Physics Features of TRU-Fueled VHTRs
Lewis, Tom G.; Tsvetkov, Pavel V.
2009-01-01
The current waste management strategy for spent nuclear fuel (SNF) mandated by the US Congress is the disposal of high-level waste (HLW) in a geological repository at Yucca Mountain. Ongoing efforts on closed-fuel cycle options and difficulties in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy for the US fuel cycle would be to make use of fuel loadings containing high concentrations of transuranic (TRU) nuclides in the next-generation reactors. The use of such fuels would not only increase fuel supply but could also potentially facilitate prolonged operation modes (viamore » fertile additives) on a single fuel loading. The idea is to approach autonomous operation on a single fuel loading that would allow marketing power units as nuclear batteries for worldwide deployment. Studies have already shown that high-temperature gas-cooled reactors (HTGRs) and their Generation IV (GEN IV) extensions, very-high-temperature reactors (VHTRs), have encouraging performance characteristics. This paper is focused on possible physics features of TRU-fueled VHTRs. One of the objectives of a 3-year U.S. DOE NERI project was to show that TRU-fueled VHTRs have the possibility of prolonged operation on a single fuel loading. A 3D temperature distribution was developed based on conceivable operation conditions of the 600 MWth VHTR design. Results of extensive criticality and depletion calculations with varying fuel loadings showed that VHTRs are capable for autonomous operation and HLW waste reduction when loaded with TRU fuel.« less
Robert E. Vihnanek; Cameron S. Balog; Clinton S. Wright; Roger D. Ottmar; Jeffrey W. Kelly
2009-01-01
Two series of single and stereo photographs display a range of natural conditions and fuel loadings in post-hurricane forests in the southeastern United States. Each group of photos includes inventory information summarizing vegetation composition, structure and loading, woody material loading and density by size class, forest floor loading, and various site...
Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright
2007-01-01
Two series of single and stereo photographs display a range of natural conditions and fuel loadings in sagebrush with grass and ponderosa pinejuniper types in central Montana. Each group of photos includes inventory information summarizing vegetation composition, structure, and loading; woody material loading and density by size class; forest floor depth and loading;...
Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright; Geoffrey B. Seymour
2007-01-01
A series of single and stereo photographs display a range of natural conditions and fuel loadings in evergreen and deciduous oak/juniper woodland and savannah ecosystems in southern Arizona and New Mexico. This group of photos includes inventory data summarizing vegetation composition, structure, and loading; woody material loading and density by size class; forest...
Nuclear fuel element with axially aligned fuel pellets and fuel microspheres therein
Sease, J.D.; Harrington, F.E.
1973-12-11
Elongated single- and multi-region fuel elements are prepared by replacing within a cladding container a coarse fraction of fuel material which includes plutonium and uranium in the appropriate regions of the fuel element and then infiltrating with vibration a fine-sized fraction of uranium-containing microspheres throughout all interstices in the coarse material in a single loading. The fine, rigid material defines a thin annular layer between the coarse fraction and the cladding to reduce adverse mechanical and chemical interactions. (Official Gazette)
An Investigation of the Characteristics of Steel Diaphragms for Automatic Fuel-Injection Valves
NASA Technical Reports Server (NTRS)
Joachim, W F
1926-01-01
This research on steel diaphragms was undertaken at the Langley Memorial Aeronautical Laboratory, as a part of a general investigation on fuel injection engines for aircraft. The work determined the load-deflection, load- deformation and hysteresis characteristics for single diaphragms having thicknesses from 0.00s inch to 0.012 inch, and for similar diaphragms tested in multiple having total thicknesses from 0.012 inch to 0.180 inch. The elastic limit loads and deflections, and rupture points of single diaphragms were also determined. Some work was done on diaphragms having central orifices in order to determine the effect of orifice diameter upon the load deflection characteristics.
Role of fuel chemical properties on combustor radiative heat load
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.
1984-01-01
In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, United Technologies Research Center (UTRC) has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced high-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties; hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.
Ragit, S S; Mohapatra, S K; Kundu, K
2014-01-01
In the present investigation, neem and mahua methyl ester were prepared by transesterification using potassium hydroxide as a catalyst and tested in 4-stroke single cylinder water cooled diesel engine. Tests were carried out at constant speed of 1500 rev/min at different brake mean effective pressures. A series of tests were conducted which worked at different brake mean effective pressures, OkPa, 1kPa, 2kPa, 3kPa, 4kPa, 5kPa, 6kPa and 6.5kPa. The performance and exhaust emission characteristics of the diesel engine were analyzed and compared with diesel fuel. Results showed that BTE of NME was comparable with diesel and it was noted that the BTE of N0100 is 63.11% higher than that of diesel at part load whereas it reduces 11.2% with diesel fuel at full load. In case of full load, NME showed decreasing trend with diesel fuel. BTE of diesel was 15.37% and 36.89% at part load and full load respectively. The observation indicated that BTE for MME 100 was slightly higher than diesel at part loads. The specific fuel consumption (SFC) was more for almost all blends at all loads, compared to diesel. At part load, the EGT of MME and its blends were showing similar trend to diesel fuel and at full load, the exhaust gas temperature of MME and blends were higher than diesel. Based on this study, NME could be a substitute for diesel fuel in diesel engine.
Dynamic Response during PEM Fuel Cell Loading-up
Pei, Pucheng; Yuan, Xing; Gou, Jun; Li, Pengcheng
2009-01-01
A study on the effects of controlling and operating parameters for a Proton Exchange Membrane (PEM) fuel cell on the dynamic phenomena during the loading-up process is presented. The effect of the four parameters of load-up amplitudes and rates, operating pressures and current levels on gas supply or even starvation in the flow field is analyzed based accordingly on the transient characteristics of current output and voltage. Experiments are carried out in a single fuel cell with an active area of 285 cm2. The results show that increasing the loading-up amplitude can inevitably increase the possibility of gas starvation in channels when a constant flow rate has been set for the cathode; With a higher operating pressure, the dynamic performance will be improved and gas starvations can be relieved. The transient gas supply in the flow channel during two loading-up mode has also been discussed. The experimental results will be helpful for optimizing the control and operation strategies for PEM fuel cells in vehicles.
Katz, Murray; Bonk, Stanley P.; Maricle, Donald L.; Abrams, Martin
1991-01-01
A fuel cell has a current collector plate (22) located between an electrode (20) and a separate plate (25). The collector plate has a plurality of arches (26, 28) deformed from a single flat plate in a checkerboard pattern. The arches are of sufficient height (30) to provide sufficient reactant flow area. Each arch is formed with sufficient stiffness to accept compressive load and sufficient resiliently to distribute the load and maintain electrical contact.
NASA Technical Reports Server (NTRS)
Srinivasan, Supramaniam; Manko, David J.; Koch, Hermann; Enayetullah, Mohammad A.; Appleby, A. John
1989-01-01
Of all the fuel cell systems only alkaline and solid polymer electrolyte fuel cells are capable of achieving high power densities (greater than 1 W/sq cm) required for terrestrial and extraterrestrial applications. Electrode kinetic criteria for attaining such high power densities are discussed. Attainment of high power densities in solid polymer electrolyte fuel cells has been demonstrated earlier by different groups using high platinum loading electrodes (4 mg/sq cm). Recent works at Los Alamos National Laboratory and at Texas A and M University (TAMU) demonstrated similar performance for solid polymer electrolyte fuel cells with ten times lower platinum loading (0.45 mg/sq cm) in the electrodes. Some of the results obtained are discussed in terms of the effects of type and thickness of membrane and of the methods platinum localization in the electrodes on the performance of a single cell.
Brando, Paulo M; Oliveria-Santos, Claudinei; Rocha, Wanderley; Cury, Roberta; Coe, Michael T
2016-07-01
Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years. © 2016 John Wiley & Sons Ltd.
Braun, Andreas; Shah, N.; Huggins, Frank E.; Kelly, K.E.; Sarofim, A.; Jacobsen, C.; Wirick, S.; Francis, H.; Ilavsky, J.; Thomas, G.E.; Huffman, G.P.
2005-01-01
Diesel soot from reference diesel fuel and oxygenated fuel under idle and load engine conditions was investigated with X-ray scattering and X-ray carbon K-edge absorption spectroscopy. Up to five characteristic size ranges were found. Idle soot was generally found to have larger primary particles and aggregates but smaller crystallites, than load soot. Load soot has a higher degree of crystallinity than idle soot. Adding oxygenates to diesel fuel enhanced differences in the characteristics of diesel soot, or even reversed them. Aromaticity of idle soot from oxygenated diesel fuel was significantly larger than from the corresponding load soot. Carbon near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was applied to gather information about the presence of relative amounts of carbon double bonds (CC, CO) and carbon single bonds (C-H, C-OH, COOH). Using scanning X-ray transmission microspectroscopy (STXM), the relative amounts of these carbon bond states were shown to vary spatially over distances approximately 50 to 100 nm. The results from the X-ray techniques are supported by thermo-gravimetry analysis and high-resolution transmission electron microscopy. ?? 2005 Elsevier Ltd. All rights reserved.
2011-01-01
Comparative Performance Assessment of 5kW-Class Solid Oxide Fuel Cell Engines Integrated with Single/Dual-Spool Turbochargers So-Ryeok Oh, Jing Sun... Turbochargers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT... fundamental operating regime to the part load performance. Two different mechanical designs are assumed: dual shaft and single shaft as the compressor
Metallized Gelled Propellants Combustion Experiments in a Pulse Detonation Engine
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan; Jurns, John; Breisacher, Kevin; Kearns, Kim
2006-01-01
A series of combustion tests were performed with metallized gelled JP 8/aluminum fuels in a Pulse Detonation Engine (PDE). Nanoparticles of aluminum were used in the 60 to 100 nanometer diameter. Gellants were also of a nanoparticulate type composed of hydrocarbon alkoxide materials. Using simulated air (a nitrogen-oxygen mixture), the ignition potential of metallized gelled fuels with nanoparticle aluminum was investigated. Ignition of the JP 8/aluminum was possible with less than or equal to a 23-wt% oxygen loading in the simulated air. JP 8 fuel alone was unable to ignite with less than 30 percent oxygen loaded simulated air. The tests were single shot tests of the metallized gelled fuel to demonstrate the capability of the fuel to improve fuel detonability. The tests were conducted at ambient temperatures and with maximal detonation pressures of 1340 psia.
Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey
Nicholas Skowronski; Kenneth Clark; Ross Nelson; John Hom; Matt Patterson
2007-01-01
We used a single-beam, first return profiling LIDAR (Light Detection and Ranging) measurements of canopy height, intensive biometric measurements in plots, and Forest Inventory and Analysis (FIA) data to quantify forest structure and ladder fuels (defined as vertical fuel continuity between the understory and canopy) in the New Jersey Pinelands. The LIDAR data were...
Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts
NASA Astrophysics Data System (ADS)
Zhou, W. J.; Zhou, B.; Li, W. Z.; Zhou, Z. H.; Song, S. Q.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; Goula, M.; Tsiakaras, P.
Low-temperature polymer electrolyte membrane fuel cells directly fed by methanol and ethanol were investigated employing carbon supported Pt, PtSn and PtRu as anode catalysts, respectively. Employing Pt/C as anode catalyst, both direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC) showed poor performances even in presence of high Pt loading on anode. It was found that the addition of Ru or Sn to the Pt dramatically enhances the electro-oxidation of both methanol and ethanol. It was also found that the single cell adopting PtRu/C as anode shows better DMFC performance, while PtSn/C catalyst shows better DEFC performance. The single fuel cell using PtSn/C as anode catalyst at 90 °C shows similar power densities whenever fueled by methanol or ethanol. The cyclic voltammetry (CV) and single fuel cell tests indicated that PtRu is more suitable for DMFC while PtSn is more suitable for DEFC.
High performance platinum single atom electrocatalyst for oxygen reduction reaction
NASA Astrophysics Data System (ADS)
Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan
2017-07-01
For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.
High performance platinum single atom electrocatalyst for oxygen reduction reaction
Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan
2017-01-01
For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm−2 at 80 °C with a low platinum loading of 0.09 mgPt cm−2, corresponding to a platinum utilization of 0.13 gPt kW−1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction. PMID:28737170
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mildrum, C.M.
1987-08-18
A fuel rod is described for a nuclear reactor fuel assembly, comprising: (a) a hollow cladding tube; (b) a pair of end plugs connected to and sealing the cladding tube at opposite ends thereof; (c) a plurality of fuel pellets contained on the tube and being composed of fissile material having a single enrichment the value of which is at the level of the maximum enrichment loading of the rod, the pellets having provided in a stack having one end disposed adjacent to one of the end plugs and an opposite end disposed remote from the other of the endmore » plugs; and (d) a plenum spring disposed in the tube between the other end plug and the opposite end of the pellet stack for retaining the pellets in a stack form; (e) at least some of the fuel pellets having an annular configuration and at least other of the fuel pellets having a solid configuration; (f) each of some of the annular fuel pellets having an annulus of a first size; (e) each of other of the annual fuel pellets having an annulus of a second size different from the first size, whereby graduation of axial enrichment loading is provided between the annual fuel pellets of the fuel rod.« less
Thangaraj, Suja; Govindan, Nagarajan
2018-01-01
The significance of mileage to the fruitful operation of a trucking organization cannot be downplayed. Fuel is one of the biggest variable expenses in a trucking wander. An attempt is made in this research to improve the combustion efficiency of a diesel engine for better fuel economy by introducing hydroxy gas which is also called browns gas or HHO gas in the suction line, without compromising performance and emission. Brown's gas facilitates the air-fuel mixture to ignite faster and efficient combustion. By considering safety and handling issues in automobiles, HHO gas generation by electrolysis of water in the presence of sodium bicarbonate electrolytes (NaHCO 3 ) and usage was explored in this research work over compressed pure hydrogen, due to generation and capacity of immaculate hydrogen as of now confines the application in diesel engine operation. Brown's gas was utilized as a supplementary fuel in a single-cylinder, four-stroke compression ignition (CI) engine. Experiments were carried out on a constant speed engine at 1500 rpm, result shows at constant HHO flow rate of 0.73 liter per minute (LPM), brake specific fuel consumption (BSFC) decreases by 7% at idle load to 16% at full load, and increases brake thermal efficiency (BTE) by 8.9% at minimum load to 19.7% at full load. In the dual fuel (diesel +HHO) operation, CO emissions decreases by 19.4, 64.3, and 34.6% at 25, 50, and 75% load, respectively, and unburned hydrocarbon (UHC) emissions decreased by 11.3% at minimum load to 33.5% at maximum load at the expense of NO x emission increases by 1.79% at 75% load and 1.76% at full load than neat diesel operation. The negative impact of an increase in NO x is reduced by adding EGR. It was evidenced in this experimental work that the use of Brown's gas with EGR in the dual fuel mode in a diesel engine improves the fuel efficiency, performance, and reduces the exhaust emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratcliff, Matthew A; Burton, Jonathan L; Sindler, Petr
Knock-limited loads for a set of surrogate gasolines all having nominal 100 research octane number (RON), approximately 11 octane sensitivity (S), and a heat of vaporization (HOV) range of 390 to 595 kJ/kg at 25 degrees C were investigated. A single-cylinder spark-ignition engine derived from a General Motors Ecotec direct injection (DI) engine was used to perform load sweeps at a fixed intake air temperature (IAT) of 50 degrees C, as well as knock-limited load measurements across a range of IATs up to 90 degrees C. Both DI and pre-vaporized fuel (supplied by a fuel injector mounted far upstream ofmore » the intake valves and heated intake runner walls) experiments were performed to separate the chemical and thermal effects of the fuels' knock resistance. The DI load sweeps at 50 degrees C intake air temperature showed no effect of HOV on the knock-limited performance. The data suggest that HOV acts as a thermal contributor to S under the conditions studied. Measurement of knock-limited loads from the IAT sweeps for DI at late combustion phasing showed that a 40 vol% ethanol (E40) blend provided additional knock resistance at the highest temperatures, compared to a 20 vol% ethanol blend and hydrocarbon fuel with similar RON and S. Using the pre-vaporized fuel system, all the high S fuels produced nearly identical knock-limited loads at each temperature across the range of IATs studied. For these fuels RON ranged from 99.2 to 101.1 and S ranged from 9.4 to 12.2, with E40 having the lowest RON and highest S. The higher knock-limited loads for E40 at the highest IATs examined were consistent with the slightly higher S for this fuel, and the lower engine operating condition K values arising from use of this fuel. The study highlights how fuel HOV can affect the temperature at intake valve closing, and consequently the pressure-temperature history of the end gas leading to more negative values of K, thereby enhancing the effect of S on knock resistance.« less
Zhang, Enren; Wang, Feng; Zhai, Wenjing; Scott, Keith; Wang, Xu; Diao, Guowang
2017-04-01
Single-chamber microbial fuel cells (S-MFCs) with bio-anodes and activated carbon (AC) air-cathodes showed high nitrobenzene (NB) tolerance and NB removal with concomitant electricity production. The maximum power over 25Wm -3 could be obtained when S-MFCs were operated in the NB loading range of 1.2-6.2molm -3 d -1 , and stable electricity production over 13.7Wm -3 could be produced in a NB loading range of 1.2-14.7molm -3 d -1 . The present S-MFCs exhibited high NB removal performance with NB removal efficiency over 97% even when the NB loading rate was increased to 17.2molm -3 d -1 . The potential NB reduced product (i.e. aniline) could also be effectively removed from influents. The findings in this study means that single-chamber MFCs assembled with pre-enriched bio-anodes and AC air-cathodes could be developed as effective bio-electrochemical systems to remove NB from wastewaters and to harvest energy instead of consuming energy. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sunil, V.; Venkata siva, G.; Yoganjaneyulu, G.; Ravikumar, V. V.
2017-08-01
The answer for an emission free power source in future is in the form of fuel cells which combine hydrogen and oxygen producing electricity and a harmless by product-water. A proton exchange membrane (PEM) fuel cell is ideal for automotive applications. A single cell cannot supply the essential power for any application. Hence PEM fuel cell stacks are used. The effect of different operating parameters namely: type of convection, type of draught, hydrogen flow rate, hydrogen inlet pressure, ambient temperature and humidity, hydrogen humidity, cell orientation on the performance of air breathing PEM fuel cell stack was analyzed using a computerized fuel cell test station. Then, the fuel cell stack was subjected to different load conditions. It was found that the stack performs very poorly at full capacity (runs only for 30 min. but runs for 3 hours at 50% capacity). Hence, a detailed study was undertaken to maximize the duration of the stack’s performance at peak load.
Pressure and temperature effects on fuels with varying octane sensitivity at high load in SI engines
Szybist, James P.; Splitter, Derek A.
2017-01-06
The octane sensitivity (S), defined as the difference between the Research Octane Number (RON) and the Motor Octane Number (MON), is of increasing interest in spark ignition (SI) engines because of its relevance to knock resistance at boosted high load conditions. In this study, three fuels with nearly constant RON (99.2-100) and varying S (S = 0, 6.5, and 12) are operated at the knock limited spark advance (KLSA) at nominal engine loads of 10, 15, and 20 bar IMEP in a single cylinder SI engine with side-mount direct injection fueling, at λ =1 stoichiometry. At each load condition, themore » intake manifold temperature is swept from 35 °C to 95 °C to alter the temperature and pressure history of the charge. Results show that at the 10 bar IMEP condition, knock resistance is inversely proportional to fuel S where the S=0 fuel is the most knock resist, but as load increases the trend reverses and knock resistance becomes proportional to fuel S, and the S=12 fuel is the most knock resistant. The reversal of knock resistance as a function of S with load it is attributed to changing fuel ignition delay, as bulk gas intermediate temperature heat release (ITHR) is observed for the S = 0 several crank angles prior to the spark command and ITHR magnitude is a function of increasing intake temperature. As intake temperature continued to increase, the S=0 fuel transitioned from ITHR to low-temperature heat release (LTHR) prior to the spark event. At the highest load and intake temperature, 95 C, the S=0 fuel exhibits distinct LTHR and negative temperature coefficient (NTC), and the intermediate S value fuel (S=6.5) exhibited distinct ITHR behavior several crank angles prior to the spark command. However, for the tested conditions, the S=12 fuel exhibits neither ITHR nor LTHR. To understand the measured trends, chemical kinetic modeling is used to elucidate the fuel specific dependencies on in-cylinder temperature and pressure history. Lastly, the bulk gas composition change that occurs for fuels and conditions exhibiting ITHR and LTHR is analyzed in the modeling, including their implications on flame speed and combustion stability at late phasing. Furthermore, the combined findings illustrate the commonality and utility of fuel S, ITHR, LTHR, and NTC across a wide range of conditions, and the associated implications of fuel S in highly boosted modern GDI SI engines relative to the RON and MON tests.« less
Performance of a small compression ignition engine fuelled by liquified petroleum gas
NASA Astrophysics Data System (ADS)
Ambarita, Himsar; Yohanes Setyawan, Eko; Ginting, Sibuk; Naibaho, Waldemar
2017-09-01
In this work, a small air cooled single cylinder of diesel engine with a rated power of 2.5 kW at 3000 rpm is tested in two different modes. In the first mode, the CI engines run on diesel fuel mode. In the second mode, the CI engine run on liquified petroleum gas (LPG) mode. In order to simulate the load, a generator is employed. The load is fixed at 800 W and engine speed varies from 2400 rpm to 3400 rpm. The out power, specific fuel consumption, and brake thermal efficiency resulted from the engine in both modes are compared. The results show that the output power of the CI engine run on LPG fuel is comparable with the engine run on diesel fuel. However, the specific fuel consumption of the CI engine with LPG fuel is higher 17.53% in average in comparison with the CI engine run on diesel fuel. The efficiency of the CI engine with LPG fuel is lower 21.43% in average in comparison with the CI engine run on diesel fuel.
High performance platinum single atom electrocatalyst for oxygen reduction reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jing; Jiao, Menggai; Lu, Lanlu
For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm –2 at 80 °C with a low platinum loading of 0.09 mgPt cm –2, corresponding to a platinum utilization of 0.13 gPt kWmore » –1 in the fuel cell. Good fuel cell durability is also observed. As a result, theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.« less
High performance platinum single atom electrocatalyst for oxygen reduction reaction
Liu, Jing; Jiao, Menggai; Lu, Lanlu; ...
2017-07-24
For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm –2 at 80 °C with a low platinum loading of 0.09 mgPt cm –2, corresponding to a platinum utilization of 0.13 gPt kWmore » –1 in the fuel cell. Good fuel cell durability is also observed. As a result, theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalaskar, Vickey B; Szybist, James P; Splitter, Derek A
In recent years a number of studies have demonstrated that boosted operation combined with external EGR is a path forward for expanding the high load limit of homogeneous charge compression ignition (HCCI) operation with the negative valve overlap (NVO) valve strategy. However, the effects of fuel composition with this strategy have not been fully explored. In this study boosted HCCI combustion is investigated in a single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), laboratory pressurized intake air, and a fully-variable hydraulic valve actuation (HVA) valve train. Three fuels with significant compositional differences aremore » investigated: regular grade gasoline (RON = 90.2), 30% ethanol-gasoline blend (E30, RON = 100.3), and 24% iso-butanol-gasoline blend (IB24, RON = 96.6). Results include engine loads from 350 to 800 kPa IMEPg for all fuels at three engine speeds 1600, 2000, and 2500 rpm. All operating conditions achieved thermal efficiency (gross indicated efficiency) between 38 and 47%, low NOX emissions ( 0.1 g/kWh), and high combustion efficiency ( 96.5%). Detailed sweeps of intake manifold pressure (atmospheric to 250 kPaa), EGR (0 25% EGR), and injection timing are conducted to identify fuel-specific effects. The major finding of this study is that while significant fuel compositional differences exist, in boosted HCCI operation only minor changes in operational conditions are required to achieve comparable operation for all fuels. In boosted HCCI operation all fuels were able to achieve matched load-speed operation, whereas in conventional SI operation the fuel-specific knock differences resulted in significant differences in the operable load-speed space. Although all fuels were operable in boosted HCCI, the respective air handling requirements are also discussed, including an analysis of the demanded turbocharger efficiency.« less
Will CNG threaten your future loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
A campaign to promote the use of natural gas as a fleet fuel is described and as a result, CNG conversions are beginning to take hold in some market segments. Only a few months after Ford Motor Co. announced production plans for an LPG-powered line of Granada/Cougar models, it unveiled an alternative-fuels concept car - a short-ranged metro sportscar - that could be ordered by the customer with any of four fuel systems (CNG, propane, ethanol, or methanol) offered on a dedicated or single-fuel basis. By including CNG in its alternative-fuels concept, Ford not only gave a boost to effortsmore » to build a motor fuel load for natural gas, but also indicated that CNG, as well as propane, is a viable alternative to gasoline in some applications. Recent reports of advances in CNG technology that enhance its potential as a motor fuel - together with other reports of at least one US firm launching production of a CNG motor fuel system and of several companies already marketing them - might be cause for the LPG industry to take another look at CNG's competitive potential.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, David; Betzler, Ben; Hirtz, Gregory John
2016-09-01
The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se productionmore » capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.« less
Frey, H Christopher; Kuo, Po-Yao; Villa, Charles
2009-09-01
Idling long-haul freight tucks may consume nearly one billion gallons of diesel fuel per year in the U.S. There is a need for real-world data by which to quantify avoided fuel use and emissions attributable to idle reduction techniques of auxiliary power units (APUs) and shore-power (SP). Field data were obtained from 20 APU-equipped and SP-compatible trucks observed during 2.8 million miles of travel in 42 states. Base engine fuel use and emission rates varied depending on ambient temperature. APU and SP energy use and emission rates varied depending on electrical load. APUs reduced idling fuel use and CO2 emissions for single and team drivers by 22 and 5% annually, respectively. SP offers greater reductions in energy use of 48% for single drivers, as well as in emissions, except for SO2. APUs were cost-effective for single drivers with a large number of APU usage hours per year, but not for team drivers or for single drivers with low APU utilization rates. The findings support more accurate assessments of avoided fuel use and emissions, and recommendations to encourage greater APU utilization by single drivers and to further develop infrastructure for SP.
40 CFR 98.34 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... a particular in-service tank on a given day (e.g., from multiple deliveries), one sample taken after... shipment or delivery of a single type of fuel (e.g., ship load, barge load, group of trucks, group of railroad cars, oil delivery via pipeline from a tank farm, etc.). However, if multiple deliveries of a...
Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, X.; Ratcliff, M. A.; Zigler, B. T.
2012-04-19
A single-cylinder, wall-guided, spark ignition direct injection engine was used to study the impact of engine operating parameters on engine-out particle number (PN) emissions. Experiments were conducted with certification gasoline and a splash blend of 20% fuel grade ethanol in gasoline (E20), at four steady-state engine operating conditions. Independent engine control parameter sweeps were conducted including start of injection, injection pressure, spark timing, exhaust cam phasing, intake cam phasing, and air-fuel ratio. The results show that fuel injection timing is the dominant factor impacting PN emissions from this wall-guided gasoline direct injection engine. The major factor causing high PN emissionsmore » is fuel liquid impingement on the piston bowl. By avoiding fuel impingement, more than an order of magnitude reduction in PN emission was observed. Increasing fuel injection pressure reduces PN emissions because of smaller fuel droplet size and faster fuel-air mixing. PN emissions are insensitive to cam phasing and spark timing, especially at high engine load. Cold engine conditions produce higher PN emissions than hot engine conditions due to slower fuel vaporization and thus less fuel-air homogeneity during the combustion process. E20 produces lower PN emissions at low and medium loads if fuel liquid impingement on piston bowl is avoided. At high load or if there is fuel liquid impingement on piston bowl and/or cylinder wall, E20 tends to produce higher PN emissions. This is probably a function of the higher heat of vaporization of ethanol, which slows the vaporization of other fuel components from surfaces and may create local fuel-rich combustion or even pool-fires.« less
Study of the two-phase dummy load shut-down strategy for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Zhang, Q.; Lin, R.; Cui, X.; Xia, S. X.; Yang, Z.; Chang, Y. T.
2017-02-01
This paper presents a new system strategy designed to alleviate the performance decay caused by start-up/shut-down (SU/SD) conditions in proton exchange membrane fuel cells (PEMFCs). The innovative method was tested using a two-phase dummy load composed of a linearly declined main load and a fixed small auxiliary load. The initial value of the main load must be controlled within a proper range, and a closed-ended air exhaust is necessary. According to the analysis of in-situ current density distribution during SD processes, the two-phase dummy load can continuously fit the process of oxygen reduction in the cathode, whereas the conventional dummy load leads to local air starvation. Polarization curves and cyclic voltammetry (CV) were employed to evaluate the performance decay during SU/SD repetition. After tests of 900 cycles, the highest voltage degradation rate of the PEMFC was 3.33 μV cycle-1 (800 mA cm-2), and the electrochemical surface area (ECSA) loss was 0.0046 m2 g-1 cycle-1 with the two-phase dummy load strategy. After comparing results with similar work on a single PEMFC, the authors confirmed the preeminent effectiveness of this strategy. This strategy will also improve fuel cell stack performance due to controllable SD duration and comparatively low performance decay rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szybist, James P.; Splitter, Derek A.
The octane sensitivity (S), defined as the difference between the Research Octane Number (RON) and the Motor Octane Number (MON), is of increasing interest in spark ignition (SI) engines because of its relevance to knock resistance at boosted high load conditions. In this study, three fuels with nearly constant RON (99.2-100) and varying S (S = 0, 6.5, and 12) are operated at the knock limited spark advance (KLSA) at nominal engine loads of 10, 15, and 20 bar IMEP in a single cylinder SI engine with side-mount direct injection fueling, at λ =1 stoichiometry. At each load condition, themore » intake manifold temperature is swept from 35 °C to 95 °C to alter the temperature and pressure history of the charge. Results show that at the 10 bar IMEP condition, knock resistance is inversely proportional to fuel S where the S=0 fuel is the most knock resist, but as load increases the trend reverses and knock resistance becomes proportional to fuel S, and the S=12 fuel is the most knock resistant. The reversal of knock resistance as a function of S with load it is attributed to changing fuel ignition delay, as bulk gas intermediate temperature heat release (ITHR) is observed for the S = 0 several crank angles prior to the spark command and ITHR magnitude is a function of increasing intake temperature. As intake temperature continued to increase, the S=0 fuel transitioned from ITHR to low-temperature heat release (LTHR) prior to the spark event. At the highest load and intake temperature, 95 C, the S=0 fuel exhibits distinct LTHR and negative temperature coefficient (NTC), and the intermediate S value fuel (S=6.5) exhibited distinct ITHR behavior several crank angles prior to the spark command. However, for the tested conditions, the S=12 fuel exhibits neither ITHR nor LTHR. To understand the measured trends, chemical kinetic modeling is used to elucidate the fuel specific dependencies on in-cylinder temperature and pressure history. Lastly, the bulk gas composition change that occurs for fuels and conditions exhibiting ITHR and LTHR is analyzed in the modeling, including their implications on flame speed and combustion stability at late phasing. Furthermore, the combined findings illustrate the commonality and utility of fuel S, ITHR, LTHR, and NTC across a wide range of conditions, and the associated implications of fuel S in highly boosted modern GDI SI engines relative to the RON and MON tests.« less
The Bristol "Badminton" Airplane
NASA Technical Reports Server (NTRS)
1926-01-01
The Bristol Badminton, Type 99 airplane has a radial aircooled engine (a Bristol Jupiter 9 cylinder 450 HP.) and three fuel tanks. It is a single seat biplane weighing 1,840 lbs. empty and 2,460 lbs. loaded.
Multiple-Angle Muon Radiography of a Dry Storage Cask
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, J. Matthew; Guardincerri, Elena; Morris, Christopher
A partially loaded dry storage cask was imaged using cosmic ray muons. Since the cask is large relative to the size of the muon tracking detectors, the instruments were placed at nine different positions around the cask to record data covering the entire fuel basket. We show that this technique can detect the removal of a single fuel assembly from the center of the cask.
Small helicopter could find niche in remote heavy lift operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-21
A new helicopter specifically designed for external vertical lift operations, such as moving transportable rig components or seismic equipment in remote locations, operates more efficiently than most other medium or heavy-lift helicopters, according to manufacturer Kaman Aerospace. The single-pilot helicopter was designed as an aerial truck for efficient lifting of heavy loads but with the operating costs of a light-lift craft. The K-Max helicopter can lift more pounds of cargo per gallon of fuel consumed than other similar helicopters, according to Kaman. For example, to transport a 5,000-lb load at an elevation of 8,000 ft, the K-Max helicopter consumes 85more » gal of fuel/hr. Under the same load conditions, the next most efficient commercially available helicopter consumes 160 gal of fuel/hr and requires two pilots. The 4,500-lb helicopter can lift 5,000 lb to an altitude of 8,000 ft or about 6,000 lb at low altitudes.« less
Design of an integrated fuel processor for residential PEMFCs applications
NASA Astrophysics Data System (ADS)
Seo, Yu Taek; Seo, Dong Joo; Jeong, Jin Hyeok; Yoon, Wang Lai
KIER has been developing a novel fuel processing system to provide hydrogen rich gas to residential PEMFCs system. For the effective design of a compact hydrogen production system, each unit process for steam reforming and water gas shift, has a steam generator and internal heat exchangers which are thermally and physically integrated into a single packaged hardware system. The newly designed fuel processor (prototype II) showed a thermal efficiency of 78% as a HHV basis with methane conversion of 89%. The preferential oxidation unit with two staged cascade reactors, reduces, the CO concentration to below 10 ppm without complicated temperature control hardware, which is the prerequisite CO limit for the PEMFC stack. After we achieve the initial performance of the fuel processor, partial load operation was carried out to test the performance and reliability of the fuel processor at various loads. The stability of the fuel processor was also demonstrated for three successive days with a stable composition of product gas and thermal efficiency. The CO concentration remained below 10 ppm during the test period and confirmed the stable performance of the two-stage PrOx reactors.
Aerosols emitted in underground mine air by diesel engine fueled with biodiesel.
Bugarski, Aleksandar D; Cauda, Emanuele G; Janisko, Samuel J; Hummer, Jon A; Patts, Larry D
2010-02-01
Using biodiesel in place of petroleum diesel is considered by several underground metal and nonmetal mine operators to be a viable strategy for reducing the exposure of miners to diesel particulate matter. This study was conducted in an underground experimental mine to evaluate the effects of soy methyl ester biodiesel on the concentrations and size distributions of diesel aerosols and nitric oxides in mine air. The objective was to compare the effects of neat and blended biodiesel fuels with those of ultralow sulfur petroleum diesel. The evaluation was performed using a mechanically controlled, naturally aspirated diesel engine equipped with a muffler and a diesel oxidation catalyst. The effects of biodiesel fuels on size distributions and number and total aerosol mass concentrations were found to be strongly dependent on engine operating conditions. When fueled with biodiesel fuels, the engine contributed less to elemental carbon concentrations for all engine operating modes and exhaust configurations. The substantial increases in number concentrations and fraction of organic carbon (OC) in total carbon over the baseline were observed when the engine was fueled with biodiesel fuels and operated at light-load operating conditions. Size distributions for all test conditions were found to be single modal and strongly affected by engine operating conditions, fuel type, and exhaust configuration. The peak and total number concentrations as well as median diameter decreased with an increase in the fraction of biodiesel in the fuels, particularly for high-load operating conditions. The effects of the diesel oxidation catalyst, commonly deployed to counteract the potential increase in OC emissions due to use of biodiesel, were found to vary depending upon fuel formulation and engine operating conditions. The catalyst was relatively effective in reducing aerosol number and mass concentrations, particularly at light-load conditions, but also showed the potential for an increase in nitrogen dioxide concentrations at high-load modes.
Wang, Zhong; An, Yu-Guang; Xu, Guang-Ju; Wang, Xiao-Zhe
2011-07-01
The polycyclic aromatic hydrocarbons (PAHs) were measured by glass fiber filter and XAD-2 collector, ultrasonic extraction, soxhlet extraction and GC-MS analysis equipment. The exhaust emission of the DI single cylinder diesel engine fueled with pure diesel, biodiesel and biodiesel blends of 50% (B50) were measured. The results indicate that the particle-phase PAHs emissions of diesel engine decrease with the increasing of load. The gas-phase PAHs emissions of diesel engine decrease with the increasing of load in the beginning and it turns to going up with further increasing of load. The particle-phase and gas-phase PAHs emissions of biodiesel decrease and mean concentration are lower than that of diesel. The total PAHs emission concentration of biodisesl is 41.1-70.1 microg/m3. Total PAHs mean concentration emissions of biodiesel is decreased 33.3% than that of diesel. The mass proportion of three-ring PAHs emissions of those 3 kinds tested fuels is about 44% in the total PAHs. Biodiesel can increase the proportion of three-ring PAHs. Toxic equivalence of PAHs emissions of biodiesel are greatly lower than that of diesel. It is less harmful to human than diesel fuel.
NASA Astrophysics Data System (ADS)
Liu, Bingchuan; Brückner, Cristian; Lei, Yu; Cheng, Yue; Santoro, Carlo; Li, Baikun
2014-07-01
This study focused on the development of novel cathode material based on the pyrolysis of [meso-tetrakis(2-thienyl)porphyrinato]Co(II) (CoTTP) for use in single chamber microbial fuel cells (SCMFCs) to treat wastewater containing methanol. The cathodes produced at two loadings (0.5 and 1.0 mg cm-2) were examined in batch mode SCMFCs treating methanol of different concentrations (ranging from 0.005 to 0.04 M) over a 900 h operational period. Methanol was completely removed in SCMFCs, and the cycle duration was prolonged at high methanol concentrations, indicating methanol was used as fuel in SCMFCs. Methanol had more poisoning effects to the traditional platinum (Pt) cathodes than to the CoTTP cathodes. Specifically, power generations from SCMFCs with Pt cathodes gradually decreased over time, while the ones with CoTTP cathodes remained stable, even at the highest methanol concentration (0.04 M). Cathode linear sweep voltammetry (LSVs) indicated that the electrocatalytic activity of the Pt cathode was suppressed by methanol. Higher CoTTP loadings had similar open circuit potential (OCP) but higher electrocatalytic activity than lower loadings. This study demonstrated that methanol can be co-digested with wastewater and converted to power in MFCs, and a novel cathode CoTTP catalyst exhibits higher tolerance towards methanol compared with traditional Pt catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, H.P.
1980-03-01
Performance tests using an 11 kW single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40%-wt micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 h at full load and 1400 rpm on al fuels except the 40%-wt slurry. Thismore » test was discontinued because of extremely poor performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, H.P.
1980-03-01
Performance tests using an 11 kw single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40 percent by weight micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 hrs at full load and 1400 rpm on all fuels except themore » 40% by weight slurry. This test was discontinued because of extremely poor performance.« less
NASA Astrophysics Data System (ADS)
Karthik, N.; Goldwin Xavier, X.; Rajasekar, R.; Ganesh Bairavan, P.; Dhanseelan, S.
2017-05-01
Present study provides the effect of Zinc Oxide (ZnO) and Cerium Oxide (CeO2) nanoparticles additives on the Performance and emission uniqueness of Jatropha. Jatropha blended fuel is prepared by the emulsification technique with assist of mechanical agitator. Nano particles (Zinc Oxide (ZnO)) and Cerium Oxide (CeO2)) mixed with Jatropha blended fuel in mass fraction (100 ppm) with assist of an ultrasonicator. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Performance results revealed that Brake Thermal Efficiency (BTE) of Jatropha blended Cerium Oxide (B20CE) is 3% and 11% higher than Jatropha blended zinc oxide (B20ZO) and Jatropha blended fuel (B20) and 4% lower than diesel fuel (D100) at full load conditions. Emission result shows that HC and CO emissions of Jatropha blended Cerium Oxide (B20CE) are (6%, 22%, 11% and 6%, 15%, 12%) less compared with Jatropha blended Zinc Oxide (B20ZO), diesel (D100) and Jatropha blended fuel (B20) at full load conditions. NOx emissions of Jatropha blended Cerium Oxide is 1 % higher than diesel fuel (D100) and 2% and 5% lower than Jatropha blended Zinc Oxide, and jatropha blended fuel.
Staged direct injection diesel engine
Baker, Quentin A.
1985-01-01
A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.
Jorge E. Morfin-Rios; Ernesto Alvarado-Celestino; Enrique J. Jardel-Pelaez; Robert E. Vihnanek; David K. Wright; Jose M. Michel-Fuentes; Clinton S. Wright; Roger D. Ottmar; David V. Sandberg; Andres Najera-Diaz
2008-01-01
Single wide-angle and stereo photographs display a range of forest ecosystems conditions and fuel loadings in montane subtropical forests of the Sierra Madre del Sur and temperate forests and montane shrubland of the northern Sierra Madre Oriental of Mexico. Each group of photographs includes inventory information summarizing overstory vegetation composition and...
Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine
Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand
2012-01-01
Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend. PMID:22675246
Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.
Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand
2012-01-01
Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pamminger, Michael; Sevik, James; Scarcelli, Riccardo
Natural Gas (NG) is an alternative fuel which has attracted a lot of attention recently, in particular in the US due to shale gas availability. The higher hydrogen-to-carbon (H/C) ratio, compared to gasoline, allows for decreasing carbon dioxide emissions throughout the entire engine map. Furthermore, the high knock resistance of NG allows increasing the efficiency at high engine loads compared to fuels with lower knock resistance. NG direct injection (DI) allows for fuel to be added after intake valve closing (IVC) resulting in an increase in power density compared to an injection before IVC. Steady-state engine tests were performed onmore » a single-cylinder research engine equipped with gasoline (E10) port-fuel injection (PFI) and NG DI to allow for in-cylinder blending of both fuels. Knock investigations were performed at two discrete compression ratios (CR), 10.5 and 12.5. Operating conditions span mid-load, wide-open-throttle and boosted conditions, depending on the knock response of the fuel blend. Blended operation was performed using E10 gasoline and NG. An additional gasoline type fuel (E85) with higher knock resistance than E10 was used as a high-octane reference fuel, since the octane rating of E10-NG fuel blends is unknown. Spark timing was varied at different loads under stoichiometric conditions in order to study the knock response as well as the effects on performance and efficiency. As anticipated, results suggest that the knock resistance can be increased significantly by increasing the NG amount. Comparing the engine operation with the least knock resistant fuel, E10 PFI, and the fuel blend with the highest knock resistance, 75% NG DI, shows an increase in indicated mean effective pressure of about 9 bar at CR 12.5. The usage of reference fuels with known knock characteristics allowed an assessment of knock characteristic of intermediate E10-NG blend levels. Mathematical correlations were developed allowing characterizing the occurrence of knocking combustion by using the Livengood-Wu knock integral. For most of the fueling strategies and operating conditions, the mathematical correlations show good agreement when compared to experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onasch, Timothy B; Sedlacek, Arthur J
The scientific focus of this study was to investigate and quantify the mass loadings, chemical compositions, and optical properties of biomass burning particulate emissions generated in the laboratory from Western U.S. fuels using a similar instrument suite to the one deployed on the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Gulfstream-1 (G-1) aircraft during the 2013 Biomass Burning Observation Project (BBOP) field study (Kleinman and Sedlacek, 2013). We deployed the single-particle soot photometer (SP2) to make measurements of biomass burning refractory black carbon (rBC) mass loadings and size distributions to correlate with non-refractory particulate mattermore » (NR-PM; i.e., HR-AMS) and rBC (SP-AMS) measurements as a function of photo-oxidation processes in an environmental chamber. With these measurements, we will address the following scientific questions: 1. What are the emission indices (g/kg fuel) of rBC from various wildland fuels from the Pacific Northwest (i.e., relevant to BBOP analysis) as a function of combustion conditions and simulated atmospheric processing in an environmental chamber? 2. What are the optical properties (e.g., mass-specific absorption cross-section [MAC], single-scattering albedo [SSA], and absorption Angstrom exponent [AAE)] of rBC emitted from various wildland fuels and how are they impacted by atmospheric processing? 3. How does the mixing state of rBC in biomass-burning plumes relate to the optical properties? 4. How does the emitted rBC affect radiative forcing?« less
Estimating Fuel Bed Loadings in Masticated Areas
Sharon Hood; Ros Wu
2006-01-01
Masticated fuel treatments that chop small trees, shrubs, and dead woody material into smaller pieces to reduce fuel bed depth are used increasingly as a mechanical means to treat fuels. Fuel loading information is important to monitor changes in fuels. The commonly used planar intercept method however, may not correctly estimate fuel loadings because masticated fuels...
Testing of Lightweight Fuel Cell Vehicles System at Low Speeds with Energy Efficiency Analysis
NASA Astrophysics Data System (ADS)
Mustaffa, Muhammad Rizuwan B.; Mohamed, Wan Ahmad Najmi B. Wan
2013-12-01
A fuel cell vehicle power train mini test bench was developed which consists of a 1 kW open cathode hydrogen fuel cell, electric motor, wheel, gearing system, DC/DC converter and vehicle control system (VCS). Energy efficiency identification and energy flow evaluation is a useful tool in identifying a detail performance of each component and sub-systems in a fuel cell vehicle system configuration. Three artificial traction loads was simulated at 30 kg, 40 kg and 50 kg force on a single wheel drive configuration. The wheel speed range reported here covers from idle to 16 km/h (low speed range) as a preliminary input in the research work frame. The test result shows that the system efficiency is 84.5 percent when the energy flow is considered from the fuel cell to the wheel and 279 watts of electrical power was produced by the fuel cell during that time. Dynamic system responses was also identified as the load increases beyond the motor traction capabilities where the losses at the converter and motor controller increased significantly as it tries to meet the motor traction power demands. This work is currently being further expanded within the work frame of developing a road-worthy fuel cell vehicle.
NASA Astrophysics Data System (ADS)
Gupta, Priyank; Protim Das, Partha; Mubarak, M.; Shaija, A.
2018-01-01
Rapid depletion of world’s crude oil reserve, rising global energy demand and concerns about greenhouse gases emission have led to the high-level interest in biofuels. The biofuel, bioethanol is found as an alternative fuel for SI engines as it has similar properties those of gasoline. Higher areal productivity with fast growth rate of microalgae and aquatic weeds makes them promising alternative feedstocks for bioethanol production. In this study, bioethanol produced from S.molesta (aquatic weed) using combined pre-treatment and hydrolysis followed by fermentation with yeast was used to make bioethanol-gasoline blend. The quantity of bioethanol produced from S.molesta was 99.12% pure. The physical properties such as density and heating value of bioethanol were 792.2 kg/m3 and 26.12 MJ/kg, respectively. In this work, the effects of bioethanol-gasoline (E5) fuel blends on the performance and combustion characteristics of a spark ignition (SI) engine were investigated. In the experiments, a single-cylinder, four-stroke SI engine was used. The tests were performed using electric dynamometer while running the engine at the speed (3200 rpm), and seven different load (0, 0.5, 1, 1.5, 2, 2.5 and 3 kW). The results obtained from the use of bioethanol-gasoline fuel blends were compared to those of gasoline fuel. The test results showed an increase of 0.3% in brake thermal efficiency for E5. From the emission analysis, reduced emissions of 39 ppm unburned hydrocarbon, 1.55% carbon monoxide and 2% smoke opacity, respectively was observed with E5 at full load. An increase in CO2 by 0.17% and NOx by 86.7 ppm was observed for E5 at full load.
Effects of Alternative Fuels and Aromatics on Gas-Turbine Particle Emissions
NASA Astrophysics Data System (ADS)
Thornhill, K. L., II; Moore, R.; Winstead, E.; Anderson, B. E.; Klettlinger, J. L.; Ross, R. C.; Surgenor, A.
2015-12-01
This presentation describes experiments conducted with a Honeywell GTCP36-150 Auxiliary Power Unit (APU) to evaluate the effects of varying fuel composition on particle emissions. The APU uses a single-stage compressor stage, gas turbine engine with a can-type combustor to generate bypass flow and electrical power for supporting small aircraft and helicopters. It is installed in a "hush-house" at NASA Glenn Research Center and is configured as a stand-alone unit that can be fueled from an onboard tank or external supply. It operates at constant RPM, but its fuel flow can be varied by changing the electrical load or volume of bypass flow. For these tests, an external bank of resistors were attached to the APU's DC and AC electrical outlets and emissions measurements were made at low, medium and maximum electrical current loads. Exhaust samples were drawn from several points downstream in the exhaust duct and fed to an extensive suite of gas and aerosol sensors installed within a mobile laboratory parked nearby. Aromatic- and sulfur-free synthetic kerosenes from Rentech, Gevo, UOP, Amyris and Sasol were tested and their potential to reduce PM emissions evaluated against a single Jet A1 base fuel. The role of aromatic compounds in regulating soot emissions was also evaluated by adding metered amounts of aromatic blends (Aro-100, AF-Blend, SAK) and pure compounds (tetracontane and 1-methylnaphthalene) to a base alternative fuel (Sasol). Results show that, relative to Jet A1, alternative fuels reduce nonvolatile particle number emissions by 50-80% and--by virtue of producing much smaller particles—mass emissions by 65-90%; fuels with the highest hydrogen content produced the greatest reductions. Nonvolatile particle emissions varied in proportion to fuel aromatic content, with additives containing the most complex ring structures producing the greatest emission enhancements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This appendix summarizes building characteristics used to determine heating and cooling loads for each of the five building types in each of the four regions. For the selected five buildings, the following data are attached: new and existing construction characteristics; new and existing construction thermal resistance; floor plan and elevation; people load schedule; lighting load schedule; appliance load schedule; ventilation schedule; and hot water use schedule. For the five building types (single family, apartment buildings, commercial buildings, office buildings, and schools), data are compiled in 10 appendices. These are Building Characteristics; Alternate Energy Sources and Energy Conservation Techniques Description, Costs,more » Fuel Price Scenarios; Life Cycle Cost Model; Simulation Models; Solar Heating/Cooling System; Condensed Weather; Single and Multi-Family Dwelling Characteristics and Energy Conservation Techniques; Mixed Strategies for Energy Conservation and Alternative Energy Utilization in Buildings. An extensive bibliography is given in the final appendix. (MCW)« less
Ribeiro, Camilo Bastos; Martins, Kelly Geronazzo; Gueri, Matheus Vitor Diniz; Pavanello, Guilherme Pozzobom; Schirmer, Waldir Nagel
2018-06-12
Ethanol is a renewable fuel and it is considered an alternative to gasoline in Otto-cycle engines. The present study evaluated the behavior of exhaustion gas carbon monoxide (CO) and total hydrocarbons (THC) according to the levels of anhydrous ethyl alcohol (AEA) added to gasoline in different proportions (E0, E10, E20, E27, that is, pure gasoline and its blends with AEA at 10, 20, and 27% v/v) in the use of non-road single cylinder engines of different powers (13 and 6.5 hp), to the loads applied to engine-generators and the air-fuel ratio (A/F) admitted to the engine cylinders. Also, the performance of engine-generators was verified in terms of mass, specific and energetic consumption and efficiency of the evaluated systems for the same blends and loads. The results showed that an increase in the AEA content in the blend resulted in significant drops in CO and THC concentrations for both engine-generators, while fuel consumption showed a slight upward trend; the increases in applied loads resulted in an increase in CO and THC concentrations and fuel consumption. In general, a higher AEA content (oxygenated) in the blends had a greater effect on gaseous emissions compared to the effect on consumption and system efficiency.
A comparison of five sampling techniques to estimate surface fuel loading in montane forests
Pamela G. Sikkink; Robert E. Keane
2008-01-01
Designing a fuel-sampling program that accurately and efficiently assesses fuel load at relevant spatial scales requires knowledge of each sample method's strengths and weaknesses.We obtained loading values for six fuel components using five fuel load sampling techniques at five locations in western Montana, USA. The techniques included fixed-area plots, planar...
Fuel loading of PeBR for a long operation life on the lunar surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schriener, T. M.; Chemical and Nuclear Engineering Dept., Univ. of New Mexico, Albuquerque, NM; El-Genk, M. S.
2012-07-01
The Pellet Bed Reactor (PeBR) power system could provide 99.3 kW e to a lunar outpost for 66 full power years and is designed for no single point failures. The core of this fast energy spectrum reactor consists of three sectors that are neutronically and thermally coupled, but hydraulically independent. Each sector has a separate Closed Brayton Cycle (CBC) loop for energy conversion and separate water heat-pipes radiator panels for heat rejection. He-Xe (40 g/mole) binary gas mixture serves as the reactor coolant and CBC working fluid. On the lunar surface, the emplaced PeBR below grade is loaded with sphericalmore » fuel pellets (1-cm in dia.). It is launched unfueled and the pellets are launched in separate subcritical canisters, one for each core sector. This paper numerically simulates the transient loading of a core sector with fuel pellets on the Moon. The simulation accounts for the dynamic interaction of the pellets during loading and calculates the axial and radial distributions of the volume porosity in the sector. The pellets pack randomly with a volume porosity of 0.39 - 0.41 throughout most of the sector, except near the walls the local porosity is higher. (authors)« less
Automated Carrier Landing of an Unmanned Combat Aerial Vehicle Using Dynamic Inversion
2007-06-01
17 CN normal force coefficient . . . . . . . . . . . . . . . . . . . . 17 CA axial force coefficient...slug·ft2 Ixzb 0 slug·ft2 The aircraft has a single engine inlet for a single, centerline mounted turbofan engine. For purposes of this research, the...assumed to remain constant for each simulation run and were based on an assumed 10% fuel load with full weapons [2]. The rest of these values were
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehrke, Christopher R.; Radovanovic, Michael S.; Milam, David M.
2008-04-01
Low-temperature combustion of diesel fuel was studied in a heavy-duty, single-cylinder optical engine employing a 15-hole, dual-row, narrow-included-angle nozzle (10 holes x 70/mD and 5 holes x 35/mD) with 103-/gmm-diameter orifices. This nozzle configuration provided the spray targeting necessary to contain the direct-injected diesel fuel within the piston bowl for injection timings as early as 70/mD before top dead center. Spray-visualization movies, acquired using a high-speed camera, show that impingement of liquid fuel on the piston surface can result when the in-cylinder temperature and density at the time of injection are sufficiently low. Seven single- and two-parameter sweeps around amore » 4.82-bar gross indicated mean effective pressure load point were performed to map the sensitivity of the combustion and emissions to variations in injection timing, injection pressure, equivalence ratio, simulated exhaust-gas recirculation, intake temperature, intake boost pressure, and load. High-speed movies of natural luminosity were acquired by viewing through a window in the cylinder wall and through a window in the piston to provide quasi-3D information about the combustion process. These movies revealed that advanced combustion phasing resulted in intense pool fires within the piston bowl, after the end of significant heat release. These pool fires are a result of fuel-films created when the injected fuel impinged on the piston surface. The emissions results showed a strong correlation with pool-fire activity. Smoke and NO/dx emissions rose steadily as pool-fire intensity increased, whereas HC and CO showed a dramatic increase with near-zero pool-fire activity.« less
Kim, Ok-Hee; Cho, Yoon-Hwan; Jeon, Tae-Yeol; Kim, Jung Won; Cho, Yong-Hun; Sung, Yung-Eun
2015-07-01
Core-shell structure nanoparticles have been the subject of many studies over the past few years and continue to be studied as electrocatalysts for fuel cells. Therefore, many excellent core-shell catalysts have been fabricated, but few studies have reported the real application of these catalysts in a practical device actual application. In this paper, we demonstrate the use of platinum (Pt)-exoskeleton structure nanoparticles as cathode catalysts with high stability and remarkable Pt mass activity and report the outstanding performance of these materials when used in membrane-electrode assemblies (MEAs) within a polymer electrolyte membrane fuel cell. The stability and degradation characteristics of these materials were also investigated in single cells in an accelerated degradation test using load cycling, which is similar to the drive cycle of a polymer electrolyte membrane fuel cell used in vehicles. The MEAs with Pt-exoskeleton structure catalysts showed enhanced performance throughout the single cell test and exhibited improved degradation ability that differed from that of a commercial Pt/C catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hicks, Michael; Erickson, Paul; Lawrence, Richard
Off-road concerns are related to the effects of shock and vibration and air quality on fuel cell power requirements. Mechanical stresses on differing material makeup and mass distribution within the system may render some components susceptible to impulse trauma while others may show adverse effects from harmonic disturbances or broad band mechanical agitation. One of the recognized challenges in fuel cell systems air purification is in providing a highly efficient particulate and chemical filter with minimal pressure drop. PEM integrators do not want additional parasitic loads added to the system as compensation for a highly efficient yet highly restrictive filter.more » Additionally, there is challenge in integrating multiple functions into a single air intake module tasked with effectively filtering high dust loads, diesel soot, pesticides, ammonias, and other anticipated off-road contaminants. This project has investigated both off-road associated issues cumulating in the prototype build and testing of two light duty off-road vehicles with integrated fuel cell power plant systems.« less
Fine scale vegetation classification and fuel load mapping for prescribed burning
Andrew D. Bailey; Robert Mickler
2007-01-01
Fire managers in the Coastal Plain of the Southeastern United States use prescribed burning as a tool to reduce fuel loads in a variety of vegetation types, many of which have elevated fuel loads due to a history of fire suppression. While standardized fuel models are useful in prescribed burn planning, those models do not quantify site-specific fuel loads that reflect...
Total Energy Concepts as Applied to Universities.
ERIC Educational Resources Information Center
Gudgeon, R.L.
A comprehensive discussion of single fuel source generation of power and heating requirements is presented. Definition and explanation of system concepts includes--(1) heat pumps, (2) steam turbines, (3) gas turbines, and (4) gas and diesel engines. Concept cost evaluation factors described are--(1) load pattern, (2) campus configuration, (3) fuel…
Cathodic and anodic biofilms in Single Chamber Microbial Fuel Cells.
Cristiani, P; Carvalho, M L; Guerrini, E; Daghio, M; Santoro, C; Li, B
2013-08-01
The oxygen reduction due to microaerophilic biofilms grown on graphite cathodes (biocathodes) in Single Chamber Microbial Fuel Cells (SCMFCs) is proved and analysed in this paper. Pt-free cathode performances are compared with those of different platinum-loaded cathodes, before and after the biofilm growth. Membraneless SCMFCs were operating in batch-mode, filled with wastewater. A substrate (fuel) of sodium acetate (0.03 M) was periodically added and the experiment lasted more than six months. A maximum of power densities, up to 0.5 W m(-2), were reached when biofilms developed on the electrodes and the cathodic potential decreased (open circuit potential of 50-200 mV vs. SHE). The power output was almost constant with an acetate concentration of 0.01-0.05 M and it fell down when the pH of the media exceeded 9.5, independently of the Pt-free/Pt-loading at the cathodes. Current densities varied in the range of 1-5 Am(-2) (cathode area of 5 cm(2)). Quasi-stationary polarization curves performed with a three-electrode configuration on cathodic and anodic electrodes showed that the anodic overpotential, more than the cathodic one, may limit the current density in the SCMFCs for a long-term operation. Copyright © 2012 Elsevier B.V. All rights reserved.
Durability, Performance, and Emission of Diesel Engines Using Carbon Fiber Piston and Liner
NASA Technical Reports Server (NTRS)
Afify, E. M.; Roberts, W. L.
1999-01-01
This report summarizes the research conducted by NC State University in investigating the durability, performance and emission of a carbon fiber piston and liner in our single cylinder research Diesel engine. Both the piston and liner were supplied to NC State University by NASA LaRC and manufactured by C-CAT under a separate contract to NASA LaRC. The carbon-carbon material used to manufacture the piston and liner has significantly lower thermal conductivity, coefficient of thermal expansion, and superior strength characteristics at elevated temperatures when compared to conventional piston materials such as aluminum. The results of the carbon-carbon fiber piston testing were compared to a baseline configuration, which used a conventional aluminum piston in a steel liner. The parameters measured were the brake specific fuel consumption, ignition delay, frictional horsepower, volumetric efficiency, and durability characteristics of the two pistons. Testing was performed using a naturally aspirated Labeco Direct Injection single cylinder diesel engine. Two test cases were performed over a range of loads and speeds. The fixed test condition between the aluminum and carbon-carbon piston configurations was the brake mean effective pressure. The measured data was the fuel consumption rate, volumetric efficiency, load, speed, cylinder pressure, needle lift, and exhaust gas temperature. The cylinder pressure, and fuel consumption, exhaust gas temperature, and needle lift were recorded using a National Instruments DAQ board and a PC. All test cases used Diesel no. 2 for fuel.
Microwave-assisted synthesis of Pt/CNT nanocomposite electrocatalysts for PEM fuel cells.
Zhang, Weimin; Chen, Jun; Swiegers, Gerhard F; Ma, Zi-Feng; Wallace, Gordon G
2010-02-01
Microwave-assisted heating of functionalized, single-wall carbon nanotubes (FCNTs) in ethylene glycol solution containing H(2)PtCl(6), led to the reductive deposition of Pt nanoparticles (2.5-4 nm) over the FCNTs, yielding an active catalyst for proton-exchange membrane fuel cells (PEMFCs). In single-cell testing, the Pt/FCNT composites displayed a catalytic performance that was superior to Pt nanoparticles supported by raw (unfunctionalized) CNTs (RCNTs) or by carbon black (C), prepared under identical conditions. The supporting single-wall carbon nanotubes (SWNTs), functionalized with carboxyl groups, were studied by thermogravimetric analysis (TGA), cyclic voltammetry (CV), and Raman spectroscopy. The loading level, morphology, and crystallinity of the Pt/SWNT catalysts were determined using TGA, SEM, and XRD. The electrochemically active catalytic surface area of the Pt/FCNT catalysts was 72.9 m(2)/g-Pt.
NASA Technical Reports Server (NTRS)
Lohmann, R. P.; Szetela, E. J.; Vranos, A.
1978-01-01
The impact of the use of broad specification fuels on the design, performance durability, emissions and operational characteristics of combustors for commercial aircraft gas turbine engines was assessed. Single stage, vorbix and lean premixed prevaporized combustors, in the JT9D and an advanced energy efficient engine cycle were evaluated when operating on Jet A and ERBS (Experimental Referee Broad Specification) fuels. Design modifications, based on criteria evolved from a literature survey, were introduced and their effectiveness at offsetting projected deficiencies resulting from the use of ERBS was estimated. The results indicate that the use of a broad specification fuel such as ERBS, will necessitate significant technology improvements and redesign if deteriorated performance, durability and emissions are to be avoided. Higher radiant heat loads are projected to seriously compromise liner life while the reduced thermal stability of ERBS will require revisions to the engine-airframe fuel system to reduce the thermal stress on the fuel. Smoke and emissions output are projected to increase with the use of broad specification fuels. While the basic geometry of the single stage and vorbix combustors are compatible with the use of ERBS, extensive redesign of the front end of the lean premixed prevaporized burner will be required to achieve satisfactory operation and optimum emissions.
A comparison of three methods for classifying fuel loads in the Southern Appalachian Mountains
Lucy Brudnak; Thomas A. Waldrop; Sandra Rideout-Hanzak
2006-01-01
As the wildland-urban interface in the Southern Appalachian Mountains has grown and become more complex, land managers, property owners, and ecologists have found it increasingly necessary to understand factors that drive fuel loading. Few predictive fuel loading models have been created for this important region. Three approaches to estimating fuel loads are compared...
Jha, Neetu; Ramesh, Palanisamy; Bekyarova, Elena; Tian, Xiaojuan; Wang, Feihu; Itkis, Mikhail E.; Haddon, Robert C.
2013-01-01
Chemically modified single-walled carbon nanotubes (SWNTs) with varying degrees of functionalization were utilized for the fabrication of SWNT thin film catalyst support layers (CSLs) in polymer electrolyte membrane fuel cells (PEMFCs), which were suitable for benchmarking against the US DOE 2017 targets. Use of the optimum level of SWNT -COOH functionality allowed the construction of a prototype SWNT-based PEMFC with total Pt loading of 0.06 mgPt/cm2 - well below the value of 0.125 mgPt/cm2 set as the US DOE 2017 technical target for total Pt group metals (PGM) loading. This prototype PEMFC also approaches the technical target for the total Pt content per kW of power (<0.125 gPGM/kW) at cell potential 0.65 V: a value of 0.15 gPt/kW was achieved at 80°C/22 psig testing conditions, which was further reduced to 0.12 gPt/kW at 35 psig back pressure. PMID:23877112
Jha, Neetu; Ramesh, Palanisamy; Bekyarova, Elena; Tian, Xiaojuan; Wang, Feihu; Itkis, Mikhail E; Haddon, Robert C
2013-01-01
Chemically modified single-walled carbon nanotubes (SWNTs) with varying degrees of functionalization were utilized for the fabrication of SWNT thin film catalyst support layers (CSLs) in polymer electrolyte membrane fuel cells (PEMFCs), which were suitable for benchmarking against the US DOE 2017 targets. Use of the optimum level of SWNT -COOH functionality allowed the construction of a prototype SWNT-based PEMFC with total Pt loading of 0.06 mg(Pt)/cm²--well below the value of 0.125 mg(Pt)/cm² set as the US DOE 2017 technical target for total Pt group metals (PGM) loading. This prototype PEMFC also approaches the technical target for the total Pt content per kW of power (<0.125 g(PGM)/kW) at cell potential 0.65 V: a value of 0.15 g(Pt)/kW was achieved at 80°C/22 psig testing conditions, which was further reduced to 0.12 g(Pt)/kW at 35 psig back pressure.
NASA Technical Reports Server (NTRS)
Spanogle, J A; Moore, C S
1931-01-01
Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.
Daniel W. Gilmore; Douglas N. Kastendick; John C. Zasada; Paula J. Anderson
2003-01-01
Fuel loadings need to be considered in two ways: 1) the total fuel loadings of various size classes and 2) their distribution across a site. Fuel treatments in this study affected both. We conclude that 1) mechanical treatments of machine piling and salvage logging reduced fine and heavy fuel loadings and 2) prescribed fire was successful in reducing fine fuel...
Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F
2010-05-15
Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions.
Mondal, Nandita; Sukumar, Raman
2016-01-01
The "varying constraints hypothesis" of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels-the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)-using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied-early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia.
Mondal, Nandita; Sukumar, Raman
2016-01-01
The “varying constraints hypothesis” of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels—the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)—using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied—early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia. PMID:27441689
NASA Technical Reports Server (NTRS)
Spanogle, J A; Foster, H H
1930-01-01
This report presents test results obtained at the Langley Memorial Aeronautical Laboratory of the National Advisory Committee for Aeronautics during an investigation to determine the relative performance of a single-cylinder, high-speed, compression-ignition engine when using fuel injection valve nozzles with different numbers, sizes, and directions of round orifices. A spring-loaded, automatic injection valve was used, centrally located at the top of a vertical disk-type combustion chamber formed between horizontally opposed inlet and exhaust valves of a 5 inch by 7 inch engine.
Nelson, Kellen N; Turner, Monica G; Romme, William H; Tinker, Daniel B
2016-12-01
Escalating wildfire in subalpine forests with stand-replacing fire regimes is increasing the extent of early-seral forests throughout the western USA. Post-fire succession generates the fuel for future fires, but little is known about fuel loads and their variability in young post-fire stands. We sampled fuel profiles in 24-year-old post-fire lodgepole pine (Pinus contorta var. latifolia) stands (n = 82) that regenerated from the 1988 Yellowstone Fires to answer three questions. (1) How do canopy and surface fuel loads vary within and among young lodgepole pine stands? (2) How do canopy and surface fuels vary with pre- and post-fire lodgepole pine stand structure and environmental conditions? (3) How have surface fuels changed between eight and 24 years post-fire? Fuel complexes varied tremendously across the landscape despite having regenerated from the same fires. Available canopy fuel loads and canopy bulk density averaged 8.5 Mg/ha (range 0.0-46.6) and 0.24 kg/m 3 (range: 0.0-2.3), respectively, meeting or exceeding levels in mature lodgepole pine forests. Total surface-fuel loads averaged 123 Mg/ha (range: 43-207), and 88% was in the 1,000-h fuel class. Litter, 1-h, and 10-h surface fuel loads were lower than reported for mature lodgepole pine forests, and 1,000-h fuel loads were similar or greater. Among-plot variation was greater in canopy fuels than surface fuels, and within-plot variation was greater than among-plot variation for nearly all fuels. Post-fire lodgepole pine density was the strongest positive predictor of canopy and fine surface fuel loads. Pre-fire successional stage was the best predictor of 100-h and 1,000-h fuel loads in the post-fire stands and strongly influenced the size and proportion of sound logs (greater when late successional stands had burned) and rotten logs (greater when early successional stands had burned). Our data suggest that 76% of the young post-fire lodgepole pine forests have 1,000-h fuel loads that exceed levels associated with high-severity surface fire potential, and 63% exceed levels associated with active crown fire potential. Fire rotations in Yellowstone National Park are predicted to shorten to a few decades and this prediction cannot be ruled out by a lack of fuels to carry repeated fires. © 2016 by the Ecological Society of America.
Robert E. Keane; Laura J. Dickinson
2007-01-01
Fire managers need better estimates of fuel loading so they can more accurately predict the potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common surface fuel components (1 hr, 10 hr...
Estimation of Forest Fuel Load from Radar Remote Sensing
NASA Technical Reports Server (NTRS)
Saatchi, Sassan; Despain, Don G.; Halligan, Kerry; Crabtree, Robert
2007-01-01
Understanding fire behavior characteristics and planning for fire management require maps showing the distribution of wildfire fuel loads at medium to fine spatial resolution across large landscapes. Radar sensors from airborne or spaceborne platforms have the potential of providing quantitative information about the forest structure and biomass components that can be readily translated to meaningful fuel load estimates for fire management. In this paper, we used multifrequency polarimetric synthetic aperture radar imagery acquired over a large area of the Yellowstone National Park (YNP) by the AIRSAR sensor, to estimate the distribution of forest biomass and canopy fuel loads. Semi-empirical algorithms were developed to estimate crown and stem biomass and three major fuel load parameters, canopy fuel weight, canopy bulk density, and foliage moisture content. These estimates when compared directly to measurements made at plot and stand levels, provided more than 70% accuracy, and when partitioned into fuel load classes, provided more than 85% accuracy. Specifically, the radar generated fuel parameters were in good agreement with the field-based fuel measurements, resulting in coefficients of determination of R(sup 2) = 85 for the canopy fuel weight, R(sup 2)=.84 for canopy bulk density and R(sup 2) = 0.78 for the foliage biomass.
DOT National Transportation Integrated Search
2010-08-01
This report presents the results of a passenger locomotive fuel tank load test simulating jackknife derailment (JD) load. The test is based on FRA requirements for locomotive fuel tanks in the Title 49, Code of Federal Regulations (CFR), Part 238, Ap...
NASA Astrophysics Data System (ADS)
Syahputra, R. J. E.; Rahmawati, F.; Prameswari, A. P.; Saktian, R.
2017-02-01
In this research, the result of pyrolysis on polyethylene was used as fuel for a solid oxide fuel cell (SOFC). The pyrolysis result is a liquid which consists of hydrocarbon chains. According to GC-MS analysis, the hydrocarbons mainly consist of C7 to C20 hydrocarbon chain. Then, the liquid was applied to a single cell of NSDC-L | NSDC | NSDC-L. NSDC is a composite SDC (samarium doped-ceria) with sodium carbonate. Meanwhile, NSDC-L is a composite of NSDC with LiNiCuO (LNC). NSDC and LNC were analyzed by X-ray diffraction to understand their crystal structure. The result shows that presence of carbonate did not change the crystal structure of SDC. SEM EDX analysis for fuel cell before and after being loaded with polyethylene oil to get information of element diffusion to the electrolyte. Meanwhile, the conductivity properties were investigated through impedance measurement. The presence of carbonate even increases the electrical conductivity. The single cell test with the pyrolysis result of polyethylene at 300 - 600 °C, found that the highest power density is at 600 °C with the maximum power density of 0.14 mW/cm2 and open circuit voltage of 0.4 Volt. Elemental analysis at three point spots of single cell NDSC-L |NSDC|NSDC-L found that a migration of ions was occurred during fuel operation at 300 - 600 °C.
Electrical contact structures for solid oxide electrolyte fuel cell
Isenberg, Arnold O.
1984-01-01
An improved electrical output connection means is provided for a high temperature solid oxide electrolyte type fuel cell generator. The electrical connection of the fuel cell electrodes to the electrical output bus, which is brought through the generator housing to be connected to an electrical load line maintains a highly uniform temperature distribution. The electrical connection means includes an electrode bus which is spaced parallel to the output bus with a plurality of symmetrically spaced transversely extending conductors extending between the electrode bus and the output bus, with thermal insulation means provided about the transverse conductors between the spaced apart buses. Single or plural stages of the insulated transversely extending conductors can be provided within the high temperatures regions of the fuel cell generator to provide highly homogeneous temperature distribution over the contacting surfaces.
Redox reaction triggered nanomotors based on soft-oxometalates with high and sustained motility
NASA Astrophysics Data System (ADS)
Mallick, Apabrita; Laskar, Abhrajit; Adhikari, R.; Roy, Soumyajit
2018-05-01
The recent interest in self-propulsion raises an immediate challenge in facile and single-step synthesis of active particles. Here, we address this challenge and synthesize soft oxometalate nanomotors that translate ballistically in water using the energy released in a redox reaction of hydrazine fuel with the soft-oxometalates. Our motors reach a maximum speed of ̴ 370 body lengths per second and remain motile over a period of approximately three days. We report measurements of the speed of a single motor as a function of the concentration of hydrazine. It is also possible to induce a transition from single-particle translation to collective motility with biomimetic bands simply by tuning the loading of the fuel. We rationalize the results from a physicochemical hydrodynamic theory. Our nanomotors may also be used for transport of catalytic materials in harsh chemical environments that would otherwise passivate the active catalyst.
The potential for LiDAR technology to map fire fuel hazard over large areas of Australian forest.
Price, Owen F; Gordon, Christopher E
2016-10-01
Fuel load is a primary determinant of fire spread in Australian forests. In east Australian forests, litter and canopy fuel loads and hence fire hazard are thought to be highest at and beyond steady-state fuel loads 15-20 years post-fire. Current methods used to predict fuel loads often rely on course-scale vegetation maps and simple time-since-fire relationships which mask fine-scale processes influencing fuel loads. Here we use Light Detecting and Remote Sensing technology (LiDAR) and field surveys to quantify post-fire mid-story and crown canopy fuel accumulation and fire hazard in Dry Sclerophyll Forests of the Sydney Basin (Australia) at fine spatial-scales (20 × 20 m cell resolution). Fuel cover was quantified in three strata important for crown fire propagation (0.5-4 m, 4-15 m, >15 m) over a 144 km(2) area subject to varying fire fuel ages. Our results show that 1) LiDAR provided a precise measurement of fuel cover in each strata and a less precise but still useful predictor of surface fuels, 2) cover varied greatly within a mapped vegetation class of the same fuel age, particularly for elevated fuel, 3) time-since-fire was a poor predictor of fuel cover and crown fire hazard because fuel loads important for crown fire propagation were variable over a range of fire fuel ages between 2 and 38 years post-fire, and 4) fuel loads and fire hazard can be high in the years immediately following fire. Our results show the benefits of spatially and temporally specific in situ fuel sampling methods such as LiDAR, and are widely applicable for fire management actions which aim to decrease human and environmental losses due to wildfire. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Cheolhwan; Kim, Kyu-Jung; Ha, Man Yeong
To investigate the possibility of the portable application of a direct borohydride fuel cell (DBFC), weight reduction of the stack and high stacking of the cells are investigated for practical running conditions. For weight reduction, carbon graphite is adopted as the bipolar plate material even though it has disadvantages in tight stacking, which results in stacking loss from insufficient material strength. For high stacking, it is essential to have a uniform fuel distribution among cells and channels to maintain equal electric load on each cell. In particular, the design of the anode channel is important because active hydrogen generation causes non-uniformity in the fuel flow-field of the cells and channels. To reduce the disadvantages of stacking force margin and fuel maldistribution, an O-ring type-sealing system with an internal manifold and a parallel anode channel design is adopted, and the characteristics of a single and a five-cell fuel cell stack are analyzed. By adopting carbon graphite, the stack weight can be reduced by 4.2 times with 12% of performance degradation from the insufficient stacking force. When cells are stacked, the performance exceeds the single-cell performance because of the stack temperature increase from the reduction of the radiation area from the narrow stacking of cells.
Estimation of forest fuel load from radar remote sensing
Saatchi, S.; Halligan, K.; Despain, Don G.; Crabtree, R.L.
2007-01-01
Understanding fire behavior characteristics and planning for fire management require maps showing the distribution of wildfire fuel loads at medium to fine spatial resolution across large landscapes. Radar sensors from airborne or spaceborne platforms have the potential of providing quantitative information about the forest structure and biomass components that can be readily translated to meaningful fuel load estimates for fire management. In this paper, we used multifrequency polarimetric synthetic aperture radar (SAR) imagery acquired over a large area of the Yellowstone National Park by the Airborne SAR sensor to estimate the distribution of forest biomass and canopy fuel loads. Semiempirical algorithms were developed to estimate crown and stem biomass and three major fuel load parameters, namely: 1) canopy fuel weight; 2) canopy bulk density; and 3) foliage moisture content. These estimates, when compared directly to measurements made at plot and stand levels, provided more than 70% accuracy and, when partitioned into fuel load classes, provided more than 85% accuracy. Specifically, the radar-generated fuel parameters were in good agreement with the field-based fuel measurements, resulting in coefficients of determination of R2 = 85 for the canopy fuel weight, R 2 = 0.84 for canopy bulk density, and R2 =0.78 for the foliage biomass. ?? 2007 IEEE.
Colorado Front Range fuel photo series
Michael A. Battaglia; Jonathan M. Dodson; Wayne D. Shepperd; Mark J. Platten; Owen M. Tallmadge
2005-01-01
This photo series was developed to help fire managers estimate ground and surface fuel loads that exist in cover types of the Southern Colorado Front Range wildland-urban interface. Photos and associated data representing low, medium, and high fuel loadings from this study are presented by forest type, along with examples of typical or median fuel loadings that were...
Jamie M. Lydersen; Brandon M. Collins; Eric E. Knapp; Gary B. Roller; Scott Stephens
2015-01-01
Although knowledge of surface fuel loads is critical for evaluating potential fire behaviour and effects, their inherent variability makes these difficult to quantify. Several studies relate fuel loads to vegetation type, topography and spectral imaging, but little work has been done examining relationships between forest overstorey variables and surface fuel...
Dynamic Modeling, Model-Based Control, and Optimization of Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Spivey, Benjamin James
2011-07-01
Solid oxide fuel cells are a promising option for distributed stationary power generation that offers efficiencies ranging from 50% in stand-alone applications to greater than 80% in cogeneration. To advance SOFC technology for widespread market penetration, the SOFC should demonstrate improved cell lifetime and load-following capability. This work seeks to improve lifetime through dynamic analysis of critical lifetime variables and advanced control algorithms that permit load-following while remaining in a safe operating zone based on stress analysis. Control algorithms typically have addressed SOFC lifetime operability objectives using unconstrained, single-input-single-output control algorithms that minimize thermal transients. Existing SOFC controls research has not considered maximum radial thermal gradients or limits on absolute temperatures in the SOFC. In particular, as stress analysis demonstrates, the minimum cell temperature is the primary thermal stress driver in tubular SOFCs. This dissertation presents a dynamic, quasi-two-dimensional model for a high-temperature tubular SOFC combined with ejector and prereformer models. The model captures dynamics of critical thermal stress drivers and is used as the physical plant for closed-loop control simulations. A constrained, MIMO model predictive control algorithm is developed and applied to control the SOFC. Closed-loop control simulation results demonstrate effective load-following, constraint satisfaction for critical lifetime variables, and disturbance rejection. Nonlinear programming is applied to find the optimal SOFC size and steady-state operating conditions to minimize total system costs.
Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage
NASA Astrophysics Data System (ADS)
Ternovykh, Mikhail; Tikhomirov, Georgy; Saldikov, Ivan; Gerasimov, Alexander
2017-09-01
Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.
Zhang, Ji-Li; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Jin, Sen
2012-11-01
Taking fuel moisture content, fuel loading, and fuel bed depth as controlling factors, the fuel beds of Mongolian oak leaves in Maoershan region of Northeast China in field were simulated, and a total of one hundred experimental burnings under no-wind and zero-slope conditions were conducted in laboratory, with the effects of the fuel moisture content, fuel loading, and fuel bed depth on the flame length and its residence time analyzed and the multivariate linear prediction models constructed. The results indicated that fuel moisture content had a significant negative liner correlation with flame length, but less correlation with flame residence time. Both the fuel loading and the fuel bed depth were significantly positively correlated with flame length and its residence time. The interactions of fuel bed depth with fuel moisture content and fuel loading had significant effects on the flame length, while the interactions of fuel moisture content with fuel loading and fuel bed depth affected the flame residence time significantly. The prediction model of flame length had better prediction effect, which could explain 83.3% of variance, with a mean absolute error of 7.8 cm and a mean relative error of 16.2%, while the prediction model of flame residence time was not good enough, which could only explain 54% of variance, with a mean absolute error of 9.2 s and a mean relative error of 18.6%.
NASA Astrophysics Data System (ADS)
French, N. H. F.; Prichard, S.; McKenzie, D.; Kennedy, M. C.; Billmire, M.; Ottmar, R. D.; Kasischke, E. S.
2016-12-01
Quantification of emissions of carbon during combustion relies on knowing three general variables: how much landscape is impacted by fire (burn area), how much carbon is in that landscape (fuel loading), and fuel properties that determine the fraction that is consumed (fuel condition). These variables also determine how much carbon remains at the site in the form of unburned organic material or char, and therefore drive post-fire carbon dynamics and pools. In this presentation we review the importance of understanding fuel type, fuel loading, and fuel condition for quantifying carbon dynamics properly during burning and for measuring and mapping fuels across landscapes, regions, and continents. Variability in fuels has been shown to be a major driver of uncertainty in fire emissions, but has had little attention until recently. We review the current state of fuel characterization for fire management and carbon accounting, and present a new approach to quantifying fuel loading for use in fire-emissions mapping and for improving fire-effects assessment. The latest results of a study funded by the Joint Fire Science Program (JFSP) are presented, where a fuel loading database is being built to quantify variation in fuel loadings, as represented in the Fuel Characteristic Classification System (FCCS), across the conterminous US and Alaska. Statistical assessments of these data at multiple spatial scales will improve tools used by fire managers and scientists to quantify fire's impact on the land, atmosphere, and carbon cycle.
NASA Astrophysics Data System (ADS)
Jiang, Yu; Yang, Jiacheng; Gagné, Stéphanie; Chan, Tak W.; Thomson, Kevin; Fofie, Emmanuel; Cary, Robert A.; Rutherford, Dan; Comer, Bryan; Swanson, Jacob; Lin, Yue; Van Rooy, Paul; Asa-Awuku, Akua; Jung, Heejung; Barsanti, Kelley; Karavalakis, Georgios; Cocker, David; Durbin, Thomas D.; Miller, J. Wayne; Johnson, Kent C.
2018-06-01
Knowledge of black carbon (BC) emission factors from ships is important from human health and environmental perspectives. A study of instruments measuring BC and fuels typically used in marine operation was carried out on a small marine engine. Six analytical methods measured the BC emissions in the exhaust of the marine engine operated at two load points (25% and 75%) while burning one of three fuels: a distillate marine (DMA), a low sulfur, residual marine (RMB-30) and a high-sulfur residual marine (RMG-380). The average emission factors with all instruments increased from 0.08 to 1.88 gBC/kg fuel in going from 25 to 75% load. An analysis of variance (ANOVA) tested BC emissions against instrument, load, and combined fuel properties and showed that both engine load and fuels had a statistically significant impact on BC emission factors. While BC emissions were impacted by the fuels used, none of the fuel properties investigated (sulfur content, viscosity, carbon residue and CCAI) was a primary driver for BC emissions. Of the two residual fuels, RMB-30 with the lower sulfur content, lower viscosity and lower residual carbon, had the highest BC emission factors. BC emission factors determined with the different instruments showed a good correlation with the PAS values with correlation coefficients R2 >0.95. A key finding of this research is the relative BC measured values were mostly independent of load and fuel, except for some instruments in certain fuel and load combinations.
Minor Actinides-Loaded FBR Core Concept Suitable for the Introductory Period in Japan
NASA Astrophysics Data System (ADS)
Fujimura, Koji; Sasahira, Akira; Yamashita, Junichi; Fukasawa, Tetsuo; Hoshino, Kuniyoshi
According to the Japan's Framework for Nuclear Energy Policy(1), a basic scenario for fast breeder reactors (FBRs) is that they will be introduced on a commercial basis starting around 2050 replacing light water reactors (LWRs). During the FBR introduction period, the Pu from LWR spent fuel is used for FBR startup. Howerver, the FBR core loaded with this Pu has a larger burnup reactivity due to its larger isotopic content of Pu-241 than a core loaded with Pu from an FBR multi-recycling core. The increased burnup reactivity may reduce the cycle length of an FBR. We investigated, an FBR transitional core concept to confront the issues of the FBR introductory period in Japan. Core specifications are based on the compact-type sodium-cooled mixed oxide (MOX)-fueled core designed from the Japanese FBR cycle feasibility studies, because lower Pu inventory should be better for the FBR introductory period in view of its flexibility for the required reprocessing amount of LWR spent fuel to start up FBRs. The reference specifications were selected as follows. Output of 1500MWe and average discharge fuel burnup of about 150GWd/t. Minor Actinides (MAs) recovered from LWR spent fuels which provide Pu to startup FBRs are loaded to the initial loading fuels and exchanged fuels during few cycles until equilibrium. We made the MA content of the initial loading fuel four kinds like 0%, 3%, 4%, 5%. The average of the initial loading fuel is assumed to be 3%, and that of the exchange fuel is set as 5%. This 5% maximum of the MA content is based on the irradiation results of the experimental fast reactor Joyo. We evaluated the core performances including burnup characteristics and the reactivity coefficient and confirmed that transitional core from initial loading until equilibrium cycle with loaded Pu from LWR spent fuel performs similary to an FBR multi-recycling core.
FinalReport-DOE BES DMSE-UNR-QLi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qizhen
The primary goal of this project is to explore the fundamental deformation and failure mechanisms for magnesium with a hexagonal close packed (HCP) crystal structure. It is critical to perform this project for a number of reasons. First, magnesium is the lightest structural metal and its application in various structural components can save the final component weight. Second, the weight reduction from the usage of magnesium-based structural components in transportation vehicles such as automobiles and aircrafts can improve fuel efficiency and reduce the greenhouse gas emissions. Third, structural components often experience dynamic loading such as cyclic loading conditions. Fourth, magnesiummore » with a HCP crystal structure generally has its special deformation responses under loading conditions. This project investigated magnesium based materials (magnesium single crystal, pure polycrystalline magnesium, and some magnesium alloys) under various loading conditions, and also explored some processing routes to manipulate the microstructure and mechanical properties of magnesium. The research results were published in a number of articles and also disseminated through presentations in various conferences such as TMS annual meetings, MRS meetings, the international Plasticity conferences, the Pacific Rim International Congress on Advanced Materials and Processing, and AeroMat. In addition to the contribution to the research/academic community, this project is also beneficial to the general public. With the actual usage of magnesium in the passenger cars, the weight reduction and fuel consumption reduction will save the fuel bill of individual owners.« less
Jin, Sen; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Zhang, Ji-Li
2012-01-01
Aimed to understand the fire behavior of Mongolian oak leaves fuel-bed under field condition, the leaves of a secondary Mongolian oak forest in Northeast Forestry University experimental forest farm were collected and brought into laboratory to construct fuel-beds with varied loading, height, and moisture content, and a total of 100 experimental fires were burned under no-wind and zero-slope conditions. It was observed that the fire spread rate of the fuel-beds was less than 0.5 m x min(-1). Fuel-bed loading, height, and moisture contents all had significant effects on the fire spread rate. The effect of fuel-bed moisture content on the fire spread had no significant correlations with fuel-bed loading and height, but the effect of fuel-bed height was related to the fuel-bed loading. The packing ratio of fuel-beds had less effect on the fire spread rate. Taking the fuel-bed loading, height, and moisture content as predictive variables, a prediction model for the fire spread rate of Mongolian oak leaves fuel-bed was established, which could explain 83% of the variance of the fire spread rate, with a mean absolute error 0.04 m x min(-1) and a mean relative error less than 17%.
NASA Astrophysics Data System (ADS)
Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki
2017-01-01
Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.
Surface fuel changes after severe disturbances in northern Rocky Mountain ecosystems
Chris Stalling; Robert E. Keane; Molly Retzlaff
2017-01-01
It is generally assumed that severe disturbances predispose damaged forests to high fire hazard by creating heavy fuel loading conditions. Of special concern is the perception that surface fuel loadings become high as recently killed trees deposit foliage and woody material on the ground and that these high fuel loadings may cause abnormally severe fires. This study...
Anchupogu, Praveen; Rao, Lakshmi Narayana; Banavathu, Balakrishna
2018-06-04
In the present study, the combined effect of alumina nanoparticles into the Calophyllum inophyllum biodiesel blend and exhaust gas recirculation on the combustion, performance, and emission characteristics of a diesel engine was investigated. The alumina (Al 2 O 3 ) nanoparticles with the mass fraction of 40 ppm were dispersed into the C. inophyllum biodiesel blend (20% of C. inophyllum biodiesel + 80% of diesel (CIB20)) by the ultrasonication process. Further, the exhaust gas recirculation was adopted to control the oxides of nitrogen (NOx) emissions of a diesel engine. The experiments were conducted on a single cylinder diesel engine with the diesel, CIB20, 20% of C. inophyllum biodiesel + 80% of diesel + 40 ppm Al 2 O 3 nanoparticles (CIB20ANP40), CIB20 + 20% exhaust gas recirculation (EGR), and CIB20ANP40 + 20% EGR fuel samples at different load conditions. The results reveal that brake thermal efficiency of CIB20ANP40 fuel increased by 5.04 and 7.71% compared to the CIB20 and CIB20ANP40 + 20% EGR fuels, respectively. The addition of alumina nanoparticles to the CIB20 fuel, CO, and hydrocarbon (HC) emissions were was reduced compared to the CIB20 fuel. The smoke opacity was decreased with the addition of alumina nanoparticles to the CIB20 fuel by 7.3% compared to the CIB20 fuel. The NOx emissions for the CIB20ANP40 + 20% EGR fuel was decreased by 36.84, 31.53, and 17.67% compared to the CIB20, CIB20ANP40, and CIB20 + 20% EGR fuel samples at full load condition.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for in paragraph (i) of this section, any diesel fuel, other than jet fuel or kerosene that is... this section, any diesel fuel, other than jet fuel or kerosene that is downstream of a truck loading... diesel fuel, other than jet fuel or kerosene that is downstream of a truck loading terminal, that...
Code of Federal Regulations, 2014 CFR
2014-07-01
... for in paragraph (i) of this section, any diesel fuel, other than jet fuel or kerosene that is... this section, any diesel fuel, other than jet fuel or kerosene that is downstream of a truck loading... diesel fuel, other than jet fuel or kerosene that is downstream of a truck loading terminal, that...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunting, Bruce G; Farrell, John T
2006-01-01
The effects of fuel properties on gasoline HCCI operation have been investigated in a single cylinder, 500 cc, 11.3 CR port fuel injected research engine, operated at lambda=1 and equipped with hydraulic valve actuation. HCCI is promoted by early exhaust valve closing to retain hot exhaust in the cylinder, thereby increasing the cylinder gas temperature. Test fuels were formulated with pure components to have the same RON, MON, and octane sensitivity as an indolene reference fuel, but with a wide range of fuel composition differences. Experiments have been carried out to determine if fuel composition plays a role in HCCImore » combustion properties, independent of octane numbers. Fuel economy, emissions, and combustion parameters have been measured at several fixed speed/load conditions over a range of exhaust valve closing angles. When the data are compared at constant combustion phasing, fuel effects on emissions and other combustion properties are small. However, when compared at constant exhaust valve closing angle, fuel composition effects are more pronounced, specifically regarding ignition. Operability range differences are also related to fuel composition. An all-paraffinic (normal, iso, and cycloparaffins) fuel exhibited distinctly earlier combustion phasing, increased rate of cylinder pressure rise, and increased rate of maximum heat release compared to the indolene reference fuel. Conversely, olefin-containing fuels exhibited retarded combustion phasing. The fuels with the most advanced ignition showed a wider operating range in terms of engine speed and load, irrespective of exhaust closing angle. These ignition differences reflect contributions from both fuel and EGR kinetics, the effects of which are discussed. The fuel composition variables are somewhat inter-correlated, which makes the experimental separation their effects imprecise with this small set of fuels, though clear trends are evident. The overall effects of fuel composition on engine performance and emissions are small. However, the results suggest that the effects on combustion phasing and engine operability range may need to be considered in the practical implementation of HCCI for fuels with large compositional variations.« less
Thermal efficiency and environmental performances of a biogas-diesel stationary engine.
Bilcan, A; Le Corre, O; Delebarre, A
2003-09-01
Municipal and agricultural waste, and sludge from wastewater treatment represent a large source of pollution. Gaseous fuels can be produced from waste decomposition and then used to run internal combustion engines for power and heat generation. The present paper focuses on thermal efficiency and environmental performances of dual-fuel engines fuelled with biogas. Experiments have been carried out on a Lister-Petter single cylinder diesel engine, modified for dual-fuel operation. Natural gas was first used as the primary fuel. An empirical correlation was determined to predict the engine load for a given mass flow rate for the pilot fuel (diesel) and for the primary fuel (natural gas). That correlation has then been tested for three synthesized biogas compositions. Computations were performed and the error was estimated to be less than 10%. Additionally, NOx and CO2 contents were measured from exhaust gases. Based on exhausts gas temperature, the activation energy and the pre-exponential factor of an Arrhenius law were then proposed, resulting in a simpler mean to predict NOx.
NASA Astrophysics Data System (ADS)
Echigo, Mitsuaki; Shinke, Norihisa; Takami, Susumu; Tabata, Takeshi
Natural gas fuel processors have been developed for 500 W and 1 kW class residential polymer electrolyte fuel cell (PEFC) systems. These fuel processors contain all the elements—desulfurizers, steam reformers, CO shift converters, CO preferential oxidation (PROX) reactors, steam generators, burners and heat exchangers—in one package. For the PROX reactor, a single-stage PROX process using a novel PROX catalyst was adopted. In the 1 kW class fuel processor, thermal efficiency of 83% at HHV was achieved at nominal output assuming a H 2 utilization rate in the cell stack of 76%. CO concentration below 1 ppm in the product gas was achieved even under the condition of [O 2]/[CO]=1.5 at the PROX reactor. The long-term durability of the fuel processor was demonstrated with almost no deterioration in thermal efficiency and CO concentration for 10,000 h, 1000 times start and stop cycles, 25,000 cycles of load change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, G.; Liu, C.; Si, S.
This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis ofmore » reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared with reference full UOX core. The fuel cycle analysis has shown that {sup 233}U mono-recycling with U{sub 3}ThOX fuel could save 13% of natural uranium resource compared with UOX once through fuel cycle, slightly more than that of Plutonium single-recycling with MOX fuel. If {sup 233}U multi-recycling with U{sub 3}ThOX fuel is implemented, more natural uranium resource would be saved. (authors)« less
78. PIPING CHANNEL FOR FUEL LOADING, FUEL TOPPING, COMPRESSED AIR, ...
78. PIPING CHANNEL FOR FUEL LOADING, FUEL TOPPING, COMPRESSED AIR, GASEOUS NITROGEN, AND HELIUM - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Wu, Zhiwei; He, Hong S; Liu, Zhihua; Liang, Yu
2013-06-01
Fuel load is often used to prioritize stands for fuel reduction treatments. However, wildfire size and intensity are not only related to fuel loads but also to a wide range of other spatially related factors such as topography, weather and human activity. In prioritizing fuel reduction treatments, we propose using burn probability to account for the effects of spatially related factors that can affect wildfire size and intensity. Our burn probability incorporated fuel load, ignition probability, and spread probability (spatial controls to wildfire) at a particular location across a landscape. Our goal was to assess differences in reducing wildfire size and intensity using fuel-load and burn-probability based treatment prioritization approaches. Our study was conducted in a boreal forest in northeastern China. We derived a fuel load map from a stand map and a burn probability map based on historical fire records and potential wildfire spread pattern. The burn probability map was validated using historical records of burned patches. We then simulated 100 ignitions and six fuel reduction treatments to compare fire size and intensity under two approaches of fuel treatment prioritization. We calibrated and validated simulated wildfires against historical wildfire data. Our results showed that fuel reduction treatments based on burn probability were more effective at reducing simulated wildfire size, mean and maximum rate of spread, and mean fire intensity, but less effective at reducing maximum fire intensity across the burned landscape than treatments based on fuel load. Thus, contributions from both fuels and spatially related factors should be considered for each fuel reduction treatment. Published by Elsevier B.V.
Chi Zhang; Hanqin Tian; Yuhang Wang; Tao Zeng; Yongqiang Liu
2010-01-01
The model projected ecosystem carbon dynamics were incorporated into the default (contemporary) fuel load map developed by FCCS (Fuel Characteristic Classification System) to estimate the dynamics of fuel load in the Southern United States in response to projected changes in climate and atmosphere (CO2 and nitrogen deposition) from 2002 to 2050. The study results...
Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T
2015-11-10
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.
NASA Astrophysics Data System (ADS)
Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
2015-11-01
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.
NASA Astrophysics Data System (ADS)
Lydersen, Jamie M.; Collins, Brandon M.; Ewell, Carol M.; Reiner, Alicia L.; Fites, Jo Ann; Dow, Christopher B.; Gonzalez, Patrick; Saah, David S.; Battles, John J.
2014-03-01
Inventories of greenhouse gas (GHG) emissions from wildfire provide essential information to the state of California, USA, and other governments that have enacted emission reductions. Wildfires can release a substantial amount of GHGs and other compounds to the atmosphere, so recent increases in fire activity may be increasing GHG emissions. Quantifying wildfire emissions however can be difficult due to inherent variability in fuel loads and consumption and a lack of field data of fuel consumption by wildfire. We compare a unique set of fuel data collected immediately before and after six wildfires in coniferous forests of California to fuel consumption predictions of the first-order fire effects model (FOFEM), based on two different available fuel characterizations. We found strong regional differences in the performance of different fuel characterizations, with FOFEM overestimating the fuel consumption to a greater extent in the Klamath Mountains than in the Sierra Nevada. Inaccurate fuel load inputs caused the largest differences between predicted and observed fuel consumption. Fuel classifications tended to overestimate duff load and underestimate litter load, leading to differences in predicted emissions for some pollutants. When considering total ground and surface fuels, modeled consumption was fairly accurate on average, although the range of error in estimates of plot level consumption was very large. These results highlight the importance of fuel load input to the accuracy of modeled fuel consumption and GHG emissions from wildfires in coniferous forests.
Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L
2012-08-07
A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels.
NASA Astrophysics Data System (ADS)
Cheung, C. S.; Di, Yage; Huang, Zuohua
Experiments were conducted on a four-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the main fuel, ethanol as the oxygenate additive and dodecanol as the solvent, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev min -1. Blended fuels containing 6.1%, 12.2%, 18.2% and 24.2% by volume of ethanol, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. The results indicate that with an increase in ethanol in the fuel, the brake specific fuel consumption becomes higher while there is little change in the brake thermal efficiency. Regarding the regulated emissions, HC and CO increase significantly at low engine load but might decrease at high engine load, NO x emission slightly decreases at low engine load but slightly increases at high engine load, while particulate mass decreases significantly at high engine load. For the unregulated gaseous emissions, unburned ethanol and acetaldehyde increase but formaldehyde, ethene, ethyne, 1,3-butadiene and BTX (benzene, toluene and xylene) in general decrease, especially at high engine load. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics.
14 CFR 23.343 - Design fuel loads.
Code of Federal Regulations, 2012 CFR
2012-01-01
... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...
14 CFR 23.343 - Design fuel loads.
Code of Federal Regulations, 2014 CFR
2014-01-01
... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...
14 CFR 23.343 - Design fuel loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...
14 CFR 23.343 - Design fuel loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...
Energy management of fuel cell/solar cell/supercapacitor hybrid power source
NASA Astrophysics Data System (ADS)
Thounthong, Phatiphat; Chunkag, Viboon; Sethakul, Panarit; Sikkabut, Suwat; Pierfederici, Serge; Davat, Bernard
This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles.
Electric terminal performance and characterization of solid oxide fuel cells and systems
NASA Astrophysics Data System (ADS)
Lindahl, Peter Allan
Solid Oxide Fuel Cells (SOFCs) are electrochemical devices which can effect efficient, clean, and quiet conversion of chemical to electrical energy. In contrast to conventional electricity generation systems which feature multiple discrete energy conversion processes, SOFCs are direct energy conversion devices. That is, they feature a fully integrated chemical to electrical energy conversion process where the electric load demanded of the cell intrinsically drives the electrochemical reactions and associated processes internal to the cell. As a result, the cell's electric terminals provide a path for interaction between load side electric demand and the conversion side processes. The implication of this is twofold. First, the magnitude and dynamic characteristics of the electric load demanded of the cell can directly impact the long-term efficacy of the cell's chemical to electrical energy conversion. Second, the electric terminal response to dynamic loads can be exploited for monitoring the cell's conversion side processes and used in diagnostic analysis and degradation-mitigating control schemes. This dissertation presents a multi-tier investigation into this electric terminal based performance characterization of SOFCs through the development of novel test systems, analysis techniques and control schemes. First, a reference-based simulation system is introduced. This system scales up the electric terminal performance of a prototype SOFC system, e.g. a single fuel cell, to that of a full power-level stack. This allows realistic stack/load interaction studies while maintaining explicit ability for post-test analysis of the prototype system. Next, a time-domain least squares fitting method for electrochemical impedance spectroscopy (EIS) is developed for reduced-time monitoring of the electrochemical and physicochemical mechanics of the fuel cell through its electric terminals. The utility of the reference-based simulator and the EIS technique are demonstrated through their combined use in the performance testing of a hybrid-source power management (HSPM) system designed to allow in-situ EIS monitoring of a stack under dynamic loading conditions. The results from the latter study suggest that an HSPM controller allows an opportunity for in-situ electric terminal monitoring and control-based mitigation of SOFC degradation. As such, an exploration of control-based SOFC degradation mitigation is presented and ideas for further work are suggested.
Parasitic load control system for exhaust temperature control
Strauser, Aaron D.; Coleman, Gerald N.; Coldren, Dana R.
2009-04-28
A parasitic load control system is provided. The system may include an exhaust producing engine and a fuel pumping mechanism configured to pressurize fuel in a pressure chamber. The system may also include an injection valve configured to cause fuel pressure to build within the pressure chamber when in a first position and allow injection of fuel from the pressure chamber into one or more combustion chambers of the engine when in a second position. The system may further include a controller configured to independently regulate the pressure in the pressure chamber and the injection of fuel into the one or more combustion chambers, to increase a load on the fuel pumping mechanism, increasing parasitic load on the engine, thereby increasing a temperature of the exhaust produced by the engine.
NASA Technical Reports Server (NTRS)
Mcdonald, Gary H.
1988-01-01
The Space Shuttle Main Engine (SSME) is basically comprised of a combustion chamber and nozzle, high and low pressure oxygen turbopumps and high and low pressure fuel turbopumps. In the current configuration, the high pressure fuel (HPTFP) and high pressure oxygen turbopumps (HPOTP) have experienced a history of ball bearing wear. The wear problem can be attributed to numerous factors including the hydrodynamic axial and radial loads caused by the flow of liquid oxygen and liquid hydrogen through the turbopump impellers and turbine. Also, friction effects between the rolling elements, races, and cage can create thermally induced bearing geometry changes. To alleviate some of the current configuration problems, an alternate turbopump development (ATD) was proposed. However, the ATD HPOTP and HPTFP are constrained to operate interchangeably with the current turbopumps, thus, the operation conditions must be similar. The ATD configuration features a major change in bearings used to support the integrated shaft, impeller, and turbine system. A single ball and single roller will replace the pump-end and turbine and duplex ball bearings. The Shaft-Bearing-Thermal (SHABERTH) computer code was used to model the ATD HPOTP and ATD HPFTP configurations. A two bearing model was used to simulate the HPOTP and HPFTP bearings and shaft geometry. From SHABERTH, a comparison of bearing reaction loads, frictional heat generation rates, and Hertz contact stresses will be attempted with analysis at the 109 percent and 65 percent power levels.
Studying the effects of fuel treatment based on burn probability on a boreal forest landscape.
Liu, Zhihua; Yang, Jian; He, Hong S
2013-01-30
Fuel treatment is assumed to be a primary tactic to mitigate intense and damaging wildfires. However, how to place treatment units across a landscape and assess its effectiveness is difficult for landscape-scale fuel management planning. In this study, we used a spatially explicit simulation model (LANDIS) to conduct wildfire risk assessments and optimize the placement of fuel treatments at the landscape scale. We first calculated a baseline burn probability map from empirical data (fuel, topography, weather, and fire ignition and size data) to assess fire risk. We then prioritized landscape-scale fuel treatment based on maps of burn probability and fuel loads (calculated from the interactions among tree composition, stand age, and disturbance history), and compared their effects on reducing fire risk. The burn probability map described the likelihood of burning on a given location; the fuel load map described the probability that a high fuel load will accumulate on a given location. Fuel treatment based on the burn probability map specified that stands with high burn probability be treated first, while fuel treatment based on the fuel load map specified that stands with high fuel loads be treated first. Our results indicated that fuel treatment based on burn probability greatly reduced the burned area and number of fires of different intensities. Fuel treatment based on burn probability also produced more dispersed and smaller high-risk fire patches and therefore can improve efficiency of subsequent fire suppression. The strength of our approach is that more model components (e.g., succession, fuel, and harvest) can be linked into LANDIS to map the spatially explicit wildfire risk and its dynamics to fuel management, vegetation dynamics, and harvesting. Copyright © 2012 Elsevier Ltd. All rights reserved.
Intelligent Engine Systems: Alternate Fuels Evaluation
NASA Technical Reports Server (NTRS)
Ballal, Dilip
2008-01-01
The performance and gaseous emissions were measured for a well-stirred reactor operating under lean conditions for two fuels: JP8 and a synthetic Fisher-Tropsch fuel over a range of equivalence ratios from 0.6 down to the lean blowout. The lean blowout characteristics were determined in LBO experiments at loading parameter values from 0.7 to 1.4. The lean blowout characteristics were then explored under higher loading conditions by simulating higher altitude operation with the use of nitrogen as a dilution gas for the air stream. The experiments showed that: (1) The lean blowout characteristics for the two fuels were close under both low loading and high loading conditions. (2) The combustion temperatures and observed combustion efficiencies were similar for the two fuels. (3) The gaseous emissions were similar for the two fuels and the differences in the H2O and CO2 emissions appear to be directly relatable to the C/H ratio for the fuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, W.R.; Giovengo, J.F.
1987-10-01
Light Water Breeder Reactor (LWBR) fuel rods were designed to provide a reliable fuel system utilizing thorium/uranium-233 mixed-oxide fuel while simultaneously minimizing structural material to enhance fuel breeding. The fuel system was designed to be capable of operating successfully under both load follow and base load conditions. The breeding objective required thin-walled, low hafnium content Zircaloy cladding, tightly spaced fuel rods with a minimum number of support grid levels, and movable fuel rod bundles to supplant control rods. Specific fuel rod design considerations and their effects on performance capability are described. Successful completion of power operations to over 160 percentmore » of design lifetime including over 200 daily load follow cycles has proven the performance capability of the fuel system. 68 refs., 19 figs., 44 tabs.« less
NASA Astrophysics Data System (ADS)
Braun, Robert Joseph
The advent of maturing fuel cell technologies presents an opportunity to achieve significant improvements in energy conversion efficiencies at many scales; thereby, simultaneously extending our finite resources and reducing "harmful" energy-related emissions to levels well below that of near-future regulatory standards. However, before realization of the advantages of fuel cells can take place, systems-level design issues regarding their application must be addressed. Using modeling and simulation, the present work offers optimal system design and operation strategies for stationary solid oxide fuel cell systems applied to single-family detached dwellings. A one-dimensional, steady-state finite-difference model of a solid oxide fuel cell (SOFC) is generated and verified against other mathematical SOFC models in the literature. Fuel cell system balance-of-plant components and costs are also modeled and used to provide an estimate of system capital and life cycle costs. The models are used to evaluate optimal cell-stack power output, the impact of cell operating and design parameters, fuel type, thermal energy recovery, system process design, and operating strategy on overall system energetic and economic performance. Optimal cell design voltage, fuel utilization, and operating temperature parameters are found using minimization of the life cycle costs. System design evaluations reveal that hydrogen-fueled SOFC systems demonstrate lower system efficiencies than methane-fueled systems. The use of recycled cell exhaust gases in process design in the stack periphery are found to produce the highest system electric and cogeneration efficiencies while achieving the lowest capital costs. Annual simulations reveal that efficiencies of 45% electric (LHV basis), 85% cogenerative, and simple economic paybacks of 5--8 years are feasible for 1--2 kW SOFC systems in residential-scale applications. Design guidelines that offer additional suggestions related to fuel cell-stack sizing and operating strategy (base-load or load-following and cogeneration or electric-only) are also presented.
Single shaft automotive gas turbine engine characterization test
NASA Technical Reports Server (NTRS)
Johnson, R. A.
1979-01-01
An automotive gas turbine incorporating a single stage centrifugal compressor and a single stage radial inflow turbine is described. Among the engine's features is the use of wide range variable geometry at the inlet guide vanes, the compressor diffuser vanes, and the turbine inlet vanes to achieve improved part load fuel economy. The engine was tested to determine its performance in both the variable geometry and equivalent fixed geometry modes. Testing was conducted without the originally designed recuperator. Test results were compared with the predicted performance of the nonrecuperative engine based on existing component rig test maps. Agreement between test results and the computer model was achieved.
Design considerations for a Space Shuttle Main Engine turbine blade made of single crystal material
NASA Technical Reports Server (NTRS)
Abdul-Aziz, A.; August, R.; Nagpal, V.
1993-01-01
Nonlinear finite-element structural analyses were performed on the first stage high-pressure fuel turbopump blade of the Space Shuttle Main Engine. The analyses examined the structural response and the dynamic characteristics at typical operating conditions. Single crystal material PWA-1480 was considered for the analyses. Structural response and the blade natural frequencies with respect to the crystal orientation were investigated. The analyses were conducted based on typical test stand engine cycle. Influence of combined thermal, aerodynamic, and centrifugal loadings was considered. Results obtained showed that the single crystal secondary orientation effects on the maximum principal stresses are not highly significant.
Morris C. Johnson; Jessica E. Halofsky; David L. Peterson
2013-01-01
We used a combination of field measurements and simulation modelling to quantify the effects of salvage logging, and a combination of salvage logging and pile-and-burn fuel surface fuel treatment (treatment combination), on fuel loadings, fire behaviour, fuel consumption and pollutant emissions at three points in time: post-windstorm (before salvage logging), post-...
Studies on piston bowl geometries using single blend ratio of various non-edible oils.
Viswanathan, Karthickeyan; Pasupathy, Balamurugan
2017-07-01
The depletion of fossil fuels and hike in crude oil prices were some of the main reasons to explore new alternatives from renewable source of energy. This work presents the impact of various bowl geometries on diesel engine with diesel and biodiesel samples. Three non-edible oils were selected, namely pumpkin seed oil, orange oil and neem oil. These oils were converted into respective biodiesel using transesterification process in the presence of catalyst and alcohol. After transesterification process, the oils were termed as pumpkin seed oil methyl ester (PSOME), orange oil methyl ester (OME) and neem oil methyl ester (NOME), respectively. The engine used for experimentation was a single-cylinder four-stroke water-cooled direct-injection diesel engine and loads were applied to the engine using eddy current dynamometer. Two bowl geometries were developed, namely toroidal combustion chamber (TCC) and trapezoidal combustion chamber (TRCC). Also, the engine was inbuilt with hemispherical combustion chamber (HCC). The base line readings were recorded using neat diesel fuel with HCC for various loads. Followed by 20% of biodiesel mixed with 80% neat diesel for all prepared methyl esters and termed as B1 (20% PSOME with 80% diesel), B2 (20% OME with 80% diesel) and B3 (20% NOME with 80% diesel). All fuel samples were tested in HCC, TCC and TRCC bowl geometries under standard injection timing and with compression ratio of 18. Increased brake thermal efficiency and reduced brake specific fuel consumption were observed with diesel in TCC geometry. Also, higher heat release and cylinder pressures with lower ignition delay were recorded with TCC bowl geometry. TCC bowl geometry showed lower CO, HC and smoke emissions with B2 fuel sample than diesel and other biodiesel samples. But, higher NOx emission was observed in HCC and TCC than that in TRCC bowl geometry. Graphical abstract ᅟ.
Fuel savings potential of the NASA Advanced Turboprop Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitlow, J.B. Jr.; Sievers, G.K.
1984-01-01
The NASA Advanced Turboprop (ATP) Program is directed at developing new technology for highly loaded, multibladed propellers for use at Mach 0.65 to 0.85 and at altitudes compatible with the air transport system requirements. Advanced turboprop engines offer the potential of 15 to 30 percent savings in aircraft block fuel relative to advanced turbofan engines (50 to 60 percent savings over today's turbofan fleet). The concept, propulsive efficiency gains, block fuel savings and other benefits, and the program objectives through a systems approach are described. Current program status and major accomplishments in both single rotation and counter rotation propeller technologymore » are addressed. The overall program from scale model wind tunnel tests to large scale flight tests on testbed aircraft is discussed.« less
Discrete regenerative fuel cell reduces hysteresis for sustainable cycling of water
Park, Kiwon; Lee, Jungkoo; Kim, Hyung-Man; Choi, Kap-Seung; Hwang, Gunyong
2014-01-01
The discrete regenerative fuel cell is being developed as a residential power control that synchronizes with a renewables load which fluctuates significantly with the time and weather. The power of proton exchange membrane fuel cells can be scaled-up adjustably to meet the residential power demand. As a result, scale-ups from a basic unit cell with a 25 cm2 active area create a serpentine flow-field on an active area of 100 cm2 and take into account the excessive current and the remaining power obtained by stacking single cells. Operating a fuel cell utilising oxygen produced by the electrolyser instead of air improves the electrochemical reaction and the water balance. Furthermore, the performance test results with oxygen instead of air show almost no hysteresis, which results in the very stable operation of the proton exchange membrane fuel cell as well as the sustainable cycle of water by hydrogen and oxygen mediums. PMID:24699531
Simplified Load-Following Control for a Fuel Cell System
NASA Technical Reports Server (NTRS)
Vasquez, Arturo
2010-01-01
A simplified load-following control scheme has been proposed for a fuel cell power system. The scheme could be used to control devices that are important parts of a fuel cell system but are sometimes characterized as parasitic because they consume some of the power generated by the fuel cells.
40 CFR 92.107 - Fuel flow measurement.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...
40 CFR 92.107 - Fuel flow measurement.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...
40 CFR 92.107 - Fuel flow measurement.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...
40 CFR 92.107 - Fuel flow measurement.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...
40 CFR 92.107 - Fuel flow measurement.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...
Y.S. Valachovic; C.A. Lee; H. Scanlon; J.M. Varner; R. Glebocki; B.D. Graham; D.M. Rizzo
2011-01-01
We compared stand structure and fuel loading in northwestern California forests invaded by Phytophthora ramorum, the cause of sudden oak death, to assess whether the continued presence of this pathogen alters surface fuel loading and potential fire behavior in ways that may encumber future firefighting response. To attempt to account for these...
Self-regulating control of parasitic loads in a fuel cell power system
NASA Technical Reports Server (NTRS)
Vasquez, Arturo (Inventor)
2011-01-01
A fuel cell power system comprises an internal or self-regulating control of a system or device requiring a parasitic load. The internal or self-regulating control utilizes certain components and an interconnection scheme to produce a desirable, variable voltage potential (i.e., power) to a system or device requiring parasitic load in response to varying operating conditions or requirements of an external load that is connected to a primary fuel cell stack of the system. Other embodiments comprise a method of designing such a self-regulated control scheme and a method of operating such a fuel cell power system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, William R.; Lee, John C.; baxter, Alan
Information and measured data from the intial Fort St. Vrain (FSV) high temperature gas reactor core is used to develop a benchmark configuration to validate computational methods for analysis of a full-core, commercial HTR configuration. Large uncertainties in the geometry and composition data for the FSV fuel and core are identified, including: (1) the relative numbers of fuel particles for the four particle types, (2) the distribution of fuel kernel diameters for the four particle types, (3) the Th:U ratio in the initial FSV core, (4) and the buffer thickness for the fissile and fertile particles. Sensitivity studies were performedmore » to assess each of these uncertainties. A number of methods were developed to assist in these studies, including: (1) the automation of MCNP5 input files for FSV using Python scripts, (2) a simple method to verify isotopic loadings in MCNP5 input files, (3) an automated procedure to conduct a coupled MCNP5-RELAP5 analysis for a full-core FSV configuration with thermal-hydraulic feedback, and (4) a methodology for sampling kernel diameters from arbitrary power law and Gaussian PDFs that preserved fuel loading and packing factor constraints. A reference FSV fuel configuration was developed based on having a single diameter kernel for each of the four particle types, preserving known uranium and thorium loadings and packing factor (58%). Three fuel models were developed, based on representing the fuel as a mixture of kernels with two diameters, four diameters, or a continuous range of diameters. The fuel particles were put into a fuel compact using either a lattice-bsed approach or a stochastic packing methodology from RPI, and simulated with MCNP5. The results of the sensitivity studies indicated that the uncertainties in the relative numbers and sizes of fissile and fertile kernels were not important nor were the distributions of kernel diameters within their diameter ranges. The uncertainty in the Th:U ratio in the intial FSV core was found to be important with a crude study. The uncertainty in the TRISO buffer thickness was estimated to be unimportant but the study was not conclusive. FSV fuel compacts and a regular FSV fuel element were analyzed with MCNP5 and compared with predictions using a modified version of HELIOS that is capable of analyzing TRISO fuel configurations. The HELIOS analyses were performed by SSP. The eigenvalue discrepancies between HELIOS and MCNP5 are currently on the order of 1% but these are still being evaluated. Full-core FSV configurations were developed for two initial critical configurations - a cold, clean critical loading and a critical configuration at 70% power. MCNP5 predictions are compared to experimental data and the results are mixed. Analyses were also done for the pulsed neutron experiments that were conducted by GA for the initial FSV core. MCNP5 was used to model these experiments and reasonable agreement with measured results has been observed.« less
Ramesha, D K; Kumara, G Prema; Lalsaheb; Mohammed, Aamir V T; Mohammad, Haseeb A; Kasma, Mufteeb Ain
2016-05-01
Usage of plastics has been ever increasing and now poses a tremendous threat to the environment. Millions of tons of plastics are produced annually worldwide, and the waste products have become a common feature at overflowing bins and landfills. The process of converting waste plastic into value-added fuels finds a feasible solution for recycling of plastics. Thus, two universal problems such as problems of waste plastic management and problems of fuel shortage are being tackled simultaneously. Converting waste plastics into fuel holds great promise for both the environmental and economic scenarios. In order to carry out the study on plastic wastes, the pyrolysis process was used. Pyrolysis runs without oxygen and in high temperature of about 250-300 °C. The fuel obtained from plastics is blended with B20 algae oil, which is a biodiesel obtained from microalgae. For conducting the various experiments, a 10-HP single-cylinder four-stroke direct-injection water-cooled diesel engine is employed. The engine is made to run at 1500 rpm and the load is varied gradually from 0 to 100 %. The performance, emission and combustion characteristics are observed. The BTE was observed to be higher with respect to diesel for plastic-biodiesel blend and biodiesel blend by 15.7 and 12.9 %, respectively, at full load. For plastic-biodiesel blend, the emission of UBHC and CO decreases with a slight increase in NO x as compared to diesel. It reveals that fuel properties are comparable with petroleum products. Also, the process of converting plastic waste to fuel has now turned the problems into an opportunity to make wealth from waste.
Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
2015-01-01
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215
Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
2015-10-26
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO 2 reduction on silver and coppermore » cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H 2 and CO) and Hythane (H 2 and CH 4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. Finally, we show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C 2H 4 have high profitability indices.« less
Hsu, Ryan S; Higgins, Drew; Chen, Zhongwei
2010-04-23
Novel tin-oxide (SnO(2))-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO(2)-coated SWNT (SnO(2)-SWNT) bundles were synthesized by a simple chemical-solution route. SnO(2)-SWNT bundles supporting Pt (Pt/SnO(2)-SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO(2)-SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO(2) loading of Pt/SnO(2)-SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.
Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J
2011-01-01
To improve the catalytic activity of palladium (Pd) as a cathode catalyst in direct methanol fuel cells (DMFCs), we prepared palladium-titanium oxide (Pd-TiO2) catalysts which the Pd and TiO2 nanoparticles were simultaneously impregnated on carbon. We selected Pd and TiO2 as catalytic materials because of their electrochemical stability in acid solution. The crystal structure and the loading amount of Pd and TiO2 on carbon were characterized by X-ray diffraction (XRD) and energy dispersive X-ray microanalysis (EDX). The electrochemical characterization of Pd-TiO2/C catalysts for the oxygen reduction reaction was carried out in half and single cell systems. The catalytic activities of the Pd-TiO2 catalysts were strongly influenced by the TiO2 content. In the single cell test, the Pd-TiO2 catalysts showed very comparable performance to the Pt catalyst.
Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright; Andrew T. Hudak
2014-01-01
Ground-level measurements of fuel loading, fuel consumption, and fuel moisture content were collected on nine research burns conducted at Eglin Air Force Base, Florida in November, 2012. A grass or grass-shrub fuelbed dominated eight of the research blocks; the ninth was a managed longleaf pine (Pinus palustrus) forest. Fuel loading ranged from 1.7 Mg ha-1 on a...
Jesse K. Kreye; Leda N. Kobziar; Wayne C. Zipperer
2013-01-01
Mechanical fuels treatments are being used in fire-prone ecosystems where fuel loading poses a hazard, yetlittle research elucidating subsequent fire behaviour exists, especially in litter-dominated fuelbeds. To address this deficiency, we burned constructed fuelbeds from masticated sites in pine flatwoods forests in northern Florida...
14 CFR 23.967 - Fuel tank installation.
Code of Federal Regulations, 2010 CFR
2010-01-01
....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...
14 CFR 23.967 - Fuel tank installation.
Code of Federal Regulations, 2011 CFR
2011-01-01
....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...
14 CFR 23.967 - Fuel tank installation.
Code of Federal Regulations, 2012 CFR
2012-01-01
....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...
14 CFR 23.967 - Fuel tank installation.
Code of Federal Regulations, 2013 CFR
2013-01-01
....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...
14 CFR 23.967 - Fuel tank installation.
Code of Federal Regulations, 2014 CFR
2014-01-01
....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...
Alicia L. Reiner; Nicole M. Vaillant; JoAnn Fites-Kaufman; Scott N. Dailey
2009-01-01
Due to increases in tree density and hazardous fuel loading in Sierra Nevadan forests, land management is focusing on fuel reduction treatments to moderate the risk of catastrophic fires. Fuel treatments involving mechanical and prescribed fire methods can reduce surface as well as canopy fuel loads. Mastication is a mechanical method which shreds smaller trees and...
Fuel Type Classification and Fuel Loading in Central Interior, Korea: Uiseong-Gun
Myoung Soo Won; Kyo Sang Koo; Myung Bo Lee; Si Young Lee
2006-01-01
The objective of this study is classification of fuel type and calculation of fuel loading to assess forest fire hazard by fuel characteristics at Uiseong-gun, Gyeongbuk located in the central interior of Korea. A database was constructed of eight factors such as forest type and topography using ArcGIS 9.1 GIS programs. An on-site survey was conducted for investigating...
Si, Fengzhan; Zhang, Guoguang; Huang, Kevin
2016-04-09
Here, the present study investigates the mass loading effect of an infiltrated La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) nanoparticles (NPs) catalyst on the area-specific polarization resistance (Rp) of a screen-printed porous LSCF cathode for solid oxide fuel cells. The results show that R p of the LSCF-NPs decorated LSCF cathode can be substantially reduced by as much as 89.3% after a single-step impregnation of 1.5 M nitrate solution containing La:Sr:Co:Fe = 0.6:0.4:0.2:0.8 with a mass loading of 3 wt%.
NASA Astrophysics Data System (ADS)
Tihay, V.; Morandini, F.; Santoni, P. A.; Perez-Ramirez, Y.; Barboni, T.
2012-11-01
A set of experiments using a Large Scale Heat Release Rate Calorimeter was conducted to test the effects of slope and fuel load on the fire dynamics. Different parameters such as the geometry of the flame front, the rate of spread, the mass loss rate and the heat release rate were investigated. Increasing the fuel load or the slope modifies the fire behaviour. As expected, the flame length and the rate of spread increase when fuel load or slope increases. The heat release rate does not reach a quasi-steady state when the propagation takes place with a slope of 20° and a high fuel load. This is due to an increase of the length of the fire front leading to an increase of fuel consumed. These considerations have shown that the heat release can be estimated with the mass loss rate by considering the effective heat of combustion. This approach can be a good alternative to estimate accurately the fireline intensity when the measure of oxygen consumption is not possible.
Downed woody fuel loading dynamics of a large-scale blowdown in northern Minnesota, U.S.A.
C.W. Woodall; L.M. Nagel
2007-01-01
On July 4, 1999, a large-scale blowdown occurred in the BoundaryWaters Canoe AreaWilderness (BWCAW) of northern Minnesota affecting up to 150,000 ha of forest. To further understand the relationship between downed woody fuel loading, stand processes, and disturbance effects, this study compares fuel loadings defined by three strata: (1) blowdown areas of the BWCAW (n...
Bernard R. Parresol; John I. Blake; Andrew J. Thompson
2012-01-01
In the southeastern USA, land use history, forest management and natural geomorphic features have created heterogeneous fuel loads. This apparent temporal and spatial variation in fuel loads make it difficult to reliably assess potential fire behavior from remotely sensed canopy variables to determine risk and to prescribe treatments. We examined this variation by...
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Leland M. Montierth
2013-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering effects during pebble loading. Core 4 was determined to be acceptable benchmark experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Montierth, Leland M.; Sterbentz, James W.
2014-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering effects during pebble loading. Core 4 was determined to be acceptable benchmark experiment.« less
Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests.
Bowman, David M J S; Murphy, Brett P; Neyland, Dominic L J; Williamson, Grant J; Prior, Lynda D
2014-03-01
Obligate seeder trees requiring high-severity fires to regenerate may be vulnerable to population collapse if fire frequency increases abruptly. We tested this proposition using a long-lived obligate seeding forest tree, alpine ash (Eucalyptus delegatensis), in the Australian Alps. Since 2002, 85% of the Alps bioregion has been burnt by several very large fires, tracking the regional trend of more frequent extreme fire weather. High-severity fires removed 25% of aboveground tree biomass, and switched fuel arrays from low loads of herbaceous and litter fuels to high loads of flammable shrubs and juvenile trees, priming regenerating stands for subsequent fires. Single high-severity fires caused adult mortality and triggered mass regeneration, but a second fire in quick succession killed 97% of the regenerating alpine ash. Our results indicate that without interventions to reduce fire severity, interactions between flammability of regenerating stands and increased extreme fire weather will eliminate much of the remaining mature alpine ash forest. © 2013 John Wiley & Sons Ltd.
Performance and emissions characteristics of aqueous alcohol fumes in a DI diesel engine
NASA Technical Reports Server (NTRS)
Heisey, J. B.; Lestz, S. S.
1981-01-01
A single cylinder DI Diesel engine was fumigated with ethanol and methanol in amounts up to 55% of the total fuel energy. The effects of aqueous alcohol fumigation on engine thermal efficiency, combustion intensity and gaseous exhaust emissions were determined. Assessment of changes in the biological activity of raw particulate and its soluble organic fraction were also made using the Salmonella typhimurium test. Alcohol fumigation improved thermal efficiency slightly at moderate and heavy loads, but increased ignition delay at all operating conditions. Carbon monoxide and unburned hydrocarbon emission generally increased with alcohol fumigation and showed no dependence on alcohol type or quality. Oxide of nitrogen emission showed a strong dependence on alcohol quality; relative emission levels decreased with increasing water content of the fumigant. Particulate mass loading rates were lower for ethanol fueled conditions. However, the biological activity of both the raw particulate and its soluble organic fraction was enhanced by ethanol fumigation at most operating conditions.
Emma Vakili; Chad M. Hoffman; Robert E. Keane; Wade T. Tinkham; Yvette Dickinson
2016-01-01
There is growing consensus that spatial variability in fuel loading at scales down to 0.5 m may govern fire behaviour and effects. However, there remains a lack of understanding of how fuels vary through space in wildland settings. This study quantifies surface fuel loading and its spatial variability in ponderosa pine sites before and after fuels treatment in the...
14 CFR 23.1583 - Operating limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) The maximum zero wing fuel weight, where relevant, as established in accordance with § 23.343. (d... passenger seating configuration. The maximum passenger seating configuration. (k) Allowable lateral fuel loading. The maximum allowable lateral fuel loading differential, if less than the maximum possible. (l...
Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.; ...
2016-11-03
In this study, we study the effects of injector nozzle inclusion angle, injection pressure, boost, and swirl ratio on gasoline compression ignition combustion. Closed-cycle computational fluid dynamics simulations using a 1/7th sector mesh representing a single cylinder of a four-cylinder 1.9 L diesel engine, operated in gasoline compression ignition mode with 87 anti-knock index (AKI) gasoline, were performed. Two different operating conditions were studied—the first is representative of idle operation (4 mg fuel/cylinder/cycle, 850 r/min), and the second is representative of a low-load condition (10 mg fuel/cylinder/cycle, 1500 r/min). The mixture preparation and reaction space from the simulations were analyzedmore » to gain insights into the effects of injection pressure, nozzle inclusion angle, boost, and swirl ratio on achieving stable low-load to idle gasoline compression ignition operation. It was found that narrower nozzle inclusion angles allow for more reactivity or propensity to ignition (determined qualitatively by computing constant volume ignition delays) and are suitable over a wider range of injection timings. Under idle conditions, it was found that lower injection pressures helped to reduce overmixing of the fuel, resulting in greater reactivity and ignitability (ease with which ignition can be achieved) of the gasoline. However, under the low-load condition, lower injection pressures did not increase ignitability, and it is hypothesized that this is because of reduced chemical residence time resulting from longer injection durations. Reduced swirl was found to maintain higher in-cylinder temperatures through compression, resulting in better ignitability. It was found that boosting the charge also helped to increase reactivity and advanced ignition timing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.
In this study, we study the effects of injector nozzle inclusion angle, injection pressure, boost, and swirl ratio on gasoline compression ignition combustion. Closed-cycle computational fluid dynamics simulations using a 1/7th sector mesh representing a single cylinder of a four-cylinder 1.9 L diesel engine, operated in gasoline compression ignition mode with 87 anti-knock index (AKI) gasoline, were performed. Two different operating conditions were studied—the first is representative of idle operation (4 mg fuel/cylinder/cycle, 850 r/min), and the second is representative of a low-load condition (10 mg fuel/cylinder/cycle, 1500 r/min). The mixture preparation and reaction space from the simulations were analyzedmore » to gain insights into the effects of injection pressure, nozzle inclusion angle, boost, and swirl ratio on achieving stable low-load to idle gasoline compression ignition operation. It was found that narrower nozzle inclusion angles allow for more reactivity or propensity to ignition (determined qualitatively by computing constant volume ignition delays) and are suitable over a wider range of injection timings. Under idle conditions, it was found that lower injection pressures helped to reduce overmixing of the fuel, resulting in greater reactivity and ignitability (ease with which ignition can be achieved) of the gasoline. However, under the low-load condition, lower injection pressures did not increase ignitability, and it is hypothesized that this is because of reduced chemical residence time resulting from longer injection durations. Reduced swirl was found to maintain higher in-cylinder temperatures through compression, resulting in better ignitability. It was found that boosting the charge also helped to increase reactivity and advanced ignition timing.« less
Mapping Fuel Loads and Dynamics in Rangelands Using Multi-Sensor Data in the Great Basin, USA
NASA Astrophysics Data System (ADS)
Li, Z.; Shi, H.; Vogelmann, J. E.; Hawbaker, T. J.; Reeves, M. C.
2016-12-01
Fuel conditions in rangelands are influenced by disturbances such as wildfires, and is also strongly controlled by weather and climate. These factors impact the availability of fuel loads, which is the key component to stimulate burned area and severity. In this paper, we developed an approach for mapping live fuel loads (biomass density) and their dynamics using field collection, Landsat 8, and MODIS data sets at a spatial resolution of 30 m from the growing season. Using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) modelling process, we generated monthly shrub and grassland greenness levels for 2015. The spatial resolution of Landsat and the temporal resolution of MODIS complimented each other to allow us to produce monthly products. Understanding the dynamics of these greenness patterns helps the fire management community to recognize areas that have high likelihood of burning in the future, thus enabling them to anticipate and plan accordingly. We obtained field biomass information from selected shrub and grass sites located throughout the Great Basin. This information was used to calibrate fire models and generate remotely-sensed data sets. We then used Landsat 8 NDVI dates representing the phenological profile, regression tree models, and product validation. The calculated fuel loads were further examined and validated using high resolution images (World View 2/3), field measurements, and Google Earth. Once we have the requisite image data converted to biomass, we anticipate fire conditions and behavior using various models developed by the fire community. One key element is to use information from this study to improve and inform the Rangeland Vegetation Simulator. Finally, we analyzed the correlations of fire occurrence (frequency) and burn severity with live fuel loads and climate conditions. Our results show modeled fuel loads and their dynamics in rangelands capture the spatiotemporal heterogeneity of non-forest live fuel types and the variations in both wildfire disturbances and climate/weather conditions. This suggests the developed approach to map fuel loads is robust and can improve the existing LANDFIRE fuel data in rangelands. It can also be used to monitor the changes in fuel conditions in response to management activities and climate change.
Coupling procedure for TRANSURANUS and KTF codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, J.; Alglave, S.; Avramova, M.
2012-07-01
The nuclear industry aims to ensure safe and economic operation of each single fuel rod introduced in the reactor core. This goal is even more challenging nowadays due to the current strategy of going for higher burn-up (fuel cycles of 18 or 24 months) and longer residence time. In order to achieve that goal, fuel modeling is the key to predict the fuel rod behavior and lifetime under thermal and pressure loads, corrosion and irradiation. In this context, fuel performance codes, such as TRANSURANUS, are used to improve the fuel rod design. The modeling capabilities of the above mentioned toolsmore » can be significantly improved if they are coupled with a thermal-hydraulic code in order to have a better description of the flow conditions within the rod bundle. For LWR applications, a good representation of the two phase flow within the fuel assembly is necessary in order to have a best estimate calculation of the heat transfer inside the bundle. In this paper we present the coupling methodology of TRANSURANUS with KTF (Karlsruhe Two phase Flow subchannel code) as well as selected results of the coupling proof of principle. (authors)« less
Durability Testing of Biomass Based Oxygenated Fuel Components in a Compression Ignition Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratcliff, Matthew A; McCormick, Robert L; Baumgardner, Marc E.
Blending cellulosic biofuels with traditional petroleum-derived fuels results in transportation fuels with reduced carbon footprints. Many cellulosic fuels rely on processing methods that produce mixtures of oxygenates which must be upgraded before blending with traditional fuels. Complete oxygenate removal is energy-intensive and it is likely that such biofuel blends will necessarily contain some oxygen content to be economically viable. Previous work by our group indicated that diesel fuel blends with low levels (<4%-vol) of oxygenates resulted in minimal negative effects on short-term engine performance and emissions. However, little is known about the long-term effects of these compounds on engine durabilitymore » issues such as the impact on fuel injection, in-cylinder carbon buildup, and engine oil degradation. In this study, four of the oxygenated components previously tested were blended at 4%-vol in diesel fuel and tested with a durability protocol devised for this work consisting of 200 hrs of testing in a stationary, single-cylinder, Yanmar diesel engine operating at constant load. Oil samples, injector spray patterns, and carbon buildup from the injector and cylinder surfaces were analyzed. It was found that, at the levels tested, these fuels had minimal impact on the overall engine operation, which is consistent with our previous findings.« less
NASA Astrophysics Data System (ADS)
Dora, Nagaraju; Jothi, T. J. Sarvoththama
2018-05-01
The present study investigates the effectiveness of using di-ethyl ether (DEE) as the fuel additive in engine performance and emissions. Experiments are carried out in a single cylinder four stroke diesel engine at constant speed. Two different fuels namely liquefied petroleum gas (LPG) and palm kernel methyl ester (PKME) are used as primary fuels with DEE as the fuel additive. LPG flow rates of 0.6 and 0.8 kg/h are considered, and flow rate of DEE is varied to maintain the constant engine speed. In case of PKME fuel, it is blended with diesel in the latter to the former ratio of 80:20, and DEE is varied in the volumetric proportion of 1 and 2%. Results indicate that for the engine operating in LPG-DEE mode at 0.6 kg/h of LPG, the brake thermal efficiency is lowered by 26%; however, NOx is subsequently reduced by around 30% compared to the engine running with only diesel fuel at 70% load. Similarly, results of PKME blended fuel showed a drastic reduction in the NOx and CO emissions. In these two modes of operation, DEE is observed to be significant fuel additive regarding emissions reduction.
Phenomenological study of the behavior of some silica formers in a high velocity jet fuel burner
NASA Technical Reports Server (NTRS)
Cawley, J. D.; Handschuh, R. F.
1985-01-01
Samples of four silica formers: single crystal SiC, sintered alpha-SiC, reaction sintered Si3N4 and polycrystalline MoSi2, were subjected to a Mach 1 jet fuel burner for 1 hr, at a sample temperature of 1375 deg C (2500 deg F). Two phenomena were identified which may be deleterious to a gas turbine application of these materials. The glass layer formed on the MoSi2 deformed appreciably under the aerodynamic load. A scale developed on the samples of the other materials which consisted of particular matter from the gas stream entrapped in a SiO2 matrix.
NASA Astrophysics Data System (ADS)
Lack, D. A.; Corbett, J. J.
2012-01-01
The International Maritime Organization (IMO) has moved to address the health and climate impact of the emissions from the combustion of low-quality residual fuels within the commercial shipping industry. Fuel sulfur content (FS) limits and an efficiency design index for future ships are examples of such IMO actions. The impacts of black carbon (BC) emissions from shipping are now under review by the IMO, with a particular focus on the potential impacts of future Arctic shipping. Recognizing that associating impacts with BC emissions requires both ambient and onboard observations, we provide recommendations for the measurement of BC. We also evaluate current insights regarding the effect of ship speed (engine load), fuel quality and exhaust gas scrubbing on BC emissions from ships. Observations demonstrate that BC emission factors (EFBC) increases 3 to 6 times at very low engine loads (<25% compared to EFBC at 85-100% load); absolute BC emissions (per nautical mile of travel) also increase up to 100% depending on engine load, even with reduced load fuel savings. If fleets were required to operate at lower maximum engine loads, presumably associated with reduced speeds, then engines could be re-tuned, which would reduce BC emissions. Ships operating in the Arctic are likely running at highly variable engine loads (25-100%) depending on ice conditions and ice breaking requirements. The ships operating at low load may be emitting up to 50% more BC than they would at their rated load. Such variable load conditions make it difficult to assess the likely emissions rate of BC. Current fuel sulfur regulations have the effect of reducing EFBC by an average of 30% and potentially up to 80% regardless of engine load; a removal rate similar to that of scrubbers. Uncertainties among current observations demonstrate there is a need for more information on (a) the impact of fuel quality on EFBC using robust measurement methods and (b) the efficacy of scrubbers for the removal of particulate matter by size and composition.
NASA Astrophysics Data System (ADS)
Lack, D. A.; Corbett, J. J.
2012-05-01
The International Maritime Organization (IMO) has moved to address the health and climate impact of the emissions from the combustion of low-quality residual fuels within the commercial shipping industry. Fuel sulfur content (FS) limits and an efficiency design index for future ships are examples of such IMO actions. The impacts of black carbon (BC) emissions from shipping are now under review by the IMO, with a particular focus on the potential impacts of future Arctic shipping. Recognizing that associating impacts with BC emissions requires both ambient and onboard observations, we provide recommendations for the measurement of BC. We also evaluate current insights regarding the effect of ship speed (engine load), fuel quality and exhaust gas scrubbing on BC emissions from ships. Observations demonstrate that BC emission factors (EFBC) increases 3 to 6 times at very low engine loads (<25% compared to EFBC at 85-100% load); absolute BC emissions (per nautical mile of travel) also increase up to 100% depending on engine load, even with reduced load fuel savings. If fleets were required to operate at lower maximum engine loads, presumably associated with reduced speeds, then engines could be re-tuned, which would reduce BC emissions. Ships operating in the Arctic are likely running at highly variable engine loads (25-100%) depending on ice conditions and ice breaking requirements. The ships operating at low load may be emitting up to 50% more BC than they would at their rated load. Such variable load conditions make it difficult to assess the likely emissions rate of BC. Current fuel sulfur regulations have the effect of reducing EFBC by an average of 30% and potentially up to 80% regardless of engine load; a removal rate similar to that of scrubbers. Uncertainties among current observations demonstrate there is a need for more information on a) the impact of fuel quality on EFBC using robust measurement methods and b) the efficacy of scrubbers for the removal of particulate matter by size and composition.
Paul R. Hood; Kellen N. Nelson; Charles C. Rhoades; Daniel B. Tinker
2017-01-01
Widespread tree mortality from mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) outbreaks has prompted forest management activities to reduce crown fire hazard in the Rocky Mountain region. However, little is known about how beetle-related salvage logging and biomass utilization options affect woody surface fuel loads and fuel moisture dynamics. We compared...
Forest fuels and landscape-level fire risk assessment of the ozark highlands, Missouri
Michael C. Stambaugh; Richard P. Guyette; Daniel C. Dey
2007-01-01
In this paper we describe a fire risk assessment of the Ozark Highlands. Fire risk is rated using information on ignition potential and fuel hazard. Fuel loading, a component of the fire hazard module, is weakly predicted (r2 = 0.19) by site- and landscape-level attributes. Fuel loading does not significantly differ between Ozark ecological...
Modeling fuel treatment costs on Forest Service Lands in the Western United States
David Calkin; Krista Gebert
2006-01-01
Years of successful fire suppression have led to high fuel loads on the nation's forests, and steps are being taken by the nation's land management agencies to reduce these fuel loads. However, to achieve desired outcomes in a fiscally responsible manner, the cost and effectiveness in reducing losses due to wildland fire of different fuel treatments in...
Effectiveness of Prescribed Fire as a Fuel Treatment in Californian Coniferous Forests
Nicole M. Vaillant; JoAnn Fites-Kaufman; Scott L. Stephens
2006-01-01
Effective fire suppression for the past century has altered forest structure and increased fuel loads. Prescribed fire as a fuels treatment can reduce wildfire size and severity. This study investigates how prescribed fire affects fuel loads, forest structure, potential fire behavior, and modeled tree mortality at 80th, 90th, and 97.5th percentile fire weather...
Fuel loadings in southwestern ecosystems of the United States
Stephen S. Sackett; Sally M Haase
1996-01-01
Natural forest fuel loadings cause extreme fire behavior during dry, windy weather experienced during most fire seasons in the Southwest. Fire severity is also exacerbated from burning heavy fuels, including heavy humus layers on the forest floor. Ponderosa pine and mixed conifer stands possess more than 21.7 and 44.1 tons per acre of total forest floor fuel,...
Use of Pd-Pt loaded graphene aerogel on nickel foam in direct ethanol fuel cell
NASA Astrophysics Data System (ADS)
Tsang, Chi Him A.; Leung, D. Y. C.
2018-01-01
A size customized binder-free bimetallic Pd-Pt loaded graphene aerogel deposited on nickel foam plate (Pd-Pt/GA/NFP) was prepared and used as an electrode for an alkaline direct ethanol fuel cell (DEFC) under room temperature. The effect of fuel concentration and metal composition on the output power density of the DEFC was systematically investigated. Under the optimum fuel concentration, the cell could achieve a value of 3.6 mW cm-2 at room temperature for the graphene electrode with Pd/Pt ratio approaching 1:1. Such results demonstrated the possibility of producing a size customized metal loaded GA/NFP electrode for fuel cell with high performance.
Valve for fuel pin loading system
Christiansen, David W.
1985-01-01
A cyclone valve surrounds a wall opening through which cladding is projected. An axial valve inlet surrounds the cladding. Air is drawn through the inlet by a cyclone stream within the valve. An inflatable seal is included to physically engage a fuel pin subassembly during loading of fuel pellets.
VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...
VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-17-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...
VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-17-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Kobayashi, Takuro; Kuramochi, Hidetoshi; Maeda, Kouji; Tsuji, Tomoya; Xu, Kaiqin
2014-10-01
An effective way for restaurant grease trap waste (GTW) treatment to generate fuel oil and methane by the combination of physiological and biological processes was investigated. The heat-driven extraction could provide a high purity oil equivalent to an A-grade fuel oil of Japanese industrial standard with 81-93 wt% of extraction efficiency. A post-extracted residue was treated as an anaerobic digestion feedstock, and however, an inhibitory effect of long chain fatty acid (LCFA) was still a barrier for high-rate digestion. From the semi-continuous experiment fed with the residual sludge as a single substrate, it can be concluded that the continuous addition of calcium into the reactor contributed to reducing LCFA inhibition, resulting in the long-term stable operation over one year. Furthermore, the anaerobic reactor performed well with 70-80% of COD reduction and methane productivity under an organic loading rate up to 5.3g-COD/L/d. Copyright © 2014 Elsevier Ltd. All rights reserved.
The use of tyre pyrolysis oil in diesel engines.
Murugan, S; Ramaswamy, M C; Nagarajan, G
2008-12-01
Tests have been carried out to evaluate the performance, emission, and combustion characteristics of a single cylinder direct injection diesel engine fueled with 10%, 30%, and 50% of tyre pyrolysis oil (TPO) blended with diesel fuel (DF). The TPO was derived from waste automobile tyres through vacuum pyrolysis. The combustion parameters such as heat release rate, cylinder peak pressure, and maximum rate of pressure rise also analysed. Results showed that the brake thermal efficiency of the engine fueled with TPO-DF blends increased with an increase in blend concentration and reduction of DF concentration. NO(x), HC, CO, and smoke emissions were found to be higher at higher loads due to the high aromatic content and longer ignition delay. The cylinder peak pressure increased from 71 bars to 74 bars. The ignition delays were longer than with DF. It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future.
Simulations of Evaporating Multicomponent Fuel Drops
NASA Technical Reports Server (NTRS)
Bellan, Josette; Le Clercq, Patrick
2005-01-01
A paper presents additional information on the subject matter of Model of Mixing Layer With Multicomponent Evaporating Drops (NPO-30505), NASA Tech Briefs, Vol. 28, No. 3 (March 2004), page 55. To recapitulate: A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The model is used to perform direct numerical simulations in continuing studies directed toward understanding the behaviors of sprays of liquid petroleum fuels in furnaces, industrial combustors, and engines. The model includes governing equations formulated in an Eulerian and a Lagrangian reference frame for the gas and drops, respectively, and incorporates a concept of continuous thermodynamics, according to which the chemical composition of a fuel is described by use of a distribution function. In this investigation, the distribution function depends solely on the species molar weight. The present paper reiterates the description of the model and discusses further in-depth analysis of the previous results as well as results of additional numerical simulations assessing the effect of the mass loading. The paper reiterates the conclusions reported in the cited previous article, and states some new conclusions. Some new conclusions are: 1. The slower evaporation and the evaporation/ condensation process for multicomponent-fuel drops resulted in a reduced drop-size polydispersity compared to their single-component counterpart. 2. The inhomogeneity in the spatial distribution of the species in the layer increases with the initial mass loading. 3. As evaporation becomes faster, the assumed invariant form of the molecular- weight distribution during evaporation becomes inaccurate.
Dwarf mistletoe effects on fuel loadings in ponderosa pine forests in northern Arizona
Chad Hoffman; Robert Mathiasen; Carolyn Hull Sieg
2007-01-01
Southwestern dwarf mistletoe (Arceuthobium vaginatum (Willd.) J. Presl ssp. cryptopodum) infests about 0.9 million ha in the southwestern United States. Several studies suggest that dwarf mistletoes affect forest fuels and fire behavior; however, few studies have quantified these effects. We compared surface fuel loadings and...
Automated fuel pin loading system
Christiansen, David W.; Brown, William F.; Steffen, Jim M.
1985-01-01
An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inserted as a batch prior to welding of end caps by one of two disclosed welding systems.
Automated fuel pin loading system
Christiansen, D.W.; Brown, W.F.; Steffen, J.M.
An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inerted as a batch prior to welding of end caps by one of two disclosed welding systems.
Analysis of DMFC/battery hybrid power system for portable applications
NASA Astrophysics Data System (ADS)
Lee, Bong-Do; Jung, Doo-Hwan; Ko, Young-Ho
This study was carried out to develop a direct methanol fuel cell (DMFC)/battery hybrid power system used in portable applications. For a portable power system, the DMFC was applied for the main power source at average load and the battery was applied for auxiliary power at overload. Load share characteristics of hybrid power source were analyzed by computational simulation. The connection apparatus between the DMFC and the battery was set and investigated in the real system. Voltages and currents of the load, the battery and the DMFC were measured according to fuel, air and load changes. The relationship between load share characteristic and battery capacity was surveyed. The relationship was also studied in abnormal operation. A DMFC stack was manufactured for this experiment. For the study of the connection characteristics to the fuel cell Pb-acid, Ni-Cd and Ni-MH batteries were tested. The results of this study can be applied to design the interface module of the fuel cell/battery hybrid system and to determine the design requirement in the fuel cell stack for portable applications.
Supplemental Reactor Physics Calculations and Analysis of ELF Mk 1A Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Michael A.
2014-10-01
These calculations supplement previous the reactor physics work evaluating the Enhanced Low Enriched Uranium (LEU) Fuel (ELF) Mk 1A element. This includes various additional comparisons between the current Highly Enriched Uranium (HEU) and LEU along with further characterization of the performance of the ELF fuel. The excess reactivity to be held down at BOC for ELF Mk 1A fuel is estimated to be approximately $2.75 greater than with HEU for a typical cycle. This is a combined effect of the absence of burnable poison in the ELF fuel and the reduced neck shim worth in LEU fuel compared to HEU.more » Burnable poison rods were conceptualized for use in the small B positions containing Gd2O3 absorber. These were shown to provide $2.37 of negative reactivity at BOC and to burn out in less than half of a cycle. The worth of OSCCs is approximately the same between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. This was evaluated by rotating all banks simultaneously. The safety rod worth is relatively unchanged between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. However, this should be reevaluated with different loadings. Neutron flux, both total and fast (>1 MeV), is either the same or reduced upon changing from HEU to ELF Mk 1A (LEU) fuels in the representative loading evaluated. This is consistent with the well-established trend of lower neutron fluxes for a given power in LEU than HEU.The IPT loop void reactivity is approximately the same or less positive with ELF Mk 1A (LEU) fuel than HEU in the representative loading evaluated.« less
Platinum- and membrane-free swiss-roll mixed-reactant alkaline fuel cell.
Aziznia, Amin; Oloman, Colin W; Gyenge, Előd L
2013-05-01
Eliminating the expensive and failure-prone proton exchange membrane (PEM) together with the platinum-based anode and cathode catalysts would significantly reduce the high capital and operating costs of low-temperature (<373 K) fuel cells. We recently introduced the Swiss-roll mixed-reactant fuel cell (SR-MRFC) concept for borohydride-oxygen alkaline fuel cells. We now present advances in anode electrocatalysis for borohydride electrooxidation through the development of osmium nanoparticulate catalysts supported on porous monolithic carbon fiber materials (referred to as an osmium 3D anode). The borohydride-oxygen SR-MRFC operates at 323 K and near atmospheric pressure, generating a peak power density of 1880 W m(-2) in a single-cell configuration by using an osmium-based anode (with an osmium loading of 0.32 mg cm(-2)) and a manganese dioxide gas-diffusion cathode. To the best of our knowledge, 1880 W m(-2) is the highest power density ever reported for a mixed-reactant fuel cell operating under similar conditions. Furthermore, the performance matches the highest reported power densities for conventional dual chamber PEM direct borohydride fuel cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Selle, L. C.; Bellan, Josette
2006-01-01
Transitional databases from Direct Numerical Simulation (DNS) of three-dimensional mixing layers for single-phase flows and two-phase flows with evaporation are analyzed and used to examine the typical hypothesis that the scalar dissipation Probability Distribution Function (PDF) may be modeled as a Gaussian. The databases encompass a single-component fuel and four multicomponent fuels, two initial Reynolds numbers (Re), two mass loadings for two-phase flows and two free-stream gas temperatures. Using the DNS calculated moments of the scalar-dissipation PDF, it is shown, consistent with existing experimental information on single-phase flows, that the Gaussian is a modest approximation of the DNS-extracted PDF, particularly poor in the range of the high scalar-dissipation values, which are significant for turbulent reaction rate modeling in non-premixed flows using flamelet models. With the same DNS calculated moments of the scalar-dissipation PDF and making a change of variables, a model of this PDF is proposed in the form of the (beta)-PDF which is shown to approximate much better the DNS-extracted PDF, particularly in the regime of the high scalar-dissipation values. Several types of statistical measures are calculated over the ensemble of the fourteen databases. For each statistical measure, the proposed (beta)-PDF model is shown to be much superior to the Gaussian in approximating the DNS-extracted PDF. Additionally, the agreement between the DNS-extracted PDF and the (beta)-PDF even improves when the comparison is performed for higher initial Re layers, whereas the comparison with the Gaussian is independent of the initial Re values. For two-phase flows, the comparison between the DNS-extracted PDF and the (beta)-PDF also improves with increasing free-stream gas temperature and mass loading. The higher fidelity approximation of the DNS-extracted PDF by the (beta)-PDF with increasing Re, gas temperature and mass loading bodes well for turbulent reaction rate modeling.
Aaron D. Stottlemyer; G. Geoff Wang; Thomas A. Waldrop; Christina E. Wells; Mac A. Callaham
2013-01-01
Heavy fuel loads were created by southern pine beetle (Dendroctonus frontalis Ehrh.) outbreak throughout the southeastern Piedmont during the early 2000s. Prescribed burning and mechanical mulching (mastication) were used to reduce fuel loading, but many ecological impacts are unknown. Successful forest regeneration depends on ectomycorrhizal (ECM)...
Bayesian techniques for surface fuel loading estimation
Kathy Gray; Robert Keane; Ryan Karpisz; Alyssa Pedersen; Rick Brown; Taylor Russell
2016-01-01
A study by Keane and Gray (2013) compared three sampling techniques for estimating surface fine woody fuels. Known amounts of fine woody fuel were distributed on a parking lot, and researchers estimated the loadings using different sampling techniques. An important result was that precise estimates of biomass required intensive sampling for both the planar intercept...
Development and evaluation of the photoload sampling technique
Robert E. Keane; Laura J. Dickinson
2007-01-01
Wildland fire managers need better estimates of fuel loading so they can accurately predict potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents the development and evaluation of a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common...
Economic evaluation of a solar hot-water-system
NASA Technical Reports Server (NTRS)
1981-01-01
Analysis shows economic benefits at six representative sites using actual data from Tempe, Arizona and San Diego, California installations. Model is two-tank cascade water heater with flat-plate collector array for single-family residences. Performances are forecast for Albuquerque, New Mexico; Fort Worth, Texas; Madison, Wisconsin; and Washington, D.C. Costs are compared to net energy savings using variables for each site's environmental conditions, loads, fuel costs, and other economic factors; uncertainty analysis is included.
Brandão, Lúcia; Boaventura, Marta; Passeira, Carolina; Gattia, Daniele Mirabile; Marazzi, Renzo; Antisari, Marco Vittori; Mendes, Adélio
2011-10-01
Electrochemical impedance spectroscopy (EIS) was used to study the polymer electrolyte membrane fuel cells (PEMFC) performance when using single wall carbon nanohorns (SWNH) to support Pt nanoparticles. Additionally, as-prepared and oxidized SWNH Pt-supports were compared with conventional carbon black. Two different oxidizing treatments were considered: oxygen flow at 500 degrees C and reflux in an acid solution at 85 degrees C. Both oxidizing treatments increased SWNH surface area; oxygen treatment increased surface area 4 times while acid treatment increased 2.6 times. The increase in surface area should be related to the opening access to the inner tube of SWNH. Acid treatment of SWNH increased chemical fragility and decreased electrocatalyst load in comparison with as-prepared SWNH. On the other hand, the oxygen treated SWNH sample allowed to obtain the highest electrocatalyst load. The use of as-prepared and oxygen treated SWNH showed in both cases catalytic activities 60% higher than using conventional carbon black as electrocatalyst support in PEMFC. Moreover, EIS analysis indicated that the major improvement in performance is related to the cathode kinetics in the as-prepared SWNH sample, while concerning the oxidized SWNH sample, the improvements are related to the electrokinetics in both anode and cathode electrodes. These improvements should be related with differences in the hydrophobic character between SWNH and carbon black.
Effect of ethanol-gasoline blends on small engine generator energy efficiency and exhaust emission.
Lin, Wen-Yinn; Chang, Yuan-Yi; Hsieh, You-Ru
2010-02-01
This study was focused on fuel energy efficiency and pollution analysis of different ratios of ethanol-gasoline blended fuels (E0, E3, E6, and E9) under different loadings. In this research, the experimental system consisted of a small engine generator, a particulate matter measurement system, and an exhaust gas analyzer system. Different fuels, unleaded gasoline, and ethanol-gasoline blends (E0, E3, E6, and E9) were used to study their effects on the exhaust gas emission and were expressed as thermal efficiency of the small engine generator energy efficiency. The results suggested that particle number concentration increased as the engine loading increased; however, it decreased as the ethanol content in the blend increased. While using E6 as fuel, the carbon monoxide (CO) concentration was less than other fuels (E0, E3, and E9) for each engine loading. The average of CO concentration reduction by using E3, E6, and E9 is 42, 86, and 83%, respectively. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 78.7, 97.5, and 89.46% of the mean average values of hydrocarbons (HCs) with E3, E6, and E9 fuels, respectively, for all engine loadings. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 35, 86, and 77% of the mean average values of nitrogen oxides (NOx) with E3, E6, and E9 fuels, respectively, at each engine loading. The E6 fuel gave the best results of the exhaust emissions, and the E9 fuel gave the best results of the particle emissions and engine performance. The thermal efficiency of the small engine generator increased as the ethanol content in the blend increased and as the engine loading increased.
Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Permana, Sidik; Novitrian,; Waris, Abdul
Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissilemore » material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.« less
Zsigraiova, Zdena; Semiao, Viriato; Beijoco, Filipa
2013-04-01
This work proposes an innovative methodology for the reduction of the operation costs and pollutant emissions involved in the waste collection and transportation. Its innovative feature lies in combining vehicle route optimization with that of waste collection scheduling. The latter uses historical data of the filling rate of each container individually to establish the daily circuits of collection points to be visited, which is more realistic than the usual assumption of a single average fill-up rate common to all the system containers. Moreover, this allows for the ahead planning of the collection scheduling, which permits a better system management. The optimization process of the routes to be travelled makes recourse to Geographical Information Systems (GISs) and uses interchangeably two optimization criteria: total spent time and travelled distance. Furthermore, rather than using average values, the relevant parameters influencing fuel consumption and pollutant emissions, such as vehicle speed in different roads and loading weight, are taken into consideration. The established methodology is applied to the glass-waste collection and transportation system of Amarsul S.A., in Barreiro. Moreover, to isolate the influence of the dynamic load on fuel consumption and pollutant emissions a sensitivity analysis of the vehicle loading process is performed. For that, two hypothetical scenarios are tested: one with the collected volume increasing exponentially along the collection path; the other assuming that the collected volume decreases exponentially along the same path. The results evidence unquestionable beneficial impacts of the optimization on both the operation costs (labor and vehicles maintenance and fuel consumption) and pollutant emissions, regardless the optimization criterion used. Nonetheless, such impact is particularly relevant when optimizing for time yielding substantial improvements to the existing system: potential reductions of 62% for the total spent time, 43% for the fuel consumption and 40% for the emitted pollutants. This results in total cost savings of 57%, labor being the greatest contributor, representing over €11,000 per year for the two vehicles collecting glass-waste. Moreover, it is shown herein that the dynamic loading process of the collection vehicle impacts on both the fuel consumption and on pollutant emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Early, Jack; Kaufman, Arthur; Stawsky, Alfred
1982-01-01
A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.
NASA Astrophysics Data System (ADS)
Ambarita, H.; Sinulingga, E. P.; Nasution, M. KM; Kawai, H.
2017-03-01
In this work, a compression ignition (CI) engine is tested in dual-fuel mode (Diesel-Raw biogas). The objective is to examine the performance and emission characteristics of the engine when some of the diesel oil is replaced by biogas. The specifications of the CI engine are air cooled single horizontal cylinder, four strokes, and maximum output power of 4.86 kW. It is coupled with a synchronous three phase generator. The load, engine revolution, and biogas flow rate are varied from 600 W to 1500 W, 1000 rpm to 1500 rpm, 0 to 6 L/minute, respectively. The electric power, specific fuel consumption, thermal efficiency, gas emission, and diesel replacement ratio are analyzed. The results show that there is no significant difference of the power resulted by CI run on dual-fuel mode in comparison with pure diesel mode. However, the specific fuel consumption and efficiency decrease significantly as biogas flow rate increases. On the other hand, emission of the engine on dual-fuel mode is better. The main conclusion can be drawn is that CI engine without significant modification can be operated perfectly in dual-fuel mode and diesel oil consumption can be decreased up to 87.5%.
González-Ferreiro, Eduardo; Arellano-Pérez, Stéfano; Castedo-Dorado, Fernando; Hevia, Andrea; Vega, José Antonio; Vega-Nieva, Daniel; Álvarez-González, Juan Gabriel; Ruiz-González, Ana Daría
2017-01-01
The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.
Use of Adaptive Injection Strategies to Increase the Full Load Limit of RCCI Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Reed; Ickes, Andrew; Wallner, Thomas
2015-01-01
Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection of a higher reactivity fuel, otherwise known as Reactivity Controlled Compression Ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13Lmore » multi-cylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and direct injection of diesel fuel. Engine testing was conducted at an engine speed of 1200 RPM over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection quantity was reduced to keep peak cylinder pressure and maximum pressure rise rate under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar BMEP with a peak brake thermal efficiency of 47.6%.« less
Thinning and underburning effects on ground fuels in Jeffrey pine
R.F. Walker; R.M. Fecko; W.B. Frederick; J.D. Murphy; D.W. Johnson; W.W. Miller
2007-01-01
Thinning with cut-to-length and whole-tree harvesting systems followed by underburning were evaluated for their impacts on downed and dead fuel loading by timelag category in eastern Sierra Nevada Jeffrey pine (Pinus jeffreyi Grev. & Balf.). Cut-to-length harvesting resulted in an approximate doubling of total fuel loading to 113829 kg ha
Fire history of coniferous riparian forests in the Sierra Nevada
K. Van de Water; M. North
2010-01-01
Fire is an important ecological process in many western U.S. coniferous forests, yet high fuel loads, rural home construction and other factors have encouraged the suppression of most wildfires. Using mechanical thinning and prescribed burning, land managers often try to reduce fuels in strategic areas with the highest fuel loads. Riparian forests, however, are often...
Aluminum hydroxide coating thickness measurements and brushing tests on K West Basin fuel elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitner, A.L.
1998-09-11
Aluminum hydroxide coating thicknesses were measured on fuel elements stored in aluminum canisters in K West Basin using specially developed eddy current probes . The results were used to estimate coating inventories for MCO fuel,loading. Brushing tests successfully demonstrated the ability to remove the coating if deemed necessary prior to MCO loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelenyuk, Alla; Reitz, Paul; Stewart, Mark L.
Gasoline Compression Ignition (GCI) engines have the potential to achieve high fuel efficiency and to significantly reduce both NOx and particulate matter (PM) emissions by operating under dilute partially-premixed conditions. This low temperature combustion strategy is dependent upon direct-injection of gasoline during the compression stroke and potentially near top dead center (TDC). The timing and duration of the in-cylinder injections can be tailored based on speed and load to create optimized conditions that result in a stable combustion. We present the results of advanced aerosol analysis methods that have been used for detailed real-time characterization of PM emitted from amore » single-cylinder GCI engine operated at different speed, load, timing, and number and duration of near-TDC fuel injections. PM characterization included 28 measurements of size and composition of individual particles sampled directly from the exhaust and after mass and/or mobility classification. We use these data to calculate particle effective density, fractal dimension, dynamic shape factors in free-molecular and transition flow regimes, average diameter of primary spherules, number of spherules, and void fraction of soot agglomerates.« less
Fuel loads and fuel type mapping
Chuvieco, Emilio; Riaño, David; Van Wagtendonk, Jan W.; Morsdof, Felix; Chuvieco, Emilio
2003-01-01
Correct description of fuel properties is critical to improve fire danger assessment and fire behaviour modeling, since they guide both fire ignition and fire propagation. This chapter deals with properties of fuel that can be considered static in short periods of time: biomass loads, plant geometry, compactness, etc. Mapping these properties require a detail knowledge of vegetation vertical and horizontal structure. Several systems to classify the great diversity of vegetation characteristics in few fuel types are described, as well as methods for mapping them with special emphasis on those based on remote sensing images.
Fuel cladding behavior under rapid loading conditions
NASA Astrophysics Data System (ADS)
Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.
2016-02-01
A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.
Fuel cell-gas turbine hybrid system design part II: Dynamics and control
NASA Astrophysics Data System (ADS)
McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott
2014-05-01
Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.
Production and application of biodiesel from waste cooking oil
NASA Astrophysics Data System (ADS)
Tuly, S. S.; Saha, M.; Mustafi, N. N.; Sarker, M. R. I.
2017-06-01
Biodiesel has been identified as an alternative and promising fuel source to reduce the dependency on conventional fossil fuel in particular diesel. In this work, waste cooking oil (WCO) of restaurants is considered to produce biodiesel. A well-established transesterification reaction by sodium hydroxide (NaOH) catalytic and supercritical methanol (CH3OH) methods are applied to obtain biodiesel. In the catalytic transesterification process, biodiesel and glycerine are simultaneously produced. The impact of temperature, methanol/WCO molar ratio and sodium hydroxide concentration on the biodiesel formation were analysed and presented. It was found that the optimum 95% of biodiesel was obtained when methanol/WCO molar ratio was 1:6 under 873 K temperature with the presence of 0.2% NaOH as a catalyst. The waste cooking oil blend proportions were 10%, 15%, 20% and 25% and named as bio-diesel blends B-10, B-15, B-20, and B-25, respectively. Quality of biodiesel was examined according to ASTM 6751: biodiesel standards and testing methods. Important fuel properties of biodiesel, such as heating value, cetane index, viscosity, and others were also investigated. A four-stroke single cylinder naturally aspirated DI diesel engine was operated using in both pure form and as a diesel blend to evaluate the combustion and emission characteristics of biodiesel. Engine performance is examined by measuring brake specific fuel consumption and fuel conversion efficiency. The emission of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), and others were measured. It was measured that the amount of CO2 increases and CO decreases both for pure diesel and biodiesel blends with increasing engine load. However, for same load, a higher emission of CO2 from biodiesel blends was recorded than pure diesel.
Radischat, Christian; Sippula, Olli; Stengel, Benjamin; Klingbeil, Sophie; Sklorz, Martin; Rabe, Rom; Streibel, Thorsten; Harndorf, Horst; Zimmermann, Ralf
2015-08-01
Organic combustion aerosols from a marine medium-speed diesel engine, capable to run on distillate (diesel fuel) and residual fuels (heavy fuel oil), were investigated under various operating conditions and engine parameters. The online chemical characterisation of the organic components was conducted using a resonance-enhanced multiphoton ionisation time-of-flight mass spectrometer (REMPI TOF MS) and a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS). Oxygenated species, alkenes and aromatic hydrocarbons were characterised. Especially the aromatic hydrocarbons and their alkylated derivatives were very prominent in the exhaust of both fuels. Emission factors of known health-hazardous compounds (e.g. mono- and poly-aromatic hydrocarbons) were calculated and found in higher amounts for heavy fuel oil (HFO) at typical engine loadings. Lower engine loads lead in general to increasing emissions for both fuels for almost every compound, e.g. naphthalene emissions varied for diesel fuel exhaust between 0.7 mg/kWh (75 % engine load, late start of injection (SOI)) and 11.8 mg/kWh (10 % engine load, late SOI) and for HFO exhaust between 3.3 and 60.5 mg/kWh, respectively. Both used mass spectrometric techniques showed that they are particularly suitable methods for online monitoring of combustion compounds and very helpful for the characterisation of health-relevant substances. Graphical abstract Three-dimensional REMPI data of organic species in diesel fuel and heavy fuel oil exhaust.
Knapp, E.E.; Keeley, J.E.
2006-01-01
Structural heterogeneity in forests of the Sierra Nevada was historically produced through variation in fire regimes and local environmental factors. The amount of heterogeneity that prescription burning can achieve might now be more limited owing to high fuel loads and increased fuel continuity. Topography, woody fuel loading, and vegetative composition were quantified in plots within replicated early and late season burn units. Two indices of fire severity were evaluated in the same plots after the burns. Scorch height ranged from 2.8 to 25.4 m in early season plots and 3.1 to 38.5 m in late season plots, whereas percentage of ground surface burned ranged from 24 to 96% in early season plots and from 47 to 100% in late season plots. Scorch height was greatest in areas with steeper slopes, higher basal area of live trees, high percentage of basal area composed of pine, and more small woody fuel. Percentage of area burned was greatest in areas with less bare ground and rock cover (more fuel continuity), steeper slopes, and units burned in the fall (lower fuel moisture). Thus topographic and biotic factors still contribute to the abundant heterogeneity in fire severity with prescribed burning, even under the current high fuel loading conditions. Burning areas with high fuel loads in early season when fuels are moister may lead to patterns of heterogeneity in fire effects that more closely approximate the expected patchiness of historical fires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael A. Pope; R. Sonat Sen; Brian Boer
2011-09-01
The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code tomore » assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.« less
Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.
Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier
2009-12-01
This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.
Spent fuel cask handling at an operating nuclear power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, A.C.
1988-01-01
The importance of spent fuel handling at operating nuclear power plants cannot be overstated. Because of its highly radioactive nature, however, spent fuel must be handled in thick, lead-lined containers or casks. Thus, all casks for spent fuel handling are heavy loads by the US Nuclear Regulatory Commission's definition, and any load-drop must be evaluated for its potential to damage safety-related equipment. Nuclear Regulatory Guide NUREG-0612 prescribes the regulatory requirements of alternative heavy-load-handling methodologies such as (a) by providing cranes that meet the requirements of NUREG-0554, which shall be called the soft path, or (b) by providing protective devices atmore » all postulated load-drop areas to prevent any damage to safety-related equipment, which shall be called the hard path. The work reported in this paper relates to cask handling at New York Power Authority's James A. FitzPatrick (JAF) plant.« less
Feasibility of solid oxide fuel cell dynamic hydrogen coproduction to meet building demand
NASA Astrophysics Data System (ADS)
Shaffer, Brendan; Brouwer, Jacob
2014-02-01
A dynamic internal reforming-solid oxide fuel cell system model is developed and used to simulate the coproduction of electricity and hydrogen while meeting the measured dynamic load of a typical southern California commercial building. The simulated direct internal reforming-solid oxide fuel cell (DIR-SOFC) system is controlled to become an electrical load following device that well follows the measured building load data (3-s resolution). The feasibility of the DIR-SOFC system to meet the dynamic building demand while co-producing hydrogen is demonstrated. The resulting thermal responses of the system to the electrical load dynamics as well as those dynamics associated with the filling of a hydrogen collection tank are investigated. The DIR-SOFC system model also allows for resolution of the fuel cell species and temperature distributions during these dynamics since thermal gradients are a concern for DIR-SOFC.
Ionic Liquid Fuels for Chemical Propulsion
2014-11-20
researchers seeking hypergolic fuels have limited themselves to the extremely toxic and corrosive nitric acid solutions. While important questions remain...storable oxidizer (N204 , nitric acid ) have been synthesized and demonstrated. The bipropellant fuels are based upon salts containing dicyanamide or...20-30% nanoparticle loading but decreases between 10-20%, perhaps indicating an optimal loading concentration for these nanoparticles between 10-20
Fuel loadings 5 years after a bark beetle outbreak in south-western USA ponderosa pine forests
Chad M. Hoffman; Carolyn Hull Sieg; Joel D. McMillin; Peter Z. Fule
2012-01-01
Landscape-level bark beetle (Coleoptera: Curculionidae, Scolytinae) outbreaks occurred in Arizona ponderosa pine (Pinus ponderosa Dougl. ex Law.) forests from 2001 to 2003 in response to severe drought and suitable forest conditions.We quantified surface fuel loadings and depths, and calculated canopy fuels based on forest structure attributes in 60 plots established 5...
Eric E. Knapp; Jon E. Keeley
2006-01-01
Structural heterogeneity in forests of the Sierra Nevada was historically produced through variation in fire regimes and local environmental factors. The amount of heterogeneity that prescription burning can achieve might now be more limited owing to high fuel loads and increased fuel continuity. Topography, woody fuel loading, and vegetative composition were...
Photo Series for Estimating Post-Hurricane Residues and Fire Behavior in Southern Pine
Dale D. Wade; James K. Forbus; James M. Saveland
1993-01-01
Following Hurricane Hugo, fuels were sampled on nine 2-acre blocks which were then burned during the spring wildfire season. The study was superimposed on dormant-season fire-interval research plots established in 1958 on the Francis Marion National Forest near Charleston, SC. Photographs of preburn fuel loads, fire behavior, and postburn fuel loads were taken to...
Fuel load modeling from mensuration attributes in temperate forests in northern Mexico
Maricela Morales-Soto; Marín Pompa-Garcia
2013-01-01
The study of fuels is an important factor in defining the vulnerability of ecosystems to forest fires. The aim of this study was to model a dead fuel load based on forest mensuration attributes from forest management inventories. A scatter plot analysis was performed and, from explanatory trends between the variables considered, correlation analysis was carried out...
Jeffrey M. Kane; Eric E. Knapp; J. Morgan Varner
2006-01-01
The use of mechanical mastication to treat non-merchantable fuels is becoming increasingly popular, but loadings and other characteristics of masticated fuel beds are unknown. Surveys of eight recently masticated sites in northern California and southwestern Oregon indicate that significant site level differences were detected for 1 hr and 10 hr time-lag classes and...
Lisa M. Ellsworth; Creighton M. Litton; Andrew D. Taylor; J. Boone Kauffman
2013-01-01
Frequent wildfires in tropical landscapes dominated by non-native invasive grasses threaten surrounding ecosystems and developed areas. To better manage fire, accurate estimates of the spatial and temporal variability in fuels are urgently needed. We quantified the spatial variability in live and dead fine fuel loads and moistures at four guinea grass (...
Solid polymer electrolyte (SPE) fuel cell technology program, phase 2/2A. [testing and evaluations
NASA Technical Reports Server (NTRS)
1976-01-01
Test evaluations were performed on a fabricated single solid polymer electrolyte cell unit. The cell operated at increased current density and at higher performance levels. This improved performance was obtained through a combination of increased temperature, increased reactant pressures, improved activation techniques and improved thermal control over the baseline cell configuration. The cell demonstrated a higher acid content membrane which resulted in increased performance. Reduced catalyst loading and low cost membrane development showed encouraging results.
Wigner, E.P.; Young, G.J.
1958-10-14
A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.
National Aerospace Plane Integrated Fuselage/Cryotank Risk Reduction program
NASA Astrophysics Data System (ADS)
Dayton, K. E.
1993-06-01
The principal objectives and results of the National Aerospace Plane (NASP) Integrated Risk Reduction program are briefly reviewed. The program demonstrated the feasibility of manufacturing lightweight advanced composite materials for single-stage-to-orbit hypersonic flight vehicle applications. A series of combined load simulation tests (thermal, mechanical, and cryogenic) demonstrated proof of concept performance for an all unlined composite cryogenic fuel tank with flat end bulkheads and a high-temperature thin-shell advanced composite fuselage. Temperatures of the fuselage were as high as 1300 F, with 100 percent bending and shear loads applied to the tank while filled with 850 gallons of cryogenic fluid hydrogen (-425 F). Leak rates measured on and around the cryotank shell and bulkheads were well below acceptable levels.
Distributed ignition method and apparatus for a combustion engine
Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong
2006-03-07
A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.
Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.
1958-09-01
This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.
[Vertical distribution of fuels in Pinus yunnanensis forest and related affecting factors].
Wang, San; Niu, Shu-Kui; Li, De; Wang, Jing-Hua; Chen, Feng; Sun, Wu
2013-02-01
In order to understand the effects of fuel loadings spatial distribution on forest fire kinds and behaviors, the canopy fuels and floor fuels of Pinus yunnanensis forests with different canopy density, diameter at breast height (DBH), tree height, and stand age and at different altitude, slope grade, position, and aspect in Southwest China were taken as test objects, with the fuel loadings and their spatial distribution characteristics at different vertical layers compared and the fire behaviors in different stands analyzed. The relationships between the fuel loadings and the environmental factors were also analyzed by canonical correspondence analysis (CCA). In different stands, there existed significant differences in the vertical distribution of fuels. Pinus yunnanensis-Qak-Syzygium aromaticum, Pinus yunnanensis-oak, and Pinus yunnanensis forests were likely to occur floor fire but not crown fire, while Pinus yunnanensis-Platycladus orientalis, Pinus yunnanensis-Keteleeria fortune, and Keteleeria fortune-Pinus yunnanensis were not only inclined to occur floor fire, but also, the floor fire could be easily transformed into crown fire. The crown fuels were mainly affected by the stand age, altitude, DBH, and tree height, while the floor fuels were mainly by the canopy density, slope grade, altitude, and stand age.
Chin, Jo-Yu; Batterman, Stuart A.; Northrop, William F.; Bohac, Stanislav V.; Assanis, Dennis N.
2015-01-01
Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NOx), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM2.5, EC, formaldehyde, and most VOCs; however, NOx brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM2.5, EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM2.5. The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for apportionment, inventory, and exposure purposes. PMID:25722535
Use of Adaptive Injection Strategies to Increase the Full Load Limit of RCCI Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Reed; Ickes, Andrew; Wallner, Thomas
Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection (DI) of a higher reactivity fuel, otherwise known as reactivity controlled compression ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on amore » 13 l multicylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and DI of diesel fuel. Engine testing was conducted at an engine speed of 1200 rpm over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion (CDC) and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection (PFI) quantity was reduced to keep peak cylinder pressure (PCP) and maximum pressure rise rate (MPRR) under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar brake mean effective pressure (BMEP) with a peak brake thermal efficiency (BTE) of 47.6%.« less
Castedo-Dorado, Fernando; Hevia, Andrea; Vega, José Antonio; Vega-Nieva, Daniel; Ruiz-González, Ana Daría
2017-01-01
The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard. PMID:28448524
Emma Vakili; Chad M. Hoffman; Robert E. Keane
2016-01-01
Fuel loading estimates from planar intersect sampling protocols for fine dead down woody surface fuels require an approximation of the mean squared diameter (d2) of 1-h (0-0.63 cm), 10-h (0.63-2.54 cm), and 100-h (2.54-7.62 cm) timelag size classes. The objective of this study is to determine d2 in ponderosa pine (Pinus ponderosa) forests of New Mexico and Colorado,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Wang, Hong; Jiang, Hao
The first portion of this report provides a detailed description of fiscal year (FY) 2015 test result corrections and analysis updates based on FY 2016 updates to the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) program methodology, which is used to evaluate the vibration integrity of spent nuclear fuel (SNF) under normal conditions of transport (NCT). The CIRFT consists of a U-frame test setup and a real-time curvature measurement method. The three-component U-frame setup of the CIRFT has two rigid arms and linkages connecting to a universal testing machine. The curvature SNF rod bending is obtained through a three-point deflection measurementmore » method. Three linear variable differential transformers (LVDTs) are clamped to the side connecting plates of the U-frame and used to capture deformation of the rod. The second portion of this report provides the latest CIRFT data, including data for the hydride reorientation test. The variations in fatigue life are provided in terms of moment, equivalent stress, curvature, and equivalent strain for the tested SNFs. The equivalent stress plot collapsed the data points from all of the SNF samples into a single zone. A detailed examination revealed that, at the same stress level, fatigue lives display a descending order as follows: H. B. Robinson Nuclear Power Station (HBR), LMK, and mixed uranium-plutonium oxide (MOX). Just looking at the strain, LMK fuel has a slightly longer fatigue life than HBR fuel, but the difference is subtle. The third portion of this report provides finite element analysis (FEA) dynamic deformation simulation of SNF assemblies . In a horizontal layout under NCT, the fuel assembly’s skeleton, which is formed by guide tubes and spacer grids, is the primary load bearing apparatus carrying and transferring vibration loads within an SNF assembly. These vibration loads include interaction forces between the SNF assembly and the canister basket walls. Therefore, the integrity of the guide tubes and spacer grids critically affects the vibration intensity of the fuel assembly during transport and must be considered when developing the multipurpose purpose canister (MPC) design for safe SNF transport.« less
Wild Fire Emissions for the NOAA Operational HYSPLIT Smoke Model
NASA Astrophysics Data System (ADS)
Huang, H. C.; ONeill, S. M.; Ruminski, M.; Shafran, P.; McQueen, J.; DiMego, G.; Kondragunta, S.; Gorline, J.; Huang, J. P.; Stunder, B.; Stein, A. F.; Stajner, I.; Upadhayay, S.; Larkin, N. K.
2015-12-01
Particulate Matter (PM) generated from forest fires often lead to degraded visibility and unhealthy air quality in nearby and downstream areas. To provide near-real time PM information to the state and local agencies, the NOAA/National Weather Service (NWS) operational HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) smoke modeling system (NWS/HYSPLIT smoke) provides the forecast of smoke concentration resulting from fire emissions driven by the NWS North American Model 12 km weather predictions. The NWS/HYSPLIT smoke incorporates the U.S. Forest Service BlueSky Smoke Modeling Framework (BlueSky) to provide smoke fire emissions along with the input fire locations from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS)'s Hazard Mapping System fire and smoke detection system. Experienced analysts inspect satellite imagery from multiple sensors onboard geostationary and orbital satellites to identify the location, size and duration of smoke emissions for the model. NWS/HYSPLIT smoke is being updated to use a newer version of USFS BlueSky. The updated BlueSky incorporates the Fuel Characteristic Classification System version 2 (FCCS2) over the continental U.S. and Alaska. FCCS2 includes a more detailed description of fuel loadings with additional plant type categories. The updated BlueSky also utilizes an improved fuel consumption model and fire emission production system. For the period of August 2014 and June 2015, NWS/HYSPLIT smoke simulations show that fire smoke emissions with updated BlueSky are stronger than the current operational BlueSky in the Northwest U.S. For the same comparisons, weaker fire smoke emissions from the updated BlueSky were observed over the middle and eastern part of the U.S. A statistical evaluation of NWS/HYSPLIT smoke predicted total column concentration compared to NOAA NESDIS GOES EAST Aerosol Smoke Product retrievals is underway. Preliminary results show that using the newer version of BlueSky leads to improved performance of NWS/HYSPLIT-smoke for June 2015. These results are partially due to the default fuel loading selected for Canadian fires that lead to stronger fire emissions there. The use of more realistic Canadian fuel loading may improve NWS/HYSPLIT smoke forecast.
Development of a helicopter rotor/propulsion system dynamics analysis
NASA Technical Reports Server (NTRS)
Warmbrodt, W.; Hull, R.
1982-01-01
A time-domain analysis of coupled engine/drive train/rotor dynamics of a twin-engine, single main rotor helicopter model has been performed. The analysis incorporates an existing helicopter model with nonlinear simulations of a helicopter turboshaft engine and its fuel controller. System dynamic behavior is studied using the resulting simulation which included representations for the two engines and their fuel controllers, drive system, main rotor, tail rotor, and aircraft rigid body motions. Time histories of engine and rotor RPM response to pilot control inputs are studied for a baseline rotor and propulsion system model. Sensitivity of rotor RPM droop to fuel controller gain changes and collective input feed-forward gain changes are studied. Torque-load-sharing between the two engines is investigated by making changes in the fuel controller feedback paths. A linear engine model is derived from the nonlinear engine simulation and used in the coupled system analysis. This four-state linear engine model is then reduced to a three-state model. The effect of this simplification on coupled system behavior is shown.
PIV measurement of internal structure of diesel fuel spray
NASA Astrophysics Data System (ADS)
Cao, Z.-M.; Nishino, K.; Mizuno, S.; Torii, K.
2000-12-01
This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called `branch-like structures' by Azetsu etal. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented.
PIV measurement of internal structure of diesel fuel spray
NASA Astrophysics Data System (ADS)
Cao, Z.-M.; Nishino, K.; Mizuno, S.; Torii, K.
This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called `branch-like structures' by Azetsu etal. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented.
Fuel loads, fire regimes, and post-fire fuel dynamics in Florida Keys pine forests
Sah, J.P.; Ross, M.S.; Snyder, J.R.; Koptur, S.; Cooley, H.C.
2006-01-01
In forests, the effects of different life forms on fire behavior may vary depending on their contributions to total fuel loads. We examined the distribution of fuel components before fire, their effects on fire behavior, and the effects of fire on subsequent fuel recovery in pine forests within the National Key Deer Refuge in the Florida Keys. We conducted a burning experiment in six blocks, within each of which we assigned 1-ha plots to three treatments: control, summer, and winter burn. Owing to logistical constraints, we burned only 11 plots, three in winter and eight in summer, over a 4-year period from 1998 to 2001. We used path analysis to model the effects of fuel type and char height, an indicator of fire intensity, on fuel consumption. Fire intensity increased with surface fuel loads, but was negatively related to the quantity of hardwood shrub fuels, probably because these fuels are associated with a moist microenvironment within hardwood patches, and therefore tend to resist fire. Winter fires were milder than summer fires, and were less effective at inhibiting shrub encroachment. A mixed seasonal approach is suggested for fire management, with burns applied opportunistically under a range of winter and summer conditions, but more frequently than that prevalent in the recent past. ?? IAWF 2006.
Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems
Nicholas S. Skowronski; Kenneth L. Clark; Matthew Duveneck; John. Hom
2011-01-01
We calibrated upward sensing profiling and downward sensing scanning LiDAR systems to estimates of canopy fuel loading developed from field plots and allometric equations, and then used the LiDAR datasets to predict canopy bulk density (CBD) and crown fuel weight (CFW) in wildfire prone stands in the New Jersey Pinelands. LiDAR-derived height profiles were also...
E. Matthew Hansen; Morris C. Johnson; Barbara J. Bentz; James C. Vandygriff; A. Steven Munson
2015-01-01
Recent bark beetle outbreaks in western North America have led to concerns regarding changes in fuel profiles and associated changes in fire behavior. Data are lacking for a range of infestation severities and time since outbreak, especially for relatively arid cover types. We surveyed fuel loads and simulated fire behavior for ponderosa pine stands of the...
Patrick H. Brose
2016-01-01
In the shelterwood-burn technique, a moderate- to high-intensity growing-season prescribed fire is essential to achieve desired oak regeneration goals. These levels of fire intensity are dependent on the increased fuel loadings created by the preceding first removal cut. However, the loadings of forest fuels and their fluctuation during implementation of the...
Study on Improving Partial Load by Connecting Geo-thermal Heat Pump System to Fuel Cell Network
NASA Astrophysics Data System (ADS)
Obara, Shinya; Kudo, Kazuhiko
Hydrogen piping, the electric power line, and exhaust heat recovery piping of the distributed fuel cells are connected with network, and operational planning is carried out. Reduction of the efficiency in partial load is improved by operation of the geo-thermal heat pump linked to the fuel cell network. The energy demand pattern of the individual houses in Sapporo was introduced. And the analysis method aiming at minimization of the fuel rate by the genetic algorithm was described. The fuel cell network system of an analysis example assumed connecting the fuel cell co-generation of five houses. When geo-thermal heat pump was introduced into fuel cell network system stated in this paper, fuel consumption was reduced 6% rather than the conventional method
Dual fuel gradients in uranium silicide plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pace, B.W.
1997-08-01
Babcock & Wilcox has been able to achieve dual gradient plates with good repeatability in small lots of U{sub 3}Si{sub 2} plates. Improvements in homogeneity and other processing parameters and techniques have allowed the development of contoured fuel within the cladding. The most difficult obstacles to overcome have been the ability to evaluate the bidirectional fuel loadings in comparison to the perfect loading model and the different methods of instilling the gradients in the early compact stage. The overriding conclusion is that to control the contour of the fuel, a known relationship between the compact, the frames and final coremore » gradient must exist. Therefore, further development in the creation and control of dual gradients in fuel plates will involve arriving at a plausible gradient requirement and building the correct model between the compact configuration and the final contoured loading requirements.« less
Adaptive engine injection for emissions reduction
Reitz, Rolf D. : Sun, Yong
2008-12-16
NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.
The Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Belvin, Anthony D.; Borowski, Stanley K.; Scott, John H.
2014-01-01
Nuclear Thermal Propulsion (NTP) development efforts in the United States have demonstrated the technical viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes in a single burn (NRX-A6 test). Results from Project Rover indicated that an NTP system with a high thrust-to-weight ratio and a specific impulse greater than 900 s would be feasible. Excellent results were also obtained by the former Soviet Union. Although historical programs had promising results, many factors would affect the development of a 21st century nuclear thermal rocket (NTR). Test facilities built in the US during Project Rover no longer exist. However, advances in analytical techniques, the ability to utilize or adapt existing facilities and infrastructure, and the ability to develop a limited number of new test facilities may enable affordable development, qualification, and utilization of a Nuclear Cryogenic Propulsion Stage (NCPS). Bead-loaded graphite fuel was utilized throughout the Rover/NERVA program, and coated graphite composite fuel (tested in the Nuclear Furnace) and cermet fuel both show potential for even higher performance than that demonstrated in the Rover/NERVA engine tests.. NASA's NCPS project was initiated in October, 2011, with the goal of assessing the affordability and viability of an NCPS. FY 2014 activities are focused on fabrication and test (non-nuclear) of both coated graphite composite fuel elements and cermet fuel elements. Additional activities include developing a pre-conceptual design of the NCPS stage and evaluating affordable strategies for NCPS development, qualification, and utilization. NCPS stage designs are focused on supporting human Mars missions. The NCPS is being designed to readily integrate with the Space Launch System (SLS). A wide range of strategies for enabling affordable NCPS development, qualification, and utilization should be considered. These include multiple test and demonstration strategies (both ground and in-space), multiple potential test sites, and multiple engine designs. Two potential NCPS fuels are currently under consideration - coated graphite composite fuel and tungsten cermet fuel. During 2014 a representative, partial length (approximately 16") coated graphite composite fuel element with prototypic depleted uranium loading is being fabricated at Oak Ridge National Laboratory (ORNL). In addition, a representative, partial length (approximately 16") cermet fuel element with prototypic depleted uranium loading is being fabricated at Marshall Space Flight Center (MSFC). During the development process small samples (approximately 3" length) will be tested in the Compact Fuel Element Environmental Tester (CFEET) at high temperature (approximately 2800 K) in a hydrogen environment to help ensure that basic fuel design and manufacturing process are adequate and have been performed correctly. Once designs and processes have been developed, longer fuel element segments will be fabricated and tested in the Nuclear Thermal Rocket Element Environmental Simulator (NTREE) at high temperature (approximately 2800 K) and in flowing hydrogen.
Brown, Nicholas R.; Worrall, Andrew; Todosow, Michael
2016-11-18
Small modular reactors (SMRs) offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of SMRs on nuclear fuel cycle performance. The focus of this paper is the fuel cycle impacts of light water SMRs in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary example reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Options Campaign. The hypothetical light water SMR example case considered in these preliminary scoping studies ismore » a cartridge type one-batch core with slightly less than 5.0% enrichment. Challenges associated with SMRs include increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burnup in the reactor and the fuel cycle performance. This paper summarizes a list of the factors relevant to SMR fuel, core, and operation that will impact fuel cycle performance. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burnup of the reactor. Fuel cycle performance metrics for a hypothetical example SMR are compared with those for a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. The metrics performance for such an SMR is degraded for the mass of spent nuclear fuel and high-level waste disposed of, mass of depleted uranium disposed of, land use per energy generated, and carbon emissions per energy generated. Finally, it is noted that the features of some SMR designs impact three main aspects of fuel cycle performance: (1) small cores which means high leakage (there is a radial and axial component), (2) no boron which means heterogeneous core and extensive use of control rods and BPs, and (3) single batch cores. But not all of the SMR designs have all of these traits. As a result, the approach used in this study is therefore a bounding case and not all SMRs may be affected to the same extent.« less
Clinton S. Wright; Robert E. Vihnanek
2014-01-01
Four series of photographs display a range of natural conditions and fuel loadings for grassland, shrubland, oak-bay woodland, and eucalyptus forest ecosystems on the eastern slopes of the San Francisco Bay area of California. Each group of photos includes inventory information summarizing vegetation composition, structure, and loading; woody material loading and...
Application of QuickBird imagery in fuel load estimation in the Daxinganling region, China.
Sen Jin; Shyh-Chin Chen
2012-01-01
A high spatial resolution QuickBird satellite image and a low spatial but high spectral resolution Landsat Thermatic Mapper image were used to linearly regress fuel loads of 70 plots with size 30X30m over the Daxinganling region of north-east China. The results were compared with loads from field surveys and from regression estimations by surveyed stand characteristics...
Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine
NASA Astrophysics Data System (ADS)
Loeper, C. Paul
Due to increased ignition delay and volatility, low temperature combustion (LTC) research utilizing gasoline fuel has experienced recent interest [1-3]. These characteristics improve air-fuel mixing prior to ignition allowing for reduced emissions of nitrogen oxides (NOx) and soot (or particulate matter, PM). Computational fluid dynamics (CFD) results at the University of Wisconsin-Madison's Engine Research Center (Ra et al. [4, 5]) have validated these attributes and established baseline operating parameters for a gasoline compression ignition (GCI) concept in a light-duty diesel engine over a large load range (3-16 bar net IMEP). In addition to validating these computational results, subsequent experiments at the Engine Research Center utilizing a single cylinder research engine based on a GM 1.9-liter diesel engine have progressed fundamental understanding of gasoline autoignition processes, and established the capability of critical controlling input parameters to better control GCI operation. The focus of this thesis can be divided into three segments: 1) establishment of operating requirements in the low-load operating limit, including operation sensitivities with respect to inlet temperature, and the capabilities of injection strategy to minimize NOx emissions while maintaining good cycle-to-cycle combustion stability; 2) development of novel three-injection strategies to extend the high load limit; and 3) having developed fundamental understanding of gasoline autoignition kinetics, and how changes in physical processes (e.g. engine speed effects, inlet pressure variation, and air-fuel mixture processes) affects operation, develop operating strategies to maintain robust engine operation. Collectively, experimental results have demonstrated the ability of GCI strategies to operate over a large load-speed range (3 bar to 17.8 bar net IMEP and 1300-2500 RPM, respectively) with low emissions (NOx and PM less than 1 g/kg-FI and 0.2 g/kg-FI, respectively), and low fuel consumption (gross indicated fuel consumption <200 g/kWh). [1] Dec, J. E., Yang, Y., and Dronniou, N., 2011, "Boosted HCCI - Controlling Pressure- Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline," SAE Int. J. Engines, 4(1), pp. 1169-1189. [2] Kalghatgi, G., Hildingsson, L., and Johansson, B., 2010, "Low NO(x) and Low Smoke Operation of a Diesel Engine Using Gasolinelike Fuels," Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 132(9), p. 9. [3] Manente, V., Zander, C.-G., Johansson, B., Tunestal, P., and Cannella, W., 2010, "An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion," SAE International, 2010-01-2198. [4] Ra, Y., Loeper, P., Reitz, R., Andrie, M., Krieger, R., Foster, D., Durrett, R., Gopalakrishnan, V., Plazas, A., Peterson, R., and Szymkowicz, P., 2011, "Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime," SAE Int. J. Engines, 4(1), pp. 1412-1430. [5] Ra, Y., Loeper, P., Andrie, M., Krieger, R., Foster, D., Reitz, R., and Durrett, R., 2012, "Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection," SAE Int. J. Engines, 5(3), pp. 1109-1132.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curran, Scott; Hanson, Reed M; Wagner, Robert M
2012-01-01
This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shownmore » to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.« less
NASA Astrophysics Data System (ADS)
Mahmudul, H. M.; Hagos, Ftwi Y.; Mamat, Rizalman; Abdullah, Abdul A.
2016-11-01
Butanol is receiving huge interest in the area of alternative fuel in the compression ignition (CI) engines. In this work, butanol is used as an oxygenated additive to diesel and biodiesel blend fuels to evaluate the performance and emission of CI engine. The commercially available pure diesel fuel (D100) and 80% commercially available diesel- biodiesel bled (5% biodiesel and 95% by volume) and 20% butanol (BU20) fuels were investigated to evaluate the effects of the fuel blends on the performance and exhaust emissions of a single cylinder diesel engine. The experiment was conducted at fixed load of 75% with the five engine speeds (from 1200-2400 rpm with an interval of 300 rpm). The engine performance parameters such as power, torque, fuel consumption and thermal efficiency and exhaust gas emissions such as nitrogen oxides, carbon monoxide, and exhaust gas temperature were analysed from the experimental data. The results shows that although butanol addition has caused a slight reduction in power and torque values (11.1% and 3.5%, respectively), the emission values of the engine were improved. With respect to the exhaust gas temperature, CO and NOx emissions, of BU20 is reported to have reduction by 17.7%, 20% and 3%, respectively than the B100. Therefore, butanol can be used as a fuel additive to diesel-biodiesel blends.
Clinton S. Wright; Robert E. Vihnanek; Joseph C. Restaino; Jon E. Dvorak
2012-01-01
Three series of photographs display a range of natural conditions and fuel loadings for sagebrush-steppe types that are ecotonal with grasses, western juniper, and ponderosa pine in eastern Oregon, and one series of photographs displays a range of natural conditions and fuel loadings for northern spotted owl nesting habitat in forest types in Washington and Oregon....
B. J. Collins; C. C. Rhoades; M. A. Battaglia; R. M. Hubbard
2012-01-01
Recent mountain pine beetle infestations have resulted in widespread tree mortality and the accumulation of dead woody fuels across the Rocky Mountain region, creating concerns over future forest stand conditions and fire behavior. We quantified how salvage logging influenced tree regeneration and fuel loads relative to nearby, uncut stands for 24 lodgepole pine...
Research and Development for Robotic Transportable Waste to Energy System (TWES)
2012-01-01
Engineers, April 2003. NFESC UG-2039-ENV, Qualified Recycling Program (QRP) Guide; July 2000 (NOTAL) Paisley, M.A., Anson, D., “ Biomass Gasification ...Full Load Biomass Simulation .............................19 Figure 9. Spreadsheet-Based Heat and Mass Balance—Diesel Operation at 5:00 p.m...diesel fuel. Based on simulation of full-load biomass operation, the diesel-fueled test was expected to demonstrate a 75% net fuel-to-steam efficiency
Virginia L. McDaniel; Roger W. Perry; Nancy E. Koerth; James M. Guldin
2016-01-01
Accurate fuel load and consumption predictions are important to estimate fire effects and air pollutant emissions. The FOFEM (First Order Fire Effects Model) is a commonly used model developed in the western United States to estimate fire effects such as fuel consumption, soil heating, air pollutant emissions, and tree mortality. However, the accuracy of the model in...
Liu, Zhi-Hua; Chang, Yu; Chen, Hong-Wei; Zhou, Rui; Jing, Guo-Zhi; Zhang, Hong-Xin; Zhang, Chang-Meng
2008-03-01
By using geo-statistics and based on time-lag classification standard, a comparative study was made on the land surface dead combustible fuels in Huzhong forest area in Great Xing'an Mountains. The results indicated that the first level land surface dead combustible fuel, i. e., 1 h time-lag dead fuel, presented stronger spatial auto-correlation, with an average of 762.35 g x m(-2) and contributing to 55.54% of the total load. Its determining factors were species composition and stand age. The second and third levels land surface dead combustible fuel, i. e., 10 h and 100 h time-lag dead fuels, had a sum of 610.26 g x m(-2), and presented weaker spatial auto-correlation than 1 h time-lag dead fuel. Their determining factor was the disturbance history of forest stand. The complexity and heterogeneity of the factors determining the quality and quantity of forest land surface dead combustible fuels were the main reasons for the relatively inaccurate interpolation. However, the utilization of field survey data coupled with geo-statistics could easily and accurately interpolate the spatial pattern of forest land surface dead combustible fuel loads, and indirectly provide a practical basis for forest management.
Using Airborne LIDAR Data for Assessment of Forest Fire Fuel Load Potential
NASA Astrophysics Data System (ADS)
İnan, M.; Bilici, E.; Akay, A. E.
2017-11-01
Forest fire incidences are one of the most detrimental disasters that may cause long terms effects on forest ecosystems in many parts of the world. In order to minimize environmental damages of fires on forest ecosystems, the forested areas with high fire risk should be determined so that necessary precaution measurements can be implemented in those areas. Assessment of forest fire fuel load can be used to estimate forest fire risk. In order to estimate fuel load capacity, forestry parameters such as number of trees, tree height, tree diameter, crown diameter, and tree volume should be accurately measured. In recent years, with the advancements in remote sensing technology, it is possible to use airborne LIDAR for data estimation of forestry parameters. In this study, the capabilities of using LIDAR based point cloud data for assessment of the forest fuel load potential was investigated. The research area was chosen in the Istanbul Bentler series of Bahceköy Forest Enterprise Directorate that composed of mixed deciduous forest structure.
Advances in solid polymer electrolyte fuel cell technology with low-platinum-loading electrodes
NASA Technical Reports Server (NTRS)
Srinivasan, Supramaniam; Ticianelli, E. A.; Derouin, C. R.; Redondo, A.
1987-01-01
The Gemini Space program demonstrated the first major application of fuel cell systems. Solid polymer electrolyte fuel cells were used as auxiliary power sources in the spacecraft. There has been considerable progress in this technology since then, particularly with the substitution of Nafion for the polystyrene sulfonate membrane as the electrolyte. Until recently the performance was good only with high platinum loading (4 mg/sq cm) electrodes. Methods are presented to advance the technology by (1) use of low platinum loading (0.35 mg/sq cm) electrodes; (2) optimization of anode/membrane/cathode interfaces by hot pressing; (3) pressurization of reactant gases, which is most important when air is used as cathodic reactant; and (4) adequate humidification of reactant gases to overcome the water management problem. The high performance of the fuel cell with the low loading of platinum appears to be due to the extension of the three dimensional reaction zone by introduction of a proton conductor, Nafion. This was confirmed by cyclic voltammetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Worrall, Andrew; Todosow, Michael
Small modular reactors (SMRs) offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of SMRs on nuclear fuel cycle performance. The focus of this paper is the fuel cycle impacts of light water SMRs in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary example reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Options Campaign. The hypothetical light water SMR example case considered in these preliminary scoping studies ismore » a cartridge type one-batch core with slightly less than 5.0% enrichment. Challenges associated with SMRs include increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burnup in the reactor and the fuel cycle performance. This paper summarizes a list of the factors relevant to SMR fuel, core, and operation that will impact fuel cycle performance. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burnup of the reactor. Fuel cycle performance metrics for a hypothetical example SMR are compared with those for a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. The metrics performance for such an SMR is degraded for the mass of spent nuclear fuel and high-level waste disposed of, mass of depleted uranium disposed of, land use per energy generated, and carbon emissions per energy generated. Finally, it is noted that the features of some SMR designs impact three main aspects of fuel cycle performance: (1) small cores which means high leakage (there is a radial and axial component), (2) no boron which means heterogeneous core and extensive use of control rods and BPs, and (3) single batch cores. But not all of the SMR designs have all of these traits. As a result, the approach used in this study is therefore a bounding case and not all SMRs may be affected to the same extent.« less
Dry Storage of Research Reactor Spent Nuclear Fuel - 13321
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.
2013-07-01
Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. Themore » initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)« less
Self-regulating fuel staging port for turbine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Nieuwenhuizen, William F.; Fox, Timothy A.; Williams, Steven
2014-07-08
A port (60) for axially staging fuel and air into a combustion gas flow path 28 of a turbine combustor (10A). A port enclosure (63) forms an air path through a combustor wall (30). Fuel injectors (64) in the enclosure provide convergent fuel streams (72) that oppose each other, thus converting velocity pressure to static pressure. This forms a flow stagnation zone (74) that acts as a valve on airflow (40, 41) through the port, in which the air outflow (41) is inversely proportion to the fuel flow (25). The fuel flow rate is controlled (65) in proportion to enginemore » load. At high loads, more fuel and less air flow through the port, making more air available to the premixing assemblies (36).« less
NASA Technical Reports Server (NTRS)
Konsur, Bogdan; Megaridis, Constantine M.; Griffin, Devon W.
1999-01-01
An experimental investigation conducted at the 2.2-s drop tower of the NASA Lewis Research Center is presented to quantify the influence of moderate fuel preheat on soot-field structure within 0-g laminar gas jet diffusion flames. Parallel work in 1-g is also presented to delineate the effect of elevated fuel temperatures on soot-field structure in buoyant flames. The experimental methodology implements jet diffusion flames of nitrogen-diluted acetylene fuel burning in quiescent air at atmospheric pressure. Fuel preheat of approximately 100 K in the 0-g laminar jet diffusion flames is found to reduce soot loadings in the annular region, but causes an increase in soot volume fractions at the centerline. In addition, fuel preheat reduces the radial extent of the soot field in 0-g. In 1-g, the same fuel preheat levels have a more moderated influence on soot loadings in the annular region, but are also seen to enhance soot concentrations near the axis low in the flame. The increased soot loadings near the flame centerline, as caused by fuel preheat, are consistent with the hypothesis that preheat levels of approximately 100 K enhance fuel pyrolysis rates. The results show that the growth stage of particles transported along the soot annulus is shortened both in 1-g and 0-g when elevated fuel temperatures are used.
Nagaraja, S; Soorya Prakash, K; Sudhakaran, R; Sathish Kumar, M
2016-12-01
This paper deals with emission quality of diesel engine based on eco toxicological studies with different methods of environmental standard toxicity tests satisfy the Bharath and European emission norms. Based on the emission norms, Corn Oil Methyl Ester (COME) with diesel is tested in a compression ignition engine and the performance and combustion characteristics are discussed. The corn oil was esterified and the property of corn oil methyl ester was within the limits specified in ASTM D 6751-03. The COME was blended together with diesel in different proportion percentages along with B20, B40, B60, B80, and B100. The emission and performance tests for various blends of COME was carried out using single cylinder, four stroke diesel engine, and compared with the performance obtained with 100% diesel (D100). The results give clear information that COME has low exhaust emissions and increase in performance compared to D100 without any modifications. It gives better performance, which is nearer to the obtained results of D100. Specific Fuel Consumption (SFC) of B100 at the full load condition is found to be 4% lower than that of (D100). The maximum Brake Thermal Efficiency (BTE) of B100 is found to be 8.5% higher than that of the D100 at full load. Also, the maximum BTE of part load for different blends is varied from 5.9% to 7.45% which is higher than D100. The exhaust gas emissions like Carbon Monoxide (CO), Carbon Dioxide (CO 2 ), Hydro Carbon (HC) and Nitrogen Oxide (NO x ) are found to be 2.3 to 18.8% lower compared to D100 for part as well as full load. The heat release rate of biodiesel and it blends are found to 16% to 35% lower as compared to D100 for part load, where as for full load it is 21% lower than D100. The results showed that the test of emissions norms are well within the limits of Bharath VI and European VI and it leads to less pollution, less effect on green eco system and potential substitute to fossil fuels. Copyright © 2016 Elsevier Inc. All rights reserved.
Characterization of Engine Control Authority on HCCI Combustion as the High Load Limit is Approached
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szybist, James P; Edwards, Kevin Dean; Foster, Matthew
2013-01-01
While the potential emissions and efficiency benefits of homogeneous charge compression ignition (HCCI) combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on characterizing the authority of the available engine controls as the high load limit of HCCI combustion is approached. The experimental work is performed on a boosted single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), and a hydraulic valve actuation (HVA) valve train to enable the negative valve overlap (NVO) breathing strategy. Valve lift and duration are held constant whilemore » phasing is varied in an effort to make the results as relevant as possible to production intent cam-based variable valve actuation (VVA) systems on multi-cylinder engines. Results presented include engine loads from 350 to 650 kPa IMEPnet and manifold pressure from 98 to 190 kPaa at 2000 rpm. It is found that in order to increase engine load to 650 kPa IMEPnet, it is necessary to increase manifold pressure and external EGR while reducing the NVO duration. Both NVO duration and fuel injection timing are effective means of controlling combustion phasing, with NVO duration being a coarse control and fuel injection timing being a fine control. NOX emissions are low throughout the study, with emissions below 0.1 g/kW-h at all boosted HCCI conditions, while good combustion efficiency is maintained (>96.5%). Net indicated thermal efficiency increases with load up to 600 kPa IMEPnet, where a peak efficiency of 41% is achieved. Results of independent parametric investigations are presented on the effect of external EGR, intake effect of manifold pressure, and the effect of NVO duration. It is found that increasing EGR at a constant manifold pressure and increasing manifold pressure at a constant EGR rate both have the effect of retarding combustion phasing. It is also found that combustion phasing becomes increasingly sensitive to NVO duration as engine load increases. Finally, comparisons are made between three commonly used noise metrics (AVL noise meter, ringing intensity (RI), and maximum pressure rise rate (MPRR)). It is found that compared to the AVL noise meter, RI significantly underestimates combustion noise under boosted conditions.« less
FuelCalc: A Method for Estimating Fuel Characteristics
Elizabeth Reinhardt; Duncan Lutes; Joe Scott
2006-01-01
This paper describes the FuelCalc computer program. FuelCalc is a tool to compute surface and canopy fuel loads and characteristics from inventory data, to support fuel treatment decisions by simulating effects of a wide range of silvicultural treatments on surface fuels and canopy fuels, and to provide linkages to stand visualization, fire behavior and fire effects...
Ian T. Schmidt; John F. O' Leary; Douglas A. Stow; Kellie A. Uyeda; Philip Riggan
2016-01-01
Development of methods that more accurately estimate spatial distributions of fuel loads in shrublands allows for improved understanding of ecological processes such as wildfire behavior and postburn recovery. The goal of this study is to develop and test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrich, C.M.
1963-05-01
PLASTlC-SASS, an ALTAC-3 computer program that determines stresses and deflections in a flat-plate, rectangular reactor subassembly is described. Elastic, plastic, and creep properties are used to calculate the results of temperature, pressure, and fuel expansion. Plate deflections increase or decrease local channel thicknesses and thus produce a hydraulic load which is a function of fuel plate deflection. (auth)
Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover
NASA Technical Reports Server (NTRS)
Scheidegger, Brianne; Burke, Kenneth; Jakupca, Ian
2012-01-01
This presentation describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover at the NASA Glenn Research Center. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the SCARAB rover s hotel loads. The power system, including the non-flow-through fuel cell technology, successfully demonstrated its goal as a range extender by powering hotel loads on the SCARAB rover, making this demonstration the first to use the non-flow-through fuel cell technology on a mobile platform.
Galipeau, Kendra; Socki, Michael; Socia, Adam; Harmon, Paul A
2018-01-01
Poorly water soluble drug candidates have been common in developmental pipelines over the last several decades. This has fueled considerable research around understanding how bile salt and model micelles can improve drug particle dissolution rates and human drug exposure levels. However, in the pharmaceutical context only a single mechanism of how micelles load solute has been assumed, that being the direct loading mechanism put forth by Cussler and coworkers (Am Inst Chem Eng J. 1976;22(6):1006-1012) 40 years ago. In this model, micelles load at the particle surface and will be loaded to their equilibrium loading values. More recently, Kumar and Gandhi and coworkers (Langmuir. 2003;19:4014-4026) developed a comprehensive theory of micelle solubilization which also features an indirect loading mechanism which they argue should operate in ionic surfactant systems. In this mechanism, micelles cannot directly load at the solute particle surface and thus may not reach equilibrium loading values within the particle diffusion layer. In this work, we endeavor to understand if the indirect micelle loading mechanism represents a plausible description in the pharmaceutical context. The overall data in SLS and FaSSIF systems obtained here, as well as several other previously published datasets, can be described by the indirect micelle loading mechanism. Implications for pharmaceutical development of poorly soluble compounds are discussed. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Krishnamoorthi, M.; Malayalamurthi, R.
2018-02-01
The present work aims at experimental investigation on the combined effect of injection timing (IT) and injection pressure (IP) on the performance and emissions characteristics, and exergy analysis of a compression-ignition (CI) engine powered with bael oil blends. The tests were conducted using ternary blends of bael oil, diethyl ether (DEE) and neat diesel (D) at various engine loads at a constant engine speed (1500 rpm). With B2 (60%D + 30%bael oil+10%DEE) fuel, the brake thermal efficiency (BTE) of the engine is augmented by 3.5%, reduction of 4.7% of oxides of nitrogen (NOx) emission has been observed at 100% engine load with 250 bar IP. B2 fuel exhibits 7% lower scale of HC emissions compared to that of diesel fuel at 100% engine load in 23 °bTDC IT. The increment in both cooling water and exhaust gas availabilities lead to increasing exergy efficiency with increasing load. The exergy efficiency of about 62.17% has been recorded by B2 fuel at an injection pressure of 230 IP bar with 100% load. On the whole, B2 fuel displays the best performance and combustion characteristics. It also exhibits better characteristics of emissions level in terms of lower HC, smoke opacity and NOx.
40 CFR 86.402-78 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... atmosphere from any opening downstream from the exhaust port of a motor vehicle engine. Fuel system means the combination of fuel tank, fuel pump, fuel lines, oil injection metering system, and carburetor or fuel injection components, and includes all fuel system vents. Loaded vehicle mass means curb mass plus 80 kg...
40 CFR 86.402-78 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... atmosphere from any opening downstream from the exhaust port of a motor vehicle engine. Fuel system means the combination of fuel tank, fuel pump, fuel lines, oil injection metering system, and carburetor or fuel injection components, and includes all fuel system vents. Loaded vehicle mass means curb mass plus 80 kg...
40 CFR 86.402-78 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... atmosphere from any opening downstream from the exhaust port of a motor vehicle engine. Fuel system means the combination of fuel tank, fuel pump, fuel lines, oil injection metering system, and carburetor or fuel injection components, and includes all fuel system vents. Loaded vehicle mass means curb mass plus 80 kg...
40 CFR 86.402-78 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... atmosphere from any opening downstream from the exhaust port of a motor vehicle engine. Fuel system means the combination of fuel tank, fuel pump, fuel lines, oil injection metering system, and carburetor or fuel injection components, and includes all fuel system vents. Loaded vehicle mass means curb mass plus 80 kg...
40 CFR 86.402-78 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... atmosphere from any opening downstream from the exhaust port of a motor vehicle engine. Fuel system means the combination of fuel tank, fuel pump, fuel lines, oil injection metering system, and carburetor or fuel injection components, and includes all fuel system vents. Loaded vehicle mass means curb mass plus 80 kg...
Toxicity of combustion products from burning polymers: development and evaluation of methods
Wright, P. L.; Adams, C. H.
1976-01-01
Laboratory and room-scale experiments were conducted with natural and synthetic polymers: cotton, paper, wood, wool, acetate, acrylic, nylon, and urethane. Smoke and off-gases from single materials were generated in a dual-compartment 110-liter exposure chamber. Multicomponent, composite fuel loads were burned within a 100 m3 facility subdivided into rooms. In chamber experiments, mortality depended on the amount of material burned, i.e., fuel consumption (FC). Conventional dose (FC)/mortality curves were obtained, and the amount of fuel required to produce 50% mortality (FC50) was calculated. With simple flame ignition, cotton was the only material that produced smoke concentrations lethal to rats; FC50 values for cotton ranged from 2 g to 9 g, depending on the configuration of the cotton sample burned. When supplemental conductive heat was added to flame ignition, the following FC50 values were obtained; nylon, 7 g; acrylic, 8 g; newsprint, 9 g; cotton, 10 g; and wood, 11 g. Mortality resulting from any given material depended upon the specific conditions employed for its thermal decomposition. Toxicity of off-gasses from pyrolysis of phosphorus-containing trimethylol propane—polyurethane foams was markedly decreased by addition of a flame ignition source. Further studies are needed to determine the possible relevance of single-material laboratory scale smoke toxicity experiments. Room-scale burns were conducted to assess the relative contributions of single materials to toxicity of smoke produced by a multicomponent self-perpetuating fire. Preliminary results suggest that this approach permits a realistic evaluation of the contribution of single materials to the toxicity of smoke from residential fires. ImagesFIGURE 2. PMID:1026420
1985-06-01
packed column, with low liquid loading (2. 0 mm ID, 4% liquid phase loading on diatomaceous earth *) 0.3 Medium bore analytical packed column, with...moderate liquid loading (4. 5 mm ID, 8%16 liquid phase loading on diatomaceous earth *) 3.0 -3 * diatomaceous earth density 0.24 gm cm 12 associated with the...hydrocarbon fuels. Certain injector inserts have contained packed chromatographic media, e.g., stationary phases coated onto diatomaceous earth . This type
A model for solving the prescribed burn planning problem.
Rachmawati, Ramya; Ozlen, Melih; Reinke, Karin J; Hearne, John W
2015-01-01
The increasing frequency of destructive wildfires, with a consequent loss of life and property, has led to fire and land management agencies initiating extensive fuel management programs. This involves long-term planning of fuel reduction activities such as prescribed burning or mechanical clearing. In this paper, we propose a mixed integer programming (MIP) model that determines when and where fuel reduction activities should take place. The model takes into account multiple vegetation types in the landscape, their tolerance to frequency of fire events, and keeps track of the age of each vegetation class in each treatment unit. The objective is to minimise fuel load over the planning horizon. The complexity of scheduling fuel reduction activities has led to the introduction of sophisticated mathematical optimisation methods. While these approaches can provide optimum solutions, they can be computationally expensive, particularly for fuel management planning which extends across the landscape and spans long term planning horizons. This raises the question of how much better do exact modelling approaches compare to simpler heuristic approaches in their solutions. To answer this question, the proposed model is run using an exact MIP (using commercial MIP solver) and two heuristic approaches that decompose the problem into multiple single-period sub problems. The Knapsack Problem (KP), which is the first heuristic approach, solves the single period problems, using an exact MIP approach. The second heuristic approach solves the single period sub problem using a greedy heuristic approach. The three methods are compared in term of model tractability, computational time and the objective values. The model was tested using randomised data from 711 treatment units in the Barwon-Otway district of Victoria, Australia. Solutions for the exact MIP could be obtained for up to a 15-year planning only using a standard implementation of CPLEX. Both heuristic approaches can solve significantly larger problems, involving 100-year or even longer planning horizons. Furthermore there are no substantial differences in the solutions produced by the three approaches. It is concluded that for practical purposes a heuristic method is to be preferred to the exact MIP approach.
NASA Technical Reports Server (NTRS)
Liu, G. C.; Morris, C. E. K., Jr.; Koenig, R. W.
1983-01-01
An analytical study has been conducted to evaluate the potential endurance of remotely piloted, low speed, high altitude, long endurance airplanes designed with 1990 technology. The baseline configuration was a propeller driven, sailplane like airplane powered by turbine engines that used JP-7, liquid methane, or liquid hydrogen as fuel. Endurance was measured as the time spent between 60,000 feet and an engine limited maximum altitude of 70,000 feet. Performance was calculated for a baseline vehicle and for configurations derived by varying aerodynamic, structural or propulsion parameters. Endurance is maximized by reducing wing loading and engine size. The level of maximum endurance for a given wing loading is virtually the same for all three fuels. Constraints due to winds aloft and propulsion system scaling produce maximum endurance values of 71 hours for JP-7 fuel, 70 hours for liquid methane, and 65 hours for liquid hydrogen. Endurance is shown to be strongly effected by structural weight fraction, specific fuel consumption, and fuel load. Listings of the computer program used in this study and sample cases are included in the report.
Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft
NASA Technical Reports Server (NTRS)
Ardema, Mark D.; Windhorst, Robert; Phillips, James
1998-01-01
This paper develops a near-optimal guidance law for generating minimum fuel, time, or cost fixed-range trajectories for supersonic transport aircraft. The approach uses a choice of new state variables along with singular perturbation techniques to time-scale decouple the dynamic equations into multiple equations of single order (second order for the fast dynamics). Application of the maximum principle to each of the decoupled equations, as opposed to application to the original coupled equations, avoids the two point boundary value problem and transforms the problem from one of a functional optimization to one of multiple function optimizations. It is shown that such an approach produces well known aircraft performance results such as minimizing the Brequet factor for minimum fuel consumption and the energy climb path. Furthermore, the new state variables produce a consistent calculation of flight path angle along the trajectory, eliminating one of the deficiencies in the traditional energy state approximation. In addition, jumps in the energy climb path are smoothed out by integration of the original dynamic equations at constant load factor. Numerical results performed for a supersonic transport design show that a pushover dive followed by a pullout at nominal load factors are sufficient maneuvers to smooth the jump.
Optimization of Supersonic Transport Trajectories
NASA Technical Reports Server (NTRS)
Ardema, Mark D.; Windhorst, Robert; Phillips, James
1998-01-01
This paper develops a near-optimal guidance law for generating minimum fuel, time, or cost fixed-range trajectories for supersonic transport aircraft. The approach uses a choice of new state variables along with singular perturbation techniques to time-scale decouple the dynamic equations into multiple equations of single order (second order for the fast dynamics). Application of the maximum principle to each of the decoupled equations, as opposed to application to the original coupled equations, avoids the two point boundary value problem and transforms the problem from one of a functional optimization to one of multiple function optimizations. It is shown that such an approach produces well known aircraft performance results such as minimizing the Brequet factor for minimum fuel consumption and the energy climb path. Furthermore, the new state variables produce a consistent calculation of flight path angle along the trajectory, eliminating one of the deficiencies in the traditional energy state approximation. In addition, jumps in the energy climb path are smoothed out by integration of the original dynamic equations at constant load factor. Numerical results performed for a supersonic transport design show that a pushover dive followed by a pullout at nominal load factors are sufficient maneuvers to smooth the jump.
NASA Astrophysics Data System (ADS)
Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.; Chang, C. Y.; Cha, H. C.
This work presents a new fuel sensor-less control scheme for liquid feed fuel cells that is able to control the supply to a fuel cell system for operation under dynamic loading conditions. The control scheme uses cell-operating characteristics, such as potential, current, and power, to regulate the fuel concentration of a liquid feed fuel cell without the need for a fuel concentration sensor. A current integral technique has been developed to calculate the quantity of fuel required at each monitoring cycle, which can be combined with the concentration regulating process to control the fuel supply for stable operation. As verified by systematic experiments, this scheme can effectively control the fuel supply of a liquid feed fuel cell with reduced response time, even under conditions where the membrane electrolyte assembly (MEA) deteriorates gradually. This advance will aid the commercialization of liquid feed fuel cells and make them more adaptable for use in portable and automotive power units such as laptops, e-bikes, and handicap cars.
The performance of a boron-loaded gel-fuel ramjet
NASA Astrophysics Data System (ADS)
Haddad, A.; Natan, B.; Arieli, R.
2011-10-01
The present work focuses on the possibility of combining the advantages of ramjet propulsion with the high energetic potential of boron. However, the use of boron poses two major challenges. The first, common to all solid additives to liquid fuels is particle sedimentation and poor dispersion. This problem is solved through the use of a gel fuel. The second obstacle, specific to boron-enriched fuels, is the difficulty in realizing the full energetic potential of boron. This could be overcome by means of an aft-combustion chamber, where fuel-rich combustion products are mixed with cold bypass air. Cooling causes the gaseous boron oxide to condense and, as a consequence, the heat of evaporation trapped in the gaseous oxide is released. The merits of such a combination are assessed through its ability to power an air-to-surface missile of relatively small size, capable of delivering a large payload to over a distance of about 1000 km in short time. The paper presents a preliminary design of a ramjet missile using a gel fuel loaded with boron. The thermochemical aspects of the two-stage combustion of the fuel are considered. A comparison with a solid rocket motor (SRM) missile launched under the same conditions as the ramjet missile is made. The boron-loaded gel-fuel ramjet is found superior for this mission.
Safeguards Challenges for Pebble-Bed Reactors (PBRs):Peoples Republic of China (PRC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, Charles W.; Moses, David Lewis
2009-11-01
The Peoples Republic of China (PRC) is operating the HTR-10 pebble-bed reactor (PBR) and is in the process of building a prototype PBR plant with two modular reactors (250-MW(t) per reactor) feeding steam to a single turbine-generator. It is likely to be the first modular hightemperature reactor to be ready for commercial deployment in the world because it is a highpriority project for the PRC. The plant design features multiple modular reactors feeding steam to a single turbine generator where the number of modules determines the plant output. The design and commercialization strategy are based on PRC strengths: (1) amore » rapidly growing electric market that will support low-cost mass production of modular reactor units and (2) a balance of plant system based on economics of scale that uses the same mass-produced turbine-generator systems used in PRC coal plants. If successful, in addition to supplying the PRC market, this strategy could enable China to be the leading exporter of nuclear reactors to developing countries. The modular characteristics of the reactor match much of the need elsewhere in the world. PBRs have major safety advantages and a radically different fuel. The fuel, not the plant systems, is the primary safety system to prevent and mitigate the release of radionuclides under accident conditions. The fuel consists of small (6-cm) pebbles (spheres) containing coatedparticle fuel in a graphitized carbon matrix. The fuel loading per pebble is small (~9 grams of low-enriched uranium) and hundreds of thousands of pebbles are required to fuel a nuclear plant. The uranium concentration in the fuel is an order of magnitude less than in traditional nuclear fuels. These characteristics make the fuel significantly less attractive for illicit use (weapons production or dirty bomb); but, its unusual physical form may require changes in the tools used for safeguards. This report describes PBRs, what is different, and the safeguards challenges. A series of safeguards recommendations are made based on the assumption that the reactor is successfully commercialized and is widely deployed.« less
DOT National Transportation Integrated Search
1975-11-01
The effect of speed limit and passenger load on fuel consumption was determined using actual intercity buses with simulated passenger loads over different types of terrain. In addition to road tests, laboratory type measurements were made on four int...
40 CFR 86.1229-85 - Dynamometer load determination and fuel temperature profile.
Code of Federal Regulations, 2012 CFR
2012-07-01
... specified driving schedule. The design of the laboratory facility should include consideration of any parameters that may affect fuel temperatures, such as solar loading, pavement heat, and relative wind... be at least 125 °F throughout the driving period. Pavement temperature shall be measured and recorded...
40 CFR 86.1229-85 - Dynamometer load determination and fuel temperature profile.
Code of Federal Regulations, 2010 CFR
2010-07-01
... specified driving schedule. The design of the laboratory facility should include consideration of any parameters that may affect fuel temperatures, such as solar loading, pavement heat, and relative wind... be at least 125 °F throughout the driving period. Pavement temperature shall be measured and recorded...
40 CFR 86.1229-85 - Dynamometer load determination and fuel temperature profile.
Code of Federal Regulations, 2013 CFR
2013-07-01
... specified driving schedule. The design of the laboratory facility should include consideration of any parameters that may affect fuel temperatures, such as solar loading, pavement heat, and relative wind... be at least 125 °F throughout the driving period. Pavement temperature shall be measured and recorded...
40 CFR 86.1229-85 - Dynamometer load determination and fuel temperature profile.
Code of Federal Regulations, 2011 CFR
2011-07-01
... specified driving schedule. The design of the laboratory facility should include consideration of any parameters that may affect fuel temperatures, such as solar loading, pavement heat, and relative wind... be at least 125 °F throughout the driving period. Pavement temperature shall be measured and recorded...
Transient Response of a PEM Fuel Cell Representing Variable Load for a Moving Vehicle on Urban Roads
DOT National Transportation Integrated Search
2001-01-01
Three-dimensional numerical simulation of transient response of a Polymer Electrolyte Membrane (PEM) fuel cell subjected to a variable load is developed. The model parameters are typical of experimental cell for a 10-cm2 reactive area with serpentine...
10 CFR 50.68 - Criticality accident requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... boron is taken, the k-effective of the spent fuel storage racks loaded with fuel of the maximum fuel... flooded with unborated water. If credit is taken for soluble boron, the k-effective of the spent fuel...
10 CFR 50.68 - Criticality accident requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... boron is taken, the k-effective of the spent fuel storage racks loaded with fuel of the maximum fuel... flooded with unborated water. If credit is taken for soluble boron, the k-effective of the spent fuel...
10 CFR 50.68 - Criticality accident requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... boron is taken, the k-effective of the spent fuel storage racks loaded with fuel of the maximum fuel... flooded with unborated water. If credit is taken for soluble boron, the k-effective of the spent fuel...
10 CFR 50.68 - Criticality accident requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... boron is taken, the k-effective of the spent fuel storage racks loaded with fuel of the maximum fuel... flooded with unborated water. If credit is taken for soluble boron, the k-effective of the spent fuel...
10 CFR 50.68 - Criticality accident requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... boron is taken, the k-effective of the spent fuel storage racks loaded with fuel of the maximum fuel... flooded with unborated water. If credit is taken for soluble boron, the k-effective of the spent fuel...
Engine combustion control at low loads via fuel reactivity stratification
Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L
2014-10-07
A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.
TEST SYSTEM FOR EVALUATING SPENT NUCLEAR FUEL BENDING STIFFNESS AND VIBRATION INTEGRITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom
2013-01-01
Transportation packages for spent nuclear fuel (SNF) must meet safety requirements specified by federal regulations. For normal conditions of transport, vibration loads incident to transport must be considered. This is particularly relevant for high-burnup fuel (>45 GWd/MTU). As the burnup of the fuel increases, a number of changes occur that may affect the performance of the fuel and cladding in storage and during transportation. The mechanical properties of high-burnup de-fueled cladding have been previously studied by subjecting defueled cladding tubes to longitudinal (axial) tensile tests, ring-stretch tests, ring-compression tests, and biaxial tube burst tests. The objective of this study ismore » to investigate the mechanical properties and behavior of both the cladding and the fuel in it under vibration/cyclic loads similar to the sustained vibration loads experienced during normal transport. The vibration loads to SNF rods during transportation can be characterized by dynamic, cyclic, bending loads. The transient vibration signals in a specified transport environment can be analyzed, and frequency, amplitude and phase components can be identified. The methodology being implemented is a novel approach to study the vibration integrity of actual SNF rod segments through testing and evaluating the fatigue performance of SNF rods at defined frequencies. Oak Ridge National Laboratory (ORNL) has developed a bending fatigue system to evaluate the response of the SNF rods to vibration loads. A three-point deflection measurement technique using linear variable differential transformers is used to characterize the bending rod curvature, and electromagnetic force linear motors are used as the driving system for mechanical loading. ORNL plans to use the test system in a hot cell for SNF vibration testing on high burnup, irradiated fuel to evaluate the pellet-clad interaction and bonding on the effective lifetime of fuel-clad structure bending fatigue performance. Technical challenges include pure bending implementation, remote installation and detachment of the SNF test specimen, test specimen deformation measurement, and identification of a driving system suitable for use in a hot cell. Surrogate test specimens have been used to calibrate the test setup and conduct systematic cyclic tests. The calibration and systematic cyclic tests have been used to identify test protocol issues prior to implementation in the hot cell. In addition, cyclic hardening in unidirectional bending and softening in reverse bending were observed in the surrogate test specimens. The interface bonding between the surrogate clad and pellets was found to impact the bending response of the surrogate rods; confirming this behavior in the actual spent fuel segments will be an important aspect of the hot cell test implementation,« less
Selective oxidation of carbon monoxide in fuel processor gas
NASA Astrophysics Data System (ADS)
Manasilp, Akkarat
The trace amount of CO present in the hydrogen-rich stream coming from fuel reformers poisons the platinum anode electrode of proton exchange membrane (PEM) fuel cells and reduces the power output. Removal of low levels of CO present in the reformed gas must take place before the gas enters the fuel cell. The tolerable level of CO is around 10 ppm. We investigated the performance of single step sol-gel prepared Pt/alumina catalyst and Pt supported on sol gel made alumina. The effect of water vapor, carbon dioxide, CO and oxygen concentrations, temperature, and Pt loading on the activity and selectivity are presented. Our results showed that a 2%Pt/alumina sol-gel catalyst can selectively oxide CO down to a few ppm with constant selectivity and high space velocity. Water vapor in the feed increases the activity of catalysts dramatically and in the absence of water vapor, CO2 in the feed stream decreases the activity of the catalysts significantly. We also found that the presence of potassium as an electron donor did not improve the performance of Pt/alumina catalyst to the selective CO oxidation. For Pt supported on sol gel made alumina, we found that the combination of CO2 and H2O in the gas feed has a strong effect on selective CO oxidation over Pt/Al2O3. It could be a positive or negative effect depending upon Pt loading in the catalyst. With high Pt loading, the CO2 effect tends to dominate the H2O effect resulting in the decrease in CO conversion. Moreover, the presence of CeO2 as an oxygen storage compound promotes the performance of Pt supported on alumina at low temperature ˜90°C when Pt loading was 5%. Amongst the examined catalysts, the 5%Pt/15%CeO2/Al 2O3 catalyst showed the highest selectivity, with high CO conversion at a low temperature ˜90°C. The beneficial effect of the addition of CeO2 is most likely due to spillover of O2 from CeO2 to Pt at the Pt sites at the interface of Pt and CeO 2.
Medlin, John B.
1976-05-25
A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine.
High loading uranium fuel plate
Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.
1990-01-01
Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.
Analysis of gamma ray dose for dried up pond storing low enriched UO2 fuel
NASA Astrophysics Data System (ADS)
Nauchi, Yasushi; Suzuki, Motomu
2017-09-01
Gamma ray dose is calculated for loss of coolant accident in spent fuel pond (SFP) storing irradiated fuels used in light water reactors. Influence of modelling of fuel assemblies, source distributions, and loading fraction of fuel assemblies in the fuel rack on the dose are investigated.
Meta-analysis of Microbial Fuel Cells Using Waste Substrates.
Dowdy, F Ryan; Kawakita, Ryan; Lange, Matthew; Simmons, Christopher W
2018-05-01
Microbial fuel cell experimentation using waste streams is an increasingly popular field of study. One obstacle to comparing studies has been the lack of consistent conventions for reporting results such that meta-analysis can be used for large groups of experiments. Here, 134 unique microbial fuel cell experiments using waste substrates were compiled for analysis. Findings include that coulombic efficiency correlates positively with volumetric power density (p < 0.001), negatively with working volume (p < 0.05), and positively with percentage removal of chemical oxygen demand (p < 0.005). Power density in mW/m 2 correlates positively with chemical oxygen demand loading (p < 0.005), and positively with maximum open-circuit voltage (p < 0.05). Finally, single-chamber versus double-chamber reactor configurations differ significantly in maximum open-circuit voltage (p < 0.005). Multiple linear regression to predict either power density or maximum open-circuit voltage produced no significant models due to the amount of multicollinearity between predictor variables. Results indicate that statistically relevant conclusions can be drawn from large microbial fuel cell datasets. Recommendations for future consistency in reporting results following a MIAMFCE convention (Minimum Information About a Microbial Fuel Cell Experiment) are included.
Design and Performance of Lift-Offset Rotorcraft for Short-Haul Missions
2012-01-01
loading and blade loading were varied to optimize the designs, based on gross weight and fuel burn. The influence of technology is shown, in terms of...loading were varied to optimize the designs, based on gross weight and fuel burn. The influence of technology is shown, in terms of rotor hub drag and...distributions were optimized for these conditions (Fig. 4), and the rotor and aircraft cruise performance was calculated (Fig. 5). Based on comprehensive
Simon, S.L.
1959-07-01
An apparatus is described for loading or charging slugs of fissionable material into a nuclear reactor. The apparatus of the invention is a "muzzle loading" type comprising a delivery tube or muzzle designed to be brought into alignment with any one of a plurality of fuel channels. The delivery tube is located within the pressure shell and it is also disposed within shielding barriers while the fuel cantridges or slugs are forced through the delivery tube by an externally driven flexible ram.
Effect of fuel injection pressure on a heavy-duty diesel engine nonvolatile particle emission.
Lähde, Tero; Rönkkö, Topi; Happonen, Matti; Söderström, Christer; Virtanen, Annele; Solla, Anu; Kytö, Matti; Rothe, Dieter; Keskinen, Jorma
2011-03-15
The effects of the fuel injection pressure on a heavy-duty diesel engine exhaust particle emissions were studied. Nonvolatile particle size distributions and gaseous emissions were measured at steady-state engine conditions while the fuel injection pressure was changed. An increase in the injection pressure resulted in an increase in the nonvolatile nucleation mode (core) emission at medium and at high loads. At low loads, the core was not detected. Simultaneously, a decrease in soot mode number concentration and size and an increase in the soot mode distribution width were detected at all loads. Interestingly, the emission of the core was independent of the soot mode concentration at load conditions below 50%. Depending on engine load conditions, growth of the geometric mean diameter of the core mode was also detected with increasing injection pressure. The core mode emission and also the size of the mode increased with increasing NOx emission while the soot mode size and emission decreased simultaneously.
NASA Astrophysics Data System (ADS)
Sudrajad, Agung; Ali, Ismail; Samo, Khalid; Faturachman, Danny
2012-09-01
Vegetable oil form in Natural Fatty Acid Methyl Ester (FAME) has their own advantages: first of all they are available everywhere in the world. Secondly, they are renewable as the vegetables which produce oil seeds can be planted year after year. Thirdly, they are friendly with our environment, as they seldom contain sulphur element in them. This makes vegetable fuel studies become current among the various popular investigations. This study is attempt to optimization of using blend FAME on diesel engine by experimental laboratory. The investigation experimental project is comparison between using blend FAME and base diesel fuel. The engine experiment is conducted with YANMAR TF120M single cylinder four stroke diesel engine set-up at variable engine speed with constant load. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at difference engine speed conditions have generally indicated lower in emission NOx, but slightly higher on CO2 emission. The result also shown that the blends FAME are good in fuel consumption and potentially good substitute fuels for diesel engine
NASA Astrophysics Data System (ADS)
Ramesha, D. K.; Thimmannachar, Rajiv K.; Simhasan, R.; Nagappa, Manjunath; Gowda, P. M.
2012-07-01
Bio-fuel is a clean burning fuel made from natural renewable energy resource; it operates in C. I. engine similar to the petroleum diesel. The rising cost of diesel and the danger caused to the environment has led to an intensive and desperate search for alternative fuels. Among them, animal fats like the fish oil have proven to be a promising substitute to diesel. In this experimental study, A computerized 4-stroke, single cylinder, constant speed, direct injection diesel engine was operated on fish oil-biodiesel of different blends. Three different blends of 10, 20, and 30 % by volume were used for this study. Various engine performance, combustion and emission parameters such as Brake Thermal Efficiency, Brake Specific Fuel Consumption, Heat Release Rate, Peak Pressure, Exhaust Gas Temperature, etc. were recorded from the acquired data. The data was recorded with the help of an engine analysis software. The recorded parameters were studied for varying loads and their corresponding graphs have been plotted for comparison purposes. Petroleum Diesel has been used as the reference. From the properties and engine test results it has been established that fish oil biodiesel is a better replacement for diesel without any engine modification.
Duncan C. Lutes; Robert E. Keane
2006-01-01
The Fuel Load method (FL) is used to sample dead and down woody debris, determine depth of the duff/ litter profile, estimate the proportion of litter in the profile, and estimate total vegetative cover and dead vegetative cover. Down woody debris (DWD) is sampled using the planar intercept technique based on the methodology developed by Brown (1974). Pieces of dead...
Understanding the long-term fire risks in forests affected by sudden oak death
Yana Valachovic; Chris Lee; Radoslaw Glebocki; Hugh Scanlon; J. Morgan Varner; David Rizzo
2010-01-01
It is assumed that large numbers of dead and down tanoak in forests infested by Phytophthora ramorum contribute to increased fire hazard risk and fuel loading. We studied the impact of P. ramorum infestation on surface fuel loading, potential fire hazard, and potential fire behavior in Douglas-fir- (Pseudotsuga...
40 CFR 86.314-79 - Fuel flow measurement specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...
40 CFR 86.314-79 - Fuel flow measurement specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...
40 CFR 86.314-79 - Fuel flow measurement specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...
40 CFR 86.314-79 - Fuel flow measurement specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...
FUEL ASSEMBLY SHAKER TEST SIMULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klymyshyn, Nicholas A.; Sanborn, Scott E.; Adkins, Harold E.
This report describes the modeling of a PWR fuel assembly under dynamic shock loading in support of the Sandia National Laboratories (SNL) shaker test campaign. The focus of the test campaign is on evaluating the response of used fuel to shock and vibration loads that a can occur during highway transport. Modeling began in 2012 using an LS-DYNA fuel assembly model that was first created for modeling impact scenarios. SNL’s proposed test scenario was simulated through analysis and the calculated results helped guide the instrumentation and other aspects of the testing. During FY 2013, the fuel assembly model was refinedmore » to better represent the test surrogate. Analysis of the proposed loads suggested the frequency band needed to be lowered to attempt to excite the lower natural frequencies of the fuel assembly. Despite SNL’s expansion of lower frequency components in their five shock realizations, pretest predictions suggested a very mild dynamic response to the test loading. After testing was completed, one specific shock case was modeled, using recorded accelerometer data to excite the model. Direct comparison of predicted strain in the cladding was made to the recorded strain gauge data. The magnitude of both sets of strain (calculated and recorded) are very low, compared to the expected yield strength of the Zircaloy-4 material. The model was accurate enough to predict that no yielding of the cladding was expected, but its precision at predicting micro strains is questionable. The SNL test data offers some opportunity for validation of the finite element model, but the specific loading conditions of the testing only excite the fuel assembly to respond in a limited manner. For example, the test accelerations were not strong enough to substantially drive the fuel assembly out of contact with the basket. Under this test scenario, the fuel assembly model does a reasonable job of approximating actual fuel assembly response, a claim that can be verified through direct comparison of model results to recorded test results. This does not offer validation for the fuel assembly model in all conceivable cases, such as high kinetic energy shock cases where the fuel assembly might lift off the basket floor to strike to basket ceiling. This type of nonlinear behavior was not witnessed in testing, so the model does not have test data to be validated against.a basis for validation in cases that substantially alter the fuel assembly response range. This leads to a gap in knowledge that is identified through this modeling study. The SNL shaker testing loaded a surrogate fuel assembly with a certain set of artificially-generated time histories. One thing all the shock cases had in common was an elimination of low frequency components, which reduces the rigid body dynamic response of the system. It is not known if the SNL test cases effectively bound all highway transportation scenarios, or if significantly greater rigid body motion than was tested is credible. This knowledge gap could be filled through modeling the vehicle dynamics of a used fuel conveyance, or by collecting acceleration time history data from an actual conveyance under highway conditions.« less
Regional fuel load modeled for two contrasting years in central and southern Africa
NASA Astrophysics Data System (ADS)
Hely, C.; Dowty, P. R.; Alleaume, S.; Caylor, K. K.; Shugart, H. H.
2001-12-01
Fuel load has been modeled for southern hemisphere Africa for the 1991-92 and 1999-2000 growing seasons. The 1991-92 year was generally dry due to a strong El Nino event in contrast to the particularly wet year of 1999-2000. The method integrates site-level process modeling with 15 day AVHRR NDVI data. The site model was used to simulate landscape light-use efficiency (LUE) at a series of sites in the Kalahari region ranging from evergreen woodland to arid shrubland. This site-level LUE is extrapolated over the southern African region with gridded tree cover data and gridded rainfall. The predicted net primary production (NPP) is allocated into the different fuel types (grass, litter, twigs) using empirical based relationships. The model results are compared with field measurements of fuel load at a number of sites. The results will be used for modeling of biomass burning emissions.
Engine combustion control at low loads via fuel reactivity stratification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.
A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustionmore » chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.« less
Lou, Di-Ming; Xu, Ning; Fan, Wen-Jia; Zhang, Tao
2014-02-01
With a common rail diesel engine without any modification and the engine exhaust particle number and particle size analyzer EEPS, this study used the air-fuel ratio to investigate the particulate number concentration, mass concentration and number distribution characteristics of a diesel engine fueled with butanol-diesel blends (Bu10, Bu15, Bu20, Bu30 and Bu40) and petroleum diesel. The results show: for all test fuels, the particle number distributions turn to be unimodal. With the increasing of butanol, numbers of nucleation mode particles and small accumulation mode particle decrease. At low speed and low load conditions, the number of large accumulation mode particle increases slightly, but under higher speed and load conditions, the number does not increase. When the fuels contain butanol, the total particle number concentration and mass concentration in all conditions decrease and that is more obvious at high speed load.
A simple electric circuit model for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Lazarou, Stavros; Pyrgioti, Eleftheria; Alexandridis, Antonio T.
A simple and novel dynamic circuit model for a proton exchange membrane (PEM) fuel cell suitable for the analysis and design of power systems is presented. The model takes into account phenomena like activation polarization, ohmic polarization, and mass transport effect present in a PEM fuel cell. The proposed circuit model includes three resistors to approach adequately these phenomena; however, since for the PEM dynamic performance connection or disconnection of an additional load is of crucial importance, the proposed model uses two saturable inductors accompanied by an ideal transformer to simulate the double layer charging effect during load step changes. To evaluate the effectiveness of the proposed model its dynamic performance under load step changes is simulated. Experimental results coming from a commercial PEM fuel cell module that uses hydrogen from a pressurized cylinder at the anode and atmospheric oxygen at the cathode, clearly verify the simulation results.
Modeling, analysis and control of fuel cell hybrid power systems
NASA Astrophysics Data System (ADS)
Suh, Kyung Won
Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise due to the conflicting objectives. The compromise can be mitigated by augmenting the fuel cell power system with an energy buffer such as a battery. We consider two different and popular ways of connecting the battery and the fuel cell to the load and we refer to them as electric architectures. Various controller gains are used to span the fuel cell operation from load-following to load-leveling, and hence, to determine adequate fuel cell-battery sizing (hybridization level) and the associated trends in the system efficiency.
Karisathan Sundararajan, Narayanan; Ammal, Anand Ramachandran Bhagavathi
2018-04-01
Experimentation was conducted on a single cylinder CI engine using processed colloidal emulsions of TiO 2 nanoparticle-water-diesel distillate of crude plastic diesel oil as test fuel. The test fuel was prepared with plastic diesel oil as the principal constituent by a novel blending technique with an aim to improve the working characteristics. The results obtained by the test fuel from the experiments were compared with that of commercial petro-diesel (CPD) fuel for same engine operating parameters. Plastic oil produced from high density polyethylene plastic waste by pyrolysis was subjected to fractional distillation for separating plastic diesel oil (PDO) that contains diesel range hydrocarbons. The blending process showed a little improvement in the field of fuel oil-water-nanometal oxide colloidal emulsion preparation due to the influence of surfactant in electrostatic stabilization, dielectric potential, and pH of the colloidal medium on the absolute value of zeta potential, a measure of colloidal stability. The engine tests with nano-emulsions of PDO showed an increase in ignition delay (23.43%), and decrease in EGT (6.05%), BSNO x (7.13%), and BSCO (28.96%) relative to PDO at rated load. Combustion curve profiles, percentage distribution of compounds, and physical and chemical properties of test fuels ascertains these results. The combustion acceleration at diffused combustion phase was evidenced in TiO 2 emulsion fuels under study.
Fuel tank crashworthiness : loading scenarios
DOT National Transportation Integrated Search
2011-03-16
The Federal Railroad Administrations Office of Research and Development is conducting research into fuel tank crashworthiness. The breaching of fuel tanks during passenger : rail collisions and derailments increases the potential of serious injury...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dec, John E.; Yang, Yi; Ji, Chunsheng
Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for highermore » loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.« less
Paolucci, Lucas N; Maia, Maria L B; Solar, Ricardo R C; Campos, Ricardo I; Schoereder, José H; Andersen, Alan N
2016-10-01
The widespread clearing of tropical forests causes lower tree cover, drier microclimate, and higher and drier fuel loads of forest edges, increasing the risk of fire occurrence and its intensity. We used a manipulative field experiment to investigate the influence of fire and fuel loads on ant communities and their interactions with myrmecochorous seeds in the southern Amazon, a region currently undergoing extreme land-use intensification. Experimental fires and fuel addition were applied to 40 × 40-m plots in six replicated blocks, and ants were sampled between 15 and 30 days after fires in four strata: subterranean, litter, epigaeic, and arboreal. Fire had extensive negative effects on ant communities. Highly specialized cryptobiotic and predator species of the litter layer and epigaeic specialist predators were among the most sensitive, but we did not find evidence of overall biotic homogenization following fire. Fire reduced rates of location and transport of myrmecochorous seeds, and therefore the effectiveness of a key ecosystem service provided by ants, which we attribute to lower ant abundance and increased thermal stress. Experimental fuel addition had only minor effects on attributes of fire severity, and limited effects on ant responses to fire. Our findings indicate that enhanced fuel loads will not decrease ant diversity and ecosystem services through increased fire severity, at least in wetter years. However, higher fuel loads can still have a significant effect on ants from Amazonian rainforests because they increase the risk of fire occurrence, which has a detrimental impact on ant communities and a key ecosystem service they provide.
Characterisation of a hybrid, fuel-cell-based propulsion system for small unmanned aircraft
NASA Astrophysics Data System (ADS)
Verstraete, D.; Lehmkuehler, K.; Gong, A.; Harvey, J. R.; Brian, G.; Palmer, J. L.
2014-03-01
Advanced hybrid powerplants combining a fuel cell and battery can enable significantly higher endurance for small, electrically powered unmanned aircraft systems, compared with batteries alone. However, detailed investigations of the static and dynamic performance of such systems are required to address integration challenges. This article describes a series of tests used to characterise the Horizon Energy Systems' AeroStack hybrid, fuel-cell-based powertrain. The results demonstrate that a significant difference can exist between the dynamic performance of the fuel-cell system and its static polarisation curve, confirming the need for detailed measurements. The results also confirm that the AeroStack's lithium-polymer battery plays a crucial role in its response to dynamic load changes and protects the fuel cell from membrane dehydration and fuel starvation. At low static loads, the AeroStack fuel cell recharges the battery with currents up to 1 A, which leads to further differences with the polarisation curve.
Direct hydrogen fuel cell systems for hybrid vehicles
NASA Astrophysics Data System (ADS)
Ahluwalia, Rajesh K.; Wang, X.
Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.
The relationship between fuel lubricity and diesel injection system wear
NASA Astrophysics Data System (ADS)
Lacy, Paul I.
1992-01-01
Use of low-lubricity fuel may have contributed to increased failure rates associated with critical fuel injection equipment during the 1991 Operation Desert Storm. However, accurate quantitative analysis of failed components from the field is almost impossible due to the unique service history of each pump. This report details the results of pump stand tests with fuels of equal viscosity, but widely different lubricity. Baseline tests were also performed using reference no. 2 diesel fuel. Use of poor lubricity fuel under these controlled conditions was found to greatly reduce both pump durability and engine performance. However, both improved metallurgy and fuel lubricity additives significantly reduced wear. Good correlation was obtained between standard bench tests and lightly loaded pump components. However, high contact loads on isolated components produced a more severe wear mechanism that is not well reflected by the Ball-on-Cylinder Lubricity Evaluator.
Spatial variability of wildland fuel characteristics in northern Rocky Mountain ecosystems
Robert E. Keane; Kathy Gray; Valentina Bacciu
2012-01-01
We investigated the spatial variability of a number of wildland fuel characteristics for the major fuel components found in six common northern Rocky Mountain ecosystems. Surface fuel characteristics of loading, particle density, bulk density, and mineral content were measured for eight fuel components - four downed dead woody fuel size classes (1, 10, 100, 1000 hr),...
Lean burn natural gas fueled S.I. engine and exhaust emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varde, K.S.; Patro, N.; Drouillard, K.
1995-12-31
An experimental study was undertaken to study exhaust emission from a lean-burn natural gas spark ignition engine. The possibility that such an engine may help to reduce exhaust emissions substantially by taking advantage of natural gas fuel properties, such as its antiknock properties and extended lean flammability limit compared to gasoline, was the main motivation behind the investigation. A four cylinder, automotive type spark ignition engine was used in the investigation. The engine was converted to operate on natural gas by replacing its fuel system with a gaseous carburetion system. A 3-way metal metrix catalytic converter was used in themore » engine exhaust system to reduce emission levels. The engine operated satisfactorily at an equivalence ratio as lean as 0.6, at all speeds and loads. As a result NOx emissions were significantly reduced. However, hydrocarbon emissions were high, particularly at very lean conditions and light loads. Most of these hydrocarbons were made up of methane with small concentrations of ethane and propane. Coefficient of variations in hydrocarbons were generally high at very lean operating conditions and light loads, but decreased with increasing equivalence ratio and engine speed. Methane concentrations in the engine exhaust decreased with increasing load and equivalence ratio. At lean air-to-fuel ratios and light loads oxidation of methane in the catalyst was substantially limited and no NOx reduction was achieved. In addition, the proportion of nitric oxide in oxides of nitrogen increased with increasing amount of NOx in the engine exhaust. A major problem encountered in the study was the inability of the fuel system to maintain near constant air-to-fuel ratios at steady operating conditions.« less
Lucachick, Glenn; Curran, Scott; Storey, John Morse; ...
2016-03-10
Our work explores the volatility of particles produced from two diesel low temperature combustion (LTC) modes proposed for high-efficiency compression ignition engines. It also explores mechanisms of particulate formation and growth upon dilution in the near-tailpipe environment. Moreover, the number distribution of exhaust particles from low- and mid-load dual-fuel reactivity controlled compression ignition (RCCI) and single-fuel premixed charge compression ignition (PPCI) modes were experimentally studied over a gradient of dilution temperature. Particle volatility of select particle diameters was investigated using volatility tandem differential mobility analysis (V-TDMA). Evaporation rates for exhaust particles were compared with V-TDMA results for candidate pure n-alkanesmore » to identify species with similar volatility characteristics. The results show that LTC particles are mostly comprised of material with volatility similar to engine oil alkanes. V-TDMA results were used as inputs to an aerosol condensation and evaporation model to support the finding that smaller particles in the distribution are comprised of lower volatility material than large particles under primary dilution conditions. Although the results show that saturation levels are high enough to drive condensation of alkanes onto existing particles under the dilution conditions investigated, they are not high We conclude that observed particles from LTC operation must grow from low concentrations of highly non-volatile compounds present in the exhaust.« less
Model of Mixing Layer With Multicomponent Evaporating Drops
NASA Technical Reports Server (NTRS)
Bellan, Josette; Le Clercq, Patrick
2004-01-01
A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The study is motivated by the fact that typical real petroleum fuels contain hundreds of chemical species. Previously, for the sake of computational efficiency, spray studies were performed using either models based on a single representative species or models based on surrogate fuels of at most 15 species. The present multicomponent model makes it possible to perform more realistic simulations by accounting for hundreds of chemical species in a computationally efficient manner. The model is used to perform Direct Numerical Simulations in continuing studies directed toward understanding the behavior of liquid petroleum fuel sprays. The model includes governing equations formulated in an Eulerian and a Lagrangian reference frame for the gas and the drops, respectively. This representation is consistent with the expected volumetrically small loading of the drops in gas (of the order of 10 3), although the mass loading can be substantial because of the high ratio (of the order of 103) between the densities of liquid and gas. The drops are treated as point sources of mass, momentum, and energy; this representation is consistent with the drop size being smaller than the Kolmogorov scale. Unsteady drag, added-mass effects, Basset history forces, and collisions between the drops are neglected, and the gas is assumed calorically perfect. The model incorporates the concept of continuous thermodynamics, according to which the chemical composition of a fuel is described probabilistically, by use of a distribution function. Distribution functions generally depend on many parameters. However, for mixtures of homologous species, the distribution can be approximated with acceptable accuracy as a sole function of the molecular weight. The mixing layer is initially laden with drops in its lower stream, and the drops are colder than the gas. Drop evaporation leads to a change in the gas-phase composition, which, like the composition of the drops, is described in a probabilistic manner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Splitter, Derek A; Szybist, James P
2013-01-01
The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine was used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with = 1, using both 0% and 15% external cooled EGR. Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanolmore » enabled a doubling of the stoichiometric torque capability with E30 as compared to 87 AKI, up to 20 bar IMEPg (indicated mean effective pressure gross) at = 1. EGR provided thermodynamic advantages and was a key enabler for increasing engine efficiency for all fuel types. However, with E30, EGR was less useful for knock mitigation than gasoline or IB24. Torque densities with E30 with 15% EGR at = 1 operation were similar or better than a modern EURO IV calibration turbo-diesel engine. The results of the present study suggest that it could be possible to implement a 40% downsize + downspeed configuration (1.2 L engine) into a representative midsize sedan. For example, for a midsize sedan at a 65 miles/h cruise, an estimated fuel consumption of 43.9 miles per gallon (MPG) (engine out 102 g-CO2/km) could be achieved with similar reserve power to a 2.0 L engine with 87AKI (38.6 MPG, engine out 135 g-CO2/km). Data suggest that, with midlevel alcohol gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol gasoline blends and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.« less
Evaluation of Cask Drop Criticality Issues at K Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
GOLDMANN, L.H.
An analysis of ability of Multi-canister Overpack (MCO) to withstand drops at K Basin without exceeding the criticality design requirements. Report concludes the MCO will function acceptably. The spent fuel currently residing in the 105 KE and 105 KW storage basins will be placed in fuel storage baskets which will be loaded into the MCO cask assembly. During the basket loading operations the MCO cask assembly will be positioned near the bottom of the south load out pit (SLOP). The loaded MCO cask will be lifted from the SLOP transferred to the transport trailer and delivered to the Cold Vacuummore » Drying Facility (CVDF). In the wet condition there is a potential for criticality problems if significant changes in the designed fuel configurations occur. The purpose of this report is to address structural issues associated with criticality design features for MCO cask drop accidents in the 105 KE and 105 KW facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passman, F.J.; Daniels, D.A.; Chesneau, H.F.
1995-05-01
Low-grade microbial infections of fuel and fuel systems generally go undetected until they cause major operational problems. Three interdependent factors contribute to this: mis-diagnosis, incorrect or inadequate sampling procedures and perceived complexity of microbiological testing procedures. After discussing the first two issues, this paper describes a rapid field test for estimating microbial loads in fuels and associated water. The test, adapted from a procedure initially developed to measure microbial loads in metalworking fluids, takes advantage of the nearly universal presence of the enzyme catalase in the microbes that contaminated fuel systems. Samples are reacted with a peroxide-based reagent; liberating oxygenmore » gas. The gas generates a pressure-head in a reaction tube. At fifteen minutes, a patented, electronic pressure-sensing device is used to measure that head-space pressure. The authors present both laboratory and field data from fuels and water-bottoms, demonstrating the excellent correlation between traditional viable test data (acquired after 48-72 hours incubation) and catalase test data (acquired after 15 min.-4 hours). We conclude by recommending procedures for developing a failure analysis data-base to enhance our industry`s understanding of the relationship between uncontrolled microbial contamination and fuel performance problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, D.W.; Tompkins, T.A.; Pratapas, J.M.
The Coal Quality Impact Model (CQIM{trademark}) was used to evaluate the economic and performance impacts of gas co-firing at Mississippi Power Company`s Plant Watson. One of the most important benefits of gas co-firing considered was the ability to burn lower quality, less expensive fuels. Four coals and petroleum coke were evaluated at 0, 5, 10, 20, and 30 percent gas co-firing. These fuels vary widely in their geographic source, heating value, moisture, volatile matter, and sulfur contents. Performance and economic evaluations were conducted at individual load points of 100, 75, 50, 40, 30, and 20 percent of full load. Additionalmore » analyses were made for seasonal load-demand curves and for an average annual load-demand curve. Operating cost in $/MWh, net plant heat rate in Btu/kWh, and break-even gas price in $/MBtu are presented as a function of load and percent gas co-firing. Results illustrate that with the Illinois Basin Coal currently burned at Plant Watson, gas co-firing can be economically justified over a range of gas market prices on either an annual or seasonal basis. Other findings indicate that petroleum coke and South American coal co-fired with natural gas offer significant fuel cost savings and are attractive candidate fuels for combustion verification testing.« less
TRESP II testing of AFS dual fuel system.
DOT National Transportation Integrated Search
2013-11-01
A dual fuel CNG and diesel system was retrofitted to a 13 L Volvo semi tractor for testing to verify the : fuel economy and CNG substitution rate. The semi tractor was tested on interstate and mountainous : highway routes with a loaded trailer. Fuel ...
Apparatus for blending small particles
Bradley, R.A.; Reese, C.R.; Sease, J.D.
1975-08-26
An apparatus is described for blending small particles and uniformly loading the blended particles in a receptacle. Measured volumes of various particles are simultaneously fed into a funnel to accomplish radial blending and then directed onto the apex of a conical splitter which collects the blended particles in a multiplicity of equal subvolumes. Thereafter the apparatus sequentially discharges the subvolumes for loading in a receptacle. A system for blending nuclear fuel particles and loading them into fuel rod molds is described in a preferred embodiment. (auth)
Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation.
Feng, Dawei; Liu, Tian-Fu; Su, Jie; Bosch, Mathieu; Wei, Zhangwen; Wan, Wei; Yuan, Daqiang; Chen, Ying-Pin; Wang, Xuan; Wang, Kecheng; Lian, Xizhen; Gu, Zhi-Yuan; Park, Jihye; Zou, Xiaodong; Zhou, Hong-Cai
2015-01-19
Enzymatic catalytic processes possess great potential in chemical manufacturing, including pharmaceuticals, fuel production and food processing. However, the engineering of enzymes is severely hampered due to their low operational stability and difficulty of reuse. Here, we develop a series of stable metal-organic frameworks with rationally designed ultra-large mesoporous cages as single-molecule traps (SMTs) for enzyme encapsulation. With a high concentration of mesoporous cages as SMTs, PCN-333(Al) encapsulates three enzymes with record-high loadings and recyclability. Immobilized enzymes that most likely undergo single-enzyme encapsulation (SEE) show smaller Km than free enzymes while maintaining comparable catalytic efficiency. Under harsh conditions, the enzyme in SEE exhibits better performance than free enzyme, showing the effectiveness of SEE in preventing enzyme aggregation or denaturation. With extraordinarily large pore size and excellent chemical stability, PCN-333 may be of interest not only for enzyme encapsulation, but also for entrapment of other nanoscaled functional moieties.
Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation
NASA Astrophysics Data System (ADS)
Feng, Dawei; Liu, Tian-Fu; Su, Jie; Bosch, Mathieu; Wei, Zhangwen; Wan, Wei; Yuan, Daqiang; Chen, Ying-Pin; Wang, Xuan; Wang, Kecheng; Lian, Xizhen; Gu, Zhi-Yuan; Park, Jihye; Zou, Xiaodong; Zhou, Hong-Cai
2015-01-01
Enzymatic catalytic processes possess great potential in chemical manufacturing, including pharmaceuticals, fuel production and food processing. However, the engineering of enzymes is severely hampered due to their low operational stability and difficulty of reuse. Here, we develop a series of stable metal-organic frameworks with rationally designed ultra-large mesoporous cages as single-molecule traps (SMTs) for enzyme encapsulation. With a high concentration of mesoporous cages as SMTs, PCN-333(Al) encapsulates three enzymes with record-high loadings and recyclability. Immobilized enzymes that most likely undergo single-enzyme encapsulation (SEE) show smaller Km than free enzymes while maintaining comparable catalytic efficiency. Under harsh conditions, the enzyme in SEE exhibits better performance than free enzyme, showing the effectiveness of SEE in preventing enzyme aggregation or denaturation. With extraordinarily large pore size and excellent chemical stability, PCN-333 may be of interest not only for enzyme encapsulation, but also for entrapment of other nanoscaled functional moieties.
Compact propane fuel processor for auxiliary power unit application
NASA Astrophysics Data System (ADS)
Dokupil, M.; Spitta, C.; Mathiak, J.; Beckhaus, P.; Heinzel, A.
With focus on mobile applications a fuel cell auxiliary power unit (APU) using liquefied petroleum gas (LPG) is currently being developed at the Centre for Fuel Cell Technology (Zentrum für BrennstoffzellenTechnik, ZBT gGmbH). The system is consisting of an integrated compact and lightweight fuel processor and a low temperature PEM fuel cell for an electric power output of 300 W. This article is presenting the current status of development of the fuel processor which is designed for a nominal hydrogen output of 1 k Wth,H2 within a load range from 50 to 120%. A modular setup was chosen defining a reformer/burner module and a CO-purification module. Based on the performance specifications, thermodynamic simulations, benchmarking and selection of catalysts the modules have been developed and characterised simultaneously and then assembled to the complete fuel processor. Automated operation results in a cold startup time of about 25 min for nominal load and carbon monoxide output concentrations below 50 ppm for steady state and dynamic operation. Also fast transient response of the fuel processor at load changes with low fluctuations of the reformate gas composition have been achieved. Beside the development of the main reactors the transfer of the fuel processor to an autonomous system is of major concern. Hence, concepts for packaging have been developed resulting in a volume of 7 l and a weight of 3 kg. Further a selection of peripheral components has been tested and evaluated regarding to the substitution of the laboratory equipment.
Fuels planning: science synthesis and integration
Rachel White; Sarah McCaffrey
2007-01-01
A century of fire suppression has created heavy fuel loads in many U.S. forests, leading to increasingly intense wildfires. Addressing this problem will require widespread fuels treatments, yet fuels treatment planners do not always have access to the current scientific information that can help guide their planning process. The Fuels Planning: Science Synthesis and...
30 CFR 36.27 - Fuel-supply system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... tank by a chain or other fastening to prevent loss. (2) The fuel tank shall have a definite position in the equipment assembly, and no provision shall be made for attachment of separate or auxiliary fuel... continuously at full load for approximately four hours. (b) Fuel lines. All fuel lines shall be installed to...
30 CFR 36.27 - Fuel-supply system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... tank by a chain or other fastening to prevent loss. (2) The fuel tank shall have a definite position in the equipment assembly, and no provision shall be made for attachment of separate or auxiliary fuel... continuously at full load for approximately four hours. (b) Fuel lines. All fuel lines shall be installed to...
30 CFR 36.27 - Fuel-supply system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... tank by a chain or other fastening to prevent loss. (2) The fuel tank shall have a definite position in the equipment assembly, and no provision shall be made for attachment of separate or auxiliary fuel... continuously at full load for approximately four hours. (b) Fuel lines. All fuel lines shall be installed to...
30 CFR 36.27 - Fuel-supply system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... tank by a chain or other fastening to prevent loss. (2) The fuel tank shall have a definite position in the equipment assembly, and no provision shall be made for attachment of separate or auxiliary fuel... continuously at full load for approximately four hours. (b) Fuel lines. All fuel lines shall be installed to...
30 CFR 36.27 - Fuel-supply system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... tank by a chain or other fastening to prevent loss. (2) The fuel tank shall have a definite position in the equipment assembly, and no provision shall be made for attachment of separate or auxiliary fuel... continuously at full load for approximately four hours. (b) Fuel lines. All fuel lines shall be installed to...
Critique of Sikkink and Keane's comparison of surface fuel sampling techniques
Clinton S. Wright; Roger D. Ottmar; Robert E. Vihnanek
2010-01-01
The 2008 paper of Sikkink and Keane compared several methods to estimate surface fuel loading in western Montana: two widely used inventory techniques (planar intersect and fixed-area plot) and three methods that employ photographs as visual guides (photo load, photoload macroplot and photo series). We feel, however, that their study design was inadequate to evaluate...
A visual training tool for the Photoload sampling technique
Violet J. Holley; Robert E. Keane
2010-01-01
This visual training aid is designed to provide Photoload users a tool to increase the accuracy of fuel loading estimations when using the Photoload technique. The Photoload Sampling Technique (RMRS-GTR-190) provides fire managers a sampling method for obtaining consistent, accurate, inexpensive, and quick estimates of fuel loading. It is designed to require only one...
Fuel loadings in forests, woodlands, and savannas of the Madrean province
Peter F. Ffolliott; Gerald J. Gottfried; Leonard F. DeBano
2008-01-01
Natural fire regimes in the southwestern United States have been significantly altered by past land-use practices and the fire suppression polices of land management agencies. One consequence of this alteration has been to increase the loadings of downed woody fuels. Ecologists and land managers are reintroducing fire into the ecosystems of the Madrean Province to...
Treshow, M.
1960-08-16
A device for loading and unloading fuel rods into and from a reactor tank through an access hole includes parallel links carrying a gripper. These links enable the gripper to go through the access hole and then to be moved laterally from the axis of the access hole to the various locations of the fuel rods in the reactor tank.
Code of Federal Regulations, 2010 CFR
2010-07-01
... specified driving schedule. The design of the laboratory facility should include consideration of any parameters that may affect fuel temperatures, such as solar loading, pavement heat, and relative wind... be at least 125 °F throughout the driving period. Pavement temperature shall be measured and recorded...
Code of Federal Regulations, 2011 CFR
2011-07-01
... specified driving schedule. The design of the laboratory facility should include consideration of any parameters that may affect fuel temperatures, such as solar loading, pavement heat, and relative wind... be at least 125 °F throughout the driving period. Pavement temperature shall be measured and recorded...
Code of Federal Regulations, 2014 CFR
2014-07-01
... specified driving schedule. The design of the laboratory facility should include consideration of any parameters that may affect fuel temperatures, such as solar loading, pavement heat, and relative wind... be at least 125 °F throughout the driving period. Pavement temperature shall be measured and recorded...
Code of Federal Regulations, 2012 CFR
2012-07-01
... specified driving schedule. The design of the laboratory facility should include consideration of any parameters that may affect fuel temperatures, such as solar loading, pavement heat, and relative wind... be at least 125 °F throughout the driving period. Pavement temperature shall be measured and recorded...
Code of Federal Regulations, 2013 CFR
2013-07-01
... specified driving schedule. The design of the laboratory facility should include consideration of any parameters that may affect fuel temperatures, such as solar loading, pavement heat, and relative wind... be at least 125 °F throughout the driving period. Pavement temperature shall be measured and recorded...
78 FR 31835 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Landing Pitchover Condition
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-28
... Model EMB-550 airplane. The Model EMB-550 airplane is the first of a new family of jet airplanes... the fuel vent and exhaust emission requirements of 14 CFR part 34 and the noise certification... condition from which ultimate loads must also be determined. Loads must be determined for critical fuel and...
Characterization Testing of the Teledyne Passive Breadboard Fuel Cell Powerplant
NASA Technical Reports Server (NTRS)
Loyselle, Patricia; Prokopius, Kevin
2011-01-01
NASA's Exploration Technology Development Program (ETDP) is tasked with the development of enabling and enhancing technologies for NASA's exploration missions. As part of that initiative, the return to the Moon requires a reliable, efficient, and lightweight fuel cell powerplant system to provide power to the Altair Lunar Lander and for lunar surface systems. Fuel cell powerplants are made up of two basic parts; the fuel cell itself and the supporting ancillary subsystem. This subsystem is designed to deliver reactants to the fuel cell and remove product water and waste heat from the fuel cell. Typically, fuel cell powerplant ancillary subsystems rely upon pumps and active water separation techniques to accomplish these tasks for closed hydrogen/oxygen systems. In a typical system, these components are the largest contributors to the overall parasitic power load of the fuel cell powerplant. A potential step towards the development of an efficient lightweight power system is to maximize the use of "passive" or low-power ancillary components as a replacement to these high-power load components
Evaluation of a Dynamic Load Transfer Function Using Grassland Curing Data
Patricia L. Andrews; Stuart A.J. Anderson; Wendy R. Anderson
2006-01-01
Understanding and calculating fire behaviour in various fuel types is essential for effective fire management, including wildfire suppression and fuels management. Fire spread in grassland fuel is affected by the curing level, the amount of dead fuel expressed as a percentage of the total (live and dead fuel combined). The influence of live fuel is included in various...
Cosmic ray muons for spent nuclear fuel monitoring
NASA Astrophysics Data System (ADS)
Chatzidakis, Stylianos
There is a steady increase in the volume of spent nuclear fuel stored on-site (at reactor) as currently there is no permanent disposal option. No alternative disposal path is available and storage of spent nuclear fuel in dry storage containers is anticipated for the near future. In this dissertation, a capability to monitor spent nuclear fuel stored within dry casks using cosmic ray muons is developed. The motivation stems from the need to investigate whether the stored content agrees with facility declarations to allow proliferation detection and international treaty verification. Cosmic ray muons are charged particles generated naturally in the atmosphere from high energy cosmic rays. Using muons for proliferation detection and international treaty verification of spent nuclear fuel is a novel approach to nuclear security that presents significant advantages. Among others, muons have the ability to penetrate high density materials, are freely available, no radiological sources are required and consequently there is a total absence of any artificial radiological dose. A methodology is developed to demonstrate the applicability of muons for nuclear nonproliferation monitoring of spent nuclear fuel dry casks. Purpose is to use muons to differentiate between spent nuclear fuel dry casks with different amount of loading, not feasible with any other technique. Muon scattering and transmission are used to perform monitoring and imaging of the stored contents of dry casks loaded with spent nuclear fuel. It is shown that one missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the scattering distributions with 300,000 muons or more. A Bayesian monitoring algorithm was derived to allow differentiation of a fully loaded dry cask from one with a fuel assembly missing in the order of minutes and negligible error rate. Muon scattering and transmission simulations are used to reconstruct the stored contents of sealed dry casks from muon measurements. A combination of muon scattering and muon transmission imaging can improve resolution and thus a missing fuel assembly can be identified for vertical and horizontal dry casks. The apparent separation of the images reveals that the muon scattering and transmission can be used for discrimination between casks, satisfying the diversion criteria set by IAEA.
Alternative Fuels Data Center: Natural Gas Fueling Station Locations
or ZIP code or along a route in the United States. Loading alternative fueling station locator Fleet Rightsizing System Efficiency Locate Stations Search by Location Map a Route Laws & Incentives
Physical characteristics of chamise as a wildland fuel
Clive M. Countryman; Charles W. Philpot
1970-01-01
Chamise shrubs in southern California were analyzed for the physical characteristics known to affect fire behavior, such as density, fuel loading, and fuel bed porosity. Considerable variation was found, but results are helpful in developing estimates of chamise fuel characteristics for fire control under field conditions.
NASA Astrophysics Data System (ADS)
Su, Huaneng; Pasupathi, Sivakumar; Bladergroen, Bernard Jan; Linkov, Vladimir; Pollet, Bruno G.
2013-11-01
Gas diffusion electrodes (GDEs) prepared by a novel automatic catalyst spraying under irradiation (ACSUI) technique are investigated for improving the performance of phosphoric acid (PA)-doped polybenzimidazole (PBI) high temperature proton exchange membrane fuel cell (PEMFC). The physical properties of the GDEs are characterized by pore size distribution and scanning electron microscopy (SEM). The electrochemical properties of the membrane electrode assembly (MEA) with the GDEs are evaluated and analyzed by polarization curve, cyclic voltammetry (CV) and electrochemistry impedance spectroscopy (EIS). Effects of PTFE binder content, PA impregnation and heat treatment on the GDEs are investigated to determine the optimum performance of the single cell. At ambient pressure and 160 °C, the maximum power density can reach 0.61 W cm-2, and the current density at 0.6 V is up to 0.38 A cm-2, with H2/air and a platinum loading of 0.5 mg cm-2 on both electrodes. The MEA with the GDEs shows good stability for fuel cell operating in a short term durability test.
Ganesh, D; Nagarajan, G; Ganesan, S
2014-01-01
In parallel to the interest in renewable fuels, there has also been increased interest in homogeneous charge compression ignition (HCCI) combustion. HCCI engines are being actively developed because they have the potential to be highly efficient and to produce low emissions. Even though HCCI has been researched extensively, few challenges still exist. These include controlling the combustion at higher loads and the formation of a homogeneous mixture. To obtain better homogeneity, in the present investigation external mixture formation method was adopted, in which the fuel vaporiser was used to achieve excellent HCCI combustion in a single cylinder air-cooled direct injection diesel engine. In continuation of our previous works, in the current study a vaporised jatropha methyl ester (JME) was mixed with air to form a homogeneous mixture and inducted into the cylinder during the intake stroke to analyze the combustion, emission and performance characteristics. To control the early ignition of JME vapor-air mixture, cooled (30 °C) Exhaust gas recirculation (EGR) technique was adopted. The experimental result shows 81% reduction in NOx and 72% reduction in smoke emission.
Power generation in fuel cells using liquid methanol and hydrogen peroxide
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Chun, William (Inventor)
2002-01-01
The invention is directed to an encapsulated fuel cell including a methanol source that feeds liquid methanol (CH.sub.3 OH) to an anode. The anode is electrical communication with a load that provides electrical power. The fuel cell also includes a hydrogen peroxide source that feeds liquid hydrogen peroxide (H.sub.2 O.sub.2) to the cathode. The cathode is also in communication with the electrical load. The anode and cathode are in contact with and separated by a proton-conducting polymer electrolyte membrane.
NASA Astrophysics Data System (ADS)
Chatzidakis, S.; Choi, C. K.; Tsoukalas, L. H.
2016-08-01
The potential non-proliferation monitoring of spent nuclear fuel sealed in dry casks interacting continuously with the naturally generated cosmic ray muons is investigated. Treatments on the muon RMS scattering angle by Moliere, Rossi-Greisen, Highland and, Lynch-Dahl were analyzed and compared with simplified Monte Carlo simulations. The Lynch-Dahl expression has the lowest error and appears to be appropriate when performing conceptual calculations for high-Z, thick targets such as dry casks. The GEANT4 Monte Carlo code was used to simulate dry casks with various fuel loadings and scattering variance estimates for each case were obtained. The scattering variance estimation was shown to be unbiased and using Chebyshev's inequality, it was found that 106 muons will provide estimates of the scattering variances that are within 1% of the true value at a 99% confidence level. These estimates were used as reference values to calculate scattering distributions and evaluate the asymptotic behavior for small variations on fuel loading. It is shown that the scattering distributions between a fully loaded dry cask and one with a fuel assembly missing initially overlap significantly but their distance eventually increases with increasing number of muons. One missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the distributions which is the case of 100,000 muons. This indicates that the removal of a standard fuel assembly can be identified using muons providing that enough muons are collected. A Bayesian algorithm was developed to classify dry casks and provide a decision rule that minimizes the risk of making an incorrect decision. The algorithm performance was evaluated and the lower detection limit was determined.
Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szybist, James P
2016-01-01
Fuel-specific differences in exhaust gas recirculation (EGR) dilution tolerance are studied in a modern, direct-injection single-cylinder research engine. A total of 6 model fuel blends are examined at a constant research octane number (RON) of 95 using n-heptane, iso-octane, toluene, and ethanol. Laminar flame speeds for these mixtures, which were calculated two different methods (an energy fraction mixing rule and a detailed kinetic simulation), spanned a range of about 6 cm/s. A constant fueling nominal load of 350 kPa IMEPg at 2000 rpm was operated with varying CA50 from 8-20 CAD aTDCf, and with EGR increasing until a COV ofmore » IMEP of 5% is reached. The results illustrate that flame speed affects EGR dilution tolerance; fuels with increased flame speeds increase EGR tolerance. Specifically, flame speed correlates most closely to the initial flame kernel growth, measured as the time of ignition to 5% mass fraction burned. The effect of the latent heat of vaporization on the flame speed is taken into account for the ethanol-containing fuels. At a 30 vol% blend level, the increased enthalpy of vaporization of ethanol compared to conventional hydrocarbons can decrease the temperature at the time of ignition by a maximum of 15 C, which can account for up to a 3.5 cm/s decrease in flame speed. The ethanol-containing fuels, however, still exhibit a flame speed advantage, and a dilution tolerance advantage over the slower flame-speed fuels. The fuel-specific differences in dilution tolerance are significant at the condition examined, allowing for a 50% relative increase in EGR (4% absolute difference in EGR) at a constant COV of IMEP of 3%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketusky, E.
The U.S. Department of Energy’s (DOE’s) Used Fuel Disposition Campaign (UFDC) Program has transported high-burnup nuclear sister fuel rods from a commercial nuclear power plant for purposes of evaluation and testing. The evaluation and testing of high-burnup used nuclear fuel is integral to DOE initiatives to collect information useful in determining the integrity of fuel cladding for future safe transportation of the fuel, and for determining the effects of aging, on the integrity of UNF subjected to extended storage and subsequent transportation. The UFDC Program, in collaboration with the U.S. Nuclear Regulatory Commission and the commercial nuclear industry, has obtainedmore » individual used nuclear fuel rods for testing. The rods have been received at Oak Ridge National Laboratory (ORNL) for both separate effects testing (SET) and small-scale testing (SST). To meet the research objectives, testing on multiple 6 inch fuel rod pins cut from the rods at ORNL will be performed at Pacific Northwest National Laboratory (PNNL). Up to 10 rod equivalents will be shipped. Options were evaluated for multiple shipments using the 10-160B (based on 4.5 rod equivalents) and a single shipment using the NAC-LWT. Based on the original INL/Virginia Power transfer agreement, the rods are assumed to 152 inches in length with a 0.374-inch diameter. This report provides a preliminary content evaluation for use of the 10-160B and NAC-LWT for transporting those fuel rod pins from ORNL to PNNL. This report documents the acceptability of using these packagings to transport the fuel segments from ORNL to PNNL based on the following evaluations: enrichment, A2 evaluation, Pu-239 FGE evaluation, heat load, shielding (both gamma and neutron), and content weight/structural evaluation.« less
Improved Polyurethane Storage Tank Performance
2010-12-15
determined through testing that the initial weld adhesion and weld adhesion after high temperature fuel (HTF) immersion have a linear relationship ...Unfortunately, the relationship between HTF weld adhesion and HTF dead- load performance is not as predictive. From 30 to approximately 45 lbsf/inch...consequently, will handle a higher ( theoretically double) shear load. This weld joint is currently being used to fabricate collapsible fuel tanks
Conditions inside fisher dens during prescribed fires; what is the risk posed by spring underburns?
Craig M. Thompson; Kathryn L. Purcell
2016-01-01
The use of spring prescribed fires to reduce accumulated fuel loads in western forests and facilitate the return of natural fire regimes is a controversial topic. While spring burns can be effective at reducing fuel loads and restoring heterogeneous landscapes, concerns exist over the potential impacts of unnaturally-timed fires to native species. To protect native...
Presettlement fire regime and vegetation mapping in Southeastern Coastal Plain forest ecosystems
Andrew D. Bailey; Robert Mickler; Cecil Frost
2007-01-01
Fire-adapted forest ecosystems make up 95 percent of the historic Coastal Plain vegetation types in the Southeastern United States. Fire suppression over the last century has altered the species composition of these ecosystems, increased fuel loads, and increased wildfire risk. Prescribed fire is one management tool used to reduce fuel loading and restore fire-adapted...
Bradford M. Sanders; David H. van Lear
1988-01-01
Paired photographs show fuel conditions before and after burning in recently clearcut stands of mixed pine-hardwoods in the Southern Appalachians. Comparison with the photos permits fast assessment of fuel loading and probable burning success. Information with each photo includes measured weights, volumes, and other residue data, information about the timber stand and...
Fire frequency effects on fuel loadings in pine-oak forests of the Madrean Province
Francisco J. Escobedo; Peter F. Ffolliott; Gerald J. Gottfried; Florentino Garza
2001-01-01
Loadings of downed woody fuels in pine-oak forests of the Madrean Province are heavier on sites in southeastern Arizona with low fire frequencies and lower on sites in northeastern Sonora, Mexico, with high fire frequencies. Low fire frequencies in southeastern Arizona are attributed largely to past land uses and the fire suppression policies of land management...
Effects of prescribed burning on vegetation and fuel loading in three east Texas state parks
Sandra Rideout; Brian P. Oswald
2002-01-01
This study was conducted to evaluate the initial effectiveness of prescribed burning in the ecological restoration of forests within selected parks in east Texas. Twenty-four permanent plots were installed to monitor fuel loads, overstory, sapling, seedling, shrub and herbaceous layers within burn and control units of Mission Tejas, Tyler and Village Creek state parks...
Thermostructural analysis of a scramjet fuel-injection strut
NASA Technical Reports Server (NTRS)
Wieting, A. R.; Thornton, E. A.
1978-01-01
Results of a thermal/structural design analysis study of a fuel injection strut for an airframe integrated hydrogen cooled scramjet are presented. It is indicated that a feasible thermal/structural concept has been identified for the static load conditions and that thermal stresses dominate the response. It is suggested that the response of the concept to dynamic loads be investigated.
Conventional fuel tank blunt impact tests : test and analysis results
DOT National Transportation Integrated Search
2014-04-02
The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. A series of impact tests are planned to : measure fuel tank deformation under two types of dynamic : loading conditi...
Discharge characteristics of a high speed fuel injection system
NASA Technical Reports Server (NTRS)
Matthews, Robertson
1925-01-01
Discussed here are some discharge characteristics of a fuel injection system intended primarily for high speed service. The system consisted of a cam actuated fuel pump, a spring loaded automatic injection valve, and a connecting tube.
Solid Polymer Electrolyte (SPE) fuel cell technology program
NASA Technical Reports Server (NTRS)
1978-01-01
Many previously demonstrated improved fuel cell features were consolidated to (1) obtain a better understanding of the observed characteristics of the operating laboratory-sized cells; (2) evaluate appropriate improved fuel cell features in 0.7 sq ft cell hardware; and (3) study the resultant fuel cell capability and determine its impact on various potential fuel cell space missions. The observed performance characteristics of the fuel cell at high temperatures and high current densities were matched with a theoretical model based on the change in Gibbs free energy voltage with respect to temperature and internal resistance change with current density. Excellent agreement between the observed and model performance was obtained. The observed performance decay with operational time on cells with very low noble metal loadings (0.05 mg/sq cm) were shown to be related to loss in surface area. Cells with the baseline amount of noble catalyst electrode loading demonstrated over 40,000 hours of stable performance.
Spent nuclear fuel system dynamic stability under normal conditions of transportation
Jiang, Hao; Wang, Jy-An John
2016-10-14
In a horizontal layout of a spent nuclear fuel (SNF) assembly under normal conditions of transportation (NCT), the fuel assembly’s skeleton formed by guide tubes and spacer grids is the primary load bearing structure for carrying and transferring the vibration loads within an SNF assembly. Therefore, the integrity of guide tubes and spacer grids will dictate the vibration amplitude/intensity of the fuel assembly during transport, and must be considered when designing multipurpose purpose canister (MPC) for safe SNF transport. This paper investigates the SNF assembly deformation dynamics during normal vibration mode, as well as the transient shock mode inside themore » cask during NCT. In conclusion, dynamic analyses were performed in the frequency domain to study frequency characteristic of the fuel assembly system and in the time domain to simulate the transient dynamic response of the fuel assembly.« less
Spent nuclear fuel system dynamic stability under normal conditions of transportation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao; Wang, Jy-An John
In a horizontal layout of a spent nuclear fuel (SNF) assembly under normal conditions of transportation (NCT), the fuel assembly’s skeleton formed by guide tubes and spacer grids is the primary load bearing structure for carrying and transferring the vibration loads within an SNF assembly. Therefore, the integrity of guide tubes and spacer grids will dictate the vibration amplitude/intensity of the fuel assembly during transport, and must be considered when designing multipurpose purpose canister (MPC) for safe SNF transport. This paper investigates the SNF assembly deformation dynamics during normal vibration mode, as well as the transient shock mode inside themore » cask during NCT. In conclusion, dynamic analyses were performed in the frequency domain to study frequency characteristic of the fuel assembly system and in the time domain to simulate the transient dynamic response of the fuel assembly.« less
Dec, John E.; Yang, Yi; Ji, Chunsheng; ...
2015-04-14
Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for highermore » loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.« less
PM, carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends.
Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Yuan-Chung; Lee, Wen-Jhy; Lin, Chih-Chung; Lin, Wen-Yinn
2010-07-15
Biodiesels have received increasing attention as alternative fuels for diesel engines and generators. This study investigates the emissions of particulate matter (PM), total carbon (TC), e.g., organic/elemental carbons, and polycyclic aromatic hydrocarbons (PAHs) from a diesel generator fuelled with soy-biodiesel blends. Among the tested diesel blends (B0, B10 (10 vol% soy-biodiesel), B20, and B50), B20 exhibited the lowest PM emission concentration despite the loads (except the 5 kW case), whereas B10 displayed lower PM emission factors when operating at 0 and 10 kW than the other fuel blends. The emission concentrations or factors of EC, OC, and TC were the lowest when B10 or B20 was used regardless of the loading. Under all tested loads, the average concentrations of total-PAHs emitted from the generator using the B10 and B20 were lower (by 38% and 28%, respectively) than those using pure petroleum diesel fuel (B0), while the emission factors of total-PAHs decreased with an increasing ratio of biodiesel to premium diesel. With an increasing loading, although the brake specific fuel consumption decreased, the energy efficiency increased despite the bio/petroleum diesel ratio. Therefore, soy-biodiesel is promising for use as an alternative fuel for diesel generators to increase energy efficiency and reduce the PM, carbon, and PAH emissions. 2010 Elsevier B.V. All rights reserved.
Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar
2013-01-01
Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are used throughout wildland fire science and management to simplify fuel inputs into fire behavior and effects models, but they have yet to be thoroughly evaluated with field data. In this study, we used a large dataset of Forest Inventory and Analysis (FIA) surface fuel...
46 CFR 153.1025 - Motor fuel antiknock compounds.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Motor fuel antiknock compounds. 153.1025 Section 153... Cargo Procedures § 153.1025 Motor fuel antiknock compounds. (a) No person may load or carry any other cargo in a containment system approved for motor fuel antiknock compounds containing lead alkyls except...
40 CFR 80.502 - What definitions apply for purposes of this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... this subpart? 80.502 Section 80.502 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.502 What... loading terminal means any facility that dyes NRLM diesel fuel or ECA marine fuel, pays taxes on motor...
46 CFR 153.1025 - Motor fuel antiknock compounds.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Motor fuel antiknock compounds. 153.1025 Section 153... Cargo Procedures § 153.1025 Motor fuel antiknock compounds. (a) No person may load or carry any other cargo in a containment system approved for motor fuel antiknock compounds containing lead alkyls except...
46 CFR 153.1025 - Motor fuel antiknock compounds.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Motor fuel antiknock compounds. 153.1025 Section 153... Cargo Procedures § 153.1025 Motor fuel antiknock compounds. (a) No person may load or carry any other cargo in a containment system approved for motor fuel antiknock compounds containing lead alkyls except...
Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustbader, Jason Aaron; Kekelia, Bidzina; Tomerlin, Jeff
Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers willmore » enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation with a reflective barrier to the thermal load reduction package resulted in a 53.3% reduction in the overall heat transfer coefficient.« less
Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustbader, Jason; Kekelia, Bidzina; Tomerlin, Jeff
Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers willmore » enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation with a reflective barrier to the thermal load reduction package resulted in a 53.3% reduction in the overall heat transfer coefficient.« less
NASA Astrophysics Data System (ADS)
Muir, J.; Phinn, S. R.; Armston, J.; Scarth, P.; Eyre, T.
2014-12-01
Coarse woody debris (CWD) provides important habitat for many species and plays a vital role in nutrient cycling within an ecosystem. In addition, CWD makes an important contribution to forest biomass and fuel loads. Airborne or space based remote sensing instruments typically do not detect CWD beneath the forest canopy. Terrestrial laser scanning (TLS) provides a ground based method for three-dimensional (3-D) reconstruction of surface features and CWD. This research produced a 3-D reconstruction of the ground surface and automatically classified coarse woody debris from registered TLS scans. The outputs will be used to inform the development of a site-based index for the assessment of forest condition, and quantitative assessments of biomass and fuel loads. A survey grade terrestrial laser scanner (Riegl VZ400) was used to scan 13 positions, in an open eucalypt woodland site at Karawatha Forest Park, near Brisbane, Australia. Scans were registered, and a digital surface model (DSM) produced using an intensity threshold and an iterative morphological filter. The DSMs produced from single scans were compared to the registered multi-scan point cloud using standard error metrics including: Root Mean Squared Error (RMSE), Mean Squared Error (MSE), range, absolute error and signed error. In addition the DSM was compared to a Digital Elevation Model (DEM) produced from Airborne Laser Scanning (ALS). Coarse woody debris was subsequently classified from the DSM using laser pulse properties, including: width and amplitude, as well as point spatial relationships (e.g. nearest neighbour slope vectors). Validation of the coarse woody debris classification was completed using true-colour photographs co-registered to the TLS point cloud. The volume and length of the coarse woody debris was calculated from the classified point cloud. A representative network of TLS sites will allow for up-scaling to large area assessment using airborne or space based sensors to monitor forest condition, biomass and fuel loads.
NASA Astrophysics Data System (ADS)
Abrego-Martínez, J. C.; Moreno-Zuria, A.; Cuevas-Muñiz, F. M.; Arriaga, L. G.; Sun, Shuhui; Mohamedi, Mohamed
2017-12-01
In the present work, we report the design, fabrication and evaluation of a membraneless mixed-reactant and air-breathing microfluidic direct methanol fuel cell (ML-μDMFC) stack operated in passive mode. The operation under mixed-reactant conditions was achieved by using a highly methanol-tolerant Ag/Pt/CP cathode with ultra-low Pt loading in alkaline medium. Prior to the fabrication of the stack, a flow simulation was made in order to study the behavior of the reactants stream in the microchannel through the 2 cells. Subsequently, the device was tested in passive mode using a mixture of 5 M MeOH +0.5 M KOH. The results showed that by connecting the 2 cells in series, it is possible to effectively double the voltage of a single ML-μDMFC, as well as increasing the absolute power by 75% with practically no cost increase. The stack was capable of operate continuously for more than 2 h with a single charge of 40 μL, producing an OCV of 0.89 V and a maximum power density of 3.33 mW mgPt-1. Additionally, the device exhibited good stability throughout a 10 h test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daw, C. Stuart; Gao, Zhiming; Smith, David E.
2013-04-08
We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulatedmore » for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Splitter, Derek A; Szybist, James P
The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios withmore » high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.« less
A grass-fire cycle eliminates an obligate-seeding tree in a tropical savanna.
Bowman, David M J S; MacDermott, Harry J; Nichols, Scott C; Murphy, Brett P
2014-11-01
A grass-fire cycle in Australian tropical savannas has been postulated as driving the regional decline of the obligate-seeding conifer Callitris intratropica and other fire-sensitive components of the regional flora and fauna, due to proliferation of flammable native grasses. We tested the hypothesis that a high-biomass invasive savanna grass drives a positive feedback process where intense fires destroy fire-sensitive trees, and the reduction in canopy cover facilitates further invasion by grass. We undertook an observational and experimental study using, as a model system, a plantation of C. intratropica that has been invaded by an African grass, gamba (Andropogon gayanus) in the Northern Territory, Australia. We found that high grass biomass was associated with reduced canopy cover and restriction of foliage to the upper canopy of surviving stems, and mortality of adult trees was very high (>50%) even in areas with low fuel loads (1 t·ha(-1)). Experimental fires, with fuel loads >10 t·ha(-1), typical of the grass-invasion front, caused significant mortality due to complete crown scorch. Lower fuel loads cause reduced canopy cover through defoliation of the lower canopy. These results help explain how increases in grass biomass are coupled with the decline of C. intratropica throughout northern Australia by causing a switch from litter and sparse perennial grass fuels, and hence low-intensity surface fires, to heavy annual grass fuel loads that sustain fires that burn into the midstorey. This study demonstrates that changes in fuel type can alter fire regimes with substantial knock-on effects on the biota.
A grass–fire cycle eliminates an obligate-seeding tree in a tropical savanna
Bowman, David M J S; MacDermott, Harry J; Nichols, Scott C; Murphy, Brett P
2014-01-01
A grass–fire cycle in Australian tropical savannas has been postulated as driving the regional decline of the obligate-seeding conifer Callitris intratropica and other fire-sensitive components of the regional flora and fauna, due to proliferation of flammable native grasses. We tested the hypothesis that a high-biomass invasive savanna grass drives a positive feedback process where intense fires destroy fire-sensitive trees, and the reduction in canopy cover facilitates further invasion by grass. We undertook an observational and experimental study using, as a model system, a plantation of C. intratropica that has been invaded by an African grass, gamba (Andropogon gayanus) in the Northern Territory, Australia. We found that high grass biomass was associated with reduced canopy cover and restriction of foliage to the upper canopy of surviving stems, and mortality of adult trees was very high (>50%) even in areas with low fuel loads (1 t·ha−1). Experimental fires, with fuel loads >10 t·ha−1, typical of the grass-invasion front, caused significant mortality due to complete crown scorch. Lower fuel loads cause reduced canopy cover through defoliation of the lower canopy. These results help explain how increases in grass biomass are coupled with the decline of C. intratropica throughout northern Australia by causing a switch from litter and sparse perennial grass fuels, and hence low-intensity surface fires, to heavy annual grass fuel loads that sustain fires that burn into the midstorey. This study demonstrates that changes in fuel type can alter fire regimes with substantial knock-on effects on the biota. PMID:25505543
A Combustion Model for the TWA 800 Center-Wing Fuel Tank Explosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, M.R.; Gross, R.J.
1998-10-02
In support of the National Transportation Safety Board investigation of the TWA Flight 800 accident, a combined experimental/computational effort was conducted that focused on quarter-scale testing and simulation of the fuel-air explosion in the Boeing 747 center wing fuel tank. This report summarizes the modeling approach used at Sandia National Laboratories. In this approach approximations are introduced that capture the essential physics associated with turbulent flame propagation in multiple compartment fuel tanks. This model efficiently defines the pressure loading conditions during a jet-fuel air explosion in a fuel tank confinement. Modeling calculations compare favorably with a variety of experimental quarter-scalemore » tests conducted in rigid confinement. The modeling describes well the overpressure history in several geometry configurations. Upon demonstrating a reasonable comparison to experimental observations, a parametric study of eight possible ignition sources is then discussed. Model calculations demonstrate that different loading conditions arise as the location of the ignition event is varied. By comparing the inferred damage and calculated impulses to that seen in the recovered tank, it maybe possible to reduce the number of likely sources. A possible extension of this work to better define tank damage includes coupling the combustion model as a pressure loading routine for structural failure analysis.« less
NASA Technical Reports Server (NTRS)
Sandifer, J. P.; Denny, A.; Wood, M. A.
1985-01-01
Technical issues associated with fuel containment and damage tolerance of composite wing structures for transport aircraft were investigated. Material evaluation tests were conducted on two toughened resin composites: Celion/HX1504 and Celion/5245. These consisted of impact, tension, compression, edge delamination, and double cantilever beam tests. Another test series was conducted on graphite/epoxy box beams simulating a wing cover to spar cap joint configuration of a pressurized fuel tank. These tests evaluated the effectiveness of sealing methods with various fastener types and spacings under fatigue loading and with pressurized fuel. Another test series evaluated the ability of the selected coatings, film, and materials to prevent fuel leakage through 32-ply AS4/2220-1 laminates at various impact energy levels. To verify the structural integrity of the technology demonstration article structural details, tests were conducted on blade stiffened panels and sections. Compression tests were performed on undamaged and impacted stiffened AS4/2220-1 panels and smaller element tests to evaluate stiffener pull-off, side load and failsafe properties. Compression tests were also performed on panels subjected to Zone 2 lightning strikes. All of these data were integrated into a demonstration article representing a moderately loaded area of a transport wing. This test combined lightning strike, pressurized fuel, impact, impact repair, fatigue and residual strength.
Using airborne laser altimetry to determine fuel models for estimating fire behavior
Carl A. Seielstad; Lloyd P. Queen
2003-01-01
Airborne laser altimetry provides an unprecedented view of the forest floor in timber fuel types and is a promising new tool for fuels assessments. It can be used to resolve two fuel models under closed canopies and may be effective for estimating coarse woody debris loads. A simple metric - obstacle density - provides the necessary quantification of fuel bed roughness...
Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar
2015-01-01
Fuel classifications are integral tools in fire management and planning because they are used as inputs to fire behavior and effects simulation models. Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are the most popular classifications used throughout wildland fire science and management, but they have yet to be thoroughly...
Post-fire surface fuel dynamics in California forests across three burn severity classes
Bianca N. I. Eskelson; Vicente J. Monleon
2018-01-01
Forest wildfires consume fuel and are followed by post-fire fuel accumulation. This study examines post-fire surface fuel dynamics over 9 years across a wide range of conditions characteristic of California fires in dry conifer and hardwood forests. We estimated post-fire surface fuel loadings (Mg ha _1) from 191 repeatedly measured United States...
NASA Astrophysics Data System (ADS)
Komatsu, Y.; Brus, G.; Kimijima, S.; Szmyd, J. S.
2012-11-01
The present paper reports the experimental study on the dynamic behavior of a solid oxide fuel cell (SOFC). The cell stack consists of planar type cells with standard power output 300W. A Major subject of the present study is characterization of the transient response to the electric current change, assuming load-following operation. The present studies particularly focus on fuel provision control to the load change. Optimized fuel provision improves power generation efficiency. However, the capability of SOFC must be restricted by a few operative parameters. Fuel utilization factor, which is defined as the ratio of the consumed fuel to the supplied fuel is adopted for a reference in the control scheme. The fuel flow rate was regulated to keep the fuel utilization at 50%, 60% and 70% during the current ramping. Lower voltage was observed with the higher fuel utilization, but achieved efficiency was higher. The appropriate mass flow control is required not to violate the voltage transient behavior. Appropriate fuel flow manipulation can contribute to moderate the overshoot on the voltage that may appear to the current change. The overshoot on the voltage response resulted from the gradual temperature behavior in the SOFC stack module.
John A. Stanturf; Robert Rummer; M. Wimberly; Timothy G. Rials; Philip. A. Araman; Rodney Busby; James Granskog; Leslie Groom
2003-01-01
Prescribed fire is used routinely in the southern United States to reduce fuel loading and decrease the risk of catastrophic wildfires, improve forest health, and manage threatened and endangered species. With rapid human population growth, southern forests have become fragmented by an extensive road network and intertwined with urban uses in a wildland-urban interface...
M.J. Gavazzi; S.G. McNulty
2014-01-01
Prescribed fire is an important management tool in southern US forests, with more acres burned in the South than any other region of the US. Research from prescribed fire studies shows high temporal and spatial variability in available fuel loads due to physiographic, edaphic, meteorological and biological factors. In an effort to account for parts of this variation...
Andrew T. Hudak; Roger D. Ottmar; Robert E. Vihnanek; Clint S. Wright
2014-01-01
The RxCADRE research team collected multi-scale measurements of pre-, during, and post-fire variables on operational prescribed fires conducted in 2008, 2011, and 2012 in longleaf pine ecosystems in the southeastern USA. Pre- and post-fire surface fuel loads were characterized in alternating pre- and post-fire clip plots systematically established within burn units....
Henry V. Bastian
2001-01-01
Vegetation and fuel loading plots were monitored and sampled in wilderness areas treated with prescribed fire. Changes in ponderosa pine (Pinus ponderosa) forest structure tree species and fuel loading are presented. Plots were randomly stratified and established in burn units in 1995. Preliminary analysis of nine plots 2 years after burning show litter was reduced 54....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallerman, G.; Gray, R.J.
An instrument for crushing-strength determinations of uncoated and pyrolytic-carbon-coated fuel particles (50 to 500 mu in diameter) was developed to relate the crushing strength of the particles to their fabricability. The instrument consists of a loading mechanism, load cell, and a power supply-readout unit. The information that can be obtained by statistical methods of the data analysis is illustrated by results on two batches of fuel particles. (auth)
49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives
Code of Federal Regulations, 2013 CFR
2013-10-01
... vertical acceleration of 2g, without exceeding the ultimate strength of the material. The load is assumed... maximize the vertical clearance between the top of the rail and the bottom of the fuel tank. (2) Load case... equivalent to one half the weight of the locomotive at a vertical acceleration of 2g, without exceeding the...
49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives
Code of Federal Regulations, 2010 CFR
2010-10-01
... vertical acceleration of 2g, without exceeding the ultimate strength of the material. The load is assumed... maximize the vertical clearance between the top of the rail and the bottom of the fuel tank. (2) Load case... equivalent to one half the weight of the locomotive at a vertical acceleration of 2g, without exceeding the...
49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives
Code of Federal Regulations, 2014 CFR
2014-10-01
... vertical acceleration of 2g, without exceeding the ultimate strength of the material. The load is assumed... maximize the vertical clearance between the top of the rail and the bottom of the fuel tank. (2) Load case... equivalent to one half the weight of the locomotive at a vertical acceleration of 2g, without exceeding the...
40 CFR 86.1427 - Certification Short Test procedure; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... loaded modes. Specific conditions defined by this test procedure include fuel characteristics, ambient... CO fuel, a moderate temperature test with Cold CO fuel, and a warm temperature test with FTP Otto-cycle test fuel, as described in table O-96-1 of § 86.1430. The manufacturer must complete testing for...
40 CFR 86.1427 - Certification Short Test procedure; overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
... loaded modes. Specific conditions defined by this test procedure include fuel characteristics, ambient... CO fuel, a moderate temperature test with Cold CO fuel, and a warm temperature test with FTP Otto-cycle test fuel, as described in table O-96-1 of § 86.1430. The manufacturer must complete testing for...
40 CFR 86.1427 - Certification Short Test procedure; overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
... loaded modes. Specific conditions defined by this test procedure include fuel characteristics, ambient... CO fuel, a moderate temperature test with Cold CO fuel, and a warm temperature test with FTP Otto-cycle test fuel, as described in table O-96-1 of § 86.1430. The manufacturer must complete testing for...
40 CFR 86.1427 - Certification Short Test procedure; overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
... loaded modes. Specific conditions defined by this test procedure include fuel characteristics, ambient... CO fuel, a moderate temperature test with Cold CO fuel, and a warm temperature test with FTP Otto-cycle test fuel, as described in table O-96-1 of § 86.1430. The manufacturer must complete testing for...
My fuel treatment planner: a user guide.
Robin L. Biesecker; Roger D. Fight
2006-01-01
My Fuel Treatment Planner (MyFTP) is a tool for calculating and displaying the financial costs and potential revenues associated with forest fuel reduction treatments. It was designed for fuel treatment planners including those with little or no background in economics, forest management, or timber sales. This guide provides the information needed to acquire, load, and...
Stereo photo guide for estimating canopy fuel characteristics in conifer stands
Joe H. Scott; Elizabeth D. Reinhardt
2005-01-01
Stereo photographs, hemispherical photographs, and stand data are presented with associated biomass and canopy fuel characteristics for five Interior West conifer stands. Canopy bulk density, canopy base height, canopy biomass by component, available canopy fuel load, and vertical distribution of canopy fuel are presented for each plot at several stages of sampling,...
Fiber-modified polyurethane foam for ballistic protection
NASA Technical Reports Server (NTRS)
Fish, R. H.; Parker, J. A.; Rosser, R. W.
1975-01-01
Closed-cell, semirigid, fiber-loaded, self-extinguishing polyurethane foam material fills voids around fuel cells in aircraft. Material prevents leakage of fuel and spreading of fire in case of ballistic incendiary impact. It also protects fuel cell in case of exterior fire.
Chen, Yanxin; Bellini, Marco; Bevilacqua, Manuela; Fornasiero, Paolo; Lavacchi, Alessandro; Miller, Hamish A; Wang, Lianqin; Vizza, Francesco
2015-02-01
A 2 μm thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5 mgPd cm(-2) ), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160 mW cm(-2) at 80 °C were produced if the cell was fed with 10 wt % aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2 M aqueous KOH. The Pd loading of the anode was increased to 6 mg cm(-2) by combining four single electrodes to produce a maximum peak power density with ethanol at 80 °C of 335 mW cm(-2) . Such high power densities result from a combination of the open 3 D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro-oxidation. The peak power and current densities obtained with ethanol at 80 °C approach the output of H2 -fed proton exchange membrane fuel cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss.more » The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.« less
Thermal management of advanced fuel cell power systems
NASA Technical Reports Server (NTRS)
Vanderborgh, N. E.; Hedstrom, J.; Huff, J.
1990-01-01
It is shown that fuel cell devices are particularly attractive for the high-efficiency, high-reliability space hardware necessary to support upcoming space missions. These low-temperature hydrogen-oxygen systems necessarily operate with two-phase water. In either PEMFCs (proton exchange membrane fuel cells) or AFCs (alkaline fuel cells), engineering design must be critically focused on both stack temperature control and on the relative humidity control necessary to sustain appropriate conductivity within the ionic conductor. Water must also be removed promptly from the hardware. Present designs for AFC space hardware accomplish thermal management through two coupled cooling loops, both driven by a heat transfer fluid, and involve a recirculation fan to remove water and heat from the stack. There appears to be a certain advantage in using product water for these purposes within PEM hardware, because in that case a single fluid can serve both to control stack temperature, operating simultaneously as a heat transfer medium and through evaporation, and to provide the gas-phase moisture levels necessary to set the ionic conductor at appropriate performance levels. Moreover, the humidification cooling process automatically follows current loads. This design may remove the necessity for recirculation gas fans, thus demonstrating the long-term reliability essential for future space power hardware.
An Electronic Measurement Instrumentation of the Impedance of a Loaded Fuel Cell or Battery
Aglzim, El-Hassane; Rouane, Amar; El-Moznine, Reddad
2007-01-01
In this paper we present an inexpensive electronic measurement instrumentation developed in our laboratory, to measure and plot the impedance of a loaded fuel cell or battery. Impedance measurements were taken by using the load modulation method. This instrumentation has been developed around a VXI system stand which controls electronic cards. Software under Hpvee® was developed for automatic measurements and the layout of the impedance of the fuel cell on load. The measurement environment, like the ambient temperature, the fuel cell temperature, the level of the hydrogen, etc…, were taken with several sensors that enable us to control the measurement. To filter the noise and the influence of the 50Hz, we have implemented a synchronous detection which filters in a very narrow way around the useful signal. The theoretical result obtained by a simulation under Pspice® of the method used consolidates the choice of this method and the possibility of obtaining correct and exploitable results. The experimental results are preliminary results on a 12V vehicle battery, having an inrush current of 330A and a capacity of 40Ah (impedance measurements on a fuel cell are in progress, and will be the subject of a forthcoming paper). The results were plotted at various nominal voltages of the battery (12.7V, 10V, 8V and 5V) and with two imposed currents (0.6A and 4A). The Nyquist diagram resulting from the experimental data enable us to show an influence of the load of the battery on its internal impedance. The similitude in the graph form and in order of magnitude of the values obtained (both theoretical and practical) enables us to validate our electronic measurement instrumentation. One of the future uses for this instrumentation is to integrate it with several control sensors, on a vehicle as an embedded system to monitor the degradation of fuel cell membranes. PMID:28903231
An Electronic Measurement Instrumentation of the Impedance of a Loaded Fuel Cell or Battery.
Aglzim, El-Hassane; Rouane, Amar; El-Moznine, Reddad
2007-10-17
In this paper we present an inexpensive electronic measurement instrumentationdeveloped in our laboratory, to measure and plot the impedance of a loaded fuel cell orbattery. Impedance measurements were taken by using the load modulation method. Thisinstrumentation has been developed around a VXI system stand which controls electroniccards. Software under Hpvee ® was developed for automatic measurements and the layout ofthe impedance of the fuel cell on load. The measurement environment, like the ambienttemperature, the fuel cell temperature, the level of the hydrogen, etc..., were taken withseveral sensors that enable us to control the measurement. To filter the noise and theinfluence of the 50Hz, we have implemented a synchronous detection which filters in a verynarrow way around the useful signal. The theoretical result obtained by a simulation underPspice ® of the method used consolidates the choice of this method and the possibility ofobtaining correct and exploitable results. The experimental results are preliminary results ona 12V vehicle battery, having an inrush current of 330A and a capacity of 40Ah (impedancemeasurements on a fuel cell are in progress, and will be the subject of a forthcoming paper).The results were plotted at various nominal voltages of the battery (12.7V, 10V, 8V and 5V)and with two imposed currents (0.6A and 4A). The Nyquist diagram resulting from theexperimental data enable us to show an influence of the load of the battery on its internalimpedance. The similitude in the graph form and in order of magnitude of the valuesobtained (both theoretical and practical) enables us to validate our electronic measurementinstrumentation. One of the future uses for this instrumentation is to integrate it with several control sensors, on a vehicle as an embedded system to monitor the degradation of fuel cell membranes.
NASA Astrophysics Data System (ADS)
Papu, Nabam Hina; Lingfa, Pradip
2018-04-01
Navicula Sphaerophora was isolated from a fresh water reservoir in Arunachal Pradesh, India. N. Sphaerophora was grown on two different culture media, chu13 medium and Miracle Gro-medium. The maximum yield was obtained by using culture medium chu13(5.08 g/100ml of culture media). Microalgae crude oil was extracted using soxhlation method with three different solvents n-hexane, iso-propanol and hexane/ iso-propanol mixture. The maximum crude oil was obtained using n-hexane as a solvent (13.8% of dry weight biomass). The crude oil was converted into biodiesel using single stage transesterification process with sodium hydroxide (NaOH) as a base catalyst. Fuel properties of algae biodiesel satisfied biodiesel standard ASTM D6751 and use of this fuel should be comparable with petroleum diesel. Further short term engine test was conducted on single cylinder direct injection diesel engine at four different load (25%,50%,75% and 100%). Three different petroleum diesel and Microalgae Biodiesel blends (10%, 20% and 30%) were prepared. The influence of biodiesel blends on BSFC (brake specific fuel consumption), BTE (brake thermal efficiency), oxides of nitrogen (NOx), UBHC (unburnt hydrocarbons), carbonmonoxide (CO) and smoke opacity was studied and compared with petroleum diesel. Microalgae methyl ester 50% blend (B50) had lowest brake thermal efficiency (BTE) and highest Brake specific fuel consumption (BSFC) as compared to diesel; this may be due to Lower calorific value. HC, CO emission and smoke opacity reduces significantly with microalgae methyl ester. However, the NOx emission increases with all blends when compared to petroleum diesel. 10% microalgae blend with petroleum diesel showed the closet performance to petroleum diesel. Results obtained from present investigation confirmed the biofuel potentiality of Navicula Sphaerophora.
Effect of fuel concentration on cargo transport by a team of Kinesin motors
NASA Astrophysics Data System (ADS)
Takshak, Anjneya; Mishra, Nirvantosh; Kulkarni, Aditi; Kunwar, Ambarish
2017-02-01
Eukaryotic cells employ specialized proteins called molecular motors for transporting organelles and vesicles from one location to another in a regulated and directed manner. These molecular motors often work collectively in a team while transporting cargos. Molecular motors use cytoplasmic ATP as fuel, which is hydrolyzed to generate mechanical force. While the effect of ATP concentration on cargo transport by single Kinesin motor function is well understood, it is still unexplored, both theoretically and experimentally, how ATP concentration would affect cargo transport by a team of Kinesin motors. For instance, how does fuel concentration affect the travel distances and travel velocities of cargo? How cooperativity of Kinesin motors engaged on a cargo is affected by ATP concentration? To answer these questions, here we develop mechano-chemical models of cargo transport by a team of Kinesin motors. To develop these models we use experimentally-constrained mechano-chemical model of a single Kinesin motor as well as earlier developed mean-field and stochastic models of load sharing for cargo transport. Thus, our new models for cargo transport by a team of Kinesin motors include fuel concentration explicitly, which was not considered in earlier models. We make several interesting predictions which can be tested experimentally. For instance, the travel distances of cargos are very large at limited ATP concentrations in spite of very small travel velocity. Velocities of cargos driven by multiple Kinesin have a Michaelis-Menten dependence on ATP concentration. Similarly, cooperativity among the engaged Kinesin motors on the cargo shows a Michaelis-Menten type dependence, which attains a maximum value near physiological ATP concentrations. Our new results can be potentially useful in controlling artificial nano-molecular shuttles precisely for targeted delivery in various nano-technological applications.
NASA Technical Reports Server (NTRS)
Brooke, Michael; Williams, Meredith; Fenn, Teresa
2016-01-01
The risk of severe wildfires in Texas has been related to weather phenomena such as climate change and recent urban expansion into wild land areas. During recent years, Texas wild land areas have experienced sequences of wet and dry years that have contributed to increased wildfire risk and frequency. To prevent and contain wildfires, the Texas Forest Service (TFS) is tasked with evaluating and reducing potential fire risk to better manage and distribute resources. This task is made more difficult due to the vast and varied landscape of Texas. The TFS assesses fire risk by understanding vegetative fuel types and fuel loads. To better assist the TFS, NASA Earth observations, including Landsat and Moderate Resolution Imaging Specrtoradiometer (MODIS) data, were analyzed to produce maps of vegetation type and specific vegetation phenology as it related to potential wildfire fuel loads. Fuel maps from 2010-2011 and 2014-2015 fire seasons, created by the Texas Disasters I project, were used and provided alternating, complementary map indicators of wildfire risk in Texas. The TFS will utilize the end products and capabilities to evaluate and better understand wildfire risk across Texas.
Long-life high performance fuel cell program
NASA Technical Reports Server (NTRS)
Martin, R. E.
1985-01-01
A multihundred kilowatt Regenerative Fuel Cell for use in a space station is envisioned. Three 0.508 sq ft (471.9 cm) active area multicell stacks were assembled and endurance tested. The long term performance stability of the platinum on carbon catalyst configuration suitability of the lightweight graphite electrolyte reservoir plate, the stability of the free standing butyl bonded potassium titanate matrix structure, and the long life potential of a hybrid polysulfone cell edge frame construction were demonstrated. A 18,000 hour demonstration test of multicell stack to a continuous cyclical load profile was conducted. A total of 12,000 cycles was completed, confirming the ability of the alkaline fuel cell to operate to a load profile simulating Regenerative Fuel Cell operation. An orbiter production hydrogen recirculation pump employed in support of the cyclical load profile test completed 13,000 hours of maintenance free operation. Laboratory endurance tests demonstrated the suitability of the butyl bonded potassium matrix, perforated nickel foil electrode substrates, and carbon ribbed substrate anode for use in the alkaline fuel cell. Corrosion testing of materials at 250 F (121.1 C) in 42% wgt. potassium identified ceria, zirconia, strontium titanate, strontium zirconate and lithium cobaltate as candidate matrix materials.
High energy-density liquid rocket fuel performance
NASA Technical Reports Server (NTRS)
Rapp, Douglas C.
1990-01-01
A fuel performance database of liquid hydrocarbons and aluminum-hydrocarbon fuels was compiled using engine parametrics from the Space Transportation Engine Program as a baseline. Propellant performance parameters are introduced. General hydrocarbon fuel performance trends are discussed with respect to hydrogen-to-carbon ratio and heat of formation. Aluminum-hydrocarbon fuel performance is discussed with respect to aluminum metal loading. Hydrocarbon and aluminum-hydrocarbon fuel performance is presented with respect to fuel density, specific impulse, and propellant density specific impulse.
2008-12-01
respectively. 2.3.1.2 Brushless DC Motor Brushless direct current ( BLDC ) motors feature high efficiency, ease of control , and astonishingly high power...modeling purposes, we ignore the modeling complexity of the BLDC controller and treat the motor and controller “as commutated”, i.e. we assume the...High Performance, High Power Density Solid Oxide Fuel Cells− Materials and Load Control Stephen W. Sofie, Steven R. Shaw, Peter A. Lindahl, and Lee H
Cell module and fuel conditioner development
NASA Technical Reports Server (NTRS)
Hoover, D. Q., Jr.
1981-01-01
The test results of and post test analysis of Stack 559 are reported. The design features and construction status of Stacks 560, 561, 562 and 563 are described. The measurements of cell materials compressibility are rationalized and summarized and an explanation of their uses is given. Preliminary results of a manifold material/coating survey are given. The results of shift converter catalyst performance tests and reforming catalyst aging tests are reported. State points for full load and part load operation of the fuel conditioning subsystem tabulated. Work on the data base for the fuel conditioner ancillary subsystems is summarized.
TTI (Texas Transportation Institute) track/dynamometer study. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reineman, M.; Thompson, G.
1983-01-01
Seven passenger cars and one light truck were operated over the EPA urban and highway driving cycles to compare fuel economy measurements obtained on a test track with the fuel economy results obtained on a chassis dynamometer. The test program was designed to duplicate, as closely as possible, the track force loading (as determined by standard EPA road coastdown procedures) on the dynamometer. Experimental parameters which were investigated included loading differences between front- and rear-wheel drive vehicles, volumetric versus carbon balance fuel measurement techniques, coupled versus uncoupled roll dynamometer tests, and curved track versus straight track coastdowns.
NASA Astrophysics Data System (ADS)
Glass, Dean E.; Olah, George A.; Prakash, G. K. Surya
2017-06-01
For the large scale fuel cell manufacture, the catalyst loading and layer thickness are critical factors affecting the performance and cost of membrane electrode assemblies (MEAs). The influence of catalyst layer thicknesses at the anode of a PEM based direct methanol fuel cell (DMFC) has been investigated. Catalysts were applied with the drawdown method with varied thicknesses ranging from 1 mil to 8 mils (1 mil = 25.4 μm) with a Pt/Ru anode loading of 0.25 mg cm-2 to 2.0 mg cm-2. The MEAs with the thicker individual layers (8 mils and 4 mils) performed better overall compared to the those with the thinner layers (1 mil and painted). The peak power densities for the different loading levels followed an exponential decrease of Pt/Ru utilization at the higher loading levels. The highest power density achieved was 49 mW cm-2 with the 4 mil layers at 2.0 mg cm-2 catalyst loading whereas the highest normalized power density was 116 mW mg-1 with the 8 mil layers at 0.25 mg cm-2 loading. The 8 mil drawdowns displayed a 50% and 23% increase in normalized power density compared to the 1 mil drawdowns at 0.25 mg cm-2 and 0.5 mg cm-2 loadings, respectively.
Stephens, S.L.; Moghaddas, J.J.; Edminster, C.; Fiedler, C.E.; Haase, S.; Harrington, M.; Keeley, J.E.; Knapp, E.E.; Mciver, J.D.; Metlen, K.; Skinner, C.N.; Youngblood, A.
2009-01-01
Abstract. Forest structure and species composition in many western U.S. coniferous forests have been altered through fire exclusion, past and ongoing harvesting practices, and livestock grazing over the 20th century. The effects of these activities have been most pronounced in seasonally dry, low and mid-elevation coniferous forests that once experienced frequent, low to moderate intensity, fire regimes. In this paper, we report the effects of Fire and Fire Surrogate (FFS) forest stand treatments on fuel load profiles, potential fire behavior, and fire severity under three weather scenarios from six western U.S. FFS sites. This replicated, multisite experiment provides a framework for drawing broad generalizations about the effectiveness of prescribed fire and mechanical treatments on surface fuel loads, forest structure, and potential fire severity. Mechanical treatments without fire resulted in combined 1-, 10-, and 100-hour surface fuel loads that were significantly greater than controls at three of five FFS sites. Canopy cover was significantly lower than controls at three of five FFS sites with mechanical-only treatments and at all five FFS sites with the mechanical plus burning treatment; fire-only treatments reduced canopy cover at only one site. For the combined treatment of mechanical plus fire, all five FFS sites with this treatment had a substantially lower likelihood of passive crown fire as indicated by the very high torching indices. FFS sites that experienced significant increases in 1-, 10-, and 100-hour combined surface fuel loads utilized harvest systems that left all activity fuels within experimental units. When mechanical treatments were followed by prescribed burning or pile burning, they were the most effective treatment for reducing crown fire potential and predicted tree mortality because of low surface fuel loads and increased vertical and horizontal canopy separation. Results indicate that mechanical plus fire, fire-only, and mechanical-only treatments using whole-tree harvest systems were all effective at reducing potential fire severity under severe fire weather conditions. Retaining the largest trees within stands also increased fire resistance. ?? 2009 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Su, Huaneng; Jao, Ting-Chu; Barron, Olivia; Pollet, Bruno G.; Pasupathi, Sivakumar
2014-12-01
This paper reports use of an ultrasonic-spray for producing low Pt loadings membrane electrode assemblies (MEAs) with the catalyst coated substrate (CCS) fabrication technique. The main MEA sub-components (catalyst, membrane and gas diffusion layer (GDL)) are supplied from commercial manufacturers. In this study, high temperature (HT) MEAs with phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane are fabricated and tested under 160 °C, hydrogen and air feed 100 and 250 cc min-1 and ambient pressure conditions. Four different Pt loadings (from 0.138 to 1.208 mg cm-2) are investigated in this study. The experiment data are determined by in-situ electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The high Pt loading MEA exhibits higher performance at high voltage operating conditions but lower performances at peak power due to the poor mass transfer. The Pt loading 0.350 mg cm-2 GDE performs the peak power density and peak cathode mass power to 0.339 W cm-2 and 0.967 W mgPt-1, respectively. This work presents impressive cathode mass power and high fuel cell performance for high temperature proton exchange membrane fuel cells (HT-PEMFCs) with low Pt loadings.
Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Wang, Hong
This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using amore » set up with three linear variable differential transformers (LVDTs).« less
Mechanical Fatigue Testing of High-Burnup Fuel for Transportation Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An; Wang, Hong
This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using amore » set up with three linear variable differential transformers (LVDTs).« less
Mathematical model of simple spalling formation during coal cutting with extracting machine
NASA Astrophysics Data System (ADS)
Gabov, V. V.; Zadkov, D. A.
2018-05-01
A single-mass model of a rotor shearer is analyzed. It is shown that rotor mining machines has large inertia moments and load dynamics. An extraction module model with selective movement of the cutting tool is represented. The peculiar feature of such extracting machines is fluid power drive cutter mechanism. They can steadily operate at large shear thickness, and locking modes are not an emergency for them. Comparing with shearers they have less inertional mass, but slower average cutting speed, and its momentary values depend on load. Basing on the equation of hydraulic fuel consumption balance the work of fluid power drive of extracting module cutter mechanism together with hydro pneumatic accumulator is analyzed. Spalling formation model during coal cutting with fluid power drive cutter mechanism and potential energy stores are suggested. Matching cutter speed with the speed of main crack expansion and amount of potential energy consumption, cutter load is determined only by ultimate stress at crack pole and friction. Tests of an extracting module cutter in real size model proved the stated theory.
Full scale phosphoric acid fuel cell stack technology development
NASA Technical Reports Server (NTRS)
Christner, L.; Faroque, M.
1984-01-01
The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution.
Code of Federal Regulations, 2010 CFR
2010-07-01
... catalytic converter. (ii) Diesel. Lack of cylinder combustion must be detected. (3) Exhaust gas sensors—(i... Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled...; calculated load; air flow rate from mass air flow sensor (if so equipped); fuel rate; and DPF delta pressure...
Code of Federal Regulations, 2011 CFR
2011-07-01
... catalytic converter. (ii) Diesel. Lack of cylinder combustion must be detected. (3) Exhaust gas sensors—(i... Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled...; calculated load; air flow rate from mass air flow sensor (if so equipped); fuel rate; and DPF delta pressure...
Post-fire logging reduces surface woody fuels up to four decades following wildfire
David W. Peterson; Erich Kyle Dodson; Richy J. Harrod
2015-01-01
Severe wildfires create pulses of dead trees that influence future fuel loads, fire behavior, and fire effects as they decay and deposit surface woody fuels. Harvesting fire-killed trees may reduce future surface woody fuels and related fire hazards, but the magnitude and timing of post-fire logging effects on woody fuels have not been fully assessed. To address this...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Kukwon; Curran, Scott; Prikhodko, Vitaly Y
2011-01-01
An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm andmore » an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.« less
NASA Astrophysics Data System (ADS)
Nguyen, H. T.; Le, M. V.; Nguyen, T. A.; Nguyen, T. A. N.
2017-06-01
The solid oxide fuel cell is one of the promising technologies for future energy demand. Solid oxide fuel cell operated in the single-chamber mode exhibits several advantages over conventional single oxide fuel cell due to the simplified, compact, sealing-free cell structure. There are some studies on simulating the behavior of this type of fuel cell but they mainly focus on the 2D model. In the present study, a three-dimensional numerical model of a single chamber solid oxide fuel cell (SOFC) is reported and solved using COMSOL Multiphysics software. Experiments of a planar button solid oxide fuel cell were used to verify the simulation results. The system is fed by methane and oxygen and operated at 700°C. The cathode is LSCF6482, the anode is GDC-Ni, the electrolyte is LDM and the operating pressure is 1 atm. There was a good agreement between the cell temperature and current voltage estimated from the model and measured from the experiment. The results indicate that the model is applicable for the single chamber solid oxide fuel cell and it can provide a basic for the design, scale up of single chamber solid oxide fuel cell system.
NASA Astrophysics Data System (ADS)
Ambarita, H.
2018-02-01
The Government of Indonesia (GoI) has released a target on reduction Green Houses Gases emissions (GHG) by 26% from level business-as-usual by 2020, and the target can be up to 41% by international supports. In the energy sector, this target can be reached effectively by promoting fossil fuel replacement or blending with biofuel. One of the potential solutions is operating compression ignition (CI) engine in dual-fuel (diesel-biogas) mode. In this study effects of engine load and biogas flow rate on the performance and exhaust gas emissions of a compression ignition engine run in dual-fuel mode are investigated. In the present study, the used biogas is refined with methane content 70% of volume. The objectives are to explore the optimum operating condition of the CI engine run in dual-fuel mode. The experiments are performed on a four-strokes CI engine with rated output power of 4.41 kW. The engine is tested at constant speed 1500 rpm. The engine load varied from 600W to 1500W and biogas flow rate varied from 0 L/min to 6 L/min. The results show brake thermal efficiency of the engine run in dual-fuel mode is better than pure diesel mode if the biogas flow rates are 2 L/min and 4 L/min. It is recommended to operate the present engine in a dual-fuel mode with biogas flow rate of 4 L/min. The consumption of diesel fuel can be replaced up to 50%.
Bio-derived Fuel Blend Dilution of Marine Engine Oil and Imapct on Friction and Wear Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajayi, Oyelayo O.; Lorenzo-Martin, Cinta; Fenske, George R.
To reduce the amount of petroleum-derived fuel used in vehicles and vessels powered by internal combustion engines, the addition of bio-derived fuel extenders is a common practice. Ethanol is perhaps the most common bio-derived fuel used for blending, and butanol is being evaluated as a promising alternative. The present study determined the fuel dilution rate of three lubricating oils (E0, E10, and i-B16) in a marine engine operating in on-water conditions with a start-and-stop cycle protocol. The level of fuel dilution increased with the number of cycles for all three fuels. The most dilution was observed with i-B16 fuel, andmore » the least with E10 fuel. In all cases, fuel dilution substantially reduced the oil viscosity. The impacts of fuel dilution and the consequent viscosity reduction on the lubricating capability of the engine oil in terms of friction, wear, and scuffing prevention were evaluated by four different tests protocols. Although the fuel dilution of the engine oil had minimal effect on friction, because the test conditions were under the boundary lubrication regime, significant effects were observed on wear in many cases. Fuel dilution also was observed to reduce the load-carrying capacity of the engine oils in terms of scuffing load reduction.« less
Fuel-cell based power generating system having power conditioning apparatus
Mazumder, Sudip K.; Pradhan, Sanjaya K.
2010-10-05
A power conditioner includes power converters for supplying power to a load, a set of selection switches corresponding to the power converters for selectively connecting the fuel-cell stack to the power converters, and another set of selection switches corresponding to the power converters for selectively connecting the battery to the power converters. The power conveners output combined power that substantially optimally meets a present demand of the load.
The effects of a low intensity fire on a mixed conifer forest in Bryce Canyon National Park, Utah
Henry V. Bastian
2001-01-01
Prescribed fire was used to reduce fuel loading and tree densities. Permanent vegetation and fuel loading plots were randomly established within prescribed burn units. The plots were established in 1995 and were sampled, immediately postburn (within 1 month of the fire), 1 year after the burn, and 2 years after the burn. The prescribed burns were implemented in August...
APPARATUS FOR LOADING AND UNLOADING A MACHINE
Payne, J.H. Jr.
1962-07-17
An arrangement for loading and unloading a nuclear reactor is described. Depleted fuel elements are removed from the reactor through one of a small number of holes in a shielding plug that is rotatably mounted in an eccentric annular plug rotatably mounted in the top of the reactor. The fuel elements removed are stored in a plurality of openings in a rotatable magazine or storage means rotatably mounted over the plugs. (AEC)
NASA Astrophysics Data System (ADS)
Harano, Ken-ichi; Mitsuhata-Asai, Akiko; Sasaki, Masami
2014-07-01
Before foraging honeybees leave the hive, each bee loads its crop with some amount of honey "fuel" depending on the distance to the food source and foraging experience. For pollen collection, there is evidence that foragers carry additional honey as "glue" to build pollen loads. This study examines whether pollen foragers of the European honeybee Apis mellifera regulate the size of the crop load according to food-source distances upon leaving the hive and how foraging experience affects load regulation. The crop contents of bees foraging on crape myrtle Lagerstroemia indica, which has no nectary, were larger than those foraging on nectar from other sources, confirming a previous finding that pollen foragers carry glue in addition to fuel honey from the hive. Crop contents of both waggle dancers and dance followers showed a significant positive correlation with waggle-run durations. These results suggest that bees carry a distance-dependent amount of fuel honey in addition to a fixed amount of glue honey. Crop contents on leaving the hive were statistically larger in dancers than followers. Based on these results, we suggest that pollen foragers use information obtained through foraging experience to adjust crop contents on leaving the hive.
Harano, Ken-ichi; Mitsuhata-Asai, Akiko; Sasaki, Masami
2014-07-01
Before foraging honeybees leave the hive, each bee loads its crop with some amount of honey "fuel" depending on the distance to the food source and foraging experience. For pollen collection, there is evidence that foragers carry additional honey as "glue" to build pollen loads. This study examines whether pollen foragers of the European honeybee Apis mellifera regulate the size of the crop load according to food-source distances upon leaving the hive and how foraging experience affects load regulation. The crop contents of bees foraging on crape myrtle Lagerstroemia indica, which has no nectary, were larger than those foraging on nectar from other sources, confirming a previous finding that pollen foragers carry glue in addition to fuel honey from the hive. Crop contents of both waggle dancers and dance followers showed a significant positive correlation with waggle-run durations. These results suggest that bees carry a distance-dependent amount of fuel honey in addition to a fixed amount of glue honey. Crop contents on leaving the hive were statistically larger in dancers than followers. Based on these results, we suggest that pollen foragers use information obtained through foraging experience to adjust crop contents on leaving the hive.
Utility Company Electric Vehicle (EV) Charging Load Projection Requirement The Public Utilities Regulatory Authority requires electric distribution companies to integrate EV charging load projections into the EV charging load projections for the company's distribution planning. (Reference Connecticut
The relationship of post-fire white ash cover to surface fuel consumption
Andrew T. Hudak; Roger D. Ottmar; Robert E. Vihnanek; Nolan W. Brewer; Alistair M. S. Smith; Penelope Morgan
2013-01-01
White ash results from the complete combustion of surface fuels, making it a logically simple retrospective indicator of surface fuel consumption. However, the strength of this relationship has been neither tested nor adequately demonstrated with field measurements. We measured surface fuel loads and cover fractions of white ash and four other surface materials (green...
Fuel loading following fuel-reduction treatments and impacts from natural disturbances
Ross J. Phillips; Thomas A. Waldrop
2013-01-01
A long-term study of fuel-reduction treatments (mechanical fuel removal, prescribed burning, and the combination of mechanical treatment and burning) was begun in 2000 and 2001 for sites located in the Piedmont of South Carolina and the Southern Appalachian Mountains of North Carolina, respectively. During this time multiple natural disturbances [southern pine beetle...
Effects of alternative treatments on canopy fuel characteristics in five conifer stands
Joe H. Scott; Elizabeth D. Reinhardt
2007-01-01
A detailed study of canopy fuel characteristics in five different forest types provided a unique dataset for simulating the effects of various stand manipulation treatments on canopy fuels. Low thinning, low thinning with commercial dbh limit, and crown thinning had similar effects on canopy bulk density (CBD) and canopy fuel load (CFL...
Assessment of forest fuel loadings in Puerto Rico and the US Virgin Islands
Thomas J. Brandeis; Christopher W. Woodall
2008-01-01
Quantification of the downed woody materials that comprise forest fuels has gained importance in Caribbean forest ecosystems due to the increasing incidence and severity of wildfires on island ecosystems. Because large-scale assessments of forest fuels have rarely been conducted for these ecosystems, forest fuels were assessed at 121 US Department of Agriculture forest...
Operational load estimation of a smart wind turbine rotor blade
NASA Astrophysics Data System (ADS)
White, Jonathan R.; Adams, Douglas E.; Rumsey, Mark A.
2009-03-01
Rising energy prices and carbon emission standards are driving a fundamental shift from fossil fuels to alternative sources of energy such as biofuel, solar, wind, clean coal and nuclear. In 2008, the U.S. installed 8,358 MW of new wind capacity increasing the total installed wind power by 50% to 25,170 MW. A key technology to improve the efficiency of wind turbines is smart rotor blades that can monitor the physical loads being applied by the wind and then adapt the airfoil for increased energy capture. For extreme wind and gust events, the airfoil could be changed to reduce the loads to prevent excessive fatigue or catastrophic failure. Knowledge of the actual loading to the turbine is also useful for maintenance planning and design improvements. In this work, an array of uniaxial and triaxial accelerometers was integrally manufactured into a 9m smart rotor blade. DC type accelerometers were utilized in order to estimate the loading and deflection from both quasi-steady-state and dynamic events. A method is presented that designs an estimator of the rotor blade static deflection and loading and then optimizes the placement of the sensor(s). Example results show that the method can identify the optimal location for the sensor for both simple example cases and realistic complex loading. The optimal location of a single sensor shifts towards the tip as the curvature of the blade deflection increases with increasingly complex wind loading. The framework developed is practical for the expansion of sensor optimization in more complex blade models and for higher numbers of sensors.
Stereo photos for evaluating jack pine slash fuels.
Richard W. Blank
1982-01-01
Describes a quick, visual method for estimating jack pine logging residue and other fuels. The method uses a series of large color photographs and stereo pairs as well as data sheets that detail size classes and loadings of the logging slash and other fuels.
Influence of the fuel and dosage on the performance of double-compartment microbial fuel cells.
Asensio, Y; Fernandez-Marchante, C M; Lobato, J; Cañizares, P; Rodrigo, M A
2016-08-01
This manuscript focuses on the evaluation of the use of different types and dosages of fuels in the performance of double-compartment microbial fuel cell equipped with carbon felt electrodes and cationic membrane. Five types of fuels (ethanol, glycerol, acetate, propionate and fructose) have been tested for the same organic load (5,000 mg L(-1) measured as COD) and for one of them (acetate), the range of dosages between 500 and 20,000 mg L(-1) of COD was also studied. Results demonstrate that production of electricity depends strongly on the fuel used. Carboxylic acids are much more efficient than alcohols or fructose for the same organic load and within the range 500-5,000 mg L(-1) of acetate the production of electricity increases linearly with the amount of acetate fed but over these concentrations a change in the population composition may explain a worse performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electrochemical Orbital Energy Storage (ECOES) technology program. [regenerative fuel cell system
NASA Technical Reports Server (NTRS)
Mcbryar, H.
1980-01-01
The versatility and flexibility of a regenerative fuel cell power and energy storage system is considered. The principal elements of a Regenerative Fuel Cell System combine the fuel cell and electrolysis cell with a photovoltaic solar cell array, along with fluid storage and transfer equipment. The power output of the array (for LEO) must be roughly triple the load requirements of the vehicle since the electrolyzers must receive about double the fuel cell output power in order to regenerate the reactants (2/3 of the array power) while 1/3 of the array power supplies the vehicle base load. The working fluids are essentially recycled indefinitely. Any resupply requirements necessitated by leakage or inefficient reclamation is water - an ideal material to handle and transport. Any variation in energy storage capacity impacts only the fluid storage portion, and the system is insensitive to use of reserve reactant capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragatz, Adam; Thornton, Matthew
This study focused on two accepted methods for quantifying the benefit of aerodynamic improvement technologies on vocational vehicles: the coastdown technique, and on-road constant speed fuel economy measurements. Both techniques have their advantages. Coastdown tests are conducted over a wide range in speed and allow the rolling resistance and aerodynamic components of road load force to be separated. This in turn allows for the change in road load and fuel economy to be estimated at any speed, as well as over transient cycles. The on-road fuel economy measurements only supply one lumped result, applicable at the specific test speed, butmore » are a direct measurement of fuel usage and are therefore used in this study as a check on the observed coastdown results. Resulting coefficients were then used to populate a vehicle model and simulate expected annual fuel savings over real-world vocational drive cycles.« less
NASA Technical Reports Server (NTRS)
Parker, Peter A. (Inventor)
2003-01-01
A single vector calibration system is provided which facilitates the calibration of multi-axis load cells, including wind tunnel force balances. The single vector system provides the capability to calibrate a multi-axis load cell using a single directional load, for example loading solely in the gravitational direction. The system manipulates the load cell in three-dimensional space, while keeping the uni-directional calibration load aligned. The use of a single vector calibration load reduces the set-up time for the multi-axis load combinations needed to generate a complete calibration mathematical model. The system also reduces load application inaccuracies caused by the conventional requirement to generate multiple force vectors. The simplicity of the system reduces calibration time and cost, while simultaneously increasing calibration accuracy.
Optimal dual-fuel propulsion for minimum inert weight or minimum fuel cost
NASA Technical Reports Server (NTRS)
Martin, J. A.
1973-01-01
An analytical investigation of single-stage vehicles with multiple propulsion phases has been conducted with the phasing optimized to minimize a general cost function. Some results are presented for linearized sizing relationships which indicate that single-stage-to-orbit, dual-fuel rocket vehicles can have lower inert weight than similar single-fuel rocket vehicles and that the advantage of dual-fuel vehicles can be increased if a dual-fuel engine is developed. The results also indicate that the optimum split can vary considerably with the choice of cost function to be minimized.
Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; LaClair, Tim J.; Smith, David E.
We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance weremore » combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.« less
Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization
Gao, Zhiming; LaClair, Tim J.; Smith, David E.; ...
2015-10-01
We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance weremore » combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.« less
Fretting Stresses in Single Crystal Superalloy Turbine Blade Attachments
NASA Technical Reports Server (NTRS)
Arakere, Nagaraj K.; Swanson, Gregory
2000-01-01
Single crystal nickel base superalloy turbine blades are being utilized in rocket engine turbopumps and turbine engines because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal nickel base turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. High Cycle Fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Blade attachment regions are prone to fretting fatigue failures. Single crystal nickel base superalloy turbine blades are especially prone to fretting damage because the subsurface shear stresses induced by fretting action at the attachment regions can result in crystallographic initiation and crack growth along octahedral planes. Furthermore, crystallographic crack growth on octahedral planes under fretting induced mixed mode loading can be an order of magnitude faster than under pure mode I loading. This paper presents contact stress evaluation in the attachment region for single crystal turbine blades used in the NASA alternate Advanced High Pressure Fuel Turbo Pump (HPFTP/AT) for the Space Shuttle Main Engine (SSME). Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Blades and the attachment region are modeled using a large-scale 3D finite element (FE) model capable of accounting for contact friction, material orthotrophy, and variation in primary and secondary crystal orientation. Contact stress analysis in the blade attachment regions is presented as a function of coefficient of friction and primary and secondary crystal orientation, Stress results are used to discuss fretting fatigue failure analysis of SSME blades. Attachment stresses are seen to reach peak values at locations where fretting cracks have been observed. Fretting stresses at the attachment region are seen to vary significantly as a function of crystal orientation. Attempts to adapt techniques used for estimating fatigue life in the airfoil region, for life calculations in the attachment region, are presented. An effective model for predicting crystallographic crack initiation under mixed mode loading is required for life prediction under fretting action.
System-Level Logistics for Dual Purpose Canister Disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinina, Elena A.
2014-06-03
The analysis presented in this report investigated how the direct disposal of dual purpose canisters (DPCs) may be affected by the use of standard transportation aging and disposal canisters (STADs), early or late start of the repository, and the repository emplacement thermal power limits. The impacts were evaluated with regard to the availability of the DPCs for emplacement, achievable repository acceptance rates, additional storage required at an interim storage facility (ISF) and additional emplacement time compared to the corresponding repackaging scenarios, and fuel age at emplacement. The result of this analysis demonstrated that the biggest difference in the availability ofmore » UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario is for a repository start date of 2036 with a 6 kW thermal power limit. The differences are also seen in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario for the alternative with a 6 kW thermal limit and a 2048 start date, and for the alternatives with a 10 kW thermal limit and 2036 and 2048 start dates. The alternatives with disposal of UNF in both DPCs and STADs did not require additional storage, regardless of the repository acceptance rate, as compared to the reference repackaging case. In comparison to the reference repackaging case, alternatives with the 18 kW emplacement thermal limit required little to no additional emplacement time, regardless of the repository start time, the fuel loading scenario, or the repository acceptance rate. Alternatives with the 10 kW emplacement thermal limit and the DPCs and STADs fuel loading scenario required some additional emplacement time. The most significant decrease in additional emplacement time occurred in the alternative with the 6 kW thermal limit and the 2036 repository starting date. The average fuel age at emplacement ranges from 46 to 88 years. The maximum fuel age at emplacement ranges from 81 to 146 years. The difference in the average and maximum age of fuel at emplacement between the DPC-only and the DPCs and STADs fuel loading scenarios becomes less significant as the repository thermal limit increases and as the repository start date increases. In general, the role of STADs is to store young (30 year or younger) high burnup (45 GWD/MTU or higher) fuel. Recommendations for future study include detailed evaluation of the feasible alternatives with regard to the costs and factors not considered in this analysis, such as worker dose, dose to members of the public, and economic benefits to host entities. It is also recommended to conduct an additional analysis to evaluate the assumption regarding the transportability and disposability of DPCs for the next iteration of the direct disposal of DPCs study.« less
A preliminary test method for masonry heater particulate matter and carbon monoxide emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, C.H.; Jaasma, D.R.; Shelton, J.W.
1991-08-01
A test method for determining carbon monoxide (CO) and particulate matter (PM) emissions from masonry heaters is described and results of tests on two masonry heaters are presented. The method specifies fueling protocol and laboratory measurement procedures for determination of both emission factors (g/kg) and rates (g/hr). The fuel load size and fueling intervals are dependent upon the firebox volume of the masonry heater. The test method starts with a room temperature masonry heater and involves five firings to achieve burn rates in two ranges, where the burn rate is defined as the dry mass of the fuel load dividedmore » by the time between loadings. Emission samples are extracted from a dilution tunnel with a set flow rate and configuration. Particulate matter sampling is similar to US EPA Method 5G for woodstoves, and Co concentration is measured by a nondispersive infrared (NDIR) gas analyzer. The emissions results for each firing are weighted according to EPA Method 28 to obtain the overall emission totals for the test.« less
Cai, Longyan; He, Hong S.; Wu, Zhiwei; Lewis, Benard L.; Liang, Yu
2014-01-01
Understanding the fire prediction capabilities of fuel models is vital to forest fire management. Various fuel models have been developed in the Great Xing'an Mountains in Northeast China. However, the performances of these fuel models have not been tested for historical occurrences of wildfires. Consequently, the applicability of these models requires further investigation. Thus, this paper aims to develop standard fuel models. Seven vegetation types were combined into three fuel models according to potential fire behaviors which were clustered using Euclidean distance algorithms. Fuel model parameter sensitivity was analyzed by the Morris screening method. Results showed that the fuel model parameters 1-hour time-lag loading, dead heat content, live heat content, 1-hour time-lag SAV(Surface Area-to-Volume), live shrub SAV, and fuel bed depth have high sensitivity. Two main sensitive fuel parameters: 1-hour time-lag loading and fuel bed depth, were determined as adjustment parameters because of their high spatio-temporal variability. The FARSITE model was then used to test the fire prediction capabilities of the combined fuel models (uncalibrated fuel models). FARSITE was shown to yield an unrealistic prediction of the historical fire. However, the calibrated fuel models significantly improved the capabilities of the fuel models to predict the actual fire with an accuracy of 89%. Validation results also showed that the model can estimate the actual fires with an accuracy exceeding 56% by using the calibrated fuel models. Therefore, these fuel models can be efficiently used to calculate fire behaviors, which can be helpful in forest fire management. PMID:24714164
Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; LaClair, Tim J; Daw, C Stuart
2014-01-01
We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends inmore » the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.« less
Frank, Andrew A.
1984-01-01
A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine.
Chen, Bo-Ren; Nguyen, Van-Huy; Wu, Jeffrey C S; Martin, Reli; Kočí, Kamila
2016-02-14
The efficient gas phase photocatalytic hydrogenation of CO2 into a desirable renewable fuel was achieved using a Cu-loaded TiO2 photocatalyst system. Enhancing the amount of Ti(3+) relative to Ti(4+) in a Cu-loaded TiO2 photocatalyst provided an excellent opportunity to promote the photohydrogenation of CO2. The coexistence of Cu and Cu(+) species during the photoreaction was shown to efficiently enhance the photocatalytic activity by prolonging the lifetime of the electrons. To achieve the best photoactivity, the Cu species must be maintained at an appropriately low concentration (≤1 wt%). The highest CH4 yield obtained was 28.72 μmol g(-1). This approach opens a feasible route not only to store hydrogen by converting it into a desirable renewable fuel, but also to reduce the amount of the greenhouse gas CO2 in the atmosphere.
Singh, Harmohan N.
2012-06-05
A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.
NASA Astrophysics Data System (ADS)
Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.
2015-12-01
Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.
Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine
Aubin-Tam, Marie-Eve; Olivares, Adrian O.; Sauer, Robert T.; Baker, Tania A.; Lang, Matthew J.
2011-01-01
All cells employ ATP-powered proteases for protein-quality control and regulation. In the ClpXP protease, ClpX is a AAA+ machine that recognizes specific protein substrates, unfolds these molecules, and then translocates the denatured polypeptide through a central pore and into ClpP for degradation. Here, we use optical-trapping nanometry to probe the mechanics of enzymatic unfolding and translocation of single molecules of a multidomain substrate. Our experiments demonstrate the capacity of ClpXP and ClpX to perform mechanical work under load, reveal very fast and highly cooperative unfolding of individual substrate domains, suggest a translocation step size of 5–8 amino acids, and support a power-stroke model of denaturation in which successful enzyme-mediated unfolding of stable domains requires coincidence between mechanical pulling by the enzyme and a transient stochastic reduction in protein stability. We anticipate that single-molecule studies of the mechanical properties of other AAA+ proteolytic machines will reveal many shared features with ClpXP. PMID:21496645
Sherrell, Peter C; Zhang, Weimin; Zhao, Jie; Wallace, Gordon G; Chen, Jun; Minett, Andrew I
2012-07-01
Proton-exchange membrane fuel cells (PEMFCs) are expected to provide a complementary power supply to fossil fuels in the near future. The current reliance of fuel cells on platinum catalysts is undesirable. However, even the best-performing non-noble metal catalysts are not as efficient. To drive commercial viability of fuel cells forward in the short term, increased utilization of Pt catalysts is paramount. We have demonstrated improved power and energy densities in a single PEMFC using a designed cathode with a Pt loading of 0.1 mg cm(-2) on a mesoporous conductive entangled carbon nanotube (CNT)-based architecture. This electrode allows for rapid transfer of both fuel and waste to and from the electrode, respectively. Pt particles are bound tightly, directly to CNT sidewalls by a microwave-reduction technique, which provided increased charge transport at this interface. The Pt entangled CNT cathode, in combination with an E-TEK 0.2 mg cm(-2) anode, has a maximum power and energy density of 940 mW cm(-2) and 2700 mA cm(-2), respectively, and a power and energy density of 4.01 W mg(Pt)(-1) and 6.35 A mg(Pt)(-1) at 0.65 V. These power densities correspond to a specific mass activity of 0.81 g Pt per kW for the combined mass of both anode and cathode electrodes, approaching the current US Department of Energy efficiency target. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sensor for Injection Rate Measurements
Marcic, Milan
2006-01-01
A vast majority of the medium and high speed Diesel engines are equipped with multi-hole injection nozzles nowadays. Inaccuracies in workmanship and changing hydraulic conditions in the nozzles result in differences in injection rates between individual injection nozzle holes. The new deformational measuring method described in the paper allows injection rate measurement in each injection nozzle hole. The differences in injection rates lead to uneven thermal loads of Diesel engine combustion chambers. All today known measuring method, such as Bosch and Zeuch give accurate results of the injection rate in diesel single-hole nozzles. With multihole nozzles they tell us nothing about possible differences in injection rates between individual holes of the nozzle. At deformational measuring method, the criterion of the injected fuel is expressed by the deformation of membrane occurring due to the collision of the pressure wave against the membrane. The pressure wave is generated by the injection of the fuel into the measuring space. For each hole of the nozzle the measuring device must have a measuring space of its own into which fuel is injected as well as its measuring membrane and its own fuel outlet. During measurements procedure the measuring space must be filled with fuel to maintain an overpressure of 5 kPa. Fuel escaping from the measuring device is conducted into the graduated cylinders for measuring the volumetric flow through each hole of the nozzle.The membrane deformation is assessed by strain gauges. They are glued to the membrane and forming the full Wheatstone's bridge. We devoted special attention to the membrane shape and temperature compensation of the strain gauges.
Andrew Youngblood; Kerry L. Metlen; Eric E. Knapp; Kenneth W. Outcalt; Scott L. Stephens; Thomas A. Waldrop; Daniel Yaussy
2005-01-01
Many fire-dependent forests today are denser, contain fewer large trees, have higher fuel loads, and greater fuel continuity than occurred under historical fire regimes. These conditions increase the probability of unnaturally severe wildfires. Silviculturists are increasingly being asked to design fuel reduction treatments to help protect existing and future forest...
Nicholas S. Skowronski; Scott Haag; Jim Trimble; Kenneth L. Clark; Michael R. Gallagher; Richard G. Lathrop
2015-01-01
Large-scale fuel assessments are useful for developing policy aimed at mitigating wildfires in the wildland-urban interface (WUI), while finer-scale characterisation is necessary for maximising the effectiveness of fuel reduction treatments and directing suppression activities. We developed and tested an objective, consistent approach for characterising hazardous fuels...
Patrick H. Brose
2009-01-01
A field guide of 45 pairs of photographs depicting ericaceous shrub, leaf litter, and logging slash fuel types of eastern oak forests and observed fire behavior of these fuel types during prescribed burning. The guide contains instructions on how to use the photo guide to choose appropriate fuel models for prescribed fire planning.
Thomas A. Waldrop; Lucy Brudnak; Sandra Rideout-Hanzak
2013-01-01
Fuel distribution in the Southern Appalachian Mountain region was measured on 1,008 study plots that were stratified by topographic position (aspect and slope position). Few fuel differences occurred among topographic positions indicating that fuel accumulation is no greater on highly productive sites than on less productive sites. Litter was slightly higher on...
Jennifer Gene Klutsch
2008-01-01
The effect of forest disturbances, such as bark beetles and dwarf mistletoes, on fuel dynamics is important for understanding forest dynamics and heterogeneity. Fuel loads and other fuel parameters were assessed in areas of ponderosa pine (Pinus ponderosa Laws.) infested with southwestern dwarf mistletoe (Arceuthobium vaginatum...
L. Arroyo; S.P. Healey; W.B. Cohen; D. Cocero; J.A. Manzanera
2006-01-01
Knowledge of fuel load and composition is critical in fighting, preventing, and understanding wildfires. Commonly, the generation of fuel maps from remotely sensed imagery has made use of medium-resolution sensors such as Landsat. This paper presents a methodology to generate fuel type maps from high spatial resolution satellite data through object-oriented...
Assessment of forest fuel loadings in Puerto Rico and the U.S. Virgin Islands
Thomas Brandeis; Christopher Woodall
2009-01-01
Quantification of the downed woody materials that comprise forest fuels has gained importance in Caribbean forest ecosystems due to the increasing incidence and severity of wildfires on island ecosystems. Because large-scale assessments of forest fuels have rarely been conducted for these ecosystems, forest fuels were assessed at 121 U.S. Department of Agriculture,...
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Rajan, K.; Senthil Kumar, K. R.; Maiyappan, K.; Rasheed, Usama Tariq
2017-05-01
The experimental investigation is conducted to evaluate the effects by using Diethyl ether (DEE) as an additive. The Cashew Nut Shell Oil diesel blends (CDB) are tested in a 4-stroke single cylinder DI unmodified diesel engine, rated power is 4.4 kW at a speed of 1500 rpm. The effect of combustion analysis of test fuels on net heat release rate, cylinder pressure, engine power, BSFC, BTE, EGT were observed by the performance tests. The combustion and emission characteristics of a diesel engine with an additive of high cetane number is utilized with CDB and thus investigated. The influence of blends on CO, CO2, HC, NOx and smoke opacity is investigated by emission tests. Initially, the experiment was conducted with different blends of CDB diesel blends like 10%, 20%, & 30% by volume basis in a diesel engine. Among this blends B20 shows reasonable result and heat dissipation rate at full load conditions. The BTE of B20 is 27.52% whereas base diesel fuel is 29.73%. Addition of the DEE by 5%, 10% and 15% by volume basis with B20 which is a base fuel has resulted with improved estimates. The result shows that at full load conditions BTE of B20D10 is 28.96% which is close to the base fuel i.e. B20. The emissions like CO2 shows reducing trends while HC emission rises with increase in CNSO blends. The HC in diesel corresponds to 30ppm and in B20 it is 34ppm, but addition of DEE shows a decreasing trend as in B20D5 has 29ppm and B20D15 has 23ppm respectively. NOx also shows increasing trends with CNSO blend, after addition of DEE it shows declining trend. The NOx for diesel, B20, B30, B20D5, B20D10 and B20D15 emits 1195, 1450, 1511, 1327, 1373 and 1200ppm respectively. The smoke emission is 3.96, 3.38, 3.15 FSN of B20, B20D15 and diesel respectively.
Cheung, C S; Zhu, Ruijun; Huang, Zuohua
2011-01-01
The effect of dimethyl carbonate (DMC) on the gaseous and particulate emissions of a diesel engine was investigated using Euro V diesel fuel blended with different proportions of DMC. Combustion analysis shows that, with the blended fuel, the ignition delay and the heat release rate in the premixed combustion phase increase, while the total combustion duration and the fuel consumed in the diffusion combustion phase decrease. Compared with diesel fuel, with an increase of DMC in the blended fuel, the brake thermal efficiency is slightly improved but the brake specific fuel consumption increases. On the emission side, CO increases significantly at low engine load but decreases at high engine load while HC decreases slightly. NO(x) reduces slightly but the reduction is not statistically significant, while NO(2) increases slightly. Particulate mass and number concentrations decrease upon using the blended fuel while the geometric mean diameter of the particles shifts towards smaller size. Overall speaking, diesel-DMC blends lead to significant improvement in particulate emissions while the impact on CO, HC and NO(x) emissions is small. Copyright © 2010 Elsevier B.V. All rights reserved.
Engine-Operating Load Influences Diesel Exhaust Composition and Cardiopulmonary and Immune Responses
Campen, Matthew J.; Harrod, Kevin S.; Seagrave, JeanClare; Seilkop, Steven K.; Mauderly, Joe L.
2011-01-01
Background: The composition of diesel engine exhaust (DEE) varies by engine type and condition, fuel, engine operation, and exhaust after treatment such as particle traps. DEE has been shown to increase inflammation, susceptibility to infection, and cardiovascular responses in experimentally exposed rodents and humans. Engines used in these studies have been operated at idle, at different steady-state loads, or on variable-load cycles, but exposures are often reported only as the mass concentration of particulate matter (PM), and the effects of different engine loads and the resulting differences in DEE composition are unknown. Objectives: We assessed the impacts of load-related differences in DEE composition on models of inflammation, susceptibility to infection, and cardiovascular toxicity. Methods: We assessed inflammation and susceptibility to viral infection in C57BL/6 mice and cardiovascular toxicity in APOE–/– mice after being exposed to DEE generated from a single-cylinder diesel generator operated at partial or full load. Results: At the same PM mass concentration, partial load resulted in higher proportions of particle organic carbon content and a smaller particle size than did high load. Vapor-phase hydrocarbon content was greater at partial load. Compared with high-load DEE, partial-load DEE caused greater responses in heart rate and T-wave morphology, in terms of both magnitude and rapidity of onset of effects, consistent with previous findings that systemic effects may be driven largely by the gas phase of the exposure atmospheres. However, high-load DEE caused more lung inflammation and greater susceptibility to viral infection than did partial load. Conclusions: Differences in engine load, as well as other operating variables, are important determinants of the type and magnitude of responses to inhaled DEE. PM mass concentration alone is not a sufficient basis for comparing or combining results from studies using DEE generated under different conditions. PMID:21524982
Domestic smoke exposure is associated with alveolar macrophage particulate load.
Fullerton, Duncan G; Jere, Khuzwayo; Jambo, Kondwani; Kulkarni, Neeta S; Zijlstra, Eduard E; Grigg, Jonathan; French, Neil; Molyneux, Malcolm E; Gordon, Stephen B
2009-03-01
Indoor air pollution is associated with impaired respiratory health. The pre-dominant indoor air pollutant to which two billion of the world's population is exposed is biomass fuel smoke. We tested the hypothesis that reported smoke exposure in men and women is associated with increased alveolar macrophage uptake of biomass smoke particulates. Healthy volunteers attending for research bronchoscopy in Malawi completed a questionnaire assessment of smoke exposure. Particulate matter visible in alveolar macrophages (AM) was quantified using digital image analysis. The geometric mean of the percentage area of the cytoplasm occupied by particulates in 50 cover-slip adherent AM was calculated and termed particulate load. In 57 subjects (40 men and 17 women) there was a significant difference between the particulate load in groups divided according to pre-dominant lighting form used at home (ANOVA P = 0.0009) and type of cooking fuel (P = 0.0078). Particulate load observed in macrophages is associated with the reported type of biomass fuel exposure. Macrophage function in relation to respiratory health should now be investigated in biomass smoke exposed subjects.
NASA Astrophysics Data System (ADS)
Senthil, R.; Silambarasan, R.; Pranesh, G.
2017-03-01
The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.
Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Alex; Banta, Larry; Tucker, David
2010-08-01
This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant componentsmore » is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.« less
Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; ...
2014-12-26
The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore » imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Peng; Vander Wal, Randy; Boehman, Andre L.
The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore » imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less
Design and Performance of LPG Fuel Mixer for Dual Fuel Diesel Engine
NASA Astrophysics Data System (ADS)
Desrial; Saputro, W.; Garcia, P. P.
2018-05-01
Small horizontal diesel engines are commonly used for agricultural machinery, however, availability of diesel fuel become one of big problems especially in remote area. Conversely, in line with government policy for conversion of kerosene into LPG for cooking, then LPG become more popular and available even in remote area. Therefore, LPG is potential fuel to replace the shortage of diesel fuel for operating diesel engine in remote area. The purpose of this study was to design mixing device for using dual fuel i.e. LPG and diesel fuel and evaluate its performance accordingly. Simulation by using CFD was done in order to analyze mixture characteristics of LPG in air intake manifold. The performance test was done by varying the amount of LPG injected in intake air at 20%, 25%, 30%, 35%, until 40%, respectively. Result of CFD contour simulation showed the best combination when mixing 30% LPG into the intake air. Performance test of this research revealed that mixing LPG in air intake can reduce the diesel fuel consumption about 0.7 l/hour (without load) and 1.14 l/hour (with load). Diesel engine revolution increases almost 300 rpm faster than when using diesel fuel only. Based on economic analysis, using the fuel combination (diesel fuel – LPG) is not recommended in the area near SPBU where the price of diesel fuel is standard. However, using the fuel combination LPG-diesel fuel is highly recommended in the remote areas in Indonesia where price of diesel fuel is comparatively expensive which will provide cheaper total fuel cost for diesel engine operation.
NASA Technical Reports Server (NTRS)
Wherley, B. L.; Strehlow, R. A.
1986-01-01
Fuel-lean flames in methane-air mixtures from 4.90 to 6.20 volume percent fuel and propane-air mixtures from 1.90 to 3.00 volume percent fuel were studied in the vicinity of the limit for a variety of gravity conditions. The limits were determined and the behavior of the flames studied for one g upward, one g downward, and zero g propagation. Photographic records of all flammability tube firings were obtained. The structure and behavior of these flames were detailed including the variations of the curvature of the flame front, the skirt length, and the occurrence of cellular instabilities with varying gravity conditions. The effect of ignition was also discussed. A survey of flame speeds as a function of mixture strength was made over a range of lean mixture compositions for each of the fuels studied. The results were presented graphically with those obtained by other researchers. The flame speed for constant fractional gravity loadings were plotted as a function of gravity loadings from 0.0 up to 2.0 g's against flame speeds extracted from the transient gravity flame histories for corresponding gravity loadings. The effects of varying gravity conditions on the extinguishment process for upward and downward propagating flames were investigated.
Co-Optima Project E2.2.2: Accelerate Development of ACI/LTC Fuel Effects on RCCI Combustion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musculus, Mark P.
Many advanced combustion approaches have demonstrated potential for achieving diesel-like thermal efficiency but with much lower pollutant emissions of particulate matter (PM) and nitrogen oxides (NOx). RCCI is one advanced combustion concept, which makes use of in-cylinder blending of two fuels with differing reactivity for improved control of the combustion phasing and rate (Reitz et al., 2015). Previous research and development at ORNL has demonstrated successful implementation of RCCI on a light-duty multi-cylinder engine over a wide range of operating conditions (Curran et al., 2015). Several challenges were encountered when extending the research to practical applications, including limits to themore » operating range, both for high and low loads. Co-optimizing the engine and fuel aspects of the RCCI approach might allow these operating limits to be overcome. The in-cylinder mechanisms by which fuel properties interact with engine operating condition variables is not well understood, however, in part because RCCI is a new combustion concept that is still being developed, and limited data have been acquired to date, especially using in-cylinder optical/imaging diagnostics. The objective of this work is to use in-cylinder diagnostics in a heavy-duty single-cylinder optical engine at SNL to understand the interplay between fuel properties and engine hardware and operating conditions for RCCI in general, and in particular for the light-duty multi-cylinder all-metal RCCI engine experiments at ORNL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel Curtis; Charles Forsberg; Humberto Garcia
2015-05-01
We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the westernmore » United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.« less
40 CFR 63.7520 - What stack tests and procedures must I use?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Institutional Boilers and Process Heaters Testing, Fuel Analyses, and Initial Compliance Requirements § 63.7520... representative operating load conditions while burning the type of fuel or mixture of fuels that has the highest... measured hydrogen chloride concentrations, and the measured mercury concentrations that result from the...
Multiple fuel supply system for an internal combustion engine
Crothers, William T.
1977-01-01
A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.
Effect of load transients on SOFC operation—current reversal on loss of load
NASA Astrophysics Data System (ADS)
Gemmen, Randall S.; Johnson, Christopher D.
The dynamics of solid oxide fuel cell (SOFC) operation have been considered previously, but mainly through the use of one-dimensional codes applied to co-flow fuel cell systems. In this paper several geometries are considered, including cross-flow, co-flow, and counter-flow. The details of the model are provided, and the model is compared with some initial experimental data. For parameters typical of SOFC operation, a variety of transient cases are investigated, including representative load increase and decrease and system shutdown. Of particular note for large load decrease conditions (e.g., shutdown) is the occurrence of reverse current over significant portions of the cell, starting from the moment of load loss up to the point where equilibrated conditions again provide positive current. Consideration is given as to when such reverse current conditions might most significantly impact the reliability of the cell.