetitive stochastically varying plasma heat loads of consecutive disruptions interspaced by ELMs are presented. The heat loads for particular single transient events are numerically simulated using the two-dimensional MHD code FOREV-2D. The whole melt motion is calculated by the fluid dynamics code MEMOS-1.5D. In addition for the ITER dome melt motion erosion of tungsten armour caused by the lateral radiation impact from the plasma shield at the disruption and ELM heat loads is estimated.

  5. Two-phase reduced gravity experiments for a space reactor design

    NASA Technical Reports Server (NTRS)

    Antoniak, Zenen I.

    1987-01-01

    Future space missions researchers envision using large nuclear reactors with either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed to coordinate all ongoing and planned reduced gravity flow experiments.

  6. Experimental and theoretical investigations on the warm-up of a high-pressure mercury discharge lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalach, J.; Franke, St.; Schoepp, H.

    2011-03-15

    Modern high-pressure discharge lamps are forced to provide instant light and hot relight capabilities - if possible at lower power units. A detailed understanding of the warm-up of high-pressure discharge lamps is therefore required. Complex fluid model codes were developed for the past years including more and more processes like two-dimensional treatment of convection trying to provide a more comprehensive and consistent description of high-pressure discharge lamps. However, there is a lack of experimental data to examine the performance of these models. This work provides a very complete set of geometrical, electrical, spectroscopic, and thermographic data according to the warm-upmore » of a high-pressure mercury discharge lamp that is compared to the results of a state of the art fluid code. Quantitative agreement is achieved for single parameters like wall temperatures. But the paper also reveals the need for further investigations and improvements of the code.« less

  7. Experimental prediction of tube support interaction characteristics in steam generators: Volume 2, Westinghouse Model 51 flow entrance region: Topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haslinger, K.H.

    Tube-to-tube support interaction characterisitics were determined experimentally on a single tube, multi-span geometry, representative of the Westinghouse Model 51 steam generator economizer design. Results, in part, became input for an autoclave type wear test program on steam generator tubes, performed by Kraftwerk Union (KWU). More importantly, the test data reported here have been used to validate two analytical wear prediction codes; the WECAN code, which was developed by Westinghouse, and the ABAQUS code which has been enhanced for EPRI by Foster Wheeler to enable simulation of gap conditions (including fluid film effects) for various support geometries.

  8. CFD Modeling of Free-Piston Stirling Engines

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir B.; Zhang, Zhi-Guo; Tew, Roy C., Jr.; Gedeon, David; Simon, Terrence W.

    2001-01-01

    NASA Glenn Research Center (GRC) is funding Cleveland State University (CSU) to develop a reliable Computational Fluid Dynamics (CFD) code that can predict engine performance with the goal of significant improvements in accuracy when compared to one-dimensional (1-D) design code predictions. The funding also includes conducting code validation experiments at both the University of Minnesota (UMN) and CSU. In this paper a brief description of the work-in-progress is provided in the two areas (CFD and Experiments). Also, previous test results are compared with computational data obtained using (1) a 2-D CFD code obtained from Dr. Georg Scheuerer and further developed at CSU and (2) a multidimensional commercial code CFD-ACE+. The test data and computational results are for (1) a gas spring and (2) a single piston/cylinder with attached annular heat exchanger. The comparisons among the codes are discussed. The paper also discusses plans for conducting code validation experiments at CSU and UMN.

  9. Use of the PARC code to estimate the off-design transonic performance of an over/under turboramjet nozzle

    NASA Technical Reports Server (NTRS)

    Lam, David W.

    1995-01-01

    The transonic performance of a dual-throat, single-expansion-ramp nozzle (SERN) was investigated with a PARC computational fluid dynamics (CFD) code, an external flow Navier-Stokes solver. The nozzle configuration was from a conceptual Mach 5 cruise aircraft powered by four air-breathing turboramjets. Initial test cases used the two-dimensional version of PARC in Euler mode to investigate the effect of geometric variation on transonic performance. Additional cases used the two-dimensional version in viscous mode and the three-dimensional version in both Euler and viscous modes. Results of the analysis indicate low nozzle performance and a highly three-dimensional nozzle flow at transonic conditions. In another comparative study using the PARC code, a single-throat SERN configuration for which experimental data were available at transonic conditions was used to validate the results of the over/under turboramjet nozzle.

  10. Spectral analysis of the turbulent mixing of two fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinkamp, M.J.

    1996-02-01

    The authors describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used asmore » a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.« less

  11. A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2de

    NASA Technical Reports Server (NTRS)

    Lopez Ortega, Alejandro; Mikellides, Ioannis G.

    2014-01-01

    We present a new algorithm in the Hall2De code to simulate the ion hydrodynamics in the acceleration channel and near plume regions of Hall-effect thrusters. This implementation constitutes an upgrade of the capabilities built in the Hall2De code. The equations of mass conservation and momentum for unmagnetized ions are solved using a conservative, finite-volume, cell-centered scheme on a magnetic-field-aligned grid. Major computational savings are achieved by making use of an implicit predictor/multi-corrector algorithm for time evolution. Inaccuracies in the prediction of the motion of low-energy ions in the near plume in hydrodynamics approaches are addressed by implementing a multi-fluid algorithm that tracks ions of different energies separately. A wide range of comparisons with measurements are performed to validate the new ion algorithms. Several numerical experiments with the location and value of the anomalous collision frequency are also presented. Differences in the plasma properties in the near-plume between the single fluid and multi-fluid approaches are discussed. We complete our validation by comparing predicted erosion rates at the channel walls of the thruster with measurements. Erosion rates predicted by the plasma properties obtained from simulations replicate accurately measured rates of erosion within the uncertainty range of the sputtering models employed.

  12. Numerical simulation of fiber and wire array Z-pinches with Trac-II

    NASA Astrophysics Data System (ADS)

    Reisman, David Barton

    Trac-II is a two dimensional axisymmetric resistive MHD code. It simulates all three spatial components (r, z, φ) of the magnetic field and fluid velocity vectors, and the plasma is treated as a single fluid with two temperatures (Te,Ti). In addition, it can optionally include a self-consistent external circuit. Recent modifications to the code include the addition of the 3-T radiation model, a 4-phase (solid- liquid-vapor-plasma) equation of state model (QEOS), a 4- phase electrical/thermal conductivity model, and an implicit solution of poloidal (Bz,Br) magnetic field diffusion. These changes permit a detailed study of fiber and wire array Z-pinches. Specifically, Trac-II is used to study the wire array Z-pinch at the PBFA-Z pulse power generator at Sandia National Laboratory. First, in 1-D we examine the behavior of a single wire in the Z-pinch. Then, using these results as initial radial conditions in 2-D, we investigate the dynamics of wire array configurations in the r-z and r-θ plane. In the r- z plane we examine the growth of the m = 0 or ``sausage'' instability in single wires within the array. In the r-θ plane we examine the merging behavior between neighboring wires. Special emphasis is placed on trying to explain how instability growth affects the performance of the Z-pinch. Lastly, we introduce Trac-III, a 3-D MHD code, and illustrate the m = 1 or ``kink'' instability. We also discuss how Trac-III can be modified to simulate the wire array Z-pinch.

  13. The UPSF code: a metaprogramming-based high-performance automatically parallelized plasma simulation framework

    NASA Astrophysics Data System (ADS)

    Gao, Xiatian; Wang, Xiaogang; Jiang, Binhao

    2017-10-01

    UPSF (Universal Plasma Simulation Framework) is a new plasma simulation code designed for maximum flexibility by using edge-cutting techniques supported by C++17 standard. Through use of metaprogramming technique, UPSF provides arbitrary dimensional data structures and methods to support various kinds of plasma simulation models, like, Vlasov, particle in cell (PIC), fluid, Fokker-Planck, and their variants and hybrid methods. Through C++ metaprogramming technique, a single code can be used to arbitrary dimensional systems with no loss of performance. UPSF can also automatically parallelize the distributed data structure and accelerate matrix and tensor operations by BLAS. A three-dimensional particle in cell code is developed based on UPSF. Two test cases, Landau damping and Weibel instability for electrostatic and electromagnetic situation respectively, are presented to show the validation and performance of the UPSF code.

  14. User's manual for PANDA II: A computer code for calculating equations of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerley, G.I.

    1991-07-18

    PANDA is an interactive computer code that is used to compute equations of state (EOS) for many classes of materials over a wide range of densities and temperatures. The first step in the development of a general EOS model is to determine the EOS for a one- component system, consisting of a single solid or fluid phase and a single chemical species. The results of several such calculations can then be combined to construct EOS for multiphase and multicomponent systems. For one-component solids and fluids, PANDA offers a variety of options for modeling various contributions to the EOS: the zeromore » Kelvin isotherm, lattice vibrations, fluid degrees of freedom, thermal electronic excitation and ionization, and molecular vibrational and rotational degrees of freedom. Two options are available for computing EOS for multicomponent systems from separate EOS for the individual species and phases. The phase transition model is used for a system of immiscible phases, each having the same chemical composition. In the mixture model, the components can be either miscible or immiscible and can have different chemical compositions; mixtures cab be either inert or reactive. PANDA provides over 50 commands that are used to define the EOS models, to make calculations and compare the models to experimental data, and to generate and maintain tabular EOS libraries for use in hydrocodes and other applications. Versions of the code available for the Cray (UNICOS and CTSS), SUN (UNIX), and VAX(VMS) machines, and a small version is available for personal computers (DOS). This report describes the EOS models, use of the commands, and several sample problems. 92 refs., 7 figs., 10 tabs.« less

  15. High-performance computational fluid dynamics: a custom-code approach

    NASA Astrophysics Data System (ADS)

    Fannon, James; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain; Náraigh, Lennon Ó.

    2016-07-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier-Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing.

  16. MicroHH 1.0: a computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows

    NASA Astrophysics Data System (ADS)

    van Heerwaarden, Chiel C.; van Stratum, Bart J. H.; Heus, Thijs; Gibbs, Jeremy A.; Fedorovich, Evgeni; Mellado, Juan Pedro

    2017-08-01

    This paper describes MicroHH 1.0, a new and open-source (www.microhh.org) computational fluid dynamics code for the simulation of turbulent flows in the atmosphere. It is primarily made for direct numerical simulation but also supports large-eddy simulation (LES). The paper covers the description of the governing equations, their numerical implementation, and the parameterizations included in the code. Furthermore, the paper presents the validation of the dynamical core in the form of convergence and conservation tests, and comparison of simulations of channel flows and slope flows against well-established test cases. The full numerical model, including the associated parameterizations for LES, has been tested for a set of cases under stable and unstable conditions, under the Boussinesq and anelastic approximations, and with dry and moist convection under stationary and time-varying boundary conditions. The paper presents performance tests showing good scaling from 256 to 32 768 processes. The graphical processing unit (GPU)-enabled version of the code can reach a speedup of more than an order of magnitude for simulations that fit in the memory of a single GPU.

  17. GPUs, a New Tool of Acceleration in CFD: Efficiency and Reliability on Smoothed Particle Hydrodynamics Methods

    PubMed Central

    Crespo, Alejandro C.; Dominguez, Jose M.; Barreiro, Anxo; Gómez-Gesteira, Moncho; Rogers, Benedict D.

    2011-01-01

    Smoothed Particle Hydrodynamics (SPH) is a numerical method commonly used in Computational Fluid Dynamics (CFD) to simulate complex free-surface flows. Simulations with this mesh-free particle method far exceed the capacity of a single processor. In this paper, as part of a dual-functioning code for either central processing units (CPUs) or Graphics Processor Units (GPUs), a parallelisation using GPUs is presented. The GPU parallelisation technique uses the Compute Unified Device Architecture (CUDA) of nVidia devices. Simulations with more than one million particles on a single GPU card exhibit speedups of up to two orders of magnitude over using a single-core CPU. It is demonstrated that the code achieves different speedups with different CUDA-enabled GPUs. The numerical behaviour of the SPH code is validated with a standard benchmark test case of dam break flow impacting on an obstacle where good agreement with the experimental results is observed. Both the achieved speed-ups and the quantitative agreement with experiments suggest that CUDA-based GPU programming can be used in SPH methods with efficiency and reliability. PMID:21695185

  18. Microgravity computing codes. User's guide

    NASA Astrophysics Data System (ADS)

    1982-01-01

    Codes used in microgravity experiments to compute fluid parameters and to obtain data graphically are introduced. The computer programs are stored on two diskettes, compatible with the floppy disk drives of the Apple 2. Two versions of both disks are available (DOS-2 and DOS-3). The codes are written in BASIC and are structured as interactive programs. Interaction takes place through the keyboard of any Apple 2-48K standard system with single floppy disk drive. The programs are protected against wrong commands given by the operator. The programs are described step by step in the same order as the instructions displayed on the monitor. Most of these instructions are shown, with samples of computation and of graphics.

  19. Efficiency of International Classification of Diseases, Ninth Revision, Billing Code Searches to Identify Emergency Department Visits for Blood or Body Fluid Exposures through a Statewide Multicenter Database

    PubMed Central

    Rosen, Lisa M.; Liu, Tao; Merchant, Roland C.

    2016-01-01

    BACKGROUND Blood and body fluid exposures are frequently evaluated in emergency departments (EDs). However, efficient and effective methods for estimating their incidence are not yet established. OBJECTIVE Evaluate the efficiency and accuracy of estimating statewide ED visits for blood or body fluid exposures using International Classification of Diseases, Ninth Revision (ICD-9), code searches. DESIGN Secondary analysis of a database of ED visits for blood or body fluid exposure. SETTING EDs of 11 civilian hospitals throughout Rhode Island from January 1, 1995, through June 30, 2001. PATIENTS Patients presenting to the ED for possible blood or body fluid exposure were included, as determined by prespecified ICD-9 codes. METHODS Positive predictive values (PPVs) were estimated to determine the ability of 10 ICD-9 codes to distinguish ED visits for blood or body fluid exposure from ED visits that were not for blood or body fluid exposure. Recursive partitioning was used to identify an optimal subset of ICD-9 codes for this purpose. Random-effects logistic regression modeling was used to examine variations in ICD-9 coding practices and styles across hospitals. Cluster analysis was used to assess whether the choice of ICD-9 codes was similar across hospitals. RESULTS The PPV for the original 10 ICD-9 codes was 74.4% (95% confidence interval [CI], 73.2%–75.7%), whereas the recursive partitioning analysis identified a subset of 5 ICD-9 codes with a PPV of 89.9% (95% CI, 88.9%–90.8%) and a misclassification rate of 10.1%. The ability, efficiency, and use of the ICD-9 codes to distinguish types of ED visits varied across hospitals. CONCLUSIONS Although an accurate subset of ICD-9 codes could be identified, variations across hospitals related to hospital coding style, efficiency, and accuracy greatly affected estimates of the number of ED visits for blood or body fluid exposure. PMID:22561713

  20. Analysis of physical-chemical processes governing SSME internal fluid flows

    NASA Technical Reports Server (NTRS)

    Singhal, A. K.; Owens, S. F.; Mukerjee, T.; Keeton, L. W.; Prakash, C.; Przekwas, A. J.

    1984-01-01

    The efforts to adapt CHAM's computational fluid dynamics code, PHOENICS, to the analysis of flow within the high pressure fuel turbopump (HPFTP) aft-platform seal cavity of the SSME are summarized. In particular, the special purpose PHOENICS satellite and ground station specifically formulated for this application are listed and described, and the preliminary results of the first part two-dimensional analyses are presented and discussed. Planned three-dimensional analyses are also briefly outlined. To further understand the mixing and combustion processes in the SSME fuelside preburners, a single oxygen-hydrogen jet element was investigated.

  1. Use of an Accurate DNS Particulate Flow Method to Supply and Validate Boundary Conditions for the MFIX Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhi-Gang Feng

    2012-05-31

    The simulation of particulate flows for industrial applications often requires the use of two-fluid models, where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of the two-fluid models in multiphase computations comes from the boundary condition of the solid phase. Typically, the gas or liquid fluid boundary condition at a solid wall is the so called no-slip condition, which has been widely accepted to be valid for single-phase fluid dynamics provided that the Knudsen number is low. However, the boundary condition for the solid phase is not well understood. Themore » no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. Experimental or numerical simulation data are needed in order to determinate the slip boundary condition that is applicable to a two-fluid model. The goal of this project is to improve the performance and accuracy of the boundary conditions used in two-fluid models such as the MFIX code, which is frequently used in multiphase flow simulations. The specific objectives of the project are to use first principles embedded in a validated Direct Numerical Simulation particulate flow numerical program, which uses the Immersed Boundary method (DNS-IB) and the Direct Forcing scheme in order to establish, modify and validate needed energy and momentum boundary conditions for the MFIX code. To achieve these objectives, we have developed a highly efficient DNS code and conducted numerical simulations to investigate the particle-wall and particle-particle interactions in particulate flows. Most of our research findings have been reported in major conferences and archived journals, which are listed in Section 7 of this report. In this report, we will present a brief description of these results.« less

  2. Fluid Film Bearing Code Development

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The next generation of rocket engine turbopumps is being developed by industry through Government-directed contracts. These turbopumps will use fluid film bearings because they eliminate the life and shaft-speed limitations of rolling-element bearings, increase turbopump design flexibility, and reduce the need for turbopump overhauls and maintenance. The design of the fluid film bearings for these turbopumps, however, requires sophisticated analysis tools to model the complex physical behavior characteristic of fluid film bearings operating at high speeds with low viscosity fluids. State-of-the-art analysis and design tools are being developed at the Texas A&M University under a grant guided by the NASA Lewis Research Center. The latest version of the code, HYDROFLEXT, is a thermohydrodynamic bulk flow analysis with fluid compressibility, full inertia, and fully developed turbulence models. It can predict the static and dynamic force response of rigid and flexible pad hydrodynamic bearings and of rigid and tilting pad hydrostatic bearings. The Texas A&M code is a comprehensive analysis tool, incorporating key fluid phenomenon pertinent to bearings that operate at high speeds with low-viscosity fluids typical of those used in rocket engine turbopumps. Specifically, the energy equation was implemented into the code to enable fluid properties to vary with temperature and pressure. This is particularly important for cryogenic fluids because their properties are sensitive to temperature as well as pressure. As shown in the figure, predicted bearing mass flow rates vary significantly depending on the fluid model used. Because cryogens are semicompressible fluids and the bearing dynamic characteristics are highly sensitive to fluid compressibility, fluid compressibility effects are also modeled. The code contains fluid properties for liquid hydrogen, liquid oxygen, and liquid nitrogen as well as for water and air. Other fluids can be handled by the code provided that the user inputs information that relates the fluid transport properties to the temperature.

  3. Comparison Between Simulated and Experimentally Measured Performance of a Four Port Wave Rotor

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Wilson, Jack; Welch, Gerard E.

    2007-01-01

    Performance and operability testing has been completed on a laboratory-scale, four-port wave rotor, of the type suitable for use as a topping cycle on a gas turbine engine. Many design aspects, and performance estimates for the wave rotor were determined using a time-accurate, one-dimensional, computational fluid dynamics-based simulation code developed specifically for wave rotors. The code follows a single rotor passage as it moves past the various ports, which in this reference frame become boundary conditions. This paper compares wave rotor performance predicted with the code to that measured during laboratory testing. Both on and off-design operating conditions were examined. Overall, the match between code and rig was found to be quite good. At operating points where there were disparities, the assumption of larger than expected internal leakage rates successfully realigned code predictions and laboratory measurements. Possible mechanisms for such leakage rates are discussed.

  4. OFF, Open source Finite volume Fluid dynamics code: A free, high-order solver based on parallel, modular, object-oriented Fortran API

    NASA Astrophysics Data System (ADS)

    Zaghi, S.

    2014-07-01

    OFF, an open source (free software) code for performing fluid dynamics simulations, is presented. The aim of OFF is to solve, numerically, the unsteady (and steady) compressible Navier-Stokes equations of fluid dynamics by means of finite volume techniques: the research background is mainly focused on high-order (WENO) schemes for multi-fluids, multi-phase flows over complex geometries. To this purpose a highly modular, object-oriented application program interface (API) has been developed. In particular, the concepts of data encapsulation and inheritance available within Fortran language (from standard 2003) have been stressed in order to represent each fluid dynamics "entity" (e.g. the conservative variables of a finite volume, its geometry, etc…) by a single object so that a large variety of computational libraries can be easily (and efficiently) developed upon these objects. The main features of OFF can be summarized as follows: Programming LanguageOFF is written in standard (compliant) Fortran 2003; its design is highly modular in order to enhance simplicity of use and maintenance without compromising the efficiency; Parallel Frameworks Supported the development of OFF has been also targeted to maximize the computational efficiency: the code is designed to run on shared-memory multi-cores workstations and distributed-memory clusters of shared-memory nodes (supercomputers); the code's parallelization is based on Open Multiprocessing (OpenMP) and Message Passing Interface (MPI) paradigms; Usability, Maintenance and Enhancement in order to improve the usability, maintenance and enhancement of the code also the documentation has been carefully taken into account; the documentation is built upon comprehensive comments placed directly into the source files (no external documentation files needed): these comments are parsed by means of doxygen free software producing high quality html and latex documentation pages; the distributed versioning system referred as git has been adopted in order to facilitate the collaborative maintenance and improvement of the code; CopyrightsOFF is a free software that anyone can use, copy, distribute, study, change and improve under the GNU Public License version 3. The present paper is a manifesto of OFF code and presents the currently implemented features and ongoing developments. This work is focused on the computational techniques adopted and a detailed description of the main API characteristics is reported. OFF capabilities are demonstrated by means of one and two dimensional examples and a three dimensional real application.

  5. Fractal Viscous Fingering in Fracture Networks

    NASA Astrophysics Data System (ADS)

    Boyle, E.; Sams, W.; Ferer, M.; Smith, D. H.

    2007-12-01

    We have used two very different physical models and computer codes to study miscible injection of a low- viscosity fluid into a simple fracture network, where it displaces a much-more viscous "defending" fluid through "rock" that is otherwise impermeable. The one code (NETfLow) is a standard pore level model, originally intended to treat laboratory-scale experiments; it assumes negligible mixing of the two fluids. The other code (NFFLOW) was written to treat reservoir-scale engineering problems; It explicitly treats the flow through the fractures and allows for significant mixing of the fluids at the interface. Both codes treat the fractures as parallel plates, of different effective apertures. Results are presented for the composition profiles from both codes. Independent of the degree of fluid-mixing, the profiles from both models have a functional form identical to that for fractal viscous fingering (i.e., diffusion limited aggregation, DLA). The two codes that solve the equations for different models gave similar results; together they suggest that the injection of a low-viscosity fluid into large- scale fracture networks may be much more significantly affected by fractal fingering than previously illustrated.

  6. Analysis and Modeling of a Two-Phase Jet Pump of a Flow Boiling Test Facility for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Sherif, S. A.; Steadham, Justin M.

    1996-01-01

    Jet pumps are devices capable of pumping fluids to a higher pressure employing a nozzle/diffuser/mixing chamber combination. A primary fluid is usually allowed to pass through a converging-diverging nozzle where it can accelerate to supersonic speeds at the nozzle exit. The relatively high kinetic energy that the primary fluid possesses at the nozzle exit is accompanied by a low pressure region in order to satisfy Bernoulli's equation. The low pressure region downstream of the nozzle exit permits a secondary fluid to be entrained into and mixed with the primary fluid in a mixing chamber located downstream of the nozzle. Several combinations may exist in terms of the nature of the primary and secondary fluids in so far as whether they are single or two-phase fluids. Depending on this, the jet pump may be classified as gas/gas, gas/liquid, liquid/liquid, two-phase/liquid, or similar combinations. The mixing chamber serves to create a homogeneous single-phase or two-phase mixture which enters a diffuser where the high kinetic energy of the fluid is converted into pressure energy. If the fluid mixture entering the diffuser is in the supersonic flow regime, a normal shock wave usually develops inside the diffuser. If the fluid mixture is one that can easily change phase, a condensation shock would normally develop. Because of the overall rise in pressure in the diffuser as well as the additional rise in pressure across the shock layer, condensation becomes more likely. Associated with the pressure rise across the shock is a velocity reduction from the supersonic to the subsonic range. If the two-phase flow entering the diffuser is predominantly gaseous with liquid droplets suspended in it, it will transform into a predominantly liquid flow containing gaseous bubbles (bubbly flow) somewhere in the diffuser. While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the authors apart from that of Anand (1992) which accounted for condensation shocks. One of the objectives of this research effort is to develop a comprehensive model in which the effects of phase slip and inter-phase heat transfer as well as the wall friction and shock waves are accounted for. While this modeling effort is predominantly analytical in nature and is primarily intended to provide a parametric understanding of the jet pump performance under different operating scenarios, another parallel effort employing a commercial CFD code is also implemented. The latter effort is primarily intended to model an axisymmetric counterpart of the problem in question. The viability of using the CFD code to model a two-phase flow jet pump will be assessed by attempting to recreate some of the existing performance data of similar jet pumps. The code will eventually be used to generate the jet pump performance characteristics of several scenarios involving jet pump geometries as well as flow regimes in order to be able to determine an optimum design which would be suitable for a two-phase flow boiling test facility at NASA-Marshall. Because of the extensive nature of the analytical model developed, the following section will only provide very brief highlights of it, while leaving the details to a more complete report submitted to the NASA colleague. This report will also contain some of the simulation results obtained using the CFD code.

  7. Computational techniques for solar wind flows past terrestrial planets: Theory and computer programs

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Chaussee, D. S.; Trudinger, B. C.; Spreiter, J. R.

    1977-01-01

    The interaction of the solar wind with terrestrial planets can be predicted using a computer program based on a single fluid, steady, dissipationless, magnetohydrodynamic model to calculate the axisymmetric, supersonic, super-Alfvenic solar wind flow past both magnetic and nonmagnetic planets. The actual calculations are implemented by an assemblage of computer codes organized into one program. These include finite difference codes which determine the gas-dynamic solution, together with a variety of special purpose output codes for determining and automatically plotting both flow field and magnetic field results. Comparisons are made with previous results, and results are presented for a number of solar wind flows. The computational programs developed are documented and are presented in a general user's manual which is included.

  8. Numerical studies of the deposition of material released from fixed and rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    Bilanin, A. J.; Teske, M. E.

    1984-01-01

    The computer code AGDISP (AGricultural DISPersal) has been developed to predict the deposition of material released from fixed and rotary wing aircraft in a single-pass, computationally efficient manner. The formulation of the code is novel in that the mean particle trajectory and the variance about the mean resulting from turbulent fluid fluctuations are simultaneously predicted. The code presently includes the capability of assessing the influence of neutral atmospheric conditions, inviscid wake vortices, particle evaporation, plant canopy and terrain on the deposition pattern. In this report, the equations governing the motion of aerially released particles are developed, including a description of the evaporation model used. A series of case studies, using AGDISP, are included.

  9. Development of Switchable Polarity Solvent Draw Solutes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Aaron D.

    Results of a computational fluid dynamic (CFD) study of flow and heat transfer in a printed circuit heat exchanger (PCHE) geometry are presented. CFD results obtained from a two-plate model are compared to corresponding experimental results for the validation. This process provides the basis for further application of the CFD code to PCHE design and performance analysis in a variety of internal flow geometries. As a part of the code verification and validation (V&V) process, CFD simulation of a single semicircular straight channel under laminar isothermal conditions was also performed and compared to theoretical results. This comparison yielded excellent agreementmore » with the theoretical values. The two-plate CFD model based on the experimental PCHE design overestimated the effectiveness and underestimated the pressure drop. However, it is found that the discrepancy between the CFD result and experimental data was mainly caused by the uncertainty in the geometry of heat exchanger during the fabrication. The CFD results obtained using a slightly smaller channel diameter yielded good agreement with the experimental data. A separate investigation revealed that the average channel diameter of the OSU PCHE after the diffusion-bonding was 1.93 mm on the cold fluid side and 1.90 mm on the hot fluid side which are both smaller than the nominal design value. Consequently, the CFD code was shown to have sufficient capability to evaluate the heat exchanger thermal-hydraulic performance.« less

  10. Simulating single-phase and two-phase non-Newtonian fluid flow of a digital rock scanned at high resolution

    NASA Astrophysics Data System (ADS)

    Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali

    2017-11-01

    Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.

  11. Dusty gas with one fluid in smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Laibe, Guillaume; Price, Daniel J.

    2014-05-01

    In a companion paper we have shown how the equations describing gas and dust as two fluids coupled by a drag term can be re-formulated to describe the system as a single-fluid mixture. Here, we present a numerical implementation of the one-fluid dusty gas algorithm using smoothed particle hydrodynamics (SPH). The algorithm preserves the conservation properties of the SPH formalism. In particular, the total gas and dust mass, momentum, angular momentum and energy are all exactly conserved. Shock viscosity and conductivity terms are generalized to handle the two-phase mixture accordingly. The algorithm is benchmarked against a comprehensive suit of problems: DUSTYBOX, DUSTYWAVE, DUSTYSHOCK and DUSTYOSCILL, each of them addressing different properties of the method. We compare the performance of the one-fluid algorithm to the standard two-fluid approach. The one-fluid algorithm is found to solve both of the fundamental limitations of the two-fluid algorithm: it is no longer possible to concentrate dust below the resolution of the gas (they have the same resolution by definition), and the spatial resolution criterion h < csts, required in two-fluid codes to avoid over-damping of kinetic energy, is unnecessary. Implicit time-stepping is straightforward. As a result, the algorithm is up to ten billion times more efficient for 3D simulations of small grains. Additional benefits include the use of half as many particles, a single kernel and fewer SPH interpolations. The only limitation is that it does not capture multi-streaming of dust in the limit of zero coupling, suggesting that in this case a hybrid approach may be required.

  12. SINDA'85/FLUINT - SYSTEMS IMPROVED NUMERICAL DIFFERENCING ANALYZER AND FLUID INTEGRATOR (CONVEX VERSION)

    NASA Technical Reports Server (NTRS)

    Cullimore, B.

    1994-01-01

    SINDA, the Systems Improved Numerical Differencing Analyzer, is a software system for solving lumped parameter representations of physical problems governed by diffusion-type equations. SINDA was originally designed for analyzing thermal systems represented in electrical analog, lumped parameter form, although its use may be extended to include other classes of physical systems which can be modeled in this form. As a thermal analyzer, SINDA can handle such interrelated phenomena as sublimation, diffuse radiation within enclosures, transport delay effects, and sensitivity analysis. FLUINT, the FLUid INTegrator, is an advanced one-dimensional fluid analysis program that solves arbitrary fluid flow networks. The working fluids can be single phase vapor, single phase liquid, or two phase. The SINDA'85/FLUINT system permits the mutual influences of thermal and fluid problems to be analyzed. The SINDA system consists of a programming language, a preprocessor, and a subroutine library. The SINDA language is designed for working with lumped parameter representations and finite difference solution techniques. The preprocessor accepts programs written in the SINDA language and converts them into standard FORTRAN. The SINDA library consists of a large number of FORTRAN subroutines that perform a variety of commonly needed actions. The use of these subroutines can greatly reduce the programming effort required to solve many problems. A complete run of a SINDA'85/FLUINT model is a four step process. First, the user's desired model is run through the preprocessor which writes out data files for the processor to read and translates the user's program code. Second, the translated code is compiled. The third step requires linking the user's code with the processor library. Finally, the processor is executed. SINDA'85/FLUINT program features include 20,000 nodes, 100,000 conductors, 100 thermal submodels, and 10 fluid submodels. SINDA'85/FLUINT can also model two phase flow, capillary devices, user defined fluids, gravity and acceleration body forces on a fluid, and variable volumes. SINDA'85/FLUINT offers the following numerical solution techniques. The Finite difference formulation of the explicit method is the Forward-difference explicit approximation. The formulation of the implicit method is the Crank-Nicolson approximation. The program allows simulation of non-uniform heating and facilitates modeling thin-walled heat exchangers. The ability to model non-equilibrium behavior within two-phase volumes is included. Recent improvements to the program were made in modeling real evaporator-pumps and other capillary-assist evaporators. SINDA'85/FLUINT is available by license for a period of ten (10) years to approved licensees. The licensed program product includes the source code and one copy of the supporting documentation. Additional copies of the documentation may be purchased separately at any time. SINDA'85/FLUINT is written in FORTRAN 77. Version 2.3 has been implemented on Cray series computers running UNICOS, CONVEX computers running CONVEX OS, and DEC RISC computers running ULTRIX. Binaries are included with the Cray version only. The Cray version of SINDA'85/FLUINT also contains SINGE, an additional graphics program developed at Johnson Space Flight Center. Both source and executable code are provided for SINGE. Users wishing to create their own SINGE executable will also need the NASA Device Independent Graphics Library (NASADIG, previously known as SMDDIG; UNIX version, MSC-22001). The Cray and CONVEX versions of SINDA'85/FLUINT are available on 9-track 1600 BPI UNIX tar format magnetic tapes. The CONVEX version is also available on a .25 inch streaming magnetic tape cartridge in UNIX tar format. The DEC RISC ULTRIX version is available on a TK50 magnetic tape cartridge in UNIX tar format. SINDA was developed in 1971, and first had fluid capability added in 1975. SINDA'85/FLUINT version 2.3 was released in 1990.

  13. SAM Theory Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    The System Analysis Module (SAM) is an advanced and modern system analysis tool being developed at Argonne National Laboratory under the U.S. DOE Office of Nuclear Energy’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. SAM development aims for advances in physical modeling, numerical methods, and software engineering to enhance its user experience and usability for reactor transient analyses. To facilitate the code development, SAM utilizes an object-oriented application framework (MOOSE), and its underlying meshing and finite-element library (libMesh) and linear and non-linear solvers (PETSc), to leverage modern advanced software environments and numerical methods. SAM focuses on modeling advanced reactormore » concepts such as SFRs (sodium fast reactors), LFRs (lead-cooled fast reactors), and FHRs (fluoride-salt-cooled high temperature reactors) or MSRs (molten salt reactors). These advanced concepts are distinguished from light-water reactors in their use of single-phase, low-pressure, high-temperature, and low Prandtl number (sodium and lead) coolants. As a new code development, the initial effort has been focused on modeling and simulation capabilities of heat transfer and single-phase fluid dynamics responses in Sodium-cooled Fast Reactor (SFR) systems. The system-level simulation capabilities of fluid flow and heat transfer in general engineering systems and typical SFRs have been verified and validated. This document provides the theoretical and technical basis of the code to help users understand the underlying physical models (such as governing equations, closure models, and component models), system modeling approaches, numerical discretization and solution methods, and the overall capabilities in SAM. As the code is still under ongoing development, this SAM Theory Manual will be updated periodically to keep it consistent with the state of the development.« less

  14. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makwana, K. D., E-mail: kirit.makwana@gmx.com; Cattaneo, F.; Zhdankin, V.

    Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k{sub ⊥}{sup −1.3}. The kinetic code shows a spectral slope of k{submore » ⊥}{sup −1.5} for smaller simulation domain, and k{sub ⊥}{sup −1.3} for larger domain. We estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. This work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.« less

  15. A theoretical and experimental investigation of nonlinear propagation of ultrasound through tissue mimicking media

    NASA Astrophysics Data System (ADS)

    Rielly, Matthew Robert

    An existing numerical model (known as the Bergen code) is used to investigate finite amplitude ultrasound propagation through multiple layers of tissue-like media. This model uses a finite difference method to solve the nonlinear parabolic KZK wave equation. The code is modified to include an arbitrary frequency dependence of absorption and transmission effects for wave propagation across a plane interface at normal incidence. In addition the code is adapted to calculate the total intensity loss associated with the absorption of the fundamental and nonlinearly generated harmonics. Measurements are also taken of the axial nonlinear pressure field generated from a circular focused, 2.25 MHz source, through single and multiple layered tissue mimicking fluids, for source pressures in the range from 13 kPa to 310 kPa. Two tissue mimicking fluids are developed to provide acoustic properties similar to amniotic fluid and a typical soft tissue. The values of the nonlinearity parameter, sound velocity and frequency dependence of attenuation for both fluids are presented, and the measurement procedures employed to obtain these characteristics are described in detail. These acoustic parameters, together with the measured source conditions are used as input to the numerical model, allowing the experimental conditions to be simulated. Extensive comparisons are made between the model's predictions and the axial pressure field measurements. Results are presented in the frequency domain showing the fundamental and three subsequent harmonic amplitudes on axis, as a function of axial distance. These show that significant nonlinear distortion can occur through media with characteristics typical of tissue. Time domain waveform comparisons are also made. An excellent agreement is found between theory and experiment indicating that the model can be used to predict nonlinear ultrasound propagation through multiple layers of tissue-like media. The numerical code is also used to model the intensity loss through layered tissue mimics and results are presented illustrating the effects of altering the layered medium on the magnitude and spatial distribution of intensity loss.

  16. HEC Applications on Columbia Project

    NASA Technical Reports Server (NTRS)

    Taft, Jim

    2004-01-01

    NASA's Columbia system consists of a cluster of twenty 512 processor SGI Altix systems. Each of these systems is 3 TFLOP/s in peak performance - approximately the same as the entire compute capability at NAS just one year ago. Each 512p system is a single system image machine with one Linunx O5, one high performance file system, and one globally shared memory. The NAS Terascale Applications Group (TAG) is chartered to assist in scaling NASA's mission critical codes to at least 512p in order to significantly improve emergency response during flight operations, as well as provide significant improvements in the codes. and rate of scientific discovery across the scientifc disciplines within NASA's Missions. Recent accomplishments are 4x improvements to codes in the ocean modeling community, 10x performance improvements in a number of computational fluid dynamics codes used in aero-vehicle design, and 5x improvements in a number of space science codes dealing in extreme physics. The TAG group will continue its scaling work to 2048p and beyond (10240 cpus) as the Columbia system becomes fully operational and the upgrades to the SGI NUMAlink memory fabric are in place. The NUMlink uprades dramatically improve system scalability for a single application. These upgrades will allow a number of codes to execute faster at higher fidelity than ever before on any other system, thus increasing the rate of scientific discovery even further

  17. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    DOE PAGES

    Makwana, K. D.; Zhdankin, V.; Li, H.; ...

    2015-04-10

    We performed simulations of decaying magnetohydrodynamic (MHD) turbulence with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k-1.3⊥k⊥-1.3. The kinetic code shows a spectral slope of k-1.5⊥k⊥-1.5 for smallermore » simulation domain, and k-1.3⊥k⊥-1.3 for larger domain. We then estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. Finally, this work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.« less

  18. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makwana, K. D.; Zhdankin, V.; Li, H.

    We performed simulations of decaying magnetohydrodynamic (MHD) turbulence with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k-1.3⊥k⊥-1.3. The kinetic code shows a spectral slope of k-1.5⊥k⊥-1.5 for smallermore » simulation domain, and k-1.3⊥k⊥-1.3 for larger domain. We then estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. Finally, this work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.« less

  19. ICF Implosions, Space-Charge Electric Fields, and Their Impact on Mix and Compression

    NASA Astrophysics Data System (ADS)

    Knoll, Dana; Chacon, Luis; Simakov, Andrei

    2013-10-01

    The single-fluid, quasi-neutral, radiation hydrodynamics codes, used to design the NIF targets, predict thermonuclear ignition for the conditions that have been achieved experimentally. A logical conclusion is that the physics model used in these codes is missing one, or more, key phenomena. Two key model-experiment inconsistencies on NIF are: 1) a lower implosion velocity than predicted by the design codes, and 2) transport of pusher material deep into the hot spot. We hypothesize that both of these model-experiment inconsistencies may be a result of a large, space-charge, electric field residing on the distinct interfaces in a NIF target. Large space-charge fields have been experimentally observed in Omega experiments. Given our hypothesis, this presentation will: 1) Develop a more complete physics picture of initiation, sustainment, and dissipation of a current-driven plasma sheath / double-layer at the Fuel-Pusher interface of an ablating plastic shell implosion on Omega, 2) Characterize the mix that can result from a double-layer field at the Fuel-Pusher interface, prior to the onset of fluid instabilities, and 3) Quantify the impact of the double-layer induced surface tension at the Fuel-Pusher interface on the peak observed implosion velocity in Omega.

  20. Kinetic Effects in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory

    2014-10-01

    Sharp background gradients, inevitably introduced during ICF implosion, are likely responsible for the discrepancy between the predictions of the standard single-fluid rad-hydro codes and the experimental observations. On the one hand, these gradients drive the inter-ion-species transport, so the fuel composition no longer remains constant, unlike what the single-fluid codes assume. On the other hand, once the background scale is comparable to the mean free path, a fluid description becomes invalid. This point takes on special significance in plasmas, where the particle's mean free path scales with the square of this particle's energy. The distribution function of energetic ions may therefore be far from Maxwellian, even if thermal ions are nearly equilibrated. Ironically, it is these energetic, or tail, ions that are supposed to fuse at the onset of ignition. A combination of studies has been conducted to clarify the role of such kinetic effects on ICF performance. First, transport formalism applicable to multi-component plasmas has been developed. In particular, a novel ``electro-diffusion'' mechanism of the ion species separation has been shown to exist. Equally important, in drastic contrast to the classical case of the neutral gas mixture, thermo-diffusion is predicted to be comparable to, or even much larger than, baro-diffusion. By employing the effective potential theory this formalism has then been generalized to the case of a moderately coupled plasma with multiple ion species, making it applicable to the problem of mix at the shell/fuel interface in ICF implosion. Second, distribution function for the energetic ions has been found from first principles and the fusion reactivity reduction has been calculated for hot-spot relevant conditions. A technique for approximate evaluation of the distribution function has been identified. This finding suggests a path to effectively introducing the tail modification effects into mainline rad-hydro codes, while being in good agreement with the first principle based solution. This work was partially supported by the Laboratory Directed Research and Development (LDRD) program of LANL.

  1. Tough2{_}MP: A parallel version of TOUGH2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Keni; Wu, Yu-Shu; Ding, Chris

    2003-04-09

    TOUGH2{_}MP is a massively parallel version of TOUGH2. It was developed for running on distributed-memory parallel computers to simulate large simulation problems that may not be solved by the standard, single-CPU TOUGH2 code. The new code implements an efficient massively parallel scheme, while preserving the full capacity and flexibility of the original TOUGH2 code. The new software uses the METIS software package for grid partitioning and AZTEC software package for linear-equation solving. The standard message-passing interface is adopted for communication among processors. Numerical performance of the current version code has been tested on CRAY-T3E and IBM RS/6000 SP platforms. Inmore » addition, the parallel code has been successfully applied to real field problems of multi-million-cell simulations for three-dimensional multiphase and multicomponent fluid and heat flow, as well as solute transport. In this paper, we will review the development of the TOUGH2{_}MP, and discuss the basic features, modules, and their applications.« less

  2. A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.

    1994-01-01

    Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.

  3. A two-system, single-analysis, fluid-structure interaction technique for modelling abdominal aortic aneurysms.

    PubMed

    Kelly, S C; O'Rourke, M J

    2010-01-01

    This work reports on the implementation and validation of a two-system, single-analysis, fluid-structure interaction (FSI) technique that uses the finite volume (FV) method for performing simulations on abdominal aortic aneurysm (AAA) geometries. This FSI technique, which was implemented in OpenFOAM, included fluid and solid mesh motion and incorporated a non-linear material model to represent AAA tissue. Fully implicit coupling was implemented, ensuring that both the fluid and solid domains reached convergence within each time step. The fluid and solid parts of the FSI code were validated independently through comparison with experimental data, before performing a complete FSI simulation on an idealized AAA geometry. Results from the FSI simulation showed that a vortex formed at the proximal end of the aneurysm during systolic acceleration, and moved towards the distal end of the aneurysm during diastole. Wall shear stress (WSS) values were found to peak at both the proximal and distal ends of the aneurysm and remain low along the centre of the aneurysm. The maximum von Mises stress in the aneurysm wall was found to be 408kPa, and this occurred at the proximal end of the aneurysm, while the maximum displacement of 2.31 mm occurred in the centre of the aneurysm. These results were found to be consistent with results from other FSI studies in the literature.

  4. Liquid rocket combustor computer code development

    NASA Technical Reports Server (NTRS)

    Liang, P. Y.

    1985-01-01

    The Advanced Rocket Injector/Combustor Code (ARICC) that has been developed to model the complete chemical/fluid/thermal processes occurring inside rocket combustion chambers are highlighted. The code, derived from the CONCHAS-SPRAY code originally developed at Los Alamos National Laboratory incorporates powerful features such as the ability to model complex injector combustion chamber geometries, Lagrangian tracking of droplets, full chemical equilibrium and kinetic reactions for multiple species, a fractional volume of fluid (VOF) description of liquid jet injection in addition to the gaseous phase fluid dynamics, and turbulent mass, energy, and momentum transport. Atomization and droplet dynamic models from earlier generation codes are transplated into the present code. Currently, ARICC is specialized for liquid oxygen/hydrogen propellants, although other fuel/oxidizer pairs can be easily substituted.

  5. Flyer Target Acceleration and Energy Transfer at its Collision with Massive Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodziuk, S.; Kasperczuk, A.; Pisarczyk, T.

    2006-01-15

    Numerical modelling was aimed at simulation of successive events resulting from interaction of laser beam-single and double targets. It was performed by means of the 2D Lagrangian hydrodynamics code ATLANT-HE. This code is based on one-fluid and two-temperature model of plasma with electron and ion heat conductivity considerations. The code has an advanced treatment of laser light propagation and absorption. This numerical modelling corresponds to the experiment, which was carried out with the use of the PALS facility. Two types of planar solid targets, i.e. single massive Al slabs and double targets consisting of 6 {mu}m thick Al foil andmore » Al slab were applied. The targets were irradiated by the iodine laser pulses of two wavelengths: 1.315 and 0.438 {mu}m. A pulse duration of 0.4 ns and a focal spot diameter of 250 {mu}m at a laser energy of 130 J were used. The numerical modelling allowed us to obtain a more detailed description of shock wave propagation and crater formation.« less

  6. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User's Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less

  7. General Flow-Solver Code for Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel; Sondak, Douglas

    2006-01-01

    Phantom is a computer code intended primarily for real-fluid turbomachinery problems. It is based on Corsair, an ideal-gas turbomachinery code, developed by the same authors, which evolved from the ROTOR codes from NASA Ames. Phantom is applicable to real and ideal fluids, both compressible and incompressible, flowing at subsonic, transonic, and supersonic speeds. It utilizes structured, overset, O- and H-type zonal grids to discretize flow fields and represent relative motions of components. Values on grid boundaries are updated at each time step by bilinear interpolation from adjacent grids. Inviscid fluxes are calculated to third-order spatial accuracy using Roe s scheme. Viscous fluxes are calculated using second-order-accurate central differences. The code is second-order accurate in time. Turbulence is represented by a modified Baldwin-Lomax algebraic model. The code offers two options for determining properties of fluids: One is based on equations of state, thermodynamic departure functions, and corresponding state principles. The other, which is more efficient, is based on splines generated from tables of properties of real fluids. Phantom currently contains fluid-property routines for water, hydrogen, oxygen, nitrogen, kerosene, methane, and carbon monoxide as well as ideal gases.

  8. A Measurement and Simulation Based Methodology for Cache Performance Modeling and Tuning

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    We present a cache performance modeling methodology that facilitates the tuning of uniprocessor cache performance for applications executing on shared memory multiprocessors by accurately predicting the effects of source code level modifications. Measurements on a single processor are initially used for identifying parts of code where cache utilization improvements may significantly impact the overall performance. Cache simulation based on trace-driven techniques can be carried out without gathering detailed address traces. Minimal runtime information for modeling cache performance of a selected code block includes: base virtual addresses of arrays, virtual addresses of variables, and loop bounds for that code block. Rest of the information is obtained from the source code. We show that the cache performance predictions are as reliable as those obtained through trace-driven simulations. This technique is particularly helpful to the exploration of various "what-if' scenarios regarding the cache performance impact for alternative code structures. We explain and validate this methodology using a simple matrix-matrix multiplication program. We then apply this methodology to predict and tune the cache performance of two realistic scientific applications taken from the Computational Fluid Dynamics (CFD) domain.

  9. Application of advanced computational procedures for modeling solar-wind interactions with Venus: Theory and computer code

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Klenke, D.; Trudinger, B. C.; Spreiter, J. R.

    1980-01-01

    Computational procedures are developed and applied to the prediction of solar wind interaction with nonmagnetic terrestrial planet atmospheres, with particular emphasis to Venus. The theoretical method is based on a single fluid, steady, dissipationless, magnetohydrodynamic continuum model, and is appropriate for the calculation of axisymmetric, supersonic, super-Alfvenic solar wind flow past terrestrial planets. The procedures, which consist of finite difference codes to determine the gasdynamic properties and a variety of special purpose codes to determine the frozen magnetic field, streamlines, contours, plots, etc. of the flow, are organized into one computational program. Theoretical results based upon these procedures are reported for a wide variety of solar wind conditions and ionopause obstacle shapes. Plasma and magnetic field comparisons in the ionosheath are also provided with actual spacecraft data obtained by the Pioneer Venus Orbiter.

  10. Axial and Centrifugal Compressor Mean Line Flow Analysis Method

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.

  11. Fluid Distribution for In-space Cryogenic Propulsion

    NASA Technical Reports Server (NTRS)

    Lear, William

    2005-01-01

    The ultimate goal of this task is to enable the use of a single supply of cryogenic propellants for three distinct spacecraft propulsion missions: main propulsion, orbital maneuvering, and attitude control. A fluid distribution system is sought which allows large propellant flows during the first two missions while still allowing control of small propellant flows during attitude control. Existing research has identified the probable benefits of a combined thermal management/power/fluid distribution system based on the Solar Integrated Thermal Management and Power (SITMAP) cycle. Both a numerical model and an experimental model are constructed in order to predict the performance of such an integrated thermal management/propulsion system. This research task provides a numerical model and an experimental apparatus which will simulate an integrated thermal/power/fluid management system based on the SITMAP cycle, and assess its feasibility for various space missions. Various modifications are done to the cycle, such as the addition of a regeneration process that allows heat to be transferred into the working fluid prior to the solar collector, thereby reducing the collector size and weight. Fabri choking analysis was also accounted for. Finally the cycle is to be optimized for various space missions based on a mass based figure of merit, namely the System Mass Ratio (SMR). -. 1 he theoretical and experimental results from these models are be used to develop a design code (JETSIT code) which is able to provide design parameters for such a system, over a range of cooling loads, power generation, and attitude control thrust levels. The performance gains and mass savings will be compared to those of existing spacecraft systems.

  12. Implementation of a plasma-neutral model in NIMROD

    NASA Astrophysics Data System (ADS)

    Taheri, S.; Shumlak, U.; King, J. R.

    2016-10-01

    Interaction between plasma fluid and neutral species is of great importance in the edge region of magnetically confined fusion plasmas. The presence of neutrals can have beneficial effects such as fueling burning plasmas and quenching the disruptions in tokamaks, as well as deleterious effects like depositing high energy particles on the vessel wall. The behavior of edge plasmas in magnetically confined systems has been investigated using computational approaches that utilize the fluid description for the plasma and Monte Carlo transport for neutrals. In this research a reacting plasma-neutral model is implemented in NIMROD to study the interaction between plasma and neutral fluids. This model, developed by E. T. Meier and U. Shumlak, combines a single-fluid magnetohydrodynamic (MHD) plasma model with a gas dynamic neutral fluid model which accounts for electron-impact ionization, radiative recombination, and resonant charge exchange. Incorporating this model into NIMROD allows the study of the interaction between neutrals and plasma in a variety of plasma science problems. An accelerated plasma moving through a neutral gas background in a coaxial electrode configuration is modeled, and the results are compared with previous calculations from the HiFi code.

  13. Advanced Pellet-Cladding Interaction Modeling using the US DOE CASL Fuel Performance Code: Peregrine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Robert O.; Capps, Nathan A.; Sunderland, Dion J.

    The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermo-mechanical-chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code thatmore » is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.« less

  14. The development of an intelligent interface to a computational fluid dynamics flow-solver code

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1988-01-01

    Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, 3-D, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.

  15. The development of an intelligent interface to a computational fluid dynamics flow-solver code

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1988-01-01

    Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, three-dimensional, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.

  16. Effects of resistivity and rotation on the linear plasma response to non-axisymmetric magnetic perturbations on DIII-D

    DOE PAGES

    Haskey, Shaun R.; Lanctot, Matthew J.; Liu, Y. Q.; ...

    2015-01-05

    Parameter scans show the strong dependence of the plasma response on the poloidal structure of the applied field highlighting the importance of being able to control this parameter using non-axisymmetric coil sets. An extensive examination of the linear single fluid plasma response to n = 3 magnetic perturbations in L-mode DIII-D lower single null plasmas is presented. The effects of plasma resistivity, toroidal rotation and applied field structure are calculated using the linear single fluid MHD code, MARS-F. Measures which separate the response into a pitch-resonant and resonant field amplification (RFA) component are used to demonstrate the extent to whichmore » resonant screening and RFA occurs. The ability to control the ratio of pitch-resonant fields to RFA by varying the phasing between upper and lower resonant magnetic perturbations coils sets is shown. The predicted magnetic probe outputs and displacement at the x-point are also calculated for comparison with experiments. Additionally, modelling of the linear plasma response using experimental toroidal rotation profiles and Spitzer like resistivity profiles are compared with results which provide experimental evidence of a direct link between the decay of the resonant screening response and the formation of a 3D boundary. As a result, good agreement is found during the initial application of the MP, however, later in the shot a sudden drop in the poloidal magnetic probe output occurs which is not captured in the linear single fluid modelling.« less

  17. Multiphase three-dimensional direct numerical simulation of a rotating impeller with code Blue

    NASA Astrophysics Data System (ADS)

    Kahouadji, Lyes; Shin, Seungwon; Chergui, Jalel; Juric, Damir; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    The flow driven by a rotating impeller inside an open fixed cylindrical cavity is simulated using code Blue, a solver for massively-parallel simulations of fully three-dimensional multiphase flows. The impeller is composed of four blades at a 45° inclination all attached to a central hub and tube stem. In Blue, solid forms are constructed through the definition of immersed objects via a distance function that accounts for the object's interaction with the flow for both single and two-phase flows. We use a moving frame technique for imposing translation and/or rotation. The variation of the Reynolds number, the clearance, and the tank aspect ratio are considered, and we highlight the importance of the confinement ratio (blade radius versus the tank radius) in the mixing process. Blue uses a domain decomposition strategy for parallelization with MPI. The fluid interface solver is based on a parallel implementation of a hybrid front-tracking/level-set method designed complex interfacial topological changes. Parallel GMRES and multigrid iterative solvers are applied to the linear systems arising from the implicit solution for the fluid velocities and pressure in the presence of strong density and viscosity discontinuities across fluid phases. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  18. Nonlinear 3D visco-resistive MHD modeling of fusion plasmas: a comparison between numerical codes

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Chacon, L.; Cappello, S.

    2008-11-01

    Fluid plasma models (and, in particular, the MHD model) are extensively used in the theoretical description of laboratory and astrophysical plasmas. We present here a successful benchmark between two nonlinear, three-dimensional, compressible visco-resistive MHD codes. One is the fully implicit, finite volume code PIXIE3D [1,2], which is characterized by many attractive features, notably the generalized curvilinear formulation (which makes the code applicable to different geometries) and the possibility to include in the computation the energy transport equation and the extended MHD version of Ohm's law. In addition, the parallel version of the code features excellent scalability properties. Results from this code, obtained in cylindrical geometry, are compared with those produced by the semi-implicit cylindrical code SpeCyl, which uses finite differences radially, and spectral formulation in the other coordinates [3]. Both single and multi-mode simulations are benchmarked, regarding both reversed field pinch (RFP) and ohmic tokamak magnetic configurations. [1] L. Chacon, Computer Physics Communications 163, 143 (2004). [2] L. Chacon, Phys. Plasmas 15, 056103 (2008). [3] S. Cappello, Plasma Phys. Control. Fusion 46, B313 (2004) & references therein.

  19. Performance of a plasma fluid code on the Intel parallel computers

    NASA Technical Reports Server (NTRS)

    Lynch, V. E.; Carreras, B. A.; Drake, J. B.; Leboeuf, J. N.; Liewer, P.

    1992-01-01

    One approach to improving the real-time efficiency of plasma turbulence calculations is to use a parallel algorithm. A parallel algorithm for plasma turbulence calculations was tested on the Intel iPSC/860 hypercube and the Touchtone Delta machine. Using the 128 processors of the Intel iPSC/860 hypercube, a factor of 5 improvement over a single-processor CRAY-2 is obtained. For the Touchtone Delta machine, the corresponding improvement factor is 16. For plasma edge turbulence calculations, an extrapolation of the present results to the Intel (sigma) machine gives an improvement factor close to 64 over the single-processor CRAY-2.

  20. New Challenges in Computational Thermal Hydraulics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadigaroglu, George; Lakehal, Djamel

    New needs and opportunities drive the development of novel computational methods for the design and safety analysis of light water reactors (LWRs). Some new methods are likely to be three dimensional. Coupling is expected between system codes, computational fluid dynamics (CFD) modules, and cascades of computations at scales ranging from the macro- or system scale to the micro- or turbulence scales, with the various levels continuously exchanging information back and forth. The ISP-42/PANDA and the international SETH project provide opportunities for testing applications of single-phase CFD methods to LWR safety problems. Although industrial single-phase CFD applications are commonplace, computational multifluidmore » dynamics is still under development. However, first applications are appearing; the state of the art and its potential uses are discussed. The case study of condensation of steam/air mixtures injected from a downward-facing vent into a pool of water is a perfect illustration of a simulation cascade: At the top of the hierarchy of scales, system behavior can be modeled with a system code; at the central level, the volume-of-fluid method can be applied to predict large-scale bubbling behavior; at the bottom of the cascade, direct-contact condensation can be treated with direct numerical simulation, in which turbulent flow (in both the gas and the liquid), interfacial dynamics, and heat/mass transfer are directly simulated without resorting to models.« less

  1. The rotating movement of three immiscible fluids - A benchmark problem

    USGS Publications Warehouse

    Bakker, M.; Oude, Essink G.H.P.; Langevin, C.D.

    2004-01-01

    A benchmark problem involving the rotating movement of three immiscible fluids is proposed for verifying the density-dependent flow component of groundwater flow codes. The problem consists of a two-dimensional strip in the vertical plane filled with three fluids of different densities separated by interfaces. Initially, the interfaces between the fluids make a 45??angle with the horizontal. Over time, the fluids rotate to the stable position whereby the interfaces are horizontal; all flow is caused by density differences. Two cases of the problem are presented, one resulting in a symmetric flow field and one resulting in an asymmetric flow field. An exact analytical solution for the initial flow field is presented by application of the vortex theory and complex variables. Numerical results are obtained using three variable-density groundwater flow codes (SWI, MOCDENS3D, and SEAWAT). Initial horizontal velocities of the interfaces, as simulated by the three codes, compare well with the exact solution. The three codes are used to simulate the positions of the interfaces at two times; the three codes produce nearly identical results. The agreement between the results is evidence that the specific rotational behavior predicted by the models is correct. It also shows that the proposed problem may be used to benchmark variable-density codes. It is concluded that the three models can be used to model accurately the movement of interfaces between immiscible fluids, and have little or no numerical dispersion. ?? 2003 Elsevier B.V. All rights reserved.

  2. Deepak Condenser Model (DeCoM)

    NASA Technical Reports Server (NTRS)

    Patel, Deepak

    2013-01-01

    Development of the DeCoM comes from the requirement of analyzing the performance of a condenser. A component of a loop heat pipe (LHP), the condenser, is interfaced with the radiator in order to reject heat. DeCoM simulates the condenser, with certain input parameters. Systems Improved Numerical Differencing Analyzer (SINDA), a thermal analysis software, calculates the adjoining component temperatures, based on the DeCoM parameters and interface temperatures to the radiator. Application of DeCoM is (at the time of this reporting) restricted to small-scale analysis, without the need for in-depth LHP component integrations. To efficiently develop a model to simulate the LHP condenser, DeCoM was developed to meet this purpose with least complexity. DeCoM is a single-condenser, single-pass simulator for analyzing its behavior. The analysis is done based on the interactions between condenser fluid, the wall, and the interface between the wall and the radiator. DeCoM is based on conservation of energy, two-phase equations, and flow equations. For two-phase, the Lockhart- Martinelli correlation has been used in order to calculate the convection value between fluid and wall. Software such as SINDA (for thermal analysis analysis) and Thermal Desktop (for modeling) are required. DeCoM also includes the ability to implement a condenser into a thermal model with the capability of understanding the code process and being edited to user-specific needs. DeCoM requires no license, and is an open-source code. Advantages to DeCoM include time dependency, reliability, and the ability for the user to view the code process and edit to their needs.

  3. On the Representation of Aquifer Compressibility in General Subsurface Flow Codes: How an Alternate Definition of Aquifer Compressibility Matches Results from the Groundwater Flow Equation

    NASA Astrophysics Data System (ADS)

    Birdsell, D.; Karra, S.; Rajaram, H.

    2016-12-01

    The governing equations for subsurface flow codes in deformable porous media are derived from the fluid mass balance equation. One class of these codes, which we call general subsurface flow (GSF) codes, does not explicitly track the motion of the solid porous media but does accept general constitutive relations for porosity, density, and fluid flux. Examples of GSF codes include PFLOTRAN, FEHM, STOMP, and TOUGH2. Meanwhile, analytical and numerical solutions based on the groundwater flow equation have assumed forms for porosity, density, and fluid flux. We review the derivation of the groundwater flow equation, which uses the form of Darcy's equation that accounts for the velocity of fluids with respect to solids and defines the soil matrix compressibility accordingly. We then show how GSF codes have a different governing equation if they use the form of Darcy's equation that is written only in terms of fluid velocity. The difference is seen in the porosity change, which is part of the specific storage term in the groundwater flow equation. We propose an alternative definition of soil matrix compressibility to correct for the untracked solid velocity. Simulation results show significantly less error for our new compressibility definition than the traditional compressibility when compared to analytical solutions from the groundwater literature. For example, the error in one calculation for a pumped sandstone aquifer goes from 940 to <70 Pa when the new compressibility is used. Code users and developers need to be aware of assumptions in the governing equations and constitutive relations in subsurface flow codes, and our newly-proposed compressibility function should be incorporated into GSF codes.

  4. On the Representation of Aquifer Compressibility in General Subsurface Flow Codes: How an Alternate Definition of Aquifer Compressibility Matches Results from the Groundwater Flow Equation

    NASA Astrophysics Data System (ADS)

    Birdsell, D.; Karra, S.; Rajaram, H.

    2017-12-01

    The governing equations for subsurface flow codes in deformable porous media are derived from the fluid mass balance equation. One class of these codes, which we call general subsurface flow (GSF) codes, does not explicitly track the motion of the solid porous media but does accept general constitutive relations for porosity, density, and fluid flux. Examples of GSF codes include PFLOTRAN, FEHM, STOMP, and TOUGH2. Meanwhile, analytical and numerical solutions based on the groundwater flow equation have assumed forms for porosity, density, and fluid flux. We review the derivation of the groundwater flow equation, which uses the form of Darcy's equation that accounts for the velocity of fluids with respect to solids and defines the soil matrix compressibility accordingly. We then show how GSF codes have a different governing equation if they use the form of Darcy's equation that is written only in terms of fluid velocity. The difference is seen in the porosity change, which is part of the specific storage term in the groundwater flow equation. We propose an alternative definition of soil matrix compressibility to correct for the untracked solid velocity. Simulation results show significantly less error for our new compressibility definition than the traditional compressibility when compared to analytical solutions from the groundwater literature. For example, the error in one calculation for a pumped sandstone aquifer goes from 940 to <70 Pa when the new compressibility is used. Code users and developers need to be aware of assumptions in the governing equations and constitutive relations in subsurface flow codes, and our newly-proposed compressibility function should be incorporated into GSF codes.

  5. Mathematical Description of Complex Chemical Kinetics and Application to CFD Modeling Codes

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1993-01-01

    A major effort in combustion research at the present time is devoted to the theoretical modeling of practical combustion systems. These include turbojet and ramjet air-breathing engines as well as ground-based gas-turbine power generating systems. The ability to use computational modeling extensively in designing these products not only saves time and money, but also helps designers meet the quite rigorous environmental standards that have been imposed on all combustion devices. The goal is to combine the very complex solution of the Navier-Stokes flow equations with realistic turbulence and heat-release models into a single computer code. Such a computational fluid-dynamic (CFD) code simulates the coupling of fluid mechanics with the chemistry of combustion to describe the practical devices. This paper will focus on the task of developing a simplified chemical model which can predict realistic heat-release rates as well as species composition profiles, and is also computationally rapid. We first discuss the mathematical techniques used to describe a complex, multistep fuel oxidation chemical reaction and develop a detailed mechanism for the process. We then show how this mechanism may be reduced and simplified to give an approximate model which adequately predicts heat release rates and a limited number of species composition profiles, but is computationally much faster than the original one. Only such a model can be incorporated into a CFD code without adding significantly to long computation times. Finally, we present some of the recent advances in the development of these simplified chemical mechanisms.

  6. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers. Volume 1, Equations and numerics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User`s Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less

  7. Mathematical description of complex chemical kinetics and application to CFD modeling codes

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1993-01-01

    A major effort in combustion research at the present time is devoted to the theoretical modeling of practical combustion systems. These include turbojet and ramjet air-breathing engines as well as ground-based gas-turbine power generating systems. The ability to use computational modeling extensively in designing these products not only saves time and money, but also helps designers meet the quite rigorous environmental standards that have been imposed on all combustion devices. The goal is to combine the very complex solution of the Navier-Stokes flow equations with realistic turbulence and heat-release models into a single computer code. Such a computational fluid-dynamic (CFD) code simulates the coupling of fluid mechanics with the chemistry of combustion to describe the practical devices. This paper will focus on the task of developing a simplified chemical model which can predict realistic heat-release rates as well as species composition profiles, and is also computationally rapid. We first discuss the mathematical techniques used to describe a complex, multistep fuel oxidation chemical reaction and develop a detailed mechanism for the process. We then show how this mechanism may be reduced and simplified to give an approximate model which adequately predicts heat release rates and a limited number of species composition profiles, but is computationally much faster than the original one. Only such a model can be incorporated into a CFD code without adding significantly to long computation times. Finally, we present some of the recent advances in the development of these simplified chemical mechanisms.

  8. PRATHAM: Parallel Thermal Hydraulics Simulations using Advanced Mesoscopic Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Abhijit S; Jain, Prashant K; Mudrich, Jaime A

    2012-01-01

    At the Oak Ridge National Laboratory, efforts are under way to develop a 3D, parallel LBM code called PRATHAM (PaRAllel Thermal Hydraulic simulations using Advanced Mesoscopic Methods) to demonstrate the accuracy and scalability of LBM for turbulent flow simulations in nuclear applications. The code has been developed using FORTRAN-90, and parallelized using the message passing interface MPI library. Silo library is used to compact and write the data files, and VisIt visualization software is used to post-process the simulation data in parallel. Both the single relaxation time (SRT) and multi relaxation time (MRT) LBM schemes have been implemented in PRATHAM.more » To capture turbulence without prohibitively increasing the grid resolution requirements, an LES approach [5] is adopted allowing large scale eddies to be numerically resolved while modeling the smaller (subgrid) eddies. In this work, a Smagorinsky model has been used, which modifies the fluid viscosity by an additional eddy viscosity depending on the magnitude of the rate-of-strain tensor. In LBM, this is achieved by locally varying the relaxation time of the fluid.« less

  9. A new hybrid code (CHIEF) implementing the inertial electron fluid equation without approximation

    NASA Astrophysics Data System (ADS)

    Muñoz, P. A.; Jain, N.; Kilian, P.; Büchner, J.

    2018-03-01

    We present a new hybrid algorithm implemented in the code CHIEF (Code Hybrid with Inertial Electron Fluid) for simulations of electron-ion plasmas. The algorithm treats the ions kinetically, modeled by the Particle-in-Cell (PiC) method, and electrons as an inertial fluid, modeled by electron fluid equations without any of the approximations used in most of the other hybrid codes with an inertial electron fluid. This kind of code is appropriate to model a large variety of quasineutral plasma phenomena where the electron inertia and/or ion kinetic effects are relevant. We present here the governing equations of the model, how these are discretized and implemented numerically, as well as six test problems to validate our numerical approach. Our chosen test problems, where the electron inertia and ion kinetic effects play the essential role, are: 0) Excitation of parallel eigenmodes to check numerical convergence and stability, 1) parallel (to a background magnetic field) propagating electromagnetic waves, 2) perpendicular propagating electrostatic waves (ion Bernstein modes), 3) ion beam right-hand instability (resonant and non-resonant), 4) ion Landau damping, 5) ion firehose instability, and 6) 2D oblique ion firehose instability. Our results reproduce successfully the predictions of linear and non-linear theory for all these problems, validating our code. All properties of this hybrid code make it ideal to study multi-scale phenomena between electron and ion scales such as collisionless shocks, magnetic reconnection and kinetic plasma turbulence in the dissipation range above the electron scales.

  10. A Multifluid Numerical Algorithm for Interpenetrating Plasma Dynamics

    NASA Astrophysics Data System (ADS)

    Ghosh, Debojyoti; Kavouklis, Christos; Berger, Richard; Chapman, Thomas; Hittinger, Jeffrey

    2017-10-01

    Interpenetrating plasmas occur in situations including inertial confinement fusion experiments, where plasmas ablate off the hohlraum and capsule surfaces and interact with each other, and in high-energy density physics experiments that involve the collision of plasma streams ablating off discs irradiated by laser beams. Single-fluid, multi-species hydrodynamic models are not well-suited to study this interaction because they cannot support more than a single fluid velocity; this results in unphysical solutions. Though kinetic models yield accurate solutions for multi-fluid interactions, they are prohibitively expensive for at-scale three-dimensional (3D) simulations. In this study, we propose a multifluid approach where the compressible fluid equations are solved for each ion species and the electrons. Electrostatic forces and inter-species friction and thermal equilibration couple the species. A high-order finite-volume algorithm with explicit time integration is used to solve on a 3D Cartesian domain, and a high-order Poisson solver is used to compute the electrostatic potential. We present preliminary results for the interpenetration of two plasma streams in vacuum and in the presence of a gas fill. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52- 07NA27344 and funded by the LDRD Program at LLNL under project tracking code 17-ERD-081.

  11. FDNS CFD Code Benchmark for RBCC Ejector Mode Operation

    NASA Technical Reports Server (NTRS)

    Holt, James B.; Ruf, Joe

    1999-01-01

    Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi-dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for both Diffusion and Afterburning (DAB) and Simultaneous Mixing and Combustion (SMC) test conditions. Results from both the 2D and the 3D models are presented.

  12. Assessment of Reduced-Kinetics Mechanisms for Combustion of Jet Fuel in CFD Applications

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Kundu, Krihna P.; Yungster, Shaye J.

    2014-01-01

    A computational effort was undertaken to analyze the details of fluid flow in Lean-Direct Injection (LDI) combustors for next-generation LDI design. The National Combustor Code (NCC) was used to perform reacting flow computations on single-element LDI injector configurations. The feasibility of using a reduced chemical-kinetics approach, which optimizes the reaction rates and species to model the emissions characteristics typical of lean-burning gas-turbine combustors, was assessed. The assessments were performed with Reynolds- Averaged Navier-Stokes (RANS) and Time-Filtered Navier Stokes (TFNS) time-integration, with a Lagrangian spray model with the NCC code. The NCC predictions for EINOx and combustor exit temperature were compared with experimental data for two different single-element LDI injector configurations, with 60deg and 45deg axially swept swirler vanes. The effects of turbulence-chemistry interaction on the predicted flow in a typical LDI combustor were studied with detailed comparisons of NCC TFNS with experimental data.

  13. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  14. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  15. A Loader for Executing Multi-Binary Applications on the Thinking Machines CM-5: It's Not Just for SPMD Anymore

    NASA Technical Reports Server (NTRS)

    Becker, Jeffrey C.

    1995-01-01

    The Thinking Machines CM-5 platform was designed to run single program, multiple data (SPMD) applications, i.e., to run a single binary across all nodes of a partition, with each node possibly operating on different data. Certain classes of applications, such as multi-disciplinary computational fluid dynamics codes, are facilitated by the ability to have subsets of the partition nodes running different binaries. In order to extend the CM-5 system software to permit such applications, a multi-program loader was developed. This system is based on the dld loader which was originally developed for workstations. This paper provides a high level description of dld, and describes how it was ported to the CM-5 to provide support for multi-binary applications. Finally, it elaborates how the loader has been used to implement the CM-5 version of MPIRUN, a portable facility for running multi-disciplinary/multi-zonal MPI (Message-Passing Interface Standard) codes.

  16. Status of BOUT fluid turbulence code: improvements and verification

    NASA Astrophysics Data System (ADS)

    Umansky, M. V.; Lodestro, L. L.; Xu, X. Q.

    2006-10-01

    BOUT is an electromagnetic fluid turbulence code for tokamak edge plasma [1]. BOUT performs time integration of reduced Braginskii plasma fluid equations, using spatial discretization in realistic geometry and employing a standard ODE integration package PVODE. BOUT has been applied to several tokamak experiments and in some cases calculated spectra of turbulent fluctuations compared favorably to experimental data. On the other hand, the desire to understand better the code results and to gain more confidence in it motivated investing effort in rigorous verification of BOUT. Parallel to the testing the code underwent substantial modification, mainly to improve its readability and tractability of physical terms, with some algorithmic improvements as well. In the verification process, a series of linear and nonlinear test problems was applied to BOUT, targeting different subgroups of physical terms. The tests include reproducing basic electrostatic and electromagnetic plasma modes in simplified geometry, axisymmetric benchmarks against the 2D edge code UEDGE in real divertor geometry, and neutral fluid benchmarks against the hydrodynamic code LCPFCT. After completion of the testing, the new version of the code is being applied to actual tokamak edge turbulence problems, and the results will be presented. [1] X. Q. Xu et al., Contr. Plas. Phys., 36,158 (1998). *Work performed for USDOE by Univ. Calif. LLNL under contract W-7405-ENG-48.

  17. Ascent Aerodynamic Pressure Distributions on WB001

    NASA Technical Reports Server (NTRS)

    Vu, B.; Ruf, J.; Canabal, F.; Brunty, J.

    1996-01-01

    To support the reusable launch vehicle concept study, the aerodynamic data and surface pressure for WB001 were predicted using three computational fluid dynamic (CFD) codes at several flow conditions between code to code and code to aerodynamic database as well as available experimental data. A set of particular solutions have been selected and recommended for use in preliminary conceptual designs. These computational fluid dynamic (CFD) results have also been provided to the structure group for wing loading analysis.

  18. The modelling of heat, mass and solute transport in solidification systems

    NASA Technical Reports Server (NTRS)

    Voller, V. R.; Brent, A. D.; Prakash, C.

    1989-01-01

    The aim of this paper is to explore the range of possible one-phase models of binary alloy solidification. Starting from a general two-phase description, based on the two-fluid model, three limiting cases are identified which result in one-phase models of binary systems. Each of these models can be readily implemented in standard single phase flow numerical codes. Differences between predictions from these models are examined. In particular, the effects of the models on the predicted macro-segregation patterns are evaluated.

  19. Eddylicious: A Python package for turbulent inflow generation

    NASA Astrophysics Data System (ADS)

    Mukha, Timofey; Liefvendahl, Mattias

    2018-01-01

    A Python package for generating inflow for scale-resolving computer simulations of turbulent flow is presented. The purpose of the package is to unite existing inflow generation methods in a single code-base and make them accessible to users of various Computational Fluid Dynamics (CFD) solvers. The currently existing functionality consists of an accurate inflow generation method suitable for flows with a turbulent boundary layer inflow and input/output routines for coupling with the open-source CFD solver OpenFOAM.

  20. Computational fluid mechanics utilizing the variational principle of modeling damping seals

    NASA Technical Reports Server (NTRS)

    Abernathy, J. M.

    1986-01-01

    A computational fluid dynamics code for application to traditional incompressible flow problems has been developed. The method is actually a slight compressibility approach which takes advantage of the bulk modulus and finite sound speed of all real fluids. The finite element numerical analog uses a dynamic differencing scheme based, in part, on a variational principle for computational fluid dynamics. The code was developed in order to study the feasibility of damping seals for high speed turbomachinery. Preliminary seal analyses have been performed.

  1. Alternative modeling methods for plasma-based Rf ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veitzer, Seth A., E-mail: veitzer@txcorp.com; Kundrapu, Madhusudhan, E-mail: madhusnk@txcorp.com; Stoltz, Peter H., E-mail: phstoltz@txcorp.com

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H{sup −} source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. Inmore » particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H{sup −} ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.« less

  2. Alternative modeling methods for plasma-based Rf ion sources.

    PubMed

    Veitzer, Seth A; Kundrapu, Madhusudhan; Stoltz, Peter H; Beckwith, Kristian R C

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.

  3. Nonlinear Computational Aeroelasticity: Formulations and Solution Algorithms

    DTIC Science & Technology

    2003-03-01

    problem is proposed. Fluid-structure coupling algorithms are then discussed with some emphasis on distributed computing strategies. Numerical results...the structure and the exchange of structure motion to the fluid. The computational fluid dynamics code PFES is our finite element code for the numerical ...unstructured meshes). It was numerically demonstrated [1-3] that EBS can be less diffusive than SUPG [4-6] and the standard Finite Volume schemes

  4. M3D-C1 simulations of the plasma response to RMPs in NSTX-U single-null and snowflake divertor configurations

    DOE PAGES

    Canal, G. P.; Ferraro, N. M.; Evans, T. E.; ...

    2017-04-20

    Here in this work, single- and two-fluid resistive magnetohydrodynamic calculations of the plasma response to n = 3 magnetic perturbations in single-null (SN) and snowflake (SF) divertor configurations are compared with those based on the vacuum approach. The calculations are performed using the code M3D-C 1 and are based on simulated NSTX-U plasmas. Significantly different plasma responses were found from these calculations, with the difference between the single- and two-fluid plasma responses being caused mainly by the different screening mechanism intrinsic to each of these models. Although different plasma responses were obtained from these different plasma models, no significant differencemore » between the SN and SF plasma responses were found. However, due to their different equilibrium properties, magnetic perturbations cause the SF configuration to develop additional and longer magnetic lobes in the null-point region than the SN, regardless of the plasma model used. The intersection of these longer and additional lobes with the divertor plates are expected to cause more striations in the particle and heat flux target profiles. In addition, the results indicate that the size of the magnetic lobes, in both single-null and snowflake configurations, are more sensitive to resonant magnetic perturbations than to non-resonant magnetic perturbations.« less

  5. Extension of Generalized Fluid System Simulation Program's Fluid Property Database

    NASA Technical Reports Server (NTRS)

    Patel, Kishan

    2011-01-01

    This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.

  6. Patch-based Adaptive Mesh Refinement for Multimaterial Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomov, I; Pember, R; Greenough, J

    2005-10-18

    We present a patch-based direct Eulerian adaptive mesh refinement (AMR) algorithm for modeling real equation-of-state, multimaterial compressible flow with strength. Our approach to AMR uses a hierarchical, structured grid approach first developed by (Berger and Oliger 1984), (Berger and Oliger 1984). The grid structure is dynamic in time and is composed of nested uniform rectangular grids of varying resolution. The integration scheme on the grid hierarchy is a recursive procedure in which the coarse grids are advanced, then the fine grids are advanced multiple steps to reach the same time, and finally the coarse and fine grids are synchronized tomore » remove conservation errors during the separate advances. The methodology presented here is based on a single grid algorithm developed for multimaterial gas dynamics by (Colella et al. 1993), refined by(Greenough et al. 1995), and extended to the solution of solid mechanics problems with significant strength by (Lomov and Rubin 2003). The single grid algorithm uses a second-order Godunov scheme with an approximate single fluid Riemann solver and a volume-of-fluid treatment of material interfaces. The method also uses a non-conservative treatment of the deformation tensor and an acoustic approximation for shear waves in the Riemann solver. This departure from a strict application of the higher-order Godunov methodology to the equation of solid mechanics is justified due to the fact that highly nonlinear behavior of shear stresses is rare. This algorithm is implemented in two codes, Geodyn and Raptor, the latter of which is a coupled rad-hydro code. The present discussion will be solely concerned with hydrodynamics modeling. Results from a number of simulations for flows with and without strength will be presented.« less

  7. Enhanced absorption cycle computer model

    NASA Astrophysics Data System (ADS)

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.

  8. Fiber Optic Distributed Sensors for High-resolution Temperature Field Mapping.

    PubMed

    Lomperski, Stephen; Gerardi, Craig; Lisowski, Darius

    2016-11-07

    The reliability of computational fluid dynamics (CFD) codes is checked by comparing simulations with experimental data. A typical data set consists chiefly of velocity and temperature readings, both ideally having high spatial and temporal resolution to facilitate rigorous code validation. While high resolution velocity data is readily obtained through optical measurement techniques such as particle image velocimetry, it has proven difficult to obtain temperature data with similar resolution. Traditional sensors such as thermocouples cannot fill this role, but the recent development of distributed sensing based on Rayleigh scattering and swept-wave interferometry offers resolution suitable for CFD code validation work. Thousands of temperature measurements can be generated along a single thin optical fiber at hundreds of Hertz. Sensors function over large temperature ranges and within opaque fluids where optical techniques are unsuitable. But this type of sensor is sensitive to strain and humidity as well as temperature and so accuracy is affected by handling, vibration, and shifts in relative humidity. Such behavior is quite unlike traditional sensors and so unconventional installation and operating procedures are necessary to ensure accurate measurements. This paper demonstrates implementation of a Rayleigh scattering-type distributed temperature sensor in a thermal mixing experiment involving two air jets at 25 and 45 °C. We present criteria to guide selection of optical fiber for the sensor and describe installation setup for a jet mixing experiment. We illustrate sensor baselining, which links readings to an absolute temperature standard, and discuss practical issues such as errors due to flow-induced vibration. This material can aid those interested in temperature measurements having high data density and bandwidth for fluid dynamics experiments and similar applications. We highlight pitfalls specific to these sensors for consideration in experiment design and operation.

  9. STATEQ: a nonlinear least-squares code for obtaining Martin thermodynamic representations of fluids in the gaseous and dense gaseous regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milora, S. L.

    1976-02-01

    The use of the code NLIN (IBM Share Program No. 1428) to obtain empirical thermodynamic pressure-volume-temperature (P-V-T) relationships for substances in the gaseous and dense gaseous states is described. When sufficient experimental data exist, the code STATEQ will provide least-squares estimates for the 21 parameters of the Martin model. Another code, APPROX, is described which also obtains parameter estimates for the model by making use of the approximate generalized behavior of fluids. Use of the codes is illustrated in obtaining thermodynamic representations for isobutane. (auth)

  10. A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom

    2008-11-01

    Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.

  11. Effects of real fluid properties on axial turbine meanline design and off-design analysis

    NASA Astrophysics Data System (ADS)

    MacLean, Cameron

    The effects of real fluid properties on axial turbine meanline analysis have been investigated employing two meanline analysis codes, namely Turbine Meanline Design (TMLD) and Turbine Meanline Off-Design (TMLO). The previously developed TMLD code assumed the working fluid was an ideal gas. Therefore it was modified to use real fluid properties. TMLO was then developed from TMLD Both codes can be run using either the ideal gas assumption or real fluid properties. TMLD was employed for the meanline design of several axial turbines for a range of inlet conditions, using both the ideal gas assumption and real fluid properties. The resulting designs were compared to see the effects of real fluid properties. Meanline designs, generated using the ideal gas assumption, were then analysed with TMLO using real fluid properties. This was done over a range of inlet conditions that correspond to varying degrees of departure from ideal gas conditions. The goal was to show how machines designed with the ideal gas assumption would perform with the real working fluid. The working fluid used in both investigations was supercritical carbon dioxide. Results from the investigation show that real fluid properties had a strong effect on the gas path areas of the turbine designs as well as the performance of turbines designed using the ideal gas assumption. Specifically, power output and the velocities of the working fluid were affected. It was found that accounting for losses tended to lessen the effects of the real fluid properties.

  12. Parallelization of TWOPORFLOW, a Cartesian Grid based Two-phase Porous Media Code for Transient Thermo-hydraulic Simulations

    NASA Astrophysics Data System (ADS)

    Trost, Nico; Jiménez, Javier; Imke, Uwe; Sanchez, Victor

    2014-06-01

    TWOPORFLOW is a thermo-hydraulic code based on a porous media approach to simulate single- and two-phase flow including boiling. It is under development at the Institute for Neutron Physics and Reactor Technology (INR) at KIT. The code features a 3D transient solution of the mass, momentum and energy conservation equations for two inter-penetrating fluids with a semi-implicit continuous Eulerian type solver. The application domain of TWOPORFLOW includes the flow in standard porous media and in structured porous media such as micro-channels and cores of nuclear power plants. In the latter case, the fluid domain is coupled to a fuel rod model, describing the heat flow inside the solid structure. In this work, detailed profiling tools have been utilized to determine the optimization potential of TWOPORFLOW. As a result, bottle-necks were identified and reduced in the most feasible way, leading for instance to an optimization of the water-steam property computation. Furthermore, an OpenMP implementation addressing the routines in charge of inter-phase momentum-, energy- and mass-coupling delivered good performance together with a high scalability on shared memory architectures. In contrast to that, the approach for distributed memory systems was to solve sub-problems resulting by the decomposition of the initial Cartesian geometry. Thread communication for the sub-problem boundary updates was accomplished by the Message Passing Interface (MPI) standard.

  13. Verification of long wavelength electromagnetic modes with a gyrokinetic-fluid hybrid model in the XGC code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, Robert; Lang, Jianying; Chang, C. S.

    As an alternative option to kinetic electrons, the gyrokinetic total-f particle-in-cell (PIC) code XGC1 has been extended to the MHD/fluid type electromagnetic regime by combining gyrokinetic PIC ions with massless drift-fluid electrons. Here, two representative long wavelength modes, shear Alfven waves and resistive tearing modes, are verified in cylindrical and toroidal magnetic field geometries.

  14. Verification of long wavelength electromagnetic modes with a gyrokinetic-fluid hybrid model in the XGC code

    DOE PAGES

    Hager, Robert; Lang, Jianying; Chang, C. S.; ...

    2017-05-24

    As an alternative option to kinetic electrons, the gyrokinetic total-f particle-in-cell (PIC) code XGC1 has been extended to the MHD/fluid type electromagnetic regime by combining gyrokinetic PIC ions with massless drift-fluid electrons. Here, two representative long wavelength modes, shear Alfven waves and resistive tearing modes, are verified in cylindrical and toroidal magnetic field geometries.

  15. CTF Theory Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avramova, Maria N.; Salko, Robert K.

    Coolant-Boiling in Rod Arrays|Two Fluids (COBRA-TF) is a thermal/ hydraulic (T/H) simulation code designed for light water reactor (LWR) vessel analysis. It uses a two-fluid, three-field (i.e. fluid film, fluid drops, and vapor) modeling approach. Both sub-channel and 3D Cartesian forms of 9 conservation equations are available for LWR modeling. The code was originally developed by Pacific Northwest Laboratory in 1980 and had been used and modified by several institutions over the last few decades. COBRA-TF also found use at the Pennsylvania State University (PSU) by the Reactor Dynamics and Fuel Management Group (RDFMG) and has been improved, updated, andmore » subsequently re-branded as CTF. As part of the improvement process, it was necessary to generate sufficient documentation for the open-source code which had lacked such material upon being adopted by RDFMG. This document serves mainly as a theory manual for CTF, detailing the many two-phase heat transfer, drag, and important accident scenario models contained in the code as well as the numerical solution process utilized. Coding of the models is also discussed, all with consideration for updates that have been made when transitioning from COBRA-TF to CTF. Further documentation outside of this manual is also available at RDFMG which focus on code input deck generation and source code global variable and module listings.« less

  16. Interfacing a General Purpose Fluid Network Flow Program with the SINDA/G Thermal Analysis Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Popok, Daniel

    1999-01-01

    A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program Systems Improved Numerical Differencing Analyzer/Gaski (SINDA/G). The flow code, Generalized Fluid System Simulation Program (GFSSP), is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasi-steady (unsteady solid, steady fluid) conjugate heat transfer modeling.

  17. Environmental Fluid Dynamics Code

    EPA Science Inventory

    The Environmental Fluid Dynamics Code (EFDC)is a state-of-the-art hydrodynamic model that can be used to simulate aquatic systems in one, two, and three dimensions. It has evolved over the past two decades to become one of the most widely used and technically defensible hydrodyn...

  18. FDNS CFD Code Benchmark for RBCC Ejector Mode Operation: Continuing Toward Dual Rocket Effects

    NASA Technical Reports Server (NTRS)

    West, Jeff; Ruf, Joseph H.; Turner, James E. (Technical Monitor)

    2000-01-01

    Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi -dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code [2] was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for the Diffusion and Afterburning (DAB) test conditions at the 200-psia thruster operation point, Results with and without downstream fuel injection are presented.

  19. GFSSP Training Course Lectures

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.

    2008-01-01

    GFSSP has been extended to model conjugate heat transfer Fluid Solid Network Elements include: a) Fluid nodes and Flow Branches; b) Solid Nodes and Ambient Nodes; c) Conductors connecting Fluid-Solid, Solid-Solid and Solid-Ambient Nodes. Heat Conduction Equations are solved simultaneously with Fluid Conservation Equations for Mass, Momentum, Energy and Equation of State. The extended code was verified by comparing with analytical solution for simple conduction-convection problem The code was applied to model: a) Pressurization of Cryogenic Tank; b) Freezing and Thawing of Metal; c) Chilldown of Cryogenic Transfer Line; d) Boil-off from Cryogenic Tank.

  20. Coupling MHD and PIC models in 2 dimensions

    NASA Astrophysics Data System (ADS)

    Daldorff, L.; Toth, G.; Sokolov, I.; Gombosi, T. I.; Lapenta, G.; Brackbill, J. U.; Markidis, S.; Amaya, J.

    2013-12-01

    Even for extended fluid plasma models, like Hall, anisotropic ion pressure and multi fluid MHD, there are still many plasma phenomena that are not well captured. For this reason, we have coupled the Implicit Particle-In-Cell (iPIC3D) code with the BATSRUS global MHD code. The PIC solver is applied in a part of the computational domain, for example, in the vicinity of reconnection sites, and overwrites the MHD solution. On the other hand, the fluid solver provides the boundary conditions for the PIC code. To demonstrate the use of the coupled codes for magnetospheric applications, we perform a 2D magnetosphere simulation, where BATSRUS solves for Hall MHD in the whole domain except for the tail reconnection region, which is handled by iPIC3D.

  1. Comparisons of time explicit hybrid kinetic-fluid code Architect for Plasma Wakefield Acceleration with a full PIC code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massimo, F., E-mail: francesco.massimo@ensta-paristech.fr; Dipartimento SBAI, Università di Roma “La Sapienza“, Via A. Scarpa 14, 00161 Roma; Atzeni, S.

    Architect, a time explicit hybrid code designed to perform quick simulations for electron driven plasma wakefield acceleration, is described. In order to obtain beam quality acceptable for applications, control of the beam-plasma-dynamics is necessary. Particle in Cell (PIC) codes represent the state-of-the-art technique to investigate the underlying physics and possible experimental scenarios; however PIC codes demand the necessity of heavy computational resources. Architect code substantially reduces the need for computational resources by using a hybrid approach: relativistic electron bunches are treated kinetically as in a PIC code and the background plasma as a fluid. Cylindrical symmetry is assumed for themore » solution of the electromagnetic fields and fluid equations. In this paper both the underlying algorithms as well as a comparison with a fully three dimensional particle in cell code are reported. The comparison highlights the good agreement between the two models up to the weakly non-linear regimes. In highly non-linear regimes the two models only disagree in a localized region, where the plasma electrons expelled by the bunch close up at the end of the first plasma oscillation.« less

  2. Development of a cryogenic mixed fluid J-T cooling computer code, 'JTMIX'

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1991-01-01

    An initial study was performed for analyzing and predicting the temperatures and cooling capacities when mixtures of fluids are used in Joule-Thomson coolers and in heat pipes. A computer code, JTMIX, was developed for mixed gas J-T analysis for any fluid combination of neon, nitrogen, various hydrocarbons, argon, oxygen, carbon monoxide, carbon dioxide, and hydrogen sulfide. When used in conjunction with the NIST computer code, DDMIX, it has accurately predicted order-of-magnitude increases in J-T cooling capacities when various hydrocarbons are added to nitrogen, and it predicts nitrogen normal boiling point depressions to as low as 60 K when neon is added.

  3. Phase space simulation of collisionless stellar systems on the massively parallel processor

    NASA Technical Reports Server (NTRS)

    White, Richard L.

    1987-01-01

    A numerical technique for solving the collisionless Boltzmann equation describing the time evolution of a self gravitating fluid in phase space was implemented on the Massively Parallel Processor (MPP). The code performs calculations for a two dimensional phase space grid (with one space and one velocity dimension). Some results from calculations are presented. The execution speed of the code is comparable to the speed of a single processor of a Cray-XMP. Advantages and disadvantages of the MPP architecture for this type of problem are discussed. The nearest neighbor connectivity of the MPP array does not pose a significant obstacle. Future MPP-like machines should have much more local memory and easier access to staging memory and disks in order to be effective for this type of problem.

  4. SEADYN Analysis of a Tow Line for a High Altitude Towed Glider

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1996-01-01

    The concept of using a system, consisting of a tow aircraft, glider and tow line, which would enable subsonic flight at altitudes above 24 km (78 kft) has previously been investigated. The preliminary results from these studies seem encouraging. Under certain conditions these studies indicate the concept is feasible. However, the previous studies did not accurately take into account the forces acting on the tow line. Therefore in order to investigate the concept further a more detailed analysis was needed. The code that was selected was the SEADYN cable dynamics computer program which was developed at the Naval Facilities Engineering Service Center. The program is a finite element based structural analysis code that was developed over a period of 10 years. The results have been validated by the Navy in both laboratory and at actual sea conditions. This code was used to simulate arbitrarily-configured cable structures subjected to excitations encountered in real-world operations. The Navy's interest was mainly for modeling underwater tow lines, however the code is also usable for tow lines in air when the change in fluid properties is taken into account. For underwater applications the fluid properties are basically constant over the length of the tow line. For the tow aircraft/glider application the change in fluid properties is considerable along the length of the tow line. Therefore the code had to be modified in order to take into account the variation in atmospheric properties that would be encountered in this application. This modification consisted of adding a variable density to the fluid based on the altitude of the node being calculated. This change in the way the code handled the fluid density had no effect on the method of calculation or any other factor related to the codes validation.

  5. SPAR improved structure-fluid dynamic analysis capability, phase 2

    NASA Technical Reports Server (NTRS)

    Pearson, M. L.

    1984-01-01

    An efficient and general method of analyzing a coupled dynamic system of fluid flow and elastic structures is investigated. The improvement of Structural Performance Analysis and Redesign (SPAR) code is summarized. All error codes are documented and the SPAR processor/subroutine cross reference is included.

  6. Space shuttle main engine numerical modeling code modifications and analysis

    NASA Technical Reports Server (NTRS)

    Ziebarth, John P.

    1988-01-01

    The user of computational fluid dynamics (CFD) codes must be concerned with the accuracy and efficiency of the codes if they are to be used for timely design and analysis of complicated three-dimensional fluid flow configurations. A brief discussion of how accuracy and efficiency effect the CFD solution process is given. A more detailed discussion of how efficiency can be enhanced by using a few Cray Research Inc. utilities to address vectorization is presented and these utilities are applied to a three-dimensional Navier-Stokes CFD code (INS3D).

  7. Simulations of Cavitating Cryogenic Inducers

    NASA Technical Reports Server (NTRS)

    Dorney, Dan (Technical Monitor); Hosangadi, Ashvin; Ahuja, Vineet; Ungewitter, Ronald J.

    2004-01-01

    Simulations of cavitating turbopump inducers at their design flow rate are presented. Results over a broad range of Nss, numbers extending from single-phase flow conditions through the critical head break down point are discussed. The flow characteristics and performance of a subscale geometry designed for water testing are compared with the fullscale configuration that employs LOX. In particular, thermal depression effects arising from cavitation in cryogenic fluids are identified and their impact on the suction performance of the inducer quantified. The simulations have been performed using the CRUNCH CFD[R] code that has a generalized multi-element unstructured framework suitable for turbomachinery applications. An advanced multi-phase formulation for cryogenic fluids that models temperature depression and real fluid property variations is employed. The formulation has been extensively validated for both liquid nitrogen and liquid hydrogen by simulating the experiments of Hord on hydrofoils; excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable.

  8. Efficient Simulation of Compressible, Viscous Fluids using Multi-rate Time Integration

    NASA Astrophysics Data System (ADS)

    Mikida, Cory; Kloeckner, Andreas; Bodony, Daniel

    2017-11-01

    In the numerical simulation of problems of compressible, viscous fluids with single-rate time integrators, the global timestep used is limited to that of the finest mesh point or fastest physical process. This talk discusses the application of multi-rate Adams-Bashforth (MRAB) integrators to an overset mesh framework to solve compressible viscous fluid problems of varying scale with improved efficiency, with emphasis on the strategy of timescale separation and the application of the resulting numerical method to two sample problems: subsonic viscous flow over a cylinder and a viscous jet in crossflow. The results presented indicate the numerical efficacy of MRAB integrators, outline a number of outstanding code challenges, demonstrate the expected reduction in time enabled by MRAB, and emphasize the need for proper load balancing through spatial decomposition in order for parallel runs to achieve the predicted time-saving benefit. This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  9. High-speed reacting flow simulation using USA-series codes

    NASA Astrophysics Data System (ADS)

    Chakravarthy, S. R.; Palaniswamy, S.

    In this paper, the finite-rate chemistry (FRC) formulation for the USA-series of codes and three sets of validations are presented. USA-series computational fluid dynamics (CFD) codes are based on Unified Solution Algorithms including explicity and implicit formulations, factorization and relaxation approaches, time marching and space marching methodolgies, etc., in order to be able to solve a very wide class of CDF problems using a single framework. Euler or Navier-Stokes equations are solved using a finite-volume treatment with upwind Total Variation Diminishing discretization for the inviscid terms. Perfect and real gas options are available including equilibrium and nonequilibrium chemistry. This capability has been widely used to study various problems including Space Shuttle exhaust plumes, National Aerospace Plane (NASP) designs, etc. (1) Numerical solutions are presented showing the full range of possible solutions to steady detonation wave problems. (2) Comparison between the solution obtained by the USA code and Generalized Kinetics Analysis Program (GKAP) is shown for supersonic combustion in a duct. (3) Simulation of combustion in a supersonic shear layer is shown to have reasonable agreement with experimental observations.

  10. The implementation of an aeronautical CFD flow code onto distributed memory parallel systems

    NASA Astrophysics Data System (ADS)

    Ierotheou, C. S.; Forsey, C. R.; Leatham, M.

    2000-04-01

    The parallelization of an industrially important in-house computational fluid dynamics (CFD) code for calculating the airflow over complex aircraft configurations using the Euler or Navier-Stokes equations is presented. The code discussed is the flow solver module of the SAUNA CFD suite. This suite uses a novel grid system that may include block-structured hexahedral or pyramidal grids, unstructured tetrahedral grids or a hybrid combination of both. To assist in the rapid convergence to a solution, a number of convergence acceleration techniques are employed including implicit residual smoothing and a multigrid full approximation storage scheme (FAS). Key features of the parallelization approach are the use of domain decomposition and encapsulated message passing to enable the execution in parallel using a single programme multiple data (SPMD) paradigm. In the case where a hybrid grid is used, a unified grid partitioning scheme is employed to define the decomposition of the mesh. The parallel code has been tested using both structured and hybrid grids on a number of different distributed memory parallel systems and is now routinely used to perform industrial scale aeronautical simulations. Copyright

  11. Blast and the Consequences on Traumatic Brain Injury-Multiscale Mechanical Modeling of Brain

    DTIC Science & Technology

    2011-02-17

    blast simulation. LS-DYNA as an explicit FE code has been employed to simulate this multi- material fluid –structure interaction problem. The 3-D head...formulation is implemented to model the air-blast simulation. LS-DYNA as an explicit FE code has been employed to simulate this multi-material fluid ...Biomechanics Study of Influencing Parameters for brain under Impact ............................... 12 5.1 The Impact of Cerebrospinal Fluid

  12. Advanced Pellet Cladding Interaction Modeling Using the US DOE CASL Fuel Performance Code: Peregrine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason Hales; Various

    The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermomechanical- chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale codemore » that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.« less

  13. Use of Generalized Fluid System Simulation Program (GFSSP) for Teaching and Performing Senior Design Projects at the Educational Institutions

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Hedayat, A.

    2015-01-01

    This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects.

  14. right-sized dimple evaluator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Sal

    2017-08-24

    The code (aka computer program written as a Matlab script) uses a unique set of n independent equations to solve for n turbulence variables. The code requires the input of a characteristic dimension, a characteristic fluid velocity, the fluid dynamic viscosity, and the fluid density. Most importantly, the code estimates the size of three key turbulent eddies: Kolmogorov, Taylor, and integral. Based on the eddy sizes, dimples dimensions are prescribed such that the key eddies (principally Taylor, and sometimes Kolmogorov), can be generated by the dimple rim and flow unimpeded through the dimple’s concave cavity. It is hypothesized that turbulentmore » eddies are generated by the dimple rim at the dimple-surface interface. The newly-generated eddies in turn entrain the movement of surrounding regions of fluid, creating more mixing. The eddies also generate lift near the wall surrounding the dimple, as they accelerate and reduce pressure in the regions near and at the dimple cavity, thereby minimizing the fluid drag.« less

  15. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmalz, Mark S

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G}more » for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient parallel computation of particle and fluid dynamics simulations. These problems occur throughout DOE, military and commercial sectors: the potential payoff is high. We plan to license or sell the solution to contractors for military and domestic applications such as disaster simulation (aerodynamic and hydrodynamic), Government agencies (hydrological and environmental simulations), and medical applications (e.g., in tomographic image reconstruction). Keywords - High-performance Computing, Graphic Processing Unit, Fluid/Particle Simulation. Summary for Members of Congress - Department of Energy has many simulation codes that must compute faster, to be effective. The Phase I research parallelized particle/fluid simulations for rocket combustion, for high-performance computing systems.« less

  16. Validation of the SINDA/FLUINT code using several analytical solutions

    NASA Technical Reports Server (NTRS)

    Keller, John R.

    1995-01-01

    The Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA/FLUINT) code has often been used to determine the transient and steady-state response of various thermal and fluid flow networks. While this code is an often used design and analysis tool, the validation of this program has been limited to a few simple studies. For the current study, the SINDA/FLUINT code was compared to four different analytical solutions. The thermal analyzer portion of the code (conduction and radiative heat transfer, SINDA portion) was first compared to two separate solutions. The first comparison examined a semi-infinite slab with a periodic surface temperature boundary condition. Next, a small, uniform temperature object (lumped capacitance) was allowed to radiate to a fixed temperature sink. The fluid portion of the code (FLUINT) was also compared to two different analytical solutions. The first study examined a tank filling process by an ideal gas in which there is both control volume work and heat transfer. The final comparison considered the flow in a pipe joining two infinite reservoirs of pressure. The results of all these studies showed that for the situations examined here, the SINDA/FLUINT code was able to match the results of the analytical solutions.

  17. Working research codes into fluid dynamics education: a science gateway approach

    NASA Astrophysics Data System (ADS)

    Mason, Lachlan; Hetherington, James; O'Reilly, Martin; Yong, May; Jersakova, Radka; Grieve, Stuart; Perez-Suarez, David; Klapaukh, Roman; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Research codes are effective for illustrating complex concepts in educational fluid dynamics courses, compared to textbook examples, an interactive three-dimensional visualisation can bring a problem to life! Various barriers, however, prevent the adoption of research codes in teaching: codes are typically created for highly-specific `once-off' calculations and, as such, have no user interface and a steep learning curve. Moreover, a code may require access to high-performance computing resources that are not readily available in the classroom. This project allows academics to rapidly work research codes into their teaching via a minimalist `science gateway' framework. The gateway is a simple, yet flexible, web interface allowing students to construct and run simulations, as well as view and share their output. Behind the scenes, the common operations of job configuration, submission, monitoring and post-processing are customisable at the level of shell scripting. In this talk, we demonstrate the creation of an example teaching gateway connected to the Code BLUE fluid dynamics software. Student simulations can be run via a third-party cloud computing provider or a local high-performance cluster. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  18. Applications of Some New Ideas on Irreversible Processes to Particular Fluids.

    DTIC Science & Technology

    1987-09-23

    616ftf SI PPLICAtTIONS OF SOME1 NEW IDEAS ON IEIYRSIKE V PROCESSES TO PARTICULAR FLUIDS(U) JOHNS HOPKINS UNIV BALTIMORE NO DEPT OF RATIONAL MECHANICS...Code) 7b. ADDRESS (City, State, and ZIP Code) Department of Rational Mechanics Baltimore, MD 21218. Boiling AFB, DC 20332 OL NAME OF FUNDING/ SPONSORING...34" - ’ ’ I Justification_. Clifford A. Truesdell By_ Professor, Program in Rational Mechanics Distribution/ Availability Codes’ !Avail and/or Dist

  19. Axisymmetric computational fluid dynamics analysis of a film/dump-cooled rocket nozzle plume

    NASA Technical Reports Server (NTRS)

    Tucker, P. K.; Warsi, S. A.

    1993-01-01

    Prediction of convective base heating rates for a new launch vehicle presents significant challenges to analysts concerned with base environments. The present effort seeks to augment classical base heating scaling techniques via a detailed investigation of the exhaust plume shear layer of a single H2/O2 Space Transportation Main Engine (STME). Use of fuel-rich turbine exhaust to cool the STME nozzle presented concerns regarding potential recirculation of these gases to the base region with attendant increase in the base heating rate. A pressure-based full Navier-Stokes computational fluid dynamics (CFD) code with finite rate chemistry is used to predict plumes for vehicle altitudes of 10 kft and 50 kft. Levels of combustible species within the plume shear layers are calculated in order to assess assumptions made in the base heating analysis.

  20. Pedestal-to-Wall 3D Fluid Transport Simulations on DIII-D

    DOE PAGES

    Lore, Jeremy D.; Wolfmeister, Alexis Briesemeister; Ferraro, Nathaniel M.; ...

    2017-03-30

    The 3D fluid-plasma edge transport code EMC3-EIRENE is used to test several magnetic field models with and without plasma response against DIII-D experimental data for even and odd-parity n=3 magnetic field perturbations. The field models include ideal and extended MHD equilibria, and the vacuum approximation. Plasma response is required to reduce the stochasticity in the pedestal region for even-parity fields, however too much screening suppresses the measured splitting of the downstream T e profile. Odd-parity perturbations result in weak tearing and only small additional peaks in the downstream measurements. In this case plasma response is required to increase the sizemore » of the lobe structure. Finally, no single model is able to simultaneously reproduce the upstream and downstream characteristics for both odd and even-parity perturbations.« less

  1. Verification of long wavelength electromagnetic modes with a gyrokinetic-fluid hybrid model in the XGC code

    PubMed Central

    Lang, Jianying; Ku, S.; Chen, Y.; Parker, S. E.; Adams, M. F.

    2017-01-01

    As an alternative option to kinetic electrons, the gyrokinetic total-f particle-in-cell (PIC) code XGC1 has been extended to the MHD/fluid type electromagnetic regime by combining gyrokinetic PIC ions with massless drift-fluid electrons analogous to Chen and Parker [Phys. Plasmas 8, 441 (2001)]. Two representative long wavelength modes, shear Alfvén waves and resistive tearing modes, are verified in cylindrical and toroidal magnetic field geometries. PMID:29104419

  2. The aerospace plane design challenge: Credible computational fluid dynamics results

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.

    1990-01-01

    Computational fluid dynamics (CFD) is necessary in the design processes of all current aerospace plane programs. Single-stage-to-orbit (STTO) aerospace planes with air-breathing supersonic combustion are going to be largely designed by means of CFD. The challenge of the aerospace plane design is to provide credible CFD results to work from, to assess the risk associated with the use of those results, and to certify CFD codes that produce credible results. To establish the credibility of CFD results used in design, the following topics are discussed: CFD validation vis-a-vis measurable fluid dynamics (MFD) validation; responsibility for credibility; credibility requirement; and a guide for establishing credibility. Quantification of CFD uncertainties helps to assess success risk and safety risks, and the development of CFD as a design tool requires code certification. This challenge is managed by designing the designers to use CFD effectively, by ensuring quality control, and by balancing the design process. For designing the designers, the following topics are discussed: how CFD design technology is developed; the reasons Japanese companies, by and large, produce goods of higher quality than the U.S. counterparts; teamwork as a new way of doing business; and how ideas, quality, and teaming can be brought together. Quality control for reducing the loss imparted to the society begins with the quality of the CFD results used in the design process, and balancing the design process means using a judicious balance of CFD and MFD.

  3. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.

    1989-01-01

    The progress made toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section components is reported. The convective viscous integral formulation was derived and implemented in the general purpose computer program GP-BEST. The new convective kernel functions, in turn, necessitated the development of refined integration techniques. As a result, however, since the physics of the problem is embedded in these kernels, boundary element solutions can now be obtained at very high Reynolds number. Flow around obstacles can be solved approximately with an efficient linearized boundary-only analysis or, more exactly, by including all of the nonlinearities present in the neighborhood of the obstacle. The other major accomplishment was the development of a comprehensive fluid-structure interaction capability within GP-BEST. This new facility is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code (GP-BEST) can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach.

  4. Three-Dimensional Multi-fluid Moment Simulation of Ganymede

    NASA Astrophysics Data System (ADS)

    Wang, L.; Germaschewski, K.; Hakim, A.; Bhattacharjee, A.; Dong, C.

    2016-12-01

    Plasmas in space environments, such as solar wind and Earth's magnetosphere, are often constituted of multiple species. Conventional MHD-based, single-fluid systems, have additional complications when multiple fluid species are introduced. We suggest space application of an alternative multi-fluid moment approach, treating each species on equal footing using exact evolution equations for moments of their distribution function, and electromagnetic fields through full Maxwell equations. Non-ideal effects like Hall effect, inertia, and even tensorial pressures, are self-consistently embedded without the need to explicitly solve a complicated Ohm's law. Previously, we have benchmarked this approach in classical test problems like the Orszag-Tang vortex and GEM reconnection challenge problem. Recently, we performed three-dimensional two-fluid simulation of the magnetosphere of Ganymede, using both five-moment (scalar pressures) and ten-moment (tensorial pressures) models. In both models, the formation of Alfven wing structure due to subsonic inflow is correctly captured, and the magnetic field data agree well with in-situ measurements from the Galileo flyby G8. The ten-moment simulation also showed the contribution of pressure tensor divergence to the reconnecting electric field. Initial results of coupling to state-of-art global simulation codes like OpenGGCM will also be shown, which will in the future provide a rigorous way for integration of ionospheric physics.

  5. Three-dimensional numerical study of laminar confined slot jet impingement cooling using slurry of nano-encapsulated phase change material

    NASA Astrophysics Data System (ADS)

    Mohib Ur Rehman, M.; Qu, Z. G.; Fu, R. P.

    2016-10-01

    This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material (NEPCM) as a coolant. The slurry is composed of water as a base fluid and n-octadecane NEPCM particles with mean diameter of 100nm suspended in it. A single phase fluid approach is employed to model the NEPCM slurry.The thermo physical properties of the NEPCM slurry are computed using modern approaches being proposed recently and governing equations are solved with a commercial Finite Volume based code. The effects of jet Reynolds number varying from 100 to 600 and particle volume fraction ranging from 0% to 28% are considered. The computed results are validated by comparing Nusselt number values at stagnation point with the previously published results with water as working fluid. It was found that adding NEPCM to the base fluid results with considerable amount of heat transfer enhancement.The highest values of heat transfer coefficients are observed at H/W=4 and Cm=0.28. However, due to the higher viscosity of slurry compared with the base fluid, the slurry can produce drastic increase in pressure drop of the system that increases with NEPCM particle loading and jet Reynolds number.

  6. Software for determining the direction of movement, shear and normal stresses of a fault under a determined stress state

    NASA Astrophysics Data System (ADS)

    Álvarez del Castillo, Alejandra; Alaniz-Álvarez, Susana Alicia; Nieto-Samaniego, Angel Francisco; Xu, Shunshan; Ochoa-González, Gil Humberto; Velasquillo-Martínez, Luis Germán

    2017-07-01

    In the oil, gas and geothermal industry, the extraction or the input of fluids induces changes in the stress field of the reservoir, if the in-situ stress state of a fault plane is sufficiently disturbed, a fault may slip and can trigger fluid leakage or the reservoir might fracture and become damaged. The goal of the SSLIPO 1.0 software is to obtain data that can reduce the risk of affecting the stability of wellbores. The input data are the magnitudes of the three principal stresses and their orientation in geographic coordinates. The output data are the slip direction of a fracture in geographic coordinates, and its normal (σn) and shear (τ) stresses resolved on a single or multiple fracture planes. With this information, it is possible to calculate the slip tendency (τ/σn) and the propensity to open a fracture that is inversely proportional to σn. This software could analyze any compressional stress system, even non-Andersonian. An example is given from an oilfield in southern Mexico, in a region that contains fractures formed in three events of deformation. In the example SSLIPO 1.0 was used to determine in which deformation event the oil migrated. SSLIPO 1.0 is an open code application developed in MATLAB. The URL to obtain the source code and to download SSLIPO 1.0 are: http://www.geociencias.unam.mx/ alaniz/main_code.txt, http://www.geociencias.unam.mx/ alaniz/ SSLIPO_pkg.exe.

  7. Development of high performance particle in cell code for the exascale age

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Amaya, Jorge; Gonzalez, Diego; Deep-Est H2020 Consortium Collaboration

    2017-10-01

    Magnetized plasmas are most effectively described by magneto-hydrodynamics, MHD, a fluid theory based on describing some fields defined in space: electromagnetic fields, density, velocity and temperature of the plasma. However, microphysics processes need kinetic theory, where statistical distributions of particles are governed by the Boltzmann equation. While fluid models are based on the ordinary space and time, kinetic models require a six dimensional space, called phase space, besides time. The two methods are not separated but rather interact to determine the system evolution. Arriving at a single self-consistent model is the goal of our research. We present a new approach developed with the goal of extending the reach of kinetic models to the fluid scales. Kinetic models are a higher order description and all fluid effects are included in them. However, the cost in terms of computing power is much higher and it has been so far prohibitively expensive to treat space weather events fully kinetically. We have now designed a new method capable of reducing that cost by several orders of magnitude making it possible for kinetic models to study macroscopic systems. H2020 Deep-EST consortium (European Commission).

  8. Simultaneous isolation of emm89-type Streptococcus pyogenes strains with a wild-type or mutated covS gene from a single streptococcal toxic shock syndrome patient.

    PubMed

    Masuno, Katsuaki; Okada, Ryo; Zhang, Yan; Isaka, Masanori; Tatsuno, Ichiro; Shibata, Shinichiro; Hasegawa, Tadao

    2014-04-01

    Streptococcal toxic shock syndrome (STSS) is a re-emerging infectious disease in many developed countries. Recent studies have suggested that mutations in CovRS, a two-component regulatory system in Streptococcus pyogenes, play important roles in the pathogenesis of STSS. However, in vivo evidence of the significance of CovRS in human infections has not been fully demonstrated. We investigated five S. pyogenes strains isolated simultaneously from the pharynx, sputum, knee joint, cerebrospinal fluid and blood of a single STSS patient. All were emm89-type strains, and multilocus sequence typing (MLST) analysis revealed that the strains of pharynx and blood were isogenic. The growth rates of the strains from pharynx and sputum were faster than those of the other strains. Protein profiles of the culture supernatants of strains from the pharynx and sputum were also different from those of the other strains. Sequence analyses revealed that strains from the knee joint, cerebrospinal fluid and blood contained a single nucleotide difference in the covS coding region, resulting in one amino acid change, compared with the other strains. Introduction of a plasmid containing the covS gene from the pharynx strain to the blood strain increased the production of SpeB protein. This suggests that the one amino acid alteration in CovS was relevant to pathogenesis. This report supports the idea that mutated CovS plays important roles in vivo in the dissemination of S. pyogenes from the upper respiratory tract of human to aseptic tissues such as blood and cerebrospinal fluid.

  9. Stochastic Simulation of Complex Fluid Flows

    DTIC Science & Technology

    The PI has developed novel numerical algorithms and computational codes to simulate the Brownian motion of rigidparticles immersed in a viscous fluid...processes and to the design of novel nanofluid materials. Therandom Brownian motion of particles in fluid can be accounted for in fluid-structure

  10. Sailfish: A flexible multi-GPU implementation of the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Januszewski, M.; Kostur, M.

    2014-09-01

    We present Sailfish, an open source fluid simulation package implementing the lattice Boltzmann method (LBM) on modern Graphics Processing Units (GPUs) using CUDA/OpenCL. We take a novel approach to GPU code implementation and use run-time code generation techniques and a high level programming language (Python) to achieve state of the art performance, while allowing easy experimentation with different LBM models and tuning for various types of hardware. We discuss the general design principles of the code, scaling to multiple GPUs in a distributed environment, as well as the GPU implementation and optimization of many different LBM models, both single component (BGK, MRT, ELBM) and multicomponent (Shan-Chen, free energy). The paper also presents results of performance benchmarks spanning the last three NVIDIA GPU generations (Tesla, Fermi, Kepler), which we hope will be useful for researchers working with this type of hardware and similar codes. Catalogue identifier: AETA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Lesser General Public License, version 3 No. of lines in distributed program, including test data, etc.: 225864 No. of bytes in distributed program, including test data, etc.: 46861049 Distribution format: tar.gz Programming language: Python, CUDA C, OpenCL. Computer: Any with an OpenCL or CUDA-compliant GPU. Operating system: No limits (tested on Linux and Mac OS X). RAM: Hundreds of megabytes to tens of gigabytes for typical cases. Classification: 12, 6.5. External routines: PyCUDA/PyOpenCL, Numpy, Mako, ZeroMQ (for multi-GPU simulations), scipy, sympy Nature of problem: GPU-accelerated simulation of single- and multi-component fluid flows. Solution method: A wide range of relaxation models (LBGK, MRT, regularized LB, ELBM, Shan-Chen, free energy, free surface) and boundary conditions within the lattice Boltzmann method framework. Simulations can be run in single or double precision using one or more GPUs. Restrictions: The lattice Boltzmann method works for low Mach number flows only. Unusual features: The actual numerical calculations run exclusively on GPUs. The numerical code is built dynamically at run-time in CUDA C or OpenCL, using templates and symbolic formulas. The high-level control of the simulation is maintained by a Python process. Additional comments: !!!!! The distribution file for this program is over 45 Mbytes and therefore is not delivered directly when Download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. !!!!! Running time: Problem-dependent, typically minutes (for small cases or short simulations) to hours (large cases or long simulations).

  11. A Steady State and Quasi-Steady Interface Between the Generalized Fluid System Simulation Program and the SINDA/G Thermal Analysis Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Majumdar, Alok; Tiller, Bruce

    2001-01-01

    A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasisteady (unsteady solid, steady fluid) conjugate heat transfer modeling.

  12. Convection equation modeling: A non-iterative direct matrix solution algorithm for use with SINDA

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S.

    1993-01-01

    The determination of the boundary conditions for a component-level analysis, applying discrete finite element and finite difference modeling techniques often requires an analysis of complex coupled phenomenon that cannot be described algebraically. For example, an analysis of the temperature field of a coldplate surface with an integral fluid loop requires a solution to the parabolic heat equation and also requires the boundary conditions that describe the local fluid temperature. However, the local fluid temperature is described by a convection equation that can only be solved with the knowledge of the locally-coupled coldplate temperatures. Generally speaking, it is not computationally efficient, and sometimes, not even possible to perform a direct, coupled phenomenon analysis of the component-level and boundary condition models within a single analysis code. An alternative is to perform a disjoint analysis, but transmit the necessary information between models during the simulation to provide an indirect coupling. For this approach to be effective, the component-level model retains full detail while the boundary condition model is simplified to provide a fast, first-order prediction of the phenomenon in question. Specifically for the present study, the coldplate structure is analyzed with a discrete, numerical model (SINDA) while the fluid loop convection equation is analyzed with a discrete, analytical model (direct matrix solution). This indirect coupling allows a satisfactory prediction of the boundary condition, while not subjugating the overall computational efficiency of the component-level analysis. In the present study a discussion of the complete analysis of the derivation and direct matrix solution algorithm of the convection equation is presented. Discretization is analyzed and discussed to extend of solution accuracy, stability and computation speed. Case studies considering a pulsed and harmonic inlet disturbance to the fluid loop are analyzed to assist in the discussion of numerical dissipation and accuracy. In addition, the issues of code melding or integration with standard class solvers such as SINDA are discussed to advise the user of the potential problems to be encountered.

  13. Numerical modeling of fluid migration in subduction zones

    NASA Astrophysics Data System (ADS)

    Walter, M. J.; Quinteros, J.; Sobolev, S. V.

    2015-12-01

    It is well known that fluids play a crucial role in subduction evolution. For example, mechanical weakening along tectonic interfaces, due to high fluid pressure, may enable oceanic subduction. Hence, the fluid content seems to be a critical parameter for subduction initiation. Studies have also shown a correlation between the location of slab dehydration and intermediate seismic activity. Furthermore, expelled fluids from the subduction slab affect the melting temperature, consequently, contributing to partial melting in the wedge above the down-going plate and extensive volcanism. In summary, fluids have a great impact on tectonic processes and therefore should be incorporated into geodynamic numerical models. Here we use existing approaches to couple and solve fluid flow equations in the SLIM-3D thermo-mechanical code. SLIM-3D is a three-dimensional thermo-mechanical code capable of simulating lithospheric deformation with elasto-visco-plastic rheology. It has been successfully applied to model geodynamic processes at different tectonic settings, including subduction zones. However, although SLIM-3D already includes many features, fluid migration has not been incorporated into the model yet. To this end, we coupled solid and fluid flow assuming that fluids flow through a porous and deformable solid. Thereby, we introduce a two-phase flow into the model, in which the Stokes flow is coupled with the Darcy law for fluid flow. Ultimately, the evolution of porosity is governed by a compaction pressure and the advection of the porous solid. We show the details of our implementation of the fluid flow into the existing thermo-mechanical finite element code and present first results of benchmarks and experiments. We are especially interested in the coupling of subduction processes and the evolution of the magmatic arc. Thereby, we focus on the key factors controlling magma emplacement and its influence on subduction processes.

  14. STAR-CCM+ Verification and Validation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pointer, William David

    2016-09-30

    The commercial Computational Fluid Dynamics (CFD) code STAR-CCM+ provides general purpose finite volume method solutions for fluid dynamics and energy transport. This document defines plans for verification and validation (V&V) of the base code and models implemented within the code by the Consortium for Advanced Simulation of Light water reactors (CASL). The software quality assurance activities described herein are port of the overall software life cycle defined in the CASL Software Quality Assurance (SQA) Plan [Sieger, 2015]. STAR-CCM+ serves as the principal foundation for development of an advanced predictive multi-phase boiling simulation capability within CASL. The CASL Thermal Hydraulics Methodsmore » (THM) team develops advanced closure models required to describe the subgrid-resolution behavior of secondary fluids or fluid phases in multiphase boiling flows within the Eulerian-Eulerian framework of the code. These include wall heat partitioning models that describe the formation of vapor on the surface and the forces the define bubble/droplet dynamic motion. The CASL models are implemented as user coding or field functions within the general framework of the code. This report defines procedures and requirements for V&V of the multi-phase CFD capability developed by CASL THM. Results of V&V evaluations will be documented in a separate STAR-CCM+ V&V assessment report. This report is expected to be a living document and will be updated as additional validation cases are identified and adopted as part of the CASL THM V&V suite.« less

  15. GSE, data management system programmers/User' manual

    NASA Technical Reports Server (NTRS)

    Schlagheck, R. A.; Dolerhie, B. D., Jr.; Ghiglieri, F. J.

    1974-01-01

    The GSE data management system is a computerized program which provides for a central storage source for key data associated with the mechanical ground support equipment (MGSE). Eight major sort modes can be requested by the user. Attributes that are printed automatically with each sort include the GSE end item number, description, class code, functional code, fluid media, use location, design responsibility, weight, cost, quantity, dimensions, and applicable documents. Multiple subsorts are available for the class code, functional code, fluid media, use location, design responsibility, and applicable document categories. These sorts and how to use them are described. The program and GSE data bank may be easily updated and expanded.

  16. Multitasking the code ARC3D. [for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Barton, John T.; Hsiung, Christopher C.

    1986-01-01

    The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.

  17. Development of a CFD Code for Analysis of Fluid Dynamic Forces in Seals

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh M.; Przekwas, Andrzej J.; Singhal, Ashok K.

    1991-01-01

    The aim is to develop a 3-D computational fluid dynamics (CFD) code for the analysis of fluid flow in cylindrical seals and evaluation of the dynamic forces on the seals. This code is expected to serve as a scientific tool for detailed flow analysis as well as a check for the accuracy of the 2D industrial codes. The features necessary in the CFD code are outlined. The initial focus was to develop or modify and implement new techniques and physical models. These include collocated grid formulation, rotating coordinate frames and moving grid formulation. Other advanced numerical techniques include higher order spatial and temporal differencing and an efficient linear equation solver. These techniques were implemented in a 2D flow solver for initial testing. Several benchmark test cases were computed using the 2D code, and the results of these were compared to analytical solutions or experimental data to check the accuracy. Tests presented here include planar wedge flow, flow due to an enclosed rotor, and flow in a 2D seal with a whirling rotor. Comparisons between numerical and experimental results for an annular seal and a 7-cavity labyrinth seal are also included.

  18. COMPARING SIMULATED AND EXPERIMENTAL HYSTERETIC TWO- PHASE TRANSIENT FLUID FLOW PHENOMENA

    EPA Science Inventory

    A hysteretic model for two-phase permeability (k)-saturation (S)-pressure (P) relations is outlined that accounts for effects of nonwetting fluid entrapment. The model can be employed in unsaturated fluid flow computer codes to predict temporal and spatial fluid distributions. Co...

  19. Methodology, status and plans for development and assessment of TUF and CATHENA codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luxat, J.C.; Liu, W.S.; Leung, R.K.

    1997-07-01

    An overview is presented of the Canadian two-fluid computer codes TUF and CATHENA with specific focus on the constraints imposed during development of these codes and the areas of application for which they are intended. Additionally a process for systematic assessment of these codes is described which is part of a broader, industry based initiative for validation of computer codes used in all major disciplines of safety analysis. This is intended to provide both the licensee and the regulator in Canada with an objective basis for assessing the adequacy of codes for use in specific applications. Although focused specifically onmore » CANDU reactors, Canadian experience in developing advanced two-fluid codes to meet wide-ranging application needs while maintaining past investment in plant modelling provides a useful contribution to international efforts in this area.« less

  20. Numerical Model of Hydraulic Fracturing Fluid Transport in the Subsurface with Pressure Transient, Density Effects, and Imbibition

    NASA Astrophysics Data System (ADS)

    Birdsell, D.; Rajaram, H.; Dempsey, D.; Viswanathan, H.

    2014-12-01

    Understanding the transport of hydraulic fracturing (HF) fluid that is injected into the deep subsurface for shale gas extraction is important to ensure that shallow drinking water aquifers are not contaminated from an environmental and public health perspective and to understand formation damage from an oil and gas production perspective. Upward pressure gradients, permeable pathways such as faults or improperly abandoned wellbores, and the density contrast of the HF fluid to the surrounding brine encourages upward HF fluid migration. In contrast, the very low shale permeability and the imbibition of water into partially-saturated shale may sequester much of the HF fluid. Using the Finite Element Heat and Mass Transfer Code (FEHM), single-phase flow and transport simulations are performed to quantify how much HF fluid is removed via the wellbore as flowback and produced water and how much reaches overlying aquifers; imbibition is calculated with a semi-analytical one-dimensional solution and treated as a sink term. The travel time for HF fluid to reach the shallow aquifers is highly dependent on the amount of water imbibed and the suction applied to the well. If imbibition rates and suction are small, the pressure transient due to injection and the density contrast allows rapid upward plume migration at early times. The density contrast diminishes considerably within tens to hundreds of years as mixing occurs. We present estimates of HF fluid migration to shallow aquifers during the first 1,000 years after hydraulic fracturing begins for ranges of subsurface properties.

  1. Bottled SAFT: A Web App Providing SAFT-γ Mie Force Field Parameters for Thousands of Molecular Fluids.

    PubMed

    Ervik, Åsmund; Mejía, Andrés; Müller, Erich A

    2016-09-26

    Coarse-grained molecular simulation has become a popular tool for modeling simple and complex fluids alike. The defining aspects of a coarse grained model are the force field parameters, which must be determined for each particular fluid. Because the number of molecular fluids of interest in nature and in engineering processes is immense, constructing force field parameter tables by individually fitting to experimental data is a futile task. A step toward solving this challenge was taken recently by Mejía et al., who proposed a correlation that provides SAFT-γ Mie force field parameters for a fluid provided one knows the critical temperature, the acentric factor and a liquid density, all relatively accessible properties. Building on this, we have applied the correlation to more than 6000 fluids, and constructed a web application, called "Bottled SAFT", which makes this data set easily searchable by CAS number, name or chemical formula. Alternatively, the application allows the user to calculate parameters for components not present in the database. Once the intermolecular potential has been found through Bottled SAFT, code snippets are provided for simulating the desired substance using the "raaSAFT" framework, which leverages established molecular dynamics codes to run the simulations. The code underlying the web application is written in Python using the Flask microframework; this allows us to provide a modern high-performance web app while also making use of the scientific libraries available in Python. Bottled SAFT aims at taking the complexity out of obtaining force field parameters for a wide range of molecular fluids, and facilitates setting up and running coarse-grained molecular simulations. The web application is freely available at http://www.bottledsaft.org . The underlying source code is available on Bitbucket under a permissive license.

  2. Plasma Theory and Simulation.

    DTIC Science & Technology

    1978-07-01

    l l) A paper t i t led “Part icle-Fluid Hybrid Codes Applied to Beam- Plasma , Ring -Plasma Instabi l i ties ” was presented at Monterey (see Section V...ic le-Fluid Hybr id Codes Applied to Beam- Plasma , Ring -Plasma Ins tab i l i t ies”. (2) A. Peiravi and C. K. Birdsall , “Self-Heating of id Therma l

  3. Generalized fluid theory including non-Maxwellian kinetic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izacard, Olivier

    The results obtained by the plasma physics community for the validation and the prediction of turbulence and transport in magnetized plasmas come mainly from the use of very central processing unit (CPU)-consuming particle-in-cell or (gyro)kinetic codes which naturally include non-Maxwellian kinetic effects. To date, fluid codes are not considered to be relevant for the description of these kinetic effects. Here, after revisiting the limitations of the current fluid theory developed in the 19th century, we generalize the fluid theory including kinetic effects such as non-Maxwellian super-thermal tails with as few fluid equations as possible. The collisionless and collisional fluid closuresmore » from the nonlinear Landau Fokker–Planck collision operator are shown for an arbitrary collisionality. Indeed, the first fluid models associated with two examples of collisionless fluid closures are obtained by assuming an analytic non-Maxwellian distribution function. One of the main differences with the literature is our analytic representation of the distribution function in the velocity phase space with as few hidden variables as possible thanks to the use of non-orthogonal basis sets. These new non-Maxwellian fluid equations could initiate the next generation of fluid codes including kinetic effects and can be expanded to other scientific disciplines such as astrophysics, condensed matter or hydrodynamics. As a validation test, we perform a numerical simulation based on a minimal reduced INMDF fluid model. The result of this test is the discovery of the origin of particle and heat diffusion. The diffusion is due to the competition between a growing INMDF on short time scales due to spatial gradients and the thermalization on longer time scales. Here, the results shown here could provide the insights to break some of the unsolved puzzles of turbulence.« less

  4. Generalized fluid theory including non-Maxwellian kinetic effects

    DOE PAGES

    Izacard, Olivier

    2017-03-29

    The results obtained by the plasma physics community for the validation and the prediction of turbulence and transport in magnetized plasmas come mainly from the use of very central processing unit (CPU)-consuming particle-in-cell or (gyro)kinetic codes which naturally include non-Maxwellian kinetic effects. To date, fluid codes are not considered to be relevant for the description of these kinetic effects. Here, after revisiting the limitations of the current fluid theory developed in the 19th century, we generalize the fluid theory including kinetic effects such as non-Maxwellian super-thermal tails with as few fluid equations as possible. The collisionless and collisional fluid closuresmore » from the nonlinear Landau Fokker–Planck collision operator are shown for an arbitrary collisionality. Indeed, the first fluid models associated with two examples of collisionless fluid closures are obtained by assuming an analytic non-Maxwellian distribution function. One of the main differences with the literature is our analytic representation of the distribution function in the velocity phase space with as few hidden variables as possible thanks to the use of non-orthogonal basis sets. These new non-Maxwellian fluid equations could initiate the next generation of fluid codes including kinetic effects and can be expanded to other scientific disciplines such as astrophysics, condensed matter or hydrodynamics. As a validation test, we perform a numerical simulation based on a minimal reduced INMDF fluid model. The result of this test is the discovery of the origin of particle and heat diffusion. The diffusion is due to the competition between a growing INMDF on short time scales due to spatial gradients and the thermalization on longer time scales. Here, the results shown here could provide the insights to break some of the unsolved puzzles of turbulence.« less

  5. Single-jet gas cooling of in-beam foils or specimens: Prediction of the convective heat-transfer coefficient

    NASA Astrophysics Data System (ADS)

    Steyn, Gideon; Vermeulen, Christiaan

    2018-05-01

    An experiment was designed to study the effect of the jet direction on convective heat-transfer coefficients in single-jet gas cooling of a small heated surface, such as typically induced by an accelerated ion beam on a thin foil or specimen. The hot spot was provided using a small electrically heated plate. Heat-transfer calculations were performed using simple empirical methods based on dimensional analysis as well as by means of an advanced computational fluid dynamics (CFD) code. The results provide an explanation for the observed turbulent cooling of a double-foil, Havar beam window with fast-flowing helium, located on a target station for radionuclide production with a 66 MeV proton beam at a cyclotron facility.

  6. Implementation of Finite Volume based Navier Stokes Algorithm Within General Purpose Flow Network Code

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Majumdar, Alok

    2012-01-01

    This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.

  7. Validation of Slosh Modeling Approach Using STAR-CCM+

    NASA Technical Reports Server (NTRS)

    Benson, David J.; Ng, Wanyi

    2018-01-01

    Without an adequate understanding of propellant slosh, the spacecraft attitude control system may be inadequate to control the spacecraft or there may be an unexpected loss of science observation time due to higher slosh settling times. Computational fluid dynamics (CFD) is used to model propellant slosh. STAR-CCM+ is a commercially available CFD code. This paper seeks to validate the CFD modeling approach via a comparison between STAR-CCM+ liquid slosh modeling results and experimental, empirically, and analytically derived results. The geometries examined are a bare right cylinder tank and a right cylinder with a single ring baffle.

  8. CFD Activity at Aerojet Related to Seals and Fluid Film Bearing

    NASA Technical Reports Server (NTRS)

    Bache, George E.

    1991-01-01

    Computational Fluid Dynamics (CFD) activities related to seals and fluid film bearings are presented. Among the topics addressed are the following: Aerovisc Numeric and its capabilities; Recent Seal Applications; and Future Code Developments.

  9. Drekar v.2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seefeldt, Ben; Sondak, David; Hensinger, David M.

    Drekar is an application code that solves partial differential equations for fluids that can be optionally coupled to electromagnetics. Drekar solves low-mach compressible and incompressible computational fluid dynamics (CFD), compressible and incompressible resistive magnetohydrodynamics (MHD), and multiple species plasmas interacting with electromagnetic fields. Drekar discretization technology includes continuous and discontinuous finite element formulations, stabilized finite element formulations, mixed integration finite element bases (nodal, edge, face, volume) and an initial arbitrary Lagrangian Eulerian (ALE) capability. Drekar contains the implementation of the discretized physics and leverages the open source Trilinos project for both parallel solver capabilities and general finite element discretization tools.more » The code will be released open source under a BSD license. The code is used for fundamental research for simulation of fluids and plasmas on high performance computing environments.« less

  10. Remarks on CFD validation: A Boeing Commercial Airplane Company perspective

    NASA Technical Reports Server (NTRS)

    Rubbert, Paul E.

    1987-01-01

    Requirements and meaning of validation of computational fluid dynamics codes are discussed. Topics covered include: validating a code, validating a user, and calibrating a code. All results are presented in viewgraph format.

  11. Computational-hydrodynamic studies of the Noh compressible flow problem using non-ideal equations of state

    NASA Astrophysics Data System (ADS)

    Honnell, Kevin; Burnett, Sarah; Yorke, Chloe'; Howard, April; Ramsey, Scott

    2017-06-01

    The Noh problem is classic verification problem in the field of compressible flows. Simple to conceptualize, it is nonetheless difficult for numerical codes to predict correctly, making it an ideal code-verification test bed. In its original incarnation, the fluid is a simple ideal gas; once validated, however, these codes are often used to study highly non-ideal fluids and solids. In this work the classic Noh problem is extended beyond the commonly-studied polytropic ideal gas to more realistic equations of state (EOS) including the stiff gas, the Nobel-Abel gas, and the Carnahan-Starling hard-sphere fluid, thus enabling verification studies to be performed on more physically-realistic fluids. Exact solutions are compared with numerical results obtained from the Lagrangian hydrocode FLAG, developed at Los Alamos. For these more realistic EOSs, the simulation errors decreased in magnitude both at the origin and at the shock, but also spread more broadly about these points compared to the ideal EOS. The overall spatial convergence rate remained first order.

  12. Two-fluid dusty shocks: simple benchmarking problems and applications to protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Lehmann, Andrew; Wardle, Mark

    2018-05-01

    The key role that dust plays in the interstellar medium has motivated the development of numerical codes designed to study the coupled evolution of dust and gas in systems such as turbulent molecular clouds and protoplanetary discs. Drift between dust and gas has proven to be important as well as numerically challenging. We provide simple benchmarking problems for dusty gas codes by numerically solving the two-fluid dust-gas equations for steady, plane-parallel shock waves. The two distinct shock solutions to these equations allow a numerical code to test different forms of drag between the two fluids, the strength of that drag and the dust to gas ratio. We also provide an astrophysical application of J-type dust-gas shocks to studying the structure of accretion shocks on to protoplanetary discs. We find that two-fluid effects are most important for grains larger than 1 μm, and that the peak dust temperature within an accretion shock provides a signature of the dust-to-gas ratio of the infalling material.

  13. An analytical study of reduced-gravity flow dynamics

    NASA Technical Reports Server (NTRS)

    Bradshaw, R. D.; Kramer, J. L.; Zich, J. L.

    1976-01-01

    Addition of surface tension forces to a marker-and-cell code and the performance of four incompressible fluid simulations in reduced gravity, were studied. This marker-and-cell code has a variable grid capability with arbitrary curved boundaries and time dependent acceleration fields. The surface tension logic includes a spline fit of surface marker particles as well as contact angle logic for straight and curved wall boundaries. Three types of flow motion were simulated with the improved code: impulsive settling in a model Centaur LH2 tank, continuous settling in a model and full scale Centaur LO2 tank and mixing in a Centaur LH2 tank. The impulsive settling case confirmed a drop tower analysis which indicated more orderly fluid collection flow patterns with this method providing a potential savings in settling propellants. In the LO2 tank, fluid collection and flow simulation into the thrust barrel were achieved. The mixing simulation produced good results indicating both the development of the flow field and fluid interface behavior.

  14. TOUGH Simulations of the Updegraff's Set of Fluid and Heat Flow Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moridis, G.J.; Pruess

    1992-11-01

    The TOUGH code [Pruess, 1987] for two-phase flow of water, air, and heat in penneable media has been exercised on a suite of test problems originally selected and simulated by C. D. Updegraff [1989]. These include five 'verification' problems for which analytical or numerical solutions are available, and three 'validation' problems that model laboratory fluid and heat flow experiments. All problems could be run without any code modifications (*). Good and efficient numerical performance, as well as accurate results were obtained throughout. Additional code verification and validation problems from the literature are briefly summarized, and suggestions are given for propermore » applications of TOUGH and related codes.« less

  15. Incorporation of Condensation Heat Transfer in a Flow Network Code

    NASA Technical Reports Server (NTRS)

    Anthony, Miranda; Majumdar, Alok; McConnaughey, Paul K. (Technical Monitor)

    2001-01-01

    In this paper we have investigated the condensation of water vapor in a short tube. A numerical model of condensation heat transfer was incorporated in a flow network code. The flow network code that we have used in this paper is Generalized Fluid System Simulation Program (GFSSP). GFSSP is a finite volume based flow network code. Four different condensation models were presented in the paper. Soliman's correlation has been found to be the most stable in low flow rates which is of particular interest in this application. Another highlight of this investigation is conjugate or coupled heat transfer between solid or fluid. This work was done in support of NASA's International Space Station program.

  16. Multiphysics Code Demonstrated for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Melis, Matthew E.

    1998-01-01

    The utility of multidisciplinary analysis tools for aeropropulsion applications is being investigated at the NASA Lewis Research Center. The goal of this project is to apply Spectrum, a multiphysics code developed by Centric Engineering Systems, Inc., to simulate multidisciplinary effects in turbomachinery components. Many engineering problems today involve detailed computer analyses to predict the thermal, aerodynamic, and structural response of a mechanical system as it undergoes service loading. Analysis of aerospace structures generally requires attention in all three disciplinary areas to adequately predict component service behavior, and in many cases, the results from one discipline substantially affect the outcome of the other two. There are numerous computer codes currently available in the engineering community to perform such analyses in each of these disciplines. Many of these codes are developed and used in-house by a given organization, and many are commercially available. However, few, if any, of these codes are designed specifically for multidisciplinary analyses. The Spectrum code has been developed for performing fully coupled fluid, thermal, and structural analyses on a mechanical system with a single simulation that accounts for all simultaneous interactions, thus eliminating the requirement for running a large number of sequential, separate, disciplinary analyses. The Spectrum code has a true multiphysics analysis capability, which improves analysis efficiency as well as accuracy. Centric Engineering, Inc., working with a team of Lewis and AlliedSignal Engines engineers, has been evaluating Spectrum for a variety of propulsion applications including disk quenching, drum cavity flow, aeromechanical simulations, and a centrifugal compressor flow simulation.

  17. Plasma-Jet Magneto-Inertial Fusion Burn Calculations

    NASA Astrophysics Data System (ADS)

    Santarius, John

    2010-11-01

    Several issues exist related to using plasma jets to implode a Magneto-Inertial Fusion (MIF) liner onto a magnetized plasmoid and compress it to fusion-relevant temperatures [1]. The poster will explore how well the liner's inertia provides transient plasma confinement and affects the burn dynamics. The investigation uses the University of Wisconsin's 1-D Lagrangian radiation-hydrodynamics code, BUCKY, which solves single-fluid equations of motion with ion-electron interactions, PdV work, table-lookup equations of state, fast-ion energy deposition, pressure contributions from all species, and one or two temperatures. Extensions to the code include magnetic field evolution as the plasmoid compresses plus dependence of the thermal conductivity on the magnetic field. [4pt] [1] Y.C. F. Thio, et al.,``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.

  18. Overview of hypersonic CFD code calibration studies

    NASA Technical Reports Server (NTRS)

    Miller, Charles G.

    1987-01-01

    The topics are presented in viewgraph form and include the following: definitions of computational fluid dynamics (CFD) code validation; climate in hypersonics and LaRC when first 'designed' CFD code calibration studied was initiated; methodology from the experimentalist's perspective; hypersonic facilities; measurement techniques; and CFD code calibration studies.

  19. Computational fluid dynamics analysis in support of the simplex turbopump design

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa W.; Benjamin, Theodore G.; Cornelison, Joni W.; Ruf, Joseph H.; Williams, Robert W.

    1994-01-01

    Simplex is a turbopump that is being developed at NASA/Marshall Space Flight Center (MSFC) by an in-house team. The turbopump consists of a single-stage centrifugal impeller, vaned-diffuser pump powered by a single-stage, axial, supersonic, partial admission turbine. The turbine is driven by warm gaseous oxygen tapped off of the hybrid motor to which it will be coupled. Rolling element bearings are cooled by the pumping fluid. Details of the configuration and operating conditions are given by Marsh. CFD has been used extensively to verify one-dimensional (1D) predictions, assess aerodynamic and hydrodynamic designs, and to provide flow environments. The complete primary flow path of the pump-end and the hot gas path of the turbine, excluding the inlet torus, have been analyzed. All CFD analyses conducted for the Simplex turbopump employed the pressure based Finite Difference Navier-Stokes (FDNS) code using a standard kappa-epsilon turbulence model with wall functions. More detailed results are presented by Garcia et. al. To support the team, loading and temperature results for the turbine rotor were provided as inputs to structural and thermal analyses, and blade loadings from the inducer were provided for structural analyses.

  20. A Sequential Fluid-mechanic Chemical-kinetic Model of Propane HCCI Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aceves, S M; Flowers, D L; Martinez-Frias, J

    2000-11-29

    We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. This methodology combines a detailed fluid mechanics code with a detailed chemical kinetics code. Instead of directly linking the two codes, which would require an extremely long computational time, the methodology consists of first running the fluid mechanics code to obtain temperature profiles as a function of time. These temperature profiles are then used as input to a multi-zone chemical kinetics code. The advantage of this procedure is that a small number of zones (10) is enough to obtain accurate results. Thismore » procedure achieves the benefits of linking the fluid mechanics and the chemical kinetics codes with a great reduction in the computational effort, to a level that can be handled with current computers. The success of this procedure is in large part a consequence of the fact that for much of the compression stroke the chemistry is inactive and thus has little influence on fluid mechanics and heat transfer. Then, when chemistry is active, combustion is rather sudden, leaving little time for interaction between chemistry and fluid mixing and heat transfer. This sequential methodology has been capable of explaining the main characteristics of HCCI combustion that have been observed in experiments. In this paper, we use our model to explore an HCCI engine running on propane. The paper compares experimental and numerical pressure traces, heat release rates, and hydrocarbon and carbon monoxide emissions. The results show an excellent agreement, even in parameters that are difficult to predict, such as chemical heat release rates. Carbon monoxide emissions are reasonably well predicted, even though it is intrinsically difficult to make good predictions of CO emissions in HCCI engines. The paper includes a sensitivity study on the effect of the heat transfer correlation on the results of the analysis. Importantly, the paper also shows a numerical study on how parameters such as swirl rate, crevices and ceramic walls could help in reducing HC and CO emissions from HCCI engines.« less

  1. Development and Implementation of Non-Newtonian Rheology Into the Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    DiSalvo, Roberto; Deaconu, Stelu; Majumdar, Alok

    2006-01-01

    One of the goals of this program was to develop the experimental and analytical/computational tools required to predict the flow of non-Newtonian fluids through the various system components of a propulsion system: pipes, valves, pumps etc. To achieve this goal we selected to augment the capabilities of NASA's Generalized Fluid System Simulation Program (GFSSP) software. GFSSP is a general-purpose computer program designed to calculate steady state and transient pressure and flow distributions in a complex fluid network. While the current version of the GFSSP code is able to handle various systems components the implicit assumption in the code is that the fluids in the system are Newtonian. To extend the capability of the code to non-Newtonian fluids, such as silica gelled fuels and oxidizers, modifications to the momentum equations of the code have been performed. We have successfully implemented in GFSSP flow equations for fluids with power law behavior. The implementation of the power law fluid behavior into the GFSSP code depends on knowledge of the two fluid coefficients, n and K. The determination of these parameters for the silica gels used in this program was performed experimentally. The n and K parameters for silica water gels were determined experimentally at CFDRC's Special Projects Laboratory, with a constant shear rate capillary viscometer. Batches of 8:1 (by weight) water-silica gel were mixed using CFDRC s 10-gallon gelled propellant mixer. Prior to testing the gel was allowed to rest in the rheometer tank for at least twelve hours to ensure that the delicate structure of the gel had sufficient time to reform. During the tests silica gel was pressure fed and discharged through stainless steel pipes ranging from 1", to 36", in length and three diameters; 0.0237", 0.032", and 0.047". The data collected in these tests included pressure at tube entrance and volumetric flowrate. From these data the uncorrected shear rate, shear stress, residence time, and viscosity were evaluated using formulae for non-Newtonian, power law fluids. The maximum shear rates (corrected for entrance effects) obtained in the rheometer with the current setup were in the 150,000 to 170,000sec- range. GFSSP simulations were performed with a flow circuit simulating the capillary rheometer and using Power Law gel viscosity coefficients from the experimental data. The agreement between the experimental data and the simulated flow curves was within +/-4% given quality entrance effect data.

  2. Steady-State Solution of a Flexible Wing

    NASA Technical Reports Server (NTRS)

    Karkehabadi, Reza; Chandra, Suresh; Krishnamurthy, Ramesh

    1997-01-01

    A fluid-structure interaction code, ENSAERO, has been used to compute the aerodynamic loads on a swept-tapered wing. The code has the capability of using Euler or Navier-Stokes equations. Both options have been used and compared in the present paper. In the calculation of the steady-state solution, we are interested in knowing how the flexibility of the wing influences the lift coefficients. If the results of a flexible wing are not affected by the flexibility of the wing significantly, one could consider the wing to be rigid and reduce the problem from fluid-structure interaction to a fluid problem.

  3. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, Gary F.; Banerjee, Prasanta K.; Honkala, Keith A.

    1991-01-01

    The development of a boundary element formulation for the study of hot fluid-structure interaction in earth-to-orbit engine hot section components is described. The initial primary thrust of the program to date was directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state. This required the development of integral formulations for both the solid and fluid, and some preliminary infrastructural enhancements to a boundary element code to permit coupling of the fluid-structure problem. Boundary element formulations are implemented in two dimensions for both the solid and the fluid. The solid is modeled as an uncoupled thermoelastic medium under plane strain conditions, while several formulations are investigated for the fluid. For example, both vorticity and primitive variable approaches are implemented for viscous, incompressible flow, and a compressible version is developed. All of the above boundary element implementations are incorporated in a general purpose two-dimensional code. Thus, problems involving intricate geometry, multiple generic modeling regions, and arbitrary boundary conditions are all supported.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, Mani; Gammie, Charles F.; Foucart, Francois, E-mail: manic@illinois.edu, E-mail: gammie@illinois.edu, E-mail: fvfoucart@lbl.gov

    Hot, diffuse, relativistic plasmas such as sub-Eddington black-hole accretion flows are expected to be collisionless, yet are commonly modeled as a fluid using ideal general relativistic magnetohydrodynamics (GRMHD). Dissipative effects such as heat conduction and viscosity can be important in a collisionless plasma and will potentially alter the dynamics and radiative properties of the flow from that in ideal fluid models; we refer to models that include these processes as Extended GRMHD. Here we describe a new conservative code, grim, that enables all of the above and additional physics to be efficiently incorporated. grim combines time evolution and primitive variablemore » inversion needed for conservative schemes into a single step using an algorithm that only requires the residuals of the governing equations as inputs. This algorithm enables the code to be physics agnostic as well as flexibility regarding time-stepping schemes. grim runs on CPUs, as well as on GPUs, using the same code. We formulate a performance model and use it to show that our implementation runs optimally on both architectures. grim correctly captures classical GRMHD test problems as well as a new suite of linear and nonlinear test problems with anisotropic conduction and viscosity in special and general relativity. As tests and example applications, we resolve the shock substructure due to the presence of dissipation, and report on relativistic versions of the magneto-thermal instability and heat flux driven buoyancy instability, which arise due to anisotropic heat conduction, and of the firehose instability, which occurs due to anisotropic pressure (i.e., viscosity). Finally, we show an example integration of an accretion flow around a Kerr black hole, using Extended GRMHD.« less

  5. System of closing relations of a two-fluid model for the HYDRA-IBRAE/LM/V1 code for calculation of sodium boiling in channels of power equipment

    NASA Astrophysics Data System (ADS)

    Usov, E. V.; Butov, A. A.; Dugarov, G. A.; Kudasov, I. G.; Lezhnin, S. I.; Mosunova, N. A.; Pribaturin, N. A.

    2017-07-01

    The system of equations from a two-fluid model is widely used in modeling thermohydraulic processes during accidents in nuclear reactors. The model includes conservation equations governing the balance of mass, momentum, and energy in each phase of the coolant. The features of heat and mass transfer, as well as of mechanical interaction between phases or with the channel wall, are described by a system of closing relations. Properly verified foreign and Russian codes with a comprehensive system of closing relations are available to predict processes in water coolant. As to the sodium coolant, only a few open publications on this subject are known. A complete system of closing relations used in the HYDRA-IBRAE/LM/V1 thermohydraulic code for calculation of sodium boiling in channels of power equipment is presented. The selection of these relations is corroborated on the basis of results of analysis of available publications with an account taken of the processes occurring in liquid sodium. A comparison with approaches outlined in foreign publications is presented. Particular attention has been given to the calculation of the sodium two-phase flow boiling. The flow regime map and a procedure for the calculation of interfacial friction and heat transfer in a sodium flow with account taken of high conductivity of sodium are described in sufficient detail. Correlations are presented for calculation of heat transfer for a single-phase sodium flow, sodium flow boiling, and sodium flow boiling crisis. A method is proposed for prediction of flow boiling crisis initiation.

  6. NRMC - A GPU code for N-Reverse Monte Carlo modeling of fluids in confined media

    NASA Astrophysics Data System (ADS)

    Sánchez-Gil, Vicente; Noya, Eva G.; Lomba, Enrique

    2017-08-01

    NRMC is a parallel code for performing N-Reverse Monte Carlo modeling of fluids in confined media [V. Sánchez-Gil, E.G. Noya, E. Lomba, J. Chem. Phys. 140 (2014) 024504]. This method is an extension of the usual Reverse Monte Carlo method to obtain structural models of confined fluids compatible with experimental diffraction patterns, specifically designed to overcome the problem of slow diffusion that can appear under conditions of tight confinement. Most of the computational time in N-Reverse Monte Carlo modeling is spent in the evaluation of the structure factor for each trial configuration, a calculation that can be easily parallelized. Implementation of the structure factor evaluation in NVIDIA® CUDA so that the code can be run on GPUs leads to a speed up of up to two orders of magnitude.

  7. Computational Fluid Dynamics Technology for Hypersonic Applications

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2003-01-01

    Several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented from code validation and code benchmarking efforts to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified. Highlights of diverse efforts to address these challenges are then discussed. One such effort to re-engineer and synthesize the existing analysis capability in LAURA, VULCAN, and FUN3D will provide context for these discussions. The critical (and evolving) role of agile software engineering practice in the capability enhancement process is also noted.

  8. Parametric Analysis of Cyclic Phase Change and Energy Storage in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Hall, Carsie A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1997-01-01

    A parametric study on cyclic melting and freezing of an encapsulated phase change material (PCM), integrated into a solar heat receiver, has been performed. The cyclic nature of the present melt/freeze problem is relevant to latent heat thermal energy storage (LHTES) systems used to power solar Brayton engines in microgravity environments. Specifically, a physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) project was developed. Multi-conjugate effects such as the convective fluid flow of a low-Prandtl-number fluid, coupled with thermal conduction in the phase change material, containment tube and working fluid conduit were accounted for in the model. A single-band thermal radiation model was also included to quantify reradiative energy exchange inside the receiver and losses through the aperture. The eutectic LiF-CaF2 was used as the phase change material (PCM) and a mixture of He/Xe was used as the working fluid coolant. A modified version of the computer code HOTTube was used to generate results in the two-phase regime. Results indicate that parametric changes in receiver gas inlet temperature and receiver heat input effects higher sensitivity to changes in receiver gas exit temperatures.

  9. Modeling Cyclic Phase Change and Energy Storage in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Hall, Carsie A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1997-01-01

    Numerical results pertaining to cyclic melting and freezing of an encapsulated phase change material (PCM), integrated into a solar heat receiver, have been reported. The cyclic nature of the present melt/freeze problem is relevant to latent heat thermal energy storage (LHTES) systems used to power solar Brayton engines in microgravity environments. Specifically, a physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) project was developed and results compared with available experimental data. Multi-conjugate effects such as the convective fluid flow of a low-Prandtl-number fluid, coupled with thermal conduction in the phase change material, containment tube and working fluid conduit were accounted for in the model. A single-band thermal radiation model was also included to quantify reradiative energy exchange inside the receiver and losses through the aperture. The eutectic LiF-CaF2 was used as the phase change material (PCM) and a mixture of He/Xe was used as the working fluid coolant. A modified version of the computer code HOTTube was used to generate results for comparisons with GTD data for both the subcooled and two-phase regimes. While qualitative trends were in close agreement for the balanced orbit modes, excellent quantitative agreement was observed for steady-state modes.

  10. Efficient Modeling of Laser-Plasma Accelerators with INF&RNO

    NASA Astrophysics Data System (ADS)

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Leemans, W. P.

    2010-11-01

    The numerical modeling code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde, pronounced "inferno") is presented. INF&RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations while still retaining physical fidelity. The code has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.

  11. Propellant Chemistry for CFD Applications

    NASA Technical Reports Server (NTRS)

    Farmer, R. C.; Anderson, P. G.; Cheng, Gary C.

    1996-01-01

    Current concepts for reusable launch vehicle design have created renewed interest in the use of RP-1 fuels for high pressure and tri-propellant propulsion systems. Such designs require the use of an analytical technology that accurately accounts for the effects of real fluid properties, combustion of large hydrocarbon fuel modules, and the possibility of soot formation. These effects are inadequately treated in current computational fluid dynamic (CFD) codes used for propulsion system analyses. The objective of this investigation is to provide an accurate analytical description of hydrocarbon combustion thermodynamics and kinetics that is sufficiently computationally efficient to be a practical design tool when used with CFD codes such as the FDNS code. A rigorous description of real fluid properties for RP-1 and its combustion products will be derived from the literature and from experiments conducted in this investigation. Upon the establishment of such a description, the fluid description will be simplified by using the minimum of empiricism necessary to maintain accurate combustion analyses and including such empirical models into an appropriate CFD code. An additional benefit of this approach is that the real fluid properties analysis simplifies the introduction of the effects of droplet sprays into the combustion model. Typical species compositions of RP-1 have been identified, surrogate fuels have been established for analyses, and combustion and sooting reaction kinetics models have been developed. Methods for predicting the necessary real fluid properties have been developed and essential experiments have been designed. Verification studies are in progress, and preliminary results from these studies will be presented. The approach has been determined to be feasible, and upon its completion the required methodology for accurate performance and heat transfer CFD analyses for high pressure, tri-propellant propulsion systems will be available.

  12. A critical assessment of wind tunnel results for the NACA 0012 airfoil

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.

    1987-01-01

    A large body of experimental results, obtained in more than 40 wind tunnels on a single, well-known two-dimensional configuration, has been critically examined and correlated. An assessment of some of the possible sources of error has been made for each facility, and data which are suspect have been identified. It was found that no single experiment provided a complete set of reliable data, although one investigation stands out as superior in many respects. However, from the aggregate of data the representative properties of the NACA 0012 airfoil can be identified with reasonable confidence over wide ranges of Mach number, Reynolds number, and angles of attack. This synthesized information can now be used to assess and validate existing and future wind tunnel results and to evaluate advanced Computational Fluid Dynamics codes.

  13. Numerical analysis of single and multiple jets

    NASA Astrophysics Data System (ADS)

    Boussoufi, Mustapha; Sabeur-Bendehina, Amina; Ouadha, Ahmed; Morsli, Souad; El Ganaoui, Mohammed

    2017-05-01

    The present study aims to use the concept of entropy generation in order to study numerically the flow and the interaction of multiple jets. Several configurations of a single jet surrounded by equidistant 3, 5, 7 and 9 circumferential jets have been studied. The turbulent incompressible Navier-Stokes equations have been solved numerically using the commercial computational fluid dynamics code Fluent. The standard k-ɛ model has been selected to assess the eddy viscosity. The domain has been reduced to a quarter of the geometry due to symmetry. Results for axial and radial velocities have been compared with experimental measurements from the literature. Furthermore, additional results involving entropy generation rate have been presented and discussed. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  14. Software Tools for Stochastic Simulations of Turbulence

    DTIC Science & Technology

    2015-08-28

    client interface to FTI. Specefic client programs using this interface include the weather forecasting code WRF ; the high energy physics code, FLASH...client programs using this interface include the weather forecasting code WRF ; the high energy physics code, FLASH; and two locally constructed fluid...45 4.4.2.2 FLASH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.4.2.3 WRF

  15. LeRC-HT: NASA Lewis Research Center General Multiblock Navier-Stokes Heat Transfer Code Developed

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.; Gaugler, Raymond E.

    1999-01-01

    For the last several years, LeRC-HT, a three-dimensional computational fluid dynamics (CFD) computer code for analyzing gas turbine flow and convective heat transfer, has been evolving at the NASA Lewis Research Center. The code is unique in its ability to give a highly detailed representation of the flow field very close to solid surfaces. This is necessary for an accurate representation of fluid heat transfer and viscous shear stresses. The code has been used extensively for both internal cooling passage flows and hot gas path flows--including detailed film cooling calculations, complex tip-clearance gap flows, and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool (at least 35 technical papers have been published relative to the code and its application), but it should be useful for detailed design analysis. We now plan to make this code available to selected users for further evaluation.

  16. Color-coded fluid-attenuated inversion recovery images improve inter-rater reliability of fluid-attenuated inversion recovery signal changes within acute diffusion-weighted image lesions.

    PubMed

    Kim, Bum Joon; Kim, Yong-Hwan; Kim, Yeon-Jung; Ahn, Sung Ho; Lee, Deok Hee; Kwon, Sun U; Kim, Sang Joon; Kim, Jong S; Kang, Dong-Wha

    2014-09-01

    Diffusion-weighted image fluid-attenuated inversion recovery (FLAIR) mismatch has been considered to represent ischemic lesion age. However, the inter-rater agreement of diffusion-weighted image FLAIR mismatch is low. We hypothesized that color-coded images would increase its inter-rater agreement. Patients with ischemic stroke <24 hours of a clear onset were retrospectively studied. FLAIR signal change was rated as negative, subtle, or obvious on conventional and color-coded FLAIR images based on visual inspection. Inter-rater agreement was evaluated using κ and percent agreement. The predictive value of diffusion-weighted image FLAIR mismatch for identification of patients <4.5 hours of symptom onset was evaluated. One hundred and thirteen patients were enrolled. The inter-rater agreement of FLAIR signal change improved from 69.9% (k=0.538) with conventional images to 85.8% (k=0.754) with color-coded images (P=0.004). Discrepantly rated patients on conventional, but not on color-coded images, had a higher prevalence of cardioembolic stroke (P=0.02) and cortical infarction (P=0.04). The positive predictive value for patients <4.5 hours of onset was 85.3% and 71.9% with conventional and 95.7% and 82.1% with color-coded images, by each rater. Color-coded FLAIR images increased the inter-rater agreement of diffusion-weighted image FLAIR recovery mismatch and may ultimately help identify unknown-onset stroke patients appropriate for thrombolysis. © 2014 American Heart Association, Inc.

  17. SCORE-EVET: a computer code for the multidimensional transient thermal-hydraulic analysis of nuclear fuel rod arrays. [BWR; PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, R. L.; Lords, L. V.; Kiser, D. M.

    1978-02-01

    The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocitymore » and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage.« less

  18. The Effect of Spray Initial Conditions on Heat Release and Emissions in LDI CFD Calculations

    NASA Technical Reports Server (NTRS)

    Iannetti, Anthony C.; Liu, Nan-Suey; Davoudzadeh, Farhad

    2008-01-01

    The mass and velocity distribution of liquid spray has a primary effect on the combustion heat release process. This heat release process then affects emissions like nitrogen oxides (NOx) and carbon monoxide (CO). Computational Fluid Dynamics gives the engineer insight into these processes, but various setup options exist (number of droplet groups, and initial droplet temperature) for spray initial conditions. This paper studies these spray initial condition options using the National Combustion Code (NCC) on a single swirler lean direct injection (LDI) flame tube. Using laminar finite rate chemistry, comparisons are made against experimental data for velocity measurements, temperature, and emissions (NOx, CO).

  19. Use of Generalized Fluid System Simulation Program (GFSSP) for Teaching and Performing Senior Design Projects at the Educational Institutions

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Hedayat, A.

    2015-01-01

    This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects. The need for a generalized computer program for thermofluid analysis in a flow network has been felt for a long time in aerospace industries. Designers of thermofluid systems often need to know pressures, temperatures, flow rates, concentrations, and heat transfer rates at different parts of a flow circuit for steady state or transient conditions. Such applications occur in propulsion systems for tank pressurization, internal flow analysis of rocket engine turbopumps, chilldown of cryogenic tanks and transfer lines, and many other applications of gas-liquid systems involving fluid transients and conjugate heat and mass transfer. Computer resource requirements to perform time-dependent, three-dimensional Navier-Stokes computational fluid dynamic (CFD) analysis of such systems are prohibitive and therefore are not practical. Available commercial codes are generally suitable for steady state, single-phase incompressible flow. Because of the proprietary nature of such codes, it is not possible to extend their capability to satisfy the above-mentioned needs. Therefore, the Generalized Fluid System Simulation Program (GFSSP1) has been developed at NASA Marshall Space Flight Center (MSFC) as a general fluid flow system solver capable of handling phase changes, compressibility, mixture thermodynamics and transient operations. It also includes the capability to model external body forces such as gravity and centrifugal effects in a complex flow network. The objectives of GFSSP development are: a) to develop a robust and efficient numerical algorithm to solve a system of equations describing a flow network containing phase changes, mixing, and rotation; and b) to implement the algorithm in a structured, easy-to-use computer program. The analysis of thermofluid dynamics in a complex network requires resolution of the system into fluid nodes and branches, and solid nodes and conductors as shown in Figure 1. Figure 1 shows a schematic and GFSSP flow circuit of a counter-flow heat exchanger. Hot nitrogen gas is flowing through a pipe, colder nitrogen is flowing counter to the hot stream in the annulus pipe and heat transfer occurs through metal tubes. The problem considered is to calculate flowrates and temperature distributions in both streams. GFSSP has a unique data structure, as shown in Figure 2, that allows constructing all possible arrangements of a flow network with no limit on the number of elements. The elements of a flow network are boundary nodes where pressure and temperature are specified, internal nodes where pressure and temperature are calculated, and branches where flowrates are calculated. For conjugate heat transfer problems, there are three additional elements: solid node, ambient node, and conductor. The solid and fluid nodes are connected with solid-fluid conductors. GFSSP solves the conservation equations of mass and energy, and equation of state in internal nodes to calculate pressure, temperature and resident mass. The momentum conservation equation is solved in branches to calculate flowrate. It also solves for energy conservation equations to calculate temperatures of solid nodes. The equations are coupled and nonlinear; therefore, they are solved by an iterative numerical scheme. GFSSP employs a unique numerical scheme known as simultaneous adjustment with successive substitution (SASS), which is a combination of Newton-Raphson and successive substitution methods. The mass and momentum conservation equations and the equation of state are solved by the Newton-Raphson method while the conservation of energy and species are solved by the successive substitution method. GFSSP is linked with two thermodynamic property programs, GASP2 and WASP3 and GASPAK4, that provide thermodynamic and thermophysical properties of selected fluids. Both programs cover a range of pressure and temperature that allows fluid properties to be evaluated for liquid, liquid-vapor (saturation), and vapor region. GASP and WASP provide properties of 12 fluids. GASPAK includes a library of 36 fluids. GFSSP has three major parts. The first part is the graphical user interface (GUI), visual thermofluid analyzer of systems and components (VTASC). VTASC allows users to create a flow circuit by a 'point and click' paradigm. It creates the GFSSP input file after the completion of the model building process. GFSSP's GUI provides the users a platform to build and run their models. It also allows post-processing of results. The network flow circuit is first built using three basic elements: boundary node, internal node, and branch.

  20. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1994-01-01

    Research was performed in the area of computational modeling and application of hypersonic, high-enthalpy, thermo-chemical nonequilibrium flow (Aerothermodynamics) problems. A number of computational fluid dynamic (CFD) codes were developed and applied to simulate high altitude rocket-plume, the Aeroassist Flight Experiment (AFE), hypersonic base flow for planetary probes, the single expansion ramp model (SERN) connected with the National Aerospace Plane, hypersonic drag devices, hypersonic ramp flows, ballistic range models, shock tunnel facility nozzles, transient and steady flows in the shock tunnel facility, arc-jet flows, thermochemical nonequilibrium flows around simple and complex bodies, axisymmetric ionized flows of interest to re-entry, unsteady shock induced combustion phenomena, high enthalpy pulsed facility simulations, and unsteady shock boundary layer interactions in shock tunnels. Computational modeling involved developing appropriate numerical schemes for the flows on interest and developing, applying, and validating appropriate thermochemical processes. As part of improving the accuracy of the numerical predictions, adaptive grid algorithms were explored, and a user-friendly, self-adaptive code (SAGE) was developed. Aerothermodynamic flows of interest included energy transfer due to strong radiation, and a significant level of effort was spent in developing computational codes for calculating radiation and radiation modeling. In addition, computational tools were developed and applied to predict the radiative heat flux and spectra that reach the model surface.

  1. NASA Lewis Steady-State Heat Pipe Code Architecture

    NASA Technical Reports Server (NTRS)

    Mi, Ye; Tower, Leonard K.

    2013-01-01

    NASA Glenn Research Center (GRC) has developed the LERCHP code. The PC-based LERCHP code can be used to predict the steady-state performance of heat pipes, including the determination of operating temperature and operating limits which might be encountered under specified conditions. The code contains a vapor flow algorithm which incorporates vapor compressibility and axially varying heat input. For the liquid flow in the wick, Darcy s formula is employed. Thermal boundary conditions and geometric structures can be defined through an interactive input interface. A variety of fluid and material options as well as user defined options can be chosen for the working fluid, wick, and pipe materials. This report documents the current effort at GRC to update the LERCHP code for operating in a Microsoft Windows (Microsoft Corporation) environment. A detailed analysis of the model is presented. The programming architecture for the numerical calculations is explained and flowcharts of the key subroutines are given

  2. Efficient Modeling of Laser-Plasma Accelerators with INF and RNO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, C.; Schroeder, C. B.; Esarey, E.

    2010-11-04

    The numerical modeling code INF and RNO (INtegrated Fluid and paRticle simulatioN cOde, pronounced 'inferno') is presented. INF and RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations whilemore » still retaining physical fidelity. The code has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.« less

  3. Hypersonic simulations using open-source CFD and DSMC solvers

    NASA Astrophysics Data System (ADS)

    Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.

    2016-11-01

    Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.

  4. Efficient parallel simulation of CO2 geologic sequestration insaline aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Keni; Doughty, Christine; Wu, Yu-Shu

    2007-01-01

    An efficient parallel simulator for large-scale, long-termCO2 geologic sequestration in saline aquifers has been developed. Theparallel simulator is a three-dimensional, fully implicit model thatsolves large, sparse linear systems arising from discretization of thepartial differential equations for mass and energy balance in porous andfractured media. The simulator is based on the ECO2N module of the TOUGH2code and inherits all the process capabilities of the single-CPU TOUGH2code, including a comprehensive description of the thermodynamics andthermophysical properties of H2O-NaCl- CO2 mixtures, modeling singleand/or two-phase isothermal or non-isothermal flow processes, two-phasemixtures, fluid phases appearing or disappearing, as well as saltprecipitation or dissolution. The newmore » parallel simulator uses MPI forparallel implementation, the METIS software package for simulation domainpartitioning, and the iterative parallel linear solver package Aztec forsolving linear equations by multiple processors. In addition, theparallel simulator has been implemented with an efficient communicationscheme. Test examples show that a linear or super-linear speedup can beobtained on Linux clusters as well as on supercomputers. Because of thesignificant improvement in both simulation time and memory requirement,the new simulator provides a powerful tool for tackling larger scale andmore complex problems than can be solved by single-CPU codes. Ahigh-resolution simulation example is presented that models buoyantconvection, induced by a small increase in brine density caused bydissolution of CO2.« less

  5. Numerical analysis of the turbulent fluid flow through valves. Geometrical aspects influence at different positions

    NASA Astrophysics Data System (ADS)

    Rigola, J.; Aljure, D.; Lehmkuhl, O.; Pérez-Segarra, C. D.; Oliva, A.

    2015-08-01

    The aim of this paper is to carry out a group of numerical experiments over the fluid flow through a valve reed, using the CFD&HT code TermoFluids, an unstructured and parallel object-oriented CFD code for accurate and reliable solving of industrial flows. Turbulent flow and its solution is a very complex problem due to there is a non-lineal interaction between viscous and inertial effects further complicated by their rotational nature, together with the three-dimensionality inherent in these types of flow and the non-steady state solutions. In this work, different meshes, geometrical conditions and LES turbulence models (WALE, VMS, QR and SIGMA) are tested and results compared. On the other hand, the fluid flow boundary conditions are obtained by means of the numerical simulation model of hermetic reciprocating compressors tool, NEST-compressor code. The numerical results presented are based on a specific geometry, where the valve gap opening percentage is 11% of hole diameter and Reynolds numbers given by the one-dimensional model is 4.22 × 105, with density meshes of approximately 8 million CVs. Geometrical aspects related with the orifice's shape and its influence on fluid flow behaviour and pressure drop are analysed in detail, furthermore, flow results for different valve openings are also studied.

  6. Advanced computational multi-fluid dynamics: a new model for understanding electrokinetic phenomena in porous media

    NASA Astrophysics Data System (ADS)

    Gulamali, M. Y.; Saunders, J. H.; Jackson, M. D.; Pain, C. C.

    2009-04-01

    We present results from a new computational multi-fluid dynamics code, designed to model the transport of heat, mass and chemical species during flow of single or multiple immiscible fluid phases through porous media, including gravitational effects and compressibility. The model also captures the electrical phenomena which may arise through electrokinetic, electrochemical and electrothermal coupling. Building on the advanced computational technology of the Imperial College Ocean Model, this new development leads the way towards a complex multiphase code using arbitrary unstructured and adaptive meshes, and domains decomposed to run in parallel over a cluster of workstations or a dedicated parallel computer. These facilities will allow efficient and accurate modelling of multiphase flows which capture large- and small-scale transport phenomena, while preserving the important geology and/or surface topology to make the results physically meaningful and realistic. Applications include modelling of contaminant transport in aquifers, multiphase flow during hydrocarbon production, migration of carbon dioxide during sequestration, and evaluation of the design and safety of nuclear reactors. Simulations of the streaming potential resulting from multiphase flow in laboratory- and field-scale models demonstrate that streaming potential signals originate at fluid fronts, and at geologic boundaries where fluid saturation changes. This suggests that downhole measurements of streaming potential may be used to inform production strategies in oil and gas reservoirs. As water encroaches on an oil production well, the streaming-potential signal associated with the water front encompasses the well even when the front is up to 100 m away, so the potential measured at the well starts to change significantly relative to a distant reference electrode. Variations in the geometry of the encroaching water front could be characterized using an array of electrodes positioned along the well, but a good understanding of the local reservoir geology will be required to identify signals caused by the front. The streaming potential measured at a well will be maximized in low-permeability reservoirs produced at a high rate, and in thick reservoirs with low shale content.

  7. Numerical modeling of fluid migration in subduction zones

    NASA Astrophysics Data System (ADS)

    Walter, Marius J.; Quinteros, Javier; Sobolev, Stephan V.

    2015-04-01

    It is well known that fluids play a crucial role in subduction evolution. For example, excess mechanical weakening along tectonic interfaces, due to excess fluid pressure, may enable oceanic subduction. Hence, the fluid content seems to be a critical parameter for subduction initiation. Studies have also shown a correlation between the location of slab dehydration and intermediate seismic activity. Furthermore, expelled fluids from the subduction slab affect the melting temperature, consequently, contributing to partial melting in the wedge above the downgoing plate, and resulting in chemical changes in earth interior and extensive volcanism. In summary, fluids have a great impact on tectonic processes and therefore should be incorporated into geodynamic numerical models. Here we use existing approaches to couple and solve fluid flow equations in the SLIM-3D thermo-mechanical code. SLIM-3D is a three-dimensional thermo-mechanical code capable of simulating lithospheric deformation with elasto-visco-plastic rheology. It incorporates an arbitrary Lagrangian Eulerian formulation, free surface, and changes in density and viscosity, due to endothermic and exothermic phase transitions. It has been successfully applied to model geodynamic processes at different tectonic settings, including subduction zones. However, although SLIM-3D already includes many features, fluid migration has not been incorporated into the model yet. To this end, we coupled solid and fluid flow assuming that fluids flow through a porous and deformable solid. Thereby, we introduce a two-phase flow into the model, in which the Stokes flow is coupled with the Darcy law for fluid flow. This system of equations becomes, however, nonlinear, because the rheology and permeability are depended on the porosity (fluid fraction of the matrix). Ultimately, the evolution of porosity is governed by the compaction pressure and the advection of the porous solid. We show the details of our implementation of the fluid flow into the existing thermo-mechanical finite element code and present first results of benchmarks (e.g. solitary wave) and experiments. We are especially interested in the coupling of subduction processes and the evolution of the magmatic arc. Thereby, we focus on the key factors controlling magma emplacement and its influence on subduction processes.

  8. Characterizing Droplet Formation from Non-Linear Slosh in a Propellant Tank

    NASA Technical Reports Server (NTRS)

    Brodnick, Jacob; Yang, Hong; West, Jeffrey

    2015-01-01

    The Fluid Dynamics Branch (ER42) at the Marshall Space Flight Center (MSFC) was tasked with characterizing the formation and evolution of liquid droplets resulting from nonlinear propellant slosh in a storage tank. Lateral excitation of propellant tanks can produce high amplitude nonlinear slosh waves through large amplitude excitations and or excitation frequencies near a resonance frequency of the tank. The high amplitude slosh waves become breaking waves upon attaining a certain amplitude or encountering a contracting geometry such as the upper dome section of a spherical tank. Inherent perturbations in the thinning regions of breaking waves result in alternating regions of high and low pressure within the fluid. Droplets form once the force from the local pressure differential becomes larger than the force maintaining the fluid interface shape due to surface tension. Droplets released from breaking waves in a pressurized tank may lead to ullage collapse given the appropriate conditions due to the increased liquid surface area and thus heat transfer between the fluids. The goal of this project is to create an engineering model that describes droplet formation as a function of propellant slosh for use in the evaluation of ullage collapse during a sloshing event. The Volume of Fluid (VOF) model in the production level Computational Fluid Dynamics (CFD) code Loci-Stream was used to predict droplet formation from breaking waves with realistic surface tension characteristics. Various excitation frequencies and amplitudes were investigated at multiple fill levels for a single storage tank to create the engineering model of droplet formation from lateral propellant slosh.

  9. A method to generate small-scale, high-resolution sedimentary bedform architecture models representing realistic geologic facies

    DOE PAGES

    Meckel, T. A.; Trevisan, L.; Krishnamurthy, P. G.

    2017-08-23

    Small-scale (mm to m) sedimentary structures (e.g. ripple lamination, cross-bedding) have received a great deal of attention in sedimentary geology. The influence of depositional heterogeneity on subsurface fluid flow is now widely recognized, but incorporating these features in physically-rational bedform models at various scales remains problematic. The current investigation expands the capability of an existing set of open-source codes, allowing generation of high-resolution 3D bedform architecture models. The implemented modifications enable the generation of 3D digital models consisting of laminae and matrix (binary field) with characteristic depositional architecture. The binary model is then populated with petrophysical properties using a texturalmore » approach for additional analysis such as statistical characterization, property upscaling, and single and multiphase fluid flow simulation. One example binary model with corresponding threshold capillary pressure field and the scripts used to generate them are provided, but the approach can be used to generate dozens of previously documented common facies models and a variety of property assignments. An application using the example model is presented simulating buoyant fluid (CO 2) migration and resulting saturation distribution.« less

  10. A method to generate small-scale, high-resolution sedimentary bedform architecture models representing realistic geologic facies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meckel, T. A.; Trevisan, L.; Krishnamurthy, P. G.

    Small-scale (mm to m) sedimentary structures (e.g. ripple lamination, cross-bedding) have received a great deal of attention in sedimentary geology. The influence of depositional heterogeneity on subsurface fluid flow is now widely recognized, but incorporating these features in physically-rational bedform models at various scales remains problematic. The current investigation expands the capability of an existing set of open-source codes, allowing generation of high-resolution 3D bedform architecture models. The implemented modifications enable the generation of 3D digital models consisting of laminae and matrix (binary field) with characteristic depositional architecture. The binary model is then populated with petrophysical properties using a texturalmore » approach for additional analysis such as statistical characterization, property upscaling, and single and multiphase fluid flow simulation. One example binary model with corresponding threshold capillary pressure field and the scripts used to generate them are provided, but the approach can be used to generate dozens of previously documented common facies models and a variety of property assignments. An application using the example model is presented simulating buoyant fluid (CO 2) migration and resulting saturation distribution.« less

  11. The Magnetic Reconnection Code: an AMR-based fully implicit simulation suite

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Bhattacharjee, A.; Ng, C.-S.

    2006-12-01

    Extended MHD models, which incorporate two-fluid effects, are promising candidates to enhance understanding of collisionless reconnection phenomena in laboratory, space and astrophysical plasma physics. In this paper, we introduce two simulation codes in the Magnetic Reconnection Code suite which integrate reduced and full extended MHD models. Numerical integration of these models comes with two challenges: Small-scale spatial structures, e.g. thin current sheets, develop and must be well resolved by the code. Adaptive mesh refinement (AMR) is employed to provide high resolution where needed while maintaining good performance. Secondly, the two-fluid effects in extended MHD give rise to dispersive waves, which lead to a very stringent CFL condition for explicit codes, while reconnection happens on a much slower time scale. We use a fully implicit Crank--Nicholson time stepping algorithm. Since no efficient preconditioners are available for our system of equations, we instead use a direct solver to handle the inner linear solves. This requires us to actually compute the Jacobian matrix, which is handled by a code generator that calculates the derivative symbolically and then outputs code to calculate it.

  12. Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.; Lee, Chi-Miag (Technical Monitor)

    2001-01-01

    For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this paper, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery for space launch vehicle propulsion systems.

  13. Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code

    NASA Technical Reports Server (NTRS)

    Gaugfer, Raymond E.

    2002-01-01

    For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this presentation, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery.

  14. Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier Stokes Heat Transfer Code

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    2002-01-01

    For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid beat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this presentation, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery.

  15. Multi-blocking strategies for the INS3D incompressible Navier-Stokes code

    NASA Technical Reports Server (NTRS)

    Gatlin, Boyd

    1990-01-01

    With the continuing development of bigger and faster supercomputers, computational fluid dynamics (CFD) has become a useful tool for real-world engineering design and analysis. However, the number of grid points necessary to resolve realistic flow fields numerically can easily exceed the memory capacity of available computers. In addition, geometric shapes of flow fields, such as those in the Space Shuttle Main Engine (SSME) power head, may be impossible to fill with continuous grids upon which to obtain numerical solutions to the equations of fluid motion. The solution to this dilemma is simply to decompose the computational domain into subblocks of manageable size. Computer codes that are single-block by construction can be modified to handle multiple blocks, but ad-hoc changes in the FORTRAN have to be made for each geometry treated. For engineering design and analysis, what is needed is generalization so that the blocking arrangement can be specified by the user. INS3D is a computer program for the solution of steady, incompressible flow problems. It is used frequently to solve engineering problems in the CFD Branch at Marshall Space Flight Center. INS3D uses an implicit solution algorithm and the concept of artificial compressibility to provide the necessary coupling between the pressure field and the velocity field. The development of generalized multi-block capability in INS3D is described.

  16. Steady-State Computation of Constant Rotational Rate Dynamic Stability Derivatives

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Green, Lawrence L.

    2000-01-01

    Dynamic stability derivatives are essential to predicting the open and closed loop performance, stability, and controllability of aircraft. Computational determination of constant-rate dynamic stability derivatives (derivatives of aircraft forces and moments with respect to constant rotational rates) is currently performed indirectly with finite differencing of multiple time-accurate computational fluid dynamics solutions. Typical time-accurate solutions require excessive amounts of computational time to complete. Formulating Navier-Stokes (N-S) equations in a rotating noninertial reference frame and applying an automatic differentiation tool to the modified code has the potential for directly computing these derivatives with a single, much faster steady-state calculation. The ability to rapidly determine static and dynamic stability derivatives by computational methods can benefit multidisciplinary design methodologies and reduce dependency on wind tunnel measurements. The CFL3D thin-layer N-S computational fluid dynamics code was modified for this study to allow calculations on complex three-dimensional configurations with constant rotation rate components in all three axes. These CFL3D modifications also have direct application to rotorcraft and turbomachinery analyses. The modified CFL3D steady-state calculation is a new capability that showed excellent agreement with results calculated by a similar formulation. The application of automatic differentiation to CFL3D allows the static stability and body-axis rate derivatives to be calculated quickly and exactly.

  17. Needs and opportunities for CFD-code validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, B.L.

    1996-06-01

    The conceptual design for the ESS target consists of a horizontal cylinder containing a liquid metal - mercury is considered in the present study - which circulates by forced convection and carries away the waste heat generated by the spallation reactions. The protons enter the target via a beam window, which must withstand the thermal, mechanical and radiation loads to which it is subjected. For a beam power of 5MW, it is estimated that about 3.3MW of waste heat would be deposited in the target material and associated structures. it is intended to confirm, by detailed thermal-hydraulics calculations, that amore » convective flow of the liquid metal target material can effectively remove the waste heat. The present series of Computational Fluid Dynamics (CFD) calculations has indicated that a single-inlet Target design leads to excessive local overheating, but a multiple-inlet design, is coolable. With this option, inlet flow streams, two from the sides and one from below, merge over the target window, cooling the window itself in crossflow and carrying away the heat generated volumetrically in the mercury with a strong axial flow down the exit channel. The three intersecting streams form a complex, three-dimensional, swirling flow field in which critical heat transfer processes are taking place. In order to produce trustworthy code simulations, it is necessary that the mesh resolution is adequate for the thermal-hydraulic conditions encountered and that the physical models used by the code are appropriate to the fluid dynamic environment. The former relies on considerable user experience in the application of the code, and the latter assurance is best gained in the context of controlled benchmark activities where measured data are available. Such activities will serve to quantify the accuracy of given models and to identify potential problem area for the numerical simulation which may not be obvious from global heat and mass balance considerations.« less

  18. Validation of single-fluid and two-fluid magnetohydrodynamic models of the helicity injected torus spheromak experiment with the NIMROD code

    NASA Astrophysics Data System (ADS)

    Akcay, Cihan; Kim, Charlson C.; Victor, Brian S.; Jarboe, Thomas R.

    2013-08-01

    We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth di to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification Itor/Iinj and formation time τf demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates Itor/Iinj and exhibits much a longer τf. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.

  19. Magnetically Actuated Propellant Orientation Experiment, Controlling Fluid Motion With Magnetic Fields in a Low-Gravity Environment

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Holt, J. B.

    2000-01-01

    This report details the results of a series of fluid motion experiments to investigate the use of magnets to orient fluids in a low-gravity environment. The fluid of interest for this project was liquid oxygen (LO2) since it exhibits a paramagnetic behavior (is attracted to magnetic fields). However, due to safety and handling concerns, a water-based ferromagnetic mixture (produced by Ferrofluidics Corporation) was selected to simplify procedures. Three ferromagnetic fluid mixture strengths and a nonmagnetic water baseline were tested using three different initial fluid positions with respect to the magnet. Experiment accelerometer data were used with a modified computational fluid dynamics code termed CFX-4 (by AEA Technologies) to predict fluid motion. These predictions compared favorably with experiment video data, verifying the code's ability to predict fluid motion with and without magnetic influences. Additional predictions were generated for LO2 with the same test conditions and geometries used in the testing. Test hardware consisted of a cylindrical Plexiglas tank (6-in. bore with 10-in. length), a 6,000-G rare Earth magnet (10-in. ring), three-axis accelerometer package, and a video recorder system. All tests were conducted aboard the NASA Reduced-Gravity Workshop, a KC-135A aircraft.

  20. Computational fluid mechanics utilizing the variational principle of modeling damping seals

    NASA Technical Reports Server (NTRS)

    Abernathy, J. M.; Farmer, R.

    1985-01-01

    An analysis for modeling damping seals for use in Space Shuttle main engine turbomachinery is being produced. Development of a computational fluid mechanics code for turbulent, incompressible flow is required.

  1. The coupling of fluids, dynamics, and controls on advanced architecture computers

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher

    1995-01-01

    This grant provided for the demonstration of coupled controls, body dynamics, and fluids computations in a workstation cluster environment; and an investigation of the impact of peer-peer communication on flow solver performance and robustness. The findings of these investigations were documented in the conference articles.The attached publication, 'Towards Distributed Fluids/Controls Simulations', documents the solution and scaling of the coupled Navier-Stokes, Euler rigid-body dynamics, and state feedback control equations for a two-dimensional canard-wing. The poor scaling shown was due to serialized grid connectivity computation and Ethernet bandwidth limits. The scaling of a peer-to-peer communication flow code on an IBM SP-2 was also shown. The scaling of the code on the switched fabric-linked nodes was good, with a 2.4 percent loss due to communication of intergrid boundary point information. The code performance on 30 worker nodes was 1.7 (mu)s/point/iteration, or a factor of three over a Cray C-90 head. The attached paper, 'Nonlinear Fluid Computations in a Distributed Environment', documents the effect of several computational rate enhancing methods on convergence. For the cases shown, the highest throughput was achieved using boundary updates at each step, with the manager process performing communication tasks only. Constrained domain decomposition of the implicit fluid equations did not degrade the convergence rate or final solution. The scaling of a coupled body/fluid dynamics problem on an Ethernet-linked cluster was also shown.

  2. Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case studies

    NASA Astrophysics Data System (ADS)

    Gerke, Kirill M.; Vasilyev, Roman V.; Khirevich, Siarhei; Collins, Daniel; Karsanina, Marina V.; Sizonenko, Timofey O.; Korost, Dmitry V.; Lamontagne, Sébastien; Mallants, Dirk

    2018-05-01

    Permeability is one of the fundamental properties of porous media and is required for large-scale Darcian fluid flow and mass transport models. Whilst permeability can be measured directly at a range of scales, there are increasing opportunities to evaluate permeability from pore-scale fluid flow simulations. We introduce the free software Finite-Difference Method Stokes Solver (FDMSS) that solves Stokes equation using a finite-difference method (FDM) directly on voxelized 3D pore geometries (i.e. without meshing). Based on explicit convergence studies, validation on sphere packings with analytically known permeabilities, and comparison against lattice-Boltzmann and other published FDM studies, we conclude that FDMSS provides a computationally efficient and accurate basis for single-phase pore-scale flow simulations. By implementing an efficient parallelization and code optimization scheme, permeability inferences can now be made from 3D images of up to 109 voxels using modern desktop computers. Case studies demonstrate the broad applicability of the FDMSS software for both natural and artificial porous media.

  3. Fracturing And Liquid CONvection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-02-29

    FALCON has been developed to enable simulation of the tightly coupled fluid-rock behavior in hydrothermal and engineered geothermal system (EGS) reservoirs, targeting the dynamics of fracture stimulation, fluid flow, rock deformation, and heat transport in a single integrated code, with the ultimate goal of providing a tool that can be used to test the viability of EGS in the United States and worldwide. Reliable reservoir performance predictions of EGS systems require accurate and robust modeling for the coupled thermal-hydrological-mechanical processes. Conventionally, these types of problems are solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulatormore » with a solid mechanics simulator via input files. FALCON eliminates the need for using operator-splitting methods to simulate these systems, and the scalability of the underlying MOOSE architecture allows for simulating these tightly coupled processes at the reservoir scale, allowing for examination of the system as a whole (something the operator-splitting methodologies generally cannot do).« less

  4. Numerical, Analytical, Experimental Study of Fluid Dynamic Forces in Seals Volume 6: Description of Scientific CFD Code SCISEAL

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh; Przekwas, Andrzej

    2004-01-01

    The objectives of the program were to develop computational fluid dynamics (CFD) codes and simpler industrial codes for analyzing and designing advanced seals for air-breathing and space propulsion engines. The CFD code SCISEAL is capable of producing full three-dimensional flow field information for a variety of cylindrical configurations. An implicit multidomain capability allow the division of complex flow domains to allow optimum use of computational cells. SCISEAL also has the unique capability to produce cross-coupled stiffness and damping coefficients for rotordynamic computations. The industrial codes consist of a series of separate stand-alone modules designed for expeditious parametric analyses and optimization of a wide variety of cylindrical and face seals. Coupled through a Knowledge-Based System (KBS) that provides a user-friendly Graphical User Interface (GUI), the industrial codes are PC based using an OS/2 operating system. These codes were designed to treat film seals where a clearance exists between the rotating and stationary components. Leakage is inhibited by surface roughness, small but stiff clearance films, and viscous pumping devices. The codes have demonstrated to be a valuable resource for seal development of future air-breathing and space propulsion engines.

  5. An evaluation of three two-dimensional computational fluid dynamics codes including low Reynolds numbers and transonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Hicks, Raymond M.; Cliff, Susan E.

    1991-01-01

    Full-potential, Euler, and Navier-Stokes computational fluid dynamics (CFD) codes were evaluated for use in analyzing the flow field about airfoils sections operating at Mach numbers from 0.20 to 0.60 and Reynolds numbers from 500,000 to 2,000,000. The potential code (LBAUER) includes weakly coupled integral boundary layer equations for laminar and turbulent flow with simple transition and separation models. The Navier-Stokes code (ARC2D) uses the thin-layer formulation of the Reynolds-averaged equations with an algebraic turbulence model. The Euler code (ISES) includes strongly coupled integral boundary layer equations and advanced transition and separation calculations with the capability to model laminar separation bubbles and limited zones of turbulent separation. The best experiment/CFD correlation was obtained with the Euler code because its boundary layer equations model the physics of the flow better than the other two codes. An unusual reversal of boundary layer separation with increasing angle of attack, following initial shock formation on the upper surface of the airfoil, was found in the experiment data. This phenomenon was not predicted by the CFD codes evaluated.

  6. Pre- and Post-Processing Tools to Streamline the CFD Process

    NASA Technical Reports Server (NTRS)

    Dorney, Suzanne Miller

    2002-01-01

    This viewgraph presentation provides information on software development tools to facilitate the use of CFD (Computational Fluid Dynamics) codes. The specific CFD codes FDNS and CORSAIR are profiled, and uses for software development tools with these codes during pre-processing, interim-processing, and post-processing are explained.

  7. Inference of Heating Properties from "Hot" Non-flaring Plasmas in Active Region Cores. I. Single Nanoflares

    NASA Astrophysics Data System (ADS)

    Barnes, W. T.; Cargill, P. J.; Bradshaw, S. J.

    2016-09-01

    The properties that are expected of “hot” non-flaring plasmas due to nanoflare heating in active regions are investigated using hydrodynamic modeling tools, including a two-fluid development of the Enthalpy Based Thermal Evolution of Loops code. Here we study a single nanoflare and show that while simple models predict an emission measure distribution extending well above 10 MK, which is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium, and for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the “smoking gun” of nanoflare heating, lies between 106.6 and 107 K. Signatures of the actual heating may be detectable in some instances.

  8. "Hot" Non-flaring Plasmas in Active Region Cores Heated by Single Nanoflares

    NASA Astrophysics Data System (ADS)

    Barnes, Will Thomas; Cargill, Peter; Bradshaw, Stephen

    2016-05-01

    We use hydrodynamic modeling tools, including a two-fluid development of the EBTEL code, to investigate the properties expected of "hot" (i.e. between 106.7 and 107.2 K) non-flaring plasmas due to nanoflare heating in active regions. Here we focus on single nanoflares and show that while simple models predict an emission measure distribution extending well above 10 MK that is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium and, for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the "smoking gun" of nanoflare heating, lies between 1 MK and 10 MK. Signatures of the actual heating may be detectable in some instances.

  9. The Sixth Annual Thermal and Fluids Analysis Workshop

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Sixth Annual Thermal and Fluids Analysis Workshop consisted of classes, vendor demonstrations, and paper sessions. The classes and vendor demonstrations provided participants with the information on widely used tools for thermal and fluids analysis. The paper sessions provided a forum for the exchange of information and ideas among thermal and fluids analysis. Paper topics included advances an uses of established thermal and fluids computer codes (such as SINDA and TRASYS) as well as unique modeling techniques and applications.

  10. Fluid Flow Investigations within a 37 Element CANDU Fuel Bundle Supported by Magnetic Resonance Velocimetry and Computational Fluid Dynamics

    DOE PAGES

    Piro, M.H.A; Wassermann, F.; Grundmann, S.; ...

    2017-05-23

    The current work presents experimental and computational investigations of fluid flow through a 37 element CANDU nuclear fuel bundle. Experiments based on Magnetic Resonance Velocimetry (MRV) permit three-dimensional, three-component fluid velocity measurements to be made within the bundle with sub-millimeter resolution that are non-intrusive, do not require tracer particles or optical access of the flow field. Computational fluid dynamic (CFD) simulations of the foregoing experiments were performed with the hydra-th code using implicit large eddy simulation, which were in good agreement with experimental measurements of the fluid velocity. Greater understanding has been gained in the evolution of geometry-induced inter-subchannel mixing,more » the local effects of obstructed debris on the local flow field, and various turbulent effects, such as recirculation, swirl and separation. These capabilities are not available with conventional experimental techniques or thermal-hydraulic codes. Finally, the overall goal of this work is to continue developing experimental and computational capabilities for further investigations that reliably support nuclear reactor performance and safety.« less

  11. Coupled discrete element and finite volume solution of two classical soil mechanics problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Feng; Drumm, Eric; Guiochon, Georges A

    One dimensional solutions for the classic critical upward seepage gradient/quick condition and the time rate of consolidation problems are obtained using coupled routines for the finite volume method (FVM) and discrete element method (DEM), and the results compared with the analytical solutions. The two phase flow in a system composed of fluid and solid is simulated with the fluid phase modeled by solving the averaged Navier-Stokes equation using the FVM and the solid phase is modeled using the DEM. A framework is described for the coupling of two open source computer codes: YADE-OpenDEM for the discrete element method and OpenFOAMmore » for the computational fluid dynamics. The particle-fluid interaction is quantified using a semi-empirical relationship proposed by Ergun [12]. The two classical verification problems are used to explore issues encountered when using coupled flow DEM codes, namely, the appropriate time step size for both the fluid and mechanical solution processes, the choice of the viscous damping coefficient, and the number of solid particles per finite fluid volume.« less

  12. Fluid Flow Investigations within a 37 Element CANDU Fuel Bundle Supported by Magnetic Resonance Velocimetry and Computational Fluid Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piro, M.H.A; Wassermann, F.; Grundmann, S.

    The current work presents experimental and computational investigations of fluid flow through a 37 element CANDU nuclear fuel bundle. Experiments based on Magnetic Resonance Velocimetry (MRV) permit three-dimensional, three-component fluid velocity measurements to be made within the bundle with sub-millimeter resolution that are non-intrusive, do not require tracer particles or optical access of the flow field. Computational fluid dynamic (CFD) simulations of the foregoing experiments were performed with the hydra-th code using implicit large eddy simulation, which were in good agreement with experimental measurements of the fluid velocity. Greater understanding has been gained in the evolution of geometry-induced inter-subchannel mixing,more » the local effects of obstructed debris on the local flow field, and various turbulent effects, such as recirculation, swirl and separation. These capabilities are not available with conventional experimental techniques or thermal-hydraulic codes. Finally, the overall goal of this work is to continue developing experimental and computational capabilities for further investigations that reliably support nuclear reactor performance and safety.« less

  13. Application of computer generated color graphic techniques to the processing and display of three dimensional fluid dynamic data

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Putt, C. W.; Giamati, C. C.

    1981-01-01

    Color coding techniques used in the processing of remote sensing imagery were adapted and applied to the fluid dynamics problems associated with turbofan mixer nozzles. The computer generated color graphics were found to be useful in reconstructing the measured flow field from low resolution experimental data to give more physical meaning to this information and in scanning and interpreting the large volume of computer generated data from the three dimensional viscous computer code used in the analysis.

  14. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model--Documentation of the SEAWAT-2000 Version with the Variable-Density Flow Process (VDF) and the Integrated MT3DMS Transport Process (IMT)

    USGS Publications Warehouse

    Langevin, Christian D.; Shoemaker, W. Barclay; Guo, Weixing

    2003-01-01

    SEAWAT-2000 is the latest release of the SEAWAT computer program for simulation of three-dimensional, variable-density, transient ground-water flow in porous media. SEAWAT-2000 was designed by combining a modified version of MODFLOW-2000 and MT3DMS into a single computer program. The code was developed using the MODFLOW-2000 concept of a process, which is defined as ?part of the code that solves a fundamental equation by a specified numerical method.? SEAWAT-2000 contains all of the processes distributed with MODFLOW-2000 and also includes the Variable-Density Flow Process (as an alternative to the constant-density Ground-Water Flow Process) and the Integrated MT3DMS Transport Process. Processes may be active or inactive, depending on simulation objectives; however, not all processes are compatible. For example, the Sensitivity and Parameter Estimation Processes are not compatible with the Variable-Density Flow and Integrated MT3DMS Transport Processes. The SEAWAT-2000 computer code was tested with the common variable-density benchmark problems and also with problems representing evaporation from a salt lake and rotation of immiscible fluids.

  15. External-Compression Supersonic Inlet Design Code

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2011-01-01

    A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.

  16. High-Speed Particle-in-Cell Simulation Parallelized with Graphic Processing Units for Low Temperature Plasmas for Material Processing

    NASA Astrophysics Data System (ADS)

    Hur, Min Young; Verboncoeur, John; Lee, Hae June

    2014-10-01

    Particle-in-cell (PIC) simulations have high fidelity in the plasma device requiring transient kinetic modeling compared with fluid simulations. It uses less approximation on the plasma kinetics but requires many particles and grids to observe the semantic results. It means that the simulation spends lots of simulation time in proportion to the number of particles. Therefore, PIC simulation needs high performance computing. In this research, a graphic processing unit (GPU) is adopted for high performance computing of PIC simulation for low temperature discharge plasmas. GPUs have many-core processors and high memory bandwidth compared with a central processing unit (CPU). NVIDIA GeForce GPUs were used for the test with hundreds of cores which show cost-effective performance. PIC code algorithm is divided into two modules which are a field solver and a particle mover. The particle mover module is divided into four routines which are named move, boundary, Monte Carlo collision (MCC), and deposit. Overall, the GPU code solves particle motions as well as electrostatic potential in two-dimensional geometry almost 30 times faster than a single CPU code. This work was supported by the Korea Institute of Science Technology Information.

  17. Efficient Modeling of Laser-Plasma Accelerators with INF&RNO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, C.; Schroeder, C. B.; Esarey, E.

    2010-06-01

    The numerical modeling code INF&RNO (INtegrated Fluid& paRticle simulatioN cOde, pronounced"inferno") is presented. INF&RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations while still retaining physical fidelity. The codemore » has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.« less

  18. Advanced helium purge seals for Liquid Oxygen (LOX) turbopumps

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur; Lee, Chester C.

    1989-01-01

    Program objectives were to determine three advanced configurations of helium buffer seals capable of providing improved performance in a space shuttle main engine (SSME), high-pressure liquid oxygen (LOX) turbopump environment, and to provide NASA with the analytical tools to determine performance of a variety of seal configurations. The three seal designs included solid-ring fluid-film seals often referred to as floating ring seals, back-to-back fluid-film face seals, and a circumferential sectored seal that incorporated inherent clearance adjustment capabilities. Of the three seals designed, the sectored seal is favored because the self-adjusting clearance features accommodate the variations in clearance that will occur because of thermal and centrifugal distortions without compromising performance. Moreover, leakage can be contained well below the maximum target values; minimizing leakage is important on the SSME since helium is provided by an external tank. A reduction in tank size translates to an increase in payload that can be carried on board the shuttle. The computer codes supplied under this program included a code for analyzing a variety of gas-lubricated, floating ring, and sector seals; a code for analyzing gas-lubricated face seals; a code for optimizing and analyzing gas-lubricated spiral-groove face seals; and a code for determining fluid-film face seal response to runner excitations in as many as five degrees of freedom. These codes proved invaluable for optimizing designs and estimating final performance of the seals described.

  19. Towards a generalized computational fluid dynamics technique for all Mach numbers

    NASA Technical Reports Server (NTRS)

    Walters, R. W.; Slack, D. C.; Godfrey, A. G.

    1993-01-01

    Currently there exists no single unified approach for efficiently and accurately solving computational fluid dynamics (CFD) problems across the Mach number regime, from truly low speed incompressible flows to hypersonic speeds. There are several CFD codes that have evolved into sophisticated prediction tools with a wide variety of features including multiblock capabilities, generalized chemistry and thermodynamics models among other features. However, as these codes evolve, the demand placed on the end user also increases simply because of the myriad of features that are incorporated into these codes. In order for a user to be able to solve a wide range of problems, several codes may be needed requiring the user to be familiar with the intricacies of each code and their rather complicated input files. Moreover, the cost of training users and maintaining several codes becomes prohibitive. The objective of the current work is to extend the compressible, characteristic-based, thermochemical nonequilibrium Navier-Stokes code GASP to very low speed flows and simultaneously improve convergence at all speeds. Before this work began, the practical speed range of GASP was Mach numbers on the order of 0.1 and higher. In addition, a number of new techniques have been developed for more accurate physical and numerical modeling. The primary focus has been on the development of optimal preconditioning techniques for the Euler and the Navier-Stokes equations with general finite-rate chemistry models and both equilibrium and nonequilibrium thermodynamics models. We began with the work of Van Leer, Lee, and Roe for inviscid, one-dimensional perfect gases and extended their approach to include three-dimensional reacting flows. The basic steps required to accomplish this task were a transformation to stream-aligned coordinates, the formulation of the preconditioning matrix, incorporation into both explicit and implicit temporal integration schemes, and modification of the numerical flux formulae. In addition, we improved the convergence rate of the implicit time integration schemes in GASP through the use of inner iteration strategies and the use of the GMRES (General Minimized Resisual) which belongs to the class of algorithms referred to as Krylov subspace iteration. Finally, we significantly improved the practical utility of GASP through the addition of mesh sequencing, a technique in which computations begin on a coarse grid and get interpolated onto successively finer grids. The fluid dynamic problems of interest to the propulsion community involve complex flow physics spanning different velocity regimes and possibly involving chemical reactions. This class of problems results in widely disparate time scales causing numerical stiffness. Even in the absence of chemical reactions, eigenvalue stiffness manifests itself at transonic and very low speed flows which can be quantified by the large condition number of the system and evidenced by slow convergence rates. This results in the need for thorough numerical analysis and subsequent implementation of sophisticated numerical techniques for these difficult yet practical problems. As a result of this work, we have been able to extend the range of applicability of compressible codes to very low speed inviscid flows (M = .001) and reacting flows.

  20. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    DOE PAGES

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; ...

    2016-05-30

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO 2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO 2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO 2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO 2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat fluxmore » profiles on the receiver and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.« less

  1. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO 2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO 2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO 2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO 2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat fluxmore » profiles on the receiver and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.« less

  2. Aerodynamic Analysis of the M33 Projectile Using the CFX Code

    DTIC Science & Technology

    2011-12-01

    is unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) The M33 projectile has been analyzed using the ANSYS CFX code that is based...analyzed using the ANSYS CFX code that is based on the numerical solution of the full Navier-Stokes equations. Simulation data were obtained...using the CFX code. The ANSYS - CFX code is a commercial CFD program used to simulate fluid flow in a variety of applications such as gas turbine

  3. Cars Thermometry in a Supersonic Combustor for CFD Code Validation

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Danehy, P. M.; Springer, R. R.; DeLoach, R.; Capriotti, D. P.

    2002-01-01

    An experiment has been conducted to acquire data for the validation of computational fluid dynamics (CFD) codes used in the design of supersonic combustors. The primary measurement technique is coherent anti-Stokes Raman spectroscopy (CARS), although surface pressures and temperatures have also been acquired. Modern- design- of-experiment techniques have been used to maximize the quality of the data set (for the given level of effort) and minimize systematic errors. The combustor consists of a diverging duct with single downstream- angled wall injector. Nominal entrance Mach number is 2 and enthalpy nominally corresponds to Mach 7 flight. Temperature maps are obtained at several planes in the flow for two cases: in one case the combustor is piloted by injecting fuel upstream of the main injector, the second is not. Boundary conditions and uncertainties are adequately characterized. Accurate CFD calculation of the flow will ultimately require accurate modeling of the chemical kinetics and turbulence-chemistry interactions as well as accurate modeling of the turbulent mixing

  4. Comparing nonlinear MHD simulations of low-aspect-ratio RFPs to RELAX experiments

    NASA Astrophysics Data System (ADS)

    McCollam, K. J.; den Hartog, D. J.; Jacobson, C. M.; Sovinec, C. R.; Masamune, S.; Sanpei, A.

    2016-10-01

    Standard reversed-field pinch (RFP) plasmas provide a nonlinear dynamical system as a validation domain for numerical MHD simulation codes, with applications in general toroidal confinement scenarios including tokamaks. Using the NIMROD code, we simulate the nonlinear evolution of RFP plasmas similar to those in the RELAX experiment. The experiment's modest Lundquist numbers S (as low as a few times 104) make closely matching MHD simulations tractable given present computing resources. Its low aspect ratio ( 2) motivates a comparison study using cylindrical and toroidal geometries in NIMROD. We present initial results from nonlinear single-fluid runs at S =104 for both geometries and a range of equilibrium parameters, which preliminarily show that the magnetic fluctuations are roughly similar between the two geometries and between simulation and experiment, though there appear to be some qualitative differences in their temporal evolution. Runs at higher S are planned. This work is supported by the U.S. DOE and by the Japan Society for the Promotion of Science.

  5. One-Dimensional Burn Dynamics of Plasma-Jet Magneto-Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Santarius, John

    2009-11-01

    This poster will discuss several issues related to using plasma jets to implode a Magneto-Inertial Fusion (MIF) liner onto a magnetized plasmoid and compress it to fusion-relevant temperatures [1]. The problem of pure plasma jet convergence and compression without a target present will be investigated. Cases with a target present will explore how well the liner's inertia provides transient plasma stability and confinement. The investigation uses UW's 1-D Lagrangian radiation-hydrodynamics code, BUCKY, which solves single-fluid equations of motion with ion-electron interactions, PdV work, table-lookup equations of state, fast-ion energy deposition, and pressure contributions from all species. Extensions to the code include magnetic field evolution as the plasmoid compresses plus dependence of the thermal conductivity and fusion product energy deposition on the magnetic field.[4pt] [1] Y.C. F. Thio, et al.,``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.

  6. Evolutionary space station fluids management strategies

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Results are summarized for an 11-month study to define fluid storage and handling strategies and requirements for various specific mission case studies and their associated design impacts on the Space Station. There are a variety of fluid users which require a variety of fluids and use rates. Also, the cryogenic propellants required for NASA's STV, Planetary, and Code Z missions are enormous. The storage methods must accommodate fluids ranging from a high pressure gas or supercritical state fluid to a sub-cooled liquid (and superfluid helium). These requirements begin in the year 1994, reach a maximum of nearly 1800 metric tons in the year 2004, and trail off to the year 2018, as currently planned. It is conceivable that the cryogenic propellant needs for the STV and/or Lunar mission models will be met by LTCSF LH2/LO2 tanksets attached to the SS truss structure. Concepts and corresponding transfer and delivery operations have been presented for STV propellant provisioning from the SS. A growth orbit maneuvering vehicle (OMV) and associated servicing capability will be required to move tanksets from delivery launch vehicles to the SS or co-orbiting platforms. Also, appropriate changes to the software used for OMV operation are necessary to allow for the combined operation of the growth OMV. To support fluid management activities at the Space Station for the experimental payloads and propellant provisioning, there must be truss structure space allocated for fluid carriers and propellant tanksets, and substantial beam strengthening may be required. The Station must have two Mobile Remote Manipulator Systems (MRMS) and the growth OMV propellant handling operations for the STV at the SS. Propellant needs for the Planetary Initiatives and Code Z mission models will most likely be provided by co-orbiting propellant platform(s). Space Station impacts for Code Z mission fluid management activities will be minimal.

  7. VERTPAK1. Code Verification Analytic Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golis, M.J.

    1983-04-01

    VERTPAK1 is a package of analytical solutions used in verification of numerical codes that simulate fluid flow, rock deformation, and solute transport in fractured and unfractured porous media. VERTPAK1 contains the following: BAREN, an analytical solution developed by Barenblatt, Zhelton and Kochina (1960) for describing transient flow to a well penetrating a (double porosity) confined aquifer; GIBMAC, an analytical solution developed by McNamee and Gibson (1960) for describing consolidation of a semi-infinite soil medium subject to a strip (plane strain) or cylindrical (axisymmetric) loading; GRINRH, an analytical solution developed by Gringarten (1971) for describing transient flow to a partially penetratingmore » well in a confined aquifer containing a single horizontal fracture; GRINRV, an analytical solution developed by Gringarten, Ramey, and Raghavan (1974) for describing transient flow to a fully penetrating well in a confined aquifer containing a single vertical fracture; HART, an analytical solution given by Nowacki (1962) and implemented by HART (1981) for describing the elastic behavior of an infinite solid subject to a line heat source; LESTER, an analytical solution presented by Lester, Jansen, and Burkholder (1975) for describing one-dimensional transport of radionuclide chains through an adsorbing medium; STRELT, an analytical solution presented by Streltsova-Adams (1978) for describing transient flow to a fully penetrating well in a (double porosity) confined aquifer; and TANG, an analytical solution developed by Tang, Frind, and Sudicky (1981) for describing solute transport in a porous medium containing a single fracture.« less

  8. Hybrid parallelization of the XTOR-2F code for the simulation of two-fluid MHD instabilities in tokamaks

    NASA Astrophysics Data System (ADS)

    Marx, Alain; Lütjens, Hinrich

    2017-03-01

    A hybrid MPI/OpenMP parallel version of the XTOR-2F code [Lütjens and Luciani, J. Comput. Phys. 229 (2010) 8130] solving the two-fluid MHD equations in full tokamak geometry by means of an iterative Newton-Krylov matrix-free method has been developed. The present work shows that the code has been parallelized significantly despite the numerical profile of the problem solved by XTOR-2F, i.e. a discretization with pseudo-spectral representations in all angular directions, the stiffness of the two-fluid stability problem in tokamaks, and the use of a direct LU decomposition to invert the physical pre-conditioner at every Krylov iteration of the solver. The execution time of the parallelized version is an order of magnitude smaller than the sequential one for low resolution cases, with an increasing speedup when the discretization mesh is refined. Moreover, it allows to perform simulations with higher resolutions, previously forbidden because of memory limitations.

  9. Coupling molecular dynamics with lattice Boltzmann method based on the immersed boundary method

    NASA Astrophysics Data System (ADS)

    Tan, Jifu; Sinno, Talid; Diamond, Scott

    2017-11-01

    The study of viscous fluid flow coupled with rigid or deformable solids has many applications in biological and engineering problems, e.g., blood cell transport, drug delivery, and particulate flow. We developed a partitioned approach to solve this coupled Multiphysics problem. The fluid motion was solved by Palabos (Parallel Lattice Boltzmann Solver), while the solid displacement and deformation was simulated by LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The coupling was achieved through the immersed boundary method (IBM). The code modeled both rigid and deformable solids exposed to flow. The code was validated with the classic problem of rigid ellipsoid particle orbit in shear flow, blood cell stretching test and effective blood viscosity, and demonstrated essentially linear scaling over 16 cores. An example of the fluid-solid coupling was given for flexible filaments (drug carriers) transport in a flowing blood cell suspensions, highlighting the advantages and capabilities of the developed code. NIH 1U01HL131053-01A1.

  10. Nonlinear ship waves and computational fluid dynamics

    PubMed Central

    MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei

    2014-01-01

    Research works undertaken in the first author’s laboratory at the University of Tokyo over the past 30 years are highlighted. Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design. Based on these findings, a multitude of the Computational Fluid Dynamic (CFD) techniques have been developed over this period, and are highlighted in this paper. The TUMMAC code has been developed for wave problems, based on a rectangular grid system, while the WISDAM code treats both wave and viscous flow problems in the framework of a boundary-fitted grid system. These two techniques are able to cope with almost all fluid dynamical problems relating to ships, including the resistance, ship’s motion and ride-comfort issues. Consequently, the two codes have contributed significantly to the progress in the technology of ship design, and now form an integral part of the ship-designing process. PMID:25311139

  11. Preliminary Assessment of Turbomachinery Codes

    NASA Technical Reports Server (NTRS)

    Mazumder, Quamrul H.

    2007-01-01

    This report assesses different CFD codes developed and currently being used at Glenn Research Center to predict turbomachinery fluid flow and heat transfer behavior. This report will consider the following codes: APNASA, TURBO, GlennHT, H3D, and SWIFT. Each code will be described separately in the following section with their current modeling capabilities, level of validation, pre/post processing, and future development and validation requirements. This report addresses only previously published and validations of the codes. However, the codes have been further developed to extend the capabilities of the codes.

  12. CFL3D Version 6.4-General Usage and Aeroelastic Analysis

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Rumsey, Christopher L.; Biedron, Robert T.

    2006-01-01

    This document contains the course notes on the computational fluid dynamics code CFL3D version 6.4. It is intended to provide from basic to advanced users the information necessary to successfully use the code for a broad range of cases. Much of the course covers capability that has been a part of previous versions of the code, with material compiled from a CFL3D v5.0 manual and from the CFL3D v6 web site prior to the current release. This part of the material is presented to users of the code not familiar with computational fluid dynamics. There is new capability in CFL3D version 6.4 presented here that has not previously been published. There are also outdated features no longer used or recommended in recent releases of the code. The information offered here supersedes earlier manuals and updates outdated usage. Where current usage supersedes older versions, notation of that is made. These course notes also provides hints for usage, code installation and examples not found elsewhere.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRISC is a developmental prototype for a nextgeneration “systems-level” integrated performance and safety code (IPSC) for nuclear reactors. Its development served to demonstrate how a lightweight multi-physics coupling approach can be used to tightly couple the physics models in several different physics codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled “burner” nuclear reactor. For example, the RIO Fluid Flow and Heat transfer code developed at Sandia (SNL: Chris Moen, Dept. 08005) is used in BRISC to model fluid flow and heat transfer, as well as conduction heat transfermore » in solids. Because BRISC is a prototype, its most practical application is as a foundation or starting point for developing a true production code. The sub-codes and the associated models and correlations currently employed within BRISC were chosen to cover the required application space and demonstrate feasibility, but were not optimized or validated against experimental data within the context of their use in BRISC.« less

  14. Two-dimensional implosion simulations with a kinetic particle code [2D implosion simulations with a kinetic particle code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagert, Irina; Even, Wesley Paul; Strother, Terrance Timothy

    Here, we perform two-dimensional implosion simulations using a Monte Carlo kinetic particle code. The application of a kinetic transport code is motivated, in part, by the occurrence of nonequilibrium effects in inertial confinement fusion capsule implosions, which cannot be fully captured by hydrodynamic simulations. Kinetic methods, on the other hand, are able to describe both continuum and rarefied flows. We perform simple two-dimensional disk implosion simulations using one-particle species and compare the results to simulations with the hydrodynamics code rage. The impact of the particle mean free path on the implosion is also explored. In a second study, we focusmore » on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic studies regarding the location of the shock and the implosion dynamics. Differences are found in the evolution of fluid instabilities, originating from the higher resolution of rage and statistical noise in the kinetic studies.« less

  15. Performance of a parallel code for the Euler equations on hypercube computers

    NASA Technical Reports Server (NTRS)

    Barszcz, Eric; Chan, Tony F.; Jesperson, Dennis C.; Tuminaro, Raymond S.

    1990-01-01

    The performance of hypercubes were evaluated on a computational fluid dynamics problem and the parallel environment issues were considered that must be addressed, such as algorithm changes, implementation choices, programming effort, and programming environment. The evaluation focuses on a widely used fluid dynamics code, FLO52, which solves the two dimensional steady Euler equations describing flow around the airfoil. The code development experience is described, including interacting with the operating system, utilizing the message-passing communication system, and code modifications necessary to increase parallel efficiency. Results from two hypercube parallel computers (a 16-node iPSC/2, and a 512-node NCUBE/ten) are discussed and compared. In addition, a mathematical model of the execution time was developed as a function of several machine and algorithm parameters. This model accurately predicts the actual run times obtained and is used to explore the performance of the code in interesting but yet physically realizable regions of the parameter space. Based on this model, predictions about future hypercubes are made.

  16. Two-dimensional implosion simulations with a kinetic particle code [2D implosion simulations with a kinetic particle code

    DOE PAGES

    Sagert, Irina; Even, Wesley Paul; Strother, Terrance Timothy

    2017-05-17

    Here, we perform two-dimensional implosion simulations using a Monte Carlo kinetic particle code. The application of a kinetic transport code is motivated, in part, by the occurrence of nonequilibrium effects in inertial confinement fusion capsule implosions, which cannot be fully captured by hydrodynamic simulations. Kinetic methods, on the other hand, are able to describe both continuum and rarefied flows. We perform simple two-dimensional disk implosion simulations using one-particle species and compare the results to simulations with the hydrodynamics code rage. The impact of the particle mean free path on the implosion is also explored. In a second study, we focusmore » on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic studies regarding the location of the shock and the implosion dynamics. Differences are found in the evolution of fluid instabilities, originating from the higher resolution of rage and statistical noise in the kinetic studies.« less

  17. Alfvén ionization in an MHD-gas interactions code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, A. D.; Diver, D. A.

    A numerical model of partially ionized plasmas is developed in order to capture their evolving ionization fractions as a result of Alfvén ionization (AI). The mechanism of, and the parameter regime necessary for, AI is discussed and an expression for the AI rate based on fluid parameters, from a gas-MHD model, is derived. This AI term is added to an existing MHD-gas interactions' code, and the result is a linear, 2D, two-fluid model that includes momentum transfer between charged and neutral species as well as an ionization rate that depends on the velocity fields of both fluids. The dynamics ofmore » waves propagating through such a partially ionized plasma are investigated, and it is found that AI has a significant influence on the fluid dynamics as well as both the local and global ionization fraction.« less

  18. PFMCal : Photonic force microscopy calibration extended for its application in high-frequency microrheology

    NASA Astrophysics Data System (ADS)

    Butykai, A.; Domínguez-García, P.; Mor, F. M.; Gaál, R.; Forró, L.; Jeney, S.

    2017-11-01

    The present document is an update of the previously published MatLab code for the calibration of optical tweezers in the high-resolution detection of the Brownian motion of non-spherical probes [1]. In this instance, an alternative version of the original code, based on the same physical theory [2], but focused on the automation of the calibration of measurements using spherical probes, is outlined. The new added code is useful for high-frequency microrheology studies, where the probe radius is known but the viscosity of the surrounding fluid maybe not. This extended calibration methodology is automatic, without the need of a user's interface. A code for calibration by means of thermal noise analysis [3] is also included; this is a method that can be applied when using viscoelastic fluids if the trap stiffness is previously estimated [4]. The new code can be executed in MatLab and using GNU Octave. Program Files doi:http://dx.doi.org/10.17632/s59f3gz729.1 Licensing provisions: GPLv3 Programming language: MatLab 2016a (MathWorks Inc.) and GNU Octave 4.0 Operating system: Linux and Windows. Supplementary material: A new document README.pdf includes basic running instructions for the new code. Journal reference of previous version: Computer Physics Communications, 196 (2015) 599 Does the new version supersede the previous version?: No. It adds alternative but compatible code while providing similar calibration factors. Nature of problem (approx. 50-250 words): The original code uses a MatLab-provided user's interface, which is not available in GNU Octave, and cannot be used outside of a proprietary software as MatLab. Besides, the process of calibration when using spherical probes needs an automatic method when calibrating big amounts of different data focused to microrheology. Solution method (approx. 50-250 words): The new code can be executed in the latest version of MatLab and using GNU Octave, a free and open-source alternative to MatLab. This code generates an automatic calibration process which requires only to write the input data in the main script. Additionally, we include a calibration method based on thermal noise statistics, which can be used with viscoelastic fluids if the trap stiffness is previously estimated. Reasons for the new version: This version extends the functionality of PFMCal for the particular case of spherical probes and unknown fluid viscosities. The extended code is automatic, works in different operating systems and it is compatible with GNU Octave. Summary of revisions: The original MatLab program in the previous version, which is executed by PFMCal.m, is not changed. Here, we have added two additional main archives named PFMCal_auto.m and PFMCal_histo.m, which implement automatic calculations of the calibration process and calibration through Boltzmann statistics, respectively. The process of calibration using this code for spherical beads is described in the README.pdf file provided in the new code submission. Here, we obtain different calibration factors, β (given in μm/V), according to [2], related to two statistical quantities: the mean-squared displacement (MSD), βMSD, and the velocity autocorrelation function (VAF), βVAF. Using that methodology, the trap stiffness, k, and the zero-shear viscosity of the fluid, η, can be calculated if the value of the particle's radius, a, is previously known. For comparison, we include in the extended code the method of calibration using the corner frequency of the power-spectral density (PSD) [5], providing a calibration factor βPSD. Besides, with the prior estimation of the trap stiffness, along with the known value of the particle's radius, we can use thermal noise statistics to obtain calibration factors, β, according to the quadratic form of the optical potential, βE, and related to the Gaussian distribution of the bead's positions, βσ2. This method has been demonstrated to be applicable to the calibration of optical tweezers when using non-Newtonian viscoelastic polymeric liquids [4]. An example of the results using this calibration process is summarized in Table 1. Using the data provided in the new code submission, for water and acetone fluids, we calculate all the calibration factors by using the original PFMCal.m and by the new non-GUI code PFMCal_auto.m and PFMCal_histo.m. Regarding the new code, PFMCal_auto.m returns η, k, βMSD, βVAF and βPSD, while PFMCal_histo.m provides βσ2 and βE. Table 1 shows how we obtain the expected viscosity of the two fluids at this temperature and how the different methods provide good agreement between trap stiffnesses and calibration factors. Additional comments including Restrictions and Unusual features (approx. 50-250 words): The original code, PFMCal.m, runs under MatLab using the Statistics Toolbox. The extended code, PFMCal_auto.m and PFMCal_histo.m, can be executed without modification using MatLab or GNU Octave. The code has been tested in Linux and Windows operating systems.

  19. Thermal instability in post-flare plasmas

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    1976-01-01

    The cooling of post-flare plasmas is discussed and the formation of loop prominences is explained as due to a thermal instability. A one-dimensional model was developed for active loop prominences. Only the motion and heat fluxes parallel to the existing magnetic fields are considered. The relevant size scales and time scales are such that single-fluid MHD equations are valid. The effects of gravity, the geometry of the field and conduction losses to the chromosphere are included. A computer code was constructed to solve the model equations. Basically, the system is treated as an initial value problem (with certain boundary conditions at the chromosphere-corona transition region), and a two-step time differencing scheme is used.

  20. Development of Efficient Real-Fluid Model in Simulating Liquid Rocket Injector Flows

    NASA Technical Reports Server (NTRS)

    Cheng, Gary; Farmer, Richard

    2003-01-01

    The characteristics of propellant mixing near the injector have a profound effect on the liquid rocket engine performance. However, the flow features near the injector of liquid rocket engines are extremely complicated, for example supercritical-pressure spray, turbulent mixing, and chemical reactions are present. Previously, a homogeneous spray approach with a real-fluid property model was developed to account for the compressibility and evaporation effects such that thermodynamics properties of a mixture at a wide range of pressures and temperatures can be properly calculated, including liquid-phase, gas- phase, two-phase, and dense fluid regions. The developed homogeneous spray model demonstrated a good success in simulating uni- element shear coaxial injector spray combustion flows. However, the real-fluid model suffered a computational deficiency when applied to a pressure-based computational fluid dynamics (CFD) code. The deficiency is caused by the pressure and enthalpy being the independent variables in the solution procedure of a pressure-based code, whereas the real-fluid model utilizes density and temperature as independent variables. The objective of the present research work is to improve the computational efficiency of the real-fluid property model in computing thermal properties. The proposed approach is called an efficient real-fluid model, and the improvement of computational efficiency is achieved by using a combination of a liquid species and a gaseous species to represent a real-fluid species.

  1. Oscillating and static universes from a single barotropic fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehayias, John; Scherrer, Robert J.

    We consider cosmological solutions to general relativity with a single barotropic fluid, where the pressure is a general function of the density, p=f(ρ). We derive conditions for static and oscillating solutions and provide examples, extending earlier work to these simpler and more general single-fluid cosmologies. Generically we expect such solutions to suffer from instabilities, through effects such as quantum fluctuations or tunneling to zero size. We also find a classical instability (“no-go” theorem) for oscillating solutions of a single barotropic perfect fluid due to a necessarily negative squared sound speed.

  2. Oscillating and static universes from a single barotropic fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehayias, John; Scherrer, Robert J., E-mail: john.kehayias@vanderbilt.edu, E-mail: robert.scherrer@vanderbilt.edu

    We consider cosmological solutions to general relativity with a single barotropic fluid, where the pressure is a general function of the density, p = f(ρ). We derive conditions for static and oscillating solutions and provide examples, extending earlier work to these simpler and more general single-fluid cosmologies. Generically we expect such solutions to suffer from instabilities, through effects such as quantum fluctuations or tunneling to zero size. We also find a classical instability (''no-go'' theorem) for oscillating solutions of a single barotropic perfect fluid due to a necessarily negative squared sound speed.

  3. FDA’s Nozzle Numerical Simulation Challenge: Non-Newtonian Fluid Effects and Blood Damage

    PubMed Central

    Trias, Miquel; Arbona, Antonio; Massó, Joan; Miñano, Borja; Bona, Carles

    2014-01-01

    Data from FDA’s nozzle challenge–a study to assess the suitability of simulating fluid flow in an idealized medical device–is used to validate the simulations obtained from a numerical, finite-differences code. Various physiological indicators are computed and compared with experimental data from three different laboratories, getting a very good agreement. Special care is taken with the derivation of blood damage (hemolysis). The paper is focused on the laminar regime, in order to investigate non-Newtonian effects (non-constant fluid viscosity). The code can deal with these effects with just a small extra computational cost, improving Newtonian estimations up to a ten percent. The relevance of non-Newtonian effects for hemolysis parameters is discussed. PMID:24667931

  4. Progress in theoretical and numerical modeling of RF/MHD coupling using NIMROD

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Schnack, Dalton D.; Hegna, Chris C.; Callen, James D.; Sovinec, Carl R.; Held, Eric D.; Ji, Jeong-Young; Kruger, Scott E.

    2007-11-01

    Preliminary work relevant to the development of a general framework for the self-consistent inclusion of RF effects in fluid codes is presented; specifically, the stabilization of neoclassical and conventional tearing modes by electron cyclotron current drive is considered. For this particular problem, the effects of the RF drive can be formally captured by a quasilinear diffusion operator which enters the fluid equations on the same footing as the collision operator. Furthermore, a Chapman-Enskog-like method can be used to determine the consequent effects of the RF drive on the fluid closures for the parallel heat flow and stress. We summarize our recent research along these lines and discuss issues relevant to its implementation in the NIMROD code.

  5. Surface Modeling and Grid Generation of Orbital Sciences X34 Vehicle. Phase 1

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1997-01-01

    The surface modeling and grid generation requirements, motivations, and methods used to develop Computational Fluid Dynamic volume grids for the X34-Phase 1 are presented. The requirements set forth by the Aerothermodynamics Branch at the NASA Langley Research Center serve as the basis for the final techniques used in the construction of all volume grids, including grids for parametric studies of the X34. The Integrated Computer Engineering and Manufacturing code for Computational Fluid Dynamics (ICEM/CFD), the Grid Generation code (GRIDGEN), the Three-Dimensional Multi-block Advanced Grid Generation System (3DMAGGS) code, and Volume Grid Manipulator (VGM) code are used to enable the necessary surface modeling, surface grid generation, volume grid generation, and grid alterations, respectively. All volume grids generated for the X34, as outlined in this paper, were used for CFD simulations within the Aerothermodynamics Branch.

  6. Computational fluid dynamics of airfoils and wings

    NASA Technical Reports Server (NTRS)

    Garabedian, P.; Mcfadden, G.

    1982-01-01

    It is pointed out that transonic flow is one of the fields where computational fluid dynamics turns out to be most effective. Codes for the design and analysis of supercritical airfoils and wings have become standard tools of the aircraft industry. The present investigation is concerned with mathematical models and theorems which account for some of the progress that has been made. The most successful aerodynamics codes are those for the analysis of flow at off-design conditions where weak shock waves appear. A major breakthrough was achieved by Murman and Cole (1971), who conceived of a retarded difference scheme which incorporates artificial viscosity to capture shocks in the supersonic zone. This concept has been used to develop codes for the analysis of transonic flow past a swept wing. Attention is given to the trailing edge and the boundary layer, entropy inequalities and wave drag, shockless airfoils, and the inverse swept wing code.

  7. A comparison of models for supernova remnants including cosmic rays

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Drury, L. O'C.

    1992-11-01

    A simplified model which can follow the dynamical evolution of a supernova remnant including the acceleration of cosmic rays without carrying out full numerical simulations has been proposed by Drury, Markiewicz, & Voelk in 1989. To explore the accuracy and the merits of using such a model, we have recalculated with the simplified code the evolution of the supernova remnants considered in Jones & Kang, in which more detailed and accurate numerical simulations were done using a full hydrodynamic code based on the two-fluid approximation. For the total energy transferred to cosmic rays the two codes are in good agreement, the acceleration efficiency being the same within a factor of 2 or so. The dependence of the results of the two codes on the closure parameters for the two-fluid approximation is also qualitatively similar. The agreement is somewhat degraded in those cases where the shock is smoothed out by the cosmic rays.

  8. Coding for Single-Line Transmission

    NASA Technical Reports Server (NTRS)

    Madison, L. G.

    1983-01-01

    Digital transmission code combines data and clock signals into single waveform. MADCODE needs four standard integrated circuits in generator and converter plus five small discrete components. MADCODE allows simple coding and decoding for transmission of digital signals over single line.

  9. Application of computational fluid dynamics and laminar flow technology for improved performance and sonic boom reduction

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.

    1992-01-01

    A discussion is given of the many factors that affect sonic booms with particular emphasis on the application and development of improved computational fluid dynamics (CFD) codes. The benefits that accrue from interference (induced) lift, distributing lift using canard configurations, the use of wings with dihedral or anhedral and hybrid laminar flow control for drag reduction are detailed. The application of the most advanced codes to a wider variety of configurations along with improved ray-tracing codes to arrive at more accurate and, hopefully, lower sonic booms is advocated. Finally, it is speculated that when all of the latest technology is applied to the design of a supersonic transport it will be found environmentally acceptable.

  10. Three dimensional transient multifield analysis of a piezoelectric micropump for drug delivery system for treatment of hemodynamic dysfunctions.

    PubMed

    Nisar, Asim; Afzulpurkar, Nitin; Tuantranont, Adisorn; Mahaisavariya, Banchong

    2008-12-01

    In this paper, we present design of a transdermal drug delivery system for treatment of cardiovascular or hemodynamic disorders such as hypertension. The system comprises of integrated control electronics and microelectromechanical system devices such as micropump, micro blood pressure sensor and microneedle array. The objective is to overcome the limitations of oral therapy such as variable absorption profile and the need for frequent dosing, by fabricating a safe, reliable and cost effective transdermal drug delivery system to dispense various pharmacological agents through the skin for treatment of hemodynamic dysfunction such as hypertension. Moreover, design optimization of a piezoelectrically actuated valveless micropump is presented for the drug delivery system. Because of the complexity in analysis of piezoelectric micropump, which involves structural and fluid field couplings in a complicated geometrical arrangement, finite element (FE) numerical simulation rather than an analytical system has been used. The behavior of the piezoelectric actuator with biocompatible polydimethylsiloxane membrane is first studied by conducting piezoelectric analysis. Then the performance of the valveless micropump is analyzed by building a three dimensional electric-solid-fluid model of the micropump. The effect of geometrical dimensions on micropump characteristics and efficiency of nozzle/diffuser elements of a valveless micropump is investigated in the transient analysis using multiple code coupling method. The deformation results of the membrane using multifield code coupling analysis are in good agreement with analytical as well as results of single code coupling analysis of a piezoelectric micropump. The analysis predicts that to enhance the performance of the micropump, diffuser geometrical dimensions such as diffuser length, diffuser neck width and diffuser angle need to be optimized. Micropump flow rate is not strongly affected at low excitation frequencies from 10 to 200 Hz. The excitation voltage is the more dominant factor that affects the flow rate of the micropump as compared with the excitation frequency. However, at extremely high excitation frequencies beyond 8,000 Hz, the flow rate drops as the membrane exhibits multiple bending peaks which is not desirable for fluid flow. Following the extensive numerical analysis, actual fabrication and performance characterization of the micropump is presented. The performance of the micropump is characterized in terms of piezoelectric actuator deflection and micropump flow rate at different operational parameters. The set of multifield simulations and experimental measurement of deflection and flow rate at varying voltage and excitation frequency is a significant advance in the study of the electric-solid-fluid coupled field effects as it allows transient, three dimensional piezoelectric and fluid analysis of the micropump thereby facilitating a more realistic multifield analysis. The results of the present study will also help to conduct relevant strength duration tests of integrated drug delivery device with micropump and microneedle array in future.

  11. TEMPEST: A computer code for three-dimensional analysis of transient fluid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, J.A.

    TEMPEST (Transient Energy Momentum and Pressure Equations Solutions in Three dimensions) is a powerful tool for solving engineering problems in nuclear energy, waste processing, chemical processing, and environmental restoration because it analyzes and illustrates 3-D time-dependent computational fluid dynamics and heat transfer analysis. It is a family of codes with two primary versions, a N- Version (available to public) and a T-Version (not currently available to public). This handout discusses its capabilities, applications, numerical algorithms, development status, and availability and assistance.

  12. Software engineering and automatic continuous verification of scientific software

    NASA Astrophysics Data System (ADS)

    Piggott, M. D.; Hill, J.; Farrell, P. E.; Kramer, S. C.; Wilson, C. R.; Ham, D.; Gorman, G. J.; Bond, T.

    2011-12-01

    Software engineering of scientific code is challenging for a number of reasons including pressure to publish and a lack of awareness of the pitfalls of software engineering by scientists. The Applied Modelling and Computation Group at Imperial College is a diverse group of researchers that employ best practice software engineering methods whilst developing open source scientific software. Our main code is Fluidity - a multi-purpose computational fluid dynamics (CFD) code that can be used for a wide range of scientific applications from earth-scale mantle convection, through basin-scale ocean dynamics, to laboratory-scale classic CFD problems, and is coupled to a number of other codes including nuclear radiation and solid modelling. Our software development infrastructure consists of a number of free tools that could be employed by any group that develops scientific code and has been developed over a number of years with many lessons learnt. A single code base is developed by over 30 people for which we use bazaar for revision control, making good use of the strong branching and merging capabilities. Using features of Canonical's Launchpad platform, such as code review, blueprints for designing features and bug reporting gives the group, partners and other Fluidity uers an easy-to-use platform to collaborate and allows the induction of new members of the group into an environment where software development forms a central part of their work. The code repositoriy are coupled to an automated test and verification system which performs over 20,000 tests, including unit tests, short regression tests, code verification and large parallel tests. Included in these tests are build tests on HPC systems, including local and UK National HPC services. The testing of code in this manner leads to a continuous verification process; not a discrete event performed once development has ceased. Much of the code verification is done via the "gold standard" of comparisons to analytical solutions via the method of manufactured solutions. By developing and verifying code in tandem we avoid a number of pitfalls in scientific software development and advocate similar procedures for other scientific code applications.

  13. Water Hammer Simulations of MMH Propellant - New Capability Demonstration of the Generalized Fluid Flow Simulation Program

    NASA Technical Reports Server (NTRS)

    Burkhardt, Z.; Ramachandran, N.; Majumdar, A.

    2017-01-01

    Fluid Transient analysis is important for the design of spacecraft propulsion system to ensure structural stability of the system in the event of sudden closing or opening of the valve. Generalized Fluid System Simulation Program (GFSSP), a general purpose flow network code developed at NASA/MSFC is capable of simulating pressure surge due to sudden opening or closing of valve when thermodynamic properties of real fluid are available for the entire range of simulation. Specifically GFSSP needs an accurate representation of pressure-density relationship in order to predict pressure surge during a fluid transient. Unfortunately, the available thermodynamic property programs such as REFPROP, GASP or GASPAK does not provide the thermodynamic properties of Monomethylhydrazine (MMH). This paper will illustrate the process used for building a customized table of properties of state variables from available properties and speed of sound that is required by GFSSP for simulation. Good agreement was found between the simulations and measured data. This method can be adopted for modeling flow networks and systems with other fluids whose properties are not known in detail in order to obtain general technical insight. Rigorous code validation of this approach will be done and reported at a future date.

  14. TerraFERMA: Harnessing Advanced Computational Libraries in Earth Science

    NASA Astrophysics Data System (ADS)

    Wilson, C. R.; Spiegelman, M.; van Keken, P.

    2012-12-01

    Many important problems in Earth sciences can be described by non-linear coupled systems of partial differential equations. These "multi-physics" problems include thermo-chemical convection in Earth and planetary interiors, interactions of fluids and magmas with the Earth's mantle and crust and coupled flow of water and ice. These problems are of interest to a large community of researchers but are complicated to model and understand. Much of this complexity stems from the nature of multi-physics where small changes in the coupling between variables or constitutive relations can lead to radical changes in behavior, which in turn affect critical computational choices such as discretizations, solvers and preconditioners. To make progress in understanding such coupled systems requires a computational framework where multi-physics problems can be described at a high-level while maintaining the flexibility to easily modify the solution algorithm. Fortunately, recent advances in computational science provide a basis for implementing such a framework. Here we present the Transparent Finite Element Rapid Model Assembler (TerraFERMA), which leverages several advanced open-source libraries for core functionality. FEniCS (fenicsproject.org) provides a high level language for describing the weak forms of coupled systems of equations, and an automatic code generator that produces finite element assembly code. PETSc (www.mcs.anl.gov/petsc) provides a wide range of scalable linear and non-linear solvers that can be composed into effective multi-physics preconditioners. SPuD (amcg.ese.ic.ac.uk/Spud) is an application neutral options system that provides both human and machine-readable interfaces based on a single xml schema. Our software integrates these libraries and provides the user with a framework for exploring multi-physics problems. A single options file fully describes the problem, including all equations, coefficients and solver options. Custom compiled applications are generated from this file but share an infrastructure for services common to all models, e.g. diagnostics, checkpointing and global non-linear convergence monitoring. This maximizes code reusability, reliability and longevity ensuring that scientific results and the methods used to acquire them are transparent and reproducible. TerraFERMA has been tested against many published geodynamic benchmarks including 2D/3D thermal convection problems, the subduction zone benchmarks and benchmarks for magmatic solitary waves. It is currently being used in the investigation of reactive cracking phenomena with applications to carbon sequestration, but we will principally discuss its use in modeling the migration of fluids in subduction zones. Subduction zones require an understanding of the highly nonlinear interactions of fluids with solids and thus provide an excellent scientific driver for the development of multi-physics software.

  15. An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators

    NASA Technical Reports Server (NTRS)

    Tew, Roy C.; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei

    2006-01-01

    The objective of this paper is to define empirical parameters for an initial thermal non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two codes currently used at Glenn Research Center for Stirling modeling are Fluent and CFD-ACE. The codes porous-media models are equilibrium models, which assume solid matrix and fluid are in thermal equilibrium. This is believed to be a poor assumption for Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, use non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle. Experimentally based information was used to define: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity was also estimated. Determination of model parameters was based on planned use in a CFD model of Infinia's Stirling Technology Demonstration Converter (TDC), which uses a random-fiber regenerator matrix. Emphasis is on use of available data to define empirical parameters needed in a thermal non-equilibrium porous media model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates.

  16. Aerospace applications of SINDA/FLUINT at the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Bellmore, Phillip E.; Andish, Kambiz K.; Keller, John R.

    1992-01-01

    SINDA/FLUINT has been found to be a versatile code for modeling aerospace systems involving single or two-phase fluid flow and all modes of heat transfer. Several applications of SINDA/FLUINT are described in this paper. SINDA/FLUINT is being used extensively to model the single phase water loops and the two-phase ammonia loops of the Space Station Freedom active thermal control system (ATCS). These models range from large integrated system models with multiple submodels to very detailed subsystem models. An integrated Space Station ATCS model has been created with ten submodels representing five water loops, three ammonia loops, a Freon loop and a thermal submodel representing the air loop. The model, which has approximately 800 FLUINT lumps and 300 thermal nodes, is used to determine the interaction between the multiple fluid loops which comprise the Space Station ATCS. Several detailed models of the flow-through radiator subsystem of the Space Station ATCS have been developed. One model, which has approximately 70 FLUINT lumps and 340 thermal nodes, provides a representation of the ATCS low temperature radiator array with two fluid loops connected only by conduction through the radiator face sheet. The detailed models are used to determine parameters such as radiator fluid return temperature, fin efficiency, flow distribution and total heat rejection for the baseline design as well as proposed alternate designs. SINDA/FLUINT has also been used as a design tool for several systems using pressurized gasses. One model examined the pressurization and depressurization of the Space Station airlock under a variety of operating conditions including convection with the side walls and internal cooling. Another model predicted the performance of a new generation of manned maneuvering units. This model included high pressure gas depressurization, internal heat transfer and supersonic thruster equations. The results of both models were used to size components, such as the heaters and gas bottles and also to point to areas where hardware testing was needed.

  17. Fluid inclusion chemistry of adularia-sericite epithermal Au-Ag deposits of the southern Hauraki Goldfield, New Zealand

    USGS Publications Warehouse

    Simpson, Mark P.; Strmic Palinkas, Sabina; Mauk, Jeffrey L.; Bodnar, Robert J.

    2015-01-01

    LA-ICP-MS analyses show that in some cases different fluid inclusion assemblages (FIAs) within a single sample trapped fluids with variable chemistries. These differences likely reflect modification of a single parent fluid through mineral dissolution and precipitation, water/rock interactions, boiling and vapor loss, conductive cooling, and mixing.

  18. Numerical Study on Crossflow Printed Circuit Heat Exchanger for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Su-Jong; Sabharwall, Piyush; Kim, Eung-Soo

    2014-03-01

    Various fluids such as water, gases (helium), molten salts (FLiNaK, FLiBe) and liquid metal (sodium) are used as a coolant of advanced small modular reactors (SMRs). The printed circuit heat exchanger (PCHE) has been adopted as the intermediate and/or secondary heat exchanger of SMR systems because this heat exchanger is compact and effective. The size and cost of PCHE can be changed by the coolant type of each SMR. In this study, the crossflow PCHE analysis code for advanced small modular reactor has been developed for the thermal design and cost estimation of the heat exchanger. The analytical solution ofmore » single pass, both unmixed fluids crossflow heat exchanger model was employed to calculate a two dimensional temperature profile of a crossflow PCHE. The analytical solution of crossflow heat exchanger was simply implemented by using built in function of the MATLAB program. The effect of fluid property uncertainty on the calculation results was evaluated. In addition, the effect of heat transfer correlations on the calculated temperature profile was analyzed by taking into account possible combinations of primary and secondary coolants in the SMR systems. Size and cost of heat exchanger were evaluated for the given temperature requirement of each SMR.« less

  19. The Fourth Annual Thermal and Fluids Analysis Workshop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Fourth Annual Thermal and Fluids Analysis Workshop was held from August 17-21, 1992, at NASA Lewis Research Center. The workshop consisted of classes, vendor demonstrations, and paper sessions. The classes and vendor demonstrations provided participants with the information on widely used tools for thermal and fluids analysis. The paper sessions provided a forum for the exchange of information and ideas among thermal and fluids analysts. Paper topics included advances and uses of established thermal and fluids computer codes (such as SINDA and TRASYS) as well as unique modeling techniques and applications.

  20. Notes on the KIVA-2 software and chemically reactive fluid mechanics

    NASA Astrophysics Data System (ADS)

    Holst, M. J.

    1992-09-01

    Working notes regarding the mechanics of chemically reactive fluids with sprays, and their numerical simulation with the KIVA-2 software are presented. KIVA-2 is a large FORTRAN program developed at Los Alamos National Laboratory for internal combustion engine simulation. It is our hope that these notes summarize some of the necessary background material in fluid mechanics and combustion, explain the numerical methods currently used in KIVA-2 and similar combustion codes, and provide an outline of the overall structure of KIVA-2 as a representative combustion program, in order to aid the researcher in the task of implementing KIVA-2 or a similar combustion code on a massively parallel computer. The notes are organized into three parts as follows. In Part 1, a brief introduction to continuum mechanics, to fluid mechanics, and to the mechanics of chemically reactive fluids with sprays is presented. In Part 2, a close look at the governing equations of KIVA-2 is taken, and the methods employed in the numerical solution of these equations is discussed. Some conclusions are drawn and some observations are made in Part 3.

  1. Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D

    NASA Technical Reports Server (NTRS)

    Carle, Alan; Fagan, Mike; Green, Lawrence L.

    1998-01-01

    This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.

  2. A density functional theory for association of fluid molecules with a functionalized surface: fluid-wall single and double bonding.

    PubMed

    Haghmoradi, Amin; Wang, Le; Chapman, Walter G

    2017-02-01

    In this manuscript we extend Wertheim's two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.

  3. The Advanced Software Development and Commercialization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallopoulos, E.; Canfield, T.R.; Minkoff, M.

    1990-09-01

    This is the first of a series of reports pertaining to progress in the Advanced Software Development and Commercialization Project, a joint collaborative effort between the Center for Supercomputing Research and Development of the University of Illinois and the Computing and Telecommunications Division of Argonne National Laboratory. The purpose of this work is to apply techniques of parallel computing that were pioneered by University of Illinois researchers to mature computational fluid dynamics (CFD) and structural dynamics (SD) computer codes developed at Argonne. The collaboration in this project will bring this unique combination of expertise to bear, for the first time,more » on industrially important problems. By so doing, it will expose the strengths and weaknesses of existing techniques for parallelizing programs and will identify those problems that need to be solved in order to enable wide spread production use of parallel computers. Secondly, the increased efficiency of the CFD and SD codes themselves will enable the simulation of larger, more accurate engineering models that involve fluid and structural dynamics. In order to realize the above two goals, we are considering two production codes that have been developed at ANL and are widely used by both industry and Universities. These are COMMIX and WHAMS-3D. The first is a computational fluid dynamics code that is used for both nuclear reactor design and safety and as a design tool for the casting industry. The second is a three-dimensional structural dynamics code used in nuclear reactor safety as well as crashworthiness studies. These codes are currently available for both sequential and vector computers only. Our main goal is to port and optimize these two codes on shared memory multiprocessors. In so doing, we shall establish a process that can be followed in optimizing other sequential or vector engineering codes for parallel processors.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonelli, Perry Edward

    A low-level model-to-model interface is presented that will enable independent models to be linked into an integrated system of models. The interface is based on a standard set of functions that contain appropriate export and import schemas that enable models to be linked with no changes to the models themselves. These ideas are presented in the context of a specific multiscale material problem that couples atomistic-based molecular dynamics calculations to continuum calculations of fluid ow. These simulations will be used to examine the influence of interactions of the fluid with an adjacent solid on the fluid ow. The interface willmore » also be examined by adding it to an already existing modeling code, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and comparing it with our own molecular dynamics code.« less

  5. Modeling the Effect of Fluid-Structure Interaction on the Impact Dynamics of Pressurized Tank Cars

    DOT National Transportation Integrated Search

    2009-11-13

    This paper presents a computational framework that : analyzes the effect of fluid-structure interaction (FSI) on the : impact dynamics of pressurized commodity tank cars using the : nonlinear dynamic finite element code ABAQUS/Explicit. : There exist...

  6. Sandia National Laboratories environmental fluid dynamics code. Marine Hydrokinetic Module User's Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Scott Carlton; Roberts, Jesse D.

    2014-03-01

    This document describes the marine hydrokinetic (MHK) input file and subroutines for the Sandia National Laboratories Environmental Fluid Dynamics Code (SNL-EFDC), which is a combined hydrodynamic, sediment transport, and water quality model based on the Environmental Fluid Dynamics Code (EFDC) developed by John Hamrick [1], formerly sponsored by the U.S. Environmental Protection Agency, and now maintained by Tetra Tech, Inc. SNL-EFDC has been previously enhanced with the incorporation of the SEDZLJ sediment dynamics model developed by Ziegler, Lick, and Jones [2-4]. SNL-EFDC has also been upgraded to more accurately simulate algae growth with specific application to optimizing biomass in anmore » open-channel raceway for biofuels production [5]. A detailed description of the input file containing data describing the MHK device/array is provided, along with a description of the MHK FORTRAN routine. Both a theoretical description of the MHK dynamics as incorporated into SNL-EFDC and an explanation of the source code are provided. This user manual is meant to be used in conjunction with the original EFDC [6] and sediment dynamics SNL-EFDC manuals [7]. Through this document, the authors provide information for users who wish to model the effects of an MHK device (or array of devices) on a flow system with EFDC and who also seek a clear understanding of the source code, which is available from staff in the Water Power Technologies Department at Sandia National Laboratories, Albuquerque, New Mexico.« less

  7. Thermal hydraulic-severe accident code interfaces for SCDAP/RELAP5/MOD3.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coryell, E.W.; Siefken, L.J.; Harvego, E.A.

    1997-07-01

    The SCDAP/RELAP5 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and fission product release during severe accidents. The code is being developed at the Idaho National Engineering Laboratory under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The code is the result of merging the RELAP5, SCDAP, and COUPLE codes. The RELAP5 portion of the code calculates the overall reactor coolant system, thermal-hydraulics, and associated reactor system responses. The SCDAP portion of the code describes the response of the core and associated vessel structures.more » The COUPLE portion of the code describes response of lower plenum structures and debris and the failure of the lower head. The code uses a modular approach with the overall structure, input/output processing, and data structures following the pattern established for RELAP5. The code uses a building block approach to allow the code user to easily represent a wide variety of systems and conditions through a powerful input processor. The user can represent a wide variety of experiments or reactor designs by selecting fuel rods and other assembly structures from a range of representative core component models, and arrange them in a variety of patterns within the thermalhydraulic network. The COUPLE portion of the code uses two-dimensional representations of the lower plenum structures and debris beds. The flow of information between the different portions of the code occurs at each system level time step advancement. The RELAP5 portion of the code describes the fluid transport around the system. These fluid conditions are used as thermal and mass transport boundary conditions for the SCDAP and COUPLE structures and debris beds.« less

  8. TEMPEST simulations of the plasma transport in a single-null tokamak geometry

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Bodi, K.; Cohen, R. H.; Krasheninnikov, S.; Rognlien, T. D.

    2010-06-01

    We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. To study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. A series of TEMPEST simulations were conducted to investigate the transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. We also show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.

  9. Investigation of Conjugate Heat Transfer in Turbine Blades and Vanes

    NASA Technical Reports Server (NTRS)

    Kassab, A. J.; Kapat, J. S.

    2001-01-01

    We report on work carried out to develop a 3-D coupled Finite Volume/BEM-based temperature forward/flux back (TFFB) coupling algorithm to solve the conjugate heat transfer (CHT) which arises naturally in analysis of systems exposed to a convective environment. Here, heat conduction within a structure is coupled to heat transfer to the external fluid which is convecting heat into or out of the solid structure. There are two basic approaches to solving coupled fluid structural systems. The first is a direct coupling where the solution of the different fields is solved simultaneously in one large set of equations. The second approach is a loose coupling strategy where each set of field equations is solved to provide boundary conditions for the other. The equations are solved in turn until an iterated convergence criterion is met at the fluid-solid interface. The loose coupling strategy is particularly attractive when coupling auxiliary field equations to computational fluid dynamics codes. We adopt the latter method in which the BEM is used to solve heat conduction inside a structure which is exposed to a convective field which in turn is resolved by solving the NASA Glenn compressible Navier-Stokes finite volume code Glenn-HT. The BEM code features constant and bi-linear discontinuous elements and an ILU-preconditioned GMRES iterative solver for the resulting non-symmetric algebraic set arising in the conduction solution. Interface of flux and temperature is enforced at the solid/fluid interface, and a radial-basis function scheme is used to interpolated information between the CFD and BEM surface grids. Additionally, relaxation is implemented in passing the fluxes from the conduction solution to the fluid solution. Results from a simple test example are reported.

  10. State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems

    NASA Astrophysics Data System (ADS)

    Lyczkowski, R. W.; Bouillard, J. X.; Ding, J.; Chang, S. L.; Burge, S. W.

    1994-05-01

    As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBR's) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBR's and pneumatic and slurry components are computed by ANL's EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale, and biomass as energy sources; to retain energy security; and to remediate waste and ecological problems.

  11. Interfacing the Generalized Fluid System Simulation Program with the SINDA/G Thermal Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Palmiter, Christopher; Farmer, Jeffery; Lycans, Randall; Tiller, Bruce

    2000-01-01

    A general purpose, one dimensional fluid flow code has been interfaced with the thermal analysis program SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development was conducted in two phases. This paper describes the first (which allows for steady and quasi-steady - unsteady solid, steady fluid - conjugate heat transfer modeling). The second (full transient conjugate heat transfer modeling) phase of the interface development will be addressed in a later paper. Phase 1 development has been benchmarked to an analytical solution with excellent agreement. Additional test cases for each development phase demonstrate desired features of the interface. The results of the benchmark case, three additional test cases and a practical application are presented herein.

  12. ABSIM. Simulation of Absorption Systems in Flexible and Modular Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossman, G.

    1994-06-01

    The computer code has been developed for simulation of absorption systems at steady-state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system`s components. When all the equations have been established, a mathematical solver routine is employed to solve them simultaneously. Property subroutines contained in a separate data base serve to provide thermodynamic properties of the working fluids. The code is user-oriented and requires a relatively simple input containing the given operating conditions and the working fluid atmore » each state point. the user conveys to the computer an image of the cycle by specifying the different components and their interconnections. Based on this information, the program calculates the temperature, flowrate, concentration, pressure and vapor fraction at each state point in the system and the heat duty at each unit, from which the coefficient of performance may be determined. A graphical user-interface is provided to facilitate interactive input and study of the output.« less

  13. ABSIM. Simulation of Absorption Systems in Flexible and Modular Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossman, G.

    1994-06-01

    The computer code has been developed for simulation of absorption systems at steady-state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components. When all the equations have been established, a mathematical solver routine is employed to solve them simultaneously. Property subroutines contained in a separate data base serve to provide thermodynamic properties of the working fluids. The code is user-oriented and requires a relatively simple input containing the given operating conditions and the working fluid atmore » each state point. the user conveys to the computer an imagev of the cycle by specifying the different components and their interconnections. Based on this information, the program calculates the temperature, flowrate, concentration, pressure and vapor fraction at each state point in the system and the heat duty at each unit, from which the coefficient of performance may be determined. A graphical user-interface is provided to fcilitate interactive input and study of the output.« less

  14. First-order finite-Larmor-radius fluid modeling of tearing and relaxation in a plasma pincha)

    NASA Astrophysics Data System (ADS)

    King, J. R.; Sovinec, C. R.; Mirnov, V. V.

    2012-05-01

    Drift and Hall effects on magnetic tearing, island evolution, and relaxation in pinch configurations are investigated using a non-reduced first-order finite-Larmor-radius (FLR) fluid model with the nonideal magnetohydrodynamics (MHD) with rotation, open discussion (NIMROD) code [C.R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)]. An unexpected result with a uniform pressure profile is a drift effect that reduces the growth rate when the ion sound gyroradius (ρs) is smaller than the tearing-layer width. This drift is present only with warm-ion FLR modeling, and analytics show that it arises from ∇B and poloidal curvature represented in the Braginskii gyroviscous stress. Nonlinear single-helicity computations with experimentally relevant ρs values show that the warm-ion gyroviscous effects reduce saturated-island widths. Computations with multiple nonlinearly interacting tearing fluctuations find that m = 1 core-resonant-fluctuation amplitudes are reduced by a factor of two relative to single-fluid modeling by the warm-ion effects. These reduced core-resonant-fluctuation amplitudes compare favorably to edge coil measurements in the Madison Symmetric Torus (MST) reversed-field pinch [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)]. The computations demonstrate that fluctuations induce both MHD- and Hall-dynamo emfs during relaxation events. The presence of a Hall-dynamo emf implies a fluctuation-induced Maxwell stress, and the simulation results show net transport of parallel momentum. The computed magnitude of force densities from the Maxwell and competing Reynolds stresses, and changes in the parallel flow profile, are qualitatively and semi-quantitatively similar to measurements during relaxation in MST.

  15. First-order finite-Larmor-radius fluid modeling of tearing and relaxation in a plasma pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J. R.; Tech-X Corporation, 5621 Arapahoe Ave., Suite A Boulder, Colorado 80303; Sovinec, C. R.

    Drift and Hall effects on magnetic tearing, island evolution, and relaxation in pinch configurations are investigated using a non-reduced first-order finite-Larmor-radius (FLR) fluid model with the nonideal magnetohydrodynamics (MHD) with rotation, open discussion (NIMROD) code [C.R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)]. An unexpected result with a uniform pressure profile is a drift effect that reduces the growth rate when the ion sound gyroradius ({rho}{sub s}) is smaller than the tearing-layer width. This drift is present only with warm-ion FLR modeling, and analytics show that it arises from {nabla}B and poloidal curvature represented in themore » Braginskii gyroviscous stress. Nonlinear single-helicity computations with experimentally relevant {rho}{sub s} values show that the warm-ion gyroviscous effects reduce saturated-island widths. Computations with multiple nonlinearly interacting tearing fluctuations find that m = 1 core-resonant-fluctuation amplitudes are reduced by a factor of two relative to single-fluid modeling by the warm-ion effects. These reduced core-resonant-fluctuation amplitudes compare favorably to edge coil measurements in the Madison Symmetric Torus (MST) reversed-field pinch [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)]. The computations demonstrate that fluctuations induce both MHD- and Hall-dynamo emfs during relaxation events. The presence of a Hall-dynamo emf implies a fluctuation-induced Maxwell stress, and the simulation results show net transport of parallel momentum. The computed magnitude of force densities from the Maxwell and competing Reynolds stresses, and changes in the parallel flow profile, are qualitatively and semi-quantitatively similar to measurements during relaxation in MST.« less

  16. Usage of ensemble geothermal models to consider geological uncertainties

    NASA Astrophysics Data System (ADS)

    Rühaak, Wolfram; Steiner, Sarah; Welsch, Bastian; Sass, Ingo

    2015-04-01

    The usage of geothermal energy for instance by borehole heat exchangers (BHE) is a promising concept for a sustainable supply of heat for buildings. BHE are closed pipe systems, in which a fluid is circulating. Heat from the surrounding rocks is transferred to the fluid purely by conduction. The fluid carries the heat to the surface, where it can be utilized. Larger arrays of BHE require typically previous numerical models. Motivations are the design of the system (number and depth of the required BHE) but also regulatory reasons. Especially such regulatory operating permissions often require maximum realistic models. Although such realistic models are possible in many cases with today's codes and computer resources, they are often expensive in terms of time and effort. A particular problem is the knowledge about the accuracy of the achieved results. An issue, which is often neglected while dealing with highly complex models, is the quantification of parameter uncertainties as a consequence of the natural heterogeneity of the geological subsurface. Experience has shown, that these heterogeneities can lead to wrong forecasts. But also variations in the technical realization and especially of the operational parameters (which are mainly a consequence of the regional climate) can lead to strong variations in the simulation results. Instead of one very detailed single forecast model, it should be considered, to model numerous more simple models. By varying parameters, the presumed subsurface uncertainties, but also the uncertainties in the presumed operational parameters can be reflected. Finally not only one single result should be reported, but instead the range of possible solutions and their respective probabilities. In meteorology such an approach is well known as ensemble-modeling. The concept is demonstrated at a real world data set and discussed.

  17. Efficient modeling of laser-plasma accelerator staging experiments using INF&RNO

    NASA Astrophysics Data System (ADS)

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2017-03-01

    The computational framework INF&RNO (INtegrated Fluid & paRticle simulatioN cOde) allows for fast and accurate modeling, in 2D cylindrical geometry, of several aspects of laser-plasma accelerator physics. In this paper, we present some of the new features of the code, including the quasistatic Particle-In-Cell (PIC)/fluid modality, and describe using different computational grids and time steps for the laser envelope and the plasma wake. These and other features allow for a speedup of several orders of magnitude compared to standard full 3D PIC simulations while still retaining physical fidelity. INF&RNO is used to support the experimental activity at the BELLA Center, and we will present an example of the application of the code to the laser-plasma accelerator staging experiment.

  18. Edge Simulation Laboratory Progress and Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, R

    The Edge Simulation Laboratory (ESL) is a project to develop a gyrokinetic code for MFE edge plasmas based on continuum (Eulerian) techniques. ESL is a base-program activity of OFES, with an allied algorithm research activity funded by the OASCR base math program. ESL OFES funds directly support about 0.8 FTE of career staff at LLNL, a postdoc and a small fraction of an FTE at GA, and a graduate student at UCSD. In addition the allied OASCR program funds about 1/2 FTE each in the computations directorates at LBNL and LLNL. OFES ESL funding for LLNL and UCSD began inmore » fall 2005, while funding for GA and the math team began about a year ago. ESL's continuum approach is a complement to the PIC-based methods of the CPES Project, and was selected (1) because of concerns about noise issues associated with PIC in the high-density-contrast environment of the edge pedestal, (2) to be able to exploit advanced numerical methods developed for fluid codes, and (3) to build upon the successes of core continuum gyrokinetic codes such as GYRO, GS2 and GENE. The ESL project presently has three components: TEMPEST, a full-f, full-geometry (single-null divertor, or arbitrary-shape closed flux surfaces) code in E, {mu} (energy, magnetic-moment) coordinates; EGK, a simple-geometry rapid-prototype code, presently of; and the math component, which is developing and implementing algorithms for a next-generation code. Progress would be accelerated if we could find funding for a fourth, computer science, component, which would develop software infrastructure, provide user support, and address needs for data handing and analysis. We summarize the status and plans for the three funded activities.« less

  19. SPAR improved structure/fluid dynamic analysis capability

    NASA Technical Reports Server (NTRS)

    Oden, J. T.; Pearson, M. L.

    1983-01-01

    The capability of analyzing a coupled dynamic system of flowing fluid and elastic structure was added to the SPAR computer code. A method, developed and adopted for use in SPAR utilizes the existing assumed stress hybrid plan element in SPAR. An operational mode was incorporated in SPAR which provides the capability for analyzing the flaw of a two dimensional, incompressible, viscous fluid within rigid boundaries. Equations were developed to provide for the eventual analysis of the interaction of such fluids with an elastic solid.

  20. Computer program for calculating thermodynamic and transport properties of fluids

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braon, A. K.; Peller, I. C.

    1975-01-01

    Computer code has been developed to provide thermodynamic and transport properties of liquid argon, carbon dioxide, carbon monoxide, fluorine, helium, methane, neon, nitrogen, oxygen, and parahydrogen. Equation of state and transport coefficients are updated and other fluids added as new material becomes available.

  1. Flexible Inhibitor Fluid-Structure Interaction Simulation in RSRM.

    NASA Astrophysics Data System (ADS)

    Wasistho, Bono

    2005-11-01

    We employ our tightly coupled fluid/structure/combustion simulation code 'Rocstar-3' for solid propellant rocket motors to study 3D flows past rigid and flexible inhibitors in the Reusable Solid Rocket Motor (RSRM). We perform high resolution simulations of a section of the rocket near the center joint slot at 100 seconds after ignition, using inflow conditions based on less detailed 3D simulations of the full RSRM. Our simulations include both inviscid and turbulent flows (using LES dynamic subgrid-scale model), and explore the interaction between the inhibitor and the resulting fluid flow. The response of the solid components is computed by an implicit finite element solver. The internal mesh motion scheme in our block-structured fluid solver enables our code to handle significant changes in geometry. We compute turbulent statistics and determine the compound instabilities originated from the natural hydrodynamic instabilities and the inhibitor motion. The ultimate goal is to studdy the effect of inhibitor flexing on the turbulent field.

  2. Breakdown of single spin-fluid model in the heavily hole-doped superconductor CsFe2As2

    NASA Astrophysics Data System (ADS)

    Zhao, D.; Li, S. J.; Wang, N. Z.; Li, J.; Song, D. W.; Zheng, L. X.; Nie, L. P.; Luo, X. G.; Wu, T.; Chen, X. H.

    2018-01-01

    Although Fe-based superconductors are correlated electronic systems with multiorbital, previous nuclear magnetic resonance (NMR) measurement suggests that a single spin-fluid model is sufficient to describe its spin behavior. Here, we first observed the breakdown of single spin-fluid model in a heavily hole-doped Fe-based superconductor CsFe2As2 by site-selective NMR measurement. At high-temperature regime, both Knight shift and nuclear spin-lattice relaxation at 133Cs and 75As nuclei exhibit distinct temperature-dependent behavior, suggesting the breakdown of the single spin-fluid model in CsFe2As2 . This is ascribed to the coexistence of both localized and itinerant spin degree of freedom at 3 d orbitals, which is consistent with the orbital-selective Mott phase. With decreasing temperature, the single spin-fluid behavior is recovered below T*˜75 K due to a coherent state among 3 d orbitals. The Kondo liquid scenario is proposed to understand the low-temperature coherent state.

  3. A CFD/CSD Interaction Methodology for Aircraft Wings

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Manoj K.

    1997-01-01

    With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural fluid dynamics (CSD) analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as part of this research).

  4. Documentation of computer program VS2D to solve the equations of fluid flow in variably saturated porous media

    USGS Publications Warehouse

    Lappala, E.G.; Healy, R.W.; Weeks, E.P.

    1987-01-01

    This report documents FORTRAN computer code for solving problems involving variably saturated single-phase flow in porous media. The flow equation is written with total hydraulic potential as the dependent variable, which allows straightforward treatment of both saturated and unsaturated conditions. The spatial derivatives in the flow equation are approximated by central differences, and time derivatives are approximated either by a fully implicit backward or by a centered-difference scheme. Nonlinear conductance and storage terms may be linearized using either an explicit method or an implicit Newton-Raphson method. Relative hydraulic conductivity is evaluated at cell boundaries by using either full upstream weighting, the arithmetic mean, or the geometric mean of values from adjacent cells. Nonlinear boundary conditions treated by the code include infiltration, evaporation, and seepage faces. Extraction by plant roots that is caused by atmospheric demand is included as a nonlinear sink term. These nonlinear boundary and sink terms are linearized implicitly. The code has been verified for several one-dimensional linear problems for which analytical solutions exist and against two nonlinear problems that have been simulated with other numerical models. A complete listing of data-entry requirements and data entry and results for three example problems are provided. (USGS)

  5. PIV and Rotational Raman-Based Temperature Measurements for CFD Validation in a Single Injector Cooling Flow

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Georgiadis, Nicholas J.; Locke, Randy J.

    2018-01-01

    Film cooling is used in a wide variety of engineering applications for protection of surfaces from hot or combusting gases. The design of more efficient thin film cooling geometries/configurations could be facilitated by an ability to accurately model and predict the effectiveness of current designs using computational fluid dynamics (CFD) code predictions. Hence, a benchmark set of flow field property data were obtained for use in assessing current CFD capabilities and for development of better turbulence models. Both Particle Image Velocimetry (PIV) and spontaneous rotational Raman scattering (SRS) spectroscopy were used to acquire high quality, spatially-resolved measurements of the mean velocity, turbulence intensity and also the mean temperature and normalized root mean square (rms) temperatures in a single injector cooling flow arrangement. In addition to flowfield measurements, thermocouple measurements on the plate surface enabled estimates of the film effectiveness. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 68.07 mm square nozzle blowing heated air over a range of temperatures and Mach numbers, across a 30.48 cm long plate equipped with a single injector cooling hole. In addition, both centerline streamwise 2-component PIV and cross-stream 3-component Stereo PIV data at 15 axial stations were collected in the same flows. The velocity and temperature data were then compared against Wind-US CFD code predictions for the same flow conditions. The results of this and planned follow-on studies will support NASA's development and assessment of turbulence models for heated flows.

  6. PIV and Rotational Raman-Based Temperature Measurements for CFD Validation in a Single Injector Cooling Flow

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Georgiadis, Nicholas J.; Locke, Randy J.

    2018-01-01

    Film cooling is used in a wide variety of engineering applications for protection of surfaces from hot or combusting gases. The design of more efficient thin film cooling geometries/configurations could be facilitated by an ability to accurately model and predict the effectiveness of current designs using computational fluid dynamics (CFD) code predictions. Hence, a benchmark set of flow field property data were obtained for use in assessing current CFD capabilities and for development of better turbulence models. Both Particle Image Velocimetry (PIV) and spontaneous rotational Raman scattering (SRS) spectroscopy were used to acquire high quality, spatially-resolved measurements of the mean velocity, turbulence intensity and also the mean temperature and normalized root mean square (rms) temperatures in a single injector cooling flow arrangement. In addition to flowfield measurements, thermocouple measurements on the plate surface enabled estimates of the film effectiveness. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 68.07 mm square nozzle blowing heated air over a range of temperatures and Mach numbers, across a 30.48cm long plate equipped with a single injector cooling hole. In addition, both centerline streamwise 2-component PIV and cross-stream 3-component Stereo PIV data at 15 axial stations were collected in the same flows. The velocity and temperature data were then compared against Wind-US CFD code predictions for the same flow conditions. The results of this and planned follow-on studies will support NASA's development and assessment of turbulence models for heated flows.

  7. Code Verification of the HIGRAD Computational Fluid Dynamics Solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Buren, Kendra L.; Canfield, Jesse M.; Hemez, Francois M.

    2012-05-04

    The purpose of this report is to outline code and solution verification activities applied to HIGRAD, a Computational Fluid Dynamics (CFD) solver of the compressible Navier-Stokes equations developed at the Los Alamos National Laboratory, and used to simulate various phenomena such as the propagation of wildfires and atmospheric hydrodynamics. Code verification efforts, as described in this report, are an important first step to establish the credibility of numerical simulations. They provide evidence that the mathematical formulation is properly implemented without significant mistakes that would adversely impact the application of interest. Highly accurate analytical solutions are derived for four code verificationmore » test problems that exercise different aspects of the code. These test problems are referred to as: (i) the quiet start, (ii) the passive advection, (iii) the passive diffusion, and (iv) the piston-like problem. These problems are simulated using HIGRAD with different levels of mesh discretization and the numerical solutions are compared to their analytical counterparts. In addition, the rates of convergence are estimated to verify the numerical performance of the solver. The first three test problems produce numerical approximations as expected. The fourth test problem (piston-like) indicates the extent to which the code is able to simulate a 'mild' discontinuity, which is a condition that would typically be better handled by a Lagrangian formulation. The current investigation concludes that the numerical implementation of the solver performs as expected. The quality of solutions is sufficient to provide credible simulations of fluid flows around wind turbines. The main caveat associated to these findings is the low coverage provided by these four problems, and somewhat limited verification activities. A more comprehensive evaluation of HIGRAD may be beneficial for future studies.« less

  8. A Study of Flow Separation in Transonic Flow Using Inviscid and Viscous Computational Fluid Dynamics (CFD) Schemes

    NASA Technical Reports Server (NTRS)

    Rhodes, J. A.; Tiwari, S. N.; Vonlavante, E.

    1988-01-01

    A comparison of flow separation in transonic flows is made using various computational schemes which solve the Euler and the Navier-Stokes equations of fluid mechanics. The flows examined are computed using several simple two-dimensional configurations including a backward facing step and a bump in a channel. Comparison of the results obtained using shock fitting and flux vector splitting methods are presented and the results obtained using the Euler codes are compared to results on the same configurations using a code which solves the Navier-Stokes equations.

  9. Multidisciplinary Approach to Aerospike Nozzle Design

    NASA Technical Reports Server (NTRS)

    Korte, J. J.; Salas, A. O.; Dunn, H. J.; Alexandrov, N. M.; Follett, W. W.; Orient, G. E.; Hadid, A. H.

    1997-01-01

    A model of a linear aerospike rocket nozzle that consists of coupled aerodynamic and structural analyses has been developed. A nonlinear computational fluid dynamics code is used to calculate the aerodynamic thrust, and a three-dimensional finite-element model is used to determine the structural response and weight. The model will be used to demonstrate multidisciplinary design optimization (MDO) capabilities for relevant engine concepts, assess performance of various MDO approaches, and provide a guide for future application development. In this study, the MDO problem is formulated using the multidisciplinary feasible (MDF) strategy. The results for the MDF formulation are presented with comparisons against separate aerodynamic and structural optimized designs. Significant improvements are demonstrated by using a multidisciplinary approach in comparison with the single-discipline design strategy.

  10. Biosynthesis and expression of ependymin homologous sequences in zebrafish brain.

    PubMed

    Sterrer, S; Königstorfer, A; Hoffmann, W

    1990-01-01

    Ependymins are unique, brain specific glycoproteins, which are major constituents of the cerebrospinal fluid. Originally, they were discovered in goldfish and are thought to be involved in synaptic plasticity. In the present study two transcripts were characterized in Brachydanio rerio originating from a single gene possibly by alternative splicing. These transcripts differ only in the length of their 3'-non-coding-regions and the encoded protein shares 90 and 88% homology with the two corresponding goldfish proteins, respectively. In situ hybridization revealed the expression of ependymins exclusively in the leptomeninx including its invaginations but not at all in the ependymal layer surrounding the ventricles. An initial developmental profile showed that ependymins first appear before hatching, i.e. between 48 and 72 h postfertilization.

  11. Development and application of the GIM code for the Cyber 203 computer

    NASA Technical Reports Server (NTRS)

    Stainaker, J. F.; Robinson, M. A.; Rawlinson, E. G.; Anderson, P. G.; Mayne, A. W.; Spradley, L. W.

    1982-01-01

    The GIM computer code for fluid dynamics research was developed. Enhancement of the computer code, implicit algorithm development, turbulence model implementation, chemistry model development, interactive input module coding and wing/body flowfield computation are described. The GIM quasi-parabolic code development was completed, and the code used to compute a number of example cases. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and implicit finite difference scheme were also added. Development was completed on the interactive module for generating the input data for GIM. Solutions for inviscid hypersonic flow over a wing/body configuration are also presented.

  12. Comparing volume of fluid and level set methods for evaporating liquid-gas flows

    NASA Astrophysics Data System (ADS)

    Palmore, John; Desjardins, Olivier

    2016-11-01

    This presentation demonstrates three numerical strategies for simulating liquid-gas flows undergoing evaporation. The practical aim of this work is to choose a framework capable of simulating the combustion of liquid fuels in an internal combustion engine. Each framework is analyzed with respect to its accuracy and computational cost. All simulations are performed using a conservative, finite volume code for simulating reacting, multiphase flows under the low-Mach assumption. The strategies used in this study correspond to different methods for tracking the liquid-gas interface and handling the transport of the discontinuous momentum and vapor mass fractions fields. The first two strategies are based on conservative, geometric volume of fluid schemes using directionally split and un-split advection, respectively. The third strategy is the accurate conservative level set method. For all strategies, special attention is given to ensuring the consistency between the fluxes of mass, momentum, and vapor fractions. The study performs three-dimensional simulations of an isolated droplet of a single component fuel evaporating into air. Evaporation rates and vapor mass fractions are compared to analytical results.

  13. Adaptive mesh fluid simulations on GPU

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Abel, Tom; Kaehler, Ralf

    2010-10-01

    We describe an implementation of compressible inviscid fluid solvers with block-structured adaptive mesh refinement on Graphics Processing Units using NVIDIA's CUDA. We show that a class of high resolution shock capturing schemes can be mapped naturally on this architecture. Using the method of lines approach with the second order total variation diminishing Runge-Kutta time integration scheme, piecewise linear reconstruction, and a Harten-Lax-van Leer Riemann solver, we achieve an overall speedup of approximately 10 times faster execution on one graphics card as compared to a single core on the host computer. We attain this speedup in uniform grid runs as well as in problems with deep AMR hierarchies. Our framework can readily be applied to more general systems of conservation laws and extended to higher order shock capturing schemes. This is shown directly by an implementation of a magneto-hydrodynamic solver and comparing its performance to the pure hydrodynamic case. Finally, we also combined our CUDA parallel scheme with MPI to make the code run on GPU clusters. Close to ideal speedup is observed on up to four GPUs.

  14. Study of Multiple Scale Physics of Magnetic Reconnection on the FLARE (Facility for Laboratory Reconnection Experiments)

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Bale, S. D.; Carter, T. A.; Crocker, N.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.; Chen, Y.; Cutler, R.; Fox, W. R., II; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-12-01

    The FLARE device (flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton to study magnetic reconnection in regimes directly relevant to space, solar and astrophysical plasmas. The existing small-scale experiments have been focusing on the single X-line reconnection process either with small effective sizes or at low Lundquist numbers, but both of which are typically very large in natural plasmas. The configuration of the FLARE device is designed to provide experimental access to the new regimes involving multiple X-lines, as guided by a reconnection "phase diagram" [Ji & Daughton, PoP (2011)]. Most of major components of the FLARE device have been designed and are under construction. The device will be assembled and installed in 2016, followed by commissioning and operation in 2017. The planned research on FLARE as a user facility will be discussed on topics including the multiple scale nature of magnetic reconnection from global fluid scales to ion and electron kinetic scales. Results from scoping simulations based on particle and fluid codes and possible comparative research with space measurements will be presented.

  15. Multitasking the INS3D-LU code on the Cray Y-MP

    NASA Technical Reports Server (NTRS)

    Fatoohi, Rod; Yoon, Seokkwan

    1991-01-01

    This paper presents the results of multitasking the INS3D-LU code on eight processors. The code is a full Navier-Stokes solver for incompressible fluid in three dimensional generalized coordinates using a lower-upper symmetric-Gauss-Seidel implicit scheme. This code has been fully vectorized on oblique planes of sweep and parallelized using autotasking with some directives and minor modifications. The timing results for five grid sizes are presented and analyzed. The code has achieved a processing rate of over one Gflops.

  16. Implementation of a 3D mixing layer code on parallel computers

    NASA Technical Reports Server (NTRS)

    Roe, K.; Thakur, R.; Dang, T.; Bogucz, E.

    1995-01-01

    This paper summarizes our progress and experience in the development of a Computational-Fluid-Dynamics code on parallel computers to simulate three-dimensional spatially-developing mixing layers. In this initial study, the three-dimensional time-dependent Euler equations are solved using a finite-volume explicit time-marching algorithm. The code was first programmed in Fortran 77 for sequential computers. The code was then converted for use on parallel computers using the conventional message-passing technique, while we have not been able to compile the code with the present version of HPF compilers.

  17. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation

    PubMed Central

    Zubakov, Dmitry; Boersma, Anton W. M.; Choi, Ying; van Kuijk, Patricia F.; Wiemer, Erik A. C.

    2010-01-01

    MicroRNAs (miRNAs) are non-protein coding molecules with important regulatory functions; many have tissue-specific expression patterns. Their very small size in principle makes them less prone to degradation processes, unlike messenger RNAs (mRNAs), which were previously proposed as molecular tools for forensic body fluid identification. To identify suitable miRNA markers for forensic body fluid identification, we first screened total RNA samples derived from saliva, semen, vaginal secretion, and venous and menstrual blood for the expression of 718 human miRNAs using a microarray platform. All body fluids could be easily distinguished from each other on the basis of complete array-based miRNA expression profiles. Results from quantitative reverse transcription PCR (RT-PCR; TaqMan) assays for microarray candidate markers confirmed strong over-expression in the targeting body fluid of several miRNAs for venous blood and several others for semen. However, no candidate markers from array experiments for other body fluids such as saliva, vaginal secretion, or menstrual blood could be confirmed by RT-PCR. Time-wise degradation of venous blood and semen stains for at least 1 year under lab conditions did not significantly affect the detection sensitivity of the identified miRNA markers. The detection limit of the TaqMan assays tested for selected venous blood and semen miRNA markers required only subpicogram amounts of total RNA per single RT-PCR test, which is considerably less than usually needed for reliable mRNA RT-PCR detection. We therefore propose the application of several stable miRNA markers for the forensic identification of blood stains and several others for semen stain identification, using commercially available TaqMan assays. Additional work remains necessary in search for suitable miRNA markers for other forensically relevant body fluids. Electronic supplementary material The online version of this article (doi:10.1007/s00414-009-0402-3) contains supplementary material, which is available to authorized users. PMID:20145944

  18. Comparison of Code Predictions to Test Measurements for Two Orifice Compensated Hydrostatic Bearings at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Keba, John E.

    1996-01-01

    Rotordynamic coefficients obtained from testing two different hydrostatic bearings are compared to values predicted by two different computer programs. The first set of test data is from a relatively long (L/D=1) orifice compensated hydrostatic bearing tested in water by Texas A&M University (TAMU Bearing No.9). The second bearing is a shorter (L/D=.37) bearing and was tested in a lower viscosity fluid by Rocketdyne Division of Rockwell (Rocketdyne 'Generic' Bearing) at similar rotating speeds and pressures. Computed predictions of bearing rotordynamic coefficients were obtained from the cylindrical seal code 'ICYL', one of the industrial seal codes developed for NASA-LeRC by Mechanical Technology Inc., and from the hydrodynamic bearing code 'HYDROPAD'. The comparison highlights the difference the bearing has on the accuracy of the predictions. The TAMU Bearing No. 9 test data is closely matched by the predictions obtained for the HYDROPAD code (except for added mass terms) whereas significant differences exist between the data from the Rocketdyne 'Generic' bearing the code predictions. The results suggest that some aspects of the fluid behavior in the shorter, higher Reynolds Number 'Generic' bearing may not be modeled accurately in the codes. The ICYL code predictions for flowrate and direct stiffness approximately equal those of HYDROPAD. Significant differences in cross-coupled stiffness and the damping terms were obtained relative to HYDROPAD and both sets of test data. Several observations are included concerning application of the ICYL code.

  19. Diffusion of Supercritical Fluids through Single-Layer Nanoporous Solids: Theory and Molecular Simulations.

    PubMed

    Oulebsir, Fouad; Vermorel, Romain; Galliero, Guillaume

    2018-01-16

    With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading conditions on the permeation process.

  20. Algorithms for GPU-based molecular dynamics simulations of complex fluids: Applications to water, mixtures, and liquid crystals.

    PubMed

    Kazachenko, Sergey; Giovinazzo, Mark; Hall, Kyle Wm; Cann, Natalie M

    2015-09-15

    A custom code for molecular dynamics simulations has been designed to run on CUDA-enabled NVIDIA graphics processing units (GPUs). The double-precision code simulates multicomponent fluids, with intramolecular and intermolecular forces, coarse-grained and atomistic models, holonomic constraints, Nosé-Hoover thermostats, and the generation of distribution functions. Algorithms to compute Lennard-Jones and Gay-Berne interactions, and the electrostatic force using Ewald summations, are discussed. A neighbor list is introduced to improve scaling with respect to system size. Three test systems are examined: SPC/E water; an n-hexane/2-propanol mixture; and a liquid crystal mesogen, 2-(4-butyloxyphenyl)-5-octyloxypyrimidine. Code performance is analyzed for each system. With one GPU, a 33-119 fold increase in performance is achieved compared with the serial code while the use of two GPUs leads to a 69-287 fold improvement and three GPUs yield a 101-377 fold speedup. © 2015 Wiley Periodicals, Inc.

  1. Study of fusion product effects in field-reversed mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driemeyer, D.E.

    1980-01-01

    The effect of fusion products (fps) on Field-Reversed Mirror (FRM) reactor concepts has been evaluated through the development of two new computer models. The first code (MCFRM) treats fps as test particles in a fixed background plasma, which is represented as a fluid. MCFRM includes a Monte Carlo treatment of Coulomb scattering and thus provides an accurate treatment of fp behavior even at lower energies where pitch-angle scattering becomes important. The second code (FRMOD) is a steady-state, globally averaged, two-fluid (ion and electron), point model of the FRM plasma that incorporates fp heating and ash buildup values which are consistentmore » with the MCFRM calculations. These codes have been used extensively in the development of an advanced-fuel FRM reactor design (SAFFIRE). A Catalyzed-D version of the plant is also discussed along with an investigation of the steady-state energy distribution of fps in the FRM. User guides for the two computer codes are also included.« less

  2. CFD Code Survey for Thrust Chamber Application

    NASA Technical Reports Server (NTRS)

    Gross, Klaus W.

    1990-01-01

    In the quest fo find analytical reference codes, responses from a questionnaire are presented which portray the current computational fluid dynamics (CFD) program status and capability at various organizations, characterizing liquid rocket thrust chamber flow fields. Sample cases are identified to examine the ability, operational condition, and accuracy of the codes. To select the best suited programs for accelerated improvements, evaluation criteria are being proposed.

  3. A New Modular Approach for Tightly Coupled Fluid/Structure Analysis

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru

    2003-01-01

    Static aeroelastic computations are made using a C++ executive suitable for closely coupled fluid/structure interaction studies. The fluid flow is modeled using the Euler/Navier Stokes equations and the structure is modeled using finite elements. FORTRAN based fluids and structures codes are integrated under C++ environment. The flow and structural solvers are treated as separate object files. The data flow between fluids and structures is accomplished using I/O. Results are demonstrated for transonic flow over partially flexible surface that is important for aerospace vehicles. Use of this development to accurately predict flow induced structural failure will be demonstrated.

  4. Development of a Prototype Lattice Boltzmann Code for CFD of Fusion Systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattison, Martin J; Premnath, Kannan N; Banerjee, Sanjoy

    2007-02-26

    Designs of proposed fusion reactors, such as the ITER project, typically involve the use of liquid metals as coolants in components such as heat exchangers, which are generally subjected to strong magnetic fields. These fields induce electric currents in the fluids, resulting in magnetohydrodynamic (MHD) forces which have important effects on the flow. The objective of this SBIR project was to develop computational techniques based on recently developed lattice Boltzmann techniques for the simulation of these MHD flows and implement them in a computational fluid dynamics (CFD) code for the study of fluid flow systems encountered in fusion engineering. Themore » code developed during this project, solves the lattice Boltzmann equation, which is a kinetic equation whose behaviour represents fluid motion. This is in contrast to most CFD codes which are based on finite difference/finite volume based solvers. The lattice Boltzmann method (LBM) is a relatively new approach which has a number of advantages compared with more conventional methods such as the SIMPLE or projection method algorithms that involve direct solution of the Navier-Stokes equations. These are that the LBM is very well suited to parallel processing, with almost linear scaling even for very large numbers of processors. Unlike other methods, the LBM does not require solution of a Poisson pressure equation leading to a relatively fast execution time. A particularly attractive property of the LBM is that it can handle flows in complex geometries very easily. It can use simple rectangular grids throughout the computational domain -- generation of a body-fitted grid is not required. A recent advance in the LBM is the introduction of the multiple relaxation time (MRT) model; the implementation of this model greatly enhanced the numerical stability when used in lieu of the single relaxation time model, with only a small increase in computer time. Parallel processing was implemented using MPI and demonstrated the ability of the LBM to scale almost linearly. The equation for magnetic induction was also solved using a lattice Boltzmann method. This approach has the advantage that it fits in well to the framework used for the hydrodynamic equations, but more importantly that it preserves the ability of the code to run efficiently on parallel architectures. Since the LBM is a relatively recent model, a number of new developments were needed to solve the magnetic induction equation for practical problems. Existing methods were only suitable for cases where the fluid viscosity and the magnetic resistivity are of the same order, and a preconditioning method was used to allow the simulation of liquid metals, where these properties differ by several orders of magnitude. An extension of this method to the hydrodynamic equations allowed faster convergence to steady state. A new method of imposing boundary conditions using an extrapolation technique was derived, enabling the magnetic field at a boundary to be specified. Also, a technique by which the grid can be stretched was formulated to resolve thin layers at high imposed magnetic fields, allowing flows with Hartmann numbers of several thousand to be quickly and efficiently simulated. In addition, a module has been developed to calculate the temperature field and heat transfer. This uses a total variation diminishing scheme to solve the equations and is again very amenable to parallelisation. Although, the module was developed with thermal modelling in mind, it can also be applied to passive scalar transport. The code is fully three dimensional and has been applied to a wide variety of cases, including both laminar and turbulent flows. Validations against a series of canonical problems involving both MHD effects and turbulence have clearly demonstrated the ability of the LBM to properly model these types of flow. As well as applications to fusion engineering, the resulting code is flexible enough to be applied to a wide range of other flows, in particular those requiring parallel computations with many processors. For example, at present it is being used for studies in aerodynamics and acoustics involving flows at high Reynolds numbers. It is anticipated that it will be used for multiphase flow applications in the near future.« less

  5. Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT

    USGS Publications Warehouse

    Thorne, D.; Langevin, C.D.; Sukop, M.C.

    2006-01-01

    SEAWAT is a finite-difference computer code designed to simulate coupled variable-density ground water flow and solute transport. This paper describes a new version of SEAWAT that adds the ability to simultaneously model energy and solute transport. This is necessary for simulating the transport of heat and salinity in coastal aquifers for example. This work extends the equation of state for fluid density to vary as a function of temperature and/or solute concentration. The program has also been modified to represent the effects of variable fluid viscosity as a function of temperature and/or concentration. The viscosity mechanism is verified against an analytical solution, and a test of temperature-dependent viscosity is provided. Finally, the classic Henry-Hilleke problem is solved with the new code. ?? 2006 Elsevier Ltd. All rights reserved.

  6. Coupling LAMMPS with Lattice Boltzmann fluid solver: theory, implementation, and applications

    NASA Astrophysics Data System (ADS)

    Tan, Jifu; Sinno, Talid; Diamond, Scott

    2016-11-01

    Studying of fluid flow coupled with solid has many applications in biological and engineering problems, e.g., blood cell transport, particulate flow, drug delivery. We present a partitioned approach to solve the coupled Multiphysics problem. The fluid motion is solved by the Lattice Boltzmann method, while the solid displacement and deformation is simulated by Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). The coupling is achieved through the immersed boundary method so that the expensive remeshing step is eliminated. The code can model both rigid and deformable solids. The code also shows very good scaling results. It was validated with classic problems such as migration of rigid particles, ellipsoid particle's orbit in shear flow. Examples of the applications in blood flow, drug delivery, platelet adhesion and rupture are also given in the paper. NIH.

  7. Particle-fluid interactions for flow measurements

    NASA Technical Reports Server (NTRS)

    Berman, N. S.

    1973-01-01

    Study has been made of the motion of single particle and of group of particles, emphasizing solid particles in gaseous fluid. Velocities of fluid and particle are compared for several conditions of physical interest. Mean velocity and velocity fluctuations are calculated for single particle, and some consideration is given to multiparticle systems.

  8. Modelling Earthquakes Using a Poro-Elastic Two-Phase Flow Formulation

    NASA Astrophysics Data System (ADS)

    Petrini, C.; Gerya, T.; van Dinther, Y.; Connolly, J. A.; Madonna, C.

    2017-12-01

    Seismicity along subduction zones ranges from large devastating megathrust earthquakes to aseismic slow slip events. These different slip phenomena are widely believed to be influenced by fluids and interactions of fluids with the host rock. To understand the slip or strain mode along the megathrust interface, it is thus crucial to understand the role of fluids. Considering the spatiotemporal limitations of observations, a promising approach is to develop a numerical model that couples the deformation of both fluids and solids in a single framework. The objective of this study is the development of such a seismo-hydro-mechanical approach and the subsequent identification of parameters that control the mode of slip. We present a newly developed finite difference visco-elasto-plastic numerical code with marker-in-cell technique, which fully couples inertial mechanical deformation and fluid flow. It allows for the accurate treatment of localised brittle/plastic deformation through global iterations. To accurately simulate both long- and short-term deformation an adaptive time step is introduced. This makes it possible to resolve seismic event with time steps on the order of milliseconds. We use this new tool to investigate how the presence of fluids in the pore space of an visco-elasto-brittle/plastic (de)compacting rock matrix affects elastic stress accumulation and release along a fluid-bearing subduction interface. The model is able to simulate spontaneous quasi-periodic seismic events, nucleating near the brittle-ductile transition zone, along self-consistently forming highly localized ruptures, which accommodate shear displacement between two plates. The generated elastic rebound events show slip velocities on the order of m/s. The governing gradual strength decrease along the propagating fracture is related to a drop in total pressure due to shear localization in combination with an increase in fluid pressure due to elastic compaction of the pore space in a rock with low permeability (6e-19 m2). Reduction of the differential pressure decreases brittle/plastic strength of fluid-bearing rocks along the rupture, thus providing a dynamic feedback mechanism for the accumulated elastic stress release at the subduction interface.

  9. Fluid-solid interaction: benchmarking of an external coupling of ANSYS with CFX for cardiovascular applications.

    PubMed

    Hose, D R; Lawford, P V; Narracott, A J; Penrose, J M T; Jones, I P

    2003-01-01

    Fluid-solid interaction is a primary feature of cardiovascular flows. There is increasing interest in the numerical solution of these systems as the extensive computational resource required for such studies becomes available. One form of coupling is an external weak coupling of separate solid and fluid mechanics codes. Information about the stress tensor and displacement vector at the wetted boundary is passed between the codes, and an iterative scheme is employed to move towards convergence of these parameters at each time step. This approach has the attraction that separate codes with the most extensive functionality for each of the separate phases can be selected, which might be important in the context of the complex rheology and contact mechanics that often feature in cardiovascular systems. Penrose and Staples describe a weak coupling of CFX for computational fluid mechanics to ANSYS for solid mechanics, based on a simple Jacobi iteration scheme. It is important to validate the coupled numerical solutions. An extensive analytical study of flow in elastic-walled tubes was carried out by Womersley in the late 1950s. This paper describes the performance of the coupling software for the straight elastic-walled tube, and compares the results with Womersley's analytical solutions. It also presents preliminary results demonstrating the application of the coupled software in the context of a stented vessel.

  10. CFD Analyses and Jet-Noise Predictions of Chevron Nozzles with Vortex Stabilization

    NASA Technical Reports Server (NTRS)

    Dippold, Vance

    2008-01-01

    The wind computational fluid dynamics code was used to perform a series of analyses on a single-flow plug nozzle with chevrons. Air was injected from tubes tangent to the nozzle outer surface at three different points along the chevron at the nozzle exit: near the chevron notch, at the chevron mid-point, and near the chevron tip. Three injection pressures were used for each injection tube location--10, 30, and 50 psig-giving injection mass flow rates of 0.1, 0.2, and 0.3 percent of the nozzle mass flow. The results showed subtle changes in the jet plume s turbulence and vorticity structure in the region immediately downstream of the nozzle exit. Distinctive patterns in the plume structure emerged from each injection location, and these became more pronounced as the injection pressure was increased. However, no significant changes in centerline velocity decay or turbulent kinetic energy were observed in the jet plume as a result of flow injection. Furthermore, computational acoustics calculations performed with the JeNo code showed no real reduction in jet noise relative to the baseline chevron nozzle.

  11. X-33 Aerodynamic and Aeroheating Computations for Wind Tunnel and Flight Conditions

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Thompson, Richard A.; Murphy, Kelly J.; Nowak, Robert J.; Riley, Christopher J.; Wood, William A.; Alter, Stephen J.; Prabhu, Ramadas K.

    1999-01-01

    This report provides an overview of hypersonic Computational Fluid Dynamics research conducted at the NASA Langley Research Center to support the Phase II development of the X-33 vehicle. The X-33, which is being developed by Lockheed-Martin in partnership with NASA, is an experimental Single-Stage-to-Orbit demonstrator that is intended to validate critical technologies for a full-scale Reusable Launch Vehicle. As part of the development of the X-33, CFD codes have been used to predict the aerodynamic and aeroheating characteristics of the vehicle. Laminar and turbulent predictions were generated for the X 33 vehicle using two finite- volume, Navier-Stokes solvers. Inviscid solutions were also generated with an Euler code. Computations were performed for Mach numbers of 4.0 to 10.0 at angles-of-attack from 10 deg to 48 deg with body flap deflections of 0, 10 and 20 deg. Comparisons between predictions and wind tunnel aerodynamic and aeroheating data are presented in this paper. Aeroheating and aerodynamic predictions for flight conditions are also presented.

  12. Unsteady Aero Computation of a 1 1/2 Stage Large Scale Rotating Turbine

    NASA Technical Reports Server (NTRS)

    To, Wai-Ming

    2012-01-01

    This report is the documentation of the work performed for the Subsonic Rotary Wing Project under the NASA s Fundamental Aeronautics Program. It was funded through Task Number NNC10E420T under GESS-2 Contract NNC06BA07B in the period of 10/1/2010 to 8/31/2011. The objective of the task is to provide support for the development of variable speed power turbine technology through application of computational fluid dynamics analyses. This includes work elements in mesh generation, multistage URANS simulations, and post-processing of the simulation results for comparison with the experimental data. The unsteady CFD calculations were performed with the TURBO code running in multistage single passage (phase lag) mode. Meshes for the blade rows were generated with the NASA developed TCGRID code. The CFD performance is assessed and improvements are recommended for future research in this area. For that, the United Technologies Research Center's 1 1/2 stage Large Scale Rotating Turbine was selected to be the candidate engine configuration for this computational effort because of the completeness and availability of the data.

  13. TOUGH-RBSN simulator for hydraulic fracture propagation within fractured media: Model validations against laboratory experiments

    NASA Astrophysics Data System (ADS)

    Kim, Kunhwi; Rutqvist, Jonny; Nakagawa, Seiji; Birkholzer, Jens

    2017-11-01

    This paper presents coupled hydro-mechanical modeling of hydraulic fracturing processes in complex fractured media using a discrete fracture network (DFN) approach. The individual physical processes in the fracture propagation are represented by separate program modules: the TOUGH2 code for multiphase flow and mass transport based on the finite volume approach; and the rigid-body-spring network (RBSN) model for mechanical and fracture-damage behavior, which are coupled with each other. Fractures are modeled as discrete features, of which the hydrological properties are evaluated from the fracture deformation and aperture change. The verification of the TOUGH-RBSN code is performed against a 2D analytical model for single hydraulic fracture propagation. Subsequently, modeling capabilities for hydraulic fracturing are demonstrated through simulations of laboratory experiments conducted on rock-analogue (soda-lime glass) samples containing a designed network of pre-existing fractures. Sensitivity analyses are also conducted by changing the modeling parameters, such as viscosity of injected fluid, strength of pre-existing fractures, and confining stress conditions. The hydraulic fracturing characteristics attributed to the modeling parameters are investigated through comparisons of the simulation results.

  14. Fundamental Mixing and Combustion Experiments for Propelled Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Diskin, G. S.; Danehy, P. M.; Drummond, J. P.

    2002-01-01

    Two experiments have been conducted to acquire data for the validation of computational fluid dynamics (CFD) codes used in the design of supersonic combustors. The first experiment is a study of a supersonic coaxial jet into stagnant air in which the center jet is of a light gas, the coflow jet is of air, and the mixing layer between them is compressible. The jet flow field is characterized using schlieren imaging, surveys with Pitot, total temperature and gas sampling probes, and RELIEF velocimetry. VULCAN, a structured grid CFD code, is used to solve for the nozzle and jet flow. The second experiment is a study of a supersonic combustor consisting of a diverging duct with single downstream-angled wall injector. Entrance Mach number is 2 and enthalpy is nominally that of Mach 7 flight. Coherent anti-Stokes Raman spectroscopy (CARS) has been used to obtain nitrogen temperature in planes of the flow, and surface pressures and temperatures have also been acquired. Modern-design-of-experiment techniques have been used to maximize the quality of the data set.

  15. Validation of single-fluid and two-fluid magnetohydrodynamic models of the helicity injected torus spheromak experiment with the NIMROD code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akcay, Cihan; Victor, Brian S.; Jarboe, Thomas R.

    We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth d{sub i} to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeledmore » as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification (I{sub tor}/I{sub inj}) and formation time τ{sub f} demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates (I{sub tor}/I{sub inj}) and exhibits much a longer τ{sub f}. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.« less

  16. CHOLLA: A New Massively Parallel Hydrodynamics Code for Astrophysical Simulation

    NASA Astrophysics Data System (ADS)

    Schneider, Evan E.; Robertson, Brant E.

    2015-04-01

    We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳2563) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.

  17. OPTMAIN- A FORTRAN CODE FOR THE CALCULATION OF PROBE VOLUME GEOMETRY CHANGES IN A LASER ANEMOMETRY SYSTEM CAUSED BY WINDOW REFRACTION

    NASA Technical Reports Server (NTRS)

    Owen, A. K.

    1994-01-01

    The laser anemometer has provided the fluid dynamicist with a powerful tool for nonintrusively measuring fluid velocities. One of the more common types of laser anemometers, the laser fringe anemometer, divides a single laser beam into two parallel beams and then focuses them on a point in space called the "probe volume" (PV) where the fluid velocity is measured. Many applications using this method for measuring fluid velocities require the observation of fluids through a window. The passage of the laser beams through materials having different indices of refraction has the following effects: 1) the position of the probe volume will change; 2) the beams will uncross, i.e., no longer lie in the same plane at the probe volume location; and 3) for nonflat plate windows, the crossing angle of the two beams will change. OPTMAIN uses a ray tracing technique, which is not restricted to special cases, to study the changes in probe volume geometry and position due to refraction effects caused by both flat and general smooth windows. Input parameters are the indices of refraction on both sides of the window and of the window itself, the window shape, the assumed position of the probe volume and the actual position of the focusing lens relative to the window, the orientation of the plane which contains the laser beams, the beam crossing angle, and the laser beam wavelength. OPTMAIN is written in FORTRAN 77 for interactive execution. It has been implemented on a DEC VAX 11/780 under VMS 5.0 with a virtual memory requirement of 50K. OPTMAIN was developed in 1987.

  18. Magnetohydrodynamic motion of a two-fluid plasma

    DOE PAGES

    Burby, Joshua W.

    2017-07-21

    Here, the two-fluid Maxwell system couples frictionless electron and ion fluids via Maxwell’s equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally-exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, asmore » well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-orders closure may be obtained in closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-orders bracket gives explicit expressions for a number of the full closure’s conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.« less

  19. Magnetohydrodynamic motion of a two-fluid plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burby, Joshua W.

    Here, the two-fluid Maxwell system couples frictionless electron and ion fluids via Maxwell’s equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally-exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, asmore » well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-orders closure may be obtained in closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-orders bracket gives explicit expressions for a number of the full closure’s conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.« less

  20. Development of an Urban Search and Rescue Robot

    DTIC Science & Technology

    2003-01-01

    is a magnetorheological (MR) fluids shock absorber. The nature of this fluid is such that its compliance can be electronically adjusted thousands...simulators. First, ODE is still a work in progress. The user manual is far from finished and modifications to the coded library come out quite frequently...

  1. Computational Fluids Domain Reduction to a Simplified Fluid Network

    DTIC Science & Technology

    2012-04-19

    readily available read/ write software library. Code components from the open source projects OpenFoam and Paraview were explored for their adaptability...to the project. Both Paraview and OpenFoam read polyhedral mesh. OpenFoam does not read results data. Paraview actually allows for user “filters

  2. Transient Dynamic Response and Failure of Composite Structure Under Cyclic Loading with Fluid Structure Interaction

    DTIC Science & Technology

    2014-09-01

    TERMS fluid structure interaction, composite structures shipbuilding, fatigue loading 15. NUMBER OF PAGES 85 16. PRICE CODE 17. SECURITY...under the three point bending test. All the composites exhibit an initial nonlinear and inelastic deformation trend and end with a catastrophic abrupt

  3. Hydro-mechanical coupled simulation of hydraulic fracturing using the eXtended Finite Element Method (XFEM)

    NASA Astrophysics Data System (ADS)

    Youn, Dong Joon

    This thesis presents the development and validation of an advanced hydro-mechanical coupled finite element program analyzing hydraulic fracture propagation within unconventional hydrocarbon formations under various conditions. The realistic modeling of hydraulic fracturing is necessarily required to improve the understanding and efficiency of the stimulation technique. Such modeling remains highly challenging, however, due to factors including the complexity of fracture propagation mechanisms, the coupled behavior of fracture displacement and fluid pressure, the interactions between pre-existing natural and initiated hydraulic fractures and the formation heterogeneity of the target reservoir. In this research, an eXtended Finite Element Method (XFEM) scheme is developed allowing for representation of single or multiple fracture propagations without any need for re-meshing. Also, the coupled flows through the fracture are considered in the program to account for their influence on stresses and deformations along the hydraulic fracture. In this research, a sequential coupling scheme is applied to estimate fracture aperture and fluid pressure with the XFEM. Later, the coupled XFEM program is used to estimate wellbore bottomhole pressure during fracture propagation, and the pressure variations are analyzed to determine the geometry and performance of the hydraulic fracturing as pressure leak-off test. Finally, material heterogeneity is included into the XFEM program to check the effect of random formation property distributions to the hydraulic fracture geometry. Random field theory is used to create the random realization of the material heterogeneity with the consideration of mean, standard deviation, and property correlation length. These analyses lead to probabilistic information on the response of unconventional reservoirs and offer a more scientific approach regarding risk management for the unconventional reservoir stimulation. The new stochastic approach combining XFEM and random field is named as eXtended Random Finite Element Method (XRFEM). All the numerical analysis codes in this thesis are written in Fortran 2003, and these codes are applicable as a series of sub-modules within a suite of finite element codes developed by Smith and Griffiths (2004).

  4. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    NASA Technical Reports Server (NTRS)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  5. Seals Flow Code Development

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In recognition of a deficiency in the current modeling capability for seals, an effort was established by NASA to develop verified computational fluid dynamic concepts, codes, and analyses for seals. The objectives were to develop advanced concepts for the design and analysis of seals, to effectively disseminate the information to potential users by way of annual workshops, and to provide experimental verification for the models and codes under a wide range of operating conditions.

  6. Nonlinear three-dimensional verification of the SPECYL and PIXIE3D magnetohydrodynamics codes for fusion plasmas

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Chacón, L.; Cappello, S.

    2010-08-01

    With the increasing impact of scientific discovery via advanced computation, there is presently a strong emphasis on ensuring the mathematical correctness of computational simulation tools. Such endeavor, termed verification, is now at the center of most serious code development efforts. In this study, we address a cross-benchmark nonlinear verification study between two three-dimensional magnetohydrodynamics (3D MHD) codes for fluid modeling of fusion plasmas, SPECYL [S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996)] and PIXIE3D [L. Chacón, Phys. Plasmas 15, 056103 (2008)], in their common limit of application: the simple viscoresistive cylindrical approximation. SPECYL is a serial code in cylindrical geometry that features a spectral formulation in space and a semi-implicit temporal advance, and has been used extensively to date for reversed-field pinch studies. PIXIE3D is a massively parallel code in arbitrary curvilinear geometry that features a conservative, solenoidal finite-volume discretization in space, and a fully implicit temporal advance. The present study is, in our view, a first mandatory step in assessing the potential of any numerical 3D MHD code for fluid modeling of fusion plasmas. Excellent agreement is demonstrated over a wide range of parameters for several fusion-relevant cases in both two- and three-dimensional geometries.

  7. Nonlinear three-dimensional verification of the SPECYL and PIXIE3D magnetohydrodynamics codes for fusion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonfiglio, Daniele; Chacon, Luis; Cappello, Susanna

    2010-01-01

    With the increasing impact of scientific discovery via advanced computation, there is presently a strong emphasis on ensuring the mathematical correctness of computational simulation tools. Such endeavor, termed verification, is now at the center of most serious code development efforts. In this study, we address a cross-benchmark nonlinear verification study between two three-dimensional magnetohydrodynamics (3D MHD) codes for fluid modeling of fusion plasmas, SPECYL [S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996)] and PIXIE3D [L. Chacon, Phys. Plasmas 15, 056103 (2008)], in their common limit of application: the simple viscoresistive cylindrical approximation. SPECYL is a serial code inmore » cylindrical geometry that features a spectral formulation in space and a semi-implicit temporal advance, and has been used extensively to date for reversed-field pinch studies. PIXIE3D is a massively parallel code in arbitrary curvilinear geometry that features a conservative, solenoidal finite-volume discretization in space, and a fully implicit temporal advance. The present study is, in our view, a first mandatory step in assessing the potential of any numerical 3D MHD code for fluid modeling of fusion plasmas. Excellent agreement is demonstrated over a wide range of parameters for several fusion-relevant cases in both two- and three-dimensional geometries.« less

  8. Application of Jacobian-free Newton–Krylov method in implicitly solving two-fluid six-equation two-phase flow problems: Implementation, validation and benchmark

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-03-09

    This work represents a first-of-its-kind successful application to employ advanced numerical methods in solving realistic two-phase flow problems with two-fluid six-equation two-phase flow model. These advanced numerical methods include high-resolution spatial discretization scheme with staggered grids (high-order) fully implicit time integration schemes, and Jacobian-free Newton–Krylov (JFNK) method as the nonlinear solver. The computer code developed in this work has been extensively validated with existing experimental flow boiling data in vertical pipes and rod bundles, which cover wide ranges of experimental conditions, such as pressure, inlet mass flux, wall heat flux and exit void fraction. Additional code-to-code benchmark with the RELAP5-3Dmore » code further verifies the correct code implementation. The combined methods employed in this work exhibit strong robustness in solving two-phase flow problems even when phase appearance (boiling) and realistic discrete flow regimes are considered. Transitional flow regimes used in existing system analysis codes, normally introduced to overcome numerical difficulty, were completely removed in this work. As a result, this in turn provides the possibility to utilize more sophisticated flow regime maps in the future to further improve simulation accuracy.« less

  9. CFD Code Validation of Wall Heat Fluxes for a G02/GH2 Single Element Combustor

    NASA Technical Reports Server (NTRS)

    Lin, Jeff; West, Jeff S.; Williams, Robert W.; Tucker, P. Kevin

    2005-01-01

    This paper puts forth the case for the need for improved injector design tools to meet NASA s Vision for Space Exploration goals. Requirements for this improved tool are outlined and discussed. The potential for Computational Fluid Dynamics (CFD) to meet these requirements is noted along with its current shortcomings, especially relative to demonstrated solution accuracy. The concept of verification and validation is introduced as the primary process for building and quantifying the confidence necessary for CFD to be useful as an injector design tool. The verification and validation process is considered in the context of the Marshall Space Flight Center (MSFC) Combustion Devices CFD Simulation Capability Roadmap via the Simulation Readiness Level (SRL) concept. The portion of the validation process which demonstrates the ability of a CFD code to simulate heat fluxes to a rocket engine combustor wall is the focus of the current effort. The FDNS and Loci-CHEM codes are used to simulate a shear coaxial single element G02/GH2 injector experiment. The experiment was conducted a t a chamber pressure of 750 psia using hot propellants from preburners. A measured wall temperature profile is used as a boundary condition to facilitate the calculations. Converged solutions, obtained from both codes by using wall functions with the K-E turbulence model and integrating to the wall using Mentor s baseline turbulence model, are compared to the experimental data. The initial solutions from both codes revealed significant issues with the wall function implementation associated with the recirculation zone between the shear coaxial jet and the chamber wall. The FDNS solution with a corrected implementation shows marked improvement in overall character and level of comparison to the data. With the FDNS code, integrating to the wall with Mentor s baseline turbulence model actually produce a degraded solution when compared to the wall function solution with the K--E model. The Loci-CHEM solution, produced by integrating to the wall with Mentor s baseline turbulence model, matches both the heat flux rise rate in the near injector region and the peak heat flux level very well. However, it moderately over predicts the heat fluxes downstream of the reattachment point. The Loci-CHEM solution achieved by integrating to the wall with Mentor s baseline turbulence model was clearly superior to the other solutions produced in this effort.

  10. Sampling device for withdrawing a representative sample from single and multi-phase flows

    DOEpatents

    Apley, Walter J.; Cliff, William C.; Creer, James M.

    1984-01-01

    A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.

  11. A Feasibility Study on Numerical Modeling of Large-Scale Naval Fluid-Filled Structure: Contact-Impact Problems

    DTIC Science & Technology

    2011-02-01

    capabilities for airbags , sensors, and seatbelts have tailored the code for applications in the automotive industry. Currently the code contains...larger intervals. In certain contact scenarios where contacting parts are moving relative to each other in a rapid fashion, such as airbag deployment

  12. The CORSAIR Turbomachinery Code: Status and Plans

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Sondak, Douglas L.; Turner, James (Technical Monitor)

    2002-01-01

    This viewgraph presentation gives an overview of the CORSAIR turbomachinery code's status and plans. Details are provided on the CORSAIR algorithms, full- and partial-admission turbine simulations, the Simplex turbine, instantaneous Mach number, unsteady pressure admission graphs, variable fluid property RLV-133 simulations, instantaneous entropy function, pumps and inducers, and future plans.

  13. Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Ameri, Ali

    2005-01-01

    This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.

  14. Bar Code Labels

    NASA Technical Reports Server (NTRS)

    1988-01-01

    American Bar Codes, Inc. developed special bar code labels for inventory control of space shuttle parts and other space system components. ABC labels are made in a company-developed anodizing aluminum process and consecutively marketed with bar code symbology and human readable numbers. They offer extreme abrasion resistance and indefinite resistance to ultraviolet radiation, capable of withstanding 700 degree temperatures without deterioration and up to 1400 degrees with special designs. They offer high resistance to salt spray, cleaning fluids and mild acids. ABC is now producing these bar code labels commercially or industrial customers who also need labels to resist harsh environments.

  15. Computational fluid dynamics applications at McDonnel Douglas

    NASA Technical Reports Server (NTRS)

    Hakkinen, R. J.

    1987-01-01

    Representative examples are presented of applications and development of advanced Computational Fluid Dynamics (CFD) codes for aerodynamic design at the McDonnell Douglas Corporation (MDC). Transonic potential and Euler codes, interactively coupled with boundary layer computation, and solutions of slender-layer Navier-Stokes approximation are applied to aircraft wing/body calculations. An optimization procedure using evolution theory is described in the context of transonic wing design. Euler methods are presented for analysis of hypersonic configurations, and helicopter rotors in hover and forward flight. Several of these projects were accepted for access to the Numerical Aerodynamic Simulation (NAS) facility at the NASA-Ames Research Center.

  16. Computations of Axisymmetric Flows in Hypersonic Shock Tubes

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Wilson, Gregory J.

    1995-01-01

    A time-accurate two-dimensional fluid code is used to compute test times in shock tubes operated at supersonic speeds. Unlike previous studies, this investigation resolves the finer temporal details of the shock-tube flow by making use of modern supercomputers and state-of-the-art computational fluid dynamic solution techniques. The code, besides solving the time-dependent fluid equations, also accounts for the finite rate chemistry in the hypersonic environment. The flowfield solutions are used to estimate relevant shock-tube parameters for laminar flow, such as test times, and to predict density and velocity profiles. Boundary-layer parameters such as bar-delta(sub u), bar-delta(sup *), and bar-tau(sub w), and test time parameters such as bar-tau and particle time of flight t(sub f), are computed and compared with those evaluated by using Mirels' correlations. This article then discusses in detail the effects of flow nonuniformities on particle time-of-flight behind the normal shock and, consequently, on the interpretation of shock-tube data. This article concludes that for accurate interpretation of shock-tube data, a detailed analysis of flowfield parameters, using a computer code such as used in this study, must be performed.

  17. SPLASH program for three dimensional fluid dynamics with free surface boundaries

    NASA Astrophysics Data System (ADS)

    Yamaguchi, A.

    1996-05-01

    This paper describes a three dimensional computer program SPLASH that solves Navier-Stokes equations based on the Arbitrary Lagrangian Eulerian (ALE) finite element method. SPLASH has been developed for application to the fluid dynamics problems including the moving boundary of a liquid metal cooled Fast Breeder Reactor (FBR). To apply SPLASH code to the free surface behavior analysis, a capillary model using a cubic Spline function has been developed. Several sample problems, e.g., free surface oscillation, vortex shedding development, and capillary tube phenomena, are solved to verify the computer program. In the analyses, the numerical results are in good agreement with the theoretical value or experimental observance. Also SPLASH code has been applied to an analysis of a free surface sloshing experiment coupled with forced circulation flow in a rectangular tank. This is a simplified situation of the flow field in a reactor vessel of the FBR. The computational simulation well predicts the general behavior of the fluid flow inside and the free surface behavior. Analytical capability of the SPLASH code has been verified in this study and the application to more practical problems such as FBR design and safety analysis is under way.

  18. Fuego/Scefire MPMD Coupling L2 Milestone Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Flint; Tencer, John; Pautz, Shawn D.

    2017-09-01

    This milestone campaign was focused on coupling Sandia physics codes SIERRA low Mach module Fuego and RAMSES Boltzmann transport code Sceptre(Scefire). Fuego enables simulation of low Mach, turbulent, reacting, particle laden flows on unstructured meshes using CVFEM for abnormal thermal environments throughout SNL and the larger national security community. Sceptre provides simulation for photon, neutron, and charged particle transport on unstructured meshes using Discontinuous Galerkin for radiation effects calculations at SNL and elsewhere. Coupling these ”best of breed” codes enables efficient modeling of thermal/fluid environments with radiation transport, including fires (pool, propellant, composite) as well as those with directed radiantmore » fluxes. We seek to improve the experience of Fuego users who require radiation transport capabilities in two ways. The first is performance. We achieve this through leveraging additional computational resources for Scefire, reducing calculation times while leaving unaffected resources for fluid physics. This approach is new to Fuego, which previously utilized the same resources for both fluid and radiation solutions. The second improvement enables new radiation capabilities, including spectral (banded) radiation, beam boundary sources, and alternate radiation solvers (i.e. Pn). This summary provides an overview of these achievements.« less

  19. Computational fluid dynamic modelling of cavitation

    NASA Technical Reports Server (NTRS)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.

  20. Numerical Tests and Properties of Waves in Radiating Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B M; Klein, R I

    2009-09-03

    We discuss the properties of an analytical solution for waves in radiating fluids, with a view towards its implementation as a quantitative test of radiation hydrodynamics codes. A homogeneous radiating fluid in local thermodynamic equilibrium is periodically driven at the boundary of a one-dimensional domain, and the solution describes the propagation of the waves thus excited. Two modes are excited for a given driving frequency, generally referred to as a radiative acoustic wave and a radiative diffusion wave. While the analytical solution is well known, several features are highlighted here that require care during its numerical implementation. We compare themore » solution in a wide range of parameter space to a numerical integration with a Lagrangian radiation hydrodynamics code. Our most significant observation is that flux-limited diffusion does not preserve causality for waves on a homogeneous background.« less

  1. Methods for simulation-based analysis of fluid-structure interaction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barone, Matthew Franklin; Payne, Jeffrey L.

    2005-10-01

    Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonalmore » decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.« less

  2. Application of electron closures in extended MHD

    NASA Astrophysics Data System (ADS)

    Held, Eric; Adair, Brett; Taylor, Trevor

    2017-10-01

    Rigorous closure of the extended MHD equations in plasma fluid codes includes the effects of electron heat conduction along perturbed magnetic fields and contributions of the electron collisional friction and stress to the extended Ohms law. In this work we discuss application of a continuum numerical solution to the Chapman-Enskog-like electron drift kinetic equation using the NIMROD code. The implementation is a tightly-coupled fluid/kinetic system that carefully addresses time-centering in the advance of the fluid variables with their kinetically-computed closures. Comparisons of spatial accuracy, computational efficiency and required velocity space resolution are presented for applications involving growing magnetic islands in cylindrical and toroidal geometry. The reduction in parallel heat conduction due to particle trapping in toroidal geometry is emphasized. Work supported by DOE under Grant Nos. DE-FC02-08ER54973 and DE-FG02-04ER54746.

  3. The Fifth Annual Thermal and Fluids Analysis Workshop

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Fifth Annual Thermal and Fluids Analysis Workshop was held at the Ohio Aerospace Institute, Brook Park, Ohio, cosponsored by NASA Lewis Research Center and the Ohio Aerospace Institute, 16-20 Aug. 1993. The workshop consisted of classes, vendor demonstrations, and paper sessions. The classes and vendor demonstrations provided participants with the information on widely used tools for thermal and fluid analysis. The paper sessions provided a forum for the exchange of information and ideas among thermal and fluids analysts. Paper topics included advances and uses of established thermal and fluids computer codes (such as SINDA and TRASYS) as well as unique modeling techniques and applications.

  4. Importance of inlet boundary conditions for numerical simulation of combustor flows

    NASA Technical Reports Server (NTRS)

    Sturgess, G. J.; Syed, S. A.; Mcmanus, K. R.

    1983-01-01

    Fluid dynamic computer codes for the mathematical simulation of problems in gas turbine engine combustion systems are required as design and diagnostic tools. To eventually achieve a performance standard with these codes of more than qualitative accuracy it is desirable to use benchmark experiments for validation studies. Typical of the fluid dynamic computer codes being developed for combustor simulations is the TEACH (Teaching Elliptic Axisymmetric Characteristics Heuristically) solution procedure. It is difficult to find suitable experiments which satisfy the present definition of benchmark quality. For the majority of the available experiments there is a lack of information concerning the boundary conditions. A standard TEACH-type numerical technique is applied to a number of test-case experiments. It is found that numerical simulations of gas turbine combustor-relevant flows can be sensitive to the plane at which the calculations start and the spatial distributions of inlet quantities for swirling flows.

  5. The ePLAS code for Ignition Studies

    NASA Astrophysics Data System (ADS)

    Faehl, R. J.; Mason, R. J.; Kirkpatrick, R. C.

    2012-10-01

    The ePLAS code is a multi-fluid/PIC hybrid developing self-consistent E & B-fields by the Implicit Moment Method for stable calculations of high density plasma problems with voids on the electron Courant time scale. See: http://www.researchapplicationscorp.com. Here, we outline typical applications to: 1) short pulse driven electron transport along void (or high Z) insulated wires, and 2) the 2D development of shock ignition pressure peaks with B-fields. We outline the code's recent inclusion of SESAME EOS data, a DT/DD burn capability, a new option for K-alpha imaging of modeling output, and demonstrate a foil expansion tracked with either fluid or particle ions. Also, we describe a new super-hybrid extension of our implicit solver that permits full target dynamics studies on the ion Courant scale. Finally, we will touch on the very recent application of ePLAS to possible non-local/kinetic hydro effects NIF capsules.

  6. Computer modeling and simulation in inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrory, R.L.; Verdon, C.P.

    1989-03-01

    The complex hydrodynamic and transport processes associated with the implosion of an inertial confinement fusion (ICF) pellet place considerable demands on numerical simulation programs. Processes associated with implosion can usually be described using relatively simple models, but their complex interplay requires that programs model most of the relevant physical phenomena accurately. Most hydrodynamic codes used in ICF incorporate a one-fluid, two-temperature model. Electrons and ions are assumed to flow as one fluid (no charge separation). Due to the relatively weak coupling between the ions and electrons, each species is treated separately in terms of its temperature. In this paper wemore » describe some of the major components associated with an ICF hydrodynamics simulation code. To serve as an example we draw heavily on a two-dimensional Lagrangian hydrodynamic code (ORCHID) written at the University of Rochester's Laboratory for Laser Energetics. 46 refs., 19 figs., 1 tab.« less

  7. Numerical, analytical, experimental study of fluid dynamic forces in seals

    NASA Technical Reports Server (NTRS)

    Shapiro, William; Artiles, Antonio; Aggarwal, Bharat; Walowit, Jed; Athavale, Mahesh M.; Preskwas, Andrzej J.

    1992-01-01

    NASA/Lewis Research Center is sponsoring a program for providing computer codes for analyzing and designing turbomachinery seals for future aerospace and engine systems. The program is made up of three principal components: (1) the development of advanced three dimensional (3-D) computational fluid dynamics codes, (2) the production of simpler two dimensional (2-D) industrial codes, and (3) the development of a knowledge based system (KBS) that contains an expert system to assist in seal selection and design. The first task has been to concentrate on cylindrical geometries with straight, tapered, and stepped bores. Improvements have been made by adoption of a colocated grid formulation, incorporation of higher order, time accurate schemes for transient analysis and high order discretization schemes for spatial derivatives. This report describes the mathematical formulations and presents a variety of 2-D results, including labyrinth and brush seal flows. Extensions of 3-D are presently in progress.

  8. Chemical reacting flows

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Sockol, Peter M.

    1987-01-01

    Future aerospace propulsion concepts involve the combination of liquid or gaseous fuels in a highly turbulent internal air stream. Accurate predictive computer codes which can simulate the fluid mechanics, chemistry, and turbulence combustion interaction of these chemical reacting flows will be a new tool that is needed in the design of these future propulsion concepts. Experimental and code development research is being performed at Lewis to better understand chemical reacting flows with the long term goal of establishing these reliable computer codes. The approach to understanding chemical reacting flows is to look at separate simple parts of this complex phenomena as well as to study the full turbulent reacting flow process. As a result research on the fluid mechanics associated with chemical reacting flows was initiated. The chemistry of fuel-air combustion is also being studied. Finally, the phenomena of turbulence-combustion interaction is being investigated. This presentation will highlight research, both experimental and analytical, in each of these three major areas.

  9. Chemical reacting flows

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Sockol, Peter M.

    1990-01-01

    Future aerospace propulsion concepts involve the combustion of liquid or gaseous fuels in a highly turbulent internal airstream. Accurate predictive computer codes which can simulate the fluid mechanics, chemistry, and turbulence-combustion interaction of these chemical reacting flows will be a new tool that is needed in the design of these future propulsion concepts. Experimental and code development research is being performed at LeRC to better understand chemical reacting flows with the long-term goal of establishing these reliable computer codes. Our approach to understand chemical reacting flows is to look at separate, more simple parts of this complex phenomenon as well as to study the full turbulent reacting flow process. As a result, we are engaged in research on the fluid mechanics associated with chemical reacting flows. We are also studying the chemistry of fuel-air combustion. Finally, we are investigating the phenomenon of turbulence-combustion interaction. Research, both experimental and analytical, is highlighted in each of these three major areas.

  10. Construction and Utilization of a Beowulf Computing Cluster: A User's Perspective

    NASA Technical Reports Server (NTRS)

    Woods, Judy L.; West, Jeff S.; Sulyma, Peter R.

    2000-01-01

    Lockheed Martin Space Operations - Stennis Programs (LMSO) at the John C Stennis Space Center (NASA/SSC) has designed and built a Beowulf computer cluster which is owned by NASA/SSC and operated by LMSO. The design and construction of the cluster are detailed in this paper. The cluster is currently used for Computational Fluid Dynamics (CFD) simulations. The CFD codes in use and their applications are discussed. Examples of some of the work are also presented. Performance benchmark studies have been conducted for the CFD codes being run on the cluster. The results of two of the studies are presented and discussed. The cluster is not currently being utilized to its full potential; therefore, plans are underway to add more capabilities. These include the addition of structural, thermal, fluid, and acoustic Finite Element Analysis codes as well as real-time data acquisition and processing during test operations at NASA/SSC. These plans are discussed as well.

  11. A fast non-Fourier method for Landau-fluid operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimits, A. M., E-mail: dimits1@llnl.gov; Joseph, I.; Umansky, M. V.

    An efficient and versatile non-Fourier method for the computation of Landau-fluid (LF) closure operators [Hammett and Perkins, Phys. Rev. Lett. 64, 3019 (1990)] is presented, based on an approximation by a sum of modified-Helmholtz-equation solves (SMHS) in configuration space. This method can yield fast-Fourier-like scaling of the computational time requirements and also provides a very compact data representation of these operators, even for plasmas with large spatial nonuniformity. As a result, the method can give significant savings compared with direct application of “delocalization kernels” [e.g., Schurtz et al., Phys. Plasmas 7, 4238 (2000)], both in terms of computational cost andmore » memory requirements. The method is of interest for the implementation of Landau-fluid models in situations where the spatial nonuniformity, particular geometry, or boundary conditions render a Fourier implementation difficult or impossible. Systematic procedures have been developed to optimize the resulting operators for accuracy and computational cost. The four-moment Landau-fluid model of Hammett and Perkins has been implemented in the BOUT++ code using the SMHS method for LF closure. Excellent agreement has been obtained for the one-dimensional plasma density response function between driven initial-value calculations using this BOUT++ implementation and matrix eigenvalue calculations using both Fourier and SMHS non-Fourier implementations of the LF closures. The SMHS method also forms the basis for the implementation, which has been carried out in the BOUT++ code, of the parallel and toroidal drift-resonance LF closures. The method is a key enabling tool for the extension of gyro-Landau-fluid models [e.g., Beer and Hammett, Phys. Plasmas 3, 4046 (1996)] to codes that treat regions with strong profile variation, such as the tokamak edge and scrapeoff-layer.« less

  12. A fast non-Fourier method for Landau-fluid operatorsa)

    NASA Astrophysics Data System (ADS)

    Dimits, A. M.; Joseph, I.; Umansky, M. V.

    2014-05-01

    An efficient and versatile non-Fourier method for the computation of Landau-fluid (LF) closure operators [Hammett and Perkins, Phys. Rev. Lett. 64, 3019 (1990)] is presented, based on an approximation by a sum of modified-Helmholtz-equation solves (SMHS) in configuration space. This method can yield fast-Fourier-like scaling of the computational time requirements and also provides a very compact data representation of these operators, even for plasmas with large spatial nonuniformity. As a result, the method can give significant savings compared with direct application of "delocalization kernels" [e.g., Schurtz et al., Phys. Plasmas 7, 4238 (2000)], both in terms of computational cost and memory requirements. The method is of interest for the implementation of Landau-fluid models in situations where the spatial nonuniformity, particular geometry, or boundary conditions render a Fourier implementation difficult or impossible. Systematic procedures have been developed to optimize the resulting operators for accuracy and computational cost. The four-moment Landau-fluid model of Hammett and Perkins has been implemented in the BOUT++ code using the SMHS method for LF closure. Excellent agreement has been obtained for the one-dimensional plasma density response function between driven initial-value calculations using this BOUT++ implementation and matrix eigenvalue calculations using both Fourier and SMHS non-Fourier implementations of the LF closures. The SMHS method also forms the basis for the implementation, which has been carried out in the BOUT++ code, of the parallel and toroidal drift-resonance LF closures. The method is a key enabling tool for the extension of gyro-Landau-fluid models [e.g., Beer and Hammett, Phys. Plasmas 3, 4046 (1996)] to codes that treat regions with strong profile variation, such as the tokamak edge and scrapeoff-layer.

  13. Calculations of the Performance of Explosive Impulse Generators

    DTIC Science & Technology

    1979-08-01

    low impedance material such as lexan or some other plastic between the tungsten and the titanium, the stress is reduced even further. As we said...codes modeled after the HEMP family of codes^ cur- rently in use at the Lawrence Livermore Laboratory. The codes have a broad range of capabilities...for problems involving the dynamics of fluid and solid continua. They contain a full range of material property models including elastic- plastic flow

  14. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Wang, Tee-See; Griffin, Lisa; Turner, James E. (Technical Monitor)

    2001-01-01

    This document is a presentation graphic which reviews the activities of the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center (i.e., Code TD64). The work of this group focused on supporting the space transportation programs. The work of the group is in Computational Fluid Dynamic tool development. This development is driven by hardware design needs. The major applications for the design and analysis tools are: turbines, pumps, propulsion-to-airframe integration, and combustion devices.

  15. Thermohydrodynamic Analysis of Cryogenic Liquid Turbulent Flow Fluid Film Bearings

    NASA Technical Reports Server (NTRS)

    San Andres, Luis

    1996-01-01

    This report describes a thermohydrodynamic analysis and computer programs for the prediction of the static and dynamic force response of fluid film bearings for cryogenic applications. The research performed addressed effectively the most important theoretical and practical issues related to the operation and performance of cryogenic fluid film bearings. Five computer codes have been licensed by the Texas A&M University to NASA centers and contractors and a total of 14 technical papers have been published.

  16. RE-1000 free-piston Stirling engine update

    NASA Technical Reports Server (NTRS)

    Schreiber, J. G.

    1985-01-01

    A free piston Stirling engine was tested. The tests performed over the past several years on the single cylinder engine were designed to investigate the dynamics of a free piston Stirling engine. The data are intended to be used primarily for computer code validation. The tests designed to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics were completed. In addition, some data were recorded with alternate working fluids. A novel resonant balance system for the engine was also tested. Some preliminary test results of the tests performed are presented along with an outline of future tests to be run with the engine coupled to a hydraulic output unit. A description of the hydraulic output unit is given.

  17. The Role of Electrical Anisotropy in Modeling and Interpreting Controlled-Source Electromagnetic Responses for Hydraulic Fracture Monitoring

    NASA Astrophysics Data System (ADS)

    Trevino, S., III; Hickey, M. S.; Everett, M. E.

    2017-12-01

    Controlled-Source Electromagnetics (CSEM) can be used to monitor the movement and extent of injection fluid during a hydraulic fracture. The response of the fluid to energization by a CSEM source is dependent upon the electrical conductivity difference between the fluid and background geological formation. An important property that must be taken into account when modeling and interpreting CSEM responses is that electrical conductivity may be anisotropic. We study the effect of electrical anisotropy in both the background formation and the fluid-injection zone. First, various properties of the background formation can affect anisotropy including variations in grain size, composition and bedding-plane orientation. In certain formations, such as shale, the horizontal component of the conductivity can be more than an order of magnitude larger than the vertical component. We study this effect by computing differences in surface CSEM responses using the analytic 1-D anisotropic primary solution of a horizontal electric dipole positioned at the surface. Second, during hydraulic fracturing, the injected fluid can create new fractures and infill existing natural fractures. To include the explicit fracture geometry in modeling, a large increase in the number of nodes and computational time is required which may not be feasible. An alternative is to instead model the large-scale fracture geometry as a uniform slab with an appropriate bulk conductivity. Micro-scale fracture geometry may cause preferential fluid propagation in a single direction or plane which can be represented by electrical anisotropy of the slab. To study such effects of bulk anisotropy on CSEM responses we present results from multiple scenarios of surface to surface hydraulic fracture monitoring using 3-D finite element modeling. The model uses Coulomb-gauged potentials to solve Maxwell's equations in the frequency domain and we have updated the code to allow a triaxial electrical conductivity tensor to be specified. By allowing for formation and target electrical anisotropy these modeling results contribute to a better understanding and faster interpretation of field data.

  18. TEMPEST Simulations of the Plasma Transport in a Single-Null Tokamak Geometry

    DOE PAGES

    X. Q. Xu; Bodi, K.; Cohen, R. H.; ...

    2010-05-28

    We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. In order to study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. In a series of TEMPEST simulations were conducted to investigate themore » transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. Moreover, we show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.« less

  19. TEMPEST Simulations of the Plasma Transport in a Single-Null Tokamak Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Q. Xu; Bodi, K.; Cohen, R. H.

    We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. In order to study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. In a series of TEMPEST simulations were conducted to investigate themore » transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. Moreover, we show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.« less

  20. High sensitivity fluorescent single particle and single molecule detection apparatus and method

    DOEpatents

    Mathies, Richard A.; Peck, Konan; Stryer, Lubert

    1990-01-01

    Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.

  1. Introduction to the internal fluid mechanics research session

    NASA Technical Reports Server (NTRS)

    Miller, Brent A.; Povinelli, Louis A.

    1990-01-01

    Internal fluid mechanics research at LeRC is directed toward an improved understanding of the important flow physics affecting aerospace propulsion systems, and applying this improved understanding to formulate accurate predictive codes. To this end, research is conducted involving detailed experimentation and analysis. The following three papers summarize ongoing work and indicate future emphasis in three major research thrusts: inlets, ducts, and nozzles; turbomachinery; and chemical reacting flows. The underlying goal of the research in each of these areas is to bring internal computational fluid mechanic to a state of practical application for aerospace propulsion systems. Achievement of this goal requires that carefully planned and executed experiments be conducted in order to develop and validate useful codes. It is critical that numerical code development work and experimental work be closely coupled. The insights gained are represented by mathematical models that form the basis for code development. The resultant codes are then tested by comparing them with appropriate experiments in order to ensure their validity and determine their applicable range. The ultimate user community must be a part of this process to assure relevancy of the work and to hasten its practical application. Propulsion systems are characterized by highly complex and dynamic internal flows. Many complex, 3-D flow phenomena may be present, including unsteadiness, shocks, and chemical reactions. By focusing on specific portions of a propulsion system, it is often possible to identify the dominant phenomena that must be understood and modeled for obtaining accurate predictive capability. The three major research thrusts serve as a focus leading to greater understanding of the relevant physics and to an improvement in analytic tools. This in turn will hasten continued advancements in propulsion system performance and capability.

  2. Evaluation of candidate working fluid formulations for the electrothermal-chemical wind tunnel

    NASA Technical Reports Server (NTRS)

    Akyurtlu, Jale F.; Akyurtlu, Ates

    1993-01-01

    A new hypersonic test facility which can simulate conditions typical of atmospheric flight at Mach numbers up to 20 is currently under study at the NASA/LaRC Hypersonic Propulsion Branch. In the proposed research, it was suggested that a combustion augmented electrothermal wind tunnel concept may be applied to the planned hypersonic testing facility. The purpose of the current investigation is to evaluate some candidate working fluid formulations which may be used in the chemical-electrothermal wind. The efforts in the initial phase of this research were concentrated on acquiring the code used by GASL to model the electrothermal wind tunnel and testing it using the conditions of GASL simulation. The early version of the general chemical kinetics code (GCKP84) was obtained from NASA and the latest updated version of the code (LSENS) was obtained from the author Dr. Bittker. Both codes are installed on a personal computer with a 486 25 MHz processor and 16 Mbyte RAM. Since the available memory was not sufficient to debug LSENS, for the current work GCKP84 was used.

  3. Instability in Immiscible Fluids Displacement from Cracks and Porous Samples

    NASA Astrophysics Data System (ADS)

    Smirnov, N. N.; Nikitin, V. F.; Ivashnyov, O. E.

    2002-01-01

    problems of terrestrial engineering and technology. Surface tension affected flows in porous media could be much better understood in microgravity studies eliminating the masking effects of gravity. Saffman-Taylor instability of the interface could bring to formation and growth of "fingers" of gas penetrating the bulk fluid. The growth of fingers and their further coalescence could not be described by the linear analysis. Growth of fingers causes irregularity of the mixing zone. The tangential velocity difference on the interface separating fluids of different densities and viscousities could bring to a Kelvin-Helmholtz instability resulting in "diffusion of fingers" partial regularization of the displacement mixing zone. Thus combination of the two effects would govern the flow in the displacement process. fracture under a pressure differential displacing the high viscosity residual fracturing fluid. There are inherent instability and scalability problems associated with viscous fingering that play a key role in the cleanup procedure. Entrapment of residual fracturing fluid by the gas flow lowers down the quality of a fracture treatment leaving most of fluid in the hydraulic fracture thus decreasing the production rate. The gravity effects could play essential role in vertical hydraulic fractures as the problem is scale dependent. displacement of viscous fluid by a less viscous one in a two-dimensional channel with vertical breaks, and to determine characteristic size of entrapment zones. Extensive direct numerical simulations allow to investigate the sensitivity of the displacement process to variation of values of the main governing parameters. were found for the two limiting cases: infinitely wide cell, and narrow cell with an infinitely small gap between the finger and the side walls. governing parameters. The obtained solutions allowed to explain the physical meaning of the exiting empirical criteria for the beginning of viscous fingering and the growth of a number of fingers in the cell, and allowed us to make some additional suggestions for the cleanup procedure. depending on the resident fluid properties, for which the displacement still remains stable. viscous one were carried out. Validation of the code was performed by comparing the results of model problems simulations with the existing solutions published in literature. Being in a good agreement with the previously obtained results, nevertheless, the developed code is an advanced one. While the existing codes could operate with linear equations and regular geometry and initial disturbances only, the new code permits taking into account non-linear effects as well. characterizing the quality of displacement. The functional dependence of the dimensionless criteria on the values of governing parameters needs further investigations. Services, an international company in the oil and gas industry.

  4. A single-scattering correction for the seismo-acoustic parabolic equation.

    PubMed

    Collins, Michael D

    2012-04-01

    An efficient single-scattering correction that does not require iterations is derived and tested for the seismo-acoustic parabolic equation. The approach is applicable to problems involving gradual range dependence in a waveguide with fluid and solid layers, including the key case of a sloping fluid-solid interface. The single-scattering correction is asymptotically equivalent to a special case of a single-scattering correction for problems that only have solid layers [Küsel et al., J. Acoust. Soc. Am. 121, 808-813 (2007)]. The single-scattering correction has a simple interpretation (conservation of interface conditions in an average sense) that facilitated its generalization to problems involving fluid layers. Promising results are obtained for problems in which the ocean bottom interface has a small slope.

  5. Value of a single-shot turbo spin-echo pulse sequence for assessing the architecture of the subarachnoid space and the constitutive nature of cerebrospinal fluid.

    PubMed

    Pease, Anthony; Sullivan, Stacey; Olby, Natasha; Galano, Heather; Cerda-Gonzalez, Sophia; Robertson, Ian D; Gavin, Patrick; Thrall, Donald

    2006-01-01

    Three case history reports are presented to illustrate the value of the single-shot turbo spin-echo pulse sequence for assessment of the subarachnoid space. The use of the single-shot turbo spin-echo pulse sequence, which is a heavily T2-weighted sequence, allows for a rapid, noninvasive evaluation of the subarachnoid space by using the high signal from cerebrospinal fluid. This sequence can be completed in seconds rather than the several minutes required for a T2-fast spin-echo sequence. Unlike the standard T2-fast spin-echo sequence, a single-shot turbo spin-echo pulse sequence also provides qualitative information about the protein and the cellular content of the cerebrospinal fluid, such as in patients with inflammatory debris or hemorrhage in the cerebrospinal fluid. Although the resolution of the single-shot turbo spin-echo pulse sequence images is relatively poor compared with more conventional sequences, the qualitative information about the subarachnoid space and cerebrospinal fluid and the rapid acquisition time, make it a useful sequence to include in standard protocols of spinal magnetic resonance imaging.

  6. An object-oriented approach for parallel self adaptive mesh refinement on block structured grids

    NASA Technical Reports Server (NTRS)

    Lemke, Max; Witsch, Kristian; Quinlan, Daniel

    1993-01-01

    Self-adaptive mesh refinement dynamically matches the computational demands of a solver for partial differential equations to the activity in the application's domain. In this paper we present two C++ class libraries, P++ and AMR++, which significantly simplify the development of sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory architectures. The development is based on our previous research in this area. The C++ class libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement applications into those of parallelism, abstracted by P++, and adaptive mesh refinement, abstracted by AMR++. P++ is a parallel array class library to permit efficient development of architecture independent codes for structured grid applications, and AMR++ provides support for self-adaptive mesh refinement on block-structured grids of rectangular non-overlapping blocks. Using these libraries, the application programmers' work is greatly simplified to primarily specifying the serial single grid application and obtaining the parallel and self-adaptive mesh refinement code with minimal effort. Initial results for simple singular perturbation problems solved by self-adaptive multilevel techniques (FAC, AFAC), being implemented on the basis of prototypes of the P++/AMR++ environment, are presented. Singular perturbation problems frequently arise in large applications, e.g. in the area of computational fluid dynamics. They usually have solutions with layers which require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.

  7. Computational fluid dynamics assessment: Volume 1, Computer simulations of the METC (Morgantown Energy Technology Center) entrained-flow gasifier: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celik, I.; Chattree, M.

    1988-07-01

    An assessment of the theoretical and numerical aspects of the computer code, PCGC-2, is made; and the results of the application of this code to the Morgantown Energy Technology Center (METC) advanced gasification facility entrained-flow reactor, ''the gasifier,'' are presented. PCGC-2 is a code suitable for simulating pulverized coal combustion or gasification under axisymmetric (two-dimensional) flow conditions. The governing equations for the gas and particulate phase have been reviewed. The numerical procedure and the related programming difficulties have been elucidated. A single-particle model similar to the one used in PCGC-2 has been developed, programmed, and applied to some simple situationsmore » in order to gain insight to the physics of coal particle heat-up, devolatilization, and char oxidation processes. PCGC-2 was applied to the METC entrained-flow gasifier to study numerically the flash pyrolysis of coal, and gasification of coal with steam or carbon dioxide. The results from the simulations are compared with measurements. The gas and particle residence times, particle temperature, and mass component history were also calculated and the results were analyzed. The results provide useful information for understanding the fundamentals of coal gasification and for assessment of experimental results performed using the reactor considered. 69 refs., 35 figs., 23 tabs.« less

  8. Numerical schemes for anomalous diffusion of single-phase fluids in porous media

    NASA Astrophysics Data System (ADS)

    Awotunde, Abeeb A.; Ghanam, Ryad A.; Al-Homidan, Suliman S.; Tatar, Nasser-eddine

    2016-10-01

    Simulation of fluid flow in porous media is an indispensable part of oil and gas reservoir management. Accurate prediction of reservoir performance and profitability of investment rely on our ability to model the flow behavior of reservoir fluids. Over the years, numerical reservoir simulation models have been based mainly on solutions to the normal diffusion of fluids in the porous reservoir. Recently, however, it has been documented that fluid flow in porous media does not always follow strictly the normal diffusion process. Small deviations from normal diffusion, called anomalous diffusion, have been reported in some experimental studies. Such deviations can be caused by different factors such as the viscous state of the fluid, the fractal nature of the porous media and the pressure pulse in the system. In this work, we present explicit and implicit numerical solutions to the anomalous diffusion of single-phase fluids in heterogeneous reservoirs. An analytical solution is used to validate the numerical solution to the simple homogeneous case. The conventional wellbore flow model is modified to account for anomalous behavior. Example applications are used to show the behavior of wellbore and wellblock pressures during the single-phase anomalous flow of fluids in the reservoirs considered.

  9. Computer Simulation of the VASIMR Engine

    NASA Technical Reports Server (NTRS)

    Garrison, David

    2005-01-01

    The goal of this project is to develop a magneto-hydrodynamic (MHD) computer code for simulation of the VASIMR engine. This code is designed be easy to modify and use. We achieve this using the Cactus framework, a system originally developed for research in numerical relativity. Since its release, Cactus has become an extremely powerful and flexible open source framework. The development of the code will be done in stages, starting with a basic fluid dynamic simulation and working towards a more complex MHD code. Once developed, this code can be used by students and researchers in order to further test and improve the VASIMR engine.

  10. Accuracy Quantification of the Loci-CHEM Code for Chamber Wall Heat Transfer in a GO2/GH2 Single Element Injector Model Problem

    NASA Technical Reports Server (NTRS)

    West, Jeff; Westra, Doug; Lin, Jeff; Tucker, Kevin

    2006-01-01

    A robust rocket engine combustor design and development process must include tools which can accurately predict the multi-dimensional thermal environments imposed on solid surfaces by the hot combustion products. Currently, empirical methods used in the design process are typically one dimensional and do not adequately account for the heat flux rise rate in the near-injector region of the chamber. Computational Fluid Dynamics holds promise to meet the design tool requirement, but requires accuracy quantification, or validation, before it can be confidently applied in the design process. This effort presents the beginning of such a validation process for the Loci-CHEM CFD code. The model problem examined here is a gaseous oxygen (GO2)/gaseous hydrogen (GH2) shear coaxial single element injector operating at a chamber pressure of 5.42 MPa. The GO2/GH2 propellant combination in this geometry represents one the simplest rocket model problems and is thus foundational to subsequent validation efforts for more complex injectors. Multiple steady state solutions have been produced with Loci-CHEM employing different hybrid grids and two-equation turbulence models. Iterative convergence for each solution is demonstrated via mass conservation, flow variable monitoring at discrete flow field locations as a function of solution iteration and overall residual performance. A baseline hybrid was used and then locally refined to demonstrate grid convergence. Solutions were obtained with three variations of the k-omega turbulence model.

  11. Accuracy Quantification of the Loci-CHEM Code for Chamber Wall Heat Fluxes in a G02/GH2 Single Element Injector Model Problem

    NASA Technical Reports Server (NTRS)

    West, Jeff; Westra, Doug; Lin, Jeff; Tucker, Kevin

    2006-01-01

    A robust rocket engine combustor design and development process must include tools which can accurately predict the multi-dimensional thermal environments imposed on solid surfaces by the hot combustion products. Currently, empirical methods used in the design process are typically one dimensional and do not adequately account for the heat flux rise rate in the near-injector region of the chamber. Computational Fluid Dynamics holds promise to meet the design tool requirement, but requires accuracy quantification, or validation, before it can be confidently applied in the design process. This effort presents the beginning of such a validation process for the Loci- CHEM CPD code. The model problem examined here is a gaseous oxygen (GO2)/gaseous hydrogen (GH2) shear coaxial single element injector operating at a chamber pressure of 5.42 MPa. The GO2/GH2 propellant combination in this geometry represents one the simplest rocket model problems and is thus foundational to subsequent validation efforts for more complex injectors. Multiple steady state solutions have been produced with Loci-CHEM employing different hybrid grids and two-equation turbulence models. Iterative convergence for each solution is demonstrated via mass conservation, flow variable monitoring at discrete flow field locations as a function of solution iteration and overall residual performance. A baseline hybrid grid was used and then locally refined to demonstrate grid convergence. Solutions were also obtained with three variations of the k-omega turbulence model.

  12. Cavitation Modeling in Euler and Navier-Stokes Codes

    NASA Technical Reports Server (NTRS)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Many previous researchers have modeled sheet cavitation by means of a constant pressure solution in the cavity region coupled with a velocity potential formulation for the outer flow. The present paper discusses the issues involved in extending these cavitation models to Euler or Navier-Stokes codes. The approach taken is to start from a velocity potential model to ensure our results are compatible with those of previous researchers and available experimental data, and then to implement this model in both Euler and Navier-Stokes codes. The model is then augmented in the Navier-Stokes code by the inclusion of the energy equation which allows the effect of subcooling in the vicinity of the cavity interface to be modeled to take into account the experimentally observed reduction in cavity pressures that occurs in cryogenic fluids such as liquid hydrogen. Although our goal is to assess the practicality of implementing these cavitation models in existing three-dimensional, turbomachinery codes, the emphasis in the present paper will center on two-dimensional computations, most specifically isolated airfoils and cascades. Comparisons between velocity potential, Euler and Navier-Stokes implementations indicate they all produce consistent predictions. Comparisons with experimental results also indicate that the predictions are qualitatively correct and give a reasonable first estimate of sheet cavitation effects in both cryogenic and non-cryogenic fluids. The impact on CPU time and the code modifications required suggests that these models are appropriate for incorporation in current generation turbomachinery codes.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merzari, E.; Yuan, Haomin; Kraus, A.

    The NEAMS program aims to develop an integrated multi-physics simulation capability “pellet-to-plant” for the design and analysis of future generations of nuclear power plants. In particular, the Reactor Product Line code suite's multi-resolution hierarchy is being designed to ultimately span the full range of length and time scales present in relevant reactor design and safety analyses, as well as scale from desktop to petaflop computing platforms. Flow-induced vibration (FIV) is widespread problem in energy systems because they rely on fluid movement for energy conversion. Vibrating structures may be damaged as fatigue or wear occurs. Given the importance of reliable componentsmore » in the nuclear industry, flow-induced vibration has long been a major concern in safety and operation of nuclear reactors. In particular, nuclear fuel rods and steam generators have been known to suffer from flow-induced vibration and related failures. Advanced reactors, such as integral Pressurized Water Reactors (PWRs) considered for Small Modular Reactors (SMR), often rely on innovative component designs to meet cost and safety targets. One component that is the subject of advanced designs is the steam generator, some designs of which forego the usual shell-and-tube architecture in order to fit within the primary vessel. In addition to being more cost- and space-efficient, such steam generators need to be more reliable, since failure of the primary vessel represents a potential loss of coolant and a safety concern. A significant amount of data exists on flow-induced vibration in shell-and-tube heat exchangers, and heuristic methods are available to predict their occurrence based on a set of given assumptions. In contrast, advanced designs have far less data available. Advanced modeling and simulation based on coupled structural and fluid simulations have the potential to predict flow-induced vibration in a variety of designs, reducing the need for expensive experimental programs, especially at the design stage. Over the past five years, the Reactor Product Line has developed the integrated multi-physics code suite SHARP. The goal of developing such a tool is to perform multi-physics neutronics, thermal/fluid, and structural mechanics modeling of the components inside the full reactor core or portions of it with a user-specified fidelity. In particular SHARP contains high-fidelity single-physics codes Diablo for structural mechanics and Nek5000 for fluid mechanics calculations. Both codes are state-of-the-art, highly scalable tools that have been extensively validated. These tools form a strong basis on which to build a flow-induced vibration modeling capability. In this report we discuss one-way coupled calculations performed with Nek5000 and Diablo aimed at simulating available FIV experiments in helical steam generators in the turbulent buffeting regime. In this regime one-way coupling is judged sufficient because the pressure loads do not cause substantial displacements. It is also the most common source of vibration in helical steam generators at the low flows expected in integral PWRs. The legacy data is obtained from two datasets developed at Argonne and B&W.« less

  14. Multidisciplinary Modeling Software for Analysis, Design, and Optimization of HRRLS Vehicles

    NASA Technical Reports Server (NTRS)

    Spradley, Lawrence W.; Lohner, Rainald; Hunt, James L.

    2011-01-01

    The concept for Highly Reliable Reusable Launch Systems (HRRLS) under the NASA Hypersonics project is a two-stage-to-orbit, horizontal-take-off / horizontal-landing, (HTHL) architecture with an air-breathing first stage. The first stage vehicle is a slender body with an air-breathing propulsion system that is highly integrated with the airframe. The light weight slender body will deflect significantly during flight. This global deflection affects the flow over the vehicle and into the engine and thus the loads and moments on the vehicle. High-fidelity multi-disciplinary analyses that accounts for these fluid-structures-thermal interactions are required to accurately predict the vehicle loads and resultant response. These predictions of vehicle response to multi physics loads, calculated with fluid-structural-thermal interaction, are required in order to optimize the vehicle design over its full operating range. This contract with ResearchSouth addresses one of the primary objectives of the Vehicle Technology Integration (VTI) discipline: the development of high-fidelity multi-disciplinary analysis and optimization methods and tools for HRRLS vehicles. The primary goal of this effort is the development of an integrated software system that can be used for full-vehicle optimization. This goal was accomplished by: 1) integrating the master code, FEMAP, into the multidiscipline software network to direct the coupling to assure accurate fluid-structure-thermal interaction solutions; 2) loosely-coupling the Euler flow solver FEFLO to the available and proven aeroelasticity and large deformation (FEAP) code; 3) providing a coupled Euler-boundary layer capability for rapid viscous flow simulation; 4) developing and implementing improved Euler/RANS algorithms into the FEFLO CFD code to provide accurate shock capturing, skin friction, and heat-transfer predictions for HRRLS vehicles in hypersonic flow, 5) performing a Reynolds-averaged Navier-Stokes computation on an HRRLS configuration; 6) integrating the RANS solver with the FEAP code for coupled fluid-structure-thermal capability; and 7) integrating the existing NASA SRGULL propulsion flow path prediction software with the FEFLO software for quasi-3D propulsion flow path predictions, 8) improving and integrating into the network, an existing adjoint-based design optimization code.

  15. 25 CFR 18.301 - May a tribe create and adopt a single heir rule without adopting a tribal probate code?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false May a tribe create and adopt a single heir rule without adopting a tribal probate code? 18.301 Section 18.301 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR PROBATE TRIBAL PROBATE CODES Approval of Single Heir Rule § 18.301 May a tribe create and adopt a...

  16. Dakota Uncertainty Quantification Methods Applied to the CFD code Nek5000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delchini, Marc-Olivier; Popov, Emilian L.; Pointer, William David

    This report presents the state of advancement of a Nuclear Energy Advanced Modeling and Simulation (NEAMS) project to characterize the uncertainty of the computational fluid dynamics (CFD) code Nek5000 using the Dakota package for flows encountered in the nuclear engineering industry. Nek5000 is a high-order spectral element CFD code developed at Argonne National Laboratory for high-resolution spectral-filtered large eddy simulations (LESs) and unsteady Reynolds-averaged Navier-Stokes (URANS) simulations.

  17. Comparison of kinetic and extended magnetohydrodynamics computational models for the linear ion temperature gradient instability in slab geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnack, D. D.; Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706; Cheng, J.

    We perform linear stability studies of the ion temperature gradient (ITG) instability in unsheared slab geometry using kinetic and extended magnetohydrodynamics (MHD) models, in the regime k{sub ∥}/k{sub ⊥}≪1. The ITG is a parallel (to B) sound wave that may be destabilized by finite ion Larmor radius (FLR) effects in the presence of a gradient in the equilibrium ion temperature. The ITG is stable in both ideal and resistive MHD; for a given temperature scale length L{sub Ti0}, instability requires that either k{sub ⊥}ρ{sub i} or ρ{sub i}/L{sub Ti0} be sufficiently large. Kinetic models capture FLR effects to all ordersmore » in either parameter. In the extended MHD model, these effects are captured only to lowest order by means of the Braginskii ion gyro-viscous stress tensor and the ion diamagnetic heat flux. We present the linear electrostatic dispersion relations for the ITG for both kinetic Vlasov and extended MHD (two-fluid) models in the local approximation. In the low frequency fluid regime, these reduce to the same cubic equation for the complex eigenvalue ω=ω{sub r}+iγ. An explicit solution is derived for the growth rate and real frequency in this regime. These are found to depend on a single non-dimensional parameter. We also compute the eigenvalues and the eigenfunctions with the extended MHD code NIMROD, and a hybrid kinetic δf code that assumes six-dimensional Vlasov ions and isothermal fluid electrons, as functions of k{sub ⊥}ρ{sub i} and ρ{sub i}/L{sub Ti0} using a spatially dependent equilibrium. These solutions are compared with each other, and with the predictions of the local kinetic and fluid dispersion relations. Kinetic and fluid calculations agree well at and near the marginal stability point, but diverge as k{sub ⊥}ρ{sub i} or ρ{sub i}/L{sub Ti0} increases. There is good qualitative agreement between the models for the shape of the unstable global eigenfunction for L{sub Ti0}/ρ{sub i}=30 and 20. The results quantify how far fluid calculations can be extended accurately into the kinetic regime. We conclude that for the linear ITG problem in slab geometry with unsheared magnetic field when k{sub ∥}/k{sub ⊥}≪1, the extended MHD model may be a reliable physical model for this problem when ρ{sub i}/L{sub Ti0}<10{sup −2} and k{sub ⊥}ρ{sub i}<0.2.« less

  18. Fast methods to numerically integrate the Reynolds equation for gas fluid films

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1992-01-01

    The alternating direction implicit (ADI) method is adopted, modified, and applied to the Reynolds equation for thin, gas fluid films. An efficient code is developed to predict both the steady-state and dynamic performance of an aerodynamic journal bearing. An alternative approach is shown for hybrid journal gas bearings by using Liebmann's iterative solution (LIS) for elliptic partial differential equations. The results are compared with known design criteria from experimental data. The developed methods show good accuracy and very short computer running time in comparison with methods based on an inverting of a matrix. The computer codes need a small amount of memory and can be run on either personal computers or on mainframe systems.

  19. Enforcing dust mass conservation in 3D simulations of tightly coupled grains with the PHANTOM SPH code

    NASA Astrophysics Data System (ADS)

    Ballabio, G.; Dipierro, G.; Veronesi, B.; Lodato, G.; Hutchison, M.; Laibe, G.; Price, D. J.

    2018-06-01

    We describe a new implementation of the one-fluid method in the SPH code PHANTOM to simulate the dynamics of dust grains in gas protoplanetary discs. We revise and extend previously developed algorithms by computing the evolution of a new fluid quantity that produces a more accurate and numerically controlled evolution of the dust dynamics. Moreover, by limiting the stopping time of uncoupled grains that violate the assumptions of the terminal velocity approximation, we avoid fatal numerical errors in mass conservation. We test and validate our new algorithm by running 3D SPH simulations of a large range of disc models with tightly and marginally coupled grains.

  20. Code for Multiblock CFD and Heat-Transfer Computations

    NASA Technical Reports Server (NTRS)

    Fabian, John C.; Heidmann, James D.; Lucci, Barbara L.; Ameri, Ali A.; Rigby, David L.; Steinthorsson, Erlendur

    2006-01-01

    The NASA Glenn Research Center General Multi-Block Navier-Stokes Convective Heat Transfer Code, Glenn-HT, has been used extensively to predict heat transfer and fluid flow for a variety of steady gas turbine engine problems. Recently, the Glenn-HT code has been completely rewritten in Fortran 90/95, a more object-oriented language that allows programmers to create code that is more modular and makes more efficient use of data structures. The new implementation takes full advantage of the capabilities of the Fortran 90/95 programming language. As a result, the Glenn-HT code now provides dynamic memory allocation, modular design, and unsteady flow capability. This allows for the heat-transfer analysis of a full turbine stage. The code has been demonstrated for an unsteady inflow condition, and gridding efforts have been initiated for a full turbine stage unsteady calculation. This analysis will be the first to simultaneously include the effects of rotation, blade interaction, film cooling, and tip clearance with recessed tip on turbine heat transfer and cooling performance. Future plans call for the application of the new Glenn-HT code to a range of gas turbine engine problems of current interest to the heat-transfer community. The new unsteady flow capability will allow researchers to predict the effect of unsteady flow phenomena upon the convective heat transfer of turbine blades and vanes. Work will also continue on the development of conjugate heat-transfer capability in the code, where simultaneous solution of convective and conductive heat-transfer domains is accomplished. Finally, advanced turbulence and fluid flow models and automatic gridding techniques are being developed that will be applied to the Glenn-HT code and solution process.

  1. New methods and astrophysical applications of adaptive mesh fluid simulations

    NASA Astrophysics Data System (ADS)

    Wang, Peng

    The formation of stars, galaxies and supermassive black holes are among the most interesting unsolved problems in astrophysics. Those problems are highly nonlinear and involve enormous dynamical ranges. Thus numerical simulations with spatial adaptivity are crucial in understanding those processes. In this thesis, we discuss the development and application of adaptive mesh refinement (AMR) multi-physics fluid codes to simulate those nonlinear structure formation problems. To simulate the formation of star clusters, we have developed an AMR magnetohydrodynamics (MHD) code, coupled with radiative cooling. We have also developed novel algorithms for sink particle creation, accretion, merging and outflows, all of which are coupled with the fluid algorithms using operator splitting. With this code, we have been able to perform the first AMR-MHD simulation of star cluster formation for several dynamical times, including sink particle and protostellar outflow feedbacks. The results demonstrated that protostellar outflows can drive supersonic turbulence in dense clumps and explain the observed slow and inefficient star formation. We also suggest that global collapse rate is the most important factor in controlling massive star accretion rate. In the topics of galaxy formation, we discuss the results of three projects. In the first project, using cosmological AMR hydrodynamics simulations, we found that isolated massive star still forms in cosmic string wakes even though the mega-parsec scale structure has been perturbed significantly by the cosmic strings. In the second project, we calculated the dynamical heating rate in galaxy formation. We found that by balancing our heating rate with the atomic cooling rate, it gives a critical halo mass which agrees with the result of numerical simulations. This demonstrates that the effect of dynamical heating should be put into semi-analytical works in the future. In the third project, using our AMR-MHD code coupled with radiative cooling module, we performed the first MHD simulations of disk galaxy formation. We find that the initial magnetic fields are quickly amplified to Milky-Way strength in a self-regulated way with amplification rate roughly one e-folding per orbit. This suggests that Milky Way strength magnetic field might be common in high redshift disk galaxies. We have also developed AMR relativistic hydrodynamics code to simulate black hole relativistic jets. We discuss the coupling of the AMR framework with various relativistic solvers and conducted extensive algorithmic comparisons. Via various test problems, we emphasize the importance of resolution studies in relativistic flow simulations because extremely high resolution is required especially when shear flows are present in the problem. Then we present the results of 3D simulations of supermassive black hole jets propagation and gamma ray burst jet breakout. Resolution studies of the two 3D jets simulations further highlight the need of high resolutions to calculate accurately relativistic flow problems. Finally, to push forward the kind of simulations described above, we need faster codes with more physics included. We describe an implementation of compressible inviscid fluid solvers with AMR on Graphics Processing Units (GPU) using NVIDIA's CUDA. We show that the class of high resolution shock capturing schemes can be mapped naturally on this architecture. For both uniform and adaptive simulations, we achieve an overall speedup of approximately 10 times faster execution on one Quadro FX 5600 GPU as compared to a single 3 GHz Intel core on the host computer. Our framework can readily be applied to more general systems of conservation laws and extended to higher order shock capturing schemes. This is shown directly by an implementation of a magneto-hydrodynamic solver and comparing its performance to the pure hydrodynamic case.

  2. Numerical Simulations of Single Flow Element in a Nuclear Thermal Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed and global thermo-fluid environments of a single now element in a hypothetical solid-core nuclear thermal thrust chamber assembly, Several numerical and multi-physics thermo-fluid models, such as chemical reactions, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver. The numerical simulations of a single now element provide a detailed thermo-fluid environment for thermal stress estimation and insight for possible occurrence of mid-section corrosion. In addition, detailed conjugate heat transfer simulations were employed to develop the porosity models for efficient pressure drop and thermal load calculations.

  3. VINE-A NUMERICAL CODE FOR SIMULATING ASTROPHYSICAL SYSTEMS USING PARTICLES. I. DESCRIPTION OF THE PHYSICS AND THE NUMERICAL METHODS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetzstein, M.; Nelson, Andrew F.; Naab, T.

    2009-10-01

    We present a numerical code for simulating the evolution of astrophysical systems using particles to represent the underlying fluid flow. The code is written in Fortran 95 and is designed to be versatile, flexible, and extensible, with modular options that can be selected either at the time the code is compiled or at run time through a text input file. We include a number of general purpose modules describing a variety of physical processes commonly required in the astrophysical community and we expect that the effort required to integrate additional or alternate modules into the code will be small. Inmore » its simplest form the code can evolve the dynamical trajectories of a set of particles in two or three dimensions using a module which implements either a Leapfrog or Runge-Kutta-Fehlberg integrator, selected by the user at compile time. The user may choose to allow the integrator to evolve the system using individual time steps for each particle or with a single, global time step for all. Particles may interact gravitationally as N-body particles, and all or any subset may also interact hydrodynamically, using the smoothed particle hydrodynamic (SPH) method by selecting the SPH module. A third particle species can be included with a module to model massive point particles which may accrete nearby SPH or N-body particles. Such particles may be used to model, e.g., stars in a molecular cloud. Free boundary conditions are implemented by default, and a module may be selected to include periodic boundary conditions. We use a binary 'Press' tree to organize particles for rapid access in gravity and SPH calculations. Modules implementing an interface with special purpose 'GRAPE' hardware may also be selected to accelerate the gravity calculations. If available, forces obtained from the GRAPE coprocessors may be transparently substituted for those obtained from the tree, or both tree and GRAPE may be used as a combination GRAPE/tree code. The code may be run without modification on single processors or in parallel using OpenMP compiler directives on large-scale, shared memory parallel machines. We present simulations of several test problems, including a merger simulation of two elliptical galaxies with 800,000 particles. In comparison to the Gadget-2 code of Springel, the gravitational force calculation, which is the most costly part of any simulation including self-gravity, is {approx}4.6-4.9 times faster with VINE when tested on different snapshots of the elliptical galaxy merger simulation when run on an Itanium 2 processor in an SGI Altix. A full simulation of the same setup with eight processors is a factor of 2.91 faster with VINE. The code is available to the public under the terms of the Gnu General Public License.« less

  4. Vine—A Numerical Code for Simulating Astrophysical Systems Using Particles. I. Description of the Physics and the Numerical Methods

    NASA Astrophysics Data System (ADS)

    Wetzstein, M.; Nelson, Andrew F.; Naab, T.; Burkert, A.

    2009-10-01

    We present a numerical code for simulating the evolution of astrophysical systems using particles to represent the underlying fluid flow. The code is written in Fortran 95 and is designed to be versatile, flexible, and extensible, with modular options that can be selected either at the time the code is compiled or at run time through a text input file. We include a number of general purpose modules describing a variety of physical processes commonly required in the astrophysical community and we expect that the effort required to integrate additional or alternate modules into the code will be small. In its simplest form the code can evolve the dynamical trajectories of a set of particles in two or three dimensions using a module which implements either a Leapfrog or Runge-Kutta-Fehlberg integrator, selected by the user at compile time. The user may choose to allow the integrator to evolve the system using individual time steps for each particle or with a single, global time step for all. Particles may interact gravitationally as N-body particles, and all or any subset may also interact hydrodynamically, using the smoothed particle hydrodynamic (SPH) method by selecting the SPH module. A third particle species can be included with a module to model massive point particles which may accrete nearby SPH or N-body particles. Such particles may be used to model, e.g., stars in a molecular cloud. Free boundary conditions are implemented by default, and a module may be selected to include periodic boundary conditions. We use a binary "Press" tree to organize particles for rapid access in gravity and SPH calculations. Modules implementing an interface with special purpose "GRAPE" hardware may also be selected to accelerate the gravity calculations. If available, forces obtained from the GRAPE coprocessors may be transparently substituted for those obtained from the tree, or both tree and GRAPE may be used as a combination GRAPE/tree code. The code may be run without modification on single processors or in parallel using OpenMP compiler directives on large-scale, shared memory parallel machines. We present simulations of several test problems, including a merger simulation of two elliptical galaxies with 800,000 particles. In comparison to the Gadget-2 code of Springel, the gravitational force calculation, which is the most costly part of any simulation including self-gravity, is ~4.6-4.9 times faster with VINE when tested on different snapshots of the elliptical galaxy merger simulation when run on an Itanium 2 processor in an SGI Altix. A full simulation of the same setup with eight processors is a factor of 2.91 faster with VINE. The code is available to the public under the terms of the Gnu General Public License.

  5. Multi-Zone Liquid Thrust Chamber Performance Code with Domain Decomposition for Parallel Processing

    NASA Technical Reports Server (NTRS)

    Navaz, Homayun K.

    2002-01-01

    Computational Fluid Dynamics (CFD) has considerably evolved in the last decade. There are many computer programs that can perform computations on viscous internal or external flows with chemical reactions. CFD has become a commonly used tool in the design and analysis of gas turbines, ramjet combustors, turbo-machinery, inlet ducts, rocket engines, jet interaction, missile, and ramjet nozzles. One of the problems of interest to NASA has always been the performance prediction for rocket and air-breathing engines. Due to the complexity of flow in these engines it is necessary to resolve the flowfield into a fine mesh to capture quantities like turbulence and heat transfer. However, calculation on a high-resolution grid is associated with a prohibitively increasing computational time that can downgrade the value of the CFD for practical engineering calculations. The Liquid Thrust Chamber Performance (LTCP) code was developed for NASA/MSFC (Marshall Space Flight Center) to perform liquid rocket engine performance calculations. This code is a 2D/axisymmetric full Navier-Stokes (NS) solver with fully coupled finite rate chemistry and Eulerian treatment of liquid fuel and/or oxidizer droplets. One of the advantages of this code has been the resemblance of its input file to the JANNAF (Joint Army Navy NASA Air Force Interagency Propulsion Committee) standard TDK code, and its automatic grid generation for JANNAF defined combustion chamber wall geometry. These options minimize the learning effort for TDK users, and make the code a good candidate for performing engineering calculations. Although the LTCP code was developed for liquid rocket engines, it is a general-purpose code and has been used for solving many engineering problems. However, the single zone formulation of the LTCP has limited the code to be applicable to problems with complex geometry. Furthermore, the computational time becomes prohibitively large for high-resolution problems with chemistry, two-equation turbulence model, and two-phase flow. To overcome these limitations, the LTCP code is rewritten to include the multi-zone capability with domain decomposition that makes it suitable for parallel processing, i.e., enabling the code to run every zone or sub-domain on a separate processor. This can reduce the run time by a factor of 6 to 8, depending on the problem.

  6. System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics

    DOEpatents

    France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan

    2017-11-21

    The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.

  7. Integrated Task and Data Parallel Programming

    NASA Technical Reports Server (NTRS)

    Grimshaw, A. S.

    1998-01-01

    This research investigates the combination of task and data parallel language constructs within a single programming language. There are an number of applications that exhibit properties which would be well served by such an integrated language. Examples include global climate models, aircraft design problems, and multidisciplinary design optimization problems. Our approach incorporates data parallel language constructs into an existing, object oriented, task parallel language. The language will support creation and manipulation of parallel classes and objects of both types (task parallel and data parallel). Ultimately, the language will allow data parallel and task parallel classes to be used either as building blocks or managers of parallel objects of either type, thus allowing the development of single and multi-paradigm parallel applications. 1995 Research Accomplishments In February I presented a paper at Frontiers 1995 describing the design of the data parallel language subset. During the spring I wrote and defended my dissertation proposal. Since that time I have developed a runtime model for the language subset. I have begun implementing the model and hand-coding simple examples which demonstrate the language subset. I have identified an astrophysical fluid flow application which will validate the data parallel language subset. 1996 Research Agenda Milestones for the coming year include implementing a significant portion of the data parallel language subset over the Legion system. Using simple hand-coded methods, I plan to demonstrate (1) concurrent task and data parallel objects and (2) task parallel objects managing both task and data parallel objects. My next steps will focus on constructing a compiler and implementing the fluid flow application with the language. Concurrently, I will conduct a search for a real-world application exhibiting both task and data parallelism within the same program. Additional 1995 Activities During the fall I collaborated with Andrew Grimshaw and Adam Ferrari to write a book chapter which will be included in Parallel Processing in C++ edited by Gregory Wilson. I also finished two courses, Compilers and Advanced Compilers, in 1995. These courses complete my class requirements at the University of Virginia. I have only my dissertation research and defense to complete.

  8. Integrated Task And Data Parallel Programming: Language Design

    NASA Technical Reports Server (NTRS)

    Grimshaw, Andrew S.; West, Emily A.

    1998-01-01

    his research investigates the combination of task and data parallel language constructs within a single programming language. There are an number of applications that exhibit properties which would be well served by such an integrated language. Examples include global climate models, aircraft design problems, and multidisciplinary design optimization problems. Our approach incorporates data parallel language constructs into an existing, object oriented, task parallel language. The language will support creation and manipulation of parallel classes and objects of both types (task parallel and data parallel). Ultimately, the language will allow data parallel and task parallel classes to be used either as building blocks or managers of parallel objects of either type, thus allowing the development of single and multi-paradigm parallel applications. 1995 Research Accomplishments In February I presented a paper at Frontiers '95 describing the design of the data parallel language subset. During the spring I wrote and defended my dissertation proposal. Since that time I have developed a runtime model for the language subset. I have begun implementing the model and hand-coding simple examples which demonstrate the language subset. I have identified an astrophysical fluid flow application which will validate the data parallel language subset. 1996 Research Agenda Milestones for the coming year include implementing a significant portion of the data parallel language subset over the Legion system. Using simple hand-coded methods, I plan to demonstrate (1) concurrent task and data parallel objects and (2) task parallel objects managing both task and data parallel objects. My next steps will focus on constructing a compiler and implementing the fluid flow application with the language. Concurrently, I will conduct a search for a real-world application exhibiting both task and data parallelism within the same program m. Additional 1995 Activities During the fall I collaborated with Andrew Grimshaw and Adam Ferrari to write a book chapter which will be included in Parallel Processing in C++ edited by Gregory Wilson. I also finished two courses, Compilers and Advanced Compilers, in 1995. These courses complete my class requirements at the University of Virginia. I have only my dissertation research and defense to complete.

  9. Investigation of internal magnetic structures and comparison with two-fluid equilibrium configurations in the multi-pulsing CHI on HIST

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Hanao, T.; Hirono, H.; Hyobu, T.; Ito, K.; Matsumoto, K.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.; Kanki, T.

    2012-10-01

    Spherical torus (ST) plasmas have been successfully maintained by Muti-pulsing Coaxial Helicity Injection (M-CHI) on HIST. This research object is to clarify relations between plasma characteristics and magnetic flux amplifications, and to compare magnetic field structures measured in the plasma interior to a flowing equilibrium calculation. Two-dimensional magnetic probe array has been newly introduced nearby the gun muzzle. The initial result shows that the diverter configuration with a single X-point can be formed after a bubble burst process of the plasma. The closed magnetic flux is surrounded by the open magnetic field lines intersecting with the gun electrodes. To evaluate the sustained configurations, we use the two-fluid equilibrium code containing generalized Bernoulli and Grad-Shafranov equations which was developed by L.C. Steinhauer. The radial profiles of plasma flow, density and magnetic fields measured on the midplane of the FC are consistent to the calculation. We also found that the poloidal shear flow generation is attributed to ExB drift and ion diamagnetic drift. In addition, we will study temporal behaviors of impurity lines such as OV and OVI during the flux amplification by VUV spectroscopic measurements.

  10. A three-dimensional numerical simulation of cell behavior in a flow chamber based on fluid-solid interaction.

    PubMed

    Bai, Long; Cui, Yuhong; Zhang, Yixia; Zhao, Na

    2014-01-01

    The mechanical behavior of blood cells in the vessels has a close relationship with the physical characteristics of the blood and the cells. In this paper, a numerical simulation method was proposed to understand a single-blood cell's behavior in the vessels based on fluid-solid interaction method, which was conducted under adaptive time step and fixed time step, respectively. The main programme was C++ codes, which called FLUENT and ANSYS software, and UDF and APDL acted as a messenger to connect FLUENT and ANSYS for exchanging data. The computing results show: (1) the blood cell moved towards the bottom of the flow chamber in the beginning due to the influence of gravity, then it began to jump up when reached a certain height rather than touching the bottom. It could move downwards again after jump up, the blood cell could keep this way of moving like dancing continuously in the vessels; (2) the blood cell was rolling and deforming all the time; the rotation had oscillatory changes and the deformation became conspicuously when the blood cell was dancing. This new simulation method and results can be widely used in the researches of cytology, blood, cells, etc.

  11. Jet-mixing of initially-stratified liquid-liquid pipe flows: experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Wright, Stuart; Ibarra-Hernandes, Roberto; Xie, Zhihua; Markides, Christos; Matar, Omar

    2016-11-01

    Low pipeline velocities lead to stratification and so-called 'phase slip' in horizontal liquid-liquid flows due to differences in liquid densities and viscosities. Stratified flows have no suitable single point for sampling, from which average phase properties (e.g. fractions) can be established. Inline mixing, achieved by static mixers or jets in cross-flow (JICF), is often used to overcome liquid-liquid stratification by establishing unstable two-phase dispersions for sampling. Achieving dispersions in liquid-liquid pipeline flows using JICF is the subject of this experimental and modelling work. The experimental facility involves a matched refractive index liquid-liquid-solid system, featuring an ETFE test section, and experimental liquids which are silicone oil and a 51-wt% glycerol solution. The matching then allows the dispersed fluid phase fractions and velocity fields to be established through advanced optical techniques, namely PLIF (for phase) and PTV or PIV (for velocity fields). CFD codes using the volume of a fluid (VOF) method are then used to demonstrate JICF breakup and dispersion in stratified pipeline flows. A number of simple jet configurations are described and their dispersion effectiveness is compared with the experimental results. Funding from Cameron for Ph.D. studentship (SW) gratefully acknowledged.

  12. Realistic facial expression of virtual human based on color, sweat, and tears effects.

    PubMed

    Alkawaz, Mohammed Hazim; Basori, Ahmad Hoirul; Mohamad, Dzulkifli; Mohamed, Farhan

    2014-01-01

    Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics.

  13. Realistic Facial Expression of Virtual Human Based on Color, Sweat, and Tears Effects

    PubMed Central

    Alkawaz, Mohammed Hazim; Basori, Ahmad Hoirul; Mohamad, Dzulkifli; Mohamed, Farhan

    2014-01-01

    Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics. PMID:25136663

  14. Modeling and validation of heat and mass transfer in individual coffee beans during the coffee roasting process using computational fluid dynamics (CFD).

    PubMed

    Alonso-Torres, Beatriz; Hernández-Pérez, José Alfredo; Sierra-Espinoza, Fernando; Schenker, Stefan; Yeretzian, Chahan

    2013-01-01

    Heat and mass transfer in individual coffee beans during roasting were simulated using computational fluid dynamics (CFD). Numerical equations for heat and mass transfer inside the coffee bean were solved using the finite volume technique in the commercial CFD code Fluent; the software was complemented with specific user-defined functions (UDFs). To experimentally validate the numerical model, a single coffee bean was placed in a cylindrical glass tube and roasted by a hot air flow, using the identical geometrical 3D configuration and hot air flow conditions as the ones used for numerical simulations. Temperature and humidity calculations obtained with the model were compared with experimental data. The model predicts the actual process quite accurately and represents a useful approach to monitor the coffee roasting process in real time. It provides valuable information on time-resolved process variables that are otherwise difficult to obtain experimentally, but critical to a better understanding of the coffee roasting process at the individual bean level. This includes variables such as time-resolved 3D profiles of bean temperature and moisture content, and temperature profiles of the roasting air in the vicinity of the coffee bean.

  15. A Simulation Model for Drift Resistive Ballooning Turbulence Examining the Influence of Self-consistent Zonal Flows

    NASA Astrophysics Data System (ADS)

    Cohen, Bruce; Umansky, Maxim; Joseph, Ilon

    2015-11-01

    Progress is reported on including self-consistent zonal flows in simulations of drift-resistive ballooning turbulence using the BOUT + + framework. Previous published work addressed the simulation of L-mode edge turbulence in realistic single-null tokamak geometry using the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations. The effects of imposed sheared ExB poloidal rotation were included, with a static radial electric field fitted to experimental data. In new work our goal is to include the self-consistent effects on the radial electric field driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We describe a model for including self-consistent zonal flows and an algorithm for maintaining underlying plasma profiles to enable the simulation of steady-state turbulence. We examine the role of Braginskii viscous forces in providing necessary dissipation when including axisymmetric perturbations. We also report on some of the numerical difficulties associated with including the axisymmetric component of the fluctuating fields. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory (LLNL-ABS-674950).

  16. Phoresis in fluids.

    PubMed

    Brenner, Howard

    2011-12-01

    This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise quiescent single-component gases and liquids and animated by a gradient in the fluid's temperature (thermophoresis), pressure (barophoresis), density (pycnophoresis), or any combination thereof. The ansatz builds upon a recent paper [Phys. Rev. E 84, 046309 (2011)] concerned with slip of the fluid's mass velocity at solid surfaces--that is, with phenomena arising from violations of the classical no-slip fluid-mechanical boundary condition. Experimental and other data are cited in support of the phoretic model developed herein.

  17. Multidisciplinary System Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  18. Multi-Disciplinary System Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Han, Song

    1997-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  19. 76 FR 36231 - American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... exceed the test facility limits and reduces the number of functional tests for specific valve designs... addresses reducing the number of functional tests for specific valve designs. The NRC has identified no... the required test pressure for the new Class 1 incompressible-fluid, pressure-relief valve designs...

  20. CFD validation needs for advanced concepts at Northrop Corporation

    NASA Technical Reports Server (NTRS)

    George, Michael W.

    1987-01-01

    Information is given in viewgraph form on the Computational Fluid Dynamics (CFD) Workshop held July 14 - 16, 1987. Topics covered include the philosophy of CFD validation, current validation efforts, the wing-body-tail Euler code, F-20 Euler simulated oil flow, and Euler Navier-Stokes code validation for 2D and 3D nozzle afterbody applications.

  1. microRNA in Cerebral Spinal Fluid as Biomarkers of Alzheimer’s Disease Risk After Brain Injury

    DTIC Science & Technology

    2016-08-01

    protein processing is a key feature of AD. MiRNAs are small non- coding RNA that regulate mRNA transcription, and may be a significant cause of protein...non- coding RNA that regulate mRNA transcription, and may be a significant cause of protein dysregulation. Our investigative team has generated

  2. PerSEUS: Ultra-Low-Power High Performance Computing for Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Doxas, I.; Andreou, A.; Lyon, J.; Angelopoulos, V.; Lu, S.; Pritchett, P. L.

    2017-12-01

    Peta-op SupErcomputing Unconventional System (PerSEUS) aims to explore the use for High Performance Scientific Computing (HPC) of ultra-low-power mixed signal unconventional computational elements developed by Johns Hopkins University (JHU), and demonstrate that capability on both fluid and particle Plasma codes. We will describe the JHU Mixed-signal Unconventional Supercomputing Elements (MUSE), and report initial results for the Lyon-Fedder-Mobarry (LFM) global magnetospheric MHD code, and a UCLA general purpose relativistic Particle-In-Cell (PIC) code.

  3. Development of numerical methods for overset grids with applications for the integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    1995-01-01

    Algorithms and computer code developments were performed for the overset grid approach to solving computational fluid dynamics problems. The techniques developed are applicable to compressible Navier-Stokes flow for any general complex configurations. The computer codes developed were tested on different complex configurations with the Space Shuttle launch vehicle configuration as the primary test bed. General, efficient and user-friendly codes were produced for grid generation, flow solution and force and moment computation.

  4. Fan Flutter Computations Using the Harmonic Balance Method

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Thomas, Jeffrey P.; Reddy, T.S.R.

    2009-01-01

    An experimental forward-swept fan encountered flutter at part-speed conditions during wind tunnel testing. A new propulsion aeroelasticity code, based on a computational fluid dynamics (CFD) approach, was used to model the aeroelastic behavior of this fan. This threedimensional code models the unsteady flowfield due to blade vibrations using a harmonic balance method to solve the Navier-Stokes equations. This paper describes the flutter calculations and compares the results to experimental measurements and previous results from a time-accurate propulsion aeroelasticity code.

  5. Accuracy of the lattice-Boltzmann method using the Cell processor

    NASA Astrophysics Data System (ADS)

    Harvey, M. J.; de Fabritiis, G.; Giupponi, G.

    2008-11-01

    Accelerator processors like the new Cell processor are extending the traditional platforms for scientific computation, allowing orders of magnitude more floating-point operations per second (flops) compared to standard central processing units. However, they currently lack double-precision support and support for some IEEE 754 capabilities. In this work, we develop a lattice-Boltzmann (LB) code to run on the Cell processor and test the accuracy of this lattice method on this platform. We run tests for different flow topologies, boundary conditions, and Reynolds numbers in the range Re=6 350 . In one case, simulation results show a reduced mass and momentum conservation compared to an equivalent double-precision LB implementation. All other cases demonstrate the utility of the Cell processor for fluid dynamics simulations. Benchmarks on two Cell-based platforms are performed, the Sony Playstation3 and the QS20/QS21 IBM blade, obtaining a speed-up factor of 7 and 21, respectively, compared to the original PC version of the code, and a conservative sustained performance of 28 gigaflops per single Cell processor. Our results suggest that choice of IEEE 754 rounding mode is possibly as important as double-precision support for this specific scientific application.

  6. Computational fluid dynamics for modeling the turbulent natural convection in a double air-channel solar chimney system

    NASA Astrophysics Data System (ADS)

    Zavala-Guillén, I.; Xamán, J.; Álvarez, G.; Arce, J.; Hernández-Pérez, I.; Gijón-Rivera, M.

    2016-03-01

    This study reports the modeling of the turbulent natural convection in a double air-channel solar chimney (SC-DC) and its comparison with a single air-channel solar chimney (SC-C). Prediction of the mass flow and the thermal behavior of the SC-DC were obtained under three different climates of Mexico during one summer day. The climates correspond to: tropical savannah (Mérida), arid desert (Hermosillo) and temperate with warm summer (Mexico City). A code based on the Finite Volume Method was developed and a k-ω turbulence model has been used to model air turbulence in the solar chimney (SC). The code was validated against experimental data. The results indicate that during the day the SC-DC extracts about 50% more mass flow than the SC-C. When the SC-DC is located in Mérida, Hermosillo and Mexico City, the air-changes extracted along the day were 60, 63 and 52, respectively. The air temperature at the outlet of the chimney increased up to 33%, 38% and 61% with respect to the temperature it has at the inlet for Mérida, Hermosillo and Mexico City, respectively.

  7. Tracking Debris Shed by a Space-Shuttle Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Stuart, Phillip C.; Rogers, Stuart E.

    2009-01-01

    The DEBRIS software predicts the trajectories of debris particles shed by a space-shuttle launch vehicle during ascent, to aid in assessing potential harm to the space-shuttle orbiter and crew. The user specifies the location of release and other initial conditions for a debris particle. DEBRIS tracks the particle within an overset grid system by means of a computational fluid dynamics (CFD) simulation of the local flow field and a ballistic simulation that takes account of the mass of the particle and its aerodynamic properties in the flow field. The computed particle trajectory is stored in a file to be post-processed by other software for viewing and analyzing the trajectory. DEBRIS supplants a prior debris tracking code that took .15 minutes to calculate a single particle trajectory: DEBRIS can calculate 1,000 trajectories in .20 seconds on a desktop computer. Other improvements over the prior code include adaptive time-stepping to ensure accuracy, forcing at least one step per grid cell to ensure resolution of all CFD-resolved flow features, ability to simulate rebound of debris from surfaces, extensive error checking, a builtin suite of test cases, and dynamic allocation of memory.

  8. Screech Noise Generation From Supersonic Underexpanded Jets Investigated

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.

    2000-01-01

    Many supersonic military aircraft and some of the modern civilian aircraft (such as the Boeing 777) produce shock-associated noise. This noise is generated from the jet engine plume when the engine nozzle is operated beyond the subsonic operation limit to gain additional thrust. At these underexpanded conditions, a series of shock waves appear in the plume. The turbulent vortices present in the jet interact with the shock waves and produce the additional shock-associated noise. Screech belongs to this noise category, where sound is generated in single or multiple pure tones. The high dynamic load associated with screech can damage the tailplane. One purpose of this study at the NASA Glenn Research Center at Lewis Field was to provide an accurate data base for validating various computational fluid dynamics (CFD) codes. These codes will be used to predict the frequency and amplitude of screech tones. A second purpose was to advance the fundamental physical understanding of how shock-turbulence interactions generate sound. Previously, experiments on shock-turbulence interaction were impossible to perform because no suitable technique was available. As one part of this program, an optical Rayleigh-scattering measurement technique was devised to overcome this difficulty.

  9. Development of a linearized unsteady Euler analysis for turbomachinery blade rows

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Montgomery, Matthew D.; Kousen, Kenneth A.

    1995-01-01

    A linearized unsteady aerodynamic analysis for axial-flow turbomachinery blading is described in this report. The linearization is based on the Euler equations of fluid motion and is motivated by the need for an efficient aerodynamic analysis that can be used in predicting the aeroelastic and aeroacoustic responses of blade rows. The field equations and surface conditions required for inviscid, nonlinear and linearized, unsteady aerodynamic analyses of three-dimensional flow through a single, blade row operating within a cylindrical duct, are derived. An existing numerical algorithm for determining time-accurate solutions of the nonlinear unsteady flow problem is described, and a numerical model, based upon this nonlinear flow solver, is formulated for the first-harmonic linear unsteady problem. The linearized aerodynamic and numerical models have been implemented into a first-harmonic unsteady flow code, called LINFLUX. At present this code applies only to two-dimensional flows, but an extension to three-dimensions is planned as future work. The three-dimensional aerodynamic and numerical formulations are described in this report. Numerical results for two-dimensional unsteady cascade flows, excited by prescribed blade motions and prescribed aerodynamic disturbances at inlet and exit, are also provided to illustrate the present capabilities of the LINFLUX analysis.

  10. Experimental and theoretical developments in the Mochi project

    NASA Astrophysics Data System (ADS)

    You, Setthivoine; von der Linden, Jens; Vereen, Keon; Lavine, Eric Sander; Carroll, Evan; Card, Alexander; Azuara-Rosales, Manuel; Quinley, Morgan; Yun, Gunsu

    2015-11-01

    The Mochi project investigates the interaction between magnetic fields and plasma flows in cylindrical and toroidal geometries. The configuration is designed to tailor the radial electric field profile with three annular electrodes and allow for shear helical flows in magnetized plasma jets or merging spheromaks. First plasma has been achieved and characterization is in progress with images, magnetic probes, an energy analyzer, an interferometer, a fast ion gauge, and optical and RF spectroscopy. Vector tomography of ion Doppler spectroscopy is progressing with the design of the custom fiber bundle and implementation of the numerical code. The first experiments are investigating the coupling of sausage and kink instabilities, comparing measurements to a new stability criterion and a numerical stability code. A new canonical field theory has been developed to help interpret the dynamics of plasma self-organization. The theory augments the Lagrangian of general dynamical systems to rigourously demonstrate that canonical helicity transport is valid across single particle, kinetic and fluid regimes, that dynamical equations can be re-formulated as a form of Maxwell's equations, and that helicity is conserved only when density gradients are shallow. This work is supported by US DOE Grant DE-SC0010340.

  11. CFD application to supersonic/hypersonic inlet airframe integration. [computational fluid dynamics (CFD)

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1988-01-01

    Supersonic external compression inlets are introduced, and the computational fluid dynamics (CFD) codes and tests needed to study flow associated with these inlets are outlined. Normal shock wave turbulent boundary layer interaction is discussed. Boundary layer control is considered. Glancing sidewall shock interaction is treated. The CFD validation of hypersonic inlet configurations is explained. Scramjet inlet modules are shown.

  12. Coding stimulus amplitude by correlated neural activity

    NASA Astrophysics Data System (ADS)

    Metzen, Michael G.; Ávila-Åkerberg, Oscar; Chacron, Maurice J.

    2015-04-01

    While correlated activity is observed ubiquitously in the brain, its role in neural coding has remained controversial. Recent experimental results have demonstrated that correlated but not single-neuron activity can encode the detailed time course of the instantaneous amplitude (i.e., envelope) of a stimulus. These have furthermore demonstrated that such coding required and was optimal for a nonzero level of neural variability. However, a theoretical understanding of these results is still lacking. Here we provide a comprehensive theoretical framework explaining these experimental findings. Specifically, we use linear response theory to derive an expression relating the correlation coefficient to the instantaneous stimulus amplitude, which takes into account key single-neuron properties such as firing rate and variability as quantified by the coefficient of variation. The theoretical prediction was in excellent agreement with numerical simulations of various integrate-and-fire type neuron models for various parameter values. Further, we demonstrate a form of stochastic resonance as optimal coding of stimulus variance by correlated activity occurs for a nonzero value of noise intensity. Thus, our results provide a theoretical explanation of the phenomenon by which correlated but not single-neuron activity can code for stimulus amplitude and how key single-neuron properties such as firing rate and variability influence such coding. Correlation coding by correlated but not single-neuron activity is thus predicted to be a ubiquitous feature of sensory processing for neurons responding to weak input.

  13. Verification of fluid-structure-interaction algorithms through the method of manufactured solutions for actuator-line applications

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Ganesh; Sprague, Michael

    2017-11-01

    Demonstrating expected convergence rates with spatial- and temporal-grid refinement is the ``gold standard'' of code and algorithm verification. However, the lack of analytical solutions and generating manufactured solutions presents challenges for verifying codes for complex systems. The application of the method of manufactured solutions (MMS) for verification for coupled multi-physics phenomena like fluid-structure interaction (FSI) has only seen recent investigation. While many FSI algorithms for aeroelastic phenomena have focused on boundary-resolved CFD simulations, the actuator-line representation of the structure is widely used for FSI simulations in wind-energy research. In this work, we demonstrate the verification of an FSI algorithm using MMS for actuator-line CFD simulations with a simplified structural model. We use a manufactured solution for the fluid velocity field and the displacement of the SMD system. We demonstrate the convergence of both the fluid and structural solver to second-order accuracy with grid and time-step refinement. This work was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind Energy Technologies Office, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  14. A Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2014-01-01

    A capability to couple NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This paper summarizes the efforts in applying the installed coupling software to demonstrate/investigate fluid-structure interaction (FSI) between pressure wave and flexible inhibitor inside reusable solid rocket motor (RSRM). First a unified governing equation for both fluid and structure is presented, then an Eulerian-Lagrangian framework is described to satisfy the interfacial continuity requirements. The features of fluid solver, Loci/CHEM and structural solver, CoBi, are discussed before the coupling methodology of the solvers is described. The simulation uses production level CFD LES turbulence model with a grid resolution of 80 million cells. The flexible inhibitor is modeled with full 3D shell elements. Verifications against analytical solutions of structural model under steady uniform pressure condition and under dynamic condition of modal analysis show excellent agreements in terms of displacement distribution and eigen modal frequencies. The preliminary coupled result shows that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor.

  15. Initial Coupling of the RELAP-7 and PRONGHORN Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Ortensi; D. Andrs; A.A. Bingham

    2012-10-01

    Modern nuclear reactor safety codes require the ability to solve detailed coupled neutronic- thermal fluids problems. For larger cores, this implies fully coupled higher dimensionality spatial dynamics with appropriate feedback models that can provide enough resolution to accurately compute core heat generation and removal during steady and unsteady conditions. The reactor analysis code PRONGHORN is being coupled to RELAP-7 as a first step to extend RELAP’s current capabilities. This report details the mathematical models, the type of coupling, and the testing results from the integrated system. RELAP-7 is a MOOSE-based application that solves the continuity, momentum, and energy equations inmore » 1-D for a compressible fluid. The pipe and joint capabilities enable it to model parts of the power conversion unit. The PRONGHORN application, also developed on the MOOSE infrastructure, solves the coupled equations that define the neutron diffusion, fluid flow, and heat transfer in a full core model. The two systems are loosely coupled to simplify the transition towards a more complex infrastructure. The integration is tested on a simplified version of the OECD/NEA MHTGR-350 Coupled Neutronics-Thermal Fluids benchmark model.« less

  16. A Generalized Fluid Formulation for Turbomachinery Computations

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.; Sankaran, Venkateswaran; Dorney, Daniel J.; Sondak, Douglas L.

    2003-01-01

    A generalized formulation of the equations of motion of an arbitrary fluid are developed for the purpose of defining a common iterative algorithm for computational procedures. The method makes use of the equations of motion in conservation form with separate pseudo-time derivatives used for defining the numerical flux for a Riemann solver and the convergence algorithm. The partial differential equations are complemented by an thermodynamic and caloric equations of state of a complexity necessary for describing the fluid. Representative solutions with a new code based on this general equation formulation are provided for three turbomachinery problems. The first uses air as a working fluid while the second uses gaseous oxygen in a regime in which real gas effects are of little importance. These nearly perfect gas computations provide a basis for comparing with existing perfect gas code computations. The third case is for the flow of liquid oxygen through a turbine where real gas effects are significant. Vortex shedding predictions with the LOX formulations reduce the discrepancy between perfect gas computations and experiment by approximately an order of magnitude, thereby verifying the real gas formulation as well as providing an effective case where its capabilities are necessary.

  17. Augmented burst-error correction for UNICON laser memory. [digital memory

    NASA Technical Reports Server (NTRS)

    Lim, R. S.

    1974-01-01

    A single-burst-error correction system is described for data stored in the UNICON laser memory. In the proposed system, a long fire code with code length n greater than 16,768 bits was used as an outer code to augment an existing inner shorter fire code for burst error corrections. The inner fire code is a (80,64) code shortened from the (630,614) code, and it is used to correct a single-burst-error on a per-word basis with burst length b less than or equal to 6. The outer code, with b less than or equal to 12, would be used to correct a single-burst-error on a per-page basis, where a page consists of 512 32-bit words. In the proposed system, the encoding and error detection processes are implemented by hardware. A minicomputer, currently used as a UNICON memory management processor, is used on a time-demanding basis for error correction. Based upon existing error statistics, this combination of an inner code and an outer code would enable the UNICON system to obtain a very low error rate in spite of flaws affecting the recorded data.

  18. Measurements of a turbulent horseshoe vortex formed around a cylinder

    NASA Technical Reports Server (NTRS)

    Eckerle, W. A.; Langston, L. S.

    1986-01-01

    An experimental investigation was conducted to characterize a symmetrical horseshoe vortex system in front of and around a single large-diameter right cylinder centered between the sidewalls of a wind tunnel. Surface flow visualization and surface static pressure measurements as well as extensive mean velocity and pressure measurements in and around the vortex system were acquired. The results lend new insight into the formation and development of the vortex system. Contrary to what has been assumed previously, a strong vortex was not identified in the streamwise plane of symmetry, but started a significant angular distance away from it. Rather than the multiple vortex systems reported by others, only a single primary vortex and saddle point were found. The scale of the separation process at the saddle point was much smaller than the scale of the approaching boundary layer thickness. Results of the present study not only shed light on such phenomena as the nonsymmetrical endwall flow in axial turbomachinery but can also be used as a test case for three-dimensional computational fluid mechanics computer codes.

  19. An MPI-CUDA approach for hypersonic flows with detailed state-to-state air kinetics using a GPU cluster

    NASA Astrophysics Data System (ADS)

    Bonelli, Francesco; Tuttafesta, Michele; Colonna, Gianpiero; Cutrone, Luigi; Pascazio, Giuseppe

    2017-10-01

    This paper describes the most advanced results obtained in the context of fluid dynamic simulations of high-enthalpy flows using detailed state-to-state air kinetics. Thermochemical non-equilibrium, typical of supersonic and hypersonic flows, was modeled by using both the accurate state-to-state approach and the multi-temperature model proposed by Park. The accuracy of the two thermochemical non-equilibrium models was assessed by comparing the results with experimental findings, showing better predictions provided by the state-to-state approach. To overcome the huge computational cost of the state-to-state model, a multiple-nodes GPU implementation, based on an MPI-CUDA approach, was employed and a comprehensive code performance analysis is presented. Both the pure MPI-CPU and the MPI-CUDA implementations exhibit excellent scalability performance. GPUs outperform CPUs computing especially when the state-to-state approach is employed, showing speed-ups, of the single GPU with respect to the single-core CPU, larger than 100 in both the case of one MPI process and multiple MPI process.

  20. CFD Based Design of a Filming Injector for N+3 Combustors

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Mongia, Hukam; Lee, Phil

    2016-01-01

    An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements for next-generation LDI-3 combustor design. The National Combustion Code (NCC) was used to perform non-reacting and two-phase reacting flow computations for a newly-designed pre-filming type fuel injector LDI-3 injector, in a single-injector and a five-injector array configuration. All computations were performed with a consistent approach of mesh-optimization, spray-modeling, ignition and kinetics-modeling. Computational predictions of the aerodynamics of the single-injector were used to arrive at an optimized main-injector design that meets effective area and fuel-air mixing criteria. Emissions (EINOx) characteristics were predicted for a medium-power engine cycle condition, and will be compared with data when it is made available from experimental measurements. The use of a PDF-like turbulence-chemistry interaction model with NCC's Time-Filtered Navier-Stokes (TFNS) solver is shown to produce a significant impact on the CFD results, when compared with a laminar-chemistry TFNS approach for the five-injector computations.

  1. Modeling the hydrothermal circulation and the hydrogen production at the Rainbow site with Cast3M

    NASA Astrophysics Data System (ADS)

    Perez, F.; Mügler, C.; Charlou, J.; Jean-baptiste, P.

    2012-12-01

    On the Mid-Atlantic Ridge, the Rainbow venting site is described as an ultramafic-hosted active hydrothermal site and releases high fluxes of methane and hydrogen [1, 2]. This behavior has first been interpreted as the result of serpentinization processes. But geochemical reactions involving olivine and plagioclase assemblages, and leading to chlorite, tremolite, talc and magnetite assemblages, could contribute to the observed characteristics of the exiting fluid [2]. The predominance of one of these geochemical reactions or their coexistence strongly depend on the hydrothermal fluid circulation. We developed and validated a 2D/3D numerical model using a Finite Volume method to simulate heat driven fluid flows in the framework of the Cast3M code [3, 4]. We also developed a numerical model for hydrogen production and transport that is based on experimental studies of the serpentinization processes [5-6]. This geochemical model takes into account the exothermic and water-consuming behavior of the serpentinization reaction and it can be coupled to our thermo-hydrogeological model. Our simulations provide temperatures, mass fluxes and venting surface areas very close to those estimated in-situ [7]. We showed that a single-path model [8] was necessary to simulate high values such as the in-situ measured temperatures and estimated water mass fluxes of the Rainbow site [7]. This single-path model will be used to model the production and transport of hydrogen at the Rainbow hydrothermal site. References [1]Charlou et al. (2010) AGU Monograph series. [2]Seyfried et al. (2011) Geochim. Cosmochim. Acta 75, 1574-1593. [3]http://www-cast3m.cea.fr. [4]Martin & Fyfe (1970) Chem. Geol. 6, 185-202. [5] Marcaillou et al. (2011) Earth and Planet. Sci. Lett. 303, 281-290. [6]Malvoisin et al. (2012) JGR, 117, B01104. [7]Perez et al. (2012) submited to Computational Geosciences. [8]Lowell & Germanovich (2004) AGU, Washington DC, USA.

  2. Advances in pleural disease management including updated procedural coding.

    PubMed

    Haas, Andrew R; Sterman, Daniel H

    2014-08-01

    Over 1.5 million pleural effusions occur in the United States every year as a consequence of a variety of inflammatory, infectious, and malignant conditions. Although rarely fatal in isolation, pleural effusions are often a marker of a serious underlying medical condition and contribute to significant patient morbidity, quality-of-life reduction, and mortality. Pleural effusion management centers on pleural fluid drainage to relieve symptoms and to investigate pleural fluid accumulation etiology. Many recent studies have demonstrated important advances in pleural disease management approaches for a variety of pleural fluid etiologies, including malignant pleural effusion, complicated parapneumonic effusion and empyema, and chest tube size. The last decade has seen greater implementation of real-time imaging assistance for pleural effusion management and increasing use of smaller bore percutaneous chest tubes. This article will briefly review recent pleural effusion management literature and update the latest changes in common procedural terminology billing codes as reflected in the changing landscape of imaging use and percutaneous approaches to pleural disease management.

  3. A Software Upgrade of the NASA Aeroheating Code "MINIVER"

    NASA Technical Reports Server (NTRS)

    Louderback, Pierce Mathew

    2013-01-01

    Computational Fluid Dynamics (CFD) is a powerful and versatile tool simulating fluid and thermal environments of launch and re-entry vehicles alike. Where it excels in power and accuracy, however, it lacks in speed. An alternative tool for this purpose is known as MINIVER, an aeroheating code widely used by NASA and within the aerospace industry. Capable of providing swift, reasonably accurate approximations of the fluid and thermal environment of launch vehicles, MINIVER is used where time is of the essence and accuracy need not be exact. However, MINIVER is an old, aging tool: running on a user-unfriendly, legacy command-line interface, it is difficult for it to keep pace with more modem software tools. Florida Institute of Technology was tasked with the construction of a new Graphical User Interface (GUI) that implemented the legacy version's capabilities and enhanced them with new tools and utilities. This thesis provides background to the legacy version of the program, the progression and final version of a modem user interface, and benchmarks to demonstrate its usefulness.

  4. Pleural effusion segmentation in thin-slice CT

    NASA Astrophysics Data System (ADS)

    Donohue, Rory; Shearer, Andrew; Bruzzi, John; Khosa, Huma

    2009-02-01

    A pleural effusion is excess fluid that collects in the pleural cavity, the fluid-filled space that surrounds the lungs. Surplus amounts of such fluid can impair breathing by limiting the expansion of the lungs during inhalation. Measuring the fluid volume is indicative of the effectiveness of any treatment but, due to the similarity to surround regions, fragments of collapsed lung present and topological changes; accurate quantification of the effusion volume is a difficult imaging problem. A novel code is presented which performs conditional region growth to accurately segment the effusion shape across a dataset. We demonstrate the applicability of our technique in the segmentation of pleural effusion and pulmonary masses.

  5. Fully-Coupled Fluid/Structure Vibration Analysis Using MSC/NASTRAN

    NASA Technical Reports Server (NTRS)

    Fernholz, Christian M.; Robinson, Jay H.

    1996-01-01

    MSC/NASTRAN's performance in the solution of fully-coupled fluid/structure problems is evaluated. NASTRAN is used to perform normal modes (SOL 103) and forced-response analyses (SOL 108, 111) on cylindrical and cubic fluid/structure models. Bulk data file cards unique to the specification of a fluid element are discussed and analytic partially-coupled solutions are derived for each type of problem. These solutions are used to evaluate NASTRAN's solutions for accuracy. Appendices to this work include NASTRAN data presented in fringe plot form, FORTRAN source code listings written in support of this work, and NASTRAN data file usage requirements for each analysis.

  6. Computer code for gas-liquid two-phase vortex motions: GLVM

    NASA Technical Reports Server (NTRS)

    Yeh, T. T.

    1986-01-01

    A computer program aimed at the phase separation between gas and liquid at zero gravity, induced by vortex motion, is developed. It utilizes an explicit solution method for a set of equations describing rotating gas-liquid flows. The vortex motion is established by a tangential fluid injection. A Lax-Wendroff two-step (McCormack's) numerical scheme is used. The program can be used to study the fluid dynamical behavior of the rotational two-phase fluids in a cylindrical tank. It provides a quick/easy sensitivity test on various parameters and thus provides the guidance for the design and use of actual physical systems for handling two-phase fluids.

  7. Workshop report - A validation study of Navier-Stokes codes for transverse injection into a Mach 2 flow

    NASA Technical Reports Server (NTRS)

    Eklund, Dean R.; Northam, G. B.; Mcdaniel, J. C.; Smith, Cliff

    1992-01-01

    A CFD (Computational Fluid Dynamics) competition was held at the Third Scramjet Combustor Modeling Workshop to assess the current state-of-the-art in CFD codes for the analysis of scramjet combustors. Solutions from six three-dimensional Navier-Stokes codes were compared for the case of staged injection of air behind a step into a Mach 2 flow. This case was investigated experimentally at the University of Virginia and extensive in-stream data was obtained. Code-to-code comparisons have been made with regard to both accuracy and efficiency. The turbulence models employed in the solutions are believed to be a major source of discrepancy between the six solutions.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.

    The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scalemore » projects such as ICF3D.« less

  9. Automatic Data Traffic Control on DSM Architecture

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry; Kwak, Dochan (Technical Monitor)

    2000-01-01

    We study data traffic on distributed shared memory machines and conclude that data placement and grouping improve performance of scientific codes. We present several methods which user can employ to improve data traffic in his code. We report on implementation of a tool which detects the code fragments causing data congestions and advises user on improvements of data routing in these fragments. The capabilities of the tool include deduction of data alignment and affinity from the source code; detection of the code constructs having abnormally high cache or TLB misses; generation of data placement constructs. We demonstrate the capabilities of the tool on experiments with NAS parallel benchmarks and with a simple computational fluid dynamics application ARC3D.

  10. Data Parallel Line Relaxation (DPLR) Code User Manual: Acadia - Version 4.01.1

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; White, Todd; Mangini, Nancy

    2009-01-01

    Data-Parallel Line Relaxation (DPLR) code is a computational fluid dynamic (CFD) solver that was developed at NASA Ames Research Center to help mission support teams generate high-value predictive solutions for hypersonic flow field problems. The DPLR Code Package is an MPI-based, parallel, full three-dimensional Navier-Stokes CFD solver with generalized models for finite-rate reaction kinetics, thermal and chemical non-equilibrium, accurate high-temperature transport coefficients, and ionized flow physics incorporated into the code. DPLR also includes a large selection of generalized realistic surface boundary conditions and links to enable loose coupling with external thermal protection system (TPS) material response and shock layer radiation codes.

  11. Recovery Act: An Integrated Experimental and Numerical Study: Developing a Reaction Transport Model that Couples Chemical Reactions of Mineral Dissolution/Precipitation with Spatial and Temporal Flow Variations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saar, Martin O.; Seyfried, Jr., William E.; Longmire, Ellen K.

    2016-06-24

    A total of 12 publications and 23 abstracts were produced as a result of this study. In particular, the compilation of a thermodynamic database utilizing consistent, current thermodynamic data is a major step toward accurately modeling multi-phase fluid interactions with solids. Existing databases designed for aqueous fluids did not mesh well with existing solid phase databases. Addition of a second liquid phase (CO2) magnifies the inconsistencies between aqueous and solid thermodynamic databases. Overall, the combination of high temperature and pressure lab studies (task 1), using a purpose built apparatus, and solid characterization (task 2), using XRCT and more developed technologies,more » allowed observation of dissolution and precipitation processes under CO2 reservoir conditions. These observations were combined with results from PIV experiments on multi-phase fluids (task 3) in typical flow path geometries. The results of the tasks 1, 2, and 3 were compiled and integrated into numerical models utilizing Lattice-Boltzmann simulations (task 4) to realistically model the physical processes and were ultimately folded into TOUGH2 code for reservoir scale modeling (task 5). Compilation of the thermodynamic database assisted comparisons to PIV experiments (Task 3) and greatly improved Lattice Boltzmann (Task 4) and TOUGH2 simulations (Task 5). PIV (Task 3) and experimental apparatus (Task 1) have identified problem areas in TOUGHREACT code. Additional lab experiments and coding work has been integrated into an improved numerical modeling code.« less

  12. ms2: A molecular simulation tool for thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Deublein, Stephan; Eckl, Bernhard; Stoll, Jürgen; Lishchuk, Sergey V.; Guevara-Carrion, Gabriela; Glass, Colin W.; Merker, Thorsten; Bernreuther, Martin; Hasse, Hans; Vrabec, Jadran

    2011-11-01

    This work presents the molecular simulation program ms2 that is designed for the calculation of thermodynamic properties of bulk fluids in equilibrium consisting of small electro-neutral molecules. ms2 features the two main molecular simulation techniques, molecular dynamics (MD) and Monte-Carlo. It supports the calculation of vapor-liquid equilibria of pure fluids and multi-component mixtures described by rigid molecular models on the basis of the grand equilibrium method. Furthermore, it is capable of sampling various classical ensembles and yields numerous thermodynamic properties. To evaluate the chemical potential, Widom's test molecule method and gradual insertion are implemented. Transport properties are determined by equilibrium MD simulations following the Green-Kubo formalism. ms2 is designed to meet the requirements of academia and industry, particularly achieving short response times and straightforward handling. It is written in Fortran90 and optimized for a fast execution on a broad range of computer architectures, spanning from single processor PCs over PC-clusters and vector computers to high-end parallel machines. The standard Message Passing Interface (MPI) is used for parallelization and ms2 is therefore easily portable to different computing platforms. Feature tools facilitate the interaction with the code and the interpretation of input and output files. The accuracy and reliability of ms2 has been shown for a large variety of fluids in preceding work. Program summaryProgram title:ms2 Catalogue identifier: AEJF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Special Licence supplied by the authors No. of lines in distributed program, including test data, etc.: 82 794 No. of bytes in distributed program, including test data, etc.: 793 705 Distribution format: tar.gz Programming language: Fortran90 Computer: The simulation tool ms2 is usable on a wide variety of platforms, from single processor machines over PC-clusters and vector computers to vector-parallel architectures. (Tested with Fortran compilers: gfortran, Intel, PathScale, Portland Group and Sun Studio.) Operating system: Unix/Linux, Windows Has the code been vectorized or parallelized?: Yes. Message Passing Interface (MPI) protocol Scalability. Excellent scalability up to 16 processors for molecular dynamics and >512 processors for Monte-Carlo simulations. RAM:ms2 runs on single processors with 512 MB RAM. The memory demand rises with increasing number of processors used per node and increasing number of molecules. Classification: 7.7, 7.9, 12 External routines: Message Passing Interface (MPI) Nature of problem: Calculation of application oriented thermodynamic properties for rigid electro-neutral molecules: vapor-liquid equilibria, thermal and caloric data as well as transport properties of pure fluids and multi-component mixtures. Solution method: Molecular dynamics, Monte-Carlo, various classical ensembles, grand equilibrium method, Green-Kubo formalism. Restrictions: No. The system size is user-defined. Typical problems addressed by ms2 can be solved by simulating systems containing typically 2000 molecules or less. Unusual features: Feature tools are available for creating input files, analyzing simulation results and visualizing molecular trajectories. Additional comments: Sample makefiles for multiple operation platforms are provided. Documentation is provided with the installation package and is available at http://www.ms-2.de. Running time: The running time of ms2 depends on the problem set, the system size and the number of processes used in the simulation. Running four processes on a "Nehalem" processor, simulations calculating VLE data take between two and twelve hours, calculating transport properties between six and 24 hours.

  13. Methods used to calculate doses resulting from inhalation of Capstone depleted uranium aerosols.

    PubMed

    Miller, Guthrie; Cheng, Yung Sung; Traub, Richard J; Little, Tom T; Guilmette, Raymond A

    2009-03-01

    The methods used to calculate radiological and toxicological doses to hypothetical persons inside either a U.S. Army Abrams tank or Bradley Fighting Vehicle that has been perforated by depleted uranium munitions are described. Data from time- and particle-size-resolved measurements of depleted uranium aerosol as well as particle-size-resolved measurements of aerosol solubility in lung fluids for aerosol produced in the breathing zones of the hypothetical occupants were used. The aerosol was approximated as a mixture of nine monodisperse (single particle size) components corresponding to particle size increments measured by the eight stages plus the backup filter of the cascade impactors used. A Markov Chain Monte Carlo Bayesian analysis technique was employed, which straightforwardly calculates the uncertainties in doses. Extensive quality control checking of the various computer codes used is described.

  14. CFD-Based Design of a Filming Injector for N+3 Combustors

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Mongia, Hukam; Lee, Phil

    2016-01-01

    An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements coupled with a new fuel-filming injector design for next-generation N+3 combustors. The National Combustion Code (NCC) was used to perform non-reacting and two-phase reacting flow computations on a N+3 injector configuration, in a single-element and a five-element injector array. All computations were performed with a consistent approach towards mesh-generation, spray-, ignition- and kinetics-modeling with the NCC. Computational predictions of the aerodynamics of the injector were used to arrive at an optimal injector design that met effective area, aerodynamics, and fuel-air mixing criteria. LDI-3 emissions (EINOx, EICO and UHC) were compared with the previous generation LDI-2 combustor experimental data at representative engine cycle conditions.

  15. Infrared imaging - A validation technique for computational fluid dynamics codes used in STOVL applications

    NASA Technical Reports Server (NTRS)

    Hardman, R. R.; Mahan, J. R.; Smith, M. H.; Gelhausen, P. A.; Van Dalsem, W. R.

    1991-01-01

    The need for a validation technique for computational fluid dynamics (CFD) codes in STOVL applications has led to research efforts to apply infrared thermal imaging techniques to visualize gaseous flow fields. Specifically, a heated, free-jet test facility was constructed. The gaseous flow field of the jet exhaust was characterized using an infrared imaging technique in the 2 to 5.6 micron wavelength band as well as conventional pitot tube and thermocouple methods. These infrared images are compared to computer-generated images using the equations of radiative exchange based on the temperature distribution in the jet exhaust measured with the thermocouple traverses. Temperature and velocity measurement techniques, infrared imaging, and the computer model of the infrared imaging technique are presented and discussed. From the study, it is concluded that infrared imaging techniques coupled with the radiative exchange equations applied to CFD models are a valid method to qualitatively verify CFD codes used in STOVL applications.

  16. Fluid Structure Interaction in a Turbine Blade

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.

    2004-01-01

    An unsteady, three dimensional Navier-Stokes solution in rotating frame formulation for turbomachinery applications is presented. Casting the governing equations in a rotating frame enabled the freezing of grid motion and resulted in substantial savings in computer time. The turbine blade was computationally simulated and probabilistically evaluated in view of several uncertainties in the aerodynamic, structural, material and thermal variables that govern the turbine blade. The interconnection between the computational fluid dynamics code and finite element structural analysis code was necessary to couple the thermal profiles with the structural design. The stresses and their variations were evaluated at critical points on the Turbine blade. Cumulative distribution functions and sensitivity factors were computed for stress responses due to aerodynamic, geometric, mechanical and thermal random variables.

  17. Numerical Simulation of the ``Fluid Mechanical Sewing Machine''

    NASA Astrophysics Data System (ADS)

    Brun, Pierre-Thomas; Audoly, Basile; Ribe, Neil

    2011-11-01

    A thin thread of viscous fluid falling onto a moving conveyor belt generates a wealth of complex ``stitch'' patterns depending on the belt speed and the fall height. To understand the rich nonlinear dynamics of this system, we have developed a new numerical code for simulating unsteady viscous threads, based on a discrete description of the geometry and a variational formulation for the viscous stresses. The code successfully reproduces all major features of the experimental state diagram of Morris et al. (Phys. Rev. E 2008). Fourier analysis of the motion of the thread's contact point with the belt suggests a new classification of the observed patterns, and reveals that the system behaves as a nonlinear oscillator coupling the pendulum modes of the thread.

  18. Theoretical investigation of the thermal hydraulic behaviour of a slab-type liquid metal target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dury, T.V.; Smith, B.L.

    1996-06-01

    The thermal hydraulics codes CFDS-FLOW3D and ASTEC have been used to simulate a slabtype design of ESS spallation target. This design is single-skinned, and of tapering form (in the beam direction), with rounded sides in a cross-section through a plane normal to the beam. The coolant fluid used is mercury, under forced circulation, with an inlet temperature of 180{degrees}C. The goal of these computer studies was to understand the behaviour of the coolant flow, and hence to arrive at a design which optimises the heat extraction for a given beam power - in the sense of: (1) minimising the peakmore » local fluid temperature within the target, (2) maintaining an acceptable temperature level and distribution over and through the target outer wall, (3) keeping the overall fluid pressure loss through the complete target to a minimum, (4) staying within the physical limits of overall size required, particularly in the region of primary spallation. Two- and three-dimensional models have been used, with different arrangements and design of internal baffles, and different coolant flow distributions at the target inlet. Nominal total inlet mass flow was 245 kg/s, and a heat deposition profile used which was based on the proton beam energy distribution. This gave a nominal total heat load of 3.23 MW - of which 8.2kW were deposited in the window steel.« less

  19. Simultaneous Determination of Fluid Shifts during Thermal Stress in a Small Animal Model,

    DTIC Science & Technology

    1985-09-01

    extracellular fluid voitmie (BCF) was measured using a single injection c- inulin , technique, and plasma voilme (PV) was determined by ca.rdio--yreen dye...using tritiated water, extracell1ular fluid volume (ECF) was measured using a single injection C- inulin technique, and plasma volume (PV) was...space. However, inulin (10) has several advantages over the aforementioned because it Is not metabolized, stored, or incorporated by cells or

  20. A hybrid numerical fluid dynamics code for resistive magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jeffrey

    2006-04-01

    Spasmos is a computational fluid dynamics code that uses two numerical methods to solve the equations of resistive magnetohydrodynamic (MHD) flows in compressible, inviscid, conducting media[1]. The code is implemented as a set of libraries for the Python programming language[2]. It represents conducting and non-conducting gases and materials with uncomplicated (analytic) equations of state. It supports calculations in 1D, 2D, and 3D geometry, though only the 1D configuation has received significant testing to date. Because it uses the Python interpreter as a front end, users can easily write test programs to model systems with a variety of different numerical andmore » physical parameters. Currently, the code includes 1D test programs for hydrodynamics (linear acoustic waves, the Sod weak shock[3], the Noh strong shock[4], the Sedov explosion[5], magnetic diffusion (decay of a magnetic pulse[6], a driven oscillatory "wine-cellar" problem[7], magnetic equilibrium), and magnetohydrodynamics (an advected magnetic pulse[8], linear MHD waves, a magnetized shock tube[9]). Spasmos current runs only in a serial configuration. In the future, it will use MPI for parallel computation.« less

  1. Simulation of Pellet Ablation

    NASA Astrophysics Data System (ADS)

    Parks, P. B.; Ishizaki, Ryuichi

    2000-10-01

    In order to clarify the structure of the ablation flow, 2D simulation is carried out with a fluid code solving temporal evolution of MHD equations. The code includes electrostatic sheath effect at the cloud interface.(P.B. Parks et al.), Plasma Phys. Contr. Fusion 38, 571 (1996). An Eulerian cylindrical coordinate system (r,z) is used with z in a spherical pellet. The code uses the Cubic-Interpolated Psudoparticle (CIP) method(H. Takewaki and T. Yabe, J. Comput. Phys. 70), 355 (1987). that divides the fluid equations into non-advection and advection phases. The most essential element of the CIP method is in calculation of the advection phase. In this phase, a cubic interpolated spatial profile is shifted in space according to the total derivative equations, similarly to a particle scheme. Since the profile is interpolated by using the value and the spatial derivative value at each grid point, there is no numerical oscillation in space, that often appears in conventional spline interpolation. A free boundary condition is used in the code. The possibility of a stationary shock will also be shown in the presentation because the supersonic ablation flow across the magnetic field is impeded.

  2. Comprehensive Benchmark Suite for Simulation of Particle Laden Flows Using the Discrete Element Method with Performance Profiles from the Multiphase Flow with Interface eXchanges (MFiX) Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Peiyuan; Brown, Timothy; Fullmer, William D.

    Five benchmark problems are developed and simulated with the computational fluid dynamics and discrete element model code MFiX. The benchmark problems span dilute and dense regimes, consider statistically homogeneous and inhomogeneous (both clusters and bubbles) particle concentrations and a range of particle and fluid dynamic computational loads. Several variations of the benchmark problems are also discussed to extend the computational phase space to cover granular (particles only), bidisperse and heat transfer cases. A weak scaling analysis is performed for each benchmark problem and, in most cases, the scalability of the code appears reasonable up to approx. 103 cores. Profiling ofmore » the benchmark problems indicate that the most substantial computational time is being spent on particle-particle force calculations, drag force calculations and interpolating between discrete particle and continuum fields. Hardware performance analysis was also carried out showing significant Level 2 cache miss ratios and a rather low degree of vectorization. These results are intended to serve as a baseline for future developments to the code as well as a preliminary indicator of where to best focus performance optimizations.« less

  3. Development of a CFD code for casting simulation

    NASA Technical Reports Server (NTRS)

    Murph, Jesse E.

    1992-01-01

    The task of developing a computational fluid dynamics (CFD) code to accurately model the mold filling phase of a casting operation was accomplished in a systematic manner. First the state-of-the-art was determined through a literature search, a code search, and participation with casting industry personnel involved in consortium startups. From this material and inputs from industry personnel, an evaluation of the currently available codes was made. It was determined that a few of the codes already contained sophisticated CFD algorithms and further validation of one of these codes could preclude the development of a new CFD code for this purpose. With industry concurrence, ProCAST was chosen for further evaluation. Two benchmark cases were used to evaluate the code's performance using a Silicon Graphics Personal Iris system. The results of these limited evaluations (because of machine and time constraints) are presented along with discussions of possible improvements and recommendations for further evaluation.

  4. Study of SOL in DIII-D tokamak with SOLPS suite of codes.

    NASA Astrophysics Data System (ADS)

    Pankin, Alexei; Bateman, Glenn; Brennan, Dylan; Coster, David; Hogan, John; Kritz, Arnold; Kukushkin, Andrey; Schnack, Dalton; Snyder, Phil

    2005-10-01

    The scrape-of-layer (SOL) region in DIII-D tokamak is studied with the SOLPS integrated suite of codes. The SOLPS package includes the 3D multi-species Monte-Carlo neutral code EIRINE and 2D multi-fluid code B2. The EIRINE and B2 codes are cross-coupled through B2-EIRINE interface. The results of SOLPS simulations are used in the integrated modeling of the plasma edge in DIII-D tokamak with the ASTRA transport code. Parameterized dependences for neutral particle fluxes that are computed with the SOLPS code are implemented in a model for the H-mode pedestal and ELMs [1] in the ASTRA code. The effects of neutrals on the H-mode pedestal and ELMs are studied in this report. [1] A. Y. Pankin, I. Voitsekhovitch, G. Bateman, et al., Plasma Phys. Control. Fusion 47, 483 (2005).

  5. Magnetorheological finishing of chemical-vapor deposited zinc sulfide via chemically and mechanically modified fluids.

    PubMed

    Salzman, Sivan; Romanofsky, Henry J; Giannechini, Lucca J; Jacobs, Stephen D; Lambropoulos, John C

    2016-02-20

    We describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS). We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6 MR fluids, variations were found in the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.

  6. Impact of the plasma response in three-dimensional edge plasma transport modelling for RMP ELM control scenarios at ITER

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver

    2014-10-01

    The constrains used in magneto-hydrodynamic (MHD) modeling of the plasma response to external resonant magnetic perturbation (RMP) fields have a profound impact on the three-dimensional (3-D) shape of the plasma boundary induced by RMP fields. In this contribution, the consequences of the plasma response on the actual 3D boundary structure and transport during RMP application at ITER are investigated. The 3D fluid plasma and kinetic neutral transport code EMC3-Eirene is used for edge transport modeling. Plasma response modeling is conducted with the M3D-C1 code using a single fluid, non-linear and a two fluid, linear MHD constrain. These approaches are compared to results with an ideal MHD like plasma response. A 3D plasma boundary is formed for all cases consisting of magnetic finger structures at the X-point intersecting the divertor surface in a helical footprint pattern. The width of the helical footprint pattern is largely reduced compared to vacuum magnetic fields when using the ideal MHD like screening model. This yields increasing peak heat fluxes in contrast to a beneficial heat flux spreading seen with vacuum fields. The particle pump out as well as loss of thermal energy is reduced by a factor of two compared to vacuum fields. In contrast, the impact of the plasma response obtained from both MHD constrains in M3D-C1 is nearly negligible at the plasma boundary and only a small modification of the magnetic footprint topology is detected. Accordingly, heat and particle fluxes on the target plates as well as the edge transport characteristics are comparable to the vacuum solution. This span of modeling results with different plasma response models highlights the importance of thoroughly validating both, plasma response and 3D edge transport models for a robust extrapolation towards ITER. Supported by ITER Grant IO/CT/11/4300000497 and F4E Grant GRT-055 (PMS-PE) and by Start-Up Funds of the University of Wisconsin - Madison.

  7. Vector processing efficiency of plasma MHD codes by use of the FACOM 230-75 APU

    NASA Astrophysics Data System (ADS)

    Matsuura, T.; Tanaka, Y.; Naraoka, K.; Takizuka, T.; Tsunematsu, T.; Tokuda, S.; Azumi, M.; Kurita, G.; Takeda, T.

    1982-06-01

    In the framework of pipelined vector architecture, the efficiency of vector processing is assessed with respect to plasma MHD codes in nuclear fusion research. By using a vector processor, the FACOM 230-75 APU, the limit of the enhancement factor due to parallelism of current vector machines is examined for three numerical codes based on a fluid model. Reasonable speed-up factors of approximately 6,6 and 4 times faster than the highly optimized scalar version are obtained for ERATO (linear stability code), AEOLUS-R1 (nonlinear stability code) and APOLLO (1-1/2D transport code), respectively. Problems of the pipelined vector processors are discussed from the viewpoint of restructuring, optimization and choice of algorithms. In conclusion, the important concept of "concurrency within pipelined parallelism" is emphasized.

  8. Improved Helicopter Rotor Performance Prediction through Loose and Tight CFD/CSD Coupling

    NASA Astrophysics Data System (ADS)

    Ickes, Jacob C.

    Helicopters and other Vertical Take-Off or Landing (VTOL) vehicles exhibit an interesting combination of structural dynamic and aerodynamic phenomena which together drive the rotor performance. The combination of factors involved make simulating the rotor a challenging and multidisciplinary effort, and one which is still an active area of interest in the industry because of the money and time it could save during design. Modern tools allow the prediction of rotorcraft physics from first principles. Analysis of the rotor system with this level of accuracy provides the understanding necessary to improve its performance. There has historically been a divide between the comprehensive codes which perform aeroelastic rotor simulations using simplified aerodynamic models, and the very computationally intensive Navier-Stokes Computational Fluid Dynamics (CFD) solvers. As computer resources become more available, efforts have been made to replace the simplified aerodynamics of the comprehensive codes with the more accurate results from a CFD code. The objective of this work is to perform aeroelastic rotorcraft analysis using first-principles simulations for both fluids and structural predictions using tools available at the University of Toledo. Two separate codes are coupled together in both loose coupling (data exchange on a periodic interval) and tight coupling (data exchange each time step) schemes. To allow the coupling to be carried out in a reliable and efficient way, a Fluid-Structure Interaction code was developed which automatically performs primary functions of loose and tight coupling procedures. Flow phenomena such as transonics, dynamic stall, locally reversed flow on a blade, and Blade-Vortex Interaction (BVI) were simulated in this work. Results of the analysis show aerodynamic load improvement due to the inclusion of the CFD-based airloads in the structural dynamics analysis of the Computational Structural Dynamics (CSD) code. Improvements came in the form of improved peak/trough magnitude prediction, better phase prediction of these locations, and a predicted signal with a frequency content more like the flight test data than the CSD code acting alone. Additionally, a tight coupling analysis was performed as a demonstration of the capability and unique aspects of such an analysis. This work shows that away from the center of the flight envelope, the aerodynamic modeling of the CSD code can be replaced with a more accurate set of predictions from a CFD code with an improvement in the aerodynamic results. The better predictions come at substantially increased computational costs between 1,000 and 10,000 processor-hours.

  9. Transonic Axial Splittered Rotor Tandem Stator Stage

    DTIC Science & Technology

    2016-12-01

    CODE 13. ABSTRACT (maximum 200 words) Development of a procedure to model the hot shape of a rotor blade and a comparison analysis of the transonic...fluid-structure interaction. Rotational forces as well as gas loading forces were observed as an influence on blade deformation. Utilizing the...Turbomachinery, splittered rotor, tandem stator, transonic compressor, blade deformation, fluid-structure interaction 15. NUMBER OF PAGES 87 16. PRICE

  10. Testing density-dependent groundwater models: Two-dimensional steady state unstable convection in infinite, finite and inclined porous layers

    USGS Publications Warehouse

    Weatherill, D.; Simmons, C.T.; Voss, C.I.; Robinson, N.I.

    2004-01-01

    This study proposes the use of several problems of unstable steady state convection with variable fluid density in a porous layer of infinite horizontal extent as two-dimensional (2-D) test cases for density-dependent groundwater flow and solute transport simulators. Unlike existing density-dependent model benchmarks, these problems have well-defined stability criteria that are determined analytically. These analytical stability indicators can be compared with numerical model results to test the ability of a code to accurately simulate buoyancy driven flow and diffusion. The basic analytical solution is for a horizontally infinite fluid-filled porous layer in which fluid density decreases with depth. The proposed test problems include unstable convection in an infinite horizontal box, in a finite horizontal box, and in an infinite inclined box. A dimensionless Rayleigh number incorporating properties of the fluid and the porous media determines the stability of the layer in each case. Testing the ability of numerical codes to match both the critical Rayleigh number at which convection occurs and the wavelength of convection cells is an addition to the benchmark problems currently in use. The proposed test problems are modelled in 2-D using the SUTRA [SUTRA-A model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Water-Resources Investigations Report, 02-4231, 2002. 250 p] density-dependent groundwater flow and solute transport code. For the case of an infinite horizontal box, SUTRA results show a distinct change from stable to unstable behaviour around the theoretical critical Rayleigh number of 4??2 and the simulated wavelength of unstable convection agrees with that predicted by the analytical solution. The effects of finite layer aspect ratio and inclination on stability indicators are also tested and numerical results are in excellent agreement with theoretical stability criteria and with numerical results previously reported in traditional fluid mechanics literature. ?? 2004 Elsevier Ltd. All rights reserved.

  11. A finite area scheme for shallow granular flows on three-dimensional surfaces

    NASA Astrophysics Data System (ADS)

    Rauter, Matthias

    2017-04-01

    Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.

  12. Development of code evaluation criteria for assessing predictive capability and performance

    NASA Technical Reports Server (NTRS)

    Lin, Shyi-Jang; Barson, S. L.; Sindir, M. M.; Prueger, G. H.

    1993-01-01

    Computational Fluid Dynamics (CFD), because of its unique ability to predict complex three-dimensional flows, is being applied with increasing frequency in the aerospace industry. Currently, no consistent code validation procedure is applied within the industry. Such a procedure is needed to increase confidence in CFD and reduce risk in the use of these codes as a design and analysis tool. This final contract report defines classifications for three levels of code validation, directly relating the use of CFD codes to the engineering design cycle. Evaluation criteria by which codes are measured and classified are recommended and discussed. Criteria for selecting experimental data against which CFD results can be compared are outlined. A four phase CFD code validation procedure is described in detail. Finally, the code validation procedure is demonstrated through application of the REACT CFD code to a series of cases culminating in a code to data comparison on the Space Shuttle Main Engine High Pressure Fuel Turbopump Impeller.

  13. A collaborative exercise on DNA methylation based body fluid typing.

    PubMed

    Jung, Sang-Eun; Cho, Sohee; Antunes, Joana; Gomes, Iva; Uchimoto, Mari L; Oh, Yu Na; Di Giacomo, Lisa; Schneider, Peter M; Park, Min Sun; van der Meer, Dieudonne; Williams, Graham; McCord, Bruce; Ahn, Hee-Jung; Choi, Dong Ho; Lee, Yang Han; Lee, Soong Deok; Lee, Hwan Young

    2016-10-01

    A collaborative exercise on DNA methylation based body fluid identification was conducted by seven laboratories. For this project, a multiplex methylation SNaPshot reaction composed of seven CpG markers was used for the identification of four body fluids, including blood, saliva, semen, and vaginal fluid. A total of 30 specimens were prepared and distributed to participating laboratories after thorough testing. The required experiments included four increasingly complex tasks: (1) CE of a purified single-base extension reaction product, (2) multiplex PCR and multiplex single-base extension reaction of bisulfite-modified DNA, (3) bisulfite conversion of genomic DNA, and (4) extraction of genomic DNA from body fluid samples. In tasks 2, 3 and 4, one or more mixtures were analyzed, and specimens containing both known and unknown body fluid sources were used. Six of the laboratories generated consistent body fluid typing results for specimens of bisulfite-converted DNA and genomic DNA. One laboratory failed to set up appropriate conditions for capillary analysis of reference single-base extension products. In general, variation in the values obtained for DNA methylation analysis between laboratories increased with the complexity of the required experiments. However, all laboratories concurred on the interpretation of the DNA methylation profiles produced. Although the establishment of interpretational guidelines on DNA methylation based body fluid identification has yet to be performed, this study supports the addition of DNA methylation profiling to forensic body fluid typing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Combustor Computations for CO2-Neutral Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Brankovic, Andreja; Ryder, Robert C.; Huber, Marcia

    2011-01-01

    Knowing the pure component C(sub p)(sup 0) or mixture C(sub p) (sup 0) as computed by a flexible code such as NIST-STRAPP or McBride-Gordon, one can, within reasonable accuracy, determine the thermophysical properties necessary to predict the combustion characteristics when there are no tabulated or computed data for those fluid mixtures 3or limited results for lower temperatures. (Note: C(sub p) (sup 0) is molar heat capacity at constant pressure.) The method can be used in the determination of synthetic and biological fuels and blends using the NIST code to compute the C(sub p) (sup 0) of the mixture. In this work, the values of the heat capacity were set at zero pressure, which provided the basis for integration to determine the required combustor properties from the injector to the combustor exit plane. The McBride-Gordon code was used to determine the heat capacity at zero pressure over a wide range of temperatures (room to 6,000 K). The selected fluids were Jet-A, 224TMP (octane), and C12. It was found that each heat capacity loci were form-similar. It was then determined that the results [near 400 to 3,000 K] could be represented to within acceptable engineering accuracy with the simplified equation C(sub p) (sup 0) = A/T + B, where A and B are fluid-dependent constants and T is temperature (K).

  15. A Novel Multi-Scale Domain Overlapping CFD/STH Coupling Methodology for Multi-Dimensional Flows Relevant to Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Grunloh, Timothy P.

    The objective of this dissertation is to develop a 3-D domain-overlapping coupling method that leverages the superior flow field resolution of the Computational Fluid Dynamics (CFD) code STAR-CCM+ and the fast execution of the System Thermal Hydraulic (STH) code TRACE to efficiently and accurately model thermal hydraulic transport properties in nuclear power plants under complex conditions of regulatory and economic importance. The primary contribution is the novel Stabilized Inertial Domain Overlapping (SIDO) coupling method, which allows for on-the-fly correction of TRACE solutions for local pressures and velocity profiles inside multi-dimensional regions based on the results of the CFD simulation. The method is found to outperform the more frequently-used domain decomposition coupling methods. An STH code such as TRACE is designed to simulate large, diverse component networks, requiring simplifications to the fluid flow equations for reasonable execution times. Empirical correlations are therefore required for many sub-grid processes. The coarse grids used by TRACE diminish sensitivity to small scale geometric details such as Reactor Pressure Vessel (RPV) internals. A CFD code such as STAR-CCM+ uses much finer computational meshes that are sensitive to the geometric details of reactor internals. In turbulent flows, it is infeasible to fully resolve the flow solution, but the correlations used to model turbulence are at a low level. The CFD code can therefore resolve smaller scale flow processes. The development of a 3-D coupling method was carried out with the intention of improving predictive capabilities of transport properties in the downcomer and lower plenum regions of an RPV in reactor safety calculations. These regions are responsible for the multi-dimensional mixing effects that determine the distribution at the core inlet of quantities with reactivity implications, such as fluid temperature and dissolved neutron absorber concentration.

  16. The moving mesh code SHADOWFAX

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, B.; De Rijcke, S.

    2016-07-01

    We introduce the moving mesh code SHADOWFAX, which can be used to evolve a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. The code is written in C++ and its source code is made available to the scientific community under the GNU Affero General Public Licence. We outline the algorithm and the design of our implementation, and demonstrate its validity through the results of a set of basic test problems, which are also part of the public version. We also compare SHADOWFAX with a number of other publicly available codes using different hydrodynamical integration schemes, illustrating the advantages and disadvantages of the moving mesh technique.

  17. Simulations of the plasma dynamics in high-current ion diodes

    NASA Astrophysics Data System (ADS)

    Boine-Frankenheim, O.; Pointon, T. D.; Mehlhorn, T. A.

    Our time-implicit fluid/Particle-In-Cell (PIC) code DYNAID [1]is applied to problems relevant for applied- B ion diode operation. We present simulations of the laser ion source, which will soon be employed on the SABRE accelerator at SNL, and of the dynamics of the anode source plasma in the applied electric and magnetic fields. DYNAID is still a test-bed for a higher-dimensional simulation code. Nevertheless, the code can already give new theoretical insight into the dynamics of plasmas in pulsed power devices.

  18. CFD Simulation on the J-2X Engine Exhaust in the Center-Body Diffuser and Spray Chamber at the B-2 Facility

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Wey, Thomas; Buehrle, Robert

    2009-01-01

    A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.

  19. A comparison of two central difference schemes for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Maksymiuk, C. M.; Swanson, R. C.; Pulliam, T. H.

    1990-01-01

    Five viscous transonic airfoil cases were computed by two significantly different computational fluid dynamics codes: An explicit finite-volume algorithm with multigrid, and an implicit finite-difference approximate-factorization method with Eigenvector diagonalization. Both methods are described in detail, and their performance on the test cases is compared. The codes utilized the same grids, turbulence model, and computer to provide the truest test of the algorithms. The two approaches produce very similar results, which, for attached flows, also agree well with experimental results; however, the explicit code is considerably faster.

  20. Development of the general interpolants method for the CYBER 200 series of supercomputers

    NASA Technical Reports Server (NTRS)

    Stalnaker, J. F.; Robinson, M. A.; Spradley, L. W.; Kurzius, S. C.; Thoenes, J.

    1988-01-01

    The General Interpolants Method (GIM) is a 3-D, time-dependent, hybrid procedure for generating numerical analogs of the conservation laws. This study is directed toward the development and application of the GIM computer code for fluid dynamic research applications as implemented for the Cyber 200 series of supercomputers. An elliptic and quasi-parabolic version of the GIM code are discussed. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and an implicit finite difference scheme are also included.

  1. Underworld - Bringing a Research Code to the Classroom

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Mansour, J.; Giordani, J.; Farrington, R.; Kaluza, O.; Quenette, S.; Woodcock, R.; Squire, G.

    2017-12-01

    While there are many reasons to celebrate the passing of punch card programming and flickering green screens,the loss of the sense of wonder at the very existence of computers and the calculations they make possible shouldnot be numbered among them. Computers have become so familiar that students are often unaware that formal and careful design of algorithms andtheir implementations remains a valuable and important skill that has to be learned and practiced to achieveexpertise and genuine understanding. In teaching geodynamics and geophysics at undergraduate level, we aimed to be able to bring our researchtools into the classroom - even when those tools are advanced, parallel research codes that we typically deploy on hundredsor thousands of processors, and we wanted to teach not just the physical concepts that are modelled by these codes but asense of familiarity with computational modelling and the ability to discriminate a reliable model from a poor one. The underworld code (www.underworldcode.org) was developed for modelling plate-scale fluid mechanics and studyingproblems in lithosphere dynamics. Though specialised for this task, underworld has a straightforwardpython user interface that allows it to run within the environment of jupyter notebooks on a laptop (at modest resolution, of course).The python interface was developed for adaptability in addressing new research problems, but also lends itself to integration intoa python-driven learning environment. To manage the heavy demands of installing and running underworld in a teaching laboratory, we have developed a workflow in whichwe install docker containers in the cloud which support a number of students to run their own environment independently. We share ourexperience blending notebooks and static webpages into a single web environment, and we explain how we designed our graphics andanalysis tools to allow notebook "scripts" to be queued and run on a supercomputer.

  2. Analysis of electrophoresis performance

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1988-01-01

    A flexible efficient computer code is being developed to simulate electrophoretic separation phenomena, in either a cylindrical or a rectangular geometry. The code will computer the evolution in time of the concentrations of an arbitrary number of chemical species, and of the temperature, pH distribution, conductivity, electric field, and fluid motion. Use of nonuniform meshes and fast accurate implicit time-stepping will yield accurate answers at economical cost.

  3. Interior Fluid Dynamics of Liquid-Filled Projectiles

    DTIC Science & Technology

    1989-12-01

    the Sandia code. The previous codes are primarily based on finite-difference approximations with relatively coarse grid and were designed without...exploits Chorin’s method of artificial compressibility. The steady solution at 11 X 24 X 21 grid points in r, 0, z-direction is obtained by integrating...differences in radial and axial direction and pseudoepectral differencing in the azimuthal direction. Nonuniform grids are introduced for increased

  4. Dissecting non-coding RNA mechanisms in cellulo by single-molecule high-resolution localization and counting

    PubMed Central

    Pitchiaya, Sethuramasundaram; Krishnan, Vishalakshi; Custer, Thomas C.; Walter, Nils G.

    2013-01-01

    Non-coding RNAs (ncRNAs) recently were discovered to outnumber their protein-coding counterparts, yet their diverse functions are still poorly understood. Here we report on a method for the intracellular Single-molecule High Resolution Localization and Counting (iSHiRLoC) of microRNAs (miRNAs), a conserved, ubiquitous class of regulatory ncRNAs that controls the expression of over 60% of all mammalian protein coding genes post-transcriptionally, by a mechanism shrouded by seemingly contradictory observations. We present protocols to execute single particle tracking (SPT) and single-molecule counting of functional microinjected, fluorophore-labeled miRNAs and thereby extract diffusion coefficients and molecular stoichiometries of micro-ribonucleoprotein (miRNP) complexes from living and fixed cells, respectively. This probing of miRNAs at the single molecule level sheds new light on the intracellular assembly/disassembly of miRNPs, thus beginning to unravel the dynamic nature of this important gene regulatory pathway and facilitating the development of a parsimonious model for their obscured mechanism of action. PMID:23820309

  5. Kinetic simulations of scrape-off layer physics in the DIII-D tokamak

    DOE PAGES

    Churchill, Randy M.; Canik, John M.; Chang, C. S.; ...

    2016-12-27

    Simulations using the fully kinetic code XGCa were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total- f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Fluid simulations are normally used to simulate the SOL, due to its high collisionality. However, depending on plasma conditions, a number of discrepancies have been observed between experiment and leading SOL fluid codes (e.g. SOLPS), including underestimating outer target temperatures, radial electric field in the SOL, parallel ion SOL flowsmore » at the low field side, and impurity radiation. Many of these discrepancies may be linked to the fluid treatment, and might be resolved by including kinetic effects in SOL simulations. The XGCa simulation of the DIII-D tokamak in a nominally sheath-limited regime show many noteworthy features in the SOL. The density and ion temperature are higher at the low-field side, indicative of ion orbit loss. The SOL ion Mach flows are at experimentally relevant levels ( Mi ~0.5), with similar shapes and poloidal variation as observed in various tokamaks. Surprisingly, the ion Mach flows close to the sheath edge remain subsonic, in contrast to the typical fluid Bohm criterion requiring ion flows to be above sonic at the sheath edge. Related to this are the presence of elevated sheath potentials, eΔΦ/T e ~ 3–4, over most of the SOL, with regions in the near-SOL close to the separatrix having eΔΦ/Te > 4. Finally, these two results at the sheath edge are a consequence of non-Maxwellian features in the ions and electrons there.« less

  6. Methodes iteratives paralleles: Applications en neutronique et en mecanique des fluides

    NASA Astrophysics Data System (ADS)

    Qaddouri, Abdessamad

    Dans cette these, le calcul parallele est applique successivement a la neutronique et a la mecanique des fluides. Dans chacune de ces deux applications, des methodes iteratives sont utilisees pour resoudre le systeme d'equations algebriques resultant de la discretisation des equations du probleme physique. Dans le probleme de neutronique, le calcul des matrices des probabilites de collision (PC) ainsi qu'un schema iteratif multigroupe utilisant une methode inverse de puissance sont parallelises. Dans le probleme de mecanique des fluides, un code d'elements finis utilisant un algorithme iteratif du type GMRES preconditionne est parallelise. Cette these est presentee sous forme de six articles suivis d'une conclusion. Les cinq premiers articles traitent des applications en neutronique, articles qui representent l'evolution de notre travail dans ce domaine. Cette evolution passe par un calcul parallele des matrices des PC et un algorithme multigroupe parallele teste sur un probleme unidimensionnel (article 1), puis par deux algorithmes paralleles l'un mutiregion l'autre multigroupe, testes sur des problemes bidimensionnels (articles 2--3). Ces deux premieres etapes sont suivies par l'application de deux techniques d'acceleration, le rebalancement neutronique et la minimisation du residu aux deux algorithmes paralleles (article 4). Finalement, on a mis en oeuvre l'algorithme multigroupe et le calcul parallele des matrices des PC sur un code de production DRAGON ou les tests sont plus realistes et peuvent etre tridimensionnels (article 5). Le sixieme article (article 6), consacre a l'application a la mecanique des fluides, traite la parallelisation d'un code d'elements finis FES ou le partitionneur de graphe METIS et la librairie PSPARSLIB sont utilises.

  7. 428-Gb/s single-channel coherent optical OFDM transmission over 960-km SSMF with constellation expansion and LDPC coding.

    PubMed

    Yang, Qi; Al Amin, Abdullah; Chen, Xi; Ma, Yiran; Chen, Simin; Shieh, William

    2010-08-02

    High-order modulation formats and advanced error correcting codes (ECC) are two promising techniques for improving the performance of ultrahigh-speed optical transport networks. In this paper, we present record receiver sensitivity for 107 Gb/s CO-OFDM transmission via constellation expansion to 16-QAM and rate-1/2 LDPC coding. We also show the single-channel transmission of a 428-Gb/s CO-OFDM signal over 960-km standard-single-mode-fiber (SSMF) without Raman amplification.

  8. PAROTID FLUID CORTICOSTEROID RESPONSE IN NORMAL SUBJECTS DURING SINGLE-DOSE DEXAMETHASONE SUPPRESSION TESTS.

    DTIC Science & Technology

    Serum and parotid 17-OHCS measurements were carried out on 6 healthy young adult males during a control week and during a second week in which single...hours after dexamethasone dosage the serum steroid mean decreased by 84.6% and the decrease in parotid fluid concentration was 76.6%. The highly...significant suppression of the level of 17-OHCS in serum was proportionately reflected in the steroid response in parotid fluid. These results suggest that

  9. Hybrid Method for Power Control Simulation of a Single Fluid Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Jaisankar, S.; Sheshadri, T. S.

    2018-05-01

    Propulsive plasma flow through a cylindrical-conical diverging thruster is simulated by a power controlled hybrid method to obtain the basic flow, thermodynamic and electromagnetic variables. Simulation is based on a single fluid model with electromagnetics being described by the equations of potential Poisson, Maxwell and the Ohm's law while the compressible fluid dynamics by the Navier Stokes in cylindrical form. The proposed method solved the electromagnetics and fluid dynamics separately, both to segregate the two prominent scales for an efficient computation and for the delivery of voltage controlled rated power. The magnetic transport is solved for steady state while fluid dynamics is allowed to evolve in time along with an electromagnetic source using schemes based on generalized finite difference discretization. The multistep methodology with power control is employed for simulating fully ionized propulsive flow of argon plasma through the thruster. Numerical solution shows convergence of every part of the solver including grid stability causing the multistep hybrid method to converge for a rated power delivery. Simulation results are reasonably in agreement with the reported physics of plasma flow in the thruster thus indicating the potential utility of this hybrid computational framework, especially when single fluid approximation of plasma is relevant.

  10. Massively parallel simulations of relativistic fluid dynamics on graphics processing units with CUDA

    NASA Astrophysics Data System (ADS)

    Bazow, Dennis; Heinz, Ulrich; Strickland, Michael

    2018-04-01

    Relativistic fluid dynamics is a major component in dynamical simulations of the quark-gluon plasma created in relativistic heavy-ion collisions. Simulations of the full three-dimensional dissipative dynamics of the quark-gluon plasma with fluctuating initial conditions are computationally expensive and typically require some degree of parallelization. In this paper, we present a GPU implementation of the Kurganov-Tadmor algorithm which solves the 3 + 1d relativistic viscous hydrodynamics equations including the effects of both bulk and shear viscosities. We demonstrate that the resulting CUDA-based GPU code is approximately two orders of magnitude faster than the corresponding serial implementation of the Kurganov-Tadmor algorithm. We validate the code using (semi-)analytic tests such as the relativistic shock-tube and Gubser flow.

  11. Benchmark of FDNS CFD Code For Direct Connect RBCC Test Data

    NASA Technical Reports Server (NTRS)

    Ruf, J. H.

    2000-01-01

    Computational Fluid Dynamics (CFD) analysis results are compared with experimental data from the Pennsylvania State University's (PSU) Propulsion Engineering Research Center (PERC) rocket based combined cycle (RBCC) rocket-ejector experiments. The PERC RBCC experimental hardware was in a direct-connect configuration in diffusion and afterburning (DAB) operation. The objective of the present work was to validate the Finite Difference Navier Stokes (FDNS) CFD code for the rocket-ejector mode internal fluid mechanics and combustion phenomena. A second objective was determine the best application procedures to use FDNS as a predictive/engineering tool. Three-dimensional CFD analysis was performed. Solution methodology and grid requirements are discussed. CFD results are compared to experimental data for static pressure, Raman Spectroscopy species distribution data and RBCC net thrust and specified impulse.

  12. Crustal Fracturing Field and Presence of Fluid as Revealed by Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Pastori, M.; Piccinini, D.; de Gori, P.; Margheriti, L.; Barchi, M. R.; di Bucci, D.

    2010-12-01

    In the last three years, we developed, tested and improved an automatic analysis code (Anisomat+) to calculate the shear wave splitting parameters, fast polarization direction (φ) and delay time (∂t). The code is a set of MatLab scripts able to retrieve crustal anisotropy parameters from three-component seismic recording of local earthquakes using horizontal component cross-correlation method. The analysis procedure consists in choosing an appropriate frequency range, that better highlights the signal containing the shear waves, and a length of time window on the seismogram centered on the S arrival (the temporal window contains at least one cycle of S wave). The code was compared to other two automatic analysis code (SPY and SHEBA) and tested on three Italian areas (Val d’Agri, Tiber Valley and L’Aquila surrounding) along the Apennine mountains. For each region we used the anisotropic parameters resulting from the automatic computation as a tool to determine the fracture field geometries connected with the active stress field. We compare the temporal variations of anisotropic parameters to the evolution of vp/vs ratio for the same seismicity. The anisotropic fast directions are used to define the active stress field (EDA model), finding a general consistence between fast direction and main stress indicators (focal mechanism and borehole break-out). The magnitude of delay time is used to define the fracture field intensity finding higher value in the volume where micro-seismicity occurs. Furthermore we studied temporal variations of anisotropic parameters and vp/vs ratio in order to explain if fluids play an important role in the earthquake generation process. The close association of anisotropic and vp/vs parameters variations and seismicity rate changes supports the hypothesis that the background seismicity is influenced by the fluctuation of pore fluid pressure in the rocks.

  13. Benchmark studies of the gyro-Landau-fluid code and gyro-kinetic codes on kinetic ballooning modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, T. F.; Lawrence Livermore National Laboratory, Livermore, California 94550; Xu, X. Q.

    2016-03-15

    A Gyro-Landau-Fluid (GLF) 3 + 1 model has been recently implemented in BOUT++ framework, which contains full Finite-Larmor-Radius effects, Landau damping, and toroidal resonance [Ma et al., Phys. Plasmas 22, 055903 (2015)]. A linear global beta scan has been conducted using the JET-like circular equilibria (cbm18 series), showing that the unstable modes are kinetic ballooning modes (KBMs). In this work, we use the GYRO code, which is a gyrokinetic continuum code widely used for simulation of the plasma microturbulence, to benchmark with GLF 3 + 1 code on KBMs. To verify our code on the KBM case, we first perform the beta scan basedmore » on “Cyclone base case parameter set.” We find that the growth rate is almost the same for two codes, and the KBM mode is further destabilized as beta increases. For JET-like global circular equilibria, as the modes localize in peak pressure gradient region, a linear local beta scan using the same set of equilibria has been performed at this position for comparison. With the drift kinetic electron module in the GYRO code by including small electron-electron collision to damp electron modes, GYRO generated mode structures and parity suggest that they are kinetic ballooning modes, and the growth rate is comparable to the GLF results. However, a radial scan of the pedestal for a particular set of cbm18 equilibria, using GYRO code, shows different trends for the low-n and high-n modes. The low-n modes show that the linear growth rate peaks at peak pressure gradient position as GLF results. However, for high-n modes, the growth rate of the most unstable mode shifts outward to the bottom of pedestal and the real frequency of what was originally the KBMs in ion diamagnetic drift direction steadily approaches and crosses over to the electron diamagnetic drift direction.« less

  14. Identifying Adverse Events Using International Classification of Diseases, Tenth Revision Y Codes in Korea: A Cross-sectional Study.

    PubMed

    Ock, Minsu; Kim, Hwa Jung; Jeon, Bomin; Kim, Ye-Jee; Ryu, Hyun Mi; Lee, Moo-Song

    2018-01-01

    The use of administrative data is an affordable alternative to conducting a difficult large-scale medical-record review to estimate the scale of adverse events. We identified adverse events from 2002 to 2013 on the national level in Korea, using International Classification of Diseases, tenth revision (ICD-10) Y codes. We used data from the National Health Insurance Service-National Sample Cohort (NHIS-NSC). We relied on medical treatment databases to extract information on ICD-10 Y codes from each participant in the NHIS-NSC. We classified adverse events in the ICD-10 Y codes into 6 types: those related to drugs, transfusions, and fluids; those related to vaccines and immunoglobulin; those related to surgery and procedures; those related to infections; those related to devices; and others. Over 12 years, a total of 20 817 adverse events were identified using ICD-10 Y codes, and the estimated total adverse event rate was 0.20%. Between 2002 and 2013, the total number of such events increased by 131.3%, from 1366 in 2002 to 3159 in 2013. The total rate increased by 103.9%, from 0.17% in 2002 to 0.35% in 2013. Events related to drugs, transfusions, and fluids were the most common (19 446, 93.4%), followed by those related to surgery and procedures (1209, 5.8%) and those related to vaccines and immunoglobulin (72, 0.3%). Based on a comparison with the results of other studies, the total adverse event rate in this study was significantly underestimated. Improving coding practices for ICD-10 Y codes is necessary to precisely monitor the scale of adverse events in Korea.

  15. Aeropropulsion 1987. Session 3: Internal Fluid Mechanics Research

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Internal fluid mechanics research at Lewis is directed toward an improved understanding of the important flow physics affecting aerospace propulsion systems, and applying this improved understanding to formulate accurate predictive codes. To this end, research is conducted involving detailed experimentation and analysis. The presentations in this session summarize ongoing work and indicated future emphasis in three major research thrusts: namely, inlets, ducts, and nozzles; turbomachinery; and chemical reacting flows.

  16. Lattice Boltzmann Method of Different BGA Orientations on I-Type Dispensing Method

    PubMed Central

    Gan, Z. L.; Ishak, M. H. H.; Abdullah, M. Z.; Khor, Soon Fuat

    2016-01-01

    This paper studies the three dimensional (3D) simulation of fluid flows through the ball grid array (BGA) to replicate the real underfill encapsulation process. The effect of different solder bump arrangements of BGA on the flow front, pressure and velocity of the fluid is investigated. The flow front, pressure and velocity for different time intervals are determined and analyzed for potential problems relating to solder bump damage. The simulation results from Lattice Boltzmann Method (LBM) code will be validated with experimental findings as well as the conventional Finite Volume Method (FVM) code to ensure highly accurate simulation setup. Based on the findings, good agreement can be seen between LBM and FVM simulations as well as the experimental observations. It was shown that only LBM is capable of capturing the micro-voids formation. This study also shows an increasing trend in fluid filling time for BGA with perimeter, middle empty and full orientations. The perimeter orientation has a higher pressure fluid at the middle region of BGA surface compared to middle empty and full orientation. This research would shed new light for a highly accurate simulation of encapsulation process using LBM and help to further increase the reliability of the package produced. PMID:27454872

  17. Multi-Fluid Simulations of a Coupled Ionosphere-Magnetosphere System

    NASA Astrophysics Data System (ADS)

    Gombosi, T. I.; Glocer, A.; Toth, G.; Ridley, A. J.; Sokolov, I. V.; de Zeeuw, D. L.

    2008-05-01

    In the last decade we have developed the Space Weather Modeling Framework (SWMF) that efficiently couples together different models describing the interacting regions of the space environment. Many of these domain models (such as the global solar corona, the inner heliosphere or the global magnetosphere) are based on MHD and are represented by our multiphysics code, BATS-R-US. BATS-R-US can solve the equations of "standard" ideal MHD, but it can also go beyond this first approximation. It can solve resistive MHD, Hall MHD, semi-relativistic MHD (that keeps the displacement current), multispecies (different ion species have different continuity equations) and multifluid (all ion species have separate continuity, momentum and energy equations) MHD. Recently we added two-fluid Hall MHD (solving the electron and ion energy equations separately) and are working on an extended magnetohydrodynamics model with anisotropic pressures. Ionosheric outflow can be a significant contributor to the plasma population of the magnetosphere during active geomagnetic conditions. This talk will present preliminary results of our simulations when we couple a new field- aligned multi-fluid polar wind code to the Ionosphere Electrodynamics (IE), and Global Magnetosphere (GM) components of the SWMF. We use multi-species and multi-fluid MHD to track the resulting plasma composition in the magnetosphere.

  18. The application of CFD for military aircraft design at transonic speeds

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Braymen, W. W.; Bhateley, I. C.; Londenberg, W. K.

    1989-01-01

    Numerous computational fluid dynamics (CFD) codes are available that solve any of several variations of the transonic flow equations from small disturbance to full Navier-Stokes. The design philosophy at General Dynamics Fort Worth Division involves use of all these levels of codes, depending on the stage of configuration development. Throughout this process, drag calculation is a central issue. An overview is provided for several transonic codes and representative test-to-theory comparisons for fighter-type configurations are presented. Correlations are shown for lift, drag, pitching moment, and pressure distributions. The future of applied CFD is also discussed, including the important task of code validation. With the progress being made in code development and the continued evolution in computer hardware, the routine application of these codes for increasingly more complex geometries and flow conditions seems apparent.

  19. L4 Milestone Report for MixEOS 2016 experiments and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, Eric Nicholas; Bradley, Paul Andrew; Merritt, Elizabeth Catherine

    2016-08-01

    Accurate simulations of fluid and plasma flows require accurate thermodynamic properties of the fluids or plasmas. This thermodynamic information is represented by the equations of state of the materials. For pure materials, the equations of state may be represented by analytical models for idealized circumstances, or by tabular means, such as the Sesame tables. However, when a computational cell has a mixture of two or more fluids, the equations of state are not well understood, particularly under the circumstances of high energy densities. This is a particularly difficult issue for Eulerian codes, wherein mixed cells arise simply due to themore » advection process. LANL Eulerian codes typically assume an “Amagat’s Law” (or Law of Partial Volumes) for the mixture in which the pressures and temperatures of fluids are at an equilibrium that is consistent with the fluids being segregated within the cell. However, for purposes of computing other EOS properties, e.g., bulk modulus, or sound speed, the fluids are considered to be fully “mixed”. LANL has also been investigating implementing instead “Dalton’s Law” in which the total pressure is considered to be the sum of the partial pressures within the cell. For ideal gases, these two laws give the same result. Other possibilities are nonpressure- temperature-equilibrated approaches in which the two fluids are not assumed to “mix” at all, and the EOS properties of the cell are computed from, say, volume-weighted averages of the individual fluid properties. The assumption of the EOS properties within a mixed cell can have a pronounced effect on the behavior of the cell, resulting in, for example, different shock speeds, pressures, temperatures and densities within the cell. There is no apparent consensus as to which approach is best under HED conditions, though we note that under typical atmospheric and near atmospheric conditions the differences may be slight.« less

  20. Continuum kinetic and multi-fluid simulations of classical sheaths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cagas, P.; Hakim, A.; Juno, J.

    The kinetic study of plasma sheaths is critical, among other things, to understand the deposition of heat on walls, the effect of sputtering, and contamination of the plasma with detrimental impurities. The plasma sheath also provides a boundary condition and can often have a significant global impact on the bulk plasma. In this paper, kinetic studies of classical sheaths are performed with the continuum kinetic code, Gkeyll, which directly solves the Vlasov-Maxwell equations. The code uses a novel version of the finite-element discontinuous Galerkin scheme that conserves energy in the continuous-time limit. The fields are computed using Maxwell equations. Ionizationmore » and scattering collisions are included; however, surface effects are neglected. The aim of this work is to introduce the continuum kinetic method and compare its results with those obtained from an already established finite-volume multi-fluid model also implemented in Gkeyll. Novel boundary conditions on the fluids allow the sheath to form without specifying wall fluxes, so the fluids and fields adjust self-consistently at the wall. Our work demonstrates that the kinetic and fluid results are in agreement for the momentum flux, showing that in certain regimes, a multifluid model can be a useful approximation for simulating the plasma boundary. There are differences in the electrostatic potential between the fluid and kinetic results. Further, the direct solutions of the distribution function presented here highlight the non-Maxwellian distribution of electrons in the sheath, emphasizing the need for a kinetic model. The densities, velocities, and the potential show a good agreement between the kinetic and fluid results. But, kinetic physics is highlighted through higher moments such as parallel and perpendicular temperatures which provide significant differences from the fluid results in which the temperature is assumed to be isotropic. Besides decompression cooling, the heat flux is shown to play a role in the temperature differences that are observed, especially inside the collisionless sheath. Published by AIP Publishing.« less

Top