Sample records for single gain medium

  1. High peak-power kilohertz laser system employing single-stage multi-pass amplification

    DOEpatents

    Shan, Bing; Wang, Chun; Chang, Zenghu

    2006-05-23

    The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.

  2. Window Glazing Types | Efficient Windows Collaborative

    Science.gov Websites

    of glass. Single Clear Single Tint Double Glazing The following sections on high-performance double fills. Double Clear Double Tint Double High-Solar-Gain Low-E Double Medium-Solar-Gain Low-E Double Low -Solar-Gain Low-E Double High-Solar-Gain Low-E with Roomside (4th surface) Low-E Double Medium-Solar-Gain

  3. Self-seeded single-frequency solid-state ring laser and system using same

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-02-20

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  4. Self-seeded single-frequency laser peening method

    DOEpatents

    Dane, C Brent [Livermore, CA; Hackel, Lloyd [Livermore, CA; Harris, Fritz B [Rocklin, CA

    2009-08-11

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  5. Self-seeded single-frequency laser peening method

    DOEpatents

    DAne, C Brent; Hackey, Lloyd A; Harris, Fritz B

    2012-06-26

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  6. Tunable semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    Tunable semiconductor lasers are disclosed requiring minimized coupling regions. Multiple laser embodiments employ ring resonators or ring resonator pairs using only a single coupling region with the gain medium are detailed. Tuning can be performed by changing the phase of the coupling coefficient between the gain medium and a ring resonator of the laser. Another embodiment provides a tunable laser including two Mach-Zehnder interferometers in series and a reflector coupled to a gain medium.

  7. Cladding for transverse-pumped solid-state laser

    NASA Technical Reports Server (NTRS)

    Byer, Robert L. (Inventor); Fan, Tso Y. (Inventor)

    1989-01-01

    In a transverse pumped, solid state laser, a nonabsorptive cladding surrounds a gain medium. A single tranverse mode, namely the Transverse Electromagnetic (TEM) sub 00 mode, is provided. The TEM sub 00 model has a cross sectional diameter greater than a transverse dimension of the gain medium but less than a transverse dimension of the cladding. The required size of the gain medium is minimized while a threshold for laser output is lowered.

  8. Single photons from a gain medium below threshold

    NASA Astrophysics Data System (ADS)

    Ghosh, Sanjib; Liew, Timothy C. H.

    2018-06-01

    The emission from a nonlinear photonic mode coupled weakly to a gain medium operating below threshold is predicted to exhibit antibunching. In the steady state regime, analytical solutions for the relevant observable quantities are found in accurate agreement with exact numerical results. Under pulsed excitation, the unequal time second-order correlation function demonstrates the triggered probabilistic generation of single photons well separated in time.

  9. Red, green, and blue lasing enabled by single-exciton gain in colloidal quantum dot films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurmikko, Arto V.; Dang, Cuong

    The methods and materials described herein contemplate the use films of colloidal quantum dots as a gain medium in a vertical-cavity surface-emitting laser. The present disclosure demonstrates a laser with single-exciton gain in the red, green, and blue wavelengths. Leveraging this nanocomposite gain, the results realize a significant step toward full-color single-material lasers.

  10. Multi-pass light amplifier

    NASA Technical Reports Server (NTRS)

    Plaessmann, Henry (Inventor); Grossman, William M. (Inventor)

    1997-01-01

    A multiple-pass laser amplifier that uses optical focusing between subsequent passes through a single gain medium so that a reproducibly stable beam size is achieved within the gain region. A confocal resonator or White Cell resonator is provided, including two or three curvilinearly shaped mirrors facing each other along a resonator axis and an optical gain medium positioned on the resonator axis between the mirrors (confocal resonator) or adjacent to one of the mirrors (White Cell). In a first embodiment, two mirrors, which may include adjacent lenses, are configured so that a light beam passing through the gain medium and incident on the first mirror is reflected by that mirror toward the second mirror in a direction approximately parallel to the resonator axis. A light beam translator, such as an optical flat of transparent material, is positioned to translate this light beam by a controllable amount toward or away from the resonator axis for each pass of the light beam through the translator. The optical gain medium may be solid-state, liquid or gaseous medium and may be pumped longitudinally or transversely. In a second embodiment, first and second mirrors face a third mirror in a White Cell configuration, and the optical gain medium is positioned at or adjacent to one of the mirrors. Defocusing means and optical gain medium cooling means are optionally provided with either embodiment, to controllably defocus the light beam, to cool the optical gain medium and to suppress thermal lensing in the gain medium.

  11. Calculation of single-pass gain for laser ceramics with losses

    NASA Astrophysics Data System (ADS)

    Vatnik, S. M.

    2018-04-01

    Rate equations describing the single-pass gain in an active medium with losses are analytically solved. The found relations illustrate the dependences of the amplification efficiency of Nd : YAG ceramics on the pump power density and specific losses. It is concluded that specific losses can be estimated from comparative measurements of unsaturated and saturated gains.

  12. Wavelength-resonant surface-emitting semiconductor laser

    DOEpatents

    Brueck, Steven R. J.; Schaus, Christian F.; Osinski, Marek A.; McInerney, John G.; Raja, M. Yasin A.; Brennan, Thomas M.; Hammons, Burrell E.

    1989-01-01

    A wavelength resonant semiconductor gain medium is disclosed. The essential feature of this medium is a multiplicity of quantum-well gain regions separated by semiconductor spacer regions of higher bandgap. Each period of this medium consisting of one quantum-well region and the adjacent spacer region is chosen such that the total width is equal to an integral multiple of 1/2 the wavelength in the medium of the radiation with which the medium is interacting. Optical, electron-beam and electrical injection pumping of the medium is disclosed. This medium may be used as a laser medium for single devices or arrays either with or without reflectors, which may be either semiconductor or external.

  13. Multi-pass light amplifier

    NASA Technical Reports Server (NTRS)

    Plaessmann, Henry (Inventor); Grossman, William M. (Inventor); Olson, Todd E. (Inventor)

    1996-01-01

    A multiple-pass laser amplifier that uses optical focusing between subsequent passes through a single gain medium so that a reproducibly stable beam size is achieved within the gain region. A resonator or a White Cell cavity is provided, including two or more mirrors (planar or curvilinearly shaped) facing each other along a resonator axis and an optical gain medium positioned on a resonator axis between the mirrors or adjacent to one of the mirrors. In a first embodiment, two curvilinear mirrors, which may include adjacent lenses, are configured so that a light beam passing through the gain medium and incident on the first mirror is reflected by that mirror toward the second mirror in a direction approximately parallel to the resonator axis. A light beam translator, such as an optical flat of transparent material, is positioned to translate this light beam by a controllable amount toward or away from the resonator axis for each pass of the light beam through the translator. A second embodiment uses two curvilinear mirrors and one planar mirror, with a gain medium positioned in the optical path between each curvilinear mirror and the planar mirror. A third embodiment uses two curvilinear mirrors and two planar mirrors, with a gain medium positioned adjacent to a planar mirror. A fourth embodiment uses a curvilinear mirror and three planar mirrors, with a gain medium positioned adjacent to a planar mirror. A fourth embodiment uses four planar mirrors and a focusing lens system, with a gain medium positioned between the four mirrors. A fifth embodiment uses first and second planar mirrors, a focusing lens system and a third mirror that may be planar or curvilinear, with a gain medium positioned adjacent to the third mirror. A sixth embodiment uses two planar mirrors and a curvilinear mirror and a fourth mirror that may be planar or curvilinear, with a gain medium positioned adjacent to the fourth mirror. In a seventh embodiment, first and second mirrors face a third mirror, all curvilinear, in a White Cell configuration, and a gain medium is positioned adjacent to one of the mirrors.

  14. High power regenerative laser amplifier

    DOEpatents

    Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.

    1994-01-01

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  15. High power regenerative laser amplifier

    DOEpatents

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  16. Single transverse mode protein laser

    NASA Astrophysics Data System (ADS)

    Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat

    2017-12-01

    Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.

  17. Gain enhancement with near-zero-index metamaterial superstrate

    NASA Astrophysics Data System (ADS)

    Bouzouad, M.; Chaker, S. M.; Bensafielddine, D.; Laamari, E. M.

    2015-11-01

    The objective of this paper was to use a near-zero-index ( n) metamaterial as a single- or a double-layer superstrate suspended above a microstrip patch antenna, operating at 43 GHz, for the gain enhancement. The single metamaterial layer superstrate consists of a periodic arrangement of Jerusalem cross unit cells and behaves as an homogeneous medium characterized by a refractive index close to zero. This metamaterial property allows gathering radiated waves from the antenna and collimates them toward the superstrate normal direction. The proposed design improves the antenna gain by 5.1 dB with the single-layer superstrate and 7 dB with the double-layer superstrate.

  18. Graphene plasmons embedded in a gain medium: layer and ribbon plasmons

    NASA Astrophysics Data System (ADS)

    Altares Menendez, Galaad; Rosolen, Gilles; Maes, Bjorn

    2016-12-01

    Graphene plasmonics has attracted much attention due to its remarkable properties such as tunable conductivity and extreme confinement. However, losses remain one of the major drawbacks to developing more efficient devices based on graphene plasmons. Here we show that when a gain medium is introduced around a 1D graphene sheet, lossless propagation can be achieved for a critical gain value. Both numerics and analytics are employed; and with the Drude approximation the analytical expression for this critical gain becomes remarkably simple. Furthermore, we examine a single 2D graphene nanoribbon within a gain environment. We report that the plasmonic resonant modes exhibit a spasing effect for a specific value of the surrounding gain. This feature is indicated by an absorption cross section that strongly increases and narrows. Finally, we manage to connect the ribbon results to the 1D sheet critical gain, by taking external coupling into account.

  19. Optofluidic lasers with a single molecular layer of gain

    PubMed Central

    Chen, Qiushu; Ritt, Michael; Sivaramakrishnan, Sivaraj; Sun, Yuze; Fan, Xudong

    2014-01-01

    We achieve optofluidic lasers with a single molecular layer of gain, in which green fluorescent protein, dye-labeled bovine serum albumin, and dye-labeled DNA are respectively used as the gain medium and attached to the surface of a ring resonator via surface immobilization biochemical methods. It is estimated that the surface density of the gain molecules is on the order of 1012/cm2, sufficient for lasing under pulsed optical excitation. It is further shown that the optofluidic laser can be tuned by energy transfer mechanisms through biomolecular interactions. This work not only opens a door to novel photonic devices that can be controlled at the level of a single molecular layer, but also provides a promising sensing platform to analyze biochemical processes at the solid-liquid interface. PMID:25312306

  20. New results for temperature rise in gain medium of operating DPAL causing its degradation

    NASA Astrophysics Data System (ADS)

    Zhdanov, B. V.; Rotondaro, M. D.; Shaffer, M. K.; Knize, R. J.

    2017-10-01

    Diode Pumped Alkali Laser (DPAL) is one of the main candidates for development of a high power directed energy system producing laser beam from a single aperture with high spatial quality. Currently, several groups in the US and abroad demonstrated DPAL systems with kW level output power and efficiency higher than 50%. At the same time, the DPAL power scaling experiments revealed some limiting effects, which require detailed study to understand the nature of these effects and ways to mitigate them. Examples of such effects are output power degradation in time, alkali cell windows and gain medium contamination and damage that causes lasing efficiency decrease or even lasing termination. These problems can be connected to thermal effects, ionization, chemical interactions between the gain medium components and alkali cells materials. Study of all these and, possibly, other limiting effects and ways to mitigate them is very important for high power DPAL development. In this paper we present our new results of experiments on measurements of the temperature rise in the gain medium of operating DPAL leading to the output power degradation even before visible damage in the gain cell occurs. This degradation can be both recoverable and non-recoverable, depending on operation conditions and the system design.

  1. Cross-Platform Learning: On the Nature of Children's Learning from Multiple Media Platforms

    ERIC Educational Resources Information Center

    Fisch, Shalom M.

    2013-01-01

    It is increasingly common for an educational media project to span several media platforms (e.g., TV, Web, hands-on materials), assuming that the benefits of learning from multiple media extend beyond those gained from one medium alone. Yet research typically has investigated learning from a single medium in isolation. This paper reviews several…

  2. Violet-to-Blue Gain and Lasing from Colloidal CdS Nanoplatelets: Low-Threshold Stimulated Emission Despite Low Photoluminescence Quantum Yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diroll, Benjamin T.; Talapin, Dmitri V.; Schaller, Richard D.

    Amplified spontaneous emission (ASE) and lasing from solution-processed materials are demonstrated in the challenging violet-to-blue (430–490 nm) spectral region for colloidal nanoplatelets of CdS and newly synthesized core/shell CdS/ZnS nanoplatelets. Despite modest band-edge photoluminescence quantum yields of 2% or less for single excitons, which we show results from hole trapping, the samples exhibit low ASE thresholds. Furthermore, four-monolayer CdS samples show ASE at shorter wavelengths than any reported film of colloidal quantum-confined material. This work underlines that low quantum yields for single excitons do not necessarily lead to a poor gain medium. The low ASE thresholds originate from negligible dispersionmore » in thickness, large absorption cross sections of 2.8 × 10–14 cm–2, and rather slow (150 to 300 ps) biexciton recombination. We show that under higher-fluence excitation, ASE can kinetically outcompete hole trapping. Using nanoplatelets as the gain medium, lasing is observed in a linear optical cavity. This work confirms the fundamental advantages of colloidal quantum well structures as gain media, even in the absence of high photoluminescence efficiency.« less

  3. Phase locking of a semiconductor double-quantum-dot single-atom maser

    NASA Astrophysics Data System (ADS)

    Liu, Y.-Y.; Hartke, T. R.; Stehlik, J.; Petta, J. R.

    2017-11-01

    We experimentally study the phase stabilization of a semiconductor double-quantum-dot (DQD) single-atom maser by injection locking. A voltage-biased DQD serves as an electrically tunable microwave frequency gain medium. The statistics of the maser output field demonstrate that the maser can be phase locked to an external cavity drive, with a resulting phase noise L =-99 dBc/Hz at a frequency offset of 1.3 MHz. The injection locking range, and the phase of the maser output relative to the injection locking input tone are in good agreement with Adler's theory. Furthermore, the electrically tunable DQD energy level structure allows us to rapidly switch the gain medium on and off, resulting in an emission spectrum that resembles a frequency comb. The free running frequency comb linewidth is ≈8 kHz and can be improved to less than 1 Hz by operating the comb in the injection locked regime.

  4. Semiclassical analysis of spectral singularities and their applications in optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafazadeh, Ali

    2011-08-15

    Motivated by possible applications of spectral singularities in optics, we develop a semiclassical method of computing spectral singularities. We use this method to examine the spectral singularities of a planar slab gain medium whose gain coefficient varies due to the exponential decay of the intensity of the pumping beam inside the medium. For both singly and doublypumped samples, we obtain universal upper bounds on the decay constant beyond which no lasing occurs. Furthermore, we show that the dependence of the wavelength of the spectral singularities on the value of the decay constant is extremely mild. This is an indication ofmore » the stability of optical spectral singularities.« less

  5. Method and system for edge cladding of laser gain media

    DOEpatents

    Bayramian, Andrew James; Caird, John Allyn; Schaffers, Kathleen Irene

    2014-03-25

    A gain medium operable to amplify light at a gain wavelength and having reduced transverse ASE includes an input surface and an output surface opposing the input surface. The gain medium also includes a central region including gain material and extending between the input surface and the output surface along a longitudinal optical axis of the gain medium. The gain medium further includes an edge cladding region surrounding the central region and extending between the input surface and the output surface along the longitudinal optical axis of the gain medium. The edge cladding region includes the gain material and a dopant operable to absorb light at the gain wavelength.

  6. Dual Q-switched laser outputs from a single lasing medium using an intracavity MEMS micromirror array.

    PubMed

    Bauer, Ralf; Lubeigt, Walter; Uttamchandani, Deepak

    2012-09-01

    An intracavity array of individually controlled microelectromechanical system scanning micromirrors was used to actively Q-switch a single side-pumped Nd:YAG gain medium. Two equal power independent laser outputs were simultaneously obtained by separate actuation of two adjacent micromirrors with a combined average output power of 125 mW. Pulse durations of 28 ns FWHM at 8.7 kHz repetition frequency and 34 ns FWHM at 7.9 kHz repetition frequency were observed for the two output beams with beam quality factors M2 of 1.2 and 1.1 and peak powers of 253 W and 232 W, respectively.

  7. Engineering the Frequency Spectrum of Bright Squeezed Vacuum via Group Velocity Dispersion in an SU(1,1) Interferometer.

    PubMed

    Lemieux, Samuel; Manceau, Mathieu; Sharapova, Polina R; Tikhonova, Olga V; Boyd, Robert W; Leuchs, Gerd; Chekhova, Maria V

    2016-10-28

    Bright squeezed vacuum, a promising tool for quantum information, can be generated by high-gain parametric down-conversion. However, its frequency and angular spectra are typically quite broad, which is undesirable for applications requiring single-mode radiation. We tailor the frequency spectrum of high-gain parametric down-conversion using an SU(1,1) interferometer consisting of two nonlinear crystals with a dispersive medium separating them. The dispersive medium allows us to select a narrow band of the frequency spectrum to be exponentially amplified by high-gain parametric amplification. The frequency spectrum is thereby narrowed from (56.5±0.1) to (1.22±0.02)  THz and, in doing so, the number of frequency modes is reduced from approximately 50 to 1.82±0.02. Moreover, this method provides control and flexibility over the spectrum of the generated light through the timing of the pump.

  8. Application of Yb:YAG short pulse laser system

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Crane, John K.; Telford, Steve; Perry, Michael D.

    2004-07-06

    A diode pumped, high power (at least 20W), short pulse (up to 2 ps), chirped pulse amplified laser using Yb:YAG as the gain material is employed for material processing. Yb:YAG is used as the gain medium for both a regenerative amplifier and a high power 4-pass amplifier. A single common reflective grating optical device is used to both stretch pulses for amplification purposes and to recompress amplified pulses before being directed to a workpiece.

  9. Elective single-embryo transfer: persuasive communication strategies can affect choice in a young British population.

    PubMed

    van den Akker, O B A; Purewal, S

    2011-12-01

    This study tested the effectiveness of the framing effect and fear appeals to inform young people about the risks of multiple births and the option of selecting elective single-embryo transfer (eSET). A non-patient student sample (age (mean±SD) 23±5.5 years; n=321) were randomly allocated to one of seven groups: (1) framing effect: (1a) gain and (1b) loss frame; (2) fear appeal: (2a) high, (2b) medium and (2c) low fear; or (3) a control group: (3a) education and (3b) non-education. The primary outcome measure was the Attitudes towards Single Embryo Transfer questionnaire, before exposure to the messages (time 1) and immediately afterwards (time 2). Results revealed participants in the high fear, medium fear and gain condition demonstrated the most positive and significant differences (P<0.001 to P<0.05) in their knowledge, hypothetical intentions and modest changes in attitudes towards eSET than the low fear, loss frame and education and non-education messages. The results demonstrate that the use of complex persuasive communication techniques on a student population to promote immediate and hypothetical eSET preferences is more successful at promoting eSET than merely reporting educational content. Future research should investigate its application in a clinical population. A multiple pregnancy is a health risk to both infant and mother following IVF treatment. The aims of this study were to test the effectiveness of two persuasive communication techniques (the framing effect and fear appeals) to inform young people about the risks of multiple births and the hypothetical option of selecting elective single-embryo transfer (eSET) (i.e., only one embryo is transferred to the uterus using IVF treatment). A total of 321 non-patient student sample (mean age 23) were randomly allocated to read a message from one of seven groups: (1) framing effect: (1a) gain and (1b) loss frame; (2) fear appeal: (2a) high, (2b) medium and (2c) low fear; or (3) a control group: education (3a) and (3b) non-education. Participants completed the Attitudes towards Single Embryo Transfer questionnaire, before exposure to the messages (time 1) and immediately afterwards (time 2). Results revealed that participants in the high fear, medium fear and gain condition demonstrated the most positive and significant differences in their knowledge, hypothetical intentions and modest changes in attitudes towards eSET than the low fear, loss frame and education and non-education messages. This study recommends that health promotion based on the framing effect and fear appeals should be tested in clinical (patient) samples in the future. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  10. Harmonically mode-locked erbium-doped waveguide laser

    NASA Astrophysics Data System (ADS)

    Fanto, Michael L.; Malowicki, John E.; Bussjager, Rebecca J.; Johns, Steven T.; Vettese, Elizabeth K.; Hayduk, Michael J.

    2004-08-01

    The generation of ultrastable picosecond pulses in the 1550 nm range is required for numerous applications that include photonic analog-to-digital converter systems and high-bit rate optical communication systems. Mode-locked erbium-doped fiber ring lasers (EDFLs) are typically used to generate pulses at this wavelength. In addition to timing stability and output power, the physical size of the laser cavity is of primary importance to the Air Force. The length of the erbium (Er)-doped fiber used as the gain medium may be on the order of meters or even tens of meters which adds complexity to packaging. However, with the recent advancements in the production of multi-component glasses, higher doping concentrations can be achieved as compared to silicate glasses. Even more recent is the introduction of Er-doped multi-component glass waveguides, thus allowing the overall footprint of the gain medium to be reduced. We have constructed a novel harmonically mode-locked fiber ring laser using the Er-doped multi-component glass waveguide as the gain medium. The performance characteristics of this Er-doped waveguide laser (EDWL) including pulse width, spectral width, harmonic suppression, optical output power, laser stability and single sideband residual phase noise will be discussed in this paper.

  11. Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Hyungrae; Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826; Bae, Seunghwan

    2016-05-02

    We report optically pumped room temperature single mode laser that contains a thin film of hybrid perovskite, an emerging photonic material, as gain medium. Two-dimensional square lattice photonic crystal (PhC) backbone structure enables single mode laser operation via a photonic bandedge mode, while a thin film of methyl-ammonium lead iodide (CH{sub 3}NH{sub 3}PbI{sub 3}) spin-coated atop provides optical gain for lasing. Two kinds of bandedge modes, Γ and M, are employed, and both devices laser in single mode at similar laser thresholds of ∼200 μJ/cm{sup 2} in pulse energy density. Polarization dependence measurements reveal a clear difference between the two kindsmore » of bandedge lasers: isotropic for the Γ-point laser and highly anisotropic for the M-point laser. These observations are consistent with expected modal properties, confirming that the lasing actions indeed originate from the corresponding PhC bandedge modes.« less

  12. Coherent Amplification of Ultrafast Molecular Dynamics in an Optical Oscillator

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igal; Pe'er, Avi

    2016-02-01

    Optical oscillators present a powerful optimization mechanism. The inherent competition for the gain resources between possible modes of oscillation entails the prevalence of the most efficient single mode. We harness this "ultrafast" coherent feedback to optimize an optical field in time, and show that, when an optical oscillator based on a molecular gain medium is synchronously pumped by ultrashort pulses, a temporally coherent multimode field can develop that optimally dumps a general, dynamically evolving vibrational wave packet, into a single vibrational target state. Measuring the emitted field opens a new window to visualization and control of fast molecular dynamics. The realization of such a coherent oscillator with hot alkali dimers appears within experimental reach.

  13. Structured laser gain-medium by new bonding for power micro-laser

    NASA Astrophysics Data System (ADS)

    Kausas, Arvydas; Zheng, Lihe; Taira, Takunori

    2017-02-01

    In this work, we have compared the Q-switched performance of single rod crystal to a newly developed distributed face cooling structure. This structure was made by surface activated bonding technology and allowed to combine transparent heatsink to a gain crystal at room temperature. The Sapphire and Nd3+:YAG crystal plates were combined in this fashion to produce eight crystal chip which was further used to obtain Q-switch pulses with Cr4+:YAG crystal as saturable absorber. Energy of 9 mJ and pulse duration of 815 ps were achieved. Although the energy obtained with single rod system was 10 mJ, the degradation of the beam prevents such crystal to be used in further applications. This is the first demonstration of distributed face cooling system outperformed conventionally single rod system.

  14. Multi-wavelength Praseodymium fiber laser using stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Aidit, S. N.; Tiu, Z. C.

    2018-02-01

    A multi-wavelength Brillouin Praseodymium fiber laser (MWBPFL) operating at 1300 nm region is demonstrated based on the hybrid scheme by utilizing Brillouin gain medium and Praseodymium-doped fluoride fiber as linear gain medium. A 15 μm air gap is incorporated into the cavity to allow the switching of Brillouin frequency spacing from double to single spacing. Under the Brillouin pump of 8 dBm and the 1020 nm pump power of 567.2 mW, 36 Stokes lines with a wavelength spacing of 0.16 nm and 24 Stokes lines with a wavelength spacing of 0.08 nm are achieved. The wavelength tunability of 8 nm is realized for both MWBPFLs by shifting the Brillouin pump wavelength. The MWBPFLs exhibit an excellent stability in the number of generated Stokes and power level over one-hour period.

  15. Single-Mode Near-Infrared Lasing in a GaAsSb-Based Nanowire Superlattice at Room Temperature

    NASA Astrophysics Data System (ADS)

    Ren, Dingding; Ahtapodov, Lyubomir; Nilsen, Julie S.; Yang, Jianfeng; Gustafsson, Anders; Huh, Junghwan; Conibeer, Gavin J.; van Helvoort, Antonius T. J.; Fimland, Bjørn-Ove; Weman, Helge

    2018-04-01

    Semiconductor nanowire lasers can produce guided coherent light emission with miniaturized geometry, bringing about new possibility for a variety of applications including nanophotonic circuits, optical sensing, and on-chip and chip-to-chip optical communications. Here, we report on the realization of single-mode room-temperature lasing from 890 nm to 990 nm utilizing a novel design of single nanowires with GaAsSb-based multiple superlattices as gain medium under optical pumping. The wavelength tunability with comprehensively enhanced lasing performance is shown to result from the unique nanowire structure with efficient gain materials, which delivers a lasing quality factor as high as 1250, a reduced lasing threshold ~ 6 kW cm-2 and a high characteristic temperature ~ 129 K. These results present a major advancement for the design and synthesis of nanowire laser structures, which can pave the way towards future nanoscale integrated optoelectronic systems with stunning performance.

  16. Development of a Single-Pass Amplifier for an Optical Stochastic Cooling Proof-of-Principle Experiment at Fermilab's IOTA Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andorf, M. B.; Lebedev, V. A.; Piot, P.

    2015-06-01

    Optical stochastic cooling (OSC) is a method of beam cooling which is expected to provide cooling rates orders of magnitude larger than ordinary stochastic cooling. Light from an undulator (the pickup) is amplified and fed back onto the particle beam via another undulator (the kicker). Fermilab is currently exploring a possible proof-of-principle experiment of the OSC at the integrable-optics test accelerator (IOTA) ring. To implement effective OSC a good correction of phase distortions in the entire band of the optical amplifier is required. In this contribution we present progress in experimental characterization of phase distortions associated to a Titanium Sapphiremore » crystal laser-gain medium (a possible candidate gain medium for the OSC experiment to be performed at IOTA). We also discuss a possible option for a mid-IR amplifier« less

  17. Cross-platform learning: on the nature of children's learning from multiple media platforms.

    PubMed

    Fisch, Shalom M

    2013-01-01

    It is increasingly common for an educational media project to span several media platforms (e.g., TV, Web, hands-on materials), assuming that the benefits of learning from multiple media extend beyond those gained from one medium alone. Yet research typically has investigated learning from a single medium in isolation. This paper reviews several recent studies to explore cross-platform learning (i.e., learning from combined use of multiple media platforms) and how such learning compares to learning from one medium. The paper discusses unique benefits of cross-platform learning, a theoretical mechanism to explain how these benefits might arise, and questions for future research in this emerging field. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.

  18. Laser amplifier and method

    DOEpatents

    Backus, S.; Kapteyn, H.C.; Murnane, M.M.

    1997-07-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethrough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate. 7 figs.

  19. Laser amplifier and method

    DOEpatents

    Backus, Sterling; Kapteyn, Henry C.; Murnane, Margaret M.

    1997-01-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate.

  20. A compact Nd:YAG DPSSL using diamond-cooled technology

    NASA Astrophysics Data System (ADS)

    Chou, Hsian P.; Wang, Yu-Lin; Hasson, Victor H.; Trainor, Daniel W.

    2005-03-01

    In our diamond-cooled approach, thin disks of laser gain material, e.g., Nd:YAG, are alternated between thin disks of single crystal synthetic diamond whose heat conductivity is over 2000 W/m-°K. The gain medium is face-pumped (along the optical axis) by the output of laser diode arrays. This optical configuration produces heat transfer from Nd:YAG to the diamond, in the direction of the optical axis, and then heat is rapidly conducted radially outward through the diamond to the cooling fluid circulating at the circumference of the diamond/YAG assembly. This geometry effectively removes the heat from the gain material in a manner that permits the attainment of high power output with excellent beam quality.

  1. Multi-angle VECSEL cavities for dispersion control and multi-color operation

    NASA Astrophysics Data System (ADS)

    Baker, Caleb; Scheller, Maik; Laurain, Alexandre; Yang, Hwang-Jye; Ruiz Perez, Antje; Stolz, Wolfgang; Addamane, Sadhvikas J.; Balakrishnan, Ganesh; Jones, R. Jason; Moloney, Jerome V.

    2017-02-01

    We present a novel Vertical External Cavity Surface Emitting Laser (VECSEL) cavity design which makes use of multiple interactions with the gain region under different angles of incidence in a single round trip. This design allows for optimization of the net, round-trip Group Delay Dispersion (GDD) by shifting the GDD of the gain via cavity fold angle while still maintaining the high gain of resonant structures. The effectiveness of this scheme is demonstrated with femtosecond-regime pulses from a resonant structure and record pulse energies for the VECSEL gain medium. In addition, we show that the interference pattern of the intracavity mode within the active region, resulting from the double-angle multifold, is advantageous for operating the laser in CW on multiple wavelengths simultaneously. Power, noise, and mode competition characterization is presented.

  2. Design of high-gain, wideband antenna using microwave hyperbolic metasurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yan, E-mail: yan.z@chula.ac.th

    In this work, we apply hyperbolic metasurfaces (HMSs) to design high-gain and wideband antennas. It is shown that HMSs formed by a single layer of split-ring resonators (SRRs) can be excited to generate highly directive beams. In particular, we suggest two types of the SRR-HMS: a capacitively loaded SRR (CLSRR)-HMS and a substrate-backed double SRR (DSRR)-HMS. Both configurations ensure that the periodicity of the structures is sufficiently small for satisfying the effective medium theory. For the antenna design, we propose a two-layer-stacked configuration for the 2.4 GHz frequency band based on the DSRR-HMS excited by a folded monopole. Measurement resultsmore » confirm numerical simulations and demonstrate that an antenna gain of more than 5 dBi can be obtained for the frequency range of 2.1 - 2.6 GHz, with a maximum gain of 7.8 dBi at 2.4 GHz.« less

  3. Nonlinear Phase Distortion in a Ti:Sapphire Optical Amplifier for Optical Stochastic Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andorf, Matthew; Lebedev, Valeri; Piot, Philippe

    2016-06-01

    Optical Stochastic Cooling (OSC) has been considered for future high-luminosity colliders as it offers much faster cooling time in comparison to the micro-wave stochastic cooling. The OSC technique relies on collecting and amplifying a broadband optical signal from a pickup undulator and feeding the amplified signal back to the beam. It creates a corrective kick in a kicker undulator. Owing to its superb gain qualities and broadband amplification features, Titanium:Sapphire medium has been considered as a gain medium for the optical amplifier (OA) needed in the OSC*. A limiting factor for any OA used in OSC is the possibility ofmore » nonlinear phase distortions. In this paper we experimentally measure phase distortions by inserting a single-pass OA into one leg of a Mach-Zehnder interferometer. The measurement results are used to estimate the reduction of the corrective kick a particle would receive due to these phase distortions in the kicker undulator.« less

  4. Amplification and gas-dynamic parameters of the active oxygen-iodine medium produced by an ejector nozzle unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagidullin, M V; Nikolaev, V D; Svistun, M I

    2001-08-31

    The gain, the temperature, and the absolute velocity of the supersonic active oxygen-iodine medium produced by an ejector nozzle unit were determined by the technique of high-resolution diode laser spectroscopy. The gain in the active medium is formed at less than 44 mm from the nozzle unit for an absolute flow velocity {nu} {approx} 600 m s{sup -1}. Upon dilution of oxygen by primary nitrogen in the ratio of 1 : 6.9, the gain of the active medium amounts to 7x10{sup -3} cm{sup -1}, the temperature of the active medium to 200 K, the absolute flow velocity to 580 mmore » s{sup -1}, and the pressure to 58 Torr. As the dilution is increased to 1 : 13.5, the gain reduces to 4.5x10{sup -3} cm{sup -1}, the temperature lowers to 180 K, the velocity of the active medium increases to 615 m s{sup -1}, and the pressure increases to 88 Torr. The increase in the initial content of water vapour in the oxygen flow results in an increase in the temperature and a decrease in the gain of the active medium. (active media)« less

  5. Analytical solution of the transient temperature profile in gain medium of passively Q-switched microchip laser.

    PubMed

    Han, Xiahui; Li, Jianlang

    2014-11-01

    The transient temperature evolution in the gain medium of a continuous wave (CW) end-pumped passively Q-switched microchip (PQSM) laser is analyzed. By approximating the time-dependent population inversion density as a sawtooth function of time and treating the time-dependent pump absorption of a CW end-pumped PQSM laser as the superposition of an infinite series of short pumping pulses, the analytical expressions of transient temperature evolution and distribution in the gain medium for four- and three-level laser systems, respectively, are given. These analytical solutions are applied to evaluate the transient temperature evolution and distribution in the gain medium of CW end-pumped PQSM Nd:YAG and Yb:YAG lasers.

  6. Ring laser having an output at a single frequency

    DOEpatents

    Hackell, Lloyd A.

    1991-01-01

    A ring laser is disclosed that produces a single frequency of laser radiation in either the pulsed mode of operation or the continuous waveform (cw) mode of operation. The laser comprises a ring laser in a bowtie configuration, a birefringent gain material such as Nd:YLF, an improved optical diode that supports laser oscillation having a desired direction of travel and linear polarization, and a Q-switch. An output coupler (mirror) having a high reflectivity, such as 94%, is disclosed. Also disclosed is a self-seeded method of operation in which the laser can provide a pulse or a series of pulses of high power laser radiation at a consistent single frequency with a high degree of amplitude stability and temporal stability. In operation, the laser is operated in continuous waveform (cw) at a low power output with the Q-switch introducing a loss into the resonating cavity. Pumping is continued at a high level, causing the gain material to store energy. When a pulse is desired, the Q-switch is actuated to substantially reduce the losses so that a pulse can build up based on the low level cw oscillation. The pulse quickly builds, using the stored energy in the gain medium to provide a high power output pulse. The process may be repeated to provide a series of high power pulses of a consistent single frequency.

  7. Kinetics of the Active Medium of a Copper Vapor Brightness Amplifier

    NASA Astrophysics Data System (ADS)

    Kulagin, A. E.; Torgaev, S. N.; Evtushenko, G. S.; Trigub, M. V.

    2018-03-01

    A spatiotemporal kinetics of the active medium of a copper vapor brightness amplifier is described that allows gain characteristics to be investigated during the pump pulse. Model calculations show that changing the discharge parameters allows the radial gain profiles to be improved significantly, as well as the gain and the inversion duration to be increased. The data obtained will be used to choose the operating conditions for the active medium in the brightness amplifier mode.

  8. Design, fabrication, and optimization of quantum cascade laser cavities and spectroscopy of the intersubband gain

    NASA Astrophysics Data System (ADS)

    Dirisu, Afusat Olayinka

    Quantum Cascade (QC) lasers are intersubband light sources operating in the wavelength range of ˜ 3 to 300 mum and are used in applications such as sensing (environmental, biological, and hazardous chemical), infrared countermeasures, and free-space infrared communications. The mid-infrared range (i.e. lambda ˜ 3-30 mum) is of particular importance in sensing because of the strong interaction of laser radiation with various chemical species, while in free space communications the atmospheric windows of 3-5 mum and 8-12 mum are highly desirable for low loss transmission. Some of the requirements of these applications include, (1) high output power for improved sensitivity; (2) high operating temperatures for compact and cost-effective systems; (3) wide tunability; (4) single mode operation for high selectivity. In the past, available mid-infrared sources, such as the lead-salt and solid-state lasers, were bulky, expensive, or emit low output power. In recent years, QC lasers have been explored as cost-effective and compact sources because of their potential to satisfy and exceed all the above requirements. Also, the ultrafast carrier lifetimes of intersubband transitions in QC lasers are promising for high bandwidth free-space infrared communication. This thesis was focused on the improvement of QC lasers through the design and optimization of the laser cavity and characterization of the laser gain medium. The optimization of the laser cavity included, (1) the design and fabrication of high reflection Bragg gratings and subwavelength antireflection gratings, by focused ion beam milling, to achieve tunable, single mode and high power QC lasers, and (2) modeling of slab-coupled optical waveguide QC lasers for high brightness output beams. The characterization of the QC laser gain medium was carried out using the single-pass transmission experiment, a sensitive measurement technique, for probing the intersubband transitions and the electron distribution of QC lasers under different temperatures and applied bias conditions, unlike typical infrared measurement techniques that are restricted to non-functional devices. With the single-pass technique, basic understanding of the physics behind the workings of the QC laser gain can be achieved, which is invaluable in the design of QC lasers with high output power and high operating temperatures.

  9. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  10. Double spacing multi-wavelength Brillouin Raman fiber laser of eight-shaped structure utilizing Raman amplifier

    NASA Astrophysics Data System (ADS)

    Madin, M. Sya'aer; Ahmad Hambali, N. A. M.; Shahimin, M. M.; Wahid, M. H. A.; Roshidah, N.; Azaidin, M. A. M.

    2017-02-01

    In this paper, double frequency spacing of multi-wavelength Brillouin Raman fiber laser utilizing eight-shaped structure in conjunction with Raman amplifier is simulated and demonstrated using Optisys software. Double frequency multiwavelength Brillouin Raman fiber laser is one of the solution for single frequency spacing channel de-multiplexing from narrow single spacing in the communication systems. The eight-shaped structure has the ability to produce lower noise and double frequency spacing. The 7 km of single mode fiber acting as a nonlinear medium for the generation of Stimulated Brillouin Scattering and Stimulated Raman Scattering. As a results, the optimum results are recorded at 1450 nm of RP power at 22 dBm and 1550 nm of BP power at 20 dBm. These parameters provide a high output peak power, gain and average OSNR. The highest peak power of Stokes 1 is recorded at 90% of coupling ratio which is 29.88 dBm. It is found that the maximum gain and average OSNR of about 1.23 dB and 63.74 dB.

  11. Single-Mode Near-Infrared Lasing in a GaAsSb-Based Nanowire Superlattice at Room Temperature.

    PubMed

    Ren, Dingding; Ahtapodov, Lyubomir; Nilsen, Julie S; Yang, Jianfeng; Gustafsson, Anders; Huh, Junghwan; Conibeer, Gavin J; van Helvoort, Antonius T J; Fimland, Bjørn-Ove; Weman, Helge

    2018-04-11

    Semiconductor nanowire lasers can produce guided coherent light emission with miniaturized geometry, bringing about new possibilities for a variety of applications including nanophotonic circuits, optical sensing, and on-chip and chip-to-chip optical communications. Here, we report on the realization of single-mode and room-temperature lasing from 890 to 990 nm, utilizing a novel design of single nanowires with GaAsSb-based multiple axial superlattices as a gain medium under optical pumping. The control of lasing wavelength via compositional tuning with excellent room-temperature lasing performance is shown to result from the unique nanowire structure with efficient gain material, which delivers a low lasing threshold of ∼6 kW/cm 2 (75 μJ/cm 2 per pulse), a lasing quality factor as high as 1250, and a high characteristic temperature of ∼129 K. These results present a major advancement for the design and synthesis of nanowire laser structures, which can pave the way toward future nanoscale integrated optoelectronic systems with superior performance.

  12. Mode calculations in unstable resonators with flowing saturable gain. 1:hermite-gaussian expansion.

    PubMed

    Siegman, A E; Sziklas, E A

    1974-12-01

    We present a procedure for calculating the three-dimensional mode pattern, the output beam characteristics, and the power output of an oscillating high-power laser taking into account a nonuniform, transversely flowing, saturable gain medium; index inhomogeneities inside the laser resonator; and arbitrary mirror distortion and misalignment. The laser is divided into a number of axial segments. The saturated gain-and-index variation. across each short segment is lumped into a complex gain profile across the midplane of that segment. The circulating optical wave within the resonator is propagated from midplane to midplane in free-space fashion and is multiplied by the lumped complex gain profile upon passing through each midplane. After each complete round trip of the optical wave inside the resonator, the saturated gain profiles are recalculated based upon the circulating fields in the cavity. The procedure when applied to typical unstable-resonator flowing-gain lasers shows convergence to a single distorted steady-state mode of oscillation. Typical near-field and far-field results are presented. Several empirical rules of thumb for finite truncated Hermite-Gaussian expansions, including an approximate sampling theorem, have been developed as part of the calculations.

  13. Diode end pumped laser and harmonic generator using same

    NASA Technical Reports Server (NTRS)

    Byer, Robert L. (Inventor); Dixon, George J. (Inventor); Kane, Thomas J. (Inventor)

    1988-01-01

    A second harmonic, optical generator is disclosed in which a laser diode produces an output pumping beam which is focused by means of a graded, refractive index rod lens into a rod of lasant material, such as Nd:YAG, disposed within an optical resonator to pump the lasant material and to excite the optical resonator at a fundamental wavelength. A non-linear electro-optic material such as MgO:LiNbO.sub.3 is coupled to the excited, fundamental mode of the optical resonator to produce a non-linear interaction with the fundamental wavelength producing a harmonic. In one embodiment, the gain medium and the non-linear material are disposed within an optical resonator defined by a pair of reflectors, one of which is formed on a face of the gain medium and the second of which is formed on a face of the non-linear medium. In another embodiment, the non-linear, electro-optic material is doped with the lasant ion such that the gain medium and the non-linear doubling material are co-extensive in volume. In another embodiment, a non-linear, doubling material is disposed in an optical resonator external of the laser gai medium for improved stability of the second harmonic generation process. In another embodiment, the laser gain medium andthe non-linear material are bonded together by means of an optically transparent cement to form a mechanically stable, monolithic structure. In another embodiment, the non-linear material has reflective faces formed thereon to define a ring resonator to decouple reflections from the non-linear medium back to the gain medium for improved stability.

  14. Parasitic oscillation suppression in solid state lasers using optical coatings

    DOEpatents

    Honea, Eric C.; Beach, Raymond J.

    2005-06-07

    A laser gain medium having a layered coating on at least certain surfaces of the laser gain medium. The layered coating having a reflective inner material and an absorptive scattering outside material.

  15. Optical resonator and laser applications

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  16. Edge-facet pumped, multi-aperture, thin-disk laser geometry for very high average power output scaling

    DOEpatents

    Zapata, Luis E.

    2004-12-21

    The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.

  17. Simulations on false gain in recombination-pumped soft-X-ray lasers

    NASA Astrophysics Data System (ADS)

    Ozaki, T.; Kuroda, H.

    1997-10-01

    Numerical investigations are performed on false gain due to axial plasma expansion, which is expected to be important in initial proof-of-principle studies of recombination-pumped soft-X-ray lasers with extended capabilities. Modelling calculations of experiments with slab boron nitride targets reveal large false gain coefficients approaching 20 cm-1 in the case of plasmas with short active medium lengths. The false gain in the case of fiber targets is found to be of equal magnitude to that for slabs in the case of plasmas with less than 0.1 cm active medium lengths. Calculations for slab targets predict that adopting a tolerance of ǃ cm-1 for gain will severely restrict the time and the active medium length of the plasma that can be used for error-free observations, while those for fiber targets are found to be considerably relaxed. The effects of false gain in the 54.2 + Na Balmer ! laser is also investigated, again revealing the importance of this phenomena under optimum gain conditions.

  18. Active medium gain study of electric-discharge oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Kolobyanin, Yuriy; Adamenkov, Yuriy; Vyskubenko, Boris; Goryachev, Leonid; Ilyin, Sergey; Kalashnik, Anatoliy; Rakhimova, Tatiana; Rogozhnikov, Georgiy

    2007-05-01

    The paper reports on experimental studies of the active medium gain in supersonic electric-discharge oxygen-iodine laser (DOIL) based on traveling mw discharge. The measurements have included: absolute concentration, yield, and energy efficiency of production of SO in pure oxygen and oxygen-helium mixes at an oxygen partial pressure 3 to 15 Torr. For the gas flow to get rid of atomic oxygen, both heterogeneous mercury oxide coatings of the tube walls and homogeneous additives to the work mix, such as nitrogen oxide, have been used. The active medium of DOIL was formed using a nozzle array of the type of ejector sized as 10*50 mm2. The singlet oxygen-helium mix was supplied through three rows of sonic cylindrical nozzles, while the iodine-carrier gas mix - through two rows of supersonic conical nozzles with a half-opening angle of 10°(arc). The gas-phase iodine was produced in a quartz cell filled with iodine crystals. Room-temperature iodine vapors were picked up with a carrier gas (nitrogen or helium) and thus delivered into the nozzle array. The active medium was investigated by the high-resolution laser diode spectroscopy approach that used the laser type Vortex 6025 purchased from New Focus, Inc. The laser medium gain factor was determined by the intra-cavity approach having a sensitivity about 1*10 -6 cm -1. The static temperature of the medium was determined from the measurements of gain half-width. The gain of the active medium of electric-discharge OIL has been investigated. The DOIL in use was operating on a mix composed as O II:He=1:1 at a total pressure of 6 Torr and flowrate - about 1 mmol/s. With helium as an iodine carrier gas at a flowrate ~3 mmol/s, we have recorded a positive gain in the DOIL medium.

  19. Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber.

    PubMed

    Yin, Guolu; Saxena, Bhavaye; Bao, Xiaoyi

    2011-12-19

    A tunable and single longitudinal mode Er-doped fiber ring laser (SLM-EDFRL) is proposed and demonstrated based on Rayleigh backscattering (RBS) in single mode fiber-28e (SMF-28e). Theory and experimental study on formation of SLM from normal multi-mode ring laser is demonstrated. The RBS feedback in 660 m SMF-28e is the key to ensure SLM laser oscillation. This tunable SLM laser can be tuned over 1549.7-1550.18 nm with a linewidth of 2.5-3.0 kHz and a side mode suppression ratio (SMSR) of ~72 dB for electrical signal power. The tuning range is determined by the bandpass filter and gain medium used in the experiment. The laser is able to operate at S+C+L band.

  20. High Extinction Ratio In-Fibre Polarisers by Exploiting Tilted Fibre Bragg Grating Structures for Single-Polarisation High-Power Fibre Lasers and Amplifiers

    DTIC Science & Technology

    2009-11-01

    maintaining (PM) fibre, utilising polarisation hole-burning ( PHB ) effect to reduce homogeneous linewidth of the EDFL. In our work, we demonstrate a stable...loss filter which will induce some loss to the cavity around its paired attenuation band region, thus imposing PHB effect to the gain medium. The...polarisation-hole-burning ( PHB ) effect to realise multi-wavelength switchable function in proposed fibre ring laser system. In the proposed fibre ring laser

  1. Higher order thinking skills: using e-portfolio in project-based learning

    NASA Astrophysics Data System (ADS)

    Lukitasari, M.; Handhika, J.; Murtafiah, W.

    2018-03-01

    The purpose of this research is to describe students' higher-order thinking skills through project-based learning using e-portfolio. The method used in this research is descriptive qualitative method. The research instruments used were test, unstructured interview, and documentation. Research subjects were students of mathematics, physics and biology education department who take the Basics Physics course. The result shows that through project-based learning using e-portfolio the students’ ability to: analyze (medium category, N-Gain 0.67), evaluate (medium category, N-Gain 0.51), and create (medium Category, N-Gain 0.44) are improved.

  2. Microwave gain medium with negative refractive index.

    PubMed

    Ye, Dexin; Chang, Kihun; Ran, Lixin; Xin, Hao

    2014-12-19

    Artificial effective media are attractive because of the fantastic applications they may enable, such as super lensing and electromagnetic invisibility. However, the inevitable loss due to their strongly dispersive nature is one of the fundamental challenges preventing such applications from becoming a reality. In this study, we demonstrate an effective gain medium based on negative resistance, to overcompensate the loss of a conventional passive metamaterial, meanwhile keeping its original negative-index property. Energy conservation-based theory, full-wave simulation and experimental measurement show that a fabricated sample consisting of conventional sub-wavelength building blocks with embedded microwave tunnel diodes exhibits a band-limited Lorentzian dispersion simultaneously with a negative refractive index and a net gain. Our work provides experimental evidence to the assertion that a stable net gain in negative-index gain medium is achievable, proposing a potential solution for the critical challenge current metamateiral technology faces in practical applications.

  3. Ku-band high efficiency GaAs MMIC power amplifiers

    NASA Technical Reports Server (NTRS)

    Tserng, H. Q.; Witkowski, L. C.; Wurtele, M.; Saunier, Paul

    1988-01-01

    The development of Ku-band high efficiency GaAs MMIC power amplifiers is examined. Three amplifier modules operating over the 13 to 15 GHz frequency range are to be developed. The first MMIC is a 1 W variable power amplifier (VPA) with 35 percent efficiency. On-chip digital gain control is to be provided. The second MMIC is a medium power amplifier (MPA) with an output power goal of 1 W and 40 percent power-added efficiency. The third MMIC is a high power amplifier (HPA) with 4 W output power goal and 40 percent power-added efficiency. An output power of 0.36 W/mm with 49 percent efficiency was obtained on an ion implanted single gate MESFET at 15 GHz. On a dual gate MESFET, an output power of 0.42 W/mm with 27 percent efficiency was obtained. A mask set was designed that includes single stage, two stage, and three stage single gate amplifiers. A single stage 600 micron amplifier produced 0.4 W/mm output power with 40 percent efficiency at 14 GHz. A four stage dual gate amplifier generated 500 mW of output power with 20 dB gain at 17 GHz. A four-bit digital-to-analog converter was designed and fabricated which has an output swing of -3 V to +/- 1 V.

  4. A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers

    PubMed Central

    Kress, Stephan J. P.; Cui, Jian; Rohner, Patrik; Kim, David K.; Antolinez, Felipe V.; Zaininger, Karl-Augustin; Jayanti, Sriharsha V.; Richner, Patrizia; McPeak, Kevin M.; Poulikakos, Dimos; Norris, David J.

    2017-01-01

    Colloidal quantum dots are robust, efficient, and tunable emitters now used in lighting, displays, and lasers. Consequently, when the spaser—a laser-like source of high-intensity, narrow-band surface plasmons—was first proposed, quantum dots were specified as the ideal plasmonic gain medium for overcoming the significant intrinsic losses of plasmons. Many subsequent spasers, however, have required a single material to simultaneously provide gain and define the plasmonic cavity, a design unable to accommodate quantum dots and other colloidal nanomaterials. In addition, these and other designs have been ill suited for integration with other elements in a larger plasmonic circuit, limiting their use. We develop a more open architecture that decouples the gain medium from the cavity, leading to a versatile class of quantum dot–based spasers that allow controlled generation, extraction, and manipulation of plasmons. We first create aberration-corrected plasmonic cavities with high quality factors at desired locations on an ultrasmooth silver substrate. We then incorporate quantum dots into these cavities via electrohydrodynamic printing or drop-casting. Photoexcitation under ambient conditions generates monochromatic plasmons (0.65-nm linewidth at 630 nm, Q ~ 1000) above threshold. This signal is extracted, directed through an integrated amplifier, and focused at a nearby nanoscale tip, generating intense electromagnetic fields. More generally, our device platform can be straightforwardly deployed at different wavelengths, size scales, and geometries on large-area plasmonic chips for fundamental studies and applications. PMID:28948219

  5. Parasitic oscillation suppression in solid state lasers using absorbing thin films

    DOEpatents

    Zapata, L.E.

    1994-08-02

    A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber. 16 figs.

  6. Parasitic oscillation suppression in solid state lasers using absorbing thin films

    DOEpatents

    Zapata, Luis E.

    1994-01-01

    A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber.

  7. Large tuning of narrow-beam terahertz plasmonic lasers operating at 78 K

    DOE PAGES

    Wu, Chongzhao; Jin, Yuan; Reno, John L.; ...

    2016-12-19

    A new tuning mechanism is demonstrated for single-mode metal-clad plasmonic lasers, in which the refractive-index of the laser’s surrounding medium affects the resonant-cavity mode in the same vein as the refractive-index of gain medium inside the cavity. Reversible, continuous, and mode-hop-free tuning of ~57 GHz is realized for single-mode narrow-beam terahertz plasmonic quantum-cascade lasers (QCLs), which is demonstrated at a much more practical temperature of 78 K. The tuning is based on post-process deposition/etching of a dielectric (silicon-dioxide) on a QCL chip that has already been soldered and wire-bonded onto a copper mount. This is a considerably larger tuning rangemore » compared to previously reported results for terahertz QCLs with directional far-field radiation patterns. The key enabling mechanism for tuning is a recently developed antenna-feedback scheme for plasmonic lasers, which leads to the generation of hybrid surface-plasmon-polaritons propagating outside the cavity of the laser with a large spatial extent. The effect of dielectric deposition on QCL’s characteristics is investigated in detail including that on maximum operating temperature, peak output power, and far-field radiation patterns. Single-lobed beam with low divergence (<7°) is maintained through the tuning range. The antenna-feedback scheme is ideally suited for modulation of plasmonic lasers and their sensing applications due to the sensitive dependence of spectral and radiative properties of the laser on its surrounding medium.« less

  8. Spectroscopic analysis and efficient diode-pumped 1.9 μm Tm3+-doped β'-Gd2(MoO4)3 crystal laser.

    PubMed

    Tang, Jianfeng; Chen, Yujin; Lin, Yanfu; Gong, Xinghong; Huang, Jianhua; Luo, Zundu; Huang, Yidong

    2011-07-04

    Tm3+-doped β'-Gd2(MoO4)3 single crystal was grown by the Czochralski method. Spectroscopic analysis was carried out along different polarizations. End-pumped by a quasi-cw diode laser at 795 nm in a plano-concave cavity, an average laser output power of 58 mW around 1.9 μm was achieved in a 0.93-mm-thick crystal when the output coupler transmission was 7.1%. The absorbed pump threshold was 8 mW and the slope efficiency of the laser was 57%. This crystal has smooth and broad gain curve around 1.9 μm, which shows that it is also a potential gain medium for tunable and short pulse lasers.

  9. Hybrid solid state laser system using a neodymium-based master oscillator and an ytterbium-based power amplifier

    DOEpatents

    Payne, Stephen A.; Marshall, Christopher D.; Powell, Howard T.; Krupke, William F.

    2001-01-01

    In a master oscillator-power amplifier (MOPA) hybrid laser system, the master oscillator (MO) utilizes a Nd.sup.3+ -doped gain medium and the power amplifier (PA) utilizes a diode-pumped Yb.sup.3+ -doped material. The use of two different laser gain media in the hybrid MOPA system provides advantages that are otherwise not available. The Nd-doped gain medium preferably serves as the MO because such gain media offer the lowest threshold of operation and have already been engineered as practical systems. The Yb-doped gain medium preferably serves in the diode-pumped PA to store pump energy effectively and efficiently by virtue of the long emission lifetime, thereby reducing diode pump costs. One crucial constraint on the MO and PA gain media is that the Nd and Yb lasers must operate at nearly the same wavelength. The 1.047 .mu.m Nd:YLF/Yb:S-FAP [Nd:LiYF.sub.4 /Yb:Sr.sub.5 (PO.sub.4).sub.3 F] hybrid MOPA system is a preferred embodiment of the hybrid Nd/Yb MOPA.

  10. Design of hybrid laser structures with QD-RSOA and silicon photonic mirrors

    NASA Astrophysics Data System (ADS)

    Gioannini, Mariangela; Benedetti, Alessio; Bardella, Paolo; Bovington, Jock; Traverso, Matt; Siriani, Dominic; Gothoskar, Prakash

    2018-02-01

    We compare the design of three different single mode laser structures consisting in a Reflective Semiconductor Optical Amplifier coupled to a silicon photonic external cavity mirror. The three designs differ for the mirror structure and are compared in terms of SOA power consumption and side mode suppression ratio (SMSR). Assuming then a Quantum Dot active material, we simulate the best laser design using a numerical model that includes the peculiar physical characteristics of the QD gain medium. The simulated QD laser CW characteristics are shown and discussed.

  11. Influence of wave-packet dynamics on the medium gain of an atomic system

    NASA Astrophysics Data System (ADS)

    Delagnes, J. C.; Bouchene, M. A.

    2007-10-01

    A sequence of two femtosecond pulses—a strong driving π -polarized pulse and a weak propagating σ -polarized pulse—excites resonantly the S1/2→P1/2 transition of an atomic system. Strong interference effects take place in the system between absorption and emission paths leading to a substantial amplification of the σ pulse. We study the influence of the fine structure on the medium gain when the contribution of the off-resonant P3/2 level is taken into account. A drastic reduction of the medium gain is obtained. This effect is explained within the bright-state dark-state formalism where the strong driving pulse creates a wave packet that can be trapped in a state—the bright state—leading to a significant reduction of the gain for the σ pulse. Finally, we also show that periodical gain dependence with the driving pulse energy exhibits a significant change in its period value (compared with expected Rabi oscillations).

  12. Cross-talk free, low-noise optical amplifier

    DOEpatents

    Dijaili, Sol P.; Patterson, Frank G.; Deri, Robert J.

    1995-01-01

    A low-noise optical amplifier solves crosstalk problems in optical amplifiers by using an optical cavity oriented off-axis (e.g. perpendicular) to the direction of a signal amplified by the gain medium of the optical amplifier. Several devices are used to suppress parasitic lasing of these types of structures. The parasitic lasing causes the gain of these structures to be practically unusable. The lasing cavity is operated above threshold and the gain of the laser is clamped to overcome the losses of the cavity. Any increase in pumping causes the lasing power to increase. The clamping action of the gain greatly reduces crosstalk due to gain saturation for the amplified signal beam. It also reduces other nonlinearities associated with the gain medium such as four-wave mixing induced crosstalk. This clamping action can occur for a bandwidth defined by the speed of the laser cavity. The lasing field also reduces the response time of the gain medium. By having the lasing field off-axis, no special coatings are needed. Other advantages are that the lasing field is easily separated from the amplified signal and the carrier grating fluctuations induced by four-wave mixing are decreased. Two related methods reduce the amplified spontaneous emission power without sacrificing the gain of the optical amplifier.

  13. Cross-talk free, low-noise optical amplifier

    DOEpatents

    Dijaili, S.P.; Patterson, F.G.; Deri, R.J.

    1995-07-25

    A low-noise optical amplifier solves crosstalk problems in optical amplifiers by using an optical cavity oriented off-axis (e.g. perpendicular) to the direction of a signal amplified by the gain medium of the optical amplifier. Several devices are used to suppress parasitic lasing of these types of structures. The parasitic lasing causes the gain of these structures to be practically unusable. The lasing cavity is operated above threshold and the gain of the laser is clamped to overcome the losses of the cavity. Any increase in pumping causes the lasing power to increase. The clamping action of the gain greatly reduces crosstalk due to gain saturation for the amplified signal beam. It also reduces other nonlinearities associated with the gain medium such as four-wave mixing induced crosstalk. This clamping action can occur for a bandwidth defined by the speed of the laser cavity. The lasing field also reduces the response time of the gain medium. By having the lasing field off-axis, no special coatings are needed. Other advantages are that the lasing field is easily separated from the amplified signal and the carrier grating fluctuations induced by four-wave mixing are decreased. Two related methods reduce the amplified spontaneous emission power without sacrificing the gain of the optical amplifier. 11 figs.

  14. Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation.

    PubMed

    Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Ko, Hyunsung; Park, Jeong-Woo; Lee, Donghun; Jeon, Min Yong; Park, Kyung Hyun

    2012-07-30

    A widely tunable dual mode laser diode with a single cavity structure is demonstrated. This novel device consists of a distributed feedback (DFB) laser diode and distributed Bragg reflector (DBR). Micro-heaters are integrated on the top of each section for continuous and independent wavelength tuning of each mode. By using a single gain medium in the DFB section, an effective common optical cavity and common modes are realized. The laser diode shows a wide tunability of the optical beat frequency, from 0.48 THz to over 2.36 THz. Continuous wave THz radiation is also successfully generated with low-temperature grown InGaAs photomixers from 0.48 GHz to 1.5 THz.

  15. Compact Mach-Zehnder interferometer based on photonic crystal fiber and its application in switchable multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Lou, Shuqin; Wang, Liwen; Li, Honglei; Guo, Tieying; Jian, Shuisheng

    2009-08-01

    The compact Mach-Zehnder interferometer is proposed by splicing a section of photonic crystal fiber (PCF) and two pieces of single mode fiber (SMF) with the air-holes of PCF intentionally collapsed in the vicinity of the splices. The depedence of the fringe spacing on the length of PCF is investigated. Based on the Mach-Zehnder interferometer as wavelength-selective filter, a switchable dual-wavelength fiber ring laser is demonstrated with a homemade erbiumdoped fiber amplifier (EDFA) as the gain medium at room temperature. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-and dual -wavelength lasing operations by exploiting polarization hole burning (PHB) effect.

  16. Telecommunications Antennas for the Juno Mission to Jupiter

    NASA Technical Reports Server (NTRS)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  17. Laser systems configured to output a spectrally-consolidated laser beam and related methods

    DOEpatents

    Koplow, Jeffrey P [San Ramon, CA

    2012-01-10

    A laser apparatus includes a plurality of pumps each of which is configured to emit a corresponding pump laser beam having a unique peak wavelength. The laser apparatus includes a spectral beam combiner configured to combine the corresponding pump laser beams into a substantially spatially-coherent pump laser beam having a pump spectrum that includes the unique peak wavelengths, and first and second selectively reflective elements spaced from each other to define a lasing cavity including a lasing medium therein. The lasing medium generates a plurality of gain spectra responsive to absorbing the pump laser beam. Each gain spectrum corresponds to a respective one of the unique peak wavelengths of the substantially spatially-coherent pump laser beam and partially overlaps with all other ones of the gain spectra. The reflective elements are configured to promote emission of a laser beam from the lasing medium with a peak wavelength common to each gain spectrum.

  18. Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution.

    PubMed

    Chong, A; Liu, H; Nie, B; Bale, B G; Wabnitz, S; Renninger, W H; Dantus, M; Wise, F W

    2012-06-18

    With existing techniques for mode-locking, the bandwidth of ultrashort pulses from a laser is determined primarily by the spectrum of the gain medium. Lasers with self-similar evolution of the pulse in the gain medium can tolerate strong spectral breathing, which is stabilized by nonlinear attraction to the parabolic self-similar pulse. Here we show that this property can be exploited in a fiber laser to eliminate the gain-bandwidth limitation to the pulse duration. Broad (∼200 nm) spectra are generated through passive nonlinear propagation in a normal-dispersion laser, and these can be dechirped to ∼20-fs duration.

  19. SU-E-QI-15: Single Point Dosimetry by Means of Cerenkov Radiation Energy Transfer (CRET)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volotskova, O; Jenkins, C; Xing, L

    2014-06-15

    Purpose: Cerenkov light is generated when a charged particles with energy greater then 250 keV, moves faster than the speed of light in a given medium. Both x-ray photons and electrons produce optical Cerenkov photons during the static megavoltage linear accelerator (LINAC) operational mode. Recently, Cerenkov radiation gained considerable interest as possible candidate as a new imaging modality. Optical signals generated by Cerenkov radiation may act as a surrogate for the absorbed superficial radiation dose. We demonstrated a novel single point dosimetry method for megavoltage photon and electron therapy utilizing down conversion of Cerenkov photons. Methods: The custom build signalmore » characterization system was used: a sample holder (probe) with adjacent light tight compartments was connected via fiber-optic cables to a photon counting photomultiplier tube (PMT). One compartment contains a medium only while the other contains medium and red-shifting nano-particles (Q-dots, nanoclusters). By taking the difference between the two signals (Cerenkov photons and CRET photons) we obtain a measure of the down-converted light, which we expect to be proportional to dose as measured with an adjacent ion chamber. Experimental results are compared to Monte Carlo simulations performed using the GEANT4 code. Results: The signal correlation between CR signal, CRET readings and dose produced by LINAC at a single point were investigated. The experimental results were compared with simulations. The dose linearity, signal to noise ratio and dose rate dependence were tested with custom build CRET based probe. Conclusion: Performance characteristics of the proposed single point CRET based probe were evaluated. The direct use of the induced Cerenkov emission and CRET in an irradiated single point volume as an indirect surrogate for the imparted dose was investigated. We conclude that CRET is a promising optical based dosimetry method that offers advantages over those already proposed.« less

  20. On the lasing-like transmission via radiation-mode-enabled TE resonant optical tunneling in asymmetric, passive, layered media with metal.

    PubMed

    Chang, Yin-Jung

    2014-11-17

    Transverse-electric (TE) resonant optical tunneling through an asymmetric, single-barrier potential system consisting of all passive materials in two-dimensional (2-D) glass/silver/TiO₂/air configuration is quantified at a silver thickness of 35 nm. Resonant tunneling occurs when the incident condition corresponds to the excitation of a radiation mode. Lasing-like transmission occurring at resonance is carefully qualified in terms of power conservation, resonance condition, and identification of the gain medium equivalent. In particular, effective gain (geff) and threshold gain (gth) coefficients, both of which are strong functions of the forward reflection coefficient at the silver-TiO₂ interface, are analytically obtained and the angular span over which geff > gth is further verified rigorously electromagnetically. The results show that the present configuration may be treated as a cascade of the gain equivalent (i.e. the silver film) and the TiO₂resonator that is of Fabry-Perot type, giving rise to negative gth when resonant tunneling occurs. The transmittance spectrum exhibiting a gain-curve-like envelope is shown to be a direct consequence of the competition of the resonator loss at the silver-TiO₂interface and the forward tunneling probability through the silver barrier, all controlled by the effective silver barrier thickness.

  1. Detection of gain enhancement in laser-induced fluorescence of rhodamine B lasing dye by silicon dioxide nanostructures-coated cavity

    NASA Astrophysics Data System (ADS)

    Al-Tameemi, Mohammed N. A.

    2018-03-01

    In this work, nanostructured silicon dioxide films are deposited by closed-field unbalanced direct-current (DC) reactive magnetron sputtering technique on two sides of quartz cells containing rhodamine B dye dissolved in ethanol with 10‒5 M concentration as a random gain medium. The preparation conditions are optimized to prepare highly pure SiO2 nanostructures with a minimum particle size of about 20 nm. The effect of SiO2 films as external cavity for the random gain medium is determined by the laser-induced fluorescence of this medium, and an increase of about 200% in intensity is observed after the deposition of nanostructured SiO2 thin films on two sides of the dye cell.

  2. Low-noise readout circuit for SWIR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Altun, Oguz; Tasdemir, Ferhat; Nuzumlali, Omer Lutfi; Kepenek, Reha; Inceturkmen, Ercihan; Akyurek, Fatih; Tunca, Can; Akbulut, Mehmet

    2017-02-01

    This paper reports a 640x512 SWIR ROIC with 15um pixel pitch that is designed and fabricated using 0.18um CMOS process. Main challenge of SWIR ROIC design is related to input circuit due to pixel area and noise limitations. In this design, CTIA with single stage amplifier is utilized as input stage. The pixel design has three pixel gain options; High Gain (HG), Medium Gain (MG), and Low Gain (LG) with corresponding Full-Well-Capacities of 18.7ké, 190ké and 1.56Mé, respectively. According to extracted simulation results, 5.9é noise is achieved at HG mode and 200é is achieved at LG mode of operation. The ROIC can be programmed through an SPI interface. It supports 1, 2 and 4 output modes which enables the user to configure the detector to work at 30, 60 and 120fps frame rates. In the 4 output mode, the total power consumption of the ROIC is less than 120mW. The ROIC is powered from a 3.3V analog supply and allows for an output swing range in excess of 2V. Anti-blooming feature is added to prevent any unwanted blooming effect during readout.

  3. Optimization of Submerged Fermentation Medium for Matrine Production by Aspergillus terreus, an Endophytic Fungus Harboring Seeds of Sophora flavescens, Using Response Surface Methodology

    PubMed Central

    Zhang, Qiang; Li, Yujuan; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi

    2017-01-01

    Different endophytes isolated from the seeds of Sophora flavescens were tested for their ability to produce matrine production. Response surface methodology (RSM) was applied to optimize the medium components for the endophytic fungus. Results indicated that endophyte Aspergillus terreus had the ability to produce matrine. The single factor tests demonstrated that potato starch was the best carbon source and the combination of peptone and NH4NO3 was the optimal nitrogen source for A. terreus. The model of RSM predicted to gain the maximal matrine production at 20.67 µg/L, when the potato starch was 160.68 g/L, peptone was 24.96 g/L and NH4NO3 was 2.11 g/L. When cultured in the optimal medium, the matrine yield was an average of 20.63 ± 0.11 µg/L, which was consistent with the model prediction. This study offered an alternative source for the matrine production by endophytic fungus fermentation and may have far-reaching prospect and value. PMID:28781541

  4. Optimization of Submerged Fermentation Medium for Matrine Production by Aspergillus terreus, an Endophytic Fungus Harboring Seeds of Sophora flavescens, Using Response Surface Methodology.

    PubMed

    Zhang, Qiang; Li, Yujuan; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi; Zhang, Xuelan; Han, Chunchao

    2017-06-01

    Different endophytes isolated from the seeds of Sophora flavescens were tested for their ability to produce matrine production. Response surface methodology (RSM) was applied to optimize the medium components for the endophytic fungus. Results indicated that endophyte Aspergillus terreus had the ability to produce matrine. The single factor tests demonstrated that potato starch was the best carbon source and the combination of peptone and NH 4 NO 3 was the optimal nitrogen source for A. terreus . The model of RSM predicted to gain the maximal matrine production at 20.67 µg/L, when the potato starch was 160.68 g/L, peptone was 24.96 g/L and NH 4 NO 3 was 2.11 g/L. When cultured in the optimal medium, the matrine yield was an average of 20.63 ± 0.11 µg/L, which was consistent with the model prediction. This study offered an alternative source for the matrine production by endophytic fungus fermentation and may have far-reaching prospect and value.

  5. Light amplification by seeded Kerr instability

    NASA Astrophysics Data System (ADS)

    Vampa, G.; Hammond, T. J.; Nesrallah, M.; Naumov, A. Yu.; Corkum, P. B.; Brabec, T.

    2018-02-01

    Amplification of femtosecond laser pulses typically requires a lasing medium or a nonlinear crystal. In either case, the chemical properties of the lasing medium or the momentum conservation in the nonlinear crystal constrain the frequency and the bandwidth of the amplified pulses. We demonstrate high gain amplification (greater than 1000) of widely tunable (0.5 to 2.2 micrometers) and short (less than 60 femtosecond) laser pulses, up to intensities of 1 terawatt per square centimeter, by seeding the modulation instability in an Y3Al5O12 crystal pumped by femtosecond near-infrared pulses. Our method avoids constraints related to doping and phase matching and therefore can occur in a wider pool of glasses and crystals even at far-infrared frequencies and for single-cycle pulses. Such amplified pulses are ideal to study strong-field processes in solids and highly excited states in gases.

  6. Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator

    PubMed Central

    Zhang, Tong; Qian, Guang; Wang, Yang-Yang; Xue, Xiao-Jun; Shan, Feng; Li, Ruo-Zhou; Wu, Jing-Yuan; Zhang, Xiao-Yang

    2014-01-01

    Optical gyroscopes with high sensitivity are important rotation sensors for inertial navigation systems. Here, we present the concept of integrated resonant optical gyroscope constructed by active long-range surface plasmon-polariton (LRSPP) waveguide resonator. In this gyroscope, LRSPP waveguide doped gain medium is pumped to compensate the propagation loss, which has lower pump noise than that of conventional optical waveguide. Peculiar properties of single-polarization of LRSPP waveguide have been found to significantly reduce the polarization error. The metal layer of LRSPP waveguide is electro-optical multiplexed for suppression of reciprocal noises. It shows a limited sensitivity of ~10−4 deg/h, and a maximum zero drift which is 4 orders of magnitude lower than that constructed by conventional single-mode waveguide. PMID:24458281

  7. Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya

    2016-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.

  8. Human body and head characteristics as a communication medium for Body Area Network.

    PubMed

    Kifle, Yonatan; Hun-Seok Kim; Yoo, Jerald

    2015-01-01

    An in-depth investigation of the Body Channel Communication (BCC) under the environment set according to the IEEE 802.15.6 Body Area Network (BAN) standard is conducted to observe and characterize the human body as a communication medium. A thorough measurement of the human head as part of the human channel is also carried out. Human forehead, head to limb, and ear to ear channel is characterized. The channel gain of the human head follows the same bandpass profile of the human torso and limbs with the maximum channel gain occurring at 35MHz. The human body channel gain distribution histogram at given frequencies, while all the other parameters are held constant, exhibits a maximum variation of 2.2dB in the channel gain at the center frequency of the bandpass channel gain profile.

  9. On the mechanism of transverse-mode beatings in a Fabry - Perot laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, N; Ledenev, V I

    2010-06-23

    The mechanism of emergence of fundamental-mode and first-mode beatings in the case of a step-wise increase in the pump rate is studied under the stationary single-mode lasing conditions. Investigation is based on the numerical solution of nonstationary wave equations in a resonator in the quasi-optic approximation and on the equation for a relaxation-type medium as well as on the use of the first two Hermite - Gaussian polynomials {psi}{sub 0,1}(x) to obtain the distribution projections I{sub 0,1}(t), g{sub 0,1}(t) of the radiation intensity and gain, respectively. It is shown that the transverse-mode beatings emerge at early stages of two-mode lasing,more » the appearance of radiation intensity oscillations in the active medium preceding the development of the gain oscillations. The time of the passage of two-mode lasing to the stationary regime is determined. The phase shift {pi}/2 between the oscillations I{sub 1}(t) and g{sub 1}(t) is found for the established beating regime and the modulation depth {Delta}I averaged over the output aperture of the radiation intensity in the established two-mode regime is shown to be proportional to the pump rate excess k over the single-mode lasing threshold. A scheme for controlling the mode composition of laser radiation is proposed, which is based on the rules for determining I{sub 0,1}(t) by the sensor signals. The efficiency of the scheme is studied. The scheme employs two field intensity sensors mounted inside the resonator behind the output aperture. (resonators. modes)« less

  10. Dynamics of shaping ultrashort optical dissipative solitary pulses in the actively mode-locked semiconductor laser with an external long-haul single-mode fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Moreno Zarate, Pedro

    2010-02-01

    We describe the conditions of shaping regular trains of optical dissipative solitary pulses, excited by multi-pulse sequences of periodic modulating signals, in the actively mode-locked semiconductor laser heterostructure with an external long-haul single-mode silicon fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. The presented model for the analysis includes three principal contributions associated with the modulated gain, optical losses, as well as linear and nonlinear phase shifts. In fact, the trains of optical dissipative solitary pulses appear within simultaneous presenting and a balance of mutually compensating interactions between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in the combined cavity. Within such a model, a contribution of the nonlinear Ginzburg-Landau operator to shaping the parameters of optical dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions. Finally, the results of the illustrating proof-of-principle experiments are briefly presented and discussed in terms of optical dissipative solitary pulses.

  11. On the ''excess spontaneous emission factor'' in gainguided laser amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haus, H.A.; Kawakami, S.

    1985-01-01

    Petermann computed an ''excess spontaneous emission factor'' for gain-guided laser. In this paper, the authors investigate further the role of this factor. Such a factor also appears in the treatment of thermodynamic equilibrium in an attenuating medium-a seeming paradox. Further investigation shows that the excess spontaneous emission excitation at thermal equilibrium is cancelled by the excitations in the other modes which are correlated with that in the fundamental mode. In a medium with gain, cancellation also occurs in a short amplifier in which there is no gain discrimination among modes. The ''excess spontaneous emission factor'' is fully present only inmore » a system in which the different higher order modes have an appreciably smaller gain than the lowest order mode, a high gain amplifier. An analysis of the signal-tonoise ratio of a high gain amplifier reveals that the excess noise factor can be fully compensated by proper input excitation by a lens arrangement. The lens arrangement provides the signal with an ''excess gain'' factor. An ''excess gain'' factor is also present when a thermal source is used.« less

  12. The Design and Construction of a Long-Distance Atmospheric Propagation Test Chamber

    DTIC Science & Technology

    2015-06-01

    supply, a gain medium where the light is generated and amplified, and an optical cavity consisting of one partially reflecting mirror and one fully... reflecting mirror [6]. There is also a pump stored in the optical cavity that excites electrons in the gain medium, leading to spontaneous and...Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management

  13. Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level.

    PubMed

    Westerwalbesloh, Christoph; Grünberger, Alexander; Stute, Birgit; Weber, Sophie; Wiechert, Wolfgang; Kohlheyer, Dietrich; von Lieres, Eric

    2015-11-07

    A microfluidic device for microbial single-cell cultivation of bacteria was modeled and simulated using COMSOL Multiphysics. The liquid velocity field and the mass transfer within the supply channels and cultivation chambers were calculated to gain insight in the distribution of supplied nutrients and metabolic products secreted by the cultivated bacteria. The goal was to identify potential substrate limitations or product accumulations within the cultivation device. The metabolic uptake and production rates, colony size, and growth medium composition were varied covering a wide range of operating conditions. Simulations with glucose as substrate did not show limitations within the typically used concentration range, but for alternative substrates limitations could not be ruled out. This lays the foundation for further studies and the optimization of existing picoliter bioreactor systems.

  14. Enhanced Exciton and Photon Confinement in Ruddlesden-Popper Perovskite Microplatelets for Highly Stable Low-Threshold Polarized Lasing.

    PubMed

    Li, Mingjie; Wei, Qi; Muduli, Subas Kumar; Yantara, Natalia; Xu, Qiang; Mathews, Nripan; Mhaisalkar, Subodh G; Xing, Guichuan; Sum, Tze Chien

    2018-06-01

    At the heart of electrically driven semiconductors lasers lies their gain medium that typically comprises epitaxially grown double heterostuctures or multiple quantum wells. The simultaneous spatial confinement of charge carriers and photons afforded by the smaller bandgaps and higher refractive index of the active layers as compared to the cladding layers in these structures is essential for the optical-gain enhancement favorable for device operation. Emulating these inorganic gain media, superb properties of highly stable low-threshold (as low as ≈8 µJ cm -2 ) linearly polarized lasing from solution-processed Ruddlesden-Popper (RP) perovskite microplatelets are realized. Detailed investigations using microarea transient spectroscopies together with finite-difference time-domain simulations validate that the mixed lower-dimensional RP perovskites (functioning as cladding layers) within the microplatelets provide both enhanced exciton and photon confinement for the higher-dimensional RP perovskites (functioning as the active gain media). Furthermore, structure-lasing-threshold relationship (i.e., correlating the content of lower-dimensional RP perovskites in a single microplatelet) vital for design and performance optimization is established. Dual-wavelength lasing from these quasi-2D RP perovskite microplatelets can also be achieved. These unique properties distinguish RP perovskite microplatelets as a new family of self-assembled multilayer planar waveguide gain media favorable for developing efficient lasers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effects of Collaborative Group Composition and Inquiry Instruction on Reasoning Gains and Achievement in Undergraduate Biology

    PubMed Central

    Jensen, Jamie Lee; Lawson, Anton

    2011-01-01

    This study compared the effectiveness of collaborative group composition and instructional method on reasoning gains and achievement in college biology. Based on initial student reasoning ability (i.e., low, medium, or high), students were assigned to either homogeneous or heterogeneous collaborative groups within either inquiry or didactic instruction. Achievement and reasoning gains were assessed at the end of the semester. Inquiry instruction, as a whole, led to significantly greater gains in reasoning ability and achievement. Inquiry instruction also led to greater confidence and more positive attitudes toward collaboration. Low-reasoning students made significantly greater reasoning gains within inquiry instruction when grouped with other low reasoners than when grouped with either medium or high reasoners. Results are consistent with equilibration theory, supporting the idea that students benefit from the opportunity for self-regulation without the guidance or direction of a more capable peer. PMID:21364101

  16. Gain assisted nanocomposite multilayers with near zero permittivity modulus at visible frequencies

    NASA Astrophysics Data System (ADS)

    Rizza, Carlo; Di Falco, Andrea; Ciattoni, Alessandro

    2011-11-01

    We have fabricated a nano-laminate by alternating metal and gain medium layers, the gain dielectric consisting of a polymer incorporating optically pumped dye molecules. From standard reflection-transmission experiments, we show that, at a visible wavelength, both the real and the imaginary parts of the permittivity ɛ∥ attain very small values and we measure, at λ = 604 nm, |ɛ∥|=0.04 which is 21.5% smaller than its value in the absence of optical pumping. Our investigation thus proves that a medium with a permittivity with very small modulus, a key condition promising efficient subwavelength optical steering, can be actually synthesized.

  17. Coupled tapering/uptapering of Thirring type soliton pair in nonlinear media

    NASA Astrophysics Data System (ADS)

    Prasad, Shraddha; Dutta, Manoj Kumar; Sarkar, Ram Krishna

    2018-03-01

    The paper investigates coupled tapering/uptapering of Thirring type soliton pair, employing Beam Propagation Method. It is seen that, the pair uptapers in presence of losses and tapers in presence of gain. When the first beam has gain and the second one has losses in the nonlinear medium, the second beam induces uptapering in the first beam, while, first beam induces tapering in the second beam. When the medium provides gain/losses to only one of the two beams, the beam undergoes tapering/uptapering and also induces tapering/uptapering to the other loss less beam; however, magnitude of tapering/uptapering are different.

  18. Cost effectiveness of ramipril treatment for cardiovascular risk reduction.

    PubMed

    Malik, I S; Bhatia, V K; Kooner, J S

    2001-05-01

    To assess the cost effectiveness of ramipril treatment in patients at low, medium, and high risk of cardiovascular death. Population based cost effectiveness analysis from the perspective of the health care provider in the UK. Effectiveness was modelled using data from the HOPE (heart outcome prevention evaluation) trial. The life table method was used to predict mortality in a medium risk cohort, as in the HOPE trial (2.44% annual mortality), and in low and high risk groups (1% and 4.5% annual mortality, respectively). UK population using 1998 government actuary department data. Cost per life year gained at five years and lifetime treatment with ramipril. Cost effectiveness was pound36 600, pound13 600, and pound4000 per life year gained at five years and pound5300, pound1900, and pound100 per life year gained at 20 years (lifetime treatment) in low, medium, and high risk groups, respectively. Cost effectiveness at 20 years remained well below that of haemodialysis ( pound25 000 per life year gained) over a range of potential drug costs and savings. Treatment of the HOPE population would cost the UK National Health Service (NHS) an additional pound360 million but would prevent 12 000 deaths per annum. Ramipril is cost effective treatment for cardiovascular risk reduction in patients at medium, high, and low pretreatment risk, with a cost effectiveness comparable with the use of statins. Implementation of ramipril treatment in a medium risk population would result in a major reduction in cardiovascular deaths but would increase annual NHS spending by pound360 million.

  19. Intensity fluctuations in bimodal micropillar lasers enhanced by quantum-dot gain competition

    NASA Astrophysics Data System (ADS)

    Leymann, H. A. M.; Hopfmann, C.; Albert, F.; Foerster, A.; Khanbekyan, M.; Schneider, C.; Höfling, S.; Forchel, A.; Kamp, M.; Wiersig, J.; Reitzenstein, S.

    2013-05-01

    We investigate correlations between orthogonally polarized cavity modes of a bimodal micropillar laser with a single layer of self-assembled quantum dots in the active region. While one emission mode of the microlaser demonstrates a characteristic S-shaped input-output curve, the output intensity of the second mode saturates and even decreases with increasing injection current above threshold. Measuring the photon autocorrelation function g(2)(τ) of the light emission confirms the onset of lasing in the first mode with g(2)(0) approaching unity above threshold. In contrast, strong photon bunching associated with superthermal values of g(2)(0) is detected for the other mode for currents above threshold. This behavior is attributed to gain competition of the two modes induced by the common gain material, which is confirmed by photon cross-correlation measurements revealing a clear anticorrelation between emission events of the two modes. The experimental studies are in qualitative agreement with theoretical studies based on a microscopic semiconductor theory, which we extend to the case of two modes interacting with the common gain medium. Moreover, we treat the problem by a phenomenological birth-death model extended to two interacting modes, which reveals that the photon probability distribution of each mode has a double-peak structure, indicating switching behavior of the modes for pump rates around threshold.

  20. MMIC DHBT Common-Base Amplifier for 172 GHz

    NASA Technical Reports Server (NTRS)

    Paidi, Vamsi; Griffith, Zack; Wei, Yun; Dahlstrom, Mttias; Urteaga, Miguel; Rodwell, Mark; Samoska, Lorene; Fung, King Man; Schlecht, Erich

    2006-01-01

    Figure 1 shows a single-stage monolithic microwave integrated circuit (MMIC) power amplifier in which the gain element is a double-heterojunction bipolar transistor (DHBT) connected in common-base configuration. This amplifier, which has been demonstrated to function well at a frequency of 172 GHz, is part of a continuing effort to develop compact, efficient amplifiers for scientific instrumentation, wide-band communication systems, and radar systems that will operate at frequencies up to and beyond 180 GHz. The transistor is fabricated from a layered structure formed by molecular beam epitaxy in the InP/InGaAs material system. A highly doped InGaAs base layer and a collector layer are fabricated from the layered structure in a triple mesa process. The transistor includes two separate emitter fingers, each having dimensions of 0.8 by 12 m. The common-base configuration was chosen for its high maximum stable gain in the frequency band of interest. The input-matching network is designed for high bandwidth. The output of the transistor is matched to a load line for maximum saturated output power under large-signal conditions, rather than being matched for maximum gain under small-signal conditions. In a test at a frequency of 172 GHz, the amplifier was found to generate an output power of 7.5 mW, with approximately 5 dB of large-signal gain (see Figure 2). Moreover, the amplifier exhibited a peak small-signal gain of 7 dB at a frequency of 176 GHz. This performance of this MMIC single-stage amplifier containing only a single transistor represents a significant advance in the state of the art, in that it rivals the 170-GHz performance of a prior MMIC three-stage, four-transistor amplifier. [The prior amplifier was reported in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 49.] This amplifier is the first heterojunction- bipolar-transistor (HBT) amplifier built for medium power operation in this frequency band. The performance of the amplifier as measured in the aforementioned tests suggests that InP/InGaAs HBTs may be superior to high-electron-mobility (HEMT) transistors in that the HBTs may offer more gain per stage and more output power per transistor.

  1. Waste gas biofiltration: advances and limitations of current approaches in microbiology.

    PubMed

    Ralebitso-Senior, T Komang; Senior, Eric; Di Felice, Renzo; Jarvis, Kirsty

    2012-08-21

    As confidence in gas biofiltration efficacy grows, ever more complex malodorant and toxic molecules are ameliorated. In parallel, for many countries, emission control legislation becomes increasingly stringent to accommodate both public health and climate change imperatives. Effective gas biofiltration in biofilters and biotrickling filters depends on three key bioreactor variables: the support medium; gas molecule solubilization; and the catabolic population. Organic and inorganic support media, singly or in combination, have been employed and their key criteria are considered by critical appraisal of one, char. Catabolic species have included fungal and bacterial monocultures and, to a lesser extent, microbial communities. In the absence of organic support medium (soil, compost, sewage sludge, etc.) inoculum provision, a targeted enrichment and isolation program must be undertaken followed, possibly, by culture efficacy improvement. Microbial community process enhancement can then be gained by comprehensive characterization of the culturable and total populations. For all species, support medium attachment is critical and this is considered prior to filtration optimization by water content, pH, temperature, loadings, and nutrients manipulation. Finally, to negate discharge of fungal spores, and/or archaeal and/or bacterial cells, capture/destruction technologies are required to enable exploitation of the mineralization product CO(2).

  2. Droplet-based microfluidic system to form and separate multicellular spheroids using magnetic nanoparticles.

    PubMed

    Yoon, Sungjun; Kim, Jeong Ah; Lee, Seung Hwan; Kim, Minsoo; Park, Tai Hyun

    2013-04-21

    The importance of creating a three-dimensional (3-D) multicellular spheroid has recently been gaining attention due to the limitations of monolayer cell culture to precisely mimic in vivo structure and cellular interactions. Due to this emerging interest, researchers have utilized new tools, such as microfluidic devices, that allow high-throughput and precise size control to produce multicellular spheroids. We have developed a droplet-based microfluidic system that can encapsulate both cells and magnetic nanoparticles within alginate beads to mimic the function of a multicellular tumor spheroid. Cells were entrapped within the alginate beads along with magnetic nanoparticles, and the beads of a relatively uniform size (diameters of 85% of the beads were 170-190 μm) were formed in the oil phase. These beads were passed through parallel streamlines of oil and culture medium, where the beads were magnetically transferred into the medium phase from the oil phase using an external magnetic force. This microfluidic chip eliminates additional steps for collecting the spheroids from the oil phase and transferring them to culture medium. Ultimately, the overall spheroid formation process can be achieved on a single microchip.

  3. Laser diode package with enhanced cooling

    DOEpatents

    Deri, Robert J; Kotovsky, Jack; Spadaccini, Christopher M

    2012-06-26

    This invention provides a new method for rapidly analyzing single bioparticles to assess their material condition and state of health. The method is enabled by use of a resonant cavity apparatus to measure an optical property related to the bioparticle size and refractive index. Measuring the refractive index is useful for determining material properties of the bioparticle. The material properties depend on the biomolecular composition of the bioparticle. The biomolecular composition is, in turn, dependent on the state of health of the bioparticle. Thus, measured optical properties can be used to differentiate normal (healthy) and abnormal (diseased) states of bioparticles derived from cells or tissues. The method is illustrated with data obtained from a resonator with a gain medium. The invention also provides new methods for making multiple measurements in a single device and detecting, analyzing, and manipulating bioparticles that are much smaller than the wavelength of light.

  4. Nanolaser spectroscopy and micro-optical resonators for detecting, analyzing, and manipulating bioparticles

    DOEpatents

    Gourley, Paul L

    2012-06-26

    This invention provides a new method for rapidly analyzing single bioparticles to assess their material condition and state of health. The method is enabled by use of a resonant cavity apparatus to measure an optical property related to the bioparticle size and refractive index. Measuring the refractive index is useful for determining material properties of the bioparticle. The material properties depend on the biomolecular composition of the bioparticle. The biomolecular composition is, in turn, dependent on the state of health of the bioparticle. Thus, measured optical properties can be used to differentiate normal (healthy) and abnormal (diseased) states of bioparticles derived from cells or tissues. The method is illustrated with data obtained from a resonator with a gain medium. The invention also provides new methods for making multiple measurements in a single device and detecting, analyzing, and manipulating bioparticles that are much smaller than the wavelength of light.

  5. A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser

    NASA Astrophysics Data System (ADS)

    Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.

    2018-05-01

    A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.

  6. Thermal effects in Cs DPAL and alkali cell window damage

    NASA Astrophysics Data System (ADS)

    Zhdanov, B. V.; Rotondaro, M. D.; Shaffer, M. K.; Knize, R. J.

    2016-10-01

    Experiments on power scaling of Diode Pumped Alkali Lasers (DPALs) revealed some limiting parasitic effects such as alkali cell windows and gain medium contamination and damage, output power degradation in time and others causing lasing efficiency decrease or even stop lasing1 . These problems can be connected with thermal effects, ionization, chemical interactions between the gain medium components and alkali cells materials. Study of all these and, possibly, other limiting effects and ways to mitigate them is very important for high power DPAL development. In this talk we present results of our experiments on temperature measurements in the gain medium of operating Cs DPAL at different pump power levels in the range from lasing threshold to the levels causing damage of the alkali cell windows. For precise contactless in situ temperature measurements, we used an interferometric technique, developed in our lab2 . In these experiments we demonstrated that damage of the lasing alkali cell starts in the bulk with thermal breakdown of the hydrocarbon buffer gas. The degradation processes start at definite critical temperatures of the gain medium, different for each mixture of buffer gas. At this critical temperature, the hydrocarbon and the excited alkali metal begin to react producing the characteristic black soot and, possibly, some other chemical compounds, which both harm the laser performance and significantly increase the harmful heat deposition within the laser medium. This soot, being highly absorptive, is catastrophically heated to very high temperatures that visually observed as bulk burning. This process quickly spreads to the cell windows and causes their damage. As a result, the whole cell is also contaminated with products of chemical reactions.

  7. Coherent chirped pulse laser network with Mickelson phase conjugator.

    PubMed

    Okulov, A Yu

    2014-04-10

    The mechanisms of nonlinear phase-locking of a large fiber amplifier array are analyzed. The preference is given to the most suitable configuration for a coherent coupling of thousands of fundamental spatial mode fiber beams into a single smooth beam ready for chirped pulse compression. It is shown that a Michelson phase-conjugating configuration with double passage through an array of fiber amplifiers has the definite advantage compared to a one-way fiber array coupled in a Mach-Zehnder configuration. Regardless of the amount of synchronized fiber amplifiers, the Michelson phase-conjugating interferometer is expected to do a perfect compensation of the phase-piston errors and collimation of backwardly amplified fiber beams on an entrance/output beam splitter. In both configurations, the nonlinear transformation of the stretched pulse envelope, due to gain saturation, is capable of randomizing the position of chirp inside an envelope; thus it may reduce the visibility of the interference pattern at an output beam splitter. Certain advantages are inherent to the sech-form temporal envelope because of the exponential precursor and self-similar propagation in gain medium. The Gaussian envelope is significantly compressed in a deep gain saturation regime, and the frequency chirp position inside pulse envelope is more deformed.

  8. Invited Paper Optical Resonators For Associative Memory

    NASA Astrophysics Data System (ADS)

    Anderson, Dana Z.

    1986-06-01

    One can construct a memory having associative characteristics using optical resonators with an internal gain medium. The device operates on the principle that an optical resonator employing a holographic grating can have user prescribed eigenmodes. Information that is to be recalled is contained in the hologram. Each information entity (e.g. an image of a cat) defines an eigenmode of the resonator. The stored information is accessed by injecting partial information (e.g. an image of the cat's ear) into the resonator. The appropriate eigenmode is selected through a competitive process in a gain medium placed inside the resonator. With a net gain greater than one, the gain amplifies the field belonging to the eigenmode that most resembles the injected field; the other eigenmodes are suppressed via the competition for the gain. One can expect this device to display several intriguing features such as recall transitions and creativity. I will discuss some of the general properties of this class of devices and present the results from a series of experiments with a simple holographic resonator employing photorefractive gain.

  9. Multi-level multi-thermal-electron FDTD simulation of plasmonic interaction with semiconducting gain media: applications to plasmonic amplifiers and nano-lasers.

    PubMed

    Chen, X; Bhola, B; Huang, Y; Ho, S T

    2010-08-02

    Interactions between a semiconducting gain medium and confined plasmon-polaritons are studied using a multilevel multi-thermal-electron finite-difference time-domain (MLMTE-FDTD) simulator. We investigated the amplification of wave propagating in a plasmonic metal-semiconductor-metal (MSM) waveguide filled with semiconductor gain medium and obtained the conditions required to achieve net optical gain. The MSM gain waveguide is used to form a plasmonic semiconductor nano-ring laser(PSNRL) with an effective mode volume of 0.0071 microm3, which is about an order of magnitude smaller than the smallest demonstrated integrated photonic crystal based laser cavities. The simulation shows a lasing threshold current density of 1kA/cm2 for a 300 nm outer diameter ring cavity with 80 nm-wide ring. This current density can be realistically achieved in typical III-V semiconductor, which shows the experimental feasibility of the proposed PSNRL structure.

  10. The total column of CO2 and CH4 measured with a compact Fourier transform spectrometer at NASA Armstrong Flight Research Center and Railroad Valley, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Kawakami, S.; Shiomi, K.; Suto, H.; Kuze, A.; Hillyard, P. W.; Tanaka, T.; Podolske, J. R.; Iraci, L. T.; Albertson, R. T.

    2014-12-01

    The total columns of carbon dioxide (XCO2) and methane (XCH4) were measured with a compact Fourier transform spectrometer (FTS) at NASA Armstrong Flight Research Center (AFRC) and Railroad Valley, Nevada, USA (RRV) during a vicarious calibration campaign in June 2014. The campaign was performed to estimate changes in the radiometric response of the Thermal and Near Infrared Sensor for carbon Observations Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI) aboard Greenhouse gases Observing SATellite (GOSAT). TANSO-FTS measures spectra of radiance scattered by the Earth surface with high- and medium-gain depending on the surface reflectance. At high reflectance areas, such as deserts over north Africa and Australia, TANSO-FTS collects spectra with medium-gain. There was differences on atmospheric pressure and XCO2 retrieved from spectra obtained between high-gain and medium-gain. Because the retrieved products are useful for evaluating the difference of spectral qualities between high- and medium-gain, this work is an attempt to collect validation data for spectra with medium-gain of TANSO-FTS at remote and desert area with a compact and medium-spectral resolution instrument. As a compact FTS, EM27/SUN was used. It was manufactured and newly released on April 1, 2014 by Bruker. It is robust and operable in a high temperature environment. It was housed in a steel box to protect from dust and rain and powered by Solar panels. It can be operated by such a remote and desert area, like a RRV. Over AFRC and RRV, vertical profiles of CO2 and CH4 were measured using the Alpha Jet research aircraft as part of the Alpha Jet Atmospheric eXperiment (AJAX) of ARC, NASA. The values were calibrated to standard gases. To make the results comparable to WMO (World Meteorological Organization) standards, the retrieved XCO2 and XCH4 values are divided by a calibration factor. This values were determined by comparisons with in situ profiles measured by the aircraft. At AFRC it was operated by the side of a ground-based Total Carbon Column Observing Network (TCCON) FTS (Bruker IFS 125HR) and the diurnal variation agreed well . In this presentation, we will show results on XCO2 and XCH4 observations made by a compact FTS at AFRC and RRV and comparison of GOSAT and TCCON FTS.

  11. Design and performance of mobile terminal for North American MSAT network

    NASA Technical Reports Server (NTRS)

    Fuji, Tsuyoshi; Tsuchiya, Makio; Isota, Yoji; Aoki, Katsuhiko

    1995-01-01

    The mobile terminal (MT), which can be selected for various applications, i.e. land mobile, transportable, fixed site, and maritime use, has been developed. Medium gain and high gain antennas are available. The MT can support circuit switched voice and data service. Additionally, cellular roaming service, net radio, and Group 3 facsimile services are optionally provided. A Mitsubishi handheld portable phone can be used as a stand-alone portable cellular-only phone or it can provide MSAT voice service when connected to MT. The MT which operates in L-band (1.5 GHz/1.6 GHz) satisfies equivalent isotropically radiated power (EIRP) of 12.5 dBW minimum and G/T of -16 dB/K minimum for medium gain system and -12 dB/K for high gain system. The excellent performance of transmit phase noise and bit error rate is achieved by using new technologies.

  12. Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd,Y:CaF2 disordered crystal.

    PubMed

    Qin, Z P; Xie, G Q; Ma, J; Ge, W Y; Yuan, P; Qian, L J; Su, L B; Jiang, D P; Ma, F K; Zhang, Q; Cao, Y X; Xu, J

    2014-04-01

    We have demonstrated a diode-pumped passively mode-locked femtosecond Nd,Y:CaF2 disordered crystal laser for the first time to our knowledge. By choosing appropriate Y-doping concentration, a broad fluorescence linewidth of 31 nm has been obtained from the gain linewidth-variable Nd,Y:CaF2 crystal. With the Nd,Y:CaF2 disordered crystal as gain medium, the mode-locked laser generated pulses with pulse duration as short as 103 fs, average output power of 89 mW, and repetition rate of 100 MHz. To our best knowledge, this is the shortest pulse generated from Nd-doped crystal lasers so far. The research results show that the Nd,Y:CaF2 disordered crystal will be a potential alternative as gain medium of repetitive chirped pulse amplification for high-peak-power lasers.

  13. Mie resonances to tailor random lasers

    NASA Astrophysics Data System (ADS)

    García, P. D.; Ibisate, M.; Sapienza, R.; Wiersma, D. S.; López, C.

    2009-07-01

    In this paper, we present an optical characterization of photonic glass-based random lasers. We show how the resonant behavior of diffuse light transport through such systems can tailor the lasing emission when a gain medium is added to the glass. A DNA-based organic dye is used as gain medium. The resonances in the transport mean-free path influence the lasing wavelength of the random laser. The laser wavelength is therefore controlled by the sphere diameter. Furthermore, the existence of Mie resonances reduces the necessary pump energy to reach the lasing threshold.

  14. Development of very compact soft X-ray lasers

    NASA Astrophysics Data System (ADS)

    Korobkin, Dmitriy Vladlenovich

    1999-10-01

    A powerful subpicosecond laser system, based on solid state (Ti:Al 2O3) front end and gas excimer (KrF*) amplifiers, has been developed. It is capable of producing 40-50 mJ pulses at 248 nm (285 fs pulse duration) with 2 Hz repetition rate. That radiation can be focused to intensities greater than 1017 W/cm2 and cause the optical field ionization of lithium. The system was used in experiments on gain generation in hydrogen-like Li III. Lasing action in hydrogen-like Li III 2-1 transition to ground state (13.5 nm) has been demonstrated for the first time. Gain G = 11 cm-1 in 5-mm long plasma column, created in LiF microcapillary, was measured. The observed gain-length product was GL = 5.5. In another set of experiments an inversion population between levels n = 3 and n = 2 in hydrogen-like BV was created using a low-energy compact laser system at 1 Hz repetition rate. Gain G = 17 cm-1 at 26.2 nm was measured in 3 mm long B2O3 microcapillary, which corresponds to GL = 5.1. The entire experimental setup can be fit on a single medium size optical table. Also propagation of laser radiation through plasma, created in microcapillaries has been investigated at various experimental conditions. Real-time plasma probing with low intensity HeNe laser beam has been performed.

  15. Energy Scaling of Nanosecond Gain-Switched Cr2+:ZnSe Lasers

    DTIC Science & Technology

    2011-01-01

    outcoupler or absorption from the lightly-doped active ions. Additionally, the edges of the crystals are cut at the Brewster angle , which raises...experiments we used Brewster cut Cr:ZnSe gain elements with a chromium concentration of 8x1018 cm-3. Under Cr:Tm:Ho:YAG pumping, the first Cr:ZnSe laser...the energy scaling of nanosecond gain-switched Cr:ZnSe lasers is optimization of the gain medium. In this study we used Brewster cut Cr:ZnSe gain

  16. The Calibration of AVHRR/3 Visible Dual Gain Using Meteosat-8 as a MODIS Calibration Transfer Medium

    NASA Technical Reports Server (NTRS)

    Avey, Lance; Garber, Donald; Nguyen, Louis; Minnis, Patrick

    2007-01-01

    This viewgraph presentation reviews the NOAA-17 AVHRR visible channels calibrated against MET-8/MODIS using dual gain regression methods. The topics include: 1) Motivation; 2) Methodology; 3) Dual Gain Regression Methods; 4) Examples of Regression methods; 5) AVHRR/3 Regression Strategy; 6) Cross-Calibration Method; 7) Spectral Response Functions; 8) MET8/NOAA-17; 9) Example of gain ratio adjustment; 10) Effect of mixed low/high count FOV; 11) Monitor dual gains over time; and 12) Conclusions

  17. Untangling the effects of multiple human stressors and their impacts on fish assemblages in European running waters.

    PubMed

    Schinegger, Rafaela; Palt, Martin; Segurado, Pedro; Schmutz, Stefan

    2016-12-15

    This work addresses human stressors and their impacts on fish assemblages at pan-European scale by analysing single and multiple stressors and their interactions. Based on an extensive dataset with 3105 fish sampling sites, patterns of stressors, their combination and nature of interactions, i.e. synergistic, antagonistic and additive were investigated. Geographical distribution and patterns of seven human stressor variables, belonging to four stressor groups (hydrological-, morphological-, water quality- and connectivity stressors), were examined, considering both single and multiple stressor combinations. To quantify the stressors' ecological impact, a set of 22 fish metrics for various fish assemblage types (headwaters, medium gradient rivers, lowland rivers and Mediterranean streams) was analysed by comparing their observed and expected response to different stressors, both acting individually and in combination. Overall, investigated fish sampling sites are affected by 15 different stressor combinations, including 4 stressors acting individually and 11 combinations of two or more stressors; up to 4 stressor groups per fish sampling site occur. Stressor-response analysis shows divergent results among different stressor categories, even though a general trend of decreasing ecological integrity with increasing stressor quantity can be observed. Fish metrics based on density of species 'intolerant to water quality degradation' and 'intolerant to oxygen depletion" responded best to single and multiple stressors and their interactions. Interactions of stressors were additive (40%), synergistic (30%) or antagonistic (30%), emphasizing the importance to consider interactions in multi-stressor analyses. While antagonistic effects are only observed in headwaters and medium-gradient rivers, synergistic effects increase from headwaters over medium gradient rivers and Mediterranean streams to large lowland rivers. The knowledge gained in this work provides a basis for advanced investigations in European river basins and helps prioritizing further restoration and management actions. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Redesign of a Variable-Gain Output Feedback Longitudinal Controller Flown on the High-Alpha Research Vehicle (HARV)

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.

    1998-01-01

    This paper describes a redesigned longitudinal controller that flew on the High-Alpha Research Vehicle (HARV) during calendar years (CY) 1995 and 1996. Linear models are developed for both the modified controller and a baseline controller that was flown in CY 1994. The modified controller was developed with three gain sets for flight evaluation, and several linear analysis results are shown comparing the gain sets. A Neal-Smith flying qualities analysis shows that performance for the low- and medium-gain sets is near the level 1 boundary, depending upon the bandwidth assumed, whereas the high-gain set indicates a sensitivity problem. A newly developed high-alpha Bode envelope criterion indicates that the control system gains may be slightly high, even for the low-gain set. A large motion-base simulator in the United Kingdom was used to evaluate the various controllers. Desired performance, which appeared to be satisfactory for flight, was generally met with both the low- and medium-gain sets. Both the high-gain set and the baseline controller were very sensitive, and it was easy to generate pilot-induced oscillation (PIO) in some of the target-tracking maneuvers. Flight target-tracking results varied from level 1 to level 3 and from no sensitivity to PIO. These results were related to pilot technique and whether actuator rate saturation was encountered.

  19. Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes

    NASA Astrophysics Data System (ADS)

    O'Brien, S. A.; Harvey, A.; Griffin, A.; Donnelly, T.; Mulcahy, D.; Coleman, J. N.; Donegan, J. F.; McCloskey, D.

    2017-11-01

    Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter—the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.

  20. Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes.

    PubMed

    O'Brien, S A; Harvey, A; Griffin, A; Donnelly, T; Mulcahy, D; Coleman, J N; Donegan, J F; McCloskey, D

    2017-11-24

    Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter-the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.

  1. Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator

    PubMed Central

    Zhu, Wenqi; Xu, Ting; Wang, Haozhu; Zhang, Cheng; Deotare, Parag B.; Agrawal, Amit; Lezec, Henri J.

    2017-01-01

    Recent years have witnessed a growing interest in the development of small-footprint lasers for potential applications in small-volume sensing and on-chip optical communications. Surface plasmons—electromagnetic modes evanescently confined to metal-dielectric interfaces—offer an effective route to achieving lasing at nanometer-scale dimensions when resonantly amplified in contact with a gain medium. We achieve narrow-linewidth visible-frequency lasing at room temperature by leveraging surface plasmons propagating in an open Fabry-Perot cavity formed by a flat metal surface coated with a subwavelength-thick layer of optically pumped gain medium and orthogonally bound by a pair of flat metal sidewalls. We show how the lasing threshold and linewidth can be lowered by incorporating a low-profile tapered grating on the cavity floor to couple the excitation beam into a pump surface plasmon polariton providing a strong modal overlap with the gain medium. Low-perturbation transmission-configuration sampling of the lasing plasmon mode is achieved via an evanescently coupled recessed nanoslit, opening the way to high–figure of merit refractive index sensing of analytes interacting with the open metallic trench. PMID:28989962

  2. Analytical thermal model for end-pumped solid-state lasers

    NASA Astrophysics Data System (ADS)

    Cini, L.; Mackenzie, J. I.

    2017-12-01

    Fundamentally power-limited by thermal effects, the design challenge for end-pumped "bulk" solid-state lasers depends upon knowledge of the temperature gradients within the gain medium. We have developed analytical expressions that can be used to model the temperature distribution and thermal-lens power in end-pumped solid-state lasers. Enabled by the inclusion of a temperature-dependent thermal conductivity, applicable from cryogenic to elevated temperatures, typical pumping distributions are explored and the results compared with accepted models. Key insights are gained through these analytical expressions, such as the dependence of the peak temperature rise in function of the boundary thermal conductance to the heat sink. Our generalized expressions provide simple and time-efficient tools for parametric optimization of the heat distribution in the gain medium based upon the material and pumping constraints.

  3. Improvement of Students’ Environmental Literacy by Using Integrated Science Teaching Materials

    NASA Astrophysics Data System (ADS)

    Suryanti, D.; Sinaga, P.; Surakusumah, W.

    2018-02-01

    This study aims to determine the improvement of student environmental literacy through the use of integrated science teaching materials on pollution topics. The research is used weak experiment method with the one group pre-test post-test design. The sample of the study were junior high school students in Bandung amounted to 32 people of 7th grade. Data collection in the form of environmental literacy test instrument consist of four components of environmental literacy that is (1) Knowledge, (2) Competencies (Cognitive Skill), (3) Affective and (4) Environmentally Responsible Behavior. The results show that the student’s environmental literacy ability is improved after using integrated science teaching materials. An increase in the medium category is occurring in the knowledge (N-gain=46%) and cognitive skill (N-gain=31%), while the increase in the low category occurs in the affective component (N-gain=25%) and behaviour (N-gain=24%). The conclusions of this study as a whole the improvement of students’ environmental literacy by using integrated science teaching material is in the medium category (N-gain=34%).

  4. Electric line source illumination of a chiral cylinder placed in another chiral background medium

    NASA Astrophysics Data System (ADS)

    Aslam, M.; Saleem, A.; Awan, Z. A.

    2018-05-01

    An electric line source illumination of a chiral cylinder embedded in a chiral background medium is considered. The field expressions inside and outside of a chiral cylinder have been derived using the wave field decomposition approach. The effects of various chiral cylinders, chiral background media and source locations upon the scattering gain pattern have been investigated. It is observed that the chiral background reduces the backward scattering gain as compared to the free space background for a dielectric cylinder. It is also studied that by moving a line source away from a cylinder reduces the backward scattering gain for a chiral cylinder placed in a chiral background under some specific conditions. A unique phenomenon of reduced scattering gain has been observed at a specific observation angle for a chiral cylinder placed in a chiral background having an electric line source location of unity free space wavelength. An isotropic scattering gain pattern is observed for a chiral nihility background provided that if cylinder is chiral or chiral nihility type. It is also observed that this isotropic behaviour is independent of background and cylinder chirality.

  5. Controlling the gain contribution of background emitters in few-quantum-dot microlasers

    NASA Astrophysics Data System (ADS)

    Gericke, F.; Segnon, M.; von Helversen, M.; Hopfmann, C.; Heindel, T.; Schneider, C.; Höfling, S.; Kamp, M.; Musiał, A.; Porte, X.; Gies, C.; Reitzenstein, S.

    2018-02-01

    We provide experimental and theoretical insight into single-emitter lasing effects in a quantum dot (QD)-microlaser under controlled variation of background gain provided by off-resonant discrete gain centers. For that purpose, we apply an advanced two-color excitation concept where the background gain contribution of off-resonant QDs can be continuously tuned by precisely balancing the relative excitation power of two lasers emitting at different wavelengths. In this way, by selectively exciting a single resonant QD and off-resonant QDs, we identify distinct single-QD signatures in the lasing characteristics and distinguish between gain contributions of a single resonant emitter and a countable number of off-resonant background emitters to the optical output of the microlaser. Our work addresses the important question whether single-QD lasing is feasible in experimentally accessible systems and shows that, for the investigated microlaser, the single-QD gain needs to be supported by the background gain contribution of off-resonant QDs to reach the transition to lasing. Interestingly, while a single QD cannot drive the investigated micropillar into lasing, its relative contribution to the emission can be as high as 70% and it dominates the statistics of emitted photons in the intermediate excitation regime below threshold.

  6. Thin disk laser with unstable resonator and reduced output coupler

    NASA Astrophysics Data System (ADS)

    Gavili, Anwar; Shayganmanesh, Mahdi

    2018-05-01

    In this paper, feasibility of using unstable resonator with reduced output coupling in a thin disk laser is studied theoretically. Unstable resonator is modeled by wave-optics using Collins integral and iterative method. An Yb:YAG crystal with 250 micron thickness is considered as a quasi-three level active medium and modeled by solving rate equations of energy levels populations. The amplification of laser beam in the active medium is calculated based on the Beer-Lambert law and Rigrod method. Using generalized beam parameters method, laser beam parameters like, width, divergence, M2 factor, output power as well as near and far-field beam profiles are calculated for unstable resonator. It is demonstrated that for thin disk laser (with single disk) in spite of the low thickness of the disk which leads to low gain factor, it is possible to use unstable resonator (with reduced output coupling) and achieve good output power with appropriate beam quality. Also, the behavior of output power and beam quality versus equivalent Fresnel number is investigated and optimized value of output coupling for maximum output power is achieved.

  7. Photonic Molecule Lasers Revisited

    NASA Astrophysics Data System (ADS)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  8. Experimental validation of ultra-thin metalenses for N-beam emissions based on transformation optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kuang, E-mail: zhangkuang@hit.edu.cn; State Key Laboratory of Millimeter Waves, Nanjing 210096; Ding, Xumin

    2016-02-01

    A general design of metalenses for N-beam emissions is proposed based on transformation optics. A linear mapping function is adopted to achieve the homogeneous characterization of the transforming medium, which is therefore easy to be achieved compared with previous designs limited by inhomogeneity based on transformation optics. To verify the theoretical design, a four-beam antenna constructed with ultrathin, homogenous, and uniaxial anisotropic metalens is designed, fabricated, and measured. It is shown that the realized gain of the four-beam antenna is increased by 6 dB compared with the single dipole source, while working frequency and relative bandwidth are kept unchanged. The measuredmore » far-field pattern verifies theoretical design procedure.« less

  9. Multiplexing and de-multiplexing with scattering media for large field of view and multispectral imaging

    NASA Astrophysics Data System (ADS)

    Sahoo, Sujit Kumar; Tang, Dongliang; Dang, Cuong

    2018-02-01

    Large field of view multispectral imaging through scattering medium is a fundamental quest in optics community. It has gained special attention from researchers in recent years for its wide range of potential applications. However, the main bottlenecks of the current imaging systems are the requirements on specific illumination, poor image quality and limited field of view. In this work, we demonstrated a single-shot high-resolution colour-imaging through scattering media using a monochromatic camera. This novel imaging technique is enabled by the spatial, spectral decorrelation property and the optical memory effect of the scattering media. Moreover the use of deconvolution image processing further annihilate above-mentioned drawbacks arise due iterative refocusing, scanning or phase retrieval procedures.

  10. Low-phonon-frequency chalcogenide crystalline hosts for rare earth lasers operating beyond three microns

    DOEpatents

    Payne, Stephen A.; Page, Ralph H.; Schaffers, Kathleen I.; Nostrand, Michael C.; Krupke, William F.; Schunemann, Peter G.

    2000-01-01

    The invention comprises a RE-doped MA.sub.2 X.sub.4 crystalline gain medium, where M includes a divalent ion such as Mg, Ca, Sr, Ba, Pb, Eu, or Yb; A is selected from trivalent ions including Al, Ga, and In; X is one of the chalcogenide ions S, Se, and Te; and RE represents the trivalent rare earth ions. The MA.sub.2 X.sub.4 gain medium can be employed in a laser oscillator or a laser amplifier. Possible pump sources include diode lasers, as well as other laser pump sources. The laser wavelengths generated are greater than 3 microns, as becomes possible because of the low phonon frequency of this host medium. The invention may be used to seed optical devices such as optical parametric oscillators and other lasers.

  11. Efficiency of multi-breed genomic selection for dairy cattle breeds with different sizes of reference population.

    PubMed

    Hozé, C; Fritz, S; Phocas, F; Boichard, D; Ducrocq, V; Croiseau, P

    2014-01-01

    Single-breed genomic selection (GS) based on medium single nucleotide polymorphism (SNP) density (~50,000; 50K) is now routinely implemented in several large cattle breeds. However, building large enough reference populations remains a challenge for many medium or small breeds. The high-density BovineHD BeadChip (HD chip; Illumina Inc., San Diego, CA) containing 777,609 SNP developed in 2010 is characterized by short-distance linkage disequilibrium expected to be maintained across breeds. Therefore, combining reference populations can be envisioned. A population of 1,869 influential ancestors from 3 dairy breeds (Holstein, Montbéliarde, and Normande) was genotyped with the HD chip. Using this sample, 50K genotypes were imputed within breed to high-density genotypes, leading to a large HD reference population. This population was used to develop a multi-breed genomic evaluation. The goal of this paper was to investigate the gain of multi-breed genomic evaluation for a small breed. The advantage of using a large breed (Normande in the present study) to mimic a small breed is the large potential validation population to compare alternative genomic selection approaches more reliably. In the Normande breed, 3 training sets were defined with 1,597, 404, and 198 bulls, and a unique validation set included the 394 youngest bulls. For each training set, estimated breeding values (EBV) were computed using pedigree-based BLUP, single-breed BayesC, or multi-breed BayesC for which the reference population was formed by any of the Normande training data sets and 4,989 Holstein and 1,788 Montbéliarde bulls. Phenotypes were standardized by within-breed genetic standard deviation, the proportion of polygenic variance was set to 30%, and the estimated number of SNP with a nonzero effect was about 7,000. The 2 genomic selection (GS) approaches were performed using either the 50K or HD genotypes. The correlations between EBV and observed daughter yield deviations (DYD) were computed for 6 traits and using the different prediction approaches. Compared with pedigree-based BLUP, the average gain in accuracy with GS in small populations was 0.057 for the single-breed and 0.086 for multi-breed approach. This gain was up to 0.193 and 0.209, respectively, with the large reference population. Improvement of EBV prediction due to the multi-breed evaluation was higher for animals not closely related to the reference population. In the case of a breed with a small reference population size, the increase in correlation due to multi-breed GS was 0.141 for bulls without their sire in reference population compared with 0.016 for bulls with their sire in reference population. These results demonstrate that multi-breed GS can contribute to increase genomic evaluation accuracy in small breeds. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Cable Television...the Medium for Hispanics?

    ERIC Educational Resources Information Center

    Guernica, Antonio Jose

    1977-01-01

    Cable represents the only avenue available for Hispanics to gain substantial control over a communications medium. It has the potential to provide Hispanics not only with ownership opportunities, but also with employment, quality programming, and long-term commitments and responsibilities to meet the programming needs of the Hispanics in this…

  13. Stable C-band fiber laser with switchable multi-wavelength output using coupled microfiber Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Jasim, A. A.

    2017-07-01

    A compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is proposed and experimentally demonstrated for C-band region multi-wavelength tuning and switching in a fiber laser. The CM-MZI is fabricated using a 9 μm single tapered silica optical microfiber fabricated by flame-drawing technique and exploits multi-mode interference to produce spatial mode beating and suppress mode competition of the homogeneous gain medium. The output wavelength spacing is immune to changes in the external environment, but can be changed from 1.5 nm to 1.4 nm by slightly modifying the path-length difference of the CM-MZI. The proposed laser is capable of generating single, dual, triple, quintuple, and sextuple stabilize wavelengths outputs over a range of more than 32 nm using polarization rotation (PR) and macro-bending. The lasers having a 3 dB line-width of less than ∼30 pm and peak-to-floor of about 55 dB at a pump power of 38 mW.

  14. Observation of stimulated emission from a single Fe-doped AlN triangular fiber at room temperature

    PubMed Central

    Jiang, Liangbao; Jin, Shifeng; Wang, Wenjun; Zuo, Sibin; Li, Zhilin; Wang, Shunchong; Zhu, Kaixing; Wei, Zhiyi; Chen, Xiaolong

    2015-01-01

    Aluminum nitride (AlN) is a well known wide-band gap semiconductor that has been widely used in fabricating various ultraviolet photo-electronic devices. Herein, we demonstrate that a fiber laser can be achieved in Fe-doped AlN fiber where Fe is the active ion and AlN fiber is used as the gain medium. Fe-doped single crystal AlN fibers with a diameter of 20–50 μm and a length of 0.5–1 mm were preparated successfully. Stimulated emission (peak at about 607 nm and FWHM ~0.2 nm) and a long luminescence lifetime (2.5 ms) were observed in the fibers by a 532nm laser excitation at room temperature. The high quality long AlN fibers are also found to be good optical waveguides. This kind of fiber lasers may possess potential advantages over traditional fiber lasers in enhancing power output and extending laser wavelengths from infrared to visible regime. PMID:26647969

  15. Threshold response using modulated continuous wave illumination for multilayer 3D optical data storage

    NASA Astrophysics Data System (ADS)

    Saini, A.; Christenson, C. W.; Khattab, T. A.; Wang, R.; Twieg, R. J.; Singer, K. D.

    2017-01-01

    In order to achieve a high capacity 3D optical data storage medium, a nonlinear or threshold writing process is necessary to localize data in the axial dimension. To this end, commercial multilayer discs use thermal ablation of metal films or phase change materials to realize such a threshold process. This paper addresses a threshold writing mechanism relevant to recently reported fluorescence-based data storage in dye-doped co-extruded multilayer films. To gain understanding of the essential physics, single layer spun coat films were used so that the data is easily accessible by analytical techniques. Data were written by attenuating the fluorescence using nanosecond-range exposure times from a 488 nm continuous wave laser overlapping with the single photon absorption spectrum. The threshold writing process was studied over a range of exposure times and intensities, and with different fluorescent dyes. It was found that all of the dyes have a common temperature threshold where fluorescence begins to attenuate, and the physical nature of the thermal process was investigated.

  16. Toward the realization of erbium-doped GaN bulk crystals as a gain medium for high energy lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Z. Y.; Li, J.; Zhao, W. P.

    Er-doped GaN (Er:GaN) is a promising candidate as a gain medium for solid-state high energy lasers (HELs) at the technologically important and eye-safe 1.54 μm wavelength window, as GaN has superior thermal properties over traditional laser gain materials such as Nd:YAG. However, the attainment of wafer-scale Er:GaN bulk or quasi-bulk crystals is a prerequisite to realize the full potential of Er:GaN as a gain medium for HELs. We report the realization of freestanding Er:GaN wafers of 2-in. in diameter with a thickness on the millimeter scale. These freestanding wafers were obtained via growth by hydride vapor phase epitaxy in conjunction withmore » a laser-lift-off process. An Er doping level of 1.4 × 10{sup 20} atoms/cm{sup 3} has been confirmed by secondary ion mass spectrometry measurements. The freestanding Er:GaN wafers exhibit strong photoluminescent emission at 1.54 μm with its emission intensity increasing dramatically with wafer thickness under 980 nm resonant excitation. A low thermal quenching of 10% was measured for the 1.54 μm emission intensity between 10 K and 300 K. This work represents a significant step in providing a practical approach for producing Er:GaN materials with sufficient thicknesses and dimensions to enable the design of gain media in various geometries, allowing for the production of HELs with improved lasing efficiency, atmosphere transmission, and eye-safety.« less

  17. Cw hyper-Raman laser and four-wave mixing in atomic sodium

    NASA Astrophysics Data System (ADS)

    Klug, M.; Kablukov, S. I.; Wellegehausen, B.

    2005-01-01

    Continuous wave hyper-Raman (HR) generation in a ring cavity on the 6s → 4p transition at 1640 nm in sodium is realized for the first time by two-photon excitation of atomic sodium on the 3s → 6s transition with a continuous wave (cw) dye laser at 590 nm and a single frequency argon ion laser at 514 nm. It is shown, that the direction and efficiency of HR lasing depends on the propagation direction of the pump waves and their frequencies. More than 30% HR gain is measured at 250 mW of pump laser powers for counter-propagating pump waves and a medium length of 90 mm. For much shorter interaction lengths and corresponding focussing of the pump waves a dramatic increase of the gain is predicted. For co-propagating pump waves, in addition, generation of 330 nm radiation on the 4p → 3s transition by a four-wave mixing (FWM) process is observed. Dependencies of HR and parametric four-wave generation have been investigated and will be discussed.

  18. Tunable, continuous-wave, ultraviolet source based on intracavity sum-frequency-generation in an optical parametric oscillator using BiB₃O₆.

    PubMed

    Devi, Kavita; Kumar, S Chaitanya; Ebrahim-Zadeh, M

    2013-10-21

    We report a continuous-wave (cw) source of tunable radiation across 333-345 nm in the ultraviolet (UV) using bismuth triborate, BiB₃O₆ (BIBO) as the nonlinear gain material. The source is based on internal sum-frequency-generation (SFG) in a cw singly-resonant optical parametric oscillator (OPO) pumped at 532 nm. The compact tunable source employs a 30-mm-long MgO:sPPLT crystal as the OPO gain medium and a 5-mm-long BIBO crystal for intracavity SFG of the signal and pump, providing up to 21.6 mW of UV power at 339.7 nm, with >15 mW over 64% of the SFG tuning range. The cw OPO is also tunable across 1158-1312 nm in the idler, delivering as much as 1.7 W at 1247 nm, with >1W over 65% of the tuning range. The UV output at maximum power exhibits passive power stability better than 3.4% rms and frequency stability of 193 GHz over more than one minute.

  19. High-gain (43 dB), high-power (40 W), highly efficient multipass amplifier at 995 nm in Yb:LiYF4

    NASA Astrophysics Data System (ADS)

    Manni, Jeffrey; Harris, Dennis; Fan, Tso Yee

    2018-06-01

    A simple implementation of a multipass amplifier along with the use of a cryogenic Yb:LiYF4 (YLF) gain medium has enabled the demonstration of a bulk amplifier with an unprecedented combination of large-signal gain (43 dB), efficiency (>50% optical), average output power (40 W) and a near-diffraction-limited output beam.

  20. Maximizing output power of a low-gain laser system.

    PubMed

    Carroll, D L; Sentman, L H

    1993-07-20

    Rigrod theory was used to model outcoupled power from a low-gain laser with good accuracy. For a low-gain overtone cw HF chemical laser, Rigrod theory shows that a higher medium saturation yields a higher overall overtone efficiency, but does not necessarily yield a higher measurable power (power in the bucket). For low-absorption-scattering loss overtone mirrors and a 5% penalty in outcoupled power, the intracavity flux and hence the mirror loading may be reduced by more than a factor of 2 when the gain length is long enough to saturate the medium well. For the University of Illinois at Urbana-Champaign overtone laser that has an extensive database with well-characterized mirrors for which the Rigrod parameters g(0) and I(sat) were firmly established, the accuracy to which the reflectivities of high-reflectivity overtone mirrors can be deduced by using measured mirror transmissivities, measured outcoupled power, and Rigrod theory is approximatly ±0.07%. This method of accurately deducing mirror reflectivities may be applicable to other low-gain laser systems that use high-reflectivity mirrors at different wavelengths. The maximum overtone efficiency is estimated to be approximately 80%-100%.

  1. Single cell protein production of Chlorella sp. using food processing waste as a cultivation medium

    NASA Astrophysics Data System (ADS)

    Putri, D.; Ulhidayati, A.; Musthofa, I. A.; Wardani, A. K.

    2018-03-01

    The aim of this study was to investigate the effect of various food processing wastes on the production of single cell protein by Chlorella sp. Three various food processing wastes i.e. tofu waste, tempeh waste and cheese whey waste were used as cultivation medium for Chlorella sp. growth. Sea water was used as a control of cultivation medium. The addition of waste into cultivation medium was 10%, 20%, 30%, 40%, and 50%. The result showed that the highest yield of cell mass and protein content was found in 50% tofu waste cultivation medium was 47.8 × 106 cell/ml with protein content was 52.24%. The 50% tofu waste medium showed improved cell yield as nearly as 30% than tempeh waste medium. The yield of biomass and protein content when 30% tempeh waste was used as cultivation medium was 37.1 × 106 cell/ml and 52%, respectively. Thus, food processing waste especially tofu waste would be a promising candidate for cultivation medium for single cell production from Chlorella sp. Moreover, the utilization of waste can reduce environmental pollution and increase protein supply for food supplement or animal feed.

  2. English-Medium Instruction in Japanese Universities: Policy Implementation and Constraints

    ERIC Educational Resources Information Center

    Chin Leong, Patrick N. G.

    2017-01-01

    English-medium instruction (EMI) is gaining momentum in Japan as politicians constantly highlight the need for Japanese universities to cultivate students with English skills to participate in the global market. Adopting a framework on the failure of policy implementation [Schiffman, H. (2007). Tamil language policy in Singapore. The role of…

  3. Vehicle antenna development for mobile satellite applications

    NASA Technical Reports Server (NTRS)

    Woo, K.

    1988-01-01

    The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.

  4. Gain and losses in THz quantum cascade laser with metal-metal waveguide.

    PubMed

    Martl, Michael; Darmo, Juraj; Deutsch, Christoph; Brandstetter, Martin; Andrews, Aaron Maxwell; Klang, Pavel; Strasser, Gottfried; Unterrainer, Karl

    2011-01-17

    Coupling of broadband terahertz pulses into metal-metal terahertz quantum cascade lasers is presented. Mode matched terahertz transients are generated on the quantum cascade laser facet of subwavelength dimension. This method provides a full overlap of optical mode and active laser medium. A longitudinal optical-phonon depletion based active region design is investigated in a coupled cavity configuration. Modulation experiments reveal spectral gain and (broadband) losses. The observed gain shows high dynamic behavior when switching from loss to gain around threshold and is clamped at total laser losses.

  5. Research of energy characteristics of power amplifier containing KNFS Nd:phosphate glass slabs and MIRO Silver foil reflectors at the “Luch” facility

    NASA Astrophysics Data System (ADS)

    Belov, I. A.; Bel'kov, S. A.; Voronich, I. N.; Garanin, S. G.; Derkach, V. N.; Koshechkin, S. V.; Lysov, M. I.; Markov, S. S.; Savkin, S. V.

    2016-09-01

    The amplifier elements upgrade at the “Luch” laser facility was carried out. Measurements showed that the upgrade of the amplifier elements resulted in the amplifier's small signal gain coefficient K0 increase from 12.9% to 14.3% depending on the capacitor charging voltage; the linear gain coefficient increase was about g0 ≈ (6-8)%. Full-scale laser experiments at the facility showed the power amplifier gain coefficient increase consistent with active medium gain coefficient measurement results.

  6. Lyme disease: a selective medium for isolation of the suspected etiological agent, a spirochete.

    PubMed Central

    Johnson, S E; Klein, G C; Schmid, G P; Bowen, G S; Feeley, J C; Schulze, T

    1984-01-01

    A simple procedure with a new selective culture medium for the isolation of the suspected etiological agent of Lyme disease from ticks is described. Live ticks (Ixodes dammini) were ground with a mortar and pestle, and the suspensions were inoculated into a selective and nonselective medium. The selective medium, which contained kanamycin and 5-fluorouracil, yielded positive spirochete cultures from 100% of the pooled ticks and from 79% of the single tick specimens. The isolation rate for the nonselective medium was 0% from the tick pools and 58% from the single tick specimens. PMID:6361065

  7. Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations.

    PubMed

    Miao, Xinyu; Yin, Longfei; Zhuang, Wei; Luo, Bin; Dang, Anhong; Chen, Jingbiao; Guo, Hong

    2011-08-01

    We demonstrate an external-cavity laser system using an anti-reflection coated laser diode as gain medium with about 60 nm fluorescence spectrum, and a Rb Faraday anomalous dispersion optical filter (FADOF) as frequency-selecting element with a transmission bandwidth of 1.3 GHz. With 6.4% optical feedback, a single stable longitudinal mode is obtained with a linewidth of 69 kHz. The wavelength of this laser is operating within the center of the highest transmission peak of FADOF over a diode current range from 55 mA to 142 mA and a diode temperature range from 15 °C to 35 °C, thus it is immune to the fluctuations of current and temperature.

  8. A compact time reversal emitter-receiver based on a leaky random cavity

    PubMed Central

    Luong, Trung-Dung; Hies, Thomas; Ohl, Claus-Dieter

    2016-01-01

    Time reversal acoustics (TRA) has gained widespread applications for communication and measurements. In general, a scattering medium in combination with multiple transducers is needed to achieve a sufficiently large acoustical aperture. In this paper, we report an implementation for a cost-effective and compact time reversal emitter-receiver driven by a single piezoelectric element. It is based on a leaky cavity with random 3-dimensional printed surfaces. The random surfaces greatly increase the spatio-temporal focusing quality as compared to flat surfaces and allow the focus of an acoustic beam to be steered over an angle of 41°. We also demonstrate its potential use as a scanner by embedding a receiver to detect an object from its backscatter without moving the TRA emitter. PMID:27811957

  9. Mechanism of the metallic metamaterials coupled to the gain material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhixiang; Droulias, Sotiris; Koschny, Thomas

    2014-11-10

    In this study, we present evidence of strong coupling between the gain material and the metallic metamaterials. It is of vital importance to understand the mechanism of the coupling of metamaterials with the gain medium. Using a four-level gain system, the numerical pump-probe experiments are performed in several configurations (split–ring resonators (SRRs), inverse SRRs and fishnets) of metamaterials, demonstrating reduction of the resonator damping in all cases and hence the possibility for loss compensation. We find that the differential transmittance ΔT/T can be negative in different SRR configurations, such as SRRs on the top of the gain substrate, gain inmore » the SRR gap and gain covering the SRR structure, while in the fishnet metamaterial with gain ΔT/T is positive.« less

  10. Widely Tunable Mode-Hop-Free External-Cavity Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Wysocki, Gerard; Curl, Robert F.; Tittel, Frank K.

    2010-01-01

    The external-cavity quantum cascade laser (EC-QCL) system is based on an optical configuration of the Littrow type. It is a room-temperature, continuous wave, widely tunable, mode-hop-free, mid-infrared, EC-QCL spectroscopic source. It has a single-mode tuning range of 155 cm(exp -1) (approximately equal to 8% of the center wavelength) with a maximum power of 11.1 mW and 182 cm(exp -1) (approximately equal to 15% of the center wavelength), and a maximum power of 50 mW as demonstrated for 5.3 micron and 8.4 micron EC-QCLs, respectively. This technology is particularly suitable for high-resolution spectroscopic applications, multi-species tracegas detection, and spectroscopic measurements of broadband absorbers. Wavelength tuning of EC-QCL spectroscopic source can be implemented by varying three independent parameters of the laser: (1) the optical length of the gain medium (which, in this case, is equivalent to QCL injection current modulation), (2) the length of the EC (which can be independently varied in the Rice EC-QCL setup), and (3) the angle of beam incidence at the diffraction grating (frequency tuning related directly to angular dispersion of the grating). All three mechanisms of frequency tuning have been demonstrated and are required to obtain a true mode-hop-free laser frequency tuning. The precise frequency tuning characteristics of the EC-QCL output have been characterized using a variety of diagnostic tools available at Rice University (e.g., a monochromator, FTIR spectrometer, and a Fabry-Perot spectrometer). Spectroscopic results were compared with available databases (such as HITRAN, PNNL, EPA, and NIST). These enable precision verification of complete spectral parameters of the EC-QCL, such as wavelength, tuning range, tuning characteristics, and line width. The output power of the EC-QCL is determined by the performance of the QC laser chip, its operating conditions, and parameters of the QC laser cavity such as mirror reflectivity or intracavity losses. In order to maximize the output power, an analysis and optimization of the EC laser parameters has been performed. The parameters of the beam emitted from the gain medium, such as divergence angle, beam profile, and astigmatism, have been investigated. The gain medium has been fully characterized before and after each stage of modification. The main modification steps are coating one facet of the gain chip with a high reflectivity mirror and the other facet with an anti-reflection layer. Then the chip is mounted in the EC-QCL. The optomechanical design has been reviewed and improved to provide for precise collimation of the strongly divergent beam of the QCL and the tuning diffraction grating.

  11. Benchmarking life expectancy and cancer mortality: global comparison with cardiovascular disease 1981-2010

    PubMed Central

    Bray, Freddie; Beltrán-Sánchez, Hiram; Ginsburg, Ophira; Soneji, Samir; Soerjomataram, Isabelle

    2017-01-01

    Objective To quantify the impact of cancer (all cancers combined and major sites) compared with cardiovascular disease (CVD) on longevity worldwide during 1981-2010. Design Retrospective demographic analysis using aggregated data. Setting National civil registration systems in member states of the World Health Organization. Participants 52 populations with moderate to high quality data on cause specific mortality. Main outcome measures Disease specific contributions to changes in life expectancy in ages 40-84 (LE40-84) over time in populations grouped by two levels of Human Development Index (HDI) values. Results Declining CVD mortality rates during 1981-2010 contributed to, on average, over half of the gains in LE40-84; the corresponding gains were 2.3 (men) and 1.7 (women) years, and 0.5 (men) and 0.8 (women) years in very high and medium and high HDI populations, respectively. Declines in cancer mortality rates contributed to, on average, 20% of the gains in LE40-84, or 0.8 (men) and 0.5 (women) years in very high HDI populations, and to over 10% or 0.2 years (both sexes) in medium and high HDI populations. Declining lung cancer mortality rates brought about the largest LE40-84 gain in men in very high HDI populations (up to 0.7 years in the Netherlands), whereas in medium and high HDI populations its contribution was smaller yet still positive. Among women, declines in breast cancer mortality rates were largely responsible for the improvement in longevity, particularly among very high HDI populations (up to 0.3 years in the United Kingdom). In contrast, losses in LE40-84 were observed in many medium and high HDI populations as a result of increasing breast cancer mortality rates. Conclusions The control of CVD has led to substantial gains in LE40-84 worldwide. The inequality in improvement in longevity attributed to declining cancer mortality rates reflects inequities in implementation of cancer control, particularly in less resourced populations and in women. Global actions are needed to revitalize efforts for cancer control, with a specific focus on less resourced countries. PMID:28637656

  12. The Social Context of Welsh-Medium Bilingual Education in Anglicised Areas.

    ERIC Educational Resources Information Center

    Bellin, Wynford; Farrell, Shaun; Higgs, Gary; White, Sean

    1999-01-01

    Principal component analysis of indicators from the 1991 Census was used to characterize the social context of school-age Welsh speakers in south east Wales. The growth of Welsh-medium education was responsible for net gains in numbers of younger Welsh/English bilinguals. The interrelationships between figures for Welsh speaking in the Census and…

  13. The Dynamics of Supply and Demand Chain of English-Medium Schools in Bangladesh

    ERIC Educational Resources Information Center

    Mousumi, Manjuma Akhtar; Kusakabe, Tatsuya

    2017-01-01

    This research concerns English-medium schools (EMSs), which are emerging as a popular new educational sector in Bangladesh. Because these schools have gained immense popularity, we seek to identify how these schools respond to parental demand and retain their clientele. In addition to English language demand, our findings reveal a symmetrical…

  14. Optical spectral singularities as threshold resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafazadeh, Ali

    2011-04-15

    Spectral singularities are among generic mathematical features of complex scattering potentials. Physically they correspond to scattering states that behave like zero-width resonances. For a simple optical system, we show that a spectral singularity appears whenever the gain coefficient coincides with its threshold value and other parameters of the system are selected properly. We explore a concrete realization of spectral singularities for a typical semiconductor gain medium and propose a method of constructing a tunable laser that operates at threshold gain.

  15. Single-frequency gain-switched Ho-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Geng, Jihong; Wang, Q.; Luo, T.; Case, B.; Jiang, S.; Amzajerdian, Farzin; Yu, Jirong

    2012-10-01

    We demonstrate a single-frequency gain-switched Ho-doped fiber laser based on heavily doped silicate glass fiber fabricated in house. A Q-switched Tm-doped fiber laser at 1.95μm was used to gain-switch the Ho-doped fiber laser via in-band pumping. Output power of the single-frequency gain-switched pulses has been amplified in a cladding-pumped Tm-Ho-codoped fiber amplifier with 1.2m active fiber pumped at 803nm. Two different nonlinear effects, i.e., modulation instability and stimulated Brillouin scattering, could be seen in the 10μm-core fiber amplifier when the peak power exceeds 3kW. The single-frequency gain-switched fiber laser was operated at 2.05μm, a popular laser wavelength for Doppler lidar application. This is the first demonstration of this kind of fiber laser.

  16. "The Rolling Store" An economical and environmental approach to the prevention of weight gain in African American women.

    USDA-ARS?s Scientific Manuscript database

    The objective was to test the feasibility of the "Rolling Store," an innovative food delivery medium to provide healthy food choices (fruits and vegetables) to prevent weight gain in African American women. A randomized trial design was used in the study. Eligible participants from the community wer...

  17. The Institutional Design for Continuing Education in the "National Medium- and Long-Term Educational Reform and Development Guideline (2010-20)"

    ERIC Educational Resources Information Center

    Mingming, Ji

    2012-01-01

    The cause of continuing education has gained significant strides in China after the advent of Reform and Opening Up, but it is still the weakest link in the current system of education. The "National Medium- and Long-Term Educational Reform and Development Guideline (2010-20)" (hereafter abbreviated as the "Guideline") has…

  18. Challenges in English Medium of Instruction from the Teachers and Students' Eyes

    ERIC Educational Resources Information Center

    Cankaya, Pinar

    2017-01-01

    The main concern of the current paper is to discuss English medium instruction (EMI, henceforth) in all aspects with a particular focus on its challenges and difficulties reported by both students and teachers based on the relevant research studies. As EMI is gaining greatest importance among the researchers, policy makers and educators; it is of…

  19. Factors Influencing Information Communication Technology (ICT) Acceptance and Use in Small and Medium Enterprises (SMEs) in Kenya

    ERIC Educational Resources Information Center

    Nyandoro, Cephus K.

    2016-01-01

    Research demonstrates that there is a gap in focusing understanding factors of information communication technology (ICT) acceptance and use in small and medium enterprises (SMEs). ICT is gaining popularity because it is a force in the economic growth equation. SMEs adopt ICT to promote their business strategy, performance, and growth. This study…

  20. Antihyperglycaemic potential of the water-ethanol extract of Kalanchoe crenata (Crassulaceae).

    PubMed

    Kamgang, René; Mboumi, Rostand Youmbi; Fondjo, Angèle Foyet; Tagne, Michel Archange Fokam; N'dillé, Gabriel Patrice Roland Mengue; Yonkeu, Jeanne Ngogang

    2008-01-01

    Kalanchoe crenata is a vegetable widely used in Cameroon and largely efficient in the treatment of diabetes mellitus. The effect of the water-ethanol extract of this plant (WEKC) on blood glucose levels was investigated in fasting normal and diet-induced diabetic rats (MACAPOS 1) after a short- and medium-term treatment. Diabetes was induced by submitting Wistar rats to a hypercaloric sucrose diet over 4 months. Six hours after a single oral administration of WEKC, 135 and 200 mg kg(-1) body weight extracts significantly (P < 0.01) reduced the blood glucose levels both in normal and diabetic rats without real dose-dependent effect. During the medium-term treatment, 200 mg kg(-1) WEKC administered daily for 4 weeks significantly reduced blood glucose levels within week 1 (P < 0.05), with a maximum effect at week 4 (-52%, P < 0.01), while maintaining glycaemia within the normal range. All the WEKC-treated diabetic rats exhibited significant (P < 0.01) increase in insulin sensitivity index (K (ITT)) compared with the initial time and to the untreated diabetic animals. Animals treated for 4 weeks exhibited a slight resistance in body-weight gain and decrease in food and water intake. The WEKC activities on all parameters assessed were comparable with the glibenclamide effects. Qualitative phytochemical screening revealed that K. crenata contains terpenoids, tannins, polysaccharids, saponins, flavonoids and alkaloids. The data suggest that K. crenata might contain important chemical components that could induce significant improvement in glucose clearance and/or uptake and resistance to body-weight gain and insulin sensitivity, and could be a potent alternative or complementary therapeutic substance in the control of type 2 diabetes and other insulin-resistant conditions.

  1. Rectangular Microstrip Antenna with Slot Embedded Geometry

    NASA Astrophysics Data System (ADS)

    Ambresh, P. A.; Hadalgi, P. M.; Hunagund, P. V.; Sujata, A. A.

    2014-09-01

    In this paper, a novel design that improves the performance of conventional rectangular microstrip antenna is discussed. Design adopts basic techniques such as probe feeding technique with rectangular inverted patch structure as superstrate, air filled dielectric medium as substrate and slot embedded patch. Prototype of the proposed antenna has been fabricated and various antenna performance parameters such as impedance bandwidth, return loss, radiation pattern and antenna gain are considered for Electromagnetic-study. The antennas are designed for the wireless application operating in the frequency range of 3.3 GHz to 3.6 GHz, and UK based fixed satellite service application (3 GHz to 4 GHz), and are named as single inverted patch conventional rectangular microstrip antenna (SIP-CRMSA) and slots embedded inverted patch rectangular microstrip antenna (SEIP-RMSA), respectively. Measurement outcomes for SEIP-RMSA1 and SEIP-RMSA2 showed the satisfactory performance with an achievable impedance bandwidth of 260 MHz (7 %) and 250 MHz (6.72 %), with return loss (RL) of -11.06 dB and -17.98 dB, achieved gain of 8.17 dB and 5.17 dB with 10% and 8% size reduction in comparison with the conventional patch antenna.

  2. Magellan Prelaunch Mission Operations Report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Magellan spacecraft will be launched from Kennedy Space Center (KSC) within a 31-day overall launch period extending from April 28 to May 28, 1989. The launch will use the Shuttle Orbiter Atlantis to lift an Inertial Upper Stage (IUS) and the Magellan Spacecraft into low Earth orbit. After the Shuttle achieves its parking orbit, the IUS and attached Magellan spacecraft are deployed from the payload bay. After a short coast time, the two-stage IUS is fired to inject the Magellan spacecraft into an Earth-Venus transfer trajectory. The Magellan spacecraft is powered by single degree of freedom, sun-tracking, solar panels charging a set of nickel-cadmium batteries. The spacecraft is three-axis stabilized by reaction wheels using gyros and a star sensor for attitude reference. The spacecraft carries a solid rocket motor for Venus Orbit Insertion (VOI). A hydrazine propulsion system allows trajectory correction and prevents saturation of the reaction wheels. Communication with Earth through the Deep Space Network (DSN) is provided by S- and X-band telemetry channels, through alternatively a low, medium, or 3.7 m high-gain parabolic antenna rigidly attached to the spacecraft. The high-gain antenna also serves as the radar and radiometer antenna during orbit around Venus.

  3. Toward continuous-wave operation of organic semiconductor lasers

    PubMed Central

    Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-01-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042

  4. RESONATORS. MODES: Modes of a plano - spherical laser resonator with the Gaussian gain distribution of the active medium

    NASA Astrophysics Data System (ADS)

    Malyutin, A. A.

    2007-03-01

    Modes of a laser with plano-spherical degenerate and nondegenerate resonators are calculated upon diode pumping producing the Gaussian gain distribution in the active medium. Axially symmetric and off-axis pumpings are considered. It is shown that in the first case the lowest Hermite-Gaussian mode is excited with the largest weight both in the degenerate and nondegenerate resonator if the pump level is sufficiently high or the characteristic size wg of the amplifying region greatly exceeds the mode radius w0. The high-order Ince-Gaussian modes are excited upon weak off-axis pumping in the nondegenerate resonator both in the absence and presence of the symmetry of the gain distribution with respect to the resonator axis. It is found that when the level of off-axis symmetric pumping of the resonator is high enough, modes with the parameters of the TEM00 mode periodically propagating over a closed path in the resonator can exist. The explanation of this effect is given.

  5. Toward continuous-wave operation of organic semiconductor lasers.

    PubMed

    Sandanayaka, Atula S D; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-04-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi-continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture.

  6. Optofluidic Bio-Lasers: Concept and Applications

    PubMed Central

    Fan, Xudong; Yun, Seok-Hyun

    2014-01-01

    An optofluidic bio-laser integrates biological materials into the gain medium while forming an optical cavity in the fluidic environment, either on a microfluidic chip or within a biological system. The laser emission has characteristics fundamentally different from conventional fluorescence emission. It can be highly sensitive to a specific molecular change in the gain medium as the light-matter interaction is amplified by the resonance in the cavity. The enhanced sensitivity can be used to probe and quantify the underlying biochemical and biological processes in vitro in a microfluidic device, in situ in a cell (cytosol), or in vivo in a live organism. Here we describe the principle of the optofluidic bio-laser, review its recent progress and provide an outlook of this emerging technology. PMID:24481219

  7. Intracavity KTP optical parametric oscillator driven by a KLM Nd:GGG laser with a single AO modulator

    NASA Astrophysics Data System (ADS)

    Chu, Hongwei; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Yufei; Li, Tao; Li, Guiqiu; Li, Dechun; Qiao, Wenchao

    2015-05-01

    An intracavity KTiOPO4 (KTP) optical parametric oscillator (OPO) pumped by a Kerr lens mode-locking (KLM) Nd:GGG laser near 1062 nm with a single AO modulator was realized for the first time. The mode-locking pulses of the signal wave were obtained with a short duration of subnanosecond and a repetition rate of several kilohertz (kHz). Under a diode pump power of 8.25 W, a maximum output power of 104 mW at signal wavelength near 1569 nm was obtained at a repetition rate of 2 kHz. The highest pulse energy and peak power were estimated to be 80 μJ and 102 kW at a repetition rate of 1 kHz, respectively. The shortest pulse duration was measured to be 749 ps. By considering the Gaussian spatial distribution of the photon density and the Kerr-lens effect in the gain medium, a set of the coupled rate equations for QML intracavity optical parametric oscillator are given and the numerical simulations are basically fitted with the experimental results.

  8. High power tube solid-state laser with zigzag propagation of pump and laser beam

    NASA Astrophysics Data System (ADS)

    Savich, Michael

    2015-02-01

    A novel resonator and pumping design with zigzag propagation of pumping and laser beams permits to design an improved tube Solid State Laser (SSL), solving the problem of short absorption path to produce a high power laser beam (100 - 1000kW). The novel design provides an amplifier module and laser oscillator. The tube-shaped SSL includes a gain element fiber-optically coupled to a pumping source. The fiber optic coupling facilitates light entry at compound Brewster's angle of incidence into the laser gain element and uses internal reflection to follow a "zigzag" path in a generally spiral direction along the length of the tube. Optics are arranged for zigzag propagation of the laser beam, while the cryogenic cooling system is traditional. The novel method of lasing uses advantages of cylindrical geometry to reach the high volume of gain medium with compactness and structural rigidity, attain high pump density and uniformity, and reach a low threshold without excessive increase of the temperature of the crystal. The design minimizes thermal lensing and stress effects, and provides high gain amplification, high power extraction from lasing medium, high pumping and lasing efficiency and a high beam quality.

  9. Optical Properties of Nano-Spherical Gold Doped Dye Solution Hybrid

    NASA Astrophysics Data System (ADS)

    Hoa, D. Q.; Lien, N. T. H.; Ha, C. V.; Nhung, T. H.; Long, P.

    2011-03-01

    Gold nanoparticles with average diameter of 16 nm which are coated with Cetrimonium Bromide (CTAB) by chemical method are dissolved in dye solution at different concentrations. The absorption spectra of the dye mixture appeared almost unchanged at low concentrations of gold nanoparticles (around 1×1014 cm-3) despite its fluorescence intensity increased many-fold. Energy transfer from gold nanoparticles to dye molecules occurs through surface plasmon resonance(SPR). The fluorescence of rhodamine 610 (Rh610) dye molecules co-adsorbed within 16 nm gold nanoparticles assemblies can be useful for enhancing gain in lasing emission. An increase in laser efficiency by a factor of one and half times stronger compared to the single Rh610 dye suggest the potential of using the mixture of rhodamine dye with gold nanoparticles as laser medium in the configuration of quenching distributed feedback dye laser.

  10. Random laser in biological tissues impregnated with a fluorescent anticancer drug

    NASA Astrophysics Data System (ADS)

    Lahoz, F.; Martín, I. R.; Urgellés, M.; Marrero-Alonso, J.; Marín, R.; Saavedra, C. J.; Boto, A.; Díaz, M.

    2015-04-01

    We have demonstrated that chemically modified anticancer drugs can provide random laser (RL) when infiltrated in a biological tissue. A fluorescent biomarker has been covalently bound to tamoxifen, which is one of the most frequently used drugs for breast cancer therapy. The light emitted by the drug-dye composite is scattered in tissue, which acts as a gain medium. Both non-coherent and coherent RL regimes have been observed. Moreover, the analysis of power Fourier transforms of coherent RL spectra indicates that the tissues show a dominant random laser cavity length of about 18 µm, similar to the average size of single cells. These results show that RL could be obtained from other drugs, if properly marked with a fluorescent tag, which could be appealing for new forms of combined opto-chemical therapies.

  11. Tailoring auditory training to patient needs with single and multiple talkers: transfer-appropriate gains on a four-choice discrimination test.

    PubMed

    Barcroft, Joe; Sommers, Mitchell S; Tye-Murray, Nancy; Mauzé, Elizabeth; Schroy, Catherine; Spehar, Brent

    2011-11-01

    Our long-term objective is to develop an auditory training program that will enhance speech recognition in those situations where patients most want improvement. As a first step, the current investigation trained participants using either a single talker or multiple talkers to determine if auditory training leads to transfer-appropriate gains. The experiment implemented a 2 × 2 × 2 mixed design, with training condition as a between-participants variable and testing interval and test version as repeated-measures variables. Participants completed a computerized six-week auditory training program wherein they heard either the speech of a single talker or the speech of six talkers. Training gains were assessed with single-talker and multi-talker versions of the Four-choice discrimination test. Participants in both groups were tested on both versions. Sixty-nine adult hearing-aid users were randomly assigned to either single-talker or multi-talker auditory training. Both groups showed significant gains on both test versions. Participants who trained with multiple talkers showed greater improvement on the multi-talker version whereas participants who trained with a single talker showed greater improvement on the single-talker version. Transfer-appropriate gains occurred following auditory training, suggesting that auditory training can be designed to target specific patient needs.

  12. Bockron as a Medium of Learning in The Process of Inquiry based Learning to Improve Science Process Skills of Junior High School Students in Growth and Development Concept

    NASA Astrophysics Data System (ADS)

    Mayasari, D.

    2017-02-01

    Investigative research on Influence of bockron as a medium of learning in process of inquiry-based learning to the development of science process skills on the concept of growth and development. This research was done in an effort to follow up underdeveloped skills of observing, communicating andconclude on students. This research was conducted using classroom action research (PTK), which consisted of 3 cycles. Cycle 1 students observe differences in growth and development, cycle 2 students measure the growth rate, cycle 3 students observe factors that influence growth and development, In these three cycles is used as a planting medium bocron (bottles and dacron). It involves 8th grade junior high-school students of 14-15 years old as research subjects in six meetings. Indicators of process skill include observation, communication, interpretation and inference. Data is collected through students’ work sheets, written tests and observation. Processing of the data to see N-Gain used Microsoft Excel 2007, and the results showed that an increase in science process skills with a value of medium N-Gain (0,63). Bokron learning medium easily and cheaply obtainable around the students, particularly those in urban areas is quite difficult to get land to be used as aplanting medium. In addition to observation of growth and development, bokron media can also be used to observe the motion in plants. The use bokron as a learning medium can train and develop science process skills, attitude and scientific method also gives students concrete experience of the process of growth and development in plants.

  13. Taking It Online--The Effects of Delivery Medium and Facilitator on Student Achievement in Problem-Based Learning

    ERIC Educational Resources Information Center

    Schoenfeld-Tacher, Regina; McConnell, Sherry; Kogan, Lori R.

    2004-01-01

    This study compares the effects of delivery medium (online vs. face-to-face) and facilitator content expertise on academic outcomes in a problem-based learning (PBL) course in anatomy for pre-health/medical majors. The content of online PBL sessions was examined to gain insight into the problem-solving process taking place in these situations.…

  14. The Medium-Term Labor Market Returns to Community College Awards: Evidence from North Carolina. A CAPSEE Working Paper

    ERIC Educational Resources Information Center

    Belfield, Clive; Liu, Yuen Ting; Trimble, Madeline Joy

    2014-01-01

    In this paper, the authors examine the relative labor market gains for first-time college students who enrolled in the North Carolina Community College System in 2002-03. The medium-term returns to diplomas, certificates, and degrees are compared with returns for students who accumulated college credits but did not graduate. The authors also…

  15. Interior radiances in optically deep absorbing media. III Scattering from Haze L

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.

    1975-01-01

    The interior radiances are calculated within an optically deep absorbing medium scattering according to the Haze L phase function. The dependence on the solar zenith angle, the single scattering albedo, and the optical depth within the medium is calculated by the matrix operator method. The development of the asymptotic angular distribution of the radiance in the diffusion region is illustrated through a number of examples; it depends only on the single scattering albedo and on the phase function for single scattering. The exact values of the radiance in the diffusion region are compared with values calculated from the approximate equations proposed by Van de Hulst. The variation of the radiance near the lower boundary of an optically thick medium is illustrated with examples. The attenuation length is calculated for various single scattering albedos and compared with the corresponding values for Rayleigh scattering. The ratio of the upward to the downward flux is found to be remarkably constant within the medium.

  16. 26 CFR 1.1502-13 - Intercompany transactions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., gain, deduction, and loss of members from intercompany transactions. The purpose of this section is to... treatment). For example, S determines its gain or loss from a sale of property to B on a separate entity... of a single corporation (single entity treatment). For example, if S sells land to B at a gain and B...

  17. Characterization of x-ray framing cameras for the National Ignition Facility using single photon pulse height analysis.

    PubMed

    Holder, J P; Benedetti, L R; Bradley, D K

    2016-11-01

    Single hit pulse height analysis is applied to National Ignition Facility x-ray framing cameras to quantify gain and gain variation in a single micro-channel plate-based instrument. This method allows the separation of gain from detectability in these photon-detecting devices. While pulse heights measured by standard-DC calibration methods follow the expected exponential distribution at the limit of a compound-Poisson process, gain-gated pulse heights follow a more complex distribution that may be approximated as a weighted sum of a few exponentials. We can reproduce this behavior with a simple statistical-sampling model.

  18. Gain-adaptive vector quantization for medium-rate speech coding

    NASA Technical Reports Server (NTRS)

    Chen, J.-H.; Gersho, A.

    1985-01-01

    A class of adaptive vector quantizers (VQs) that can dynamically adjust the 'gain' of codevectors according to the input signal level is introduced. The encoder uses a gain estimator to determine a suitable normalization of each input vector prior to VQ coding. The normalized vectors have reduced dynamic range and can then be more efficiently coded. At the receiver, the VQ decoder output is multiplied by the estimated gain. Both forward and backward adaptation are considered and several different gain estimators are compared and evaluated. An approach to optimizing the design of gain estimators is introduced. Some of the more obvious techniques for achieving gain adaptation are substantially less effective than the use of optimized gain estimators. A novel design technique that is needed to generate the appropriate gain-normalized codebook for the vector quantizer is introduced. Experimental results show that a significant gain in segmental SNR can be obtained over nonadaptive VQ with a negligible increase in complexity.

  19. Thermal neutron detector and gamma-ray spectrometer utilizing a single material

    DOEpatents

    Stowe, Ashley; Burger, Arnold; Lukosi, Eric

    2017-05-02

    A combined thermal neutron detector and gamma-ray spectrometer system, including: a detection medium including a lithium chalcopyrite crystal operable for detecting thermal neutrons in a semiconductor mode and gamma-rays in a scintillator mode; and a photodetector coupled to the detection medium also operable for detecting the gamma rays. Optionally, the detection medium includes a .sup.6LiInSe.sub.2 crystal. Optionally, the detection medium comprises a compound formed by the process of: melting a Group III element; adding a Group I element to the melted Group III element at a rate that allows the Group I and Group III elements to react thereby providing a single phase I-III compound; and adding a Group VI element to the single phase I-III compound and heating; wherein the Group I element includes lithium.

  20. Subwavelength atom localization via coherent manipulation of the Raman gain process

    NASA Astrophysics Data System (ADS)

    Qamar, Sajid; Mehmood, Asad; Qamar, Shahid

    2009-03-01

    We present a simple scheme of atom localization in a subwavelength domain via manipulation of Raman gain process. We consider a four-level system with a pump and a weak probe field. In addition, we apply a coherent field to control the gain process. The system is similar to the one used by Agarwal and Dasgupta [Phys. Rev. A 70, 023802 (2004)] for the superluminal pulse propagation through Raman gain medium. For atom localization, we consider both pump and control fields to be the standing-wave fields of the cavity. We show that a much precise position of an atom passing through the standing-wave fields can be determined by measuring the gain spectrum of the probe field.

  1. Linguistic Outcomes of English Medium Instruction Programmes in Higher Education: A Study on Economics Undergraduates at a Catalan University

    ERIC Educational Resources Information Center

    Ament, Jennifer R.; Pérez-Vidal, Carmen

    2015-01-01

    Globalisation and international mobility in the 21st century has led to the internationalisation of the English language (Crystal, 2003). Research regarding linguistic gains at university levels is however extremely scarce. This study aims to address this gap of knowledge and provide some answers as to how much linguistic gain can be expected…

  2. From quantum cascade to super cascade laser a new laser design paradigm for broad spectral emission & a re-examination of current spreading

    NASA Astrophysics Data System (ADS)

    Le, Loan T.

    Over the span of more than 20 years of development, the Quantum Cascade (QC) laser has positioned itself as the most viable mid-infrared (mid-IR) light source. Today's QC lasers emit watts of continuous wave power at room temperature. Despite significant progress, the mid-IR region remains vastly under-utilized. State-of-the-art QC lasers are found in high power defense applications and detection of trace gases with narrow absorption lines. A large number of applications, however, do not require so much power, but rather, a broadly tunable laser source to detect molecules with broad absorption features. As such, a QC laser that is broadly tunable over the entire biochemical fingerprinting region remains the missing link to markets such as non- invasive biomedical diagnostics, food safety, and stand-off detection in turbid media. In this thesis, we detail how we utilized the inherent flexibility of the QC design space to conceive a new type of laser with the potential to bridge that missing link of the QC laser to large commercial markets. Our design concept, the Super Cascade (SC) laser, works contrary to conventional laser design principle by supporting multiple independent optical transitions, each contributing to broadening the gain spectrum. We have demonstrated a room temperature laser gain medium with electroluminescence spanning 3.3-12.5 ?m and laser emission from 6.2-12.5 ?m, the record spectral width for any solid state laser gain medium. This gain bandwidth covers the entire biochemical fingerprinting region. The achievement of such a spectrally broad gain medium presents engineering challenges of how to optimally utilize the bandwidth. As of this work, a monolithi- cally integrated array of Distributed Feedback QC (DFB-QC) lasers is one of the most promising ways to fully utilize the SC gain bandwidth. Therefore, in this thesis, we explore ways of improving the yield and ease of fabrication of DFB-QC lasers, including a re-examination of the role of current spreading in QC geometry.

  3. 940  mW 1564  nm multi-longitudinal-mode and 440  mW 1537  nm single-longitudinal-mode continuous-wave Er:Yb:Lu2Si2O7 microchip lasers.

    PubMed

    Huang, Jianhua; Chen, Yujin; Lin, Yanfu; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2018-04-15

    An Er:Yb:Lu 2 Si 2 O 7 microchip laser was constructed by placing a 1.2 mm thick, Y-cut Er:Yb:Lu 2 Si 2 O 7 microchip between two 1.2 mm thick sapphire crystals, in which input and output mirrors were directly deposited onto one face of each crystal. End-pumped by a continuous-wave 975.4 nm diode laser, a 1564 nm multi-longitudinal-mode laser with a maximum output power of 940 mW and slope efficiency of 20% was realized at an absorbed pump power of 5.5 W when the transmission of output mirror was 2.2%. When the transmission of the output mirror was increased to 6%, a 1537 nm single-longitudinal-mode laser with a maximum output power of 440 mW and slope efficiency of 12% was realized at an absorbed pump power of 4.3 W. The results indicate that the Er:Yb:Lu 2 Si 2 O 7 crystal is a promising microchip gain medium to realize a single-longitudinal-mode laser.

  4. Crash problem definition and safety benefits methodology for stability control for single-unit medium and heavy trucks and large-platform buses

    DOT National Transportation Integrated Search

    2009-10-01

    This report presents the findings of a comprehensive engineering analysis of electronic stability control (ESC) and roll stability control (RSC) systems for single-unit medium and heavy trucks and large-platform buses. This report details the applica...

  5. Goos-Hänchen shifts of partially coherent light beams from a cavity with a four-level Raman gain medium

    NASA Astrophysics Data System (ADS)

    Ziauddin; Lee, Ray-Kuang; Qamar, Sajid

    2016-09-01

    We theoretically investigate spatial and angular Goos-Hänchen (GH) shifts (both negative and positive) in the reflected light for a partial coherent light incident on a cavity. A four-level Raman gain atomic medium is considered in a cavity. The effects of spatial coherence, beam width, and mode index of partial coherent light fields on spatial and angular GH shifts are studied. Our results reveal that a large magnitude of negative and positive GH shifts in the reflected light is achievable with the introduction of partial coherent light fields. Furthermore, the amplitude of spatial (negative and positive) GH shifts are sharply affected by the partial coherent light beam as compared to angular (negative and positive) GH shifts in the reflected light.

  6. Formulation of multiple choice questions as a revision exercise at the end of a teaching module in biochemistry.

    PubMed

    Bobby, Zachariah; Radhika, M R; Nandeesha, H; Balasubramanian, A; Prerna, Singh; Archana, Nimesh; Thippeswamy, D N

    2012-01-01

    The graduate medical students often get less opportunity for clarifying their doubts and to reinforce their concepts after lecture classes. Assessment of the effect of MCQ preparation by graduate medical students as a revision exercise on the topic "Mineral metabolism." At the end of regular teaching module on the topic "Mineral metabolism," graduate medical students were asked to prepare the stems of 15 MCQs based on the four discriminators given for each. They were told that one of the discriminators could be the answer for the MCQ and the remaining three could be the distracters. They were further guided in their task by providing few key word(s) in the stem of the expected MCQ. In the first phase of the exercise, the students attempted the MCQ preparation individually without peer consultation. In the second phase, the students participated in small group discussion to formulate the best MCQs of the group. The effects on low, medium, and high achievers were evaluated by pre and post-tests with the same set of MCQs. Both the individual endeavor in Phase 1 and small group discussion in Phase 2 for the formulation of MCQs significantly contributed to the gain from the exercise. The gains from the individual task and from small group discussion were equal among the different categories of students. Both phases of the exercise were equally beneficial for the low, medium, and high achievers. The high and medium achievers retained the gain from the exercise even after 1 week of the exercise whereas the low achievers could not retain the gain completely. Formulation of MCQs is an effective and useful unconventional revision exercise in Biochemistry for graduate medical students. Copyright © 2012 Wiley Periodicals, Inc.

  7. Genetic polymorphisms to predict gains in maximal O2 uptake and knee peak torque after a high intensity training program in humans.

    PubMed

    Yoo, Jinho; Kim, Bo-Hyung; Kim, Soo-Hwan; Kim, Yangseok; Yim, Sung-Vin

    2016-05-01

    The study aimed to identify single nucleotide polymorphisms (SNPs) that significantly influenced the level of improvement of two kinds of training responses, including maximal O2 uptake (V'O2max) and knee peak torque of healthy adults participating in the high intensity training (HIT) program. The study also aimed to use these SNPs to develop prediction models for individual training responses. 79 Healthy volunteers participated in the HIT program. A genome-wide association study, based on 2,391,739 SNPs, was performed to identify SNPs that were significantly associated with gains in V'O2max and knee peak torque, following 9 weeks of the HIT program. To predict two training responses, two independent SNPs sets were determined using linear regression and iterative binary logistic regression analysis. False discovery rate analysis and permutation tests were performed to avoid false-positive findings. To predict gains in V'O2max, 7 SNPs were identified. These SNPs accounted for 26.0 % of the variance in the increment of V'O2max, and discriminated the subjects into three subgroups, non-responders, medium responders, and high responders, with prediction accuracy of 86.1 %. For the knee peak torque, 6 SNPs were identified, and accounted for 27.5 % of the variance in the increment of knee peak torque. The prediction accuracy discriminating the subjects into the three subgroups was estimated as 77.2 %. Novel SNPs found in this study could explain, and predict inter-individual variability in gains of V'O2max, and knee peak torque. Furthermore, with these genetic markers, a methodology suggested in this study provides a sound approach for the personalized training program.

  8. High Power SiGe X-Band (8-10 GHz) Heterojunction Bipolar Transistors and Amplifiers

    NASA Technical Reports Server (NTRS)

    Ma, Zhenqiang; Jiang, Ningyue; Ponchak, George E.; Alterovitz, Samuel A.

    2005-01-01

    Limited by increased parasitics and thermal effects as the device size becomes large, current commercial SiGe power HBTs are difficult to operate at X-band (8-12 GHz) with adequate power added efficiencies at high power levels. We found that, by changing the heterostructure and doping profile of SiGe HBTs, their power gain can be significantly improved without resorting to substantial lateral scaling. Furthermore, employing a common-base configuration with proper doping profile instead of a common-emitter configuration improves the power gain characteristics of SiGe HBTs, which thus permits these devices to be efficiently operated at X-band. In this paper, we report the results of SiGe power HBTs and MMIC power amplifiers operating at 8-10 GHz. At 10 GHz, 22.5 dBm (178 mW) RF output power with concurrent gain of 7.32 dB is measured at the peak power-added efficiency of 20.0% and the maximum RF output power of 24.0 dBm (250 mW) is achieved from a 20 emitter finger SiGe power HBT. Demonstration of single-stage X-band medium-power linear MMIC power amplifier is also realized at 8 GHz. Employing a 10-emitter finger SiGe HBT and on-chip input and output matching passive components, a linear gain of 9.7 dB, a maximum output power of 23.4 dBm and peak power added efficiency of 16% is achieved from the power amplifier. The MMIC exhibits very low distortion with third order intermodulation (IM) suppression C/I of -13 dBc at output power of 21.2 dBm and over 20dBm third order output intercept point (OIP3).

  9. Gain-phase modulation in chirped-pulse amplification

    NASA Astrophysics Data System (ADS)

    Shen, Yijie; Gao, Gan; Meng, Yuan; Fu, Xing; Gong, Mali

    2017-10-01

    The cross-modulation between the gain and chirped phase in chirped-pulse amplification (CPA) is theoretically and experimentally demonstrated. We propose a gain-phase coupled nonlinear Schrödinger equation (GPC-NLSE) for solving chirped-pulse propagation in a nonlinear gain medium involved in the gain-phase modulation (GPM) process. With the GPC-NLSE, the space-time-frequency-dependent gain, chirped phase, pulse, and spectrum evolutions can be precisely calculated. Moreover, a short-length high-gain Yb-doped fiber CPA experiment is presented in which a self-steepening distortion of the seed pulse is automatically compensated after amplification. This phenomenon can be explained by the GPM theory whereas conventional models cannot. The experimental results for the temporal and spectral intensities show excellent agreement with our theory. Our GPM theory paves the way for further investigations of the finer structures of the pulse and spectrum in CPA systems.

  10. Dual-wavelength single-frequency laser emission in asymmetric coupled microdisks

    PubMed Central

    Wang, Haotian; Liu, Sheng; Chen, Lin; Shen, Deyuan; Wu, Xiang

    2016-01-01

    The gain and loss in a microcavity laser play an important role for the modulation of laser spectrum. We show that dual-wavelength single mode lasing can be achieved in an asymmetric coupled system consisted of two size-mismatched microdisks. The amount of eigenmodes in this coupled-microdisk system is reduced relying on the Vernier effect. Then a single mode is selected to lase by controlling the gain branching in the supermodes. The supermodes are formed by the coupling between different transverse whispering-gallery modes (WGMs). When the gain/loss status between the two mirodisks is changed through selectively pumping process, the modulated gain branching for various supermodes leads to the switchable single-frequency laser emission. The results obtained in this work will provide the further understand for the spectral modulation mechanism in the coupled microcavity laser system. PMID:27905506

  11. Research and Analysis on the Localization of a 3-D Single Source in Lossy Medium Using Uniform Circular Array

    PubMed Central

    Xue, Bing; Qu, Xiaodong; Fang, Guangyou; Ji, Yicai

    2017-01-01

    In this paper, the methods and analysis for estimating the location of a three-dimensional (3-D) single source buried in lossy medium are presented with uniform circular array (UCA). The mathematical model of the signal in the lossy medium is proposed. Using information in the covariance matrix obtained by the sensors’ outputs, equations of the source location (azimuth angle, elevation angle, and range) are obtained. Then, the phase and amplitude of the covariance matrix function are used to process the source localization in the lossy medium. By analyzing the characteristics of the proposed methods and the multiple signal classification (MUSIC) method, the computational complexity and the valid scope of these methods are given. From the results, whether the loss is known or not, we can choose the best method for processing the issues (localization in lossless medium or lossy medium). PMID:28574467

  12. Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band.

    PubMed

    Varshney, Shailendra; Fujisawa, Takeshi; Saitoh, Kunimasa; Koshiba, Masanori

    2005-11-14

    In this paper, we report, for the first time, an inherently gain-flattened discrete highly nonlinear photonic crystal fiber (HNPCF) Raman amplifier (HNPCF-RA) design which shows 13.7 dB of net gain (with +/-0.85-dB gain ripple) over 28-nm bandwidth. The wavelength dependent leakage loss property of HNPCF is used to flatten the Raman gain of the amplifier module. The PCF structural design is based on W-shaped refractive index profile where the fiber parameters are well optimized by homely developed genetic algorithm optimization tool integrated with an efficient vectorial finite element method (V-FEM). The proposed fiber design has a high Raman gain efficiency of 4.88 W(-1) . km(-1) at a frequency shift of 13.1 THz, which is precisely evaluated through V-FEM. Additionally, the designed module, which shows ultra-wide single mode operation, has a slowly varying negative dispersion coefficient (-107.5 ps/nm/km at 1550 nm) over the operating range of wavelengths. Therefore, our proposed HNPCF-RA module acts as a composite amplifier with dispersion compensator functionality in a single component using a single pump.

  13. Effect of the solution temperature in a singlet-oxygen generator on the formation of active medium in an ejector oxygen - iodine laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagidullin, M V; Nikolaev, V D; Svistun, M I

    2002-02-28

    The influence of the solution temperature in a singlet-oxygen generator on the formation of the active medium in the ejector oxygen - iodine laser is investigated. The following parameters of the active medium at the solution temperature -20{sup 0}C are obtained: the gain is 7.2 x 10{sup -3} cm{sup -1}, the Mach number is M=2, the temperature is 205 K, and the static pressure is 9.3 mmHg. As the solution temperature is increased to -4{sup 0}C, the gain decreases to 5 x 10{sup 3} cm{sup -1}, the Mach number decreases to 1.78, while the temperature and the static pressure increasemore » to 241 K and 10.7 mmHg, respectively. As the solution temperature increases from -20 to -4{sup 0}C, the losses in O{sub 2}({sup 1}{Delta}) increase by less than 20%, while the dissociation efficiency of molecular iodine decreases by less than 21%. (lasers, active media)« less

  14. Superluminal propagation in a poly-chromatically driven gain assisted four-level N-type atomic system

    NASA Astrophysics Data System (ADS)

    Amin Bacha, Bakht; Ahmad, Iftikhar; Ullah, Arif; Ali, Hazrat

    2013-10-01

    We investigate the behavior of light propagation in an N-type four-level gain assisted model (Agarwal and Dasgupta 2004 Phys. Rev. A 70 023802) under poly-chromatic pump fields. The system exhibits interesting results of multiple controllable pairs of the gain doublet profile with changes in the intensity of the control field. We observe multiple anomalous dispersive regions for superluminal propagation in the medium. A negative group velocity of -37.50 m s-1 with a negative time delay of -8 ms is observed between each gain doublet in anomalous dispersive regions. This generalized model and its predictions can be tested with existing experimental setups.

  15. Wave-mixing-induced transparency with zero phase shift in atomic vapors

    NASA Astrophysics Data System (ADS)

    Zhou, F.; Zhu, C. J.; Li, Y.

    2017-12-01

    We present a wave-mixing induced transparency that can lead to a hyper-Raman gain-clamping effect. This new type of transparency is originated from a dynamic gain cancellation effect in a multiphoton process where a highly efficient light field of new frequency is generated and amplified. We further show that this novel dynamic gain cancellation effect not only makes the medium transparent to a probe light field at appropriate frequency but also eliminates the probe field propagation phase shift. This gain-cancellation-based induced transparency holds for many potential applications on optical communication and may lead to effective suppression of parasitic Raman/hyper-Raman noise field generated in high intensity optical fiber transmissions.

  16. Cloning and characterization of the glutamate dehydrogenase gene in Streptococcus bovis.

    PubMed

    Ando, Tasuke; Sugawara, Yoko; Nishio, Ryohei; Murakami, Miho; Isogai, Emiko; Yoneyama, Hiroshi

    2017-07-01

    Streptococcus bovis, an etiologic agent of rumen acidosis in cattle, is a rumen bacterium that can grow in a chemically defined medium containing ammonia as a sole source of nitrogen. To understand its ability to assimilate inorganic ammonia, we focused on the function of glutamate dehydrogenase. In order to identify the gene encoding this enzyme, we first amplified an internal region of the gene by using degenerate primers corresponding to hexameric family I and NAD(P) + binding motifs. Subsequently, inverse PCR was used to identify the whole gene, comprising an open reading frame of 1350 bp that encodes 449 amino acid residues that appear to have the substrate binding site of glutamate dehydrogenase observed in other organisms. Upon introduction of a recombinant plasmid harboring the gene into an Escherichia coli glutamate auxotroph lacking glutamate dehydrogenase and glutamate synthase, the transformants gained the ability to grow on minimal medium without glutamate supplementation. When cell extracts of the transformant were resolved by blue native polyacrylamide gel electrophoresis followed by activity staining, a single protein band appeared that corresponded to the size of S. bovis glutamate dehydrogenase. Based on these results, we concluded that the gene obtained encodes glutamate dehydrogenase in S. bovis. © 2016 Japanese Society of Animal Science.

  17. Spatial solitons of desired intensity and width and their self-tapering/uptapering in cubic quintic nonlinear medium

    NASA Astrophysics Data System (ADS)

    Krishna Sarkar, Ram; Medhekar, S.

    2007-12-01

    In this paper, we have investigated the propagation behavior of a Gaussian beam in cubic quintic nonlinear medium with and without absorption or gain. A governing differential equation for the evolution of beam width with the distance of propagation has been derived using the standard parabolic equation approach. By solving the governing equation numerically for different sets of parameters, we have shown that spatial solitons of fixed width and desired intensity and of fixed intensity and desired width are possible. Such liberty does not exist in other saturable media. We have also investigated self-tapering and self-uptapering of spatial solitons in the presence of absorption or gain and showed that the rate of self-tapering/uptapering is not only controlled by the magnitude of absorption or gain but also by the values of cubic and quintic terms. It is revealed that by self-tapering, the smallest achievable soliton width decreases/increases by increasing the magnitude of the cubic/quintic term. It is also revealed that the smallest achievable soliton width by self-tapering, is smaller for a larger initial width.

  18. X-ray lasers and methods utilizing two component driving illumination provided by optical laser means of relatively low energy and small physical size

    DOEpatents

    Rosen, Mordecai D.; Matthews, Dennis L.

    1991-01-01

    An X-ray laser (10), and related methodology, are disclosed wherein an X-ray laser target (12) is illuminated with a first pulse of optical laser radiation (14) of relatively long duration having scarcely enough energy to produce a narrow and linear cool plasma of uniform composition (38). A second, relatively short pulse of optical laser radiation (18) is uniformly swept across the length, from end to end, of the plasma (38), at about the speed of light, to consecutively illuminate continuously succeeding portions of the plasma (38) with optical laser radiation having scarcely enough energy to heat, ionize, and invert them into the continuously succeeding portions of an X-ray gain medium. This inventive double pulse technique results in a saving of more than two orders of magnitude in driving optical laser energy, when compared to the conventional single pulse approach.

  19. All-fiber passively Q-switched thulium-doped fiber laser by using a holmium-doped fiber as saturable absorber

    NASA Astrophysics Data System (ADS)

    Durán Sánchez, M.; Álvarez-Tamayo, R. I.; Posada-Ramírez, B.; Alaniz-Baylón, J.; Bravo-Huerta, E.; Santiago-Hernández, H.; Hernández-Arriaga, M. V.; Bello-Jiménez, Miguel; Ibarra-Escamilla, B.; Kuzin, E. A.

    2018-02-01

    We report a linear cavity all-fiber passive Q-switched thulium-doped fiber laser operating at the 2 μm wavelength range. The laser configuration is based on a thulium-doped fiber used as a gain medium and an unpumped segment of holmium-doped fiber which acts as a fiber saturable absorber. The cavity is formed by a fiber optical loop mirror and the flat end facet of the holmium-doped fiber. The fiber segments as saturable absorber is a 1-m long single mode doubleclad holmium-doped fiber. Q-switched pulses are obtained at the wavelength of 2024.5 nm with a pulse width of 1.1 μs. The pulse repetition rate increases as a linear function of the applied pump power. The maximum pulse repetition rate of 100 kHz was obtained with a pump power of 2.4 W.

  20. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    1997-01-01

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications.

  1. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1997-11-18

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications. 5 figs.

  2. Photonic crystal surface-emitting lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chua, Song Liang; Lu, Ling; Soljacic, Marin

    2015-06-23

    A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-planemore » feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.« less

  3. Polyimide Aerogels and Porous Membranes for Ultrasonic Impedance Matching to Air

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.; Sands, Obed S.; Meador, Mary Ann B.

    2014-01-01

    This work investigates acoustic impedance matching materials for coupling 200 kHz ultrasonic signals from air to materials with similar acoustic properties to that of water, flesh, rubber and plastics. Porous filter membranes as well as a new class of cross-linked polyimide aerogels are evaluated. The results indicate that a single impedance matching layer consisting of these new aerogel materials will recover nearly half of the loss in the incident-to-transmitted ultrasound intensity associated with an air/water, air/flesh or air/gelatin boundary. Furthermore, the experimental results are obtained where other uncertainties of the "real world" are present such that the observed impedance matching gains are representative of real-world applications. Performance of the matching layer devices is assessed using the idealized 3-layer model of infinite half spaces, yet the experiments conducted use a finite gelatin block as the destination medium.

  4. The body's story: a case report of hypnosis and physiological narration of trauma.

    PubMed

    Pantesco, Victor F

    2005-01-01

    Adult Posttraumatic Stress Disorder secondary to childhood sexual abuse is clinically complicated by its increasingly noted deficient linguistic recording of the abuse, perhaps partially explaining consequent difficulties with verbalizing in therapy. A single case illustrates that hypnotically utilizing the body-emotion register of encrypted sexual abuse trauma may not only afford more naturalistic retrieval and purgation of the experience, but may also provide the very medium for the healing narrative required for recovery. The patient's original and continuing therapist was also present as support and observer for all but 1 of 25 hypnosis sessions. Treatment gains were robust at 3-year follow up. This case suggests that effective treatment for sexual abuse PTSD may in some instances reside in more nonverbally sensitive interventions not aiming to prove, probe, or process linguistic reconstructions of memory. This is the first published report of such a bodily narrative in hypnosis.

  5. Measuring optical fiber length by use of a short-pulse optical fiber ring laser in a self-injection seeding scheme.

    PubMed

    Wang, Yi-Ping; Wang, Dong Ning; Jin, Wei

    2006-09-01

    A method for measuring the length of an optical fiber by use of an optical fiber ring laser pulse source is proposed and demonstrated. The key element of the optical fiber ring laser is a gain-switched Fabry-Perot laser diode operated in a self-injection seeding scheme. This method is especially suitable for measuring a medium or long fiber, and a resolution of 0.1 m is experimentally achieved. The measurement is implemented by accurately determining the pulse frequency that can maximize the output power of the fiber ring laser. The measurement results depend only on the refractive index of the fiber corresponding to this single wavelength, instead of the group index of the fiber, which represents a great advantage over both optical time-domain reflectometry and optical low-coherence reflectometry methods.

  6. Study on suitable for regeneration system of genetic transformation of kiwifruit

    NASA Astrophysics Data System (ADS)

    Yuan, Yun Xiang

    2011-02-01

    The stems of Actinidia Qinmei were taken as explants and induced callus formation after having gained the aseptic seedling in primary culture successfully, and then the calli were placed on different combinations regeneration medium. The results showed that the induction medium added 1 mg/L 6-BA and 0.1 mg/L NAA was beneficial to the callus induction in dark culture condition. The suitable regeneration medium was MS containing 2.0 mg/L 6BA, 0.1 mg/L NAA and 3% (W/V) sucrose, it could improve obviously the frequency of regenerated shoots. This method separated the callus induction from shoot regeneration and obtained more callus to optimize the regenerated medium, and also was advantageous to Kiwifruit genetic transformation.

  7. Merged beam laser design for reduction of gain-saturation and two-photon absorption in high power single mode semiconductor lasers.

    PubMed

    Lysevych, M; Tan, H H; Karouta, F; Fu, L; Jagadish, C

    2013-04-08

    In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.

  8. Stochastic Gain Degradation in III-V Heterojunction Bipolar Transistors due to Single Particle Displacement Damage

    DOE PAGES

    Vizkelethy, Gyorgy; Bielejec, Edward S.; Aguirre, Brandon A.

    2017-11-13

    As device dimensions decrease single displacement effects are becoming more important. We measured the gain degradation in III-V Heterojunction Bipolar Transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on the gain change. From the single steps in the inverse gain (which is proportional to the number of defects) we calculated Cumulative Distribution Functions to help determine design margins. The displacement process was modeled using the Marlowe Binary Collision Approximation (BCA) code. The entiremore » structure of the device was modeled and the defects in the base-emitter junction were counted to be compared to the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.« less

  9. All fiber passively Q-switched laser

    DOEpatents

    Soh, Daniel B. S.; Bisson, Scott E

    2015-05-12

    Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.

  10. Stochastic Gain Degradation in III-V Heterojunction Bipolar Transistors due to Single Particle Displacement Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vizkelethy, Gyorgy; Bielejec, Edward S.; Aguirre, Brandon A.

    As device dimensions decrease single displacement effects are becoming more important. We measured the gain degradation in III-V Heterojunction Bipolar Transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on the gain change. From the single steps in the inverse gain (which is proportional to the number of defects) we calculated Cumulative Distribution Functions to help determine design margins. The displacement process was modeled using the Marlowe Binary Collision Approximation (BCA) code. The entiremore » structure of the device was modeled and the defects in the base-emitter junction were counted to be compared to the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.« less

  11. An Over 90 dB Intra-Scene Single-Exposure Dynamic Range CMOS Image Sensor Using a 3.0 μm Triple-Gain Pixel Fabricated in a Standard BSI Process.

    PubMed

    Takayanagi, Isao; Yoshimura, Norio; Mori, Kazuya; Matsuo, Shinichiro; Tanaka, Shunsuke; Abe, Hirofumi; Yasuda, Naoto; Ishikawa, Kenichiro; Okura, Shunsuke; Ohsawa, Shinji; Otaka, Toshinori

    2018-01-12

    To respond to the high demand for high dynamic range imaging suitable for moving objects with few artifacts, we have developed a single-exposure dynamic range image sensor by introducing a triple-gain pixel and a low noise dual-gain readout circuit. The developed 3 μm pixel is capable of having three conversion gains. Introducing a new split-pinned photodiode structure, linear full well reaches 40 ke - . Readout noise under the highest pixel gain condition is 1 e - with a low noise readout circuit. Merging two signals, one with high pixel gain and high analog gain, and the other with low pixel gain and low analog gain, a single exposure dynamic rage (SEHDR) signal is obtained. Using this technology, a 1/2.7", 2M-pixel CMOS image sensor has been developed and characterized. The image sensor also employs an on-chip linearization function, yielding a 16-bit linear signal at 60 fps, and an intra-scene dynamic range of higher than 90 dB was successfully demonstrated. This SEHDR approach inherently mitigates the artifacts from moving objects or time-varying light sources that can appear in the multiple exposure high dynamic range (MEHDR) approach.

  12. An Over 90 dB Intra-Scene Single-Exposure Dynamic Range CMOS Image Sensor Using a 3.0 μm Triple-Gain Pixel Fabricated in a Standard BSI Process †

    PubMed Central

    Takayanagi, Isao; Yoshimura, Norio; Mori, Kazuya; Matsuo, Shinichiro; Tanaka, Shunsuke; Abe, Hirofumi; Yasuda, Naoto; Ishikawa, Kenichiro; Okura, Shunsuke; Ohsawa, Shinji; Otaka, Toshinori

    2018-01-01

    To respond to the high demand for high dynamic range imaging suitable for moving objects with few artifacts, we have developed a single-exposure dynamic range image sensor by introducing a triple-gain pixel and a low noise dual-gain readout circuit. The developed 3 μm pixel is capable of having three conversion gains. Introducing a new split-pinned photodiode structure, linear full well reaches 40 ke−. Readout noise under the highest pixel gain condition is 1 e− with a low noise readout circuit. Merging two signals, one with high pixel gain and high analog gain, and the other with low pixel gain and low analog gain, a single exposure dynamic rage (SEHDR) signal is obtained. Using this technology, a 1/2.7”, 2M-pixel CMOS image sensor has been developed and characterized. The image sensor also employs an on-chip linearization function, yielding a 16-bit linear signal at 60 fps, and an intra-scene dynamic range of higher than 90 dB was successfully demonstrated. This SEHDR approach inherently mitigates the artifacts from moving objects or time-varying light sources that can appear in the multiple exposure high dynamic range (MEHDR) approach. PMID:29329210

  13. Computer program for thin-wire structures in a homogeneous conducting medium

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.

    1974-01-01

    A computer program is presented for thin-wire antennas and scatters in a homogeneous conducting medium. The anaylsis is performed in the real or complex frequency domain. The program handles insulated and bare wires with finite conductivity and lumped loads. The output data includes the current distribution, impedance, radiation efficiency, gain, absorption cross section, scattering cross section, echo area and the polarization scattering matrix. The program uses sinusoidal bases and Galerkin's method.

  14. Ultrashort pulse amplification in cryogenically cooled amplifiers

    DOEpatents

    Backus, Sterling J.; Kapteyn, Henry C.; Murnane, Margaret Mary

    2004-10-12

    A laser amplifier system amplifies pulses in a single "stage" from .about.10.sup.-9 joules to more than 10.sup.-3 joules, with average power of 1-10 watts, and beam quality M.sup.2 <2. The laser medium is cooled substantially below room temperature, as a means to improve the optical and thermal characteristics of the medium. This is done with the medium inside a sealed, evacuated or purged cell to avoid moisture or other materials condensing on the surface. A "seed" pulse from a separate laser is passed through the laser medium, one or more times, in any of a variety of configurations including single-pass, multiple-pass, and regenerative amplifier configurations.

  15. Transverse Vibration of Tapered Single-Walled Carbon Nanotubes Embedded in Viscoelastic Medium

    NASA Astrophysics Data System (ADS)

    Lei, Y. J.; Zhang, D. P.; Shen, Z. B.

    2017-12-01

    Based on the nonlocal theory, Euler-Bernoulli beam theory and Kelvin viscoelastic foundation model, free transverse vibration is studied for a tapered viscoelastic single-walled carbon nanotube (visco-SWCNT) embedded in a viscoelastic medium. Firstly, the governing equations for vibration analysis are established. And then, we derive the natural frequencies in closed form for SWCNTs with arbitrary boundary conditions by applying transfer function method and perturbation method. Numerical results are also presented to discuss the effects of nonlocal parameter, relaxation time and taper parameter of SWCNTs, and material property parameters of the medium. This study demonstrates that the proposed model is available for vibration analysis of the tapered SWCNTs-viscoelastic medium coupling system.

  16. Comparing NAL-NL1 and DSL v5 in Hearing Aids Fit to Children with Severe or Profound Hearing Loss: Goodness of Fit-to-Targets, Impacts on Predicted Loudness and Speech Intelligibility.

    PubMed

    Ching, Teresa Y C; Quar, Tian Kar; Johnson, Earl E; Newall, Philip; Sharma, Mridula

    2015-03-01

    An important goal of providing amplification to children with hearing loss is to ensure that hearing aids are adjusted to match targets of prescriptive procedures as closely as possible. The Desired Sensation Level (DSL) v5 and the National Acoustic Laboratories' prescription for nonlinear hearing aids, version 1 (NAL-NL1) procedures are widely used in fitting hearing aids to children. Little is known about hearing aid fitting outcomes for children with severe or profound hearing loss. The purpose of this study was to investigate the prescribed and measured gain of hearing aids fit according to the NAL-NL1 and the DSL v5 procedure for children with moderately severe to profound hearing loss; and to examine the impact of choice of prescription on predicted speech intelligibility and loudness. Participants were fit with Phonak Naida V SP hearing aids according to the NAL-NL1 and DSL v5 procedures. The Speech Intelligibility Index (SII) and estimated loudness were calculated using published models. The sample consisted of 16 children (30 ears) aged between 7 and 17 yr old. The measured hearing aid gains were compared with the prescribed gains at 50 (low), 65 (medium), and 80 dB SPL (high) input levels. The goodness of fit-to-targets was quantified by calculating the average root-mean-square (RMS) error of the measured gain compared with prescriptive gain targets for 0.5, 1, 2, and 4 kHz. The significance of difference between prescriptions for hearing aid gains, SII, and loudness was examined by performing analyses of variance. Correlation analyses were used to examine the relationship between measures. The DSL v5 prescribed significantly higher overall gain than the NAL-NL1 procedure for the same audiograms. For low and medium input levels, the hearing aids of all children fit with NAL-NL1 were within 5 dB RMS of prescribed targets, but 33% (10 ears) deviated from the DSL v5 targets by more than 5 dB RMS on average. For high input level, the hearing aid fittings of 60% and 43% of ears deviated by more than 5 dB RMS from targets of NAL-NL1 and DSL v5, respectively. Greater deviations from targets were associated with more severe hearing loss. On average, the SII was higher for DSL v5 than for NAL-NL1 at low input level. No significant difference in SII was found between prescriptions at medium or high input level, despite greater loudness for DSL v5 than for NAL-NL1. Although targets between 0.25 and 2 kHz were well matched for both prescriptions in commercial hearing aids, gain targets at 4 kHz were matched for NAL-NL1 only. Although the two prescriptions differ markedly in estimated loudness, they resulted in comparable predicted speech intelligibility for medium and high input levels. American Academy of Audiology.

  17. Terahertz amplification in RTD-gated HEMTs with a grating-gate wave coupling topology

    NASA Astrophysics Data System (ADS)

    Condori Quispe, Hugo O.; Encomendero-Risco, Jimy J.; Xing, Huili Grace; Sensale-Rodriguez, Berardi

    2016-08-01

    We theoretically analyze the operation of a terahertz amplifier consisting of a resonant-tunneling-diode gated high-electron-mobility transistor (RTD-gated HEMT) in a grating-gate topology. In these devices, the key element enabling substantial power gain is the efficient coupling of terahertz waves into and out of plasmons in the RTD-gated HEMT channel, i.e., the gain medium, via the grating-gate itself, part of the active device, rather than by an external antenna structure as discussed in previous works, therefore potentially enabling terahertz amplification with associated power gains >40 dB.

  18. Terahertz amplification in RTD-gated HEMTs with a grating-gate wave coupling topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Condori Quispe, Hugo O.; Sensale-Rodriguez, Berardi; Encomendero-Risco, Jimy J.

    2016-08-08

    We theoretically analyze the operation of a terahertz amplifier consisting of a resonant-tunneling-diode gated high-electron-mobility transistor (RTD-gated HEMT) in a grating-gate topology. In these devices, the key element enabling substantial power gain is the efficient coupling of terahertz waves into and out of plasmons in the RTD-gated HEMT channel, i.e., the gain medium, via the grating-gate itself, part of the active device, rather than by an external antenna structure as discussed in previous works, therefore potentially enabling terahertz amplification with associated power gains >40 dB.

  19. Femtosecond laser pulse distortion in Ti:sapphire multipass amplifier by atomic phase shifts

    NASA Astrophysics Data System (ADS)

    Hwang, Seungjin; Jeong, Jihoon; Cho, Seryeyohan; Lee, Jongmin; Yu, Tae Jun

    2017-11-01

    We have derived modified Frantz-Nodvik equations that simultaneously account for atomic phase shift (APS) and gain depletion as the chirped laser pulse passes through a gain medium, and have analyzed the effect of temporal pulse distortion in a Ti:sapphire multipass amplifier chain. The combination of APS and gain depletion distorted a temporal pulse and decreased the peak power. The pulse width increased from 21.3 fs to 22.8 fs and the peak power reduced to 89% for the PW class Ti:sapphire CPA laser system in the particular conditions.

  20. Noise reduction in plasmonic amplifiers

    NASA Astrophysics Data System (ADS)

    Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.

    2018-06-01

    Surface plasmon polaritons amplification give the possibility to overcome strong absorption in metals and design truly nanoscale devices for on-chip photonic circuits. However, the process of stimulated emission in the gain medium is inevitably accompanied by spontaneous emission, which greatly increases the noise power. Herein we present an efficient strategy for noise reduction in plasmonic amplifiers,which is based on gain redistribution along the amplifier. We show that even a very small gain redistribution (∼3%) makes it possible to increase the signal-to-noise ratio by ∼100% and improve the bit error ratio by orders of magnitude.

  1. Optofluidic lasers and their applications in bioanalysis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fan, Xudong

    2016-03-01

    The optofluidic laser is an emerging technology that integrates microfluidics, miniaturized laser cavity, and laser gain medium in liquid. It is unique due to its biocompatibility, thus can be used for unconventional bioanalysis, in which biointeraction or process takes place within the optical cavity mode volume. Rather than using fluorescence, the optofluidic laser based detection employs laser emission, i.e., stimulated emission, as the sensing signal, which takes advantage of optical amplification provided by the laser cavity to achieve much higher sensitivity. In this presentation, I will first introduce the concept of optofluidic laser based bioanalysis. Then I will discuss each of the three components (cavity, gain medium, and fluidics) of the optofluidic laser and describe how to use the optofluidic laser in bioanalysis at the molecular, cellular, and tissue level. Finally, I will discuss future research and application directions.

  2. Properties of dark solitons under SBS in focused beams

    NASA Astrophysics Data System (ADS)

    Bel'dyugin, Igor'M.; Erokhin, A. I.; Efimkov, V. F.; Zubarev, I. G.; Mikhailov, S. I.

    2012-12-01

    Using the method of four-wave probing of the waist of the laser beam focused into the bulk of a short active medium (L ll τc, where L is the length of the active medium, τ is the pulse duration, and c is the speed of light), we have studied the dynamics of the behaviour of a dark soliton, appearing upon a jump of the input Stokes signal phase by about π under SBS. The computer simulation has shown that when spontaneous noises with the gain increment Γ, exceeding the self-reflection threshold by 2 - 3 times, are generated, the dark soliton propagates along the interaction region for the time t ≈ T2Γth/2, where T2 is the the lifetime of acoustic phonons, and Γth = 25 - 30 is the stationary threshold gain increment.

  3. Relay telescope for high power laser alignment system

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2006-09-19

    A laser system includes an optical path having an intracavity relay telescope with a telescope focal point for imaging an output of the gain medium between an image location at or near the gain medium and an image location at or near an output coupler for the laser system. A kinematic mount is provided within a vacuum chamber, and adapted to secure beam baffles near the telescope focal point. An access port on the vacuum chamber is adapted for allowing insertion and removal of the beam baffles. A first baffle formed using an alignment pinhole aperture is used during alignment of the laser system. A second tapered baffle replaces the alignment aperture during operation and acts as a far-field baffle in which off angle beams strike the baffle a grazing angle of incidence, reducing fluence levels at the impact areas.

  4. Single-mode fiber systems for deep space communication network

    NASA Technical Reports Server (NTRS)

    Lutes, G.

    1982-01-01

    The present investigation is concerned with the development of single-mode optical fiber distribution systems. It is pointed out that single-mode fibers represent potentially a superior medium for the distribution of frequency and timing reference signals and wideband (400 MHz) IF signals. In this connection, single-mode fibers have the potential to improve the capability and precision of NASA's Deep Space Network (DSN). Attention is given to problems related to precise time synchronization throughout the DSN, questions regarding the selection of a transmission medium, and the function of the distribution systems, taking into account specific improvements possible by an employment of single-mode fibers.

  5. Mixing Single Scattering Properties in Vector Radiative Transfer for Deterministic and Stochastic Solutions

    NASA Astrophysics Data System (ADS)

    Mukherjee, L.; Zhai, P.; Hu, Y.; Winker, D. M.

    2016-12-01

    Among the primary factors, which determine the polarized radiation, field of a turbid medium are the single scattering properties of the medium. When multiple types of scatterers are present, the single scattering properties of the scatterers need to be properly mixed in order to find the solutions to the vector radiative transfer theory (VRT). The VRT solvers can be divided into two types: deterministic and stochastic. The deterministic solver can only accept one set of single scattering property in its smallest discretized spatial volume. When the medium contains more than one kind of scatterer, their single scattering properties are averaged, and then used as input for the deterministic solver. The stochastic solver, can work with different kinds of scatterers explicitly. In this work, two different mixing schemes are studied using the Successive Order of Scattering (SOS) method and Monte Carlo (MC) methods. One scheme is used for deterministic and the other is used for the stochastic Monte Carlo method. It is found that the solutions from the two VRT solvers using two different mixing schemes agree with each other extremely well. This confirms the equivalence to the two mixing schemes and also provides a benchmark for the VRT solution for the medium studied.

  6. Predicting optical and thermal characteristics of transparent single-glazed domed skylights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laouadi, A.; Atif, M.R.

    1999-07-01

    Optical and thermal characteristics of domed skylights are important to solve the trade-off between daylighting and thermal design. However, there is a lack of daylighting and thermal design tools for domed skylights. Optical and thermal characteristics of transparent single-glazed hemispherical domed skylights under sun and sky light are evaluated based on an optical model for domed skylights. The optical model is based on tracing the beam and diffuse radiation transmission through the dome surface. A simple method is proposed to replace single-glazed hemispherical domed skylights by optically and thermally equivalent single-glazed planar skylights to accommodate limitations of energy computer programs.more » Under sunlight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and solar heat gain coefficient (SHGC) at near normal zenith angles than those of single-glazed planar skylights. However, single-glazed hemispherical domed skylights yield substantially higher equivalent solar transmittance and SHGC at high zenith angles and around the horizon. Under isotropic skylight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and SHGC than those of single-glazed planar skylights. Daily solar heat gains of single-glazed hemispherical domed skylights are higher than those of single-glazed horizontal planar skylights in both winter and summer. In summer, the solar heat gain of single-glazed hemispherical domed skylights can reach 3% to 9% higher than those of horizontal single-glazed planar skylights for latitudes varying between 0 and 55{degree} (north/south). In winter, however, the solar heat gains of single-glazed hemispherical domed skylights increase significantly with the increase of the site latitude and can reach 232% higher than those of horizontal single-glazed planar skylights, particularly for high latitude countries.« less

  7. A Nanowire-Based Plasmonic Quantum Dot Laser.

    PubMed

    Ho, Jinfa; Tatebayashi, Jun; Sergent, Sylvain; Fong, Chee Fai; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2016-04-13

    Quantum dots enable strong carrier confinement and exhibit a delta-function like density of states, offering significant improvements to laser performance and high-temperature stability when used as a gain medium. However, quantum dot lasers have been limited to photonic cavities that are diffraction-limited and further miniaturization to meet the demands of nanophotonic-electronic integration applications is challenging based on existing designs. Here we introduce the first quantum dot-based plasmonic laser to reduce the cross-sectional area of nanowire quantum dot lasers below the cutoff limit of photonic modes while maintaining the length in the order of the lasing wavelength. Metal organic chemical vapor deposition grown GaAs-AlGaAs core-shell nanowires containing InGaAs quantum dot stacks are placed directly on a silver film, and lasing was observed from single nanowires originating from the InGaAs quantum dot emission into the low-loss higher order plasmonic mode. Lasing threshold pump fluences as low as ∼120 μJ/cm(2) was observed at 7 K, and lasing was observed up to 125 K. Temperature stability from the quantum dot gain, leading to a high characteristic temperature was demonstrated. These results indicate that high-performance, miniaturized quantum dot lasers can be realized with plasmonics.

  8. Analysis of originating ultra-short optical dissipative solitary pulses in the actively mode-locked semiconductor heterolasers with an external fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Pons Aglio, Alicia; Moreno Zarate, Pedro; Mansurova, Svetlana

    2010-06-01

    We present an advanced approach to describing low-power trains of bright picosecond optical dissipative solitary pulses with an internal frequency modulation in practically important case of exploiting semiconductor heterolaser operating in near-infrared range in the active mode-locking regime. In the chosen schematic arrangement, process of the active mode-locking is caused by a hybrid nonlinear cavity consisting of this heterolaser and an external rather long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and small linear optical losses. Our analysis of shaping dissipative solitary pulses includes three principal contributions associated with the modulated gain, total optical losses, as well as with linear and nonlinear phase shifts. In fact, various trains of the non-interacting to one another optical dissipative solitons appear within simultaneous balance between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in a hybrid cavity. Our specific approach makes possible taking the modulating signals providing non-conventional composite regimes of a multi-pulse active mode-locking. Within our model, a contribution of the appearing nonlinear Ginzburg-Landau operator to the parameters of dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions.

  9. Girls' Participation in Physics in Single Sex Classes in Mixed Schools in Relation to Confidence and Achievement.

    ERIC Educational Resources Information Center

    Gillibrand, Eileen; Robinson, Peter; Brawn, Richard; Osborn, Albert

    1999-01-01

    Reports the findings from a three-year longitudinal case study of two single-sex General Certificate of Secondary Education (GCSE) physics classes in a mixed comprehensive school in England. Results indicate that girls who elected to study physics in single-sex classes gain confidence in the subject. This gain in confidence is associated with…

  10. Localization of Burkholderia cepacia Complex Bacteria in Cystic Fibrosis Lungs and Interactions with Pseudomonas aeruginosa in Hypoxic Mucus

    PubMed Central

    Abdullah, Lubna H.; Perlmutt, Olivia S.; Albert, Daniel; Davis, C. William; Arnold, Roland R.; Yankaskas, James R.; Gilligan, Peter; Neubauer, Heiner; Randell, Scott H.; Boucher, Richard C.

    2014-01-01

    The localization of Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) lungs, alone or during coinfection with Pseudomonas aeruginosa, is poorly understood. We performed immunohistochemistry for Bcc and P. aeruginosa bacteria on 21 coinfected or singly infected CF lungs obtained at transplantation or autopsy. Parallel in vitro experiments examined the growth of two Bcc species, Burkholderia cenocepacia and Burkholderia multivorans, in environments similar to those occupied by P. aeruginosa in the CF lung. Bcc bacteria were predominantly identified in the CF lung as single cells or small clusters within phagocytes and mucus but not as “biofilm-like structures.” In contrast, P. aeruginosa was identified in biofilm-like masses, but densities appeared to be reduced during coinfection with Bcc bacteria. Based on chemical analyses of CF and non-CF respiratory secretions, a test medium was defined to study Bcc growth and interactions with P. aeruginosa in an environment mimicking the CF lung. When test medium was supplemented with alternative electron acceptors under anaerobic conditions, B. cenocepacia and B. multivorans used fermentation rather than anaerobic respiration to gain energy, consistent with the identification of fermentation products by high-performance liquid chromatography (HPLC). Both Bcc species also expressed mucinases that produced carbon sources from mucins for growth. In the presence of P. aeruginosa in vitro, both Bcc species grew anaerobically but not aerobically. We propose that Bcc bacteria (i) invade a P. aeruginosa-infected CF lung when the airway lumen is anaerobic, (ii) inhibit P. aeruginosa biofilm-like growth, and (iii) expand the host bacterial niche from mucus to also include macrophages. PMID:25156735

  11. Using optimal combination of teaching-learning methods (open book assignment and group tutorials) as revision exercises to improve learning outcome in low achievers in biochemistry.

    PubMed

    Rajappa, Medha; Bobby, Zachariah; Nandeesha, H; Suryapriya, R; Ragul, Anithasri; Yuvaraj, B; Revathy, G; Priyadarssini, M

    2016-07-08

    Graduate medical students of India are taught Biochemistry by didactic lectures and they hardly get any opportunity to clarify their doubts and reinforce the concepts which they learn in these lectures. We used a combination of teaching-learning (T-L) methods (open book assignment followed by group tutorials) to study their efficacy in improving the learning outcome. About 143 graduate medical students were classified into low (<50%: group 1, n = 23), medium (50-75%: group 2, n = 74), and high (>75%: group 3, n = 46) achievers, based on their internal assessment marks. After the regular teaching module on the topics "Vitamins and Enzymology", all the students attempted an open book assignment without peer consultation. Then all the students participated in group tutorials. The effects on the groups were evaluated by pre and posttests at the end of each phase, with the same set of MCQs. Gain from group tutorials and overall gain was significantly higher in the low achievers, compared to other groups. High and medium achievers obtained more gain from open book assignment, than group tutorials. The overall gain was significantly higher than the gain obtained from open book assignment or group tutorials, in all three groups. All the three groups retained the gain even after 1 week of the exercise. Hence, optimal use of novel T-L methods (open book assignment followed by group tutorials) as revision exercises help in strengthening concepts in Biochemistry in this oft neglected group of low achievers in graduate medical education. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(4):321-325, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  12. Radiance and polarization in the diffusion region with an arbitrary scattering phase matrix

    NASA Astrophysics Data System (ADS)

    Sun, Bingqiang; Kattawar, George W.; Yang, Ping

    2016-11-01

    Radiance and polarization patterns in an optically deep region, the so-called diffusion region or asymptotic region, of a homogeneous atmosphere or ocean, depend mainly on the scattering phase matrix and the single-scattering albedo of the medium. The radiance and polarization properties in the diffusion region for an arbitrary scattering phase matrix can be obtained in terms of a series of the generalized spherical functions. The number of terms is closely related to the single-scattering albedo of the medium. If the medium is conservative, the radiance is isotropic in conjunction with no polarization. If the single-scattering albedo is close to 1, several terms are sufficient to obtain the patterns, in which the degree of polarization feature is less than 1%. If the medium is highly absorptive, more expansion terms are required to obtain the diffusion patterns. The examples of simulated radiance and polarization patterns for Rayleigh scattering, Henyey-Greenstein-Rayleigh scattering, and haze L and cloud C1 scattering, defined by Deirmendjian, are calculated.

  13. Discounting future green: money versus the environment.

    PubMed

    Hardisty, David J; Weber, Elke U

    2009-08-01

    In 3 studies, participants made choices between hypothetical financial, environmental, and health gains and losses that took effect either immediately or with a delay of 1 or 10 years. In all 3 domains, choices indicated that gains were discounted more than losses. There were no significant differences in the discounting of monetary and environmental outcomes, but health gains were discounted more and health losses were discounted less than gains or losses in the other 2 domains. Correlations between implicit discount rates for these different choices suggest that discount rates are influenced more by the valence of outcomes (gains vs. losses) than by domain (money, environment, or health). Overall, results indicate that when controlling as many factors as possible, at short to medium delays, environmental outcomes are discounted in a similar way to financial outcomes, which is good news for researchers and policy makers alike.

  14. Interior radiances in optically deep absorbing media. 3: Scattering from Haze L

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.

    1974-01-01

    The interior radiances are calculated within an optically deep absorbing medium scattering according to the Haze L phase function. The dependence on the solar zenith angle, the single scattering albedo, and the optical depth within the medium is calculated by the matrix operator method. The development of the asymptotic angular distribution of the radiance in the diffusion region is illustrated through a number of examples; it depends only on the single scattering albedo and on the phase function for single scattering. The exact values of the radiance in the diffusion region are compared with values calculated from the approximate equations proposed by Van de Hulst. The variation of the radiance near the lower boundary of an optically thick medium is illustrated with examples. The attenuation length is calculated for various single scattering albedos and compared with the corresponding values for Rayleigh scattering. The ratio of the upward to the downward flux is found to be remarkably constant within the medium. The heating rate is calculated and found to have a maximum value at an optical depth of two within a Haze L layer when the sun is at the zenith.

  15. Asymptotic Eigenstructures

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.; Stein, G.

    1980-01-01

    The behavior of the closed loop eigenstructure of a linear system with output feedback is analyzed as a single parameter multiplying the feedback gain is varied. An algorithm is presented that computes the asymptotically infinite eigenstructure, and it is shown how a system with high gain, feedback decouples into single input, single output systems. Then a synthesis algorithm is presented which uses full state feedback to achieve a desired asymptotic eigenstructure.

  16. Dismantling multicomponent behavioral treatment for insomnia in older adults: a randomized controlled trial.

    PubMed

    Epstein, Dana R; Sidani, Souraya; Bootzin, Richard R; Belyea, Michael J

    2012-06-01

    Recently, the use of multicomponent insomnia treatment has increased. This study compares the effect of single component and multicomponent behavioral treatments for insomnia in older adults after intervention and at 3 months and 1 yr posttreatment. A randomized, controlled study. Veterans Affairs medical center. 179 older adults (mean age, 68.9 yr ± 8.0; 115 women [64.2%]) with chronic primary insomnia. Participants were randomly assigned to 6 wk of stimulus control therapy (SCT), sleep restriction therapy (SRT), the 2 therapies combined into a multicomponent intervention (MCI), or a wait-list control group. Primary outcomes were subjective (daily sleep diary) and objective (actigraphy) measures of sleep-onset latency (SOL), wake after sleep onset (WASO), total sleep time (TST), time in bed (TIB), and sleep efficiency (SE). Secondary outcomes were clinical measures including response and remission rates. There were no differences between the single and multicomponent interventions on primary sleep outcomes measured by diary and actigraphy. All treatments produced significant improvement in diary-reported sleep in comparison with the control group. Effect sizes for sleep diary outcomes were medium to large. Treatment gains were maintained at follow-up for diary and actigraph measured SOL, WASO, and SE. The MCI group had the largest proportion of treatment remitters. For older adults with chronic primary insomnia, the findings provide initial evidence that SCT, SRT, and MCI are equally efficacious and produce sustainable treatment gains on diary, actigraphy, and clinical outcomes. From a clinical perspective, MCI may be a preferred treatment due to its higher remission rate. Behavioral Intervention for Insomnia in Older Adults. NCT01154023. URL: http://clinicaltrials.gov/ct2/show/NCT01154023?term=Behavioral+Intervention+for+Insomnia+in+Older+Adults&rank=1.

  17. Propagating modes in gain-guided optical fibers.

    PubMed

    Siegman, A E

    2003-08-01

    Optical fibers in which gain-guiding effects are significant or even dominant compared with conventional index guiding may become of practical interest for future high-power single-mode fiber lasers. I derive the propagation characteristics of symmetrical slab waveguides and cylindrical optical fibers having arbitrary amounts of mixed gain and index guiding, assuming a single uniform transverse profile for both the gain and the refractive-index steps. Optical fibers of this type are best characterized by using a complex-valued v-squared parameter in place of the real-valued v parameter commonly used to describe conventional index-guided optical fibers.

  18. Optimization of end-pumped, actively Q-switched quasi-III-level lasers.

    PubMed

    Jabczynski, Jan K; Gorajek, Lukasz; Kwiatkowski, Jacek; Kaskow, Mateusz; Zendzian, Waldemar

    2011-08-15

    The new model of end-pumped quasi-III-level laser considering transient pumping processes, ground-state-depletion and up-conversion effects was developed. The model consists of two parts: pumping stage and Q-switched part, which can be separated in a case of active Q-switching regime. For pumping stage the semi-analytical model was developed, enabling the calculations for final occupation of upper laser level for given pump power and duration, spatial profile of pump beam, length and dopant level of gain medium. For quasi-stationary inversion, the optimization procedure of Q-switching regime based on Lagrange multiplier technique was developed. The new approach for optimization of CW regime of quasi-three-level lasers was developed to optimize the Q-switched lasers operating with high repetition rates. Both methods of optimizations enable calculation of optimal absorbance of gain medium and output losses for given pump rate. © 2011 Optical Society of America

  19. Cellular dye lasers: lasing thresholds and sensing in a planar resonator

    PubMed Central

    Humar, Matjaž; Gather, Malte C.; Yun, Seok-Hyun

    2015-01-01

    Biological cell lasers are promising novel building blocks of future biocompatible optical systems and offer new approaches to cellular sensing and cytometry in a microfluidic setting. Here, we demonstrate a simple method for providing optical gain by using a variety of standard fluorescent dyes. The dye gain medium can be located inside or outside a cell, or in both, which gives flexibility in experimental design and makes the method applicable to all cell types. Due to the higher refractive index of the cytoplasm compared to the surrounding medium, a cell acts as a convex lens in a planar Fabry-Perot cavity. Its effect on the stability of the laser cavity is analyzed and utilized to suppress lasing outside cells. The resonance modes depend on the shape and internal structure of the cell. As proof of concept, we show how the laser output modes are affected by the osmotic pressure. PMID:26480446

  20. Relay telescope including baffle, and high power laser amplifier utilizing the same

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2006-09-19

    A laser system includes an optical path having an intracavity relay telescope with a telescope focal point for imaging an output of the gain medium between an image location at or near the gain medium and an image location at or near an output coupler for the laser system. A kinematic mount is provided within a vacuum chamber, and adapted to secure beam baffles near the telescope focal point. An access port on the vacuum chamber is adapted for allowing insertion and removal of the beam baffles. A first baffle formed using an alignment pinhole aperture is used during alignment of the laser system. A second tapered baffle replaces the alignment aperture during operation and acts as a far-field baffle in which off angle beams strike the baffle a grazing angle of incidence, reducing fluence levels at the impact areas.

  1. Study of gain-coupled distributed feedback laser based on high order surface gain-coupled gratings

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Qin, Li; Chen, Yongyi; Jia, Peng; Chen, Chao; Cheng, LiWen; Chen, Hong; Liang, Lei; Zeng, Yugang; Zhang, Xing; Wu, Hao; Ning, Yongqiang; Wang, Lijun

    2018-03-01

    Single-longitudinal-mode, gain-coupled distributed feedback (DFB) lasers based on high order surface gain-coupled gratings are achieved. Periodic surface metal p-contacts with insulated grooves realize gain-coupled mechanism. To enhance gain contrast in the quantum wells without the introduction of effective index-coupled effect, groove length and depth were well designed. Our devices provided a single longitudinal mode with the maximum CW output power up to 48.8 mW/facet at 971.31 nm at 250 mA without facet coating, 3dB linewidth (<3.2 pm) and SMSR (>39 dB). Optical bistable characteristic was observed with a threshold current difference. Experimentally, devices with different cavity lengths were contrasted on power-current and spectrum characteristics. Due to easy fabrication technique and stable performance, it provides a method of fabricating practical gain-coupled distributed feedback lasers for commercial applications.

  2. Blastocyst utilization rates after continuous culture in two commercial single-step media: a prospective randomized study with sibling oocytes.

    PubMed

    Sfontouris, Ioannis A; Kolibianakis, Efstratios M; Lainas, George T; Venetis, Christos A; Petsas, George K; Tarlatzis, Basil C; Lainas, Tryfon G

    2017-10-01

    The aim of this study is to determine whether blastocyst utilization rates are different after continuous culture in two different commercial single-step media. This is a paired randomized controlled trial with sibling oocytes conducted in infertility patients, aged ≤40 years with ≥10 oocytes retrieved assigned to blastocyst culture and transfer. Retrieved oocytes were randomly allocated to continuous culture in either Sage one-step medium (Origio) or Continuous Single Culture (CSC) medium (Irvine Scientific) without medium renewal up to day 5 post oocyte retrieval. Main outcome measure was the proportion of embryos suitable for clinical use (utilization rate). A total of 502 oocytes from 33 women were randomly allocated to continuous culture in either Sage one-step medium (n = 250) or CSC medium (n = 252). Fertilization was performed by either in vitro fertilization or intracytoplasmic sperm injection, and embryo transfers were performed on day 5. Two patients had all blastocysts frozen due to the occurrence of severe ovarian hyperstimulation syndrome. Fertilization and cleavage rates, as well as embryo quality on day 3, were similar in the two media. Blastocyst utilization rates (%, 95% CI) [55.4% (46.4-64.1) vs 54.7% (44.9-64.6), p = 0.717], blastocyst formation rates [53.6% (44.6-62.5) vs 51.9 (42.2-61.6), p = 0.755], and proportion of good quality blastocysts [36.8% (28.1-45.4) vs 36.1% (27.2-45.0), p = 0.850] were similar in Sage one-step and CSC media, respectively. Continuous culture of embryos in Sage one-step and CSC media is associated with similar blastocyst development and utilization rates. Both single-step media appear to provide adequate support during in vitro preimplantation embryo development. Whether these observations are also valid for other continuous single medium protocols remains to be determined. NCT02302638.

  3. Radiative characterization of random fibrous media with long cylindrical fibers: Comparison of single- and multi-RTE approaches

    NASA Astrophysics Data System (ADS)

    Randrianalisoa, Jaona; Haussener, Sophia; Baillis, Dominique; Lipiński, Wojciech

    2017-11-01

    Radiative heat transfer is analyzed in participating media consisting of long cylindrical fibers with a diameter in the limit of geometrical optics. The absorption and scattering coefficients and the scattering phase function of the medium are determined based on the discrete-level medium geometry and optical properties of individual fibers. The fibers are assumed to be randomly oriented and positioned inside the medium. Two approaches are employed: a volume-averaged two-intensity approach referred to as multi-RTE approach and a homogenized single-intensity approach referred to as the single-RTE approach. Both approaches require effective properties, determined using direct Monte Carlo ray tracing techniques. The macroscopic radiative transfer equations (for single intensity or two volume-averaged intensities) with the corresponding effective properties are solved using Monte Carlo techniques and allow for the determination of the radiative flux distribution as well as overall transmittance and reflectance of the medium. The results are compared against predictions by the direct Monte Carlo simulation on the exact morphology. The effects of fiber volume fraction and optical properties on the effective radiative properties and the overall slab radiative characteristics are investigated. The single-RTE approach gives accurate predictions for high porosity fibrous media (porosity about 95%). The multi-RTE approach is recommended for isotropic fibrous media with porosity in the range of 79-95%.

  4. Pseudorandom dynamics of frequency combs in free-running quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Henry, Nathan; Burghoff, David; Yang, Yang; Hu, Qing; Khurgin, Jacob B.

    2018-01-01

    Recent research has shown that free-running quantum cascade lasers are capable of producing frequency combs in midinfrared and THz regions of the spectrum. Unlike familiar frequency combs originating from mode-locked lasers, these do not require any additional optical elements inside the cavity and have temporal characteristics that are dramatically different from the periodic pulse train of conventional combs. Frequency combs from quantum cascade lasers are characterized by the absence of sharp pulses and strong frequency modulation, periodic with the cavity round trip time but lacking any periodicity within that period. To explicate for this seemingly perplexing behavior, we develop a model of the gain medium using optical Bloch equations that account for hole burning in spectral, spatial, and temporal domains. With this model, we confirm that the most efficient mode of operation of a free-running quantum cascade laser is indeed a pseudorandom frequency-modulated field with nearly constant intensity. We show that the optimum modulation period is commensurate with the gain recovery time of the laser medium and the optimum modulation amplitude is comparable to the gain bandwidth, behavior that has been observed in the experiments.

  5. Development of a passively Q-switched Nd:YAG microchip laser for use in the Satellite Laser Ranging 2000 project

    NASA Astrophysics Data System (ADS)

    Gompers, Samuel Leo

    Presently, NASA is designing a replacement for its existing satellite laser ranging systems. These systems are used to measure Earth-satellite distances, tectonic plate movement, variations in rotational motion and other geodetic phenomena. Satellite Laser Ranging 2000 (SLR2000) is envisioned as a fully automated, sub- centimeter accuracy, eye-safe, low-cost replacement to the current SLR systems. It is expected to overcome present limitations by operating autonomously; being free of optical, chemical or electrical hazards; and having a greater average time between failures. Expected shot range precision is about one centimeter with normal point precision of better than three centimeters. This system will have twenty-four hour tracking coverage. SLR2000 specifications dictate operation at visible wavelengths with eye-safe energies on the order of one hundred microjoules and repetition rates on the order of two kilohertz. The optical subsystem of SLR2000 includes a passively Q- switched Nd:YAG microlaser. Passive Q-switching will be achieved using a saturable absorber and offers a number of advantages over the mode-locked lasers currently used in ranging stations: no need for long resonators with tight thermal control; no electro-optic switch required for single pulse selection; saturable absorbers precluding the use of carcinogenic dyes and solvents; and RF drive frequency electronics not tied to the resonator length of the laser cavity. The presented work describes the research and development of a prototype laser used to produce the energies, repetition rates and pulsewidths required for SLR2000. Optimization theories and models were applied to the laser design in order to accurately predict and assess performance characteristics of both gain medium and saturable absorber. Data were obtained which illustrated the affect of pump laser saturation and thermal lensing of the gain medium. Important laboratory skills and techniques were acquired in the design and construction of passively Q-switched microlasers.

  6. Trinucleotide Insertions, Deletions, and Point Mutations in Glucose Transporters Confer K+ Uptake in Saccharomyces cerevisiae

    PubMed Central

    Liang, Hong; Ko, Christopher H.; Herman, Todd; Gaber, Richard F.

    1998-01-01

    Deletion of TRK1 and TRK2 abolishes high-affinity K+ uptake in Saccharomyces cerevisiae, resulting in the inability to grow on typical synthetic growth medium unless it is supplemented with very high concentrations of potassium. Selection for spontaneous suppressors that restored growth of trk1Δ trk2Δ cells on K+-limiting medium led to the isolation of cells with unusual gain-of-function mutations in the glucose transporter genes HXT1 and HXT3 and the glucose/galactose transporter gene GAL2. 86Rb uptake assays demonstrated that the suppressor mutations conferred increased uptake of the ion. In addition to K+, the mutant hexose transporters also conferred permeation of other cations, including Na+. Because the selection strategy required such gain of function, mutations that disrupted transporter maturation or localization to the plasma membrane were avoided. Thus, the importance of specific sites in glucose transport could be independently assessed by testing for the ability of the mutant transporter to restore glucose-dependent growth to cells containing null alleles of all of the known functional glucose transporter genes. Twelve sites, most of which are conserved among eukaryotic hexose transporters, were revealed to be essential for glucose transport. Four of these have previously been shown to be essential for glucose transport by animal or plant transporters. Eight represented sites not previously known to be crucial for glucose uptake. Each suppressor mutant harbored a single mutation that altered an amino acid(s) within or immediately adjacent to a putative transmembrane domain of the transporter. Seven of 38 independent suppressor mutations consisted of in-frame insertions or deletions. The nature of the insertions and deletions revealed a striking DNA template dependency: each insertion generated a trinucleotide repeat, and each deletion involved the removal of a repeated nucleotide sequence. PMID:9447989

  7. Aggravation of pre-existing atrioventricular block, Wenckebach type, provoked by application of X-ray contrast medium.

    PubMed

    Brodmann, Marianne; Seinost, Gerald; Stark, Gerhard; Pilger, Ernst

    2006-01-01

    Significant bradycardia followed by cardiac arrest related to single bolus administration of X-ray contrast medium into a peripheral artery has not, to our knowledge, been described in the literature. While performing a percutaneous transluminal angioplasty of the left superficial femoral artery in a 68-year old patient with a pre-existing atrioventricular (AV) block, Wenckebach type, he developed an AV block III after a single bolus injection of intra-arterial X-ray contrast medium. We believe that application of contrast medium causes a transitory ischemia in the obstructed vessel and therefore elevation of endogenous adenosine. In the case of a previously damaged AV node this elevation of endogenous adenosine may be responsible for the development of a short period of third-degree AV block.

  8. A 16.9 dBm InP DHBT W-band power amplifier with more than 20 dB gain

    NASA Astrophysics Data System (ADS)

    Hongfei, Yao; Yuxiong, Cao; Danyu, Wu; Xiaoxi, Ning; Yongbo, Su; Zhi, Jin

    2013-07-01

    A two-stage MMIC power amplifier has been realized by use of a 1-μm InP double heterojunction bipolar transistor (DHBT). The cascode structure, low-loss matching networks, and low-parasite cell units enhance the power gain. The optimum load impedance is determined from load-pull simulation. A coplanar waveguide transmission line is adopted for its ease of fabrication. The chip size is 1.5 × 1.7 mm2 with the emitter area of 16 × 1 μm × 15 μm in the output stage. Measurements show that small signal gain is more than 20 dB over 75.5-84.5 GHz and the saturated power is 16.9 dBm @ 79 GHz with gain of 15.2 dB. The high power gain makes it very suitable for medium power amplification.

  9. Rare-Earth Doped Gallium Nitride (GaN)- An Innovative Path Toward Area-scalable Solid-state High Energy Lasers Without Thermal Distortion

    DTIC Science & Technology

    2009-04-01

    technique and its efficiency , the gain medium itself is the bottleneck for non-distortive heat removal—due to the low thermal conductivity of known gain...photoluminescence (PL), electroluminescence (EL), and/or cathodoluminescence (CL) (2,3). As the RE dopant, Nd is an excellent candidate due to its success...highest level of laser efficiency due to the pump and signal mode confinement within a crystalline-guided structure). The successful implementation of

  10. Constraining the physics of jet quenching

    NASA Astrophysics Data System (ADS)

    Renk, Thorsten

    2012-04-01

    Hard probes in the context of ultrarelativistic heavy-ion collisions represent a key class of observables studied to gain information about the QCD medium created in such collisions. However, in practice, the so-called jet tomography has turned out to be more difficult than expected initially. One of the major obstacles in extracting reliable tomographic information from the data is that neither the parton-medium interaction nor the medium geometry are known with great precision, and thus a difference in model assumptions in the hard perturbative Quantum Choromdynamics (pQCD) modeling can usually be compensated by a corresponding change of assumptions in the soft bulk medium sector and vice versa. The only way to overcome this problem is to study the full systematics of combinations of parton-medium interaction and bulk medium evolution models. This work presents a meta-analysis summarizing results from a number of such systematical studies and discusses in detail how certain data sets provide specific constraints for models. Combining all available information, only a small group of models exhibiting certain characteristic features consistent with a pQCD picture of parton-medium interaction is found to be viable given the data. In this picture, the dominant mechanism is medium-induced radiation combined with a surprisingly small component of elastic energy transfer into the medium.

  11. Efficacy and safety of cross-cylinder photorefractive keratectomy versus single method in medium-high astigmatism: a randomized clinical trial.

    PubMed

    Sedghipour, Mohammad R; Lotfi, Afshin; Sadeghilar, Ayaz; Banan, Saeeid

    2012-09-07

    BACKGROUND: To compare efficacy and safety of photorefractive keratectomy (PRK) by cross-cylinder with single methods in medium-high astigmatism. DESIGN: Randomized clinical trial study PARTICIPANTS: Fifty patients with medium-high compound myopic astigmatism were enrolled between September 2007 and September 2008. METHODS: PRK was performed on 100 eyes of 50 patients with compound myopic astigmatism. Each patient underwent PRK by cross-cylinder approach in one eye and single method on the contralateral eye. Vector analysis was used to assess astigmatic results. MAIN OUTCOME MEASURES: Improvement of visual acuity (snelen chart), refraction, aberrometry. RESULTS: Uncorrected visual acuity (UCCA) equal to 20/40 or better after six months, was achieved in 98% of eyes in the cross-cylinder method versus 96% in single method.. Mean preoperative spherical equivalent(SE) was -5.2 ±2.1 D in the cross-cylinder method versus -5.1 ±0.5 D in the single method. At six months, the mean SE was - 0.5±0.4 D and -0.6±0.3 D, respectively. Mean IOS was 0.4±0.3 in the cross-cylinder group and 0.4±0.4 in the single group. Mean postoperative absolute change in total root-mean-square higher order aberrations in the cross-cylinder group and single group were 0.16 pm and 0.17 pm, respectively. Any of the mentioned differences didn't appear to be statistically significant. CONCLUSIONS: Both PRK methods appeared to be safe and effective in correcting medium-high astigmatism. © 2012 The Author. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  12. Wideband and flat-gain amplifier based on high concentration erbium-doped fibres in parallel double-pass configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamida, B A; Cheng, X S; Harun, S W

    A wideband and flat gain erbium-doped fibre amplifier (EDFA) is demonstrated using a hybrid gain medium of a zirconiabased erbium-doped fibre (Zr-EDF) and a high concentration erbium-doped fibre (EDF). The amplifier has two stages comprising a 2-m-long ZEDF and 9-m-long EDF optimised for C- and L-band operations, respectively, in a double-pass parallel configuration. A chirp fibre Bragg grating (CFBG) is used in both stages to ensure double propagation of the signal and thus to increase the attainable gain in both C- and L-band regions. At an input signal power of 0 dBm, a flat gain of 15 dB is achievedmore » with a gain variation of less than 0.5 dB within a wide wavelength range from 1530 to 1605 nm. The corresponding noise figure varies from 6.2 to 10.8 dB within this wavelength region.« less

  13. Distortion management in slow-light pulse delay.

    PubMed

    Stenner, Michael D; Neifeld, Mark A; Zhu, Zhaoming; Dawes, Andrew M C; Gauthier, Daniel J

    2005-12-12

    We describe a methodology to maximize slow-light pulse delay subject to a constraint on the allowable pulse distortion. We show that optimizing over a larger number of physical variables can increase the distortion-constrained delay. We demonstrate these concepts by comparing the optimum slow-light pulse delay achievable using a single Lorentzian gain line with that achievable using a pair of closely-spaced gain lines. We predict that distortion management using a gain doublet can provide approximately a factor of 2 increase in slow-light pulse delay as compared with the optimum single-line delay. Experimental results employing Brillouin gain in optical fiber confirm our theoretical predictions.

  14. Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life.

    PubMed

    Velazquez, Miguel A; Sheth, Bhavwanti; Smith, Stephanie J; Eckert, Judith J; Osmond, Clive; Fleming, Tom P

    2018-02-01

    Mouse maternal low protein diet exclusively during preimplantation development (Emb-LPD) is sufficient to programme altered growth and cardiovascular dysfunction in offspring. Here, we use an in vitro model comprising preimplantation culture in medium depleted in insulin and branched-chain amino acids (BCAA), two proposed embryo programming inductive factors from Emb-LPD studies, to examine the consequences for blastocyst organisation and, after embryo transfer (ET), postnatal disease origin. Two-cell embryos were cultured to blastocyst stage in defined KSOM medium supplemented with four combinations of insulin and BCAA concentrations. Control medium contained serum insulin and uterine luminal fluid amino acid concentrations (including BCAA) found in control mothers from the maternal diet model (N-insulin+N-bcaa). Experimental medium (three groups) contained 50% reduction in insulin and/or BCAA (L-insulin+N-bcaa, N-insulin+L-bcaa, and L-insulin+N-bcaa). Lineage-specific cell numbers of resultant blastocysts were not affected by treatment. Following ET, a combined depletion of insulin and BCAA during embryo culture induced a non sex-specific increase in birth weight and weight gain during early postnatal life. Furthermore, male offspring displayed relative hypertension and female offspring reduced heart/body weight, both characteristics of Emb-LPD offspring. Combined depletion of metabolites also resulted in a strong positive correlation between body weight and glucose metabolism that was absent in the control group. Our results support the notion that composition of preimplantation culture medium can programme development and associate with disease origin affecting postnatal growth and cardiovascular phenotypes and implicate two important nutritional mediators in the inductive mechanism. Our data also have implications for human assisted reproductive treatment (ART) practice. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Theory of lasing in a multiple-scattering medium

    NASA Astrophysics Data System (ADS)

    John, Sajeev; Pang, Gendi

    1996-10-01

    In several recent experiments, isotropic lasing action was observed in paints that contain rhodamine 640 dye molecules in methanol solution as gain media and titania particles as optical scatterers. These so-called paint-on laser systems are extraordinary because they are highly disordered systems. The microscopic mechanism for laser activity and the coherence properties of light emission in this multiple-light-scattering medium have not yet been elucidated. In this paper we derive the emission intensity properties of a model dye system with excited singlet and triplet electronic energy levels, which is immersed in a multiple-scattering medium with transport mean free path l*. Using physically reasonable estimates for the absorption and emission cross section for the singlet and triplet manifolds, and the singlet-triplet intersystem crossing rate, we solve the nonlinear laser rate equations for the dye molecules. This leads to a diffusion equation for the light intensity in the medium with a nonlinear intensity-dependent gain coefficient. Using this model we are able to account for nearly all of the experimentally observed properties of laser paint reported so far when l*>>λ0, the emission wavelength. This includes the dependence of the peak intensity of amplified emission on the mean free path l*, the dye concentration ρ, and the pump intensity characteristics. Our model recaptures the collapse of the emission linewidth at a specific threshold pump intensity and describes how this threshold intensity varies with l*. In addition, our model predicts a dramatic increase in the peak intensity and a further lowering of the lasing threshold for the strong scattering limit l*-->λ0. This suggests a striking enhancement of the characteristics of laser paint near the photon localization threshold in a disordered medium.

  16. Digital tumor fluoroscopy (DTF)--a new direct imaging system in the therapy planning for brain tumors.

    PubMed

    Herbst, M; Fröder, M

    1990-01-01

    Digital Tumor Fluoroscopy is an expanded x-ray video chain optimized to iodine contrast with an extended Gy scale up to 64000 Gy values. Series of pictures are taken before and after injection of contrast medium. With the most recent unit, up to ten images can be taken and stored. The microprogrammable processor allows the subtraction of images recorded at any moment of the examination. Dynamic views of the distribution of contrast medium in the intravasal and extravasal spaces of brain and tumor tissue are gained by the subtraction of stored images. Tumors can be differentiated by studying the storage and drainage behavior of the contrast medium during the period of examination. Meningiomas store contrast medium very intensively during the whole time of investigation, whereas astrocytomas grade 2-3 pick it up less strongly at the beginning and release it within 2 min. Glioblastomas show a massive but delayed accumulation of contrast medium and a decreased flow-off-rate. In comparison with radiography and MR-imaging the most important advantage of Digital Tumor Fluoroscopy is that direct information on tumor localization is gained in relation to the skull-cap. This enables the radiotherapist to mark the treatment field directly on the skull. Therefore it is no longer necessary to calculate the tumor volume from several CT scans for localization. In radiotherapy Digital Tumor Fluoroscopy a unit combined with a simulator can replace CT planning. This would help overcome the disadvantages arising from the lack of a collimating system, and the inaccuracies which result from completely different geometric relationships between a CT unit and a therapy machine.

  17. Comparison of two commercial embryo culture media (SAGE-1 step single medium vs. G1-PLUSTM/G2-PLUSTM sequential media): Influence on in vitro fertilization outcomes and human embryo quality.

    PubMed

    López-Pelayo, Iratxe; Gutiérrez-Romero, Javier María; Armada, Ana Isabel Mangano; Calero-Ruiz, María Mercedes; Acevedo-Yagüe, Pablo Javier Moreno de

    2018-04-26

    To compare embryo quality, fertilization, implantation, miscarriage and clinical pregnancy rates for embryos cultured in two different commercial culture media until D-2 or D-3. In this retrospective study, we analyzed 189 cycles performed in 2016. Metaphase II oocytes were microinjected and allocated into single medium (SAGE 1-STEP, Origio) until transferred, frozen or discarded; or, if sequential media were used, the oocytes were cultured in G1-PLUSTM (Vitrolife) up to D-2 or D-3 and in G2-PLUSTM (Vitrolife) to transfer. On the following day, the oocytes were checked for normal fertilization and on D-2 and D-3 for morphological classification. Statistical analysis was performed using the chi-square and Mann-Whitney tests in PASW Statistics 18.0. The fertilization rates were 70.07% for single and 69.11% for sequential media (p=0.736). The mean number of embryos with high morphological quality (class A/B) was higher in the single medium than in the sequential media: D-2 [class A (190 vs. 107, p<0.001), B (133 vs. 118, p=0.018)]; D-3 [class A (40 vs. 19, p=0.048) but without differences in class B (40 vs. 49)]. Consequently, a higher number of embryos cultured in single medium were frozen: 197 (21.00%) vs. sequential: 102 (11.00%), p<0.001. No differences were found in implantation rates (30.16% vs. 25.57%, p=0.520), clinical pregnancy rates (55.88% vs. 41.05%, p=0.213), or miscarriage rates (14.29% vs. 9.52%, p=0.472). Embryo culture in single medium yields greater efficiency per cycle than in sequential media. Higher embryo quality and quantity were achieved, resulting in more frozen embryos. There were no differences in clinical pregnancy rates.

  18. Effect of ethanol on the palmitate-induced uncoupling of oxidative phosphorylation in liver mitochondria.

    PubMed

    Samartsev, V N; Belosludtsev, K N; Chezganova, S A; Zeldi, I P

    2002-11-01

    The effect of ethanol on the uncoupling activity of palmitate and recoupling activities of carboxyatractylate and glutamate was studied in liver mitochondria at various Mg2+ concentrations and medium pH values (7.0, 7.4, and 7.8). Ethanol taken at concentration of 0.25 M had no effect on the uncoupling activity of palmitic acid in the presence of 2 mM MgCl2 and decreased the recoupling effects of carboxyatractylate and glutamate added to mitochondria either just before or after the fatty acid. However, ethanol did not modify the overall recoupling effect of carboxyatractylate and glutamate taken in combination. The effect of ethanol decreased as medium pH was decreased to 7.0. Elevated concentration of Mg2+ (up to 8 mM) inhibits the uncoupling effect of palmitate. Ethanol eliminates substantially the recoupling effect of Mg2+ under these conditions, but does not influence the recoupling effects of carboxyatractylate and glutamate. It is inferred that ADP/ATP and aspartate/glutamate antiporters are involved in uncoupling function as single uncoupling complex with the common fatty acid pool. Fatty acid molecules gain the ability to migrate under the action of ethanol: from ADP/ATP antiporter to aspartate/glutamate antiporter on addition of carboxyatractylate and in opposite direction on addition of glutamate. Possible mechanisms of fatty acid translocation from one transporter to another are discussed.

  19. Enhancement of thermal transport in Gel Polymer Electrolytes with embedded BN/Al2O3 nano- and micro-particles

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Vivek; Jain, Ankur

    2017-09-01

    While Gel Polymer Electrolytes (GPEs) have been widely investigated for use in next-generation Li-ion cells due to the potential for improved thermal safety, thermal transport within a GPE is still poorly understood. Among all materials in a Li-ion cell, the GPE has the lowest thermal conductivity, and hence determines the overall rate of heat flow in a Li-ion cell. This makes it critical to measure and understand thermal transport in a GPE and investigate trade-offs between thermal and ionic transport. This paper presents measurements of thermal and ionic conductivities in a PVdF-based GPE. The effect of incorporating BN/Al2O3 ceramic nano/microparticles in the GPE on thermal and ionic transport is characterized. Measurements indicate up to 2.5X improvement in thermal conductivity of activated GPE membranes, with relatively minor effect on electrochemical performance of GPE-based single-layer cells. The measured enhancement in thermal conductivity is in very good agreement with theoretical calculations based on the effective medium theory that accounts for thermal transport in a dispersed, two-phase medium such as a GPE. The fundamental insights gained in this work on thermal transport in a GPE and the role of nano/microparticle inclusions may facilitate thermal-electrochemical optimization and design of GPEs for safe, high-performance Li-ion cells.

  20. Precise measurement of single-mode fiber lengths using a gain-switched distributed feedback laser with delayed optical feedback.

    PubMed

    Wada, Kenji; Matsukura, Satoru; Tanaka, Amaka; Matsuyama, Tetsuya; Horinaka, Hiromichi

    2015-09-07

    A simple method to measure single-mode optical fiber lengths is proposed and demonstrated using a gain-switched 1.55-μm distributed feedback laser without a fast photodetector or an optical interferometer. From the variation in the amplified spontaneous emission noise intensity with respect to the modulation frequency of the gain switching, the optical length of a 1-km single-mode fiber immersed in water is found to be 1471.043915 m ± 33 μm, corresponding to a relative standard deviation of 2.2 × 10(-8). This optical length is an average value over a measurement time of one minute under ordinary laboratory conditions.

  1. Evaluating Composite Sampling Methods of Bacillus spores at Low Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.

    Restoring facility operations after the 2001 Amerithrax attacks took over three months to complete, highlighting the need to reduce remediation time. The most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite: a single cellulose sponge samples multiple coupons; 2) single medium multi-pass composite: a single cellulose sponge is used to sample multiple coupons; and 3) multi-medium post-samplemore » composite: a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155CFU/cm2, respectively). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p-value < 0.0001) and coupon material (p-value = 0.0008). Recovery efficiency (RE) was higher overall using the post-sample composite (PSC) method compared to single medium composite from both clean and grime coated materials. RE with the PSC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, painted wall board, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but significantly lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.« less

  2. 30 CFR 77.905 - Connection of single-phase loads.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...

  3. 30 CFR 77.905 - Connection of single-phase loads.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...

  4. 30 CFR 77.905 - Connection of single-phase loads.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...

  5. Ultra-flat wideband single-pump Raman-enhanced parametric amplification.

    PubMed

    Gordienko, V; Stephens, M F C; El-Taher, A E; Doran, N J

    2017-03-06

    We experimentally optimize a single pump fiber optical parametric amplifier in terms of gain spectral bandwidth and gain variation (GV). We find that optimal performance is achieved with the pump tuned to the zero-dispersion wavelength of dispersion stable highly nonlinear fiber (HNLF). We demonstrate further improvement of parametric gain bandwidth and GV by decreasing the HNLF length. We discover that Raman and parametric gain spectra produced by the same pump may be merged together to enhance overall gain bandwidth, while keeping GV low. Consequently, we report an ultra-flat gain of 9.6 ± 0.5 dB over a range of 111 nm (12.8 THz) on one side of the pump. Additionally, we demonstrate amplification of a 60 Gbit/s QPSK signal tuned over a portion of the available bandwidth with OSNR penalty less than 1 dB for Q2 below 14 dB.

  6. Coherent perfect absorption in a homogeneously broadened two-level medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhi, Stefano

    2011-05-15

    In recent works, it has been shown, rather generally, that the time-reversed process of lasing at threshold realizes a coherent perfect absorber (CPA). In a CPA, a lossy medium in an optical cavity with a specific degree of dissipation, equal in modulus to the gain of the lasing medium, can perfectly absorb coherent optical waves that are the time-reversed counterpart of the lasing field. Here, the time-reversed process of lasing is considered in detail for a homogeneously broadened two-level medium in an optical cavity and the conditions for CPA are derived. It is shown that, owing to the dispersive propertiesmore » of the two-level medium, exact time-reversal symmetry is broken and the frequency of the field at which CPA occurs is generally different than the one of the lasing mode. Moreover, at a large cooperation parameter, the observation of CPA in the presence of bistability requires one to operate in the upper branch of the hysteresis cycle.« less

  7. Improvement of Aconitum napellus micropropagation by liquid culture on floating membrane rafts.

    PubMed

    Watad, A A; Kochba, M; Nissim, A; Gaba, V

    1995-03-01

    An efficient method was developed using floating membrane rafts (Liferaft(™)) for the micropropagation of Aconitum napellus (Ranunculaceae), a cut flower crop with a low natural propagation rate. This was achieved by introducing shoot tips into culture on Murashige and Skoog's (1962) solid medium, or liquid medium-supported rafts, supplemented by different levels of benzyl adenine (BA). Optimum shoot proliferation on solid medium required 4mg/l BA, whereas for expiants supported on rafts optimal proliferation was achieved at 0.25mg/l BA. Maximum shoot proliferation was found using the floating rafts (propagation ratio of 4.2 per month), 45% higher than the maximum value on solid medium. A similar value could be obtained on solid medium after a period of 2 months. The optimal response to BA was similar for fresh weight gain and shoot length. Growth in a shallow layer of liquid in shake flasks gives a similar shoot multiplication rate to that on floating rafts; however, submerged leaves brown and die.

  8. A modified shark-fin test simulating the single-step/double-mix technique: A comparison of three groups of elastomers.

    PubMed

    Huettig, Fabian; Chekhani, Usama; Klink, Andrea; Said, Fadi; Rupp, Frank

    2018-06-08

    The shark-fin test was modified to convey the clinical application of a single-step/double-mix technique assessing the behavior of two viscosities applied at one point in time. A medium and light body polyether (PE), a medium and light body polyvinylsiloxane (PVS), and a medium as well as heavy and light body vinyl polyether silicone (PVXE) impression material were analyzed solely, and in a layered mixture of 1:1 and 3:1 at working times of 50, 80, and 120 s. The fin heights were measured with a digital ruler. The wettability was measured 50 and 80 s after mixing by drop shape analysis. The results showed a synergistic effect of the medium and light body PE. This was not observed in PVXE and PVS. Interestingly, PVXE showed an antagonistic flow behavior in 3:1 mixture with medium body. PVXE was more hydrophilic than PE and PVS. Future rheological studies should clarify the detected flow effects.

  9. Aggravation of Pre-Existing Atrioventricular Block, Wenckebach Type, Provoked by Application of X-Ray Contrast Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodmann, Marianne, E-mail: marianne.brodmann@meduni-graz.at; Seinost, Gerald; Stark, Gerhard

    2006-12-15

    Background. Significant bradycardia followed by cardiac arrest related to single bolus administration of X-ray contrast medium into a peripheral artery has not, to our knowledge, been described in the literature. Methods and Results. While performing a percutaneous transluminal angioplasty of the left superficial femoral artery in a 68-year old patient with a pre-existing atrioventricular (AV) block, Wenckebach type, he developed an AV block III after a single bolus injection of intra-arterial X-ray contrast medium. Conclusion. We believe that application of contrast medium causes a transitory ischemia in the obstructed vessel and therefore elevation of endogenous adenosine. In the case ofmore » a previously damaged AV node this elevation of endogenous adenosine may be responsible for the development of a short period of third-degree AV block.« less

  10. Plastic scintillators in coincidence for the study of multi-particle production of sea level cosmic rays in dense medium

    NASA Technical Reports Server (NTRS)

    Chuang, L. S.; Chan, K. W.; Wada, M.

    1985-01-01

    Cosmic ray particles at sea level penetrate a thick layer of dense medium without appreciable interaction. These penetrating particles are identified with muons. The only appreciable interaction of muons are by knock on processes. A muon may have single, double or any number of knock on with atoms of the material so that one, two, three or more particles will come out from the medium in which the knock on processes occur. The probability of multiparticle production is expected to decrease with the increase of multiplicity. Measurements of the single, double, and triple particles generated in a dense medium (Fe and Al) by sea level cosmic rays at 22.42 N. Lat. and 114.20 E. Long. (Hong Kong) are presented using a detector composed of two plastic scintillators connected in coincidence.

  11. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOEpatents

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  12. Analytical results for a conditional phase shift between single-photon pulses in a nonlocal nonlinear medium

    NASA Astrophysics Data System (ADS)

    Viswanathan, Balakrishnan; Gea-Banacloche, Julio

    2017-04-01

    We analyze a recent scheme proposed by Xia et al. to induce a conditional phase shift between two single-photon pulses by having them propagate at different speeds through a nonlinear medium with a nonlocal response. We have obtained an analytical solution for the case they considered, which supports their claim that a π phase shift with unit fidelity is possible in principle. We discuss the conditions that have to be met and the challenges and opportunities that this might present to the realization of a single-photon conditional phase gate.

  13. Monolayer semiconductor nanocavity lasers with ultralow thresholds.

    PubMed

    Wu, Sanfeng; Buckley, Sonia; Schaibley, John R; Feng, Liefeng; Yan, Jiaqiang; Mandrus, David G; Hatami, Fariba; Yao, Wang; Vučković, Jelena; Majumdar, Arka; Xu, Xiaodong

    2015-04-02

    Engineering the electromagnetic environment of a nanometre-scale light emitter by use of a photonic cavity can significantly enhance its spontaneous emission rate, through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter, providing a low-threshold laser system with small footprint, low power consumption and ultrafast modulation. An ultralow-threshold nanoscale laser has been successfully developed by embedding quantum dots into a photonic crystal cavity (PCC). However, several challenges impede the practical application of this architecture, including the random positions and compositional fluctuations of the dots, extreme difficulty in current injection, and lack of compatibility with electronic circuits. Here we report a new lasing strategy: an atomically thin crystalline semiconductor--that is, a tungsten diselenide monolayer--is non-destructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PCC. A continuous-wave nanolaser operating in the visible regime is thereby achieved with an optical pumping threshold as low as 27 nanowatts at 130 kelvin, similar to the value achieved in quantum-dot PCC lasers. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within one nanometre of the PCC surface. The surface-gain geometry gives unprecedented accessibility and hence the ability to tailor gain properties via external controls such as electrostatic gating and current injection, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.

  14. Monolayer semiconductor nanocavity lasers with ultralow thresholds

    NASA Astrophysics Data System (ADS)

    Wu, Sanfeng; Buckley, Sonia; Schaibley, John R.; Feng, Liefeng; Yan, Jiaqiang; Mandrus, David G.; Hatami, Fariba; Yao, Wang; Vučković, Jelena; Majumdar, Arka; Xu, Xiaodong

    2015-04-01

    Engineering the electromagnetic environment of a nanometre-scale light emitter by use of a photonic cavity can significantly enhance its spontaneous emission rate, through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter, providing a low-threshold laser system with small footprint, low power consumption and ultrafast modulation. An ultralow-threshold nanoscale laser has been successfully developed by embedding quantum dots into a photonic crystal cavity (PCC). However, several challenges impede the practical application of this architecture, including the random positions and compositional fluctuations of the dots, extreme difficulty in current injection, and lack of compatibility with electronic circuits. Here we report a new lasing strategy: an atomically thin crystalline semiconductor--that is, a tungsten diselenide monolayer--is non-destructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PCC. A continuous-wave nanolaser operating in the visible regime is thereby achieved with an optical pumping threshold as low as 27 nanowatts at 130 kelvin, similar to the value achieved in quantum-dot PCC lasers. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within one nanometre of the PCC surface. The surface-gain geometry gives unprecedented accessibility and hence the ability to tailor gain properties via external controls such as electrostatic gating and current injection, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.

  15. Interplay of single particle and collective response in molecular dynamics simulation of dusty plasma system

    NASA Astrophysics Data System (ADS)

    Maity, Srimanta; Das, Amita; Kumar, Sandeep; Tiwari, Sanat Kumar

    2018-04-01

    The collective response of the plasma medium is well known and has been explored extensively in the context of dusty plasma medium. On the other hand, the individual particle response associated with the collisional character giving rise to the dissipative phenomena has not been explored adequately. In this paper, two-dimensional molecular dynamics simulation of dust particles interacting via Yukawa potential has been considered. It has been shown that disturbances induced in a dust crystal elicit both collective and single particle responses. Generation of a few particles moving at speeds considerably higher than acoustic and/or shock speed (excited by the external disturbance) is observed. This is an indication of a single particle response. Furthermore, as these individual energetic particles propagate, the dust crystal is observed to crack along their path. Initially when the energy is high, these particles generate secondary energetic particles by the collisional scattering process. However, ultimately as these particles slow down they excite a collective response in the dust medium at secondary locations in a region which is undisturbed by the primary external disturbance. The condition when the cracking of the crystal stops and collective excitations get initiated has been identified quantitatively. The trailing collective primary disturbances would thus often encounter a disturbed medium with secondary and tertiary collective perturbations, thereby suffering significant modification in its propagation. It is thus clear that there is an interesting interplay (other than mere dissipation) between the single particle and collective response which governs the dynamics of any disturbance introduced in the medium.

  16. The pattern of gestational weight gain is associated with changes in maternal body composition and neonatal size

    PubMed Central

    Widen, Elizabeth M.; Factor-Litvak, Pam R.; Gallagher, Dympna; Paxton, Anne; Pierson, Richard N.; Heymsfield, Steven B.; Lederman, Sally A.

    2015-01-01

    Objectives The pattern of gestational weight gain (GWG) reflects general nutrient availability to support growing fetal and maternal compartments and may contribute to later health; but how it relates to changes in maternal body composition is unknown. We evaluated how the pattern of gestational weight gain (GWG) related to changes in maternal body composition during pregnancy and infant size at birth. Methods A prospective, multi-ethnic cohort of 156 pregnant women and their infants was studied in New York City. Prenatal weights were used to estimate total and rate (kg/wk) of GWG by trimester. Linear regression models evaluated the association between trimester-specific GWG group (low, medium, high GWG) [total (low≤25%ile, high≥75%ile) or rate (defined by tertiles)] and infant weight, length and maternal body composition changes from 14–37 weeks, adjusting for covariates. Results Compared to the low gain group, medium/high rate of GWG in the second trimester and high rate of GWG in the third trimester was associated with larger gains in maternal fat mass (β range for fat Δ=2.86–5.29 kg, all p<0.01) For infant outcomes, high rate of GWG in the second trimester was associated with higher birth weight (β=356 g, p=0.001) and length (β=0.85 cm, p=0.002). First and third trimester GWG were not associated with neonatal size. Conclusions The trimester specific pattern and rate of GWG reflect changes in maternal body fat and body water, and are associated with neonatal size, which supports the importance of monitoring trimester-specific GWG. PMID:26179720

  17. A Single-Step Enrichment Medium for Nonchromogenic Isolation of Healthy and Cold-Injured Salmonella spp. from Fresh Vegetables.

    PubMed

    Kim, Hong-Seok; Choi, Dasom; Kang, Il-Byeong; Kim, Dong-Hyeon; Yim, Jin-Hyeok; Kim, Young-Ji; Chon, Jung-Whan; Oh, Deog-Hwan; Seo, Kun-Ho

    2017-02-01

    Culture-based detection of nontyphoidal Salmonella spp. in foods requires at least four working days; therefore, new detection methods that shorten the test time are needed. In this study, we developed a novel single-step Salmonella enrichment broth, SSE-1, and compared its detection capability with that of commercial single-step ONE broth-Salmonella (OBS) medium and a conventional two-step enrichment method using buffered peptone water and Rappaport-Vassiliadis soy broth (BPW-RVS). Minimally processed lettuce samples were artificially inoculated with low levels of healthy and cold-injured Salmonella Enteritidis (10 0 or 10 1 colony-forming unit/25 g), incubated in OBS, BPW-RVS, and SSE-1 broths, and streaked on xylose lysine deoxycholate (XLD) agar. Salmonella recoverability was significantly higher in BPW-RVS (79.2%) and SSE-1 (83.3%) compared to OBS (39.3%) (p < 0.05). Our data suggest that the SSE-1 single-step enrichment broth could completely replace two-step enrichment with reduced enrichment time from 48 to 24 h, performing better than commercial single-step enrichment medium in the conventional nonchromogenic Salmonella detection, thus saving time, labor, and cost.

  18. An analysis of superluminal propagation becoming subluminal in highly dispersive media

    NASA Astrophysics Data System (ADS)

    Nanda, L.

    2018-05-01

    In this article the time-moments of the Poynting vector associated with an electromagnetic pulse are used to characterize the traversal time and the pulse width as the pulse propagates through highly dispersive media. The behaviour of these quantities with propagation distance is analyzed in two physical cases: Lorentz absorptive medium, and Raman gain doublet amplifying medium. It is found that the superluminal pulse propagation in these two cases with anomalous dispersion is always accompanied by pulse compression and eventually the pulse becomes subluminal with increasing distance of propagation.

  19. Reflective Amplification without Population Inversion from a Strongly Driven Superconducting Qubit

    NASA Astrophysics Data System (ADS)

    Wen, P. Y.; Kockum, A. F.; Ian, H.; Chen, J. C.; Nori, F.; Hoi, I.-C.

    2018-02-01

    Amplification of optical or microwave fields is often achieved by strongly driving a medium to induce population inversion such that a weak probe can be amplified through stimulated emission. Here we strongly couple a superconducting qubit, an artificial atom, to the field in a semi-infinite waveguide. When driving the qubit strongly on resonance such that a Mollow triplet appears, we observe a 7% amplitude gain for a weak probe at frequencies in between the triplet. This amplification is not due to population inversion, neither in the bare qubit basis nor in the dressed-state basis, but instead results from a four-photon process that converts energy from the strong drive to the weak probe. We find excellent agreement between the experimental results and numerical simulations without any free fitting parameters. Since our device consists of a single two-level artificial atom, the simplest possible quantum system, it can be viewed as the most fundamental version of a four-wave-mixing parametric amplifier.

  20. Berry phase in controlled light propagation and storage

    NASA Astrophysics Data System (ADS)

    Raczyński, Andrzej; Zaremba, Jarosław; Zielińska-Raczyńska, Sylwia

    2018-04-01

    It is shown that during light storage in an atomic medium in the Λ configuration, with not only the amplitude of the control field but also its phase changing adiabatically, a photon gains a Berry (geometric) phase. In the case of the tripod configuration with two probe fields the Berry phase is replaced by a 2 ×2 matrix. The probe fields are shown to be superpositions of two modes, each of them being characterized not only by its own velocity but also by its own Berry phase. If after light storage photons are released backwards, the contributions of the two modes interfere and the distribution of the outgoing photons can be steered by changing the difference between the Berry phases of the modes, due to the choice of the control field at the storage and release stages. In particular, one can turn a single photon of one of the probe fields into a photon of the other field or essentially modify coherent states of the incoming pulses.

  1. Evaluation and Analysis of the ANSI X3T9.5 (FDDI) PMD and Proposed SMF-PMD as Influenced by Various Fiber Link Characteristics

    NASA Technical Reports Server (NTRS)

    Wernicki, M. Chris

    1991-01-01

    The purpose of this project is to evaluate the operational parameters of the Kennedy Space Center (KSC) fiber optic cable plant. The evaluation is based on the Fiber Distributed Data Interface (FDDI) Physical Medium Dependent (PMD) and Single Mode Fiber (SMF) PMD standards. From the KSC fiber profile, it would be necessary to develop the modifications needed in existing FDDI PMD and proposed SMF-PMD standards to provide for FDDI implementation and operation at KSC. This analysis should examine the major factors that influence the operating conditions of the KSC fiber plant. These factors would include, but are not limited to the number and type of connectors, attenuation and dispersion characteristics of the fiber, non-standard fiber sizes, modal bandwidth, and many other relevant or significant fiber plant characteristics that effect FDDI characteristics. This analysis is needed to gain a better understanding of overall impact that each of these factors have on FDDI performance at KSC.

  2. Microstrip Yagi array antenna for mobile satellite vehicle application

    NASA Technical Reports Server (NTRS)

    Huang, John; Densmore, Arthur C.

    1991-01-01

    A novel antenna structure formed by combining the Yagi-Uda array concept and the microstrip radiator technique is discussed. This antenna, called the microstrip Yagi array, has been developed for the mobile satellite (MSAT) system as a low-profile, low-cost, and mechanically steered medium-gain land-vehicle antenna. With the antenna's active patches (driven elements) and parasitic patches (reflector and director elements) located on the same horizontal plane, the main beam of the array can be tilted, by the effect of mutual coupling, in the elevation direction providing optimal coverage for users in the continental United States. Because the parasitic patches are not connected to any of the lossy RF power distributing circuit the antenna is an efficient radiating system. With the complete monopulse beamforming and power distributing circuits etched on a single thin stripline board underneath the microstrip Yagi array, the overall L-band antenna system has achieved a very low profile for vehicle's rooftop mounting, as well as a low manufacturing cost. Experimental results demonstrate the performance of this antenna.

  3. Photonic crystal surface-emitting lasers enabled by an accidental Dirac point

    DOEpatents

    Chua, Song Liang; Lu, Ling; Soljacic, Marin

    2014-12-02

    A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-plane feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.

  4. Fabrication and Sintering Behavior of Er:SrF₂ Transparent Ceramics using Chemically Derived Powder.

    PubMed

    Liu, Jun; Liu, Peng; Wang, Jun; Xu, Xiaodong; Li, Dongzhen; Zhang, Jian; Nie, Xinming

    2018-03-22

    In this paper, we report the fabrication of high-quality 5 at. % Er 3+ ions doped SrF₂ transparent ceramics, the potential candidate materials for a mid-infrared laser-gain medium by hot-pressing at 700 °C for 40 h using a chemically-derived powder. The phase structure, densification, and microstructure evolution of the Er:SrF₂ ceramics were systematically investigated. In addition, the grain growth kinetic mechanism of Er:SrF₂ was clarified. The results showed lattice diffusion to be the grain growth mechanism in the Er:SrF₂ transparent ceramic of which highest in-line transmittance reached 92% at 2000 nm, i.e., very close to the theoretical transmittance value of SrF₂ single crystal. Furthermore, the emission spectra showed that the strongest emission band was located at 2735 nm. This means that it is possible to achieve a laser output of approximately 2.7 μm in the 5 at. % Er 3+ ions doped SrF₂ transparent ceramics.

  5. Studies on output characteristics of stable dual-wavelength ytterbium-doped photonic crystal fiber laser

    NASA Astrophysics Data System (ADS)

    Tian, Hongchun; Zhang, Sa; Hou, Zhiyun; Xia, Changming; Zhou, Guiyao; Zhang, Wei; Liu, Jiantao; Wu, Jiale; Fu, Jian

    2016-06-01

    A stable dual-wavelength ytterbium-doped photonic crystal fiber laser pumped by a 976 nm laser diode has been demonstrated at room temperature. Single-wavelength, dual-wavelength laser oscillations are observed when the fiber laser operates under different pump power by using different length of fibers. Stable dual-wavelength radiation around 1045 nm and 1075 nm has been generated simultaneously at a high pump power directly from an ytterbium-doped fiber laser without using any spectral control mechanism. A small core ytterbium-doped PCF fabricated by the powder sinter direction drawn rod technology is used as gain medium. The pump power and fiber length which can affect the output characteristics of dual-wavelength fiber laser are analyzed in the experiment. Experiments confirm that higher pump power and longer fiber length favors 1075 nm output; lower pump power and shorter fiber length favors 1045 nm output. Those results have a good reference in multi-wavelength fiber laser.

  6. A highly stable and switchable dual-wavelength laser using coupled microfiber Mach-Zehnder interferometer as an optical filter

    NASA Astrophysics Data System (ADS)

    Jasim, A. A.; Ahmad, H.

    2017-12-01

    The generation and switching of dual-wavelength laser based on compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is reported. The CM-MZI is constructed by overlapping two portions of a single tapered optical fiber which has a diameter of 9 μm as to create multi-mode interference and also to produce spatial mode beating as to suppress mode competition in the homogeneous gain medium. The system is able to generate a dual-wavelength laser output that can be switched with the aid of the polarization rotation technique. Four dual-wavelength oscillation pairs are obtained from the interference fringe peaks of the CM-MZI comb filter with a switched channel spacing of 1.5 nm, 3.0 nm, and 6.0 nm. The wavelength spacing is stable at different pump powers. The lasing wavelength has a 3-dB linewidth of about 30 pm and peak-to-floor ration of about 55 dB at a pump power of 38 mW.

  7. Nonlocal modification and quantum optical generalization of effective-medium theory for metamaterials

    NASA Astrophysics Data System (ADS)

    Wubs, Martijn; Yan, Wei; Amooghorban, Ehsan; Mortensen, N. Asger

    2013-09-01

    A well-known challenge for fabricating metamaterials is to make unit cells significantly smaller than the operating wavelength of light, so one can be sure that effective-medium theories apply. But do they apply? Here we show that nonlocal response in the metal constituents of the metamaterial leads to modified effective parameters for strongly subwavelength unit cells. For infinite hyperbolic metamaterials, nonlocal response gives a very large finite upper bound to the optical density of states that otherwise would diverge. Moreover, for finite hyperbolic metamaterials we show that nonlocal response affects their operation as superlenses, and interestingly that sometimes nonlocal theory predicts the better imaging. Finally, we discuss how to describe metamaterials effectively in quantum optics. Media with loss or gain have associated quantum noise, and the question is whether the effective index is enough to describe this quantum noise effectively. We show that this is true for passive metamaterials, but not for metamaterials where loss is compensated by linear gain. For such loss-compensated metamaterials we present a quantum optical effective medium theory with an effective noise photon distribution as an additional parameter. Interestingly, we find that at the operating frequency, metamaterials with the same effective index but with different amounts of loss compensation can be told apart in quantum optics.

  8. Identification of mistakes and their correction by a small group discussion as a revision exercise at the end of a teaching module in biochemistry.

    PubMed

    Bobby, Zachariah; Nandeesha, H; Sridhar, M G; Soundravally, R; Setiya, Sajita; Babu, M Sathish; Niranjan, G

    2014-01-01

    Graduate medical students often get less opportunity for clarifying their doubts and to reinforce their concepts after lecture classes. The Medical Council of India (MCI) encourages group discussions among students. We evaluated the effect of identifying mistakes in a given set of wrong statements and their correction by a small group discussion by graduate medical students as a revision exercise. At the end of a module, a pre-test consisting of multiple-choice questions (MCQs) was conducted. Later, a set of incorrect statements related to the topic was given to the students and they were asked to identify the mistakes and correct them in a small group discussion. The effects on low, medium and high achievers were evaluated by a post-test and delayed post-tests with the same set of MCQs. The mean post-test marks were significantly higher among all the three groups compared to the pre-test marks. The gain from the small group discussion was equal among low, medium and high achievers. The gain from the exercise was retained among low, medium and high achievers after 15 days. Identification of mistakes in statements and their correction by a small group discussion is an effective, but unconventional revision exercise in biochemistry. Copyright 2014, NMJI.

  9. Ti:sapphire/KrF hybrid laser system generating trains of subterawatt subpicosecond UV pulses

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, A. A.; Levchenko, A. O.; Mesyats, G. A.; Seleznev, L. V.; Sinitsyn, D. V.; Ustinovskii, N. N.; Shutov, A. V.

    2014-05-01

    The GARPUN-MTW Ti:sapphire/KrF hybrid laser system is used to investigate different multipass schemes for amplifying trains of ultrashort pulses (USPs) of subpicosecond duration. It is shown that, for an USP repetition period of 3 - 5 ns, which exceeds the gain-medium recovery time (~2 ns), trains are amplified in the same way as single USPs. Due to this, a train can efficiently extract pump energy from the amplifier and sum energies of individual USPs. The energy of a four-USP train, extracted during four passes through the preamplifier and two passes through the final KrF amplifier (4 + 2 scheme), is saturated at a level of 1.6 J and corresponds to maximum USP peak powers of about 0.6 TW. The energy of amplified spontaneous emission (ASE), on the contrary, rapidly increases at a large total gain length Leff ≈ 6 m and is approximately equal to the USP energy. In the (4 + 1) and (2 + 2) schemes the USP energy decreases only slightly, to Eout = 1.3 and 1.2 J, and the ASE fraction is reduced to about 10% and 3%, respectively. USP self-focusing leads to multiple laser beam filamentation and a 200-fold local increase in the radiation intensity in filaments, to ~2 × 1011 W cm-2, a level at which the nonlinear loss in the output CaF2 windows of the KrF amplifier, caused by three-photon absorption, nonlinear scattering, and broadening of the radiation spectrum to a value exceeding the gain band of the KrF laser transition, becomes the main factor determining the saturation of the USP output energy.

  10. Using droplet digital PCR to analyze MYCN and ALK copy number in plasma from patients with neuroblastoma.

    PubMed

    Lodrini, Marco; Sprüssel, Annika; Astrahantseff, Kathy; Tiburtius, Daniela; Konschak, Robert; Lode, Holger N; Fischer, Matthias; Keilholz, Ulrich; Eggert, Angelika; Deubzer, Hedwig E

    2017-10-17

    The invasive nature of surgical biopsies deters sequential application, and single biopsies often fail to reflect tumor dynamics, intratumor heterogeneity and drug sensitivities likely to change during tumor evolution and treatment. Implementing molecular characterization of cell-free neuroblastoma-derived DNA isolated from blood plasma could improve disease assessment for treatment selection and monitoring of patients with high-risk neuroblastoma. We established droplet digital PCR (ddPCR) protocols for MYCN and ALK copy number status in plasma from neuroblastoma patients. Our ddPCR protocol accurately discriminated between MYCN and ALK amplification, gain and normal diploid status in a large panel of neuroblastoma cell lines, and discrepancies with reported MYCN and ALK status were detected, including a high-level MYCN amplification in NB-1, a MYCN gain in SH-SY5Y, a high-level ALK amplification in IMR-32 and ALK gains in BE(2)-C, Kelly, SH-SY5Y and LAN-6. MYCN and ALK status were also reliably determined from cell-free DNA derived from medium conditioned by the cell lines. MYCN and ALK copy numbers of subcutaneous neuroblastoma xenograft tumors were accurately determined from cell-free DNA in the mouse blood plasma. In a final validation step, we accurately distinguished MYCN and ALK copy numbers of the corresponding primary tumors using retrospectively collected blood plasma samples from 10 neuroblastoma patients. Our data justify the further development of molecular disease characterization using cell-free DNA in blood plasma from patients with neuroblastoma. This expanded molecular diagnostic palette may improve monitoring of disease progression including relapse and metastatic events as well as therapy success or failure in high-risk neuroblastoma patients.

  11. Using droplet digital PCR to analyze MYCN and ALK copy number in plasma from patients with neuroblastoma

    PubMed Central

    Lodrini, Marco; Sprüssel, Annika; Astrahantseff, Kathy; Tiburtius, Daniela; Konschak, Robert; Lode, Holger N.; Fischer, Matthias; Keilholz, Ulrich; Eggert, Angelika; Deubzer, Hedwig E.

    2017-01-01

    The invasive nature of surgical biopsies deters sequential application, and single biopsies often fail to reflect tumor dynamics, intratumor heterogeneity and drug sensitivities likely to change during tumor evolution and treatment. Implementing molecular characterization of cell-free neuroblastoma-derived DNA isolated from blood plasma could improve disease assessment for treatment selection and monitoring of patients with high-risk neuroblastoma. We established droplet digital PCR (ddPCR) protocols for MYCN and ALK copy number status in plasma from neuroblastoma patients. Our ddPCR protocol accurately discriminated between MYCN and ALK amplification, gain and normal diploid status in a large panel of neuroblastoma cell lines, and discrepancies with reported MYCN and ALK status were detected, including a high-level MYCN amplification in NB-1, a MYCN gain in SH-SY5Y, a high-level ALK amplification in IMR-32 and ALK gains in BE(2)-C, Kelly, SH-SY5Y and LAN-6. MYCN and ALK status were also reliably determined from cell-free DNA derived from medium conditioned by the cell lines. MYCN and ALK copy numbers of subcutaneous neuroblastoma xenograft tumors were accurately determined from cell-free DNA in the mouse blood plasma. In a final validation step, we accurately distinguished MYCN and ALK copy numbers of the corresponding primary tumors using retrospectively collected blood plasma samples from 10 neuroblastoma patients. Our data justify the further development of molecular disease characterization using cell-free DNA in blood plasma from patients with neuroblastoma. This expanded molecular diagnostic palette may improve monitoring of disease progression including relapse and metastatic events as well as therapy success or failure in high-risk neuroblastoma patients. PMID:29156716

  12. Metasurface quantum-cascade laser with electrically switchable polarization

    DOE PAGES

    Xu, Luyao; Chen, Daguan; Curwen, Christopher A.; ...

    2017-04-20

    Dynamic control of a laser’s output polarization state is desirable for applications in polarization sensitive imaging, spectroscopy, and ellipsometry. Using external elements to control the polarization state is a common approach. Less common and more challenging is directly switching the polarization state of a laser, which, however, has the potential to provide high switching speeds, compactness, and power efficiency. Here, we demonstrate a new approach to achieve direct and electrically controlled polarization switching of a semiconductor laser. This is enabled by integrating a polarization-sensitive metasurface with a semiconductor gain medium to selectively amplify a cavity mode with the designed polarizationmore » state, therefore leading to an output in the designed polarization. Here, the demonstration is for a terahertz quantum-cascade laser, which exhibits electrically controlled switching between two linear polarizations separated by 80°, while maintaining an excellent beam with a narrow divergence of ~3°×3° and a single-mode operation fixed at ~3.4 THz, combined with a peak power as high as 93 mW at a temperature of 77 K. The polarization-sensitive metasurface is composed of two interleaved arrays of surface-emitting antennas, all of which are loaded with quantum-cascade gain materials. Each array is designed to resonantly interact with one specific polarization; when electrical bias is selectively applied to the gain material in one array, selective amplification of one polarization occurs. The amplifying metasurface is used along with an output coupler reflector to build a vertical-external-cavity surface-emitting laser whose output polarization state can be switched solely electrically. In conclusion, this work demonstrates the potential of exploiting amplifying polarization-sensitive metasurfaces to create lasers with desirable polarization states—a concept which is applicable beyond the terahertz and can potentially be applied to shorter wavelengths.« less

  13. Metasurface quantum-cascade laser with electrically switchable polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Luyao; Chen, Daguan; Curwen, Christopher A.

    Dynamic control of a laser’s output polarization state is desirable for applications in polarization sensitive imaging, spectroscopy, and ellipsometry. Using external elements to control the polarization state is a common approach. Less common and more challenging is directly switching the polarization state of a laser, which, however, has the potential to provide high switching speeds, compactness, and power efficiency. Here, we demonstrate a new approach to achieve direct and electrically controlled polarization switching of a semiconductor laser. This is enabled by integrating a polarization-sensitive metasurface with a semiconductor gain medium to selectively amplify a cavity mode with the designed polarizationmore » state, therefore leading to an output in the designed polarization. Here, the demonstration is for a terahertz quantum-cascade laser, which exhibits electrically controlled switching between two linear polarizations separated by 80°, while maintaining an excellent beam with a narrow divergence of ~3°×3° and a single-mode operation fixed at ~3.4 THz, combined with a peak power as high as 93 mW at a temperature of 77 K. The polarization-sensitive metasurface is composed of two interleaved arrays of surface-emitting antennas, all of which are loaded with quantum-cascade gain materials. Each array is designed to resonantly interact with one specific polarization; when electrical bias is selectively applied to the gain material in one array, selective amplification of one polarization occurs. The amplifying metasurface is used along with an output coupler reflector to build a vertical-external-cavity surface-emitting laser whose output polarization state can be switched solely electrically. In conclusion, this work demonstrates the potential of exploiting amplifying polarization-sensitive metasurfaces to create lasers with desirable polarization states—a concept which is applicable beyond the terahertz and can potentially be applied to shorter wavelengths.« less

  14. Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  15. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1998-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings (FBG) has been achieved by two methods: (1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element; (2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  16. Identification of the ESKAPE pathogens by mass spectrometric analysis of microbial membrane glycolipids.

    PubMed

    Leung, Lisa M; Fondrie, William E; Doi, Yohei; Johnson, J Kristie; Strickland, Dudley K; Ernst, Robert K; Goodlett, David R

    2017-07-25

    Rapid diagnostics that enable identification of infectious agents improve patient outcomes, antimicrobial stewardship, and length of hospital stay. Current methods for pathogen detection in the clinical laboratory include biological culture, nucleic acid amplification, ribosomal protein characterization, and genome sequencing. Pathogen identification from single colonies by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of high abundance proteins is gaining popularity in clinical laboratories. Here, we present a novel and complementary approach that utilizes essential microbial glycolipids as chemical fingerprints for identification of individual bacterial species. Gram-positive and negative bacterial glycolipids were extracted using a single optimized protocol. Extracts of the clinically significant ESKAPE pathogens: E nterococcus faecium, S taphylococcus aureus, K lebsiella pneumoniae, A cinetobacter baumannii, P seudomonas aeruginosa, and E nterobacter spp. were analyzed by MALDI-TOF-MS in negative ion mode to obtain glycolipid mass spectra. A library of glycolipid mass spectra from 50 microbial entries was developed that allowed bacterial speciation of the ESKAPE pathogens, as well as identification of pathogens directly from blood bottles without culture on solid medium and determination of antimicrobial peptide resistance. These results demonstrate that bacterial glycolipid mass spectra represent chemical barcodes that identify pathogens, potentially providing a useful alternative to existing diagnostics.

  17. Wavelength-switchable and stable-ring-cavity, erbium-doped fiber laser based on Mach-Zehnder interferometer and tunable filter

    NASA Astrophysics Data System (ADS)

    He, Wei; Zhu, Lianqing; Dong, Mingli; Lou, Xiaoping; Luo, Fei

    2018-04-01

    This paper proposes and tests a ring cavity-based, erbium-doped fiber laser that incorporates a Mach-Zehnder interferometer and tunable filter. A four-m-long erbium-doped fiber was selected as the gain medium. The all-fiber Mach-Zehnder interferometer was composed of two 2  ×  2 optical couplers, and the tunable filter was used as wavelength reflector. A lasing threshold of 103 mW was used in the experiment, and the tunable laser with stable single and dual wavelengths was implemented by adjusting the tunable filter. The channel spacing was 0.6 nm within the range 1539.4-1561.6 nm, where the power difference between the lines was less than 0.4 dB. The side-mode suppression ratio was higher than 36 dB and the 3 dB linewidth was 0.02 nm. When a single-wavelength laser was implemented at 1557.4 nm, the power fluctuations were lower than 0.34 dB within 20 min of scan time. When lasers at wavelengths of 1558.6 nm and 1559.2 nm were simultaneously applied, the power shifts were lower than 0.29 dB and 0.43 dB, respectively, at room temperature.

  18. High-sensitivity sucrose erbium-doped fiber ring laser sensor

    NASA Astrophysics Data System (ADS)

    Khaleel, Wurood Abdulkhaleq; Al-Janabi, Abdul Hadi M.

    2017-02-01

    We investigate a high-sensitivity sucrose sensor based on a standard erbium-doped fiber ring laser incorporating a coreless fiber (CF). A single-mode-coreless-single mode (SCS) structure with a very low insertion loss has been constructed. The SCS fiber structure performed dual function as an intracavity fiber filter and/or a sensing element. The gain medium (erbium-doped fiber) is pumped by a 975-nm wavelength fiber coupled diode laser. Laser emission around 1537 nm with -2 dBm peak output power is obtained when a CF in SCS structure has a diameter of 125 μm. The 3-dB line-width of the laser is <0.14 nm, which is beneficial to high precision sensing. The sucrose concentration varied from 0% to 60%, and the relationship between the lasing wavelength and the sucrose concentration exhibited linear behavior (R2=0.996), with sensitivity of 0.16 nm/% was obtained. To improve the measurement sensitivity, the CF is etched by hydrofluoric acid. The splice joint of etched CF with SMF is a taper, which improves its sensitivity to sucrose changes. An average sensitivity of 0.57 nm/% and a high signal-to-noise ratio of 50 dB make the proposed sensor suitable for potential applications.

  19. Measurement of electrode-tissue interface impedance for improvement of a transcutaneous data transmission using human body as transmission medium.

    PubMed

    Okamoto, Eiji; Kato, Yoshikuni; Kikuchi, Sakiko; Mitamura, Yoshinori

    2014-01-01

    The electrical property between an electrode and skin or tissue is one of the important issues for communication performance of the transcutaneous communication system (TCS) using a human body as a conductive medium.In this study, we used a simple method to measure interface resistance between the electrode and skin on the surface of the body. The electrode-electrode impedance was measured by a commercially available LCR meter with changes in the distance between two electrodes on an arm of a healthy male subject, and we obtained the tissue resistivity and electrode-skin interface resistance using the cross-sectional area of the arm.We also measured transmission gain of the TCS on the surface of the body, and we investigated the relationship between electrode-skin interface resistance and transmission gain. We examined four kinds of electrodes: a stainless steel electrode, a titanium electrode, an Ag-AgCl electrode and an Ag-AgCl paste electrode. The stainless steel electrode, which had lower electrode-skin resistance, had higher transmission gain.The results indicate that an electrode that has lower electrode-skin resistance will contribute to improvement of the performance of the TCS and that electrode-skin interface resistance is one of valuable evaluation parameters for selecting an optimum electrode for the TCS.

  20. Oral Lactobacillus Counts Predict Weight Gain Susceptibility: A 6-Year Follow-Up Study

    PubMed Central

    Rosing, Johanne Aviaja; Walker, Karen Christina; Jensen, Benjamin A.H.; Heitmann, Berit L.

    2017-01-01

    Background Recent studies have shown an association between weight change and the makeup of the intestinal microbiota in humans. Specifically, Lactobacillus, a part of the entire gastrointestinal tract's microbiota, has been shown to contribute to weight regulation. Aim We examined the association between the level of oral Lactobacillus and the subsequent 6-year weight change in a healthy population of 322 Danish adults aged 35–65 years at baseline. Design Prospective observational study. Results In unadjusted analysis the level of oral Lactobacillus was inversely associated with subsequent 6-year change in BMI. A statistically significant interaction between the baseline level of oral Lactobacillus and the consumption of complex carbohydrates was found, e.g. high oral Lactobacillus count predicted weight loss for those with a low intake of complex carbohydrates, while a medium intake of complex carbohydrates predicted diminished weight gain. A closer examination of these relations showed that BMI change and Lactobacillus level was unrelated for those with high complex carbohydrate consumption. Conclusion A high level of oral Lactobacillus seems related to weight loss among those with medium and low intakes of complex carbohydrates. Absence, or a low level of oral Lactobacillus, may potentially be a novel marker to identify those at increased risk of weight gain. PMID:29020671

  1. Oral Lactobacillus Counts Predict Weight Gain Susceptibility: A 6-Year Follow-Up Study.

    PubMed

    Rosing, Johanne Aviaja; Walker, Karen Christina; Jensen, Benjamin A H; Heitmann, Berit L

    2017-01-01

    Recent studies have shown an association between weight change and the makeup of the intestinal microbiota in humans. Specifically, Lactobacillus, a part of the entire gastrointestinal tract's microbiota, has been shown to contribute to weight regulation. We examined the association between the level of oral Lactobacillus and the subsequent 6-year weight change in a healthy population of 322 Danish adults aged 35-65 years at baseline. Prospective observational study. In unadjusted analysis the level of oral Lactobacillus was inversely associated with subsequent 6-year change in BMI. A statistically significant interaction between the baseline level of oral Lactobacillus and the consumption of complex carbohydrates was found, e.g. high oral Lactobacillus count predicted weight loss for those with a low intake of complex carbohydrates, while a medium intake of complex carbohydrates predicted diminished weight gain. A closer examination of these relations showed that BMI change and Lactobacillus level was unrelated for those with high complex carbohydrate consumption. A high level of oral Lactobacillus seems related to weight loss among those with medium and low intakes of complex carbohydrates. Absence, or a low level of oral Lactobacillus, may potentially be a novel marker to identify those at increased risk of weight gain. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  2. Electrophoretic separator for purifying biologicals

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This technique separates a single narrow zone of sample mixture in an electrolyte medium into many zones containing a single component of the mixture and electrolyte between them. Since the densities of the separated zones generally differ from that of the intervening medium, such systems are gravitationally unstable and stabilization is required. The various techniques for stabilization include using the capillary space provided by thin films, the interstices of solid material such as filter paper and a variety of gel-forming substances.

  3. High-Power Fiber Lasers Using Photonic Band Gap Materials

    NASA Technical Reports Server (NTRS)

    DiDomenico, Leo; Dowling, Jonathan

    2005-01-01

    High-power fiber lasers (HPFLs) would be made from photonic band gap (PBG) materials, according to the proposal. Such lasers would be scalable in the sense that a large number of fiber lasers could be arranged in an array or bundle and then operated in phase-locked condition to generate a superposition and highly directed high-power laser beam. It has been estimated that an average power level as high as 1,000 W per fiber could be achieved in such an array. Examples of potential applications for the proposed single-fiber lasers include welding and laser surgery. Additionally, the bundled fibers have applications in beaming power through free space for autonomous vehicles, laser weapons, free-space communications, and inducing photochemical reactions in large-scale industrial processes. The proposal has been inspired in part by recent improvements in the capabilities of single-mode fiber amplifiers and lasers to produce continuous high-power radiation. In particular, it has been found that the average output power of a single strand of a fiber laser can be increased by suitably changing the doping profile of active ions in its gain medium to optimize the spatial overlap of the electromagnetic field with the distribution of active ions. Such optimization minimizes pump power losses and increases the gain in the fiber laser system. The proposal would expand the basic concept of this type of optimization to incorporate exploitation of the properties (including, in some cases, nonlinearities) of PBG materials to obtain power levels and efficiencies higher than are now possible. Another element of the proposal is to enable pumping by concentrated sunlight. Somewhat more specifically, the proposal calls for exploitation of the properties of PBG materials to overcome a number of stubborn adverse phenomena that have impeded prior efforts to perfect HPFLs. The most relevant of those phenomena is amplified spontaneous emission (ASE), which causes saturation of gain and power at undesirably low levels, and scattering of light from dopants. In designing a given fiber laser for reduced ASE, care must be taken to maintain a correct fiber structure for eventual scaling to an array of many such lasers such that the interactions among all the members of the array would cause them to operate in phase lock. Hence, the problems associated with improving a single-fiber laser are not entirely separate from the bundling problem, and some designs for individual fiber lasers may be better than others if the fibers are to be incorporated into bundles. Extensive calculations, expected to take about a year, must be performed in order to determine design parameters before construction of prototype individual and fiber lasers can begin. The design effort can be expected to include calculations to optimize overlaps between the electromagnetic modes and the gain media and calculations of responses of PBG materials to electromagnetic fields. Design alternatives and physical responses that may be considered include simple PBG fibers with no intensity-dependent responses, PBG fibers with intensity- dependent band-gap shifting (see figure), and broad-band pumping made possible by use of candidate broad-band pumping media in place of the air or vacuum gaps used in prior PBG fibers.

  4. Optically pumped alkali laser and amplifier using helium-3 buffer gas

    DOEpatents

    Beach, Raymond J.; Page, Ralph; Soules, Thomas; Stappaerts, Eddy; Wu, Sheldon Shao Quan

    2010-09-28

    In one embodiment, a laser oscillator is provided comprising an optical cavity, the optical cavity including a gain medium including an alkali vapor and a buffer gas, the buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Additionally, an optical excitation source is provided. Furthermore, the laser oscillator is capable of outputting radiation at a first frequency. In another embodiment, an apparatus is provided comprising a gain medium including an alkali vapor and a buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Other embodiments are also disclosed.

  5. Semiconductor cylinder fiber laser

    NASA Astrophysics Data System (ADS)

    Sandupatla, Abhinay; Flattery, James; Kornreich, Philipp

    2015-12-01

    We fabricated a fiber laser that uses a thin semiconductor layer surrounding the glass core as the gain medium. This is a completely new type of laser. The In2Te3 semiconductor layer is about 15-nm thick. The fiber laser has a core diameter of 14.2 μm, an outside diameter of 126 μm, and it is 25-mm long. The laser mirrors consist of a thick vacuum-deposited aluminum layer at one end and a thin semitransparent aluminum layer deposited at the other end of the fiber. The laser is pumped from the side with either light from a halogen tungsten incandescent lamp or a blue light emitting diode flash light. Both the In2Te3 gain medium and the aluminum mirrors have a wide bandwidth. Therefore, the output spectrum consists of a pedestal from a wavelength of about 454 to 623 nm with several peaks. There is a main peak at 545 nm. The main peak has an amplitude of 16.5 dB above the noise level of -73 dB.

  6. Reflex ring laser amplifier system

    DOEpatents

    Summers, M.A.

    1983-08-31

    The invention is a method and apparatus for providing a reflex ring laser system for amplifying an input laser pulse. The invention is particularly useful in laser fusion experiments where efficient production of high-energy and high power laser pulses is required. The invention comprises a large aperture laser amplifier in an unstable ring resonator which includes a combination spatial filter and beam expander having a magnification greater than unity. An input pulse is injected into the resonator, e.g., through an aperture in an input mirror. The injected pulse passes through the amplifier and spatial filter/expander components on each pass around the ring. The unstable resonator is designed to permit only a predetermined number of passes before the amplified pulse exits the resonator. On the first pass through the amplifier, the beam fills only a small central region of the gain medium. On each successive pass, the beam has been expanded to fill the next concentric non-overlapping region of the gain medium.

  7. Determining the average path length of amplified spontaneous emission in a four-level laser near the 1/3 mode-degeneracy cavity configurations

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Hsu; Lu, Ming-Lun; Tai, Po-Tse

    2015-08-01

    We determine the average path length ls of amplified spontaneous emission (ASE) by comparing the numerical slope of a straight line with the experimental slope in the graph of the square of relaxation oscillation frequency versus normalized pump ratio. The simple method is applied in an end-pumped Nd:YVO4 laser with the 1/3 mode-degeneracy cavity having the transverse mode spacing equal to 1/3 of the longitudinal mode spacing. We find that ls is larger at the degeneracy than that far from the degeneracy. This result indicates the existence of stronger ASE at the degeneracy, which is confirmed below the threshold. This is because many spontaneous emission photons can undergo amplification not only before escaping from the gain medium but also after leaving the gain medium, owing to cavity reflection. Our method can be applied in the situations where the Auger upconversion effect is absent, weak, or well-known.

  8. Antenna Pointing Mechanisms for Solar Orbiter High and Medium Gain Antennas

    NASA Astrophysics Data System (ADS)

    Vazquez, Jorge; Pinto, Inaki; Gabiola, Iker; Ibargoyen, I.; Martin, Fernando

    2015-09-01

    The ESA Solar Orbiter is an interdisciplinary mission to the Sun. It consists of a single spacecraft which will orbit the Sun in a moderately elliptical orbit, using a suite of advanced Remote-Sensing and In-Situ instruments to perform a detailed observation of the Sun and surrounding space. Sener is contractor for the delivery of the Antennas subsystems.The pointing mechanism from HGAMA is a dual-axes gimbal providing azimuth and elevation steering capability. The azimuth axis is driven by the GHM geared to a rotating bracket which supports the elevation actuator and is linked to the HGAMA boom. Both are based on stepper motors with planetary reducers geared to the corresponding output brackets. An integrated X- band dual axes Rotary Joint Assembly (HGA-RJA) routes the RF energy through the APM in both TX and RX directions. The MGAMA APM is a single-axis gimbal providing elevation steering capability, with one built-in actuator and has been design to share many of the components with the elevation axis from HGAMA APM, including a single axis Rotary Joint Assembly (MGA-RJA).Based on BEPI-Colombo heritage, some aspects of the design have been developed specifically for the SolO mission and are presented in this paper.- High temperature ranges in the APM.- Dedicated output shaft support with dedicated flexible coupling.- High accuracy required, with a potentiometer as coarse sensor and inductosyn for fine positioning.- Elevation twist capsule concept based on spiral configuration.- High solar radiation and contamination requirements.

  9. Unidirectional complex grating assisted couplers

    NASA Astrophysics Data System (ADS)

    Greenberg, Maxim; Orenstein, Meir

    2004-08-01

    We present a novel concept which enables the realization of unidirectional and irreversible grating assisted couplers by using gain-loss modulated medium to eliminate the reversibility. Employing a matched periodic modulation of both refractive index and loss (gain) we achieve a unidirectional energy transfer between the modes of the coupler which translates to light transmission from one waveguide to another while disabling the inverse transmission. The importance of self coupling coefficients is explored as well and a feasible implementation, where the real and imaginary perturbations are implemented in different waveguides is presented.

  10. Inherent and Apparent Scattering Properties of Coated or Uncoated Spheres Embedded in an Absorbing Host Medium

    NASA Technical Reports Server (NTRS)

    Yang, P.; Gao, B.-C.; Wiscombe, W. J.; Mishchenko, M. I.; Platnick, S.; Huang, H.-L.; Baum, B. A.; Hu, Y. X.; Winkler, D,; Tsay, S.-C.; hide

    2001-01-01

    The conventional Lorenz-Mie formalism is extended to the scattering process associated with a coated sphere embedded in an absorbing medium. It is shown that apparent and inherent scattering cross sections of a scattering particle, which are identical in the case of transparent host medium, are different if the host medium is absorptive. Here the inherent single-scattering properties are derived from the near-field information whereas the corresponding apparent counterparts are derived from the far-field asymptotic form of the scattered wave with scaling of host absorption that is assumed to be in an exponential form. The formality extinction and scattering efficiencies defined in the same manner as in the conventional sense can be unbounded. For a nonabsorptive particle embedded in an absorbing medium, the effect of host absorption on the phase matrix elements associated with polarization is significant. This effect, however, is largely reduced for strongly absorptive particles such as soot. For soot particles coated with water, the impurity can substantially reduce the single-scattering albedo of the particle if the size parameter is small. For water-coating soot and hollow ice spheres, it is shown that the phase matrix elements -P(sub 12)/P(sub 11) and P(sub 33)/P(sub 11) are unique if the shell is thin, as compared with the case for thick shell. Furthermore, the radiative transfer equation regarding a multidisperse particle system in an absorbing medium is discussed. It is illustrated that the conventional computation algorithms can be applied to solve the multiple scattering process if the scaled apparent single-scattering properties are applied.

  11. Human Immunity and the Design of Multi-Component, Single Target Vaccines

    PubMed Central

    Saul, Allan; Fay, Michael P.

    2007-01-01

    Background Inclusion of multiple immunogens to target a single organism is a strategy being pursued for many experimental vaccines, especially where it is difficult to generate a strongly protective response from a single immunogen. Although there are many human vaccines that contain multiple defined immunogens, in almost every case each component targets a different pathogen. As a consequence, there is little practical experience for deciding where the increased complexity of vaccines with multiple defined immunogens vaccines targeting single pathogens will be justifiable. Methodology/Principal Findings A mathematical model, with immunogenicity parameters derived from a database of human responses to established vaccines, was used to predict the increase in the efficacy and the proportion of the population protected resulting from addition of further immunogens. The gains depended on the relative protection and the range of responses in the population to each immunogen and also to the correlation of the responses between immunogens. In most scenarios modeled, the gain in overall efficacy obtained by adding more immunogens was comparable to gains obtained from a single immunogen through the use of better formulations or adjuvants. Multi-component single target vaccines were more effective at decreasing the proportion of poor responders than increasing the overall efficacy of the vaccine in a population. Conclusions/Significance Inclusion of limited number of antigens in a vaccine aimed at targeting a single organism will increase efficacy, but the gains are relatively modest and for a practical vaccine there are constraints that are likely to limit multi-component single target vaccines to a small number of key antigens. The model predicts that this type of vaccine will be most useful where the critical issue is the reduction in proportion of poor responders. PMID:17786221

  12. Device Modeling for Split-Off Band Detectors

    DTIC Science & Technology

    2009-09-18

    gain is 0.2 for a detector with 30 emitters. Unlike in quantum well infrared photodetectors QWIPs , the noise gain in split-off detectors is less...than the photocurrent gain. In QWIPs , the noise is introduced at the injection contact and then experi- ences the same gain as the photocurrent. Thus...for a QWIP , the total noise or photocurrent gain g=g1 /N, 15 where g1 is the single layer gain and N is the number of layers. However, for the split-off

  13. Review on recent Developments on Fabrication Techniques of Distributed Feedback (DFB) Based Organic Lasers

    NASA Astrophysics Data System (ADS)

    Azrina Talik, Noor; Boon Kar, Yap; Noradhlia Mohamad Tukijan, Siti; Wong, Chuan Ling

    2017-10-01

    To date, the state of art organic semiconductor distributed feedback (DFB) lasers gains tremendous interest in the organic device industry. This paper presents a short reviews on the fabrication techniques of DFB based laser by focusing on the fabrication method of DFB corrugated structure and the deposition of organic gain on the nano-patterned DFB resonator. The fabrication techniques such as Laser Direct Writing (LDW), ultrafast photo excitation dynamics, Laser Interference Lithography (LIL) and Nanoimprint Lithography (NIL) for DFB patterning are presented. In addition to that, the method for gain medium deposition method is also discussed. The technical procedures of the stated fabrication techniques are summarized together with their benefits and comparisons to the traditional fabrication techniques.

  14. Changing the Spatial Scope of Attention Alters Patterns of Neural Gain in Human Cortex

    PubMed Central

    Garcia, Javier O.; Rungratsameetaweemana, Nuttida; Sprague, Thomas C.

    2014-01-01

    Over the last several decades, spatial attention has been shown to influence the activity of neurons in visual cortex in various ways. These conflicting observations have inspired competing models to account for the influence of attention on perception and behavior. Here, we used electroencephalography (EEG) to assess steady-state visual evoked potentials (SSVEP) in human subjects and showed that highly focused spatial attention primarily enhanced neural responses to high-contrast stimuli (response gain), whereas distributed attention primarily enhanced responses to medium-contrast stimuli (contrast gain). Together, these data suggest that different patterns of neural modulation do not reflect fundamentally different neural mechanisms, but instead reflect changes in the spatial extent of attention. PMID:24381272

  15. Blastocyst development in single medium with or without renewal on day 3: a prospective cohort study on sibling donor oocytes in a time-lapse incubator.

    PubMed

    Costa-Borges, Nuno; Bellés, Marta; Meseguer, Marcos; Galliano, Daniela; Ballesteros, Agustin; Calderón, Gloria

    2016-03-01

    To evaluate the efficiency of using a continuous (one-step) protocol with a single medium for the culture of human embryos in a time-lapse incubator (TLI). Prospective cohort study on sibling donor oocytes. University-affiliated in vitro fertilization (IVF) center. Embryos from 59 patients. Culture in a TLI in a single medium with or without renewal of the medium on day-3. Embryo morphology and morphokinetic parameters, clinical pregnancy, take-home baby rate, and perinatal outcomes. The blastocyst rates (68.3 vs. 66.8%) and the proportion of good-quality blastocysts (transferred plus frozen) obtained with the two-step (80.0%) protocol were statistically significantly similar to those obtained in the one-step protocol (72.2%). Similarly, morphokinetic events from early cleavage until late blastocyst stages were statistically significantly equivalent between both groups. No differences were found either in clinical pregnancy rates when comparing pure transfers performed with embryos selected from the two-step (75.0%), one-step (70.0%, respectively), and mixed (57.1%) groups. A total of 55 out of 91 embryos transferred implanted successfully (60.4%), resulting in a total of 37 newborns with a comparable birth weight mean among groups. Our findings support the idea that in a TLI with a controlled air purification system, human embryos can be successfully cultured continuously from day 0 onward in single medium with no need to renew it on day-3. This strategy does not affect embryo morphokinetics or development to term and offers more stable culture conditions for embryos as well as practical advantages and reduced costs for the IVF laboratory. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Comparison of the root canal debridement ability of two single file systems with a conventional multiple rotary system in long oval-shaped root canals: In vitro study.

    PubMed

    Khoshbin, Elham; Shokri, Abbas; Donyavi, Zakieh; Shahriari, Shahriar; Salehimehr, Golsa; Farhadian, Maryam; Kavandi, Zeinab

    2017-08-01

    This study sought to compare the root canal debridement ability of Neolix, Reciproc and ProTaper rotary systems in long oval-shaped root canals. Eighty five extracted single-rooted human teeth with long oval-shaped single root canals were selected and divided into three experimental groups(n=25) and one control group (n= 10). Root canals were filled with Vitapex radiopaque contrast medium and prepared with Neolix, Reciproc or ProTaper systems. The control group only received irrigation. Digital radiographs were obtained at baseline and postoperatively and subjected to digital subtraction. The percentage of reduction in contrast medium was quantified at 0-5 mm and 5-10 mm distances from the apex. The data were analyzed using one-way ANOVA and t-test. The mean percentage of the contrast medium removed was not significantly different in the 0-5mm segment among the three groups ( P =0.6). In the 5-10mm segment a significant difference was found in this regard among the ProTaper and Reciproc groups ( P =0.02) and the highest mean percentage of contrast medium was removed by ProTaper. But, difference between ProTaper and Neolix as well as Neolix and Reciproc was not significant. In Neolix ( P =0.024) and Reciproc ( P =0.002) systems, the mean percentage of the contrast medium removed from the 0-5mm segment was significantly greater than that in 5-10mm segment; however, this difference was not significant in ProTaper group ( P =0.069). Neolix single-file system may be a suitable alternative to ProTaper multiple-file system in debridement of long oval shaped canals. Key words: Root Canal Preparation, Debridement, Root Canal Therapy.

  17. Hypertext or Textbook: Effects on Motivation and Gain in Knowledge

    ERIC Educational Resources Information Center

    Conradty, Cathérine; Bogner, Franz X.

    2016-01-01

    Computers are considered innovative in classrooms, raising expectations of increased cognitive learning outcomes or motivation with effects on Deeper Learning (DL). The "new medium", however, may cause cognitive overloads. Combined with gender-related variations in ability, self-efficacy or self-confidence, computers may even diminish…

  18. Employment in Appalachia: Trends and Prospects.

    ERIC Educational Resources Information Center

    Fuller, Theodore E.

    The manufacturing industry's areal and structural growth trends were analyzed for insights into their possible future role in Appalachia's economy. Between 1950 and 1960, total manufacturing employment expanded in large-, medium-, and small-center population areas, in rates inverse to center size. However, absolute gains in employment were…

  19. Systematic development and optimization of chemically defined medium supporting high cell density growth of Bacillus coagulans.

    PubMed

    Chen, Yu; Dong, Fengqing; Wang, Yonghong

    2016-09-01

    With determined components and experimental reducibility, the chemically defined medium (CDM) and the minimal chemically defined medium (MCDM) are used in many metabolism and regulation studies. This research aimed to develop the chemically defined medium supporting high cell density growth of Bacillus coagulans, which is a promising producer of lactic acid and other bio-chemicals. In this study, a systematic methodology combining the experimental technique with flux balance analysis (FBA) was proposed to design and simplify a CDM. The single omission technique and single addition technique were employed to determine the essential and stimulatory compounds, before the optimization of their concentrations by the statistical method. In addition, to improve the growth rationally, in silico omission and addition were performed by FBA based on the construction of a medium-size metabolic model of B. coagulans 36D1. Thus, CDMs were developed to obtain considerable biomass production of at least five B. coagulans strains, in which two model strains B. coagulans 36D1 and ATCC 7050 were involved.

  20. Optical characterization of randomly microrough surfaces covered with very thin overlayers using effective medium approximation and Rayleigh-Rice theory

    NASA Astrophysics Data System (ADS)

    Ohlídal, Ivan; Vohánka, Jiří; Čermák, Martin; Franta, Daniel

    2017-10-01

    The modification of the effective medium approximation for randomly microrough surfaces covered by very thin overlayers based on inhomogeneous fictitious layers is formulated. The numerical analysis of this modification is performed using simulated ellipsometric data calculated using the Rayleigh-Rice theory. The system used to perform this numerical analysis consists of a randomly microrough silicon single crystal surface covered with a SiO2 overlayer. A comparison to the effective medium approximation based on homogeneous fictitious layers is carried out within this numerical analysis. For ellipsometry of the system mentioned above the possibilities and limitations of both the effective medium approximation approaches are discussed. The results obtained by means of the numerical analysis are confirmed by the ellipsometric characterization of two randomly microrough silicon single crystal substrates covered with native oxide overlayers. It is shown that the effective medium approximation approaches for this system exhibit strong deficiencies compared to the Rayleigh-Rice theory. The practical consequences implied by these results are presented. The results concerning the random microroughness are verified by means of measurements performed using atomic force microscopy.

  1. Decreased oscillation threshold of a continuous-wave OPO using a semiconductor gain mirror.

    PubMed

    Siltanen, Mikael; Leinonen, Tomi; Halonen, Lauri

    2011-09-26

    We have constructed a singly resonant, continuous-wave optical parametric oscillator, where the signal beam resonates and is amplified by a semiconductor gain mirror. The gain mirror can significantly decrease the oscillation threshold compared to an identical system with conventional mirrors. The largest idler beam tuning range reached by changing the pump laser wavelength alone is from 3.6 to 4.7 µm. The single mode output power is limited but can be continuously scanned for at least 220 GHz by adding optical components in the oscillator cavity for increased stability. © 2011 Optical Society of America

  2. VIIRS day-night band gain and offset determination and performance

    NASA Astrophysics Data System (ADS)

    Geis, J.; Florio, C.; Moyer, D.; Rausch, K.; De Luccia, F. J.

    2012-09-01

    On October 28th, 2011, the Visible-Infrared Imaging Radiometer Suite (VIIRS) was launched on-board the Suomi National Polar-orbiting Partnership (NPP) spacecraft. The instrument has 22 spectral bands: 14 reflective solar bands (RSB), 7 thermal emissive bands (TEB), and a Day Night Band (DNB). The DNB is a panchromatic, solar reflective band that provides visible through near infrared (IR) imagery of earth scenes with radiances spanning 7 orders of magnitude. In order to function over this large dynamic range, the DNB employs a focal plane array (FPA) consisting of three gain stages: the low gain stage (LGS), the medium gain stage (MGS), and the high gain stage (HGS). The final product generated from a DNB raw data record (RDR) is a radiance sensor data record (SDR). Generation of the SDR requires accurate knowledge of the dark offsets and gain coefficients for each DNB stage. These are measured on-orbit and stored in lookup tables (LUT) that are used during ground processing. This paper will discuss the details of the offset and gain measurement, data analysis methodologies, the operational LUT update process, and results to date including a first look at trending of these parameters over the early life of the instrument.

  3. Single evolution equation in a light-matter pairing system

    NASA Astrophysics Data System (ADS)

    Bugaychuk, S.; Tobisch, E.

    2018-03-01

    The coupled system including wave mixing and nonlinear dynamics of a nonlocal optical medium is usually studied (1) numerically, with the medium being regarded as a black box, or (2) experimentally, making use of some empirical assumptions. In this paper we deduce for the first time a single evolution equation describing the dynamics of the pairing system as a holistic complex. For a non-degenerate set of parameters, we obtain the nonlinear Schrödinger equation with coefficients being written out explicitly. Analytical solutions of this equation can be experimentally realized in any photorefractive medium, e.g. in photorefractive, liquid or photonic crystals. For instance, a soliton-like solution can be used in dynamical holography for designing an artificial grating with maximal amplification of an image.

  4. Do we need gadolinium-based contrast medium for brain magnetic resonance imaging in children?

    PubMed

    Dünger, Dennis; Krause, Matthias; Gräfe, Daniel; Merkenschlager, Andreas; Roth, Christian; Sorge, Ina

    2018-06-01

    Brain imaging is the most common examination in pediatric magnetic resonance imaging (MRI), often combined with the use of a gadolinium-based contrast medium. The application of gadolinium-based contrast medium poses some risk. There is limited evidence of the benefits of contrast medium in pediatric brain imaging. To assess the diagnostic gain of contrast-enhanced sequences in brain MRI when the unenhanced sequences are normal. We retrospectively assessed 6,683 brain MR examinations using contrast medium in children younger than 16 years in the pediatric radiology department of the University Hospital Leipzig to determine whether contrast-enhanced sequences delivered additional, clinically relevant information to pre-contrast sequences. All examinations were executed using a 1.5-T or a 3-T system. In 8 of 3,003 (95% confidence interval 0.12-0.52%) unenhanced normal brain examinations, a relevant additional finding was detected when contrast medium was administered. Contrast enhancement led to a change in diagnosis in only one of these cases. Children with a normal pre-contrast brain MRI rarely benefit from contrast medium application. Comparing these results to the risks and disadvantages of a routine gadolinium application, there is substantiated numerical evidence for avoiding routine administration of gadolinium in a pre-contrast normal MRI examination.

  5. Self-biased broadband magnet-free linear isolator based on one-way space-time coherency

    NASA Astrophysics Data System (ADS)

    Taravati, Sajjad

    2017-12-01

    This paper introduces a self-biased broadband magnet-free and linear isolator based on one-way space-time coherency. The incident wave and the space-time-modulated medium share the same temporal frequency and are hence temporally coherent. However, thanks to the unidirectionally of the space-time modulation, the space-time-modulated medium and the incident wave are spatially coherent only in the forward direction and not in the opposite direction. As a consequence, the energy of the medium strongly couples to the propagating wave in the forward direction, while it conflicts with the propagating wave in the opposite direction, yielding strong isolation. We first derive a closed-form solution for the wave scattering from a spatiotemporally coherent medium and then show that a perfectly coherent space-time-modulated medium provides a moderate isolation level which is also subject to one-way transmission gain. To overcome this issue, we next investigate the effect of space-coherency imperfection between the medium and the wave, while they are still perfectly temporally coherent. Leveraging the spatial-coherency imperfection, the medium exhibits a quasiarbitrary and strong nonreciprocal transmission. Finally, we present the experimental demonstration of the self-biased version of the proposed broadband isolator, exhibiting more than 122 % fractional operation bandwidth.

  6. Direct mechanical dispersion and in vitro culture of fusiform rust fungus single basidiospores

    Treesearch

    Alex M. Diner

    1999-01-01

    Single basidiospores of Cronartium quercuum f. sp. fusiforme were cast from telia suspended over a solidified nutritional medium affixed to an operating orbital shaker. Spores thus mechanically dispersed and isolated, germinated to develop single-genotype colonies.

  7. Single-exciton optical gain in semiconductor nanocrystals.

    PubMed

    Klimov, Victor I; Ivanov, Sergei A; Nanda, Jagjit; Achermann, Marc; Bezel, Ilya; McGuire, John A; Piryatinski, Andrei

    2007-05-24

    Nanocrystal quantum dots have favourable light-emitting properties. They show photoluminescence with high quantum yields, and their emission colours depend on the nanocrystal size--owing to the quantum-confinement effect--and are therefore tunable. However, nanocrystals are difficult to use in optical amplification and lasing. Because of an almost exact balance between absorption and stimulated emission in nanoparticles excited with single electron-hole pairs (excitons), optical gain can only occur in nanocrystals that contain at least two excitons. A complication associated with this multiexcitonic nature of light amplification is fast optical-gain decay induced by non-radiative Auger recombination, a process in which one exciton recombines by transferring its energy to another. Here we demonstrate a practical approach for obtaining optical gain in the single-exciton regime that eliminates the problem of Auger decay. Specifically, we develop core/shell hetero-nanocrystals engineered in such a way as to spatially separate electrons and holes between the core and the shell (type-II heterostructures). The resulting imbalance between negative and positive charges produces a strong local electric field, which induces a giant ( approximately 100 meV or greater) transient Stark shift of the absorption spectrum with respect to the luminescence line of singly excited nanocrystals. This effect breaks the exact balance between absorption and stimulated emission, and allows us to demonstrate optical amplification due to single excitons.

  8. Monolithic all-fiber repetition-rate tunable gain-switched single-frequency Yb-doped fiber laser.

    PubMed

    Hou, Yubin; Zhang, Qian; Qi, Shuxian; Feng, Xian; Wang, Pu

    2016-12-12

    We report a monolithic gain-switched single-frequency Yb-doped fiber laser with widely tunable repetition rate. The single-frequency laser operation is realized by using an Yb-doped distributed Bragg reflection (DBR) fiber cavity, which is pumped by a commercial-available laser diode (LD) at 974 nm. The LD is electronically modulated by the driving current and the diode output contains both continuous wave (CW) and pulsed components. The CW component is set just below the threshold of the single-frequency fiber laser for reducing the requirement of the pump pulse energy. Above the threshold, the gain-switched oscillation is trigged by the pulsed component of the diode. Single-frequency pulsed laser output is achieved at 1.063 μm with a pulse duration of ~150 ns and a linewidth of 14 MHz. The repetition rate of the laser output can be tuned between 10 kHz and 400 kHz by tuning the electronic trigger signal. This kind of lasers shows potential for the applications in the area of coherent LIDAR etc.

  9. College Freshmen Students’ Perspectives on Weight Gain Prevention in the Digital Age: Web-Based Survey

    PubMed Central

    Turner-McGrievy, Gabrielle; Larsen, Chelsea A; Magradey, Karen; Brandt, Heather M; Wilcox, Sara; Sundstrom, Beth; West, Delia Smith

    2017-01-01

    Background College freshmen are highly vulnerable to experiencing weight gain, and this phenomenon is associated with an increased risk of chronic diseases and mortality in older adulthood. Technology offers an attractive and scalable way to deliver behavioral weight gain prevention interventions for this population. Weight gain prevention programs that harness the appeal and widespread reach of Web-based technologies (electronic health or eHealth) are increasingly being evaluated in college students. Yet, few of these interventions are informed by college students’ perspectives on weight gain prevention and related lifestyle behaviors. Objective The objective of this study was to assess college freshmen students’ concern about weight gain and associated topics, as well as their interest in and delivery medium preferences for eHealth programs focused on these topics. Methods Web-based surveys that addressed college freshmen students’ (convenience sample of N=50) perspectives on weight gain prevention were administered at the beginning and end of the fall 2015 semester as part of a longitudinal investigation of health-related issues and experiences in first semester college freshmen. Data on weight gain prevention-related concerns and corresponding interest in eHealth programs targeting topics of potential concern, as well as preferred program delivery medium and current technology use were gathered and analyzed using descriptive statistics. Results A considerable proportion of the freshmen sample expressed concern about weight gain (74%, 37/50) and both traditional (healthy diet: 86%, 43/50; physical activity: 64%, 32/50) and less frequently addressed (stress: 82%, 41/50; sleep: 74%, 37/50; anxiety and depression: 60%, 30/50) associated topics within the context of behavioral weight gain prevention. The proportion of students who reported interest in eHealth promotion programs targeting these topics was also generally high (ranging from 52% [26/50] for stress management to 70% [35/50] for eating a healthy diet and staying physically active). Email was the most frequently used electronic platform, with 96% (48/50) of students reporting current use of it. Email was also the most frequently cited preferred eHealth delivery platform, with 86% (43/50) of students selecting it. Facebook was preferred by the second greatest proportion of students (40%, 20/50). Conclusions Most college freshmen have concerns about an array of weight gain prevention topics and are generally open to the possibility of receiving eHealth interventions designed to address their concerns, preferably via email compared with popular social media platforms. These preliminary findings offer a foundation to build upon when it comes to future descriptive investigations focused on behavioral weight gain prevention among college freshmen in the digital age. PMID:29025698

  10. The Pattern of Gestational Weight Gain is Associated with Changes in Maternal Body Composition and Neonatal Size.

    PubMed

    Widen, Elizabeth M; Factor-Litvak, Pam R; Gallagher, Dympna; Paxton, Anne; Pierson, Richard N; Heymsfield, Steven B; Lederman, Sally A

    2015-10-01

    The pattern of gestational weight gain (GWG) reflects general nutrient availability to support growing fetal and maternal compartments and may contribute to later health, but how it relates to changes in maternal body composition is unknown. We evaluated how the pattern of GWG related to changes in maternal body composition during pregnancy and infant size at birth. A prospective, multi-ethnic cohort of 156 pregnant women and their infants was studied in New York City. Prenatal weights were used to estimate total and rate (kg/week) of GWG by trimester. Linear regression models evaluated the association between trimester-specific GWG group (low, medium, high GWG) [total (low ≤25, high ≥75 percentile) or rate (defined by tertiles)] and infant weight, length and maternal body composition changes from 14 to 37 weeks, adjusting for covariates. Compared to the low gain group, medium/high rate of GWG in the second trimester and high rate of GWG in the third trimester were associated with larger gains in maternal fat mass (β range for fat Δ = 2.86-5.29 kg, all p < 0.01). For infant outcomes, high rate of GWG in the second trimester was associated with higher birth weight (β = 356 g, p = 0.001) and length (β = 0.85 cm, p = 0.002). First and third trimester GWG were not associated with neonatal size. The trimester specific pattern and rate of GWG reflect changes in maternal body fat and body water, and are associated with neonatal size, which supports the importance of monitoring trimester-specific GWG.

  11. Monolayer semiconductor nanocavity lasers with ultralow thresholds

    DOE PAGES

    Wu, Sanfeng; Buckley, Sonia; Schaibley, John R.; ...

    2015-03-16

    Engineering the electromagnetic environment of a nanoscale light emitter by a photonic cavity can significantly enhance its spontaneous emission rate through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter 1–5, providing the ultimate low-threshold laser system with small footprint, low power consumption and ultrafast modulation. A state-of-the-art ultra-low threshold nanolaser has been successfully developed though embedding quantum dots into photonic crystal cavity (PhCC) 6–8. However, several core challenges impede the practical applications of this architecture, including the random positions and compositional fluctuations of the dots 7, extreme difficulty in currentmore » injection8, and lack of compatibility with electronic circuits 7,8. Here, we report a new strategy to lase, where atomically thin crystalline semiconductor, i.e., a tungsten-diselenide (WSe 2) monolayer, is nondestructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PhCC. A new type of continuous-wave nanolaser operating in the visible regime is achieved with an optical pumping threshold as low as 27 nW at 130 K, similar to the value achieved in quantum dot PhCC lasers 7. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within 1 nm of the PhCC surface. The surface-gain geometry allows unprecedented accessibilities to multi-functionalize the gain, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.« less

  12. An in vitro method for rapid regeneration of a monopodial orchid hybrid Aranda Deborah using thin section culture.

    PubMed

    Lakshmanan, P; Loh, C S; Goh, C J

    1995-05-01

    A thin section culture system for rapid regeneration of the monopodial orchid hybrid Aranda Deborah has been developed. Thin sections (0.6-0.7mm thick) obtained by transverse sectioning of a single shoot tip (6-7mm), when cultured in Vacin and Went medium enriched with coconut water (20% v/v), produced an average 13.6 protocorm-like bodies (PLB) after 45 days, compared to 2.7 PLB formed by a single 6-7 mm long shoot tip under same culture condition. Addition of α-naphthaleneacetic acid to Vacin and Went medium enriched with coconut water further increased PLB production by thin sections. PLB developed into plantlets on solid Vacin and Went medium containing 10% (v/v) coconut water and 0.5 g l(-1) activated charcoal. With this procedure, more than 80,000 plantlets could be produced from thin sections obtained from a single shoot tip in a year as compared to nearly 11,000 plantlets produced by the conventional shoot tip method.

  13. Financial Literacy Curriculum: The Effect on Offender Money Management Skills

    ERIC Educational Resources Information Center

    Koenig, Lori A.

    2007-01-01

    Offenders involved in this study lacked basic financial knowledge which presented a barrier to their success upon release. The researcher modified existing curriculum and created a course in financial literacy for offenders within a medium security correctional facility based upon their personal experiences. The offenders gained financial…

  14. Study of Factors Determining the Gain Characteristics of DOIL Active Medium

    DTIC Science & Technology

    2009-04-17

    2009 2. REPORT TYPE Final Report 3. DATES COVERED (From – To) 01-Mar-08 - 17-Apr-09 5a. CONTRACT NUMBER ISTC Registration No: 3835 5b...MONITOR’S REPORT NUMBER(S) ISTC 06-7006 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13

  15. Adolescents' Drawings: A View of Their Worlds.

    ERIC Educational Resources Information Center

    Chula, Marleyne

    This qualitative study investigated the medium of drawings as a methodological technique for visual data analysis. The study explored graphical symbols as an additional source for descriptive, interpretive inquiry. The design focused on gaining insight into the perceptions of adolescents' experiences as expressed by the visual narratives in their…

  16. Clinical impact of rotor ablation in atrial fibrillation: a systematic review.

    PubMed

    Parameswaran, Ramanathan; Voskoboinik, Aleksandr; Gorelik, Alexandra; Lee, Geoffrey; Kistler, Peter M; Sanders, Prashanthan; Kalman, Jonathan M

    2018-01-11

    Rotor mapping and ablation have gained favour over the recent years as an emerging ablation strategy targeting drivers of atrial fibrillation (AF). Their efficacy, however, has been a topic of great debate with variable outcomes across centres. The aim of this study was to systematically review the recent medical literature to determine the medium-term outcomes of rotor ablation in patients with paroxysmal atrial fibrillation (PAF) and persistent atrial fibrillation (PeAF). A systematic search of the contemporary scientific literature (PubMed and EMBASE) was performed in August 2017. Only studies assessing arrhythmia-free survival from rotor ablation of AF were included. We used the random-effects model to assess the primary outcome of pooled medium-term single-procedure AF-free survival for both PAF and PeAF. Success rates from multiple procedures and complication rates were also examined. We included 11 observational studies (4 PAF and 10 PeAF) with a total of 556 patients (166 PAF and 390 PeAF). Pooled single-procedure freedom from AF was 37.8% [95% confidence interval 5.6-86.3%] at a mean follow-up period of 13.8 ± 1.8 months for PAF and 59.2% (95% CI 41.4-74.9%) at a mean follow-up period of 12.9 ± 6 months for PeAF. There was a marked heterogeneity between studies (I2 = 93.8% for PAF and 88.3% for PeAF). The mean complication rate of rotor ablation among the reported studies was 3.4%. The wide variability in success rate between different centres performing rotor ablations suggests that the optimal ablation strategy, particularly targeting rotors, is unclear. Results from randomized studies are necessary before this technique can be considered as an established clinical tool. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2018. For permissions, please email: journals.permissions@oup.com.

  17. Modelling and optimization of transient processes in line focusing power plants with single-phase heat transfer medium

    NASA Astrophysics Data System (ADS)

    Noureldin, K.; González-Escalada, L. M.; Hirsch, T.; Nouri, B.; Pitz-Paal, R.

    2016-05-01

    A large number of commercial and research line focusing solar power plants are in operation and under development. Such plants include parabolic trough collectors (PTC) or linear Fresnel using thermal oil or molten salt as the heat transfer medium (HTM). However, the continuously varying and dynamic solar condition represent a big challenge for the plant control in order to optimize its power production and to keep the operation safe. A better understanding of the behaviour of such power plants under transient conditions will help reduce defocusing instances, improve field control, and hence, increase the energy yield and confidence in this new technology. Computational methods are very powerful and cost-effective tools to gain such understanding. However, most simulation models described in literature assume equal mass flow distributions among the parallel loops in the field or totally decouple the flow and thermal conditions. In this paper, a new numerical model to simulate a whole solar field with single-phase HTM is described. The proposed model consists of a hydraulic part and a thermal part that are coupled to account for the effect of the thermal condition of the field on the flow distribution among the parallel loops. The model is specifically designed for large line-focusing solar fields offering a high degree of flexibility in terms of layout, condition of the mirrors, and spatially resolved DNI data. Moreover, the model results have been compared to other simulation tools, as well as experimental and plant data, and the results show very good agreement. The model can provide more precise data to the control algorithms to improve the plant control. In addition, short-term and accurate spatially discretized DNI forecasts can be used as input to predict the field behaviour in-advance. In this paper, the hydraulic and thermal parts, as well as the coupling procedure, are described and some validation results and results of simulating an example field are shown.

  18. Phenotypic and Genetic Correlations of Feed Efficiency Traits with Growth and Carcass Traits in Nellore Cattle Selected for Postweaning Weight.

    PubMed

    Ceacero, Thais Matos; Mercadante, Maria Eugênia Zerlotti; Cyrillo, Joslaine Noely Dos Santos Gonçalves; Canesin, Roberta Carrilho; Bonilha, Sarah Figueiredo Martins; de Albuquerque, Lucia Galvão

    2016-01-01

    This study evaluated phenotypic (rph) and genetic correlations (rg) between 8 feed efficiency traits and other traits of economic interest including weight at selection (WS), loin-eye area (LEA), backfat thickness (BF), and rump fat thickness (RF) in Nellore cattle. Feed efficiency traits were gain:feed, residual feed intake (RFI), residual feed intake adjusted for backfat thickness (RFIb) and for backfat and rump fat thickness (RFIsf), residual body weight gain (RG), residual intake and body weight gain (RIG), and residual intake and body weight gain using RFIb (RIGb) and RFIsf (RIGsf). The variance components were estimated by the restricted maximum likelihood method using a two-trait animal model. The heritability estimates (h2) were 0.14, 0.24, 0.20, 0.22, 0.19, 0.15, 0.11 and 0.11 for gain:feed, RFI, RFIb, RFIsf, RG, RIG, RIGb and RIGsf, respectively. All rph values between traits were close to zero, except for the correlation of feed efficiency traits with dry matter intake and average daily gain. High rg values were observed for the correlation of dry matter intake, average daily gain and metabolic weight with WS and hip height (>0.61) and low to medium values (0.15 to 0.48) with the carcass traits (LEA, BF, RF). Among the feed efficiency traits, RG showed the highest rg with WS and hip height (0.34 and 0.25) and the lowest rg with subcutaneous fat thickness (-0.17 to 0.18). The rg values of RFI, RFIb and RFIsf with WS (0.17, 0.23 and 0.22), BF (0.37, 0.33 and 0.33) and RF (0.30, 0.31 and 0.32) were unfavorable. The rg values of gain:feed, RIG, RIGb and RIGsf with WS were low and favorable (0.07 to 0.22), while medium and unfavorable (-0.22 to -0.45) correlations were observed with fat thickness. The inclusion of subcutaneous fat thickness in the models used to calculate RFI did not reduce the rg between these traits. Selecting animals for higher feed efficiency will result in little or no genetic change in growth and will decrease subcutaneous fat thickness in the carcass.

  19. Pushing the boundaries of high power lasers: low loss, large area CVD diamond

    NASA Astrophysics Data System (ADS)

    Wickham, Benjamin; Schoofs, Frank; Olsson-Robbie, Stefan; Bennett, Andrew; Balmer, Richard

    2018-02-01

    Synthetic CVD diamond has exceptional properties, including broad spectral transmission, physical and chemical robustness, and the highest thermal conductivity of any known material, making diamond an attractive material for medium to high power optical and laser applications, minimizing the detrimental effects of thermal lensing and radiation damage. Example applications include ATR prisms, Raman laser crystals, extra- and intra-cavity laser cooling. In each case the demands on the fundamental material properties and fabrication routes are slightly different. In recent years, there has been good progress in the development of low-loss, single crystal diamond, suitable for higher power densities, higher pulse rates and more demanding intra- and extra-cavity thermal management. The adoption of single crystal diamond in this area has however, been hindered by the availability of large area, low birefringence plates. To address this, we report a combination of CVD growth and processing methods that have enabled the manufacture of large, low defect substrates. A final homoepitaxial, low absorption synthesis stage has produced plates with large area (up to 16 mm edge length), low absorption (α<0.005 cm-1 at 1064 nm), and low birefringence (Δn <10-5), suitable for double-sided intra-cavity cooling. We demonstrate the practical advances in synthesis, including increasing the size while reducing in-use losses compared to previous generations of single crystal material, and practical developments in processing and implementation of the single crystal diamond parts, optimizing them for use in a state-of-the-art femto-second pulsed Ti:Sa thin disk gain module, all made in collaboration with the wider European FP7 funded Ti:Sa TD consortium.

  20. A model study of aggregates composed of spherical soot monomers with an acentric carbon shell

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Zhang, Yongming; Zhang, Qixing

    2018-01-01

    Influences of morphology on the optical properties of soot particles have gained increasing attentions. However, studies on the effect of the way primary particles are coated on the optical properties is few. Aimed to understand how the primary particles are coated affect the optical properties of soot particles, the coated soot particle was simulated using the acentric core-shell monomers model (ACM), which was generated by randomly moving the cores of concentric core-shell monomers (CCM) model. Single scattering properties of the CCM model with identical fractal parameters were calculated 50 times at first to evaluate the optical diversities of different realizations of fractal aggregates with identical parameters. The results show that optical diversities of different realizations for fractal aggregates with identical parameters cannot be eliminated by averaging over ten random realizations. To preserve the fractal characteristics, 10 realizations of each model were generated based on the identical 10 parent fractal aggregates, and then the results were averaged over each 10 realizations, respectively. The single scattering properties of all models were calculated using the numerically exact multiple-sphere T-matrix (MSTM) method. It is found that the single scattering properties of randomly coated soot particles calculated using the ACM model are extremely close to those using CCM model and homogeneous aggregate (HA) model using Maxwell-Garnett effective medium theory. Our results are different from previous studies. The reason may be that the differences in previous studies were caused by fractal characteristics but not models. Our findings indicate that how the individual primary particles are coated has little effect on the single scattering properties of soot particles with acentric core-shell monomers. This work provides a suggestion for scattering model simplification and model selection.

  1. Data Transfer for Multiple Sensor Networks Over a Broad Temperature Range

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael

    2013-01-01

    At extreme temperatures, cryogenic and over 300 C, few electronic components are available to support intelligent data transfer over a common, linear combining medium. This innovation allows many sensors to operate on the same wire bus (or on the same airwaves or optical channel: any linearly combining medium), transmitting simultaneously, but individually recoverable at a node in a cooler part of the test area. This innovation has been demonstrated using room-temperature silicon microcircuits as proxy. The microcircuits have analog functionality comparable to componentry designed using silicon carbide. Given a common, linearly combining medium, multiple sending units may transmit information simultaneously. A listening node, using various techniques, can pick out the signal from a single sender, if it has unique qualities, e.g. a voice. The problem being solved is commonly referred to as the cocktail party problem. The human brain uses the cocktail party effect when it is able to recognize and follow a single conversation in a party full of talkers and other noise sources. High-temperature sensors have been used in silicon carbide electronic oscillator circuits. The frequency of the oscillator changes as a function of the changes in the sensed parameter, such as pressure. This change is analogous to changes in the pitch of a person s voice. The output of this oscillator and many others may be superimposed onto a single medium. This medium may be the power lines supplying current to the sensors, a third wire dedicated to data transmission, the airwaves through radio transmission, an optical medium, etc. However, with nothing to distinguish the identities of each source that is, the source separation this system is useless. Using digital electronic functions, unique codes or patterns are created and used to modulate the output of the sensor.

  2. How Pregnant African-American Women View Pregnancy Weight Gain

    PubMed Central

    Groth, Susan W.; Morrison-Beedy, Dianne; Meng, Ying

    2012-01-01

    Objective To gain insight into how low-income, pregnant African-American women viewed their weight gain while pregnant and how they managed their weight during pregnancy. Design Descriptive study using three focus groups. Setting Women were recruited from urban prenatal care sites and the Special Supplemental Nutrition Program for Women, Infants and Children (WIC) services in a medium-sized urban Northeastern city. Participants Twenty-six adult, low-income, pregnant African-American women, aged 18–39; the majority were within the first 20 weeks of pregnancy. Methods Three focus groups were conducted utilizing open-ended questions related to pregnancy weight gain. Content analysis was used to analyze the verbatim transcripts. Analysis focused on meaning, intention and context. Groups were compared and contrasted at the within and between group levels to identify themes. Results Four themes were identified that provided insight into how women viewed their pregnancy weight gain and managed weight gain during pregnancy: (a) pregnancy weight gain: no matter how much means a healthy baby; (b) weight retention: it happens; (c) there is a limit: weight gain impact on appearance; and (d) watching and waiting: plans for controlling weight. Conclusion Low-income African-American women, though cognizant of the likelihood of retention of weight following pregnancy, are not focused on limiting their gestational weight gain. The cultural acceptance of a larger body size along with the belief that gaining more weight is indicative of a healthy infant present challenges for interventions to limit excessive gestational weight gain. PMID:22789036

  3. PT-symmetric laser absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhi, Stefano

    2010-09-15

    In a recent work, Y. D. Chong et al. [Phys. Rev. Lett. 105, 053901 (2010)] proposed the idea of a coherent perfect absorber (CPA) as the time-reversed counterpart of a laser, in which a purely incoming radiation pattern is completely absorbed by a lossy medium. The optical medium that realizes CPA is obtained by reversing the gain with absorption, and thus it generally differs from the lasing medium. Here it is shown that a laser with an optical medium that satisfies the parity-time (PT) symmetry condition {epsilon}(-r)={epsilon}*(r) for the dielectric constant behaves simultaneously as a laser oscillator (i.e., it canmore » emit outgoing coherent waves) and as a CPA (i.e., it can fully absorb incoming coherent waves with appropriate amplitudes and phases). Such a device can thus be referred to as a PT-symmetric CPA laser. The general amplification or absorption features of the PT CPA laser below lasing threshold driven by two fields are determined.« less

  4. Fast single image dehazing based on image fusion

    NASA Astrophysics Data System (ADS)

    Liu, Haibo; Yang, Jie; Wu, Zhengping; Zhang, Qingnian

    2015-01-01

    Images captured in foggy weather conditions often fade the colors and reduce the contrast of the observed objects. An efficient image fusion method is proposed to remove haze from a single input image. First, the initial medium transmission is estimated based on the dark channel prior. Second, the method adopts an assumption that the degradation level affected by haze of each region is the same, which is similar to the Retinex theory, and uses a simple Gaussian filter to get the coarse medium transmission. Then, pixel-level fusion is achieved between the initial medium transmission and coarse medium transmission. The proposed method can recover a high-quality haze-free image based on the physical model, and the complexity of the proposed method is only a linear function of the number of input image pixels. Experimental results demonstrate that the proposed method can allow a very fast implementation and achieve better restoration for visibility and color fidelity compared to some state-of-the-art methods.

  5. Theory of lasing action in plasmonic crystals

    NASA Astrophysics Data System (ADS)

    Cuerda, J.; Rüting, F.; García-Vidal, F. J.; Bravo-Abad, J.

    2015-01-01

    We theoretically investigate lasing action in plasmonic crystals incorporating optically pumped four-level gain media. By using detailed simulations based on a time-domain generalization of the finite-element method, we show that the excitation of dark plasmonic resonances (via the gain medium) enables accessing the optimal lasing characteristics of the considered class of systems. Moreover, our study reveals that, in general, arrays of nanowires feature lower lasing thresholds and larger slope efficiencies than those corresponding to periodic arrays of subwavelength apertures. These findings are of relevance for further engineering of active devices based on plasmonic crystals.

  6. Fibre laser based on tellurium-doped active fibre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alyshev, S V; Ryumkin, K E; Shubin, A V

    2014-02-28

    We have studied the lasing properties of tellurium-doped germanosilicate fibre, identified its gain and excited-state absorption bands, and assessed the effect of cooling to low temperature (77 K) on the bands. The excitation spectrum of the near-IR luminescence in the fibre has been measured. Lasing at 1.55 mm has been demonstrated for the first time in this gain medium at liquidnitrogen temperature and pump wavelengths of 1.064 and 1.085 mm. The measured Raman spectrum of the fibre provides some insight into the structure of the near-IR luminescence centre. (letters)

  7. Power enhanced frequency conversion system

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    2001-01-01

    A frequency conversion system includes at least one source providing a first near-IR wavelength output including a gain medium for providing high power amplification, such as double clad fiber amplifier, a double clad fiber laser or a semiconductor tapered amplifier to enhance the power output level of the near-IR wavelength output. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Ra-man/Brillouin amplifier or oscillator between the high power source and the NFM device.

  8. Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stettner, T., E-mail: Thomas.Stettner@wsi.tum.de, E-mail: Gregor.Koblmueller@wsi.tum.de, E-mail: Jonathan.Finley@wsi.tum.de; Zimmermann, P.; Loitsch, B.

    2016-01-04

    We demonstrate the growth and single-mode lasing operation of GaAs-AlGaAs core-multishell nanowires (NW) with radial single and multiple GaAs quantum wells (QWs) as active gain media. When subject to optical pumping lasing emission with distinct s-shaped input-output characteristics, linewidth narrowing and emission energies associated with the confined QWs are observed. Comparing the low temperature performance of QW NW laser structures having 7 coaxial QWs with a nominally identical structure having only a single QW shows that the threshold power density reduces several-fold, down to values as low as ∼2.4 kW/cm{sup 2} for the multiple QW NW laser. This confirms that themore » individual radial QWs are electronically weakly coupled and that epitaxial design can be used to optimize the gain characteristics of the devices. Temperature-dependent investigations show that lasing prevails up to 300 K, opening promising new avenues for efficient III–V semiconductor NW lasers with embedded low-dimensional gain media.« less

  9. Wave propagation of carbon nanotubes embedded in an elastic medium

    NASA Astrophysics Data System (ADS)

    Natsuki, Toshiaki; Hayashi, Takuya; Endo, Morinobu

    2005-02-01

    This paper presents analytical models of wave propagation in single- and double-walled carbon nanotubes, as well as nanotubes embedded in an elastic matrix. The nanotube structures are treated within the multilayer thin shell approximation with the elastic properties taken to be those of the graphene sheet. The double-walled nanotubes are coupled together through the van der Waals force between the inner and outer nanotubes. For carbon nanotubes embedded in an elastic matrix, the surrounding elastic medium can be described by a Winkler model. Tube wave propagation of both symmetrical and asymmetrical modes can be analyzed based on the present elastic continuum model. It is found that the asymmetrical wave behavior of single- and double-walled nanotubes is significantly different. The behavior is also different from that in the surrounding elastic medium.

  10. STEM-based workbook: Enhancing students' STEM competencies on lever system

    NASA Astrophysics Data System (ADS)

    Sejati, Binar Kasih; Firman, Harry; Kaniawati, Ida

    2017-05-01

    Twenty-first century is a century of technology, a rapid development of scientific studies and technology make them relied heavily on each other. This research investigated about the effect of STEM-based workbook in enhancing students' STEM competencies in terms of knowledge understanding, problem solving skill, innovative abilities, and responsibility. The workbook was tried on 24 students that applied engineering design processes together with mathematics and science knowledge to design and create an egg cracker. The result showed that the implementation of STEM-based workbook on lever system in human body is effective to improve students' STEM competencies, it can be proven by students' result on their knowledge understanding improvement which can be seen from normalized gain () score is 0.41 and categorized as medium improvement, students' problem solving skill is also improving where it obtained a medium improvement with normalized gain as much as 0.45. Innovative abilities also encountered an the improvement, the workbook analysis obtained a higher score which means students can be more innovative after finishing their workbook. Last, students' responsibility is keep improving day by day, students' effort gain the highest score it means that the students become more responsible after implementation of STEM-based workbook. All of the results are supported with the response of students towards STEM-based workbook implementation which showed positive response in all indicators.

  11. Food cue reactivity and craving predict eating and weight gain: a meta-analytic review.

    PubMed

    Boswell, Rebecca G; Kober, Hedy

    2016-02-01

    According to learning-based models of behavior, food cue reactivity and craving are conditioned responses that lead to increased eating and subsequent weight gain. However, evidence supporting this relationship has been mixed. We conducted a quantitative meta-analysis to assess the predictive effects of food cue reactivity and craving on eating and weight-related outcomes. Across 69 reported statistics from 45 published reports representing 3,292 participants, we found an overall medium effect of food cue reactivity and craving on outcomes (r = 0.33, p < 0.001; approximately 11% of variance), suggesting that cue exposure and the experience of craving significantly influence and contribute to eating behavior and weight gain. Follow-up tests revealed a medium effect size for the effect of both tonic and cue-induced craving on eating behavior (r = 0.33). We did not find significant differences in effect sizes based on body mass index, age, or dietary restraint. However, we did find that visual food cues (e.g. pictures and videos) were associated with a similar effect size to real food exposure and a stronger effect size than olfactory cues. Overall, the present findings suggest that food cue reactivity, cue-induced craving and tonic craving systematically and prospectively predict food-related outcomes. These results have theoretical, methodological, public health and clinical implications. © 2015 World Obesity.

  12. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  13. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, Lloyd A.; Dane, Clifford B.

    1993-01-01

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  14. Improvement of metacognitive skills and students’ reasoning ability through problem-based learning

    NASA Astrophysics Data System (ADS)

    Haryani, S.; Masfufah; Wijayati, N.; Kurniawan, C.

    2018-03-01

    The aim of this research is to know the influence of PBL application to the improvement of metacognitive skill and students’ reasoning ability on Constanta solubility product (Ksp). The research used mix method with concurrent triangulation strategy and pretest-posttest control group design. Metacognitive skills are known from the results of written tests and questionnaires with N-Gain analysis, t-test, whereas reasoning ability is known from observations and interviews with descriptive analysis. The results showed that the N-Gain effect of PBL on metacognitive skills is 0,59 with medium category and N-Gain value of PBL influence on reasoning ability is 0.71 with the high category. The steps in the PBL affect the metacognitive skills and can train learners to develop their reasoning skills in the solving problems.

  15. Solar pumped continuous wave carbon dioxide laser

    NASA Technical Reports Server (NTRS)

    Yesil, O.; Christiansen, W. H.

    1978-01-01

    In an effort to demonstrate the feasibility of a solar pumped laser concept, gain has been measured in a CO2-He laser medium optically pumped by blackbody radiation. Various gas mixtures of CO2 and He have been pumped by blackbody radiation emitted from an electrically heated oven. Using a CO2 laser as a probe, an optical gain coefficient of 1.8 x 10 to the -3rd/cm has been measured at 10.6 microns for a 9:1 CO2-He mixture at an oven temperature of about 1500 K, a gas temperature of about 400 K and a pressure of about 1 torr. This corresponds to a small signal gain coefficient when allowance is made for saturation effects due to the probe beam, in reasonable agreement with a theoretical value.

  16. Comparison of Student Performance in Video Game Format vs. Traditional Approach in Introductory Astronomy Classes

    NASA Astrophysics Data System (ADS)

    Barringer, Daniel; Kregenow, Julia M.; Palma, Christopher; Plummer, Julia

    2015-01-01

    In Spring of 2014, Penn State debuted an online Introductory Astronomy (AST 001) section that was designed as a video game. Previous studies have shown that well-designed games help learners to build accurate understanding of embedded concepts and processes and aid learner motivation, which strongly contributes to a student's willingness to learn. We start by presenting the learning gains as measured with the Test of Astronomy Standards (TOAST) from this new course design. We further compare the learning gains from the video game section with learning gains measured from more traditional online formats and in-person lecture sections of AST 001 taught at Penn State over the last five years to evaluate the extent to which this new medium for online Astronomy education supports student learning.

  17. Evidence of Knowledge Acquisition in a Cognitive Flexibility-Based Computer Learning Environment

    PubMed Central

    Heath, Scott; Higgs, John; Ambruso, Daniel R.

    2008-01-01

    Background A computer-based learning experience was developed using cognitive flexibility theory to overcome the pitfalls often encountered in existing medical education. An earlier study (not published) showed significant pretest-posttest increase in scores, as well as a significant positive correlation between choosing to complete the module individually or in pairs. Method This experience was presented as part of a second-year course in medical school with randomized assignment for students to complete the program as pairs or individuals. Results Sixty-six scores of 101 medical students (31 from students working as singles and 35 from 70 working in pairs) were analyzed. Out of 47 possible points, the mean pretest score was 15.1 (SD = 6.4, range 13.7-15.9). The mean posttest score was 22.9 (SD = 5.2, range 21.1-24.2). Posttest scores were statistically significantly higher than pretest scores (p<.001, Cohen's d = 1.17, average gain 7.8 points). Both pairs and singles showed pre-to-post test score gains, but the score gains of pairs and singles were not significantly different. Conclusion This learning module served as an effective instructional intervention. However, the effect of collaboration, measured by score gains for pairs, was not significantly different from score gains of students completing the assignment individually. PMID:20165544

  18. Dismantling Multicomponent Behavioral Treatment for Insomnia in Older Adults: A Randomized Controlled Trial

    PubMed Central

    Epstein, Dana R.; Sidani, Souraya; Bootzin, Richard R.; Belyea, Michael J.

    2012-01-01

    Study Objective: Recently, the use of multicomponent insomnia treatment has increased. This study compares the effect of single component and multicomponent behavioral treatments for insomnia in older adults after intervention and at 3 months and 1 yr posttreatment. Design: A randomized, controlled study. Setting: Veterans Affairs medical center. Participants: 179 older adults (mean age, 68.9 yr ± 8.0; 115 women [64.2%]) with chronic primary insomnia. Interventions: Participants were randomly assigned to 6 wk of stimulus control therapy (SCT), sleep restriction therapy (SRT), the 2 therapies combined into a multicomponent intervention (MCI), or a wait-list control group. Measurements and Results: Primary outcomes were subjective (daily sleep diary) and objective (actigraphy) measures of sleep-onset latency (SOL), wake after sleep onset (WASO), total sleep time (TST), time in bed (TIB), and sleep efficiency (SE). Secondary outcomes were clinical measures including response and remission rates. There were no differences between the single and multicomponent interventions on primary sleep outcomes measured by diary and actigraphy. All treatments produced significant improvement in diary-reported sleep in comparison with the control group. Effect sizes for sleep diary outcomes were medium to large. Treatment gains were maintained at follow-up for diary and actigraph measured SOL, WASO, and SE. The MCI group had the largest proportion of treatment remitters. Conclusions: For older adults with chronic primary insomnia, the findings provide initial evidence that SCT, SRT, and MCI are equally efficacious and produce sustainable treatment gains on diary, actigraphy, and clinical outcomes. From a clinical perspective, MCI may be a preferred treatment due to its higher remission rate. Clinical Trial Information: Behavioral Intervention for Insomnia in Older Adults. NCT01154023. URL: http://clinicaltrials.gov/ct2/show/NCT01154023?term=Behavioral+Intervention+for+Insomnia+in+Older+Adults&rank=1. Citation: Epstein DR; Sidani S; Bootzin RR; Belyea MJ. Dismantling multicomponent behavioral treatment for insomnia in older adults: a randomized controlled trial. SLEEP 2012;35(6):797-805. PMID:22654199

  19. Lithium-aluminum-zinc phosphate glasses activated with Tb3+ and Tb3+/Eu3+ for green laser medium, reddish-orange and white phosphor applications

    NASA Astrophysics Data System (ADS)

    Francisco-Rodriguez, H. I.; Lira, A.; Soriano-Romero, O.; Meza-Rocha, A. N.; Bordignon, S.; Speghini, A.; Lozada-Morales, R.; Caldiño, U.

    2018-05-01

    A spectroscopic analysis of Tb3+ and Tb3+/Eu3+ doped lithium-aluminum-zinc phosphate glasses is performed through their absorbance and photoluminescence spectra, and decay time profiles. Laser parameter values (stimulated emission cross section, effective bandwidth, gain bandwidth and optical gain) were obtained for the terbium 5D4 → 7F5 green emission from the Tb3+ singly-doped glass (LAZT) excited at 350 nm to judge the suitability of the glass phosphor for fiber lasers. A quantum yield of (47.68 ± 0.49)% was measured for the 5D4 level luminescence. Upon 350 nm excitation the LAZT glass phosphor emits green light with a color purity of 65.6% and chromaticity coordinates (0.285, 0.585) very close to those (0.29, 0.60) of European Broadcasting Union illuminant green. The Tb3+/Eu3+codoped glass emission color can be tuned from reddish-orange of 1865 K upon 318 nm excitation to warm white of 3599 K and neutral white of 4049 K upon 359 and 340 nm excitations, respectively. Upon Tb3+ excitation at 340 nm Eu3+ is sensitized by Tb3+ through a non-radiative energy transfer with an efficiency of 0.23-0.26. An electric dipole-dipole interaction might be the dominant mechanism in the Tb3+ to Eu3+ energy transfer taking place into Tb3+ - Eu3+ clusters.

  20. The effect of ASE reinjection configuration through FBGs on the gain and noise figure performance of L-Band EDFA

    NASA Astrophysics Data System (ADS)

    Durak, Fırat Ertaç; Altuncu, Ahmet

    2017-03-01

    In this study, we present the gain and noise figure performance improvement in L-band erbium-doped fiber amplifier (L-EDFA) provided by amplified spontaneous emission (ASE) reinjection through different configurations of 1533 nm band FBGs. The experimental results are compared with a single-stage bidirectionally pumped conventional L-EDFA design. It is shown that when the forward and/or the backward ASE noise is partly reinjected to L-EDFA using a double/single 1533 nm fiber Bragg gratings (FBG), the gain and noise figure performance of L-EDFA increases depending on the FBG configuration. The best gain and NF performance in our L-EDFA was achieved by reinjection of forward and backward ASE through FBG1 and FBG2 leading to an 4.5 dB increase in gain and 1 dB decrease in NF at 1585 nm and -30 dBm input signal power. The results show that both FBGs must be used at the same time to improve gain and NF performance in L-band EDFAs.

  1. In Vitro Propagation and Conservation of Bacopa monnieri L.

    PubMed

    Sharma, Neelam; Singh, Rakesh; Pandey, Ruchira

    2016-01-01

    Bacopa monnieri L. (common name brahmi) is a traditional and renowned Indian medicinal plant with high commercial value for its memory revitalizer potential. Demand for this herb has further escalated due to popularization of various brahmi-based drugs coupled with reported anticancer property. Insufficient seed availability and problems associated with seed propagation including short seed viability are the major constraints of seed conservation in the gene banks. In vitro clonal propagation, a prerequisite for in vitro conservation by enhanced axillary branching was standardized. We have developed a simple, single step protocol for in vitro establishment, propagation and medium-term conservation of B. monnieri. Single node explants, cultured on Murashige and Skoog's medium supplemented with BA (0.2 mg/L), exhibited shoot proliferation without callus formation. Rooting was achieved on the same medium. The in vitro raised plants were successfully transferred to soil with ~80 % survival. On the same medium, shoots could also be conserved for 12 months with high survival and genetic stability was maintained as revealed by molecular markers. The protocol optimized in the present study has been applied for culture establishment, shoot multiplication and medium-term conservation of several Bacopa germplasm, procured from different agro-ecological regions of India.

  2. Microscopic observations during longitudinal compression loading of single pulp fibers

    Treesearch

    Irving B. Sachs

    1986-01-01

    Paperboard components (linerboard adn corrugating medium) fail in edgewise compression because of failure of single fibers, as well as fiber-to-fiber bonds. While fiber-to-fiber-bond failure has been studied extensively, little is known about the longitudinal compression failure of a single fiber. In this study, surface alterations on single loblolly pine kraft pulp...

  3. Open Source Software in Medium Size Organizations: Key Factors for Adoption

    ERIC Educational Resources Information Center

    Solomon, Jerry T.

    2010-01-01

    For-profit organizations are constantly evaluating new technologies to gain competitive advantage. One such technology, application software, has changed significantly over the past 25 years with the introduction of Open Source Software (OSS). In contrast to commercial software that is developed by private companies and sold to organizations, OSS…

  4. Development of an Asset Map of Medical Education Research Activity

    ERIC Educational Resources Information Center

    Christiaanse, Mary E.; Russell, Eleanor L.; Crandall, Sonia J.; Lambros, Ann; Manuel, Janeen C.; Kirk, Julienne K.

    2008-01-01

    Introduction: Medical education research is gaining recognition as scholarship within academic medical centers. This survey was conducted at a medium-sized academic medical center in the United States. The purpose of the study was to learn faculty interest in research in medical education, so assets could be used to develop educational scholarship…

  5. The Challenge of Medium of Instruction: A View from Maldivian Schools

    ERIC Educational Resources Information Center

    Mohamed, Naashia

    2013-01-01

    In the era of globalisation, language-in-education policies continue to present challenges as policy-makers across the globe aim to balance the emphasis given to students' first language and the pressing need for students to be proficient in English as the global "lingua franca" [Hanna, P. (2011). Gaining global perspective: Educational…

  6. Statistical Power of Psychological Research: What Have We Gained in 20 Years?

    ERIC Educational Resources Information Center

    Rossi, Joseph S.

    1990-01-01

    Calculated power for 6,155 statistical tests in 221 journal articles published in 1982 volumes of "Journal of Abnormal Psychology,""Journal of Consulting and Clinical Psychology," and "Journal of Personality and Social Psychology." Power to detect small, medium, and large effects was .17, .57, and .83, respectively. Concluded that power of…

  7. Leveraging the Affordances of Mobile Learning for Vocabulary Gains

    ERIC Educational Resources Information Center

    Bowles, Michael

    2017-01-01

    According to research findings, learners who are about to commence an undergraduate degree course with English as the medium of instruction (EMI), require a minimum English vocabulary size in order to decode and comprehend the academic texts that they have to read (Hazenberg and Hulstijn, 1996; Staehr, 2008; Laufer and Ravenhorst-Kalovski, 2010;…

  8. Room-temperature lasing in a single nanowire with quantum dots

    NASA Astrophysics Data System (ADS)

    Tatebayashi, Jun; Kako, Satoshi; Ho, Jinfa; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2015-08-01

    Semiconductor nanowire lasers are promising as ultrasmall, highly efficient coherent light emitters in the fields of nanophotonics, nano-optics and nanobiotechnology. Although there have been several demonstrations of nanowire lasers using homogeneous bulk gain materials or multi-quantum-wells/disks, it is crucial to incorporate lower-dimensional quantum nanostructures into the nanowire to achieve superior device performance in relation to threshold current, differential gain, modulation bandwidth and temperature sensitivity. The quantum dot is a useful and essential nanostructure that can meet these requirements. However, difficulties in forming stacks of quantum dots in a single nanowire hamper the realization of lasing operation. Here, we demonstrate room-temperature lasing of a single nanowire containing 50 quantum dots by properly designing the nanowire cavity and tailoring the emission energy of each dot to enhance the optical gain. Our demonstration paves the way toward ultrasmall lasers with extremely low power consumption for integrated photonic systems.

  9. Optical gain spectra of 1.55 μm GaAs/GaN.58yAs1-1.58yBiy/GaAs single quantum well

    NASA Astrophysics Data System (ADS)

    Guizani, I.; Bilel, C.; Habchi, M. M.; Rebey, A.

    2017-02-01

    The optical gain spectra of doped lattice-matched GaNAsBi-based single quantum well (SQW) was theoretically investigated using a (16 × 16) band anti-crossing (BAC) model combined with self-consistent calculation. For the sake of comparison, we computed the optical gain of both (i-n-i) and (i-p-i) doped well types in GaAs/GaNAsBi/GaAs quantum structure. The highest obtained material gain Gmax was 1.2 ×104 cm-1 for (i-n-i) type doped with N2Dd = 2.5 ×1012 cm-2 . We proposed investigating the p-i-n type structure to enhance the optical performance of GaAs/GaNAsBi/GaAs SQW. The Bi composition was optimized in order to obtain Te 1 - h 1 = 1.55 μ m . The effect of well width on optical gain spectra was also discussed.

  10. Near-IR laser-triggered target cell collection using a carbon nanotube-based cell-cultured substrate.

    PubMed

    Sada, Takao; Fujigaya, Tsuyohiko; Niidome, Yasuro; Nakazawa, Kohji; Nakashima, Naotoshi

    2011-06-28

    Unique near-IR optical properties of single-walled carbon nanotube (SWNTs) are of interest in many biological applications. Here we describe the selective cell detachment and collection from an SWNT-coated cell-culture dish triggered by near-IR pulse laser irradiation. First, HeLa cells were cultured on an SWNT-coated dish prepared by a spraying of an aqueous SWNT dispersion on a glass dish. The SWNT-coated dish was found to show a good cell adhesion behavior as well as a cellular proliferation rate similar to a conventional glass dish. We discovered, by near-IR pulse laser irradiation (at the laser power over 25 mW) to the cell under optical microscopic observation, a quick single-cell detachment from the SWNT-coated surface. Shockwave generation from the irradiated SWNTs is expected to play an important role for the cell detachment. Moreover, we have succeeded in catapulting the target single cell from the cultured medium when the depth of the medium was below 150 μm and the laser power was stronger than 40 mW. The captured cell maintained its original shape. The retention of the genetic information of the cell was confirmed by the polymerase chain reaction (PCR) technique. A target single-cell collection from a culture medium under optical microscopic observation is significant in wide fields of single-cell studies in biological areas.

  11. Hybrid fiber-rod laser

    DOEpatents

    Beach, Raymond J.; Dawson, Jay W.; Messerly, Michael J.; Barty, Christopher P. J.

    2012-12-18

    Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.

  12. An ultra-wideband tunable multi-wavelength Brillouin fibre laser based on a semiconductor optical amplifier and dispersion compensating fibre in a linear cavity configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zulkifli, M Z; Ahmad, H; Hassan, N A

    2011-07-31

    A multi-wavelength Brillouin fibre laser (MBFL) with an ultra-wideband tuning range from 1420 nm to 1620 nm is demonstrated. The MBFL uses an ultra-wideband semiconductor optical amplifier (SOA) and a dispersion compensating fibre (DCF) as the linear gain medium and nonlinear gain medium, respectively. The proposed MBFL has a wide tuning range covering the short (S-), conventional (C-) and long (L-) bands with a wavelength spacing of 0.08 nm, making it highly suitable for DWDM system applications. The output power of the observed Brillouin Stokes ranges approximately from -5.94 dBm to -0.41 dBm for the S-band, from -4.34 dBm tomore » 0.02 dBm for the C-band and from -2.19 dBm to 0.39 dBm for the L-band. The spacing between each adjacent wavelengths of all the three bands is about 0.08 nm, which is approximately 10.7 GHz for the frequency domain. (lasers)« less

  13. Preparation of Ion Exchange Films for Solid-Phase Spectrophotometry and Solid-Phase Fluorometry

    NASA Technical Reports Server (NTRS)

    Hill, Carol M.; Street, Kenneth W.; Tanner, Stephen P.; Philipp, Warren H.

    2000-01-01

    Atomic spectroscopy has dominated the field of trace inorganic analysis because of its high sensitivity and selectivity. The advantages gained by the atomic spectroscopies come with the disadvantage of expensive and often complicated instrumentation. Solid-phase spectroscopy, in which the analyte is preconcentrated on a solid medium followed by conventional spectrophotometry or fluorometry, requires less expensive instrumentation and has considerable sensitivity and selectivity. The sensitivity gains come from preconcentration and the use of chromophore (or fluorophore) developers and the selectivity is achieved by use of ion exchange conditions that favor the analyte in combination with speciative chromophores. Little work has been done to optimize the ion exchange medium (IEM) associated with these techniques. In this report we present a method for making ion exchange polymer films, which considerably simplify the solid-phase spectroscopic techniques. The polymer consists of formaldehyde-crosslinked polyvinyl alcohol with polyacrylic acid entrapped therein. The films are a carboxylate weak cation exchanger in the calcium form. They are mechanically sturdy and optically transparent in the ultraviolet and visible portion of the spectrum, which makes them suitable for spectrophotometry and fluorometry.

  14. Radiation characteristics of Leaky Surface Plasmon polaritons of graphene

    NASA Astrophysics Data System (ADS)

    Mohadesi, V.; Asgari, A.; Siahpoush, V.

    2018-07-01

    High efficient coupling of graphene surface plasmons to far field radiation is possible by some techniques and can be used in the radiating applications. Besides of the coupling efficiency, the angular distribution of the radiated power is an important parameter in the radiating devices performance. In this paper we investigate the gain of the far field radiation related to the coupling of graphene surface plasmons via a high permittivity medium located close to the graphene. Our results show that high directive radiation and high coupling efficiency can be obtained by this technique and gain and directivity of radiation can be modified by graphene characteristics such as chemical potential and also quality of the graphene. Raising the chemical potential of graphene leads to increase the gain of the radiation as the result of amplifying the directivity of the radiation. Furthermore, high values of relaxation time lead to high directive and strong coupling which raises the maximum value of gain in efficient coupling angle. Tunable characteristics of gain and directivity in this structure can be important designing reconfigurable THz radiating devices.

  15. Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control.

    PubMed

    Zhao, Jian; Guiraud, Germain; Floissat, Florian; Gouhier, Benoit; Rota-Rodrigo, Sergio; Traynor, Nicholas; Santarelli, Giorgio

    2017-01-09

    Gain dynamics study provides an attractive method to understand the intensity noise behavior in fiber amplifiers. Here, the gain dynamics of a medium power (5 W) clad-pumped Yb-fiber amplifier is experimentally evaluated by measuring the frequency domain transfer functions for the input seed and pump lasers from 10 Hz to 1 MHz. We study gain dynamic behavior of the fiber amplifier in the presence of significant residual pump power (compared to the seed power), showing that the seed transfer function is strongly saturated at low Fourier frequencies while the pump power modulation transfer function is nearly unaffected. The characterization of relative intensity noise (RIN) of the fiber amplifier is well explained by the gain dynamics analysis. Finally, a 600 kHz bandwidth feedback loop using an acoustic-optical modulator (AOM) controlling the seed intensity is successfully demonstrated to suppress the broadband laser intensity noise. A maximum noise reduction of about 30 dB is achieved leading to a RIN of -152 dBc/Hz (~1 kHz-10 MHz) at 2.5 W output power.

  16. Gain dynamics in a soft X-ray laser ampli er perturbed by a strong injected X-ray eld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yong; Wang, Shoujun; Oliva, E

    2014-01-01

    Seeding soft X-ray plasma ampli ers with high harmonics has been demonstrated to generate high-brightness soft X-ray laser pulses with full spatial and temporal coherence. The interaction between the injected coherent eld and the swept-gain medium has been modelled. However, no exper- iment has been conducted to probe the gain dynamics when perturbed by a strong external seed eld. Here, we report the rst X-ray pump X-ray probe measurement of the nonlinear response of a plasma ampli er perturbed by a strong soft X-ray ultra-short pulse. We injected a sequence of two time-delayed high-harmonic pulses (l518.9 nm) into a collisionallymore » excited nickel-like molybdenum plasma to measure with femto-second resolution the gain depletion induced by the saturated ampli cation of the high-harmonic pump and its subsequent recovery. The measured fast gain recovery in 1.5 1.75 ps con rms the possibility to generate ultra-intense, fully phase-coherent soft X-ray lasers by chirped pulse ampli cation in plasma ampli ers.« less

  17. 30 CFR 77.905 - Connection of single-phase loads.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Connection of single-phase loads. 77.905 Section 77.905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE...

  18. 30 CFR 77.905 - Connection of single-phase loads.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Connection of single-phase loads. 77.905 Section 77.905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE...

  19. Crystallization of steroids in gels

    NASA Astrophysics Data System (ADS)

    Kalkura, S. Narayana; Devanarayanan, S.

    1991-03-01

    The crystal growth and characterization of certain steriods, viz., cholesterol, cholesteryl acetate, β-sitosterol, progesterone and testosterone, in a silica gel medium is discussed. The present study shows that the single test tube diffusion method can be used to grow crystals of steroids in a silica gel medium by the reduction of steroid solubility.

  20. GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations.

    PubMed

    Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto; Santana, Sidney Ramos; Cabral, Lucidio Anjos Formiga; Rocha, Gerd B

    2012-09-11

    In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.

  1. Separation and counting of single molecules through nanofluidics, programmable electrophoresis, and nanoelectrode-gated tunneling and dielectric detection

    DOEpatents

    Lee, James W.; Thundat, Thomas G.

    2006-04-25

    An apparatus for carrying out the separation, detection, and/or counting of single molecules at nanometer scale. Molecular separation is achieved by driving single molecules through a microfluidic or nanofluidic medium using programmable and coordinated electric fields. In various embodiments, the fluidic medium is a strip of hydrophilic material on nonconductive hydrophobic surface, a trough produced by parallel strips of hydrophobic nonconductive material on a hydrophilic base, or a covered passageway produced by parallel strips of hydrophobic nonconductive material on a hydrophilic base together with a nonconductive cover on the parallel strips of hydrophobic nonconductive material. The molecules are detected and counted using nanoelectrode-gated electron tunneling methods, dielectric monitoring, and other methods.

  2. Blastocyst Development in a Single Medium Compared to Sequential Media: A Prospective Study With Sibling Oocytes.

    PubMed

    Sfontouris, Ioannis A; Kolibianakis, Efstratios M; Lainas, George T; Petsas, George K; Tarlatzis, Basil C; Lainas, Trifon G

    2017-09-01

    The aim of the present study was to compare blastocyst formation rates after embryo culture in a single medium (Global) as compared to sequential media (ISM1/BlastAssist). In this prospective trial with sibling oocytes, 542 metaphase II (ΜΙΙ) oocytes from 31 women were randomly and equally divided to be fertilized and cultured to the blastocyst stage in either sequential media (ISM1/BlastAssist; n = 271 MII oocytes) or a single medium (Global; n = 271 MII oocytes). In both groups, embryos were cultured in an interrupted fashion with media changes on day 3. Embryo transfer was performed on day 5. Blastocyst formation rates on day 5 (61.7% ± 19.9% vs 37.0% ± 25.5%, P < .001) were significantly higher following culture in Global as compared to ISM1/BlastAssist, respectively. Fertilization rates, cleavage rates, and percentage of good quality embryos on day 3 were similar between Global and ISM1/BlastAssist, respectively. The percentages of good quality blastocysts (63.0% ± 24.8% vs 32.1% ± 37.2%, P < .001), blastocysts selected for transfer (27.8% ± 19.2% vs 11.1% ± 14.4%, P = .005), and utilization rates (62.5% ± 24.8% vs 39.0% ± 25.2%, P < .001) were significantly higher in Global as compared to ISM1/BlastAssist, respectively. In conclusion, culture in Global was associated with higher blastocyst formation rates compared to ISM1/BlastAssist, suggesting that the single medium may provide better support to the developing embryo.

  3. Radiation and scattering by thin-wire structures in the complex frequency domain. [electromagnetic theory for thin-wire antennas

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.

    1974-01-01

    Piecewise-sinusoidal expansion functions and Galerkin's method are employed to formulate a solution for an arbitrary thin-wire configuration in a homogeneous conducting medium. The analysis is performed in the real or complex frequency domain. In antenna problems, the solution determines the current distribution, impedance, radiation efficiency, gain and far-field patterns. In scattering problems, the solution determines the absorption cross section, scattering cross section and the polarization scattering matrix. The electromagnetic theory is presented for thin wires and the forward-scattering theorem is developed for an arbitrary target in a homogeneous conducting medium.

  4. EELV Booster Assist Options for CEV

    NASA Technical Reports Server (NTRS)

    McNeal, Curtis, Jr.

    2005-01-01

    Medium lift EELVs may still play a role in manned space flight. To be considered for manned flight, medium lift EELVs must address the short comings in their current boost assist motors. Two options exist: redesign and requalify the solid rocket motors. Replace solid rocket motors (SRMs) with hybrid rocket motors. Hybrid rocket motors are an attractive alternative. They are safer than SRMs. The TRL's Lockheed Martin Small Launch Vehicle booster development substantially lowers the development risk, cost risk, and the schedule risk for developing hybrid boost assist for EELVs. Hybrid boosters testability offsets SRMs higher inherent reliability.Hybrid booster development and recurring costs are lower than SRMs. Performance gains are readily achieved.

  5. College Freshmen Students' Perspectives on Weight Gain Prevention in the Digital Age: Web-Based Survey.

    PubMed

    Monroe, Courtney M; Turner-McGrievy, Gabrielle; Larsen, Chelsea A; Magradey, Karen; Brandt, Heather M; Wilcox, Sara; Sundstrom, Beth; West, Delia Smith

    2017-10-12

    College freshmen are highly vulnerable to experiencing weight gain, and this phenomenon is associated with an increased risk of chronic diseases and mortality in older adulthood. Technology offers an attractive and scalable way to deliver behavioral weight gain prevention interventions for this population. Weight gain prevention programs that harness the appeal and widespread reach of Web-based technologies (electronic health or eHealth) are increasingly being evaluated in college students. Yet, few of these interventions are informed by college students' perspectives on weight gain prevention and related lifestyle behaviors. The objective of this study was to assess college freshmen students' concern about weight gain and associated topics, as well as their interest in and delivery medium preferences for eHealth programs focused on these topics. Web-based surveys that addressed college freshmen students' (convenience sample of N=50) perspectives on weight gain prevention were administered at the beginning and end of the fall 2015 semester as part of a longitudinal investigation of health-related issues and experiences in first semester college freshmen. Data on weight gain prevention-related concerns and corresponding interest in eHealth programs targeting topics of potential concern, as well as preferred program delivery medium and current technology use were gathered and analyzed using descriptive statistics. A considerable proportion of the freshmen sample expressed concern about weight gain (74%, 37/50) and both traditional (healthy diet: 86%, 43/50; physical activity: 64%, 32/50) and less frequently addressed (stress: 82%, 41/50; sleep: 74%, 37/50; anxiety and depression: 60%, 30/50) associated topics within the context of behavioral weight gain prevention. The proportion of students who reported interest in eHealth promotion programs targeting these topics was also generally high (ranging from 52% [26/50] for stress management to 70% [35/50] for eating a healthy diet and staying physically active). Email was the most frequently used electronic platform, with 96% (48/50) of students reporting current use of it. Email was also the most frequently cited preferred eHealth delivery platform, with 86% (43/50) of students selecting it. Facebook was preferred by the second greatest proportion of students (40%, 20/50). Most college freshmen have concerns about an array of weight gain prevention topics and are generally open to the possibility of receiving eHealth interventions designed to address their concerns, preferably via email compared with popular social media platforms. These preliminary findings offer a foundation to build upon when it comes to future descriptive investigations focused on behavioral weight gain prevention among college freshmen in the digital age. ©Courtney M Monroe, Gabrielle Turner-McGrievy, Chelsea A Larsen, Karen Magradey, Heather M Brandt, Sara Wilcox, Beth Sundstrom, Delia Smith West. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 12.10.2017.

  6. Dynamics of the human linear vestibulo-ocular reflex at medium frequency and modification by short-term training

    NASA Technical Reports Server (NTRS)

    Shelhamer, M.; Roberts, D. C.; Zee, D. S.

    2000-01-01

    We study here the effect of a short-term training paradigm on the gain and phase of the human translational VOR (the linear VOR: LVOR). Subjects were exposed to lateral sinusoidal translations on a sled, at 0.5 Hz, 0.3 g peak acceleration. With subjects tracking a remembered target at 1.2 m, the LVOR (slow-phase) under these conditions typically has a phase lead or lag, and a gain that falls short of compensatory. To induce short-term adaptation (training), we presented an earth-fixed visual scene at 1.2 m during sinusoidal translation (x 1 viewing) for 20 minutes, so as to drive the LVOR toward compensatory phase and gain. We examined both the slow-phase and the saccadic responses to these stimuli. Testing after training showed changes in slow-component gain and phase which were mostly but not always in the compensatory direction. These changes were more consistent in naive subjects than in subjects who had previous LVOR experience. Changes in gain were seen with step as well as sinusoidal test stimuli; gain changes were not correlated with vergence changes. There was a strong correlation between gain changes and phase changes across subjects. Fast phases (catch-up saccades) formed a large component of the LVOR under our testing conditions (approximately 30% of the changes in gain but not in phase due to training.

  7. Radiation characteristics of a source in a thin substrate mounted over a dielectric medium

    NASA Technical Reports Server (NTRS)

    Engheta, Nader; Elachi, Charles

    1988-01-01

    The radiation pattern of a line source is calculated for the case in which the source is lying on the top or the bottom surface of a lossless dielectric substrate that is mounted on the top of semiinfinite dielectric medium. It is found that in both cases the pattern along the interfaces has a null; that the pattern in the upper semiinfinite medium has a single lobe; and that the pattern in the lower semiinfinite medium has many lobes, the number of which varies with the substrate thickness. In both cases, the power radiated into the lower medium is more than that radiated into the upper medium. Applications of this calculation to remote sensing, microstrip antenna technology, and antenna arrays are discussed.

  8. Poststapedectomy hearing gain: comparison of a Teflon (fluoroplastic ASTM F 754) prosthesis with a Schuknecht-type wire/Teflon prosthesis.

    PubMed

    Zepeda-López, Emilia Guadalupe; Bello-Mora, Antonio; Félix-Trujillo, Manuel Martín

    2005-11-01

    We conducted a retrospective study to compare poststapedectomy hearing gain in study-eligible patients who had received a Teflon (fluoroplastic ASTM F 754) prosthesis (study group; n = 76) with hearing gain achieved in a matched group (by age, sex, and degree of hypoacusis) of patients who had received a Schuknecht-type wire/Teflon prosthesis (control group; n = 70). All procedures had been performed by the authors at our institution between Jan. 2, 1994, and Dec. 31, 1997. Airway averages at low, medium, and high frequencies were estimated on the basis ofpre- and postoperative audiologic evaluations, as were total air-bone gaps at 7 frequencies between 125 and 8, 000 Hz. We found that the study group achieved a significantly greater degree of hearing gain at 125 and 250 Hz and significantly better closure of the air-bone gap at 250, 500, 1,000, 2,000, and 4,000 Hz. The hearing outcomes among patients in the study group were excellent.

  9. Simplified Modeling of Steady-State and Transient Brillouin Gain in Magnetoactive Non-Centrosymmetric Semiconductors

    NASA Astrophysics Data System (ADS)

    Singh, M.; Aghamkar, P.; Sen, P. K.

    With the aid of a hydrodynamic model of semiconductor-plasmas, a detailed analytical investigation is made to study both the steady-state and the transient Brillouin gain in magnetized non-centrosymmetric III-V semiconductors arising from the nonlinear interaction of an intense pump beam with the internally-generated acoustic wave, due to piezoelectric and electrostrictive properties of the crystal. Using the fact that the origin of coherent Brillouin scattering (CBS) lies in the third-order (Brillouin) susceptibility of the medium, we obtained an expression of the gain coefficient of backward Stokes mode in steady-state and transient regimes and studied the dependence of piezoelectricity, magnetic field and pump pulse duration on its growth rate. The threshold-pump intensity and optimum pulse duration for the onset of transient CBS are estimated. The piezoelectricity and externally-applied magnetic field substantially enhances the transient CBS gain coefficient in III-V semiconductors which can be of great use in the compression of scattered pulses.

  10. Final report on LDRD project : narrow-linewidth VCSELs for atomic microsystems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Weng Wah; Geib, Kent Martin; Peake, Gregory Merwin

    2011-09-01

    Vertical-cavity surface-emitting lasers (VCSELs) are well suited for emerging photonic microsystems due to their low power consumption, ease of integration with other optical components, and single frequency operation. However, the typical VCSEL linewidth of 100 MHz is approximately ten times wider than the natural linewidth of atoms used in atomic beam clocks and trapped atom research, which degrades or completely destroys performance in those systems. This report documents our efforts to reduce VCSEL linewidths below 10 MHz to meet the needs of advanced sub-Doppler atomic microsystems, such as cold-atom traps. We have investigated two complementary approaches to reduce VCSEL linewidth:more » (A) increasing the laser-cavity quality factor, and (B) decreasing the linewidth enhancement factor (alpha) of the optical gain medium. We have developed two new VCSEL devices that achieved increased cavity quality factors: (1) all-semiconductor extended-cavity VCSELs, and (2) micro-external-cavity surface-emitting lasers (MECSELs). These new VCSEL devices have demonstrated linewidths below 10 MHz, and linewidths below 1 MHz seem feasible with further optimization.« less

  11. Fabrication and Sintering Behavior of Er:SrF2 Transparent Ceramics using Chemically Derived Powder

    PubMed Central

    Liu, Jun; Liu, Peng; Wang, Jun; Xu, Xiaodong; Li, Dongzhen; Zhang, Jian; Nie, Xinming

    2018-01-01

    In this paper, we report the fabrication of high-quality 5 at. % Er3+ ions doped SrF2 transparent ceramics, the potential candidate materials for a mid-infrared laser-gain medium by hot-pressing at 700 °C for 40 h using a chemically-derived powder. The phase structure, densification, and microstructure evolution of the Er:SrF2 ceramics were systematically investigated. In addition, the grain growth kinetic mechanism of Er:SrF2 was clarified. The results showed lattice diffusion to be the grain growth mechanism in the Er:SrF2 transparent ceramic of which highest in-line transmittance reached 92% at 2000 nm, i.e., very close to the theoretical transmittance value of SrF2 single crystal. Furthermore, the emission spectra showed that the strongest emission band was located at 2735 nm. This means that it is possible to achieve a laser output of approximately 2.7 μm in the 5 at. % Er3+ ions doped SrF2 transparent ceramics. PMID:29565322

  12. Hundred Thousand Degree Gas in the Virgo Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Sparks, W. B.; Pringle, J. E.; Carswell, R. F.; Donahue, M.; Martin, R.; Voit, M.; Cracraft, M.; Manset, N.; Hough, J. H.

    2012-05-01

    The physical relationship between low-excitation gas filaments at ~104 K, seen in optical line emission, and diffuse X-ray emitting coronal gas at ~107 K in the centers of many galaxy clusters is not understood. It is unclear whether the ~104 K filaments have cooled and condensed from the ambient hot (~107 K) medium or have some other origin such as the infall of cold gas in a merger, or the disturbance of an internal cool reservoir of gas by nuclear activity. Observations of gas at intermediate temperatures (~105-106 K) can potentially reveal whether the central massive galaxies are gaining cool gas through condensation or losing it through conductive evaporation and hence identify plausible scenarios for transport processes in galaxy cluster gas. Here we present spectroscopic detection of ~105 K gas spatially associated with the Hα filaments in a central cluster galaxy, M87, in the Virgo Cluster. The measured emission-line fluxes from triply ionized carbon (C IV 1549 Å) and singly ionized helium (He II 1640 Å) are consistent with a model in which thermal conduction determines the interaction between hot and cold phases.

  13. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    NASA Technical Reports Server (NTRS)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  14. A single-sided representation for the homogeneous Green's function of a unified scalar wave equation.

    PubMed

    Wapenaar, Kees

    2017-06-01

    A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.

  15. Unified double- and single-sided homogeneous Green’s function representations

    PubMed Central

    van der Neut, Joost; Slob, Evert

    2016-01-01

    In wave theory, the homogeneous Green’s function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green’s function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green’s function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green’s function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green’s function retrieval. PMID:27436983

  16. Unified double- and single-sided homogeneous Green's function representations

    NASA Astrophysics Data System (ADS)

    Wapenaar, Kees; van der Neut, Joost; Slob, Evert

    2016-06-01

    In wave theory, the homogeneous Green's function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green's function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green's function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green's function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green's function retrieval.

  17. Impact of Raman scattering on pulse dynamics in a fiber laser with narrow gain bandwidth

    NASA Astrophysics Data System (ADS)

    Uthayakumar, T.; Alsaleh, M.; Igbonacho, J.; Tchomgo Felenou, E.; Tchofo Dinda, P.; Grelu, Ph; Porsezian, K.

    2018-06-01

    We examine theoretically the multi-pulse dynamics in a dispersion-managed fiber laser, in which the pulse’s spectral width is controlled by a pass-band filter. We show that in the domain of stable states with very narrow spectral width, i.e. which is one order of magnitude smaller than the bandwidth of the Raman gain of the intra-cavity fiber system, the Raman scattering (RS) significantly alters the multi-pulse dynamics. RS is found to have a greater impact in the immediate vicinity of some critical values of the pump power of the intra-cavity gain medium, where processes of pulse fragmentation occur. As a result, all the borders between the zones of stability of the multi-pulse states are altered, i.e. either shifted or suppressed.

  18. All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings.

    PubMed

    Zhang, W L; Ma, R; Tang, C H; Rao, Y J; Zeng, X P; Yang, Z J; Wang, Z N; Gong, Y; Wang, Y S

    2015-07-01

    An all-optical method to control the lasing modes of Er-doped random fiber lasers (RFLs) is proposed and demonstrated. In the RFL, an Er-doped fiber (EDF) recoded with randomly separated fiber Bragg gratings (FBG) is used as the gain medium and randomly distributed reflectors, as well as the controllable element. By combining random feedback of the FBG array and Fresnel feedback of a cleaved fiber end, multi-mode coherent random lasing is obtained with a threshold of 14 mW and power efficiency of 14.4%. Moreover, a laterally-injected control light is used to induce local gain perturbation, providing additional gain for certain random resonance modes. As a result, active mode selection of the RFL is realized by changing locations of the laser cavity that is exposed to the control light.

  19. Random distributed feedback fiber laser at 2.1  μm.

    PubMed

    Jin, Xiaoxi; Lou, Zhaokai; Zhang, Hanwei; Xu, Jiangming; Zhou, Pu; Liu, Zejin

    2016-11-01

    We demonstrate a random distributed feedback fiber laser at 2.1 μm. A high-power pulsed Tm-doped fiber laser operating at 1.94 μm with a temporal duty ratio of 30% was employed as a pump laser to increase the equivalent incident pump power. A piece of 150 m highly GeO2-doped silica fiber that provides a strong Raman gain and random distributed feedbacks was used to act as the gain medium. The maximum output power reached 0.5 W with the optical efficiency of 9%, which could be further improved by more pump power and optimized fiber length. To the best of our knowledge, this is the first demonstration of random distributed feedback fiber laser at 2 μm band based on Raman gain.

  20. Postnatal Weight Gain Modifies Severity and Functional Outcome of Oxygen-Induced Proliferative Retinopathy

    PubMed Central

    Stahl, Andreas; Chen, Jing; Sapieha, Przemyslaw; Seaward, Molly R.; Krah, Nathan M.; Dennison, Roberta J.; Favazza, Tara; Bucher, Felicitas; Löfqvist, Chatarina; Ong, Huy; Hellström, Ann; Chemtob, Sylvain; Akula, James D.; Smith, Lois E.H.

    2010-01-01

    In clinical studies, postnatal weight gain is strongly associated with retinopathy of prematurity (ROP). However, animal studies are needed to investigate the pathophysiological mechanisms of how postnatal weight gain affects the severity of ROP. In the present study, we identify nutritional supply as one potent parameter that affects the extent of retinopathy in mice with identical birth weights and the same genetic background. Wild-type pups with poor postnatal nutrition and poor weight gain (PWG) exhibit a remarkably prolonged phase of retinopathy compared to medium weight gain or extensive weight gain pups. A high (r2 = 0.83) parabolic association between postnatal weight gain and oxygen-induced retinopathy severity is observed, as is a significantly prolonged phase of proliferative retinopathy in PWG pups (20 days) compared with extensive weight gain pups (6 days). The extended retinopathy is concomitant with prolonged overexpression of retinal vascular endothelial growth factor in PWG pups. Importantly, PWG pups show low serum levels of nonfasting glucose, insulin, and insulin-like growth factor-1 as well as high levels of ghrelin in the early postoxygen-induced retinopathy phase, a combination indicative of poor metabolic supply. These differences translate into visual deficits in adult PWG mice, as demonstrated by impaired bipolar and proximal neuronal function. Together, these results provide evidence for a pathophysiological correlation between poor postnatal nutritional supply, slow weight gain, prolonged retinal vascular endothelial growth factor overexpression, protracted retinopathy, and reduced final visual outcome. PMID:21056995

  1. Postnatal weight gain modifies severity and functional outcome of oxygen-induced proliferative retinopathy.

    PubMed

    Stahl, Andreas; Chen, Jing; Sapieha, Przemyslaw; Seaward, Molly R; Krah, Nathan M; Dennison, Roberta J; Favazza, Tara; Bucher, Felicitas; Löfqvist, Chatarina; Ong, Huy; Hellström, Ann; Chemtob, Sylvain; Akula, James D; Smith, Lois E H

    2010-12-01

    In clinical studies, postnatal weight gain is strongly associated with retinopathy of prematurity (ROP). However, animal studies are needed to investigate the pathophysiological mechanisms of how postnatal weight gain affects the severity of ROP. In the present study, we identify nutritional supply as one potent parameter that affects the extent of retinopathy in mice with identical birth weights and the same genetic background. Wild-type pups with poor postnatal nutrition and poor weight gain (PWG) exhibit a remarkably prolonged phase of retinopathy compared to medium weight gain or extensive weight gain pups. A high (r(2) = 0.83) parabolic association between postnatal weight gain and oxygen-induced retinopathy severity is observed, as is a significantly prolonged phase of proliferative retinopathy in PWG pups (20 days) compared with extensive weight gain pups (6 days). The extended retinopathy is concomitant with prolonged overexpression of retinal vascular endothelial growth factor in PWG pups. Importantly, PWG pups show low serum levels of nonfasting glucose, insulin, and insulin-like growth factor-1 as well as high levels of ghrelin in the early postoxygen-induced retinopathy phase, a combination indicative of poor metabolic supply. These differences translate into visual deficits in adult PWG mice, as demonstrated by impaired bipolar and proximal neuronal function. Together, these results provide evidence for a pathophysiological correlation between poor postnatal nutritional supply, slow weight gain, prolonged retinal vascular endothelial growth factor overexpression, protracted retinopathy, and reduced final visual outcome.

  2. A new and efficient theoretical model to analyze chirped grating distributed feedback lasers

    NASA Astrophysics Data System (ADS)

    Arif, Muhammad

    Threshold conditions of a distributed feedback (DFB) laser with a linearly chirped grating are investigated using a new and efficient method. DFB laser with chirped grating is found to have significant effects on the lasing characteristics. The coupled wave equations for these lasers are derived and solved using a power series method to obtain the threshold condition. A Newton- Raphson routine is used to solve the threshold conditions numerically to obtain threshold gain and lasing wavelengths. To prove the validity of this model, it is applied to both conventional index-coupled and complex- coupled DFB lasers. The threshold gain margins are calculated as functions of the ratio of the gain coupling to index coupling (|κg|/|κ n|), and the phase difference between the index and gain gratings. It was found that for coupling coefficient |κ|l < 0.9, the laser shows a mode degeneracy at particular values of the ratio |κ g|/|κn|, for cleaved facets. We found that at phase differences π/2 and 3π/2, between the gain and index grating, for an AR-coated complex-coupled laser, the laser becomes multimode and a different mode starts to lase. We also studied the effect of the facet reflectivity (both magnitude and phase) on the gain margin of a complex- coupled DFB laser. Although, the gain margin varies slowly with the magnitude of the facet reflectivity, it shows large variations as a function of the phase. Spatial hole burning was found to be minimum at phase difference nπ, n = 0, 1, ... and maximum at phase differences π/2 and 3π/2. The single mode gain margin of an index-coupled linearly chirped CG-DFB is calculated for different chirping factors and coupling constants. We found that there is clearly an optimum chirping for which the single mode gain margin is maximum. The gain margins were calculated also for different positions of the cavity center. The effect of the facet reflectivities and their phases on the gain margin was investigated. We found the gain margin is maximum and the Spatial Hole Burning (SHB) is minimum for the cavity center at the middle of the laser cavity. Effect of chirping on the threshold gain, gain margin and spatial hole burning (SHB) for different parameters, such as the coupling coefficients, facet reflectivities, etc., of these lasers are studied. Single mode yield of these lasers are calculated and compared with that of a uniform grating DFB laser.

  3. Context-dependent decisions among options varying in a single dimension.

    PubMed

    Morgan, Kate V; Hurly, T Andrew; Bateson, Melissa; Asher, Lucy; Healy, Susan D

    2012-02-01

    Contrary to theories of rational choice, adding alternatives to a choice set can change the choices made by both humans and animals. This is usually done by adding an inferior decoy to a choice set of two favoured options that are characterized on two distinct dimensions. We presented wild, free-living rufous hummingbirds (Selasphorus rufus) with choices between two or three options that varied in a single dimension only. The options varied in concentration, in volume or in corolla length. When the options varied in concentration, the addition of a medium option to a choice set of a low and a high concentration caused birds to increase their preference for the high option. However, they decreased their preference for the high concentration option when a low option was added to a choice set of high and medium concentrations. When the options varied only in volume, the addition of a high volume option to a choice set of low and medium options decreased the birds' preference for the medium option. We saw no effects of adding a third option when the options varied in corolla length alone. Hummingbirds, then, make context-dependent decisions even when the options vary in only a single dimension although which effect occurs seems to depend on the dimension being manipulated. None of the current theories alone adequately explain these results. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Flood replenishment: a new method of processor control.

    PubMed

    Frank, E D; Gray, J E; Wilken, D A

    1980-01-01

    In mechanized radiographic film processors that process medium to low volumes of film, roll films, and those that process single-emulsion films from nuclear medicine scans, computed tomography, and ultrasound, it is difficult to maintain the developer solution at a stable processing level. We describe our experience using flood replenishment, which is a method in which developer replenisher containing starter solution is introduced in the processor at timed intervals, independent of the number of films being processed. By this process, a stable level of developer activity is maintained in a processor used to develop a medium to low volume of single-emulsion film.

  5. Cost-effectiveness of iso- versus low-osmolality contrast media in outpatients with high risk of contrast medium-induced nephropathy.

    PubMed

    Chicaíza-Becerra, Liliana Alejandra; García-Molina, Mario; Gamboa, Óscar

    2012-06-01

    Contrast media can cause acute renal failure by direct toxic effects on the tubular cells and kidney ischemia. Diabetics and hospitalized patients have a greater risk of developing contrast-induced nephropathy than the general population. The cost effectiveness of iso and low-osmolality contrast media was assessed in high risk outpatients. The analysis was based on a systematic literature review comparing the nephrotoxic effects of iso- to low-osmolality contrast media. Only direct costs were considered; these were obtained from the official tariff manual. Incremental cost-effectiveness ratios, efficiency curves and acceptability curves were calculated. Univariate sensitivity analyses were performed for costs and effects, as well as probabilistic analyses. Zero and 3% discounts were applied to results. The cost-effectiveness threshold was equal to the per capita GDP per life-year gained. Alternatives with Iopamidol and Iodixanol are preferable to the others, because both reduce risk of contrast-induced nephropathy and are less costly. The incremental cost-effectiveness of the Iodixanol alternative compared to the Iopamidol alternative is US$ 14,660 per additional life year gained; this is more than twice the threshold. The low-osmolality contrast medium, Iopamidol, appears to be cost-effective when compared with Iohexol or other low-osmolality contrast media (Iopromide, Iobitridol, Iomeprol, Iopentol and Ioxilan) in contrast-induced nephropathy, high-risk outpatients. The choice of the iso-osmolality contrast medium, Iodixanol, depends on its cost per vial and on the willingness to pay.

  6. Nonpolar InGaN/GaN Core-Shell Single Nanowire Lasers.

    PubMed

    Li, Changyi; Wright, Jeremy B; Liu, Sheng; Lu, Ping; Figiel, Jeffrey J; Leung, Benjamin; Chow, Weng W; Brener, Igal; Koleske, Daniel D; Luk, Ting-Shan; Feezell, Daniel F; Brueck, S R J; Wang, George T

    2017-02-08

    We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core-shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core-shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core-shell nanowires, despite significantly shorter cavity lengths and reduced active region volume. Mode simulations show that due to the core-shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. The results show the viability of this p-i-n nonpolar core-shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV-visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.

  7. Nonpolar InGaN/GaN core–shell single nanowire lasers

    DOE PAGES

    Li, Changyi; Wright, Jeremy Benjamin; Liu, Sheng; ...

    2017-01-24

    We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core–shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core–shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core–shell nanowires, despite significantly shorter cavity lengths and reducedmore » active region volume. Mode simulations show that due to the core–shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. Furthermore, the results show the viability of this p-i-n nonpolar core–shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV–visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.« less

  8. THE SCHOOL PARK.

    ERIC Educational Resources Information Center

    FISCHER, JOHN H.

    TO ASSIST IN DESEGREGATION, VARIOUS MODELS FOR THE SCHOOL PARK ARE PROPOSED--(1) ASSEMBLING ALL STUDENTS AND SCHOOLS OF A SMALL OR MEDIUM-SIZED COMMUNITY ON A SINGLE CAMPUS, (2) SERVING ONE SECTION OF A LARGE CITY, (3) CENTERING ALL SCHOOL FACILITIES FOR A SINGLE LEVEL OF EDUCATION ON A SINGLE SITE, AND (4) ESTABLISHING RINGS OF SCHOOL PARKS ABOUT…

  9. Real-world cost-effectiveness of infliximab for moderate-to-severe rheumatoid arthritis in a medium-sized city of China.

    PubMed

    Li, Jingyang; Wen, Zhenhua; Cai, Anlie; Tian, Feng; Zhang, Liang; Luo, Xiaowen; Deng, Li; He, Jingyun; Yang, Yicheng; Chen, Wendong

    2017-05-01

    To assess the cost-effectiveness of infliximab-containing therapy (ICT) for moderate-to-severe rheumatoid arthritis (RA) in a medium-sized Chinese city. A Chinese prospective cohort study comparing ICT (25 patients) versus conventional disease-modified antirheumatic drugs (24 patients) for RA was used to assess the cost-effectiveness of ICT. The cohort study observed significantly reduced disease activity score of 28 joints (coefficient -2.718, p < 0.001), improved EQ-5D (coefficient 0.453, p < 0.001) and increased medical costs (coefficient 1.289, p < 0.001) associated with ICT. The incremental cost-effectiveness ratio per gained quality-adjusted life year for ICT versus disease-modified antirheumatic drugs was 1.897-times of the local gross domestic product per capita. Infliximab was a favorable cost-effective alternative option for moderate-to-severe RA in a medium-sized city of China.

  10. Time-frequency dynamics of superluminal pulse transition to the subluminal regime.

    PubMed

    Dorrah, Ahmed H; Ramakrishnan, Abhinav; Mojahedi, Mo

    2015-03-01

    Spectral reshaping and nonuniform phase delay associated with an electromagnetic pulse propagating in a temporally dispersive medium may lead to interesting observations in which the group velocity becomes superluminal or even negative. In such cases, the finite bandwidth of the superluminal region implies the inevitable existence of a cutoff distance beyond which a superluminal pulse becomes subluminal. In this paper, we derive a closed-form analytic expression to estimate this cutoff distance in abnormal dispersive media with gain. Moreover, the method of steepest descent is used to track the time-frequency dynamics associated with the evolution of the center of mass of a superluminal pulse to the subluminal regime. This evolution takes place at longer propagation depths as a result of the subluminal components affecting the behavior of the pulse. Finally, the analysis presents the fundamental limitations of superluminal propagation in light of factors such as the medium depth, pulse width, and the medium dispersion strength.

  11. All solid-state SBS phase conjugate mirror

    DOEpatents

    Dane, Clifford B.; Hackel, Lloyd A.

    1999-01-01

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases.

  12. All solid-state SBS phase conjugate mirror

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  13. Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser.

    PubMed

    Cong, Zhenhua; Zhang, Xingyu; Wang, Qingpu; Liu, Zhaojun; Li, Shutao; Chen, Xiaohan; Zhang, Xiaolei; Fan, Shuzhen; Zhang, Huaijin; Tao, Xutang

    2009-09-01

    An efficient intracavity frequency-doubled Raman laser was obtained by using an SrWO(4) Raman medium, an Nd:YAG ceramic gain medium, and a KTP frequency-doubling medium. Three laser cavities, including a two-mirror cavity, a three-mirror coupled cavity, and a folded cavity, were investigated. With the coupled cavity, a 2.93 W, 590 nm laser was obtained at an incident pump power of 16.2 W and a pulse repetition frequency of 20 kHz; the corresponding conversion efficiency was 18.1%. The highest conversion efficiency of 19.2% was obtained at an incident pump power of 14.1 W and a pulse repetition frequency of 15 kHz. The obtained maximum output power and conversion efficiency were much higher than the results previously obtained with intracavity frequency-doubled solid-state Raman lasers.

  14. An empirical relationship for path diversity gain. [earth-space microwave propagation attenuation

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.

    1976-01-01

    Existing 15.3 and 16 GHz path diversity gain data for earth-space propagation paths are used to generate an empirical relationship for diversity gain as a function of terminal separation distance and single terminal fade depth. The agreement between the resulting closed form expression and the data is within 0.75 dB in all cases.

  15. Impact of stand diameter and product markets on revenue gains from multiproduct harvesting

    Treesearch

    John E. Baumgras; Chris B. LeDoux

    1988-01-01

    Data from 113 sample thinning plots and a microcomputer program called APTHIN were used to demonstrate the impact of mean stand diameter and product markets on revenue gains from multiproduct versus single-product pulpwood harvests in poletimber and small sawtimber stands of Appalachian hardwoods. The analysis of revenue gains included product mix as a function of the...

  16. Optical gain in an optically driven three-level ? system in atomic Rb vapor

    NASA Astrophysics Data System (ADS)

    Ballmann, C. W.; Yakovlev, V. V.

    2018-06-01

    In this work, we report experimentally achieved optical gain of a weak probe beam in a three-level ? system in a low density Rubidium vapor cell driven by a single pump beam. The maximum measured gain of the probe beam was about 0.12%. This work could lead to new approaches for enhancing molecular spectroscopy applications.

  17. Unintended Results of Using Instructional Media: A Study of Second- and Third-Graders.

    ERIC Educational Resources Information Center

    Flanagan, Robin

    Much of the research on classroom use of educational media has been hampered by difficulties in isolating a single element of the medium--television programming, for instance--that influences behavior in a reliable way. Still, each medium facilitates a particular type of learning environment, and the collective characteristics of those…

  18. Comparing the Experiences and Needs of Postsecondary International Students from China and South Korea

    ERIC Educational Resources Information Center

    Deters, Ping

    2015-01-01

    International students from China and South Korea are an increasingly important part of the international student body in many English-medium postsecondary institutions. The purpose of this qualitative study was to gain a deeper understanding of the experiences and needs of these two groups of students at a Canadian postsecondary institution. Data…

  19. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Surface effects in laser diodes

    NASA Astrophysics Data System (ADS)

    Beister, G.; Maege, J.; Richter, G.

    1988-11-01

    Changes in the current-voltage characteristics below the threshold current were observed in gain-guided stripe laser diodes after preliminary lasing. This effect was not fully understood. Similar changes in the laser characteristics appeared as a result of etching in a gaseous medium. The observed changes were attributed tentatively to surface currents.

  20. OPCPA modeling using YCOB as the non-linear crystal

    NASA Astrophysics Data System (ADS)

    Pires, Hugo; Cardoso, Luis; Wemans, João; João, Celso; Figueira, Gonçalo

    2010-04-01

    In this work, we evaluate numerically the performance of the nonlinear crystal yttrium calcium oxyborate (YCOB) as the gain medium in a noncollinear, angularly dispersed beam OPCPA configuration, and compare it to other well-studied crystals. In particular, we study its use in the context of an ultrahigh peak and average power amplifier setup. Possible bandwidths are assessed.

  1. Bibliography of Soviet Laser Developments, Number 26, October - December 1976.

    DTIC Science & Technology

    1977-07-25

    Arevyan, N.N. Petrov, and L.V. Sukhanov (0). Photodissociative short-pulse laser with gain modulation of the medium by a magnetic field. KE, no. 11...L________________________________________________ 120. Sukhanov , I.I. and Yu.V. Troitskiy (75). Mode-locking control in a gas laser by a phase interferometer. KE, no. 12, 1976 a 2596-2605. 121

  2. Learning in Social Networks: Rationale and Ideas for Its Implementation in Higher Education

    ERIC Educational Resources Information Center

    Alvarez, Ibis M.; Olivera-Smith, Marialexa

    2013-01-01

    The internet has fast become a prevalent medium for collaboration between people and social networks, in particular, have gained vast popularity and relevance over the past few years. Within this framework, our paper will analyse the role played by social networks in current teaching practices. Specifically, we focus on the principles guiding the…

  3. Three & Four Product Surface-Wave Acousto-Optic Time Integrating Correlators.

    DTIC Science & Technology

    four product correlated signals. A laser beam is split and shaped into first and second sheet beams. The first beam is directed to a first acousto - optic medium...where it is doubly diffracted by first and second signals. The second beam is directed to a second acousto - optic medium which is spatially...rotated 90 degs relative to the first acousto - optic medium where the second sheet beam is either singly diffracted by a third signal or doubly diffracted

  4. Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations

    PubMed Central

    Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.; Hutchison, Janine R.

    2016-01-01

    Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces. PMID:27736999

  5. Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations.

    PubMed

    Hess, Becky M; Amidan, Brett G; Anderson, Kevin K; Hutchison, Janine R

    2016-01-01

    Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.

  6. Establishment of uracil auxotrophic dikaryotic strains of Lentinula edodes by crossbreeding.

    PubMed

    Zhou, Chenli; Xi, Liping; Mao, Wenjun; Wan, Jianing; Li, Yan; Wang, Ying; Bao, Dapeng

    2017-03-01

    The uracil auxotrophic monokaryotic strain 423-9 of Lentinula edodes was crossed with nine monokaryons (cro2-2-9, W66-1, xd2-3-2, QingKe 20A, 241-1-1, 9015-1, L66-2, 241-1-2, and Qing 23A) derived from wild type strains of L. edodes . Nine dikaryotic hybrids were established from these crosses. These hybrids were fruited and 496 single spore isolates were obtained. Among these single spore isolates, 166 were identified as monokaryons under a microscope. We screened these monokaryons on selective medium and obtained 19 uracil auxotrophic monokaryons. By using the Monkaryon-monkaryon crossing method among the uracil auxotrophic monokaryons, 56 uracil auxotrophic dikaryotic strains were established on selective medium. These dikaryotic strains were unable to grow on minimal medium without uracil and exhibited slow growth rates on PDA plates compared to the wild type strain. The uracil auxotrophic dikaryotic strains also showed more vigorous growth on sawdust cultivation medium containing uracil than that without uracil. The fruiting tests showed that they formed normal fruiting bodies on the sawdust medium containing uracil. The results show that the uracil auxotrophic dikaryotic strain of L. edodes could be produced by mating, and will provide a valuable resource for future genetic studies and for spawn protection and identification.

  7. Morphogenesis in leaf and single-cell cultures of mature Juniperus oxycedrus.

    PubMed

    Gomez, M P; Segura, J

    1996-08-01

    Single cells were mechanically isolated from leaf-derived callus of mature Juniperus oxycedrus L. These cells divided and gave rise to callus when plated on medium containing growth regulators. Best plating efficiency was obtained on a modified Schenk and Hildebrandt medium supplemented with 0.6 micro M 2,4-dichlorophenoxyacetic acid and 100 mg l(-1) casein hydrolyzate. Although single-cell-derived callus showed poor morphogenic potential, both adventitious shoots and embryogenic tissues differentiated from the callus. We also achieved induction of somatic embryogenesis in leaf explants of mature J. oxycedrus trees cultured in the presence of 6.0 or 10.0 micro M 2,4-dichlorophenoxyacetic acid or picloram. Frequency of embryogenic callus ranged from 6 to 18%; however, under the culture conditions tested, isolated embryos failed to develop into plants.

  8. Elastic properties of paramagnetic austenitic steel at finite temperature: Longitudinal spin fluctuations in multicomponent alloys

    NASA Astrophysics Data System (ADS)

    Dong, Zhihua; Schönecker, Stephan; Chen, Dengfu; Li, Wei; Long, Mujun; Vitos, Levente

    2017-11-01

    We propose a first-principles framework for longitudinal spin fluctuations (LSFs) in disordered paramagnetic (PM) multicomponent alloy systems and apply it to investigate the influence of LSFs on the temperature dependence of two elastic constants of PM austenitic stainless steel Fe15Cr15Ni. The magnetic model considers individual fluctuating moments in a static PM medium with first-principles-derived LSF energetics in conjunction with describing chemical disorder and randomness of the transverse magnetic component in the single-site alloy formalism and disordered local moment (DLM) picture. A temperature-sensitive mean magnetic moment is adopted to accurately represent the LSF state in the elastic-constant calculations. We make evident that magnetic interactions between an LSF impurity and the PM medium are weak in the present steel alloy. This allows gaining accurate LSF energetics and mean magnetic moments already through a perturbation from the static DLM moments instead of a tedious self-consistent procedure. We find that LSFs systematically lower the cubic shear elastic constants c' and c44 by ˜6 GPa in the temperature interval 300-1600 K, whereas the predominant mechanism for the softening of both elastic constants with temperature is the magneto-volume coupling due to thermal lattice expansion. We find that non-negligible local magnetic moments of Cr and Ni are thermally induced by LSFs, but they exert only a small influence on the elastic properties. The proposed framework exhibits high flexibility in accurately accounting for finite-temperature magnetism and its impact on the mechanical properties of PM multicomponent alloys.

  9. The Effect of Capital Gains Taxation on Home Sales: Evidence from the Taxpayer Relief Act of 1997

    PubMed Central

    Shan, Hui

    2010-01-01

    The Taxpayer Relief Act of 1997 (TRA97) significantly changed the tax treatment of housing capital gains in the United States. Before 1997, homeowners were subject to capital gains taxation when they sold their houses unless they purchased replacement homes of equal or greater value. Since 1997, homeowners can exclude capital gains of $500,000 (or $250,000 for single filers) when they sell their houses. Such dramatic changes provide a good opportunity to study the lock-in effect of capital gains taxation on home sales. Using 1982–2008 transaction data on single-family houses in 16 affluent towns within the Boston metropolitan area, I find that TRA97 reversed the lock-in effect of capital gains taxes on houses with low and moderate capital gains. Specifically, the semiannual sales rate of houses with positive gains up to $500,000 increased by 0.40–0.62 percentage points after TRA97, representing a 19–24 percent increase from the pre-TRA97 baseline sales rate. In contrast, I do not find TRA97 to have a significant effect on houses with gains above $500,000. Moreover, the short-term effect of TRA97 is much larger than the long-term effect, suggesting that many previously locked-in homeowners took advantage of the exclusions immediately after TRA97. In addition, I exploit the 2001 and 2003 legislative changes in the capital gains tax rate to estimate the tax elasticity of home sales during the post-TRA97 period. The estimation results suggest that a $10,000 increase in capital gains taxes reduces the semiannual home sales rate by about 0.1–0.2 percentage points, or 6–13 percent from the post-TRA97 average sales rate. PMID:21170145

  10. A single-frequency double-pulse Ho:YLF laser for CO2-lidar

    NASA Astrophysics Data System (ADS)

    Kucirek, P.; Meissner, A.; Eiselt, P.; Höfer, M.; Hoffmann, D.

    2016-03-01

    A single-frequency q-switched Ho:YLF laser oscillator with a bow-tie ring resonator, specifically designed for highspectral stability, is reported. It is pumped with a dedicated Tm:YLF laser at 1.9 μm. The ramp-and-fire method with a DFB-diode laser as a reference is employed for generating single-frequency emission at 2051 nm. The laser is tested with different operating modes, including cw-pumping at different pulse repetition frequencies and gain-switched pumping. The standard deviation of the emission wavelength of the laser pulses is measured with the heterodyne technique at the different operating modes. Its dependence on the single-pass gain in the crystal and on the cavity finesse is investigated. At specific operating points the spectral stability of the laser pulses is 1.5 MHz (rms over 10 s). Under gain-switched pumping with 20% duty cycle and 2 W of average pump power, stable single-frequency pulse pairs with a temporal separation of 580 μs are produced at a repetition rate of 50 Hz. The measured pulse energy is 2 mJ (<2 % rms error on the pulse energy over 10 s) and the measured pulse duration is approx. 20 ns for each of the two pulses in the burst.

  11. Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization.

    PubMed

    Izmirlioglu, Gulten; Demirci, Ali

    2015-10-15

    Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium components on ethanol production was evaluated. Yeast extract, malt extract, and MgSO₄·7H₂O showed significantly positive effects, whereas KH₂PO₄ and CaCl₂·2H₂O had a significantly negative effect (p-value<0.05). Using response surface methodology, a medium consisting of 40.4 g/L (dry basis) industrial waste potato, 50 g/L malt extract, and 4.84 g/L MgSO₄·7H₂O was found optimal and yielded 24.6 g/L ethanol at 30 °C, 150 rpm, and 48 h of fermentation. In conclusion, this study demonstrated that industrial potato waste can be used effectively to enhance bioethanol production.

  12. PicoGreen dye as an active medium for plastic lasers

    NASA Astrophysics Data System (ADS)

    Pradeep, C.; Vallabhan, C. P. G.; Radhakrishnan, P.; Nampoori, V. P. N.

    2015-08-01

    Deoxyribonucleic acid lipid complex thin films are used as a host material for laser dyes. We tested PicoGreen dye, which is commonly used for the quantification of single and double stranded DNA, for its applicability as lasing medium. PicoGreen dye exhibits enhanced fluorescence on intercalation with DNA. This enormous fluorescence emission is amplified in a planar microcavity to achieve yellow lasing. Here the role of DNA is not only a host medium, but also as a fluorescence dequencher. With the obtained results we have ample reasons to propose PicoGreen dye as a lasing medium, which can lead to the development of DNA based bio-lasers.

  13. Techniques for determining thermal conductivity and heat capacity under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Andersson, S.; Bäckström, G.

    1986-08-01

    The paper describes a method for measuring the pressure dependence of the thermal conductivity and the heat capacity of hard materials and single crystals. Two parallel metal strips are evaporated onto a flat surface of the specimen, one being used as a heater, the other as a resistance thermometer. The appropriate theoretical expression for a specimen in a liquid medium is fitted to the temperature, sampled at constant time intervals. The thermophysical properties of the liquid high-pressure medium are taken from hot-wire experiments. The procedure has been thoroughly tested at atmospheric pressure using an MgO crystal and glass as specimens and liquids of different characteristics in lieu of high-pressure medium. The accuracy attainable was found to be 3% or better, the standard deviation of the measurements being about 0.3%. The potential of the system was demonstrated by measurements on single-crystal MgO under pressures up to 1 GPa.

  14. Single-step purification of recombinant Gaussia luciferase from serum-containing culture medium of mammalian cells.

    PubMed

    Inouye, Satoshi

    2018-01-01

    A dihydrofolate reductase-deficient Chinese hamster ovary (CHO-K1/dhfr - ) cell line stably expressing Gaussia luciferase with a histidine-tag sequence at the carboxyl terminus (GLase-His) was established. Recombinant GLase-His was purified from serum-containing culture medium by single-step Ni-chelate column chromatography in the presence of 2 M NaCl and 0.01% Tween 20. The protein yield of GLase-His with over 95% purity was 0.5 mg from 0.9 L of the cultured medium. The enzymatic properties of purified GLase-His were characterized. Interestingly, non-ionic detergent Tween 20 stabilized and stimulated GLase-His activity and its luminescence activity was stimulated 2-fold by the synergistic effect of 0.01% Tween 20 and 150 mM NaCl. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A high-gain, low ion-backflow double micro-mesh gaseous structure for single electron detection

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Qi, Binbin; Liu, Chengming; Feng, Jianxin; Liu, Jianbei; Shao, Ming; Zhou, Yi; Hong, Daojin; Lv, You; Song, Guofeng; Wang, Xu; You, Wenhao

    2018-05-01

    Application of micro-pattern gaseous detectors to gaseous photomultiplier tubes has been widely investigated over the past two decades. In this paper, we present a double micro-mesh gaseous structure that has been designed and fabricated for this application. Tests with X-rays and UV laser light indicate that this structure exhibits an excellent gas gain of > 7 × 104 and good energy resolution of 19% (full width at half maximum) for 5.9 keV X-rays. The gas gain can reach up to 106 for single electrons while maintaining a very low ion-backflow ratio down to 0.0005. This structure has good potential for other applications requiring a very low level of ion backflow.

  16. Arthroscopically assisted reduction of acute acromioclavicular joint dislocation using a single double-button device: Medium-term clinical and radiological outcomes.

    PubMed

    Issa, S-P; Payan, C; Le Hanneur, M; Loriaut, P; Boyer, P

    2018-02-01

    Double-button devices for endoscopic management of acute acromioclavicular joint dislocation (ACJD) provide satisfactory short-term functional and radiological results. However, little exists in the literature regarding the long- and medium-term results of these implants, especially regarding the evolution of the acromioclavicular joint (ACJ). Satisfactory and steady long- and medium-term outcomes can be achieved in patients with acute ACJD undergoing endoscopically assisted ACJ repair using a single double-button device. A retrospective single-center study was conducted in patients with acute Rockwood III and IV ACJD treated endoscopically with a single double-button device from October 2008 to October 2010, allowing a minimum 5-year follow-up. Functional evaluation used Constant and Quick-DASH scores. Clinical evidence of dislocation recurrence was combined with bilateral Zanca views to assess coracoclavicular distance. Acromioclavicular osteoarthritis was evaluated on the Paxinos test and Zanca views. Nineteen of the 25 operated patients were seen at a mean 76.9±8.5 months' follow-up. Mean age was 34.4±8.3 years. Mean Constant and Quick-DASH scores were 96.2±5.1 and 0.9±1.6 points, respectively. Four patients had a recurrence of their initial dislocation, 3 of whom had positive Paxinos test, whereas the 15 patients without recurrence had a negative test (p=0.004). Five patients had radiological evidence of ACJ osteoarthritis: all 4 patients with recurrence and 1 without (p=0.001). Long- and medium-term radioclinical outcome of endoscopically assisted management of acute ACJD using a single double-button device seems to be satisfactory and steady over time. Recurrence of the initial dislocation appears to be related to onset of degenerative ACJ arthropathy. Therapeutic type IV-Retrospective case series. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Noninferiority, randomized, controlled trial comparing embryo development using media developed for sequential or undisturbed culture in a time-lapse setup.

    PubMed

    Hardarson, Thorir; Bungum, Mona; Conaghan, Joe; Meintjes, Marius; Chantilis, Samuel J; Molnar, Laszlo; Gunnarsson, Kristina; Wikland, Matts

    2015-12-01

    To study whether a culture medium that allows undisturbed culture supports human embryo development to the blastocyst stage equivalently to a well-established sequential media. Randomized, double-blinded sibling trial. Independent in vitro fertilization (IVF) clinics. One hundred twenty-eight patients, with 1,356 zygotes randomized into two study arms. Embryos randomly allocated into two study arms to compare embryo development on a time-lapse system using a single-step medium or sequential media. Percentage of good-quality blastocysts on day 5. Percentage of day 5 good-quality blastocysts was 21.1% (standard deviation [SD] ± 21.6%) and 22.2% (SD ± 22.1%) in the single-step time-lapse medium (G-TL) and the sequential media (G-1/G-2) groups, respectively. The mean difference (-1.2; 95% CI, -6.0; 3.6) between the two media systems for the primary end point was less than the noninferiority margin of -8%. There was a statistically significantly lower number of good-quality embryos on day 3 in the G-TL group [50.7% (SD ± 30.6%) vs. 60.8% (SD ± 30.7%)]. Four out of the 11 measured morphokinetic parameters were statistically significantly different for the two media used. The mean levels of ammonium concentration in the media at the end of the culture period was statistically significantly lower in the G-TL group as compared with the G-2 group. We have shown that a single-step culture medium supports blastocyst development equivalently to established sequential media. The ammonium concentrations were lower in the single-step media, and the measured morphokinetic parameters were modified somewhat. NCT01939626. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Planar-integrated single-crystalline perovskite photodetectors

    PubMed Central

    Saidaminov, Makhsud I.; Adinolfi, Valerio; Comin, Riccardo; Abdelhady, Ahmed L.; Peng, Wei; Dursun, Ibrahim; Yuan, Mingjian; Hoogland, Sjoerd; Sargent, Edward H.; Bakr, Osman M.

    2015-01-01

    Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 104 electrons per photon) and high gain-bandwidth product (above 108 Hz) relative to other perovskite-based optical sensors. PMID:26548941

  19. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., heatdamaged, and paddy kernels (singly or combined) Total (number in 500 grams) Heatdamaged kernels and objectionable seeds (number in 500 grams) Red rice anddamaged kernels (singly or combined) (percent) Chalky...

  20. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., heatdamaged, and paddy kernels (singly or combined) Total (number in 500 grams) Heatdamaged kernels and objectionable seeds (number in 500 grams) Red rice anddamaged kernels (singly or combined) (percent) Chalky...

  1. Single-mode SOA-based 1kHz-linewidth dual-wavelength random fiber laser.

    PubMed

    Xu, Yanping; Zhang, Liang; Chen, Liang; Bao, Xiaoyi

    2017-07-10

    Narrow-linewidth multi-wavelength fiber lasers are of significant interests for fiber-optic sensors, spectroscopy, optical communications, and microwave generation. A novel narrow-linewidth dual-wavelength random fiber laser with single-mode operation, based on the semiconductor optical amplifier (SOA) gain, is achieved in this work for the first time, to the best of our knowledge. A simplified theoretical model is established to characterize such kind of random fiber laser. The inhomogeneous gain in SOA mitigates the mode competition significantly and alleviates the laser instability, which are frequently encountered in multi-wavelength fiber lasers with Erbium-doped fiber gain. The enhanced random distributed feedback from a 5km non-uniform fiber provides coherent feedback, acting as mode selection element to ensure single-mode operation with narrow linewidth of ~1kHz. The laser noises are also comprehensively investigated and studied, showing the improvements of the proposed random fiber laser with suppressed intensity and frequency noises.

  2. A reduced adaptive observer for multivariable systems. [using reduced dynamic ordering

    NASA Technical Reports Server (NTRS)

    Carroll, R. L.; Lindorff, D. P.

    1973-01-01

    An adaptive observer for multivariable systems is presented for which the dynamic order of the observer is reduced, subject to mild restrictions. The observer structure depends directly upon the multivariable structure of the system rather than a transformation to a single-output system. The number of adaptive gains is at most the sum of the order of the system and the number of input parameters being adapted. Moreover, for the relatively frequent specific cases for which the number of required adaptive gains is less than the sum of system order and input parameters, the number of these gains is easily determined by inspection of the system structure. This adaptive observer possesses all the properties ascribed to the single-input single-output adpative observer. Like the other adaptive observers some restriction is required of the allowable system command input to guarantee convergence of the adaptive algorithm, but the restriction is more lenient than that required by the full-order multivariable observer. This reduced observer is not restricted to cycle systems.

  3. Control of Wave Propagation and Effect of Kerr Nonlinearity on Group Index

    NASA Astrophysics Data System (ADS)

    Hazrat, Ali; Ziauddin; Iftikhar, Ahmed

    2013-07-01

    We use four-level atomic system and control the wave propagation via forbidden decay rate. The Raman gain process becomes dominant on electromagnetically induced transparency (EIT) medium by increasing the forbidden decay rate via increasing the number of atoms [G.S. Agarwal and T.N. Dey, Phys. Rev. A 74 (2006) 043805 and K. Harada, T. Kanbashi, and M. Mitsunaga, Phys. Rev. A 73 (2006) 013803]. The behavior of wave propagation is dramatically changed from normal (subluminal) to anomalous (superluminal) dispersion by increasing the forbidden decay rate. The system can also give a control over the group velocity of the light propagating through the medium via Kerr field.

  4. Method for retorting oil shale

    DOEpatents

    Shang, Jer-Yu; Lui, A.P.

    1985-08-16

    The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.

  5. Reconstruction of pulse noisy images via stochastic resonance

    PubMed Central

    Han, Jing; Liu, Hongjun; Sun, Qibing; Huang, Nan

    2015-01-01

    We investigate a practical technology for reconstructing nanosecond pulse noisy images via stochastic resonance, which is based on the modulation instability. A theoretical model of this method for optical pulse signal is built to effectively recover the pulse image. The nanosecond noise-hidden images grow at the expense of noise during the stochastic resonance process in a photorefractive medium. The properties of output images are mainly determined by the input signal-to-noise intensity ratio, the applied voltage across the medium, and the correlation length of noise background. A high cross-correlation gain is obtained by optimizing these parameters. This provides a potential method for detecting low-level or hidden pulse images in various imaging applications. PMID:26067911

  6. Optical spectroscopy of cobalt-doped cadmium telluride

    NASA Astrophysics Data System (ADS)

    Turner, Eric J.; Evans, Jonathan; Harris, Thomas

    2018-02-01

    Spectroscopic investigation of Co2+:CdTe was performed to evaluate it's potential as a lasing medium. The sample had a targeted doping concentration of 2% and measurements were performed from 10 - 120K. Cross-sections for Co:CdTe were calculated using Füchtbauer-Ladenburg and reciprocity methods. Calculations suggest the potential for efficient lasing at 3.7μm when pumped by a 3μm laser source on the 4A2 <-> 4T2 transition. The fluorescence lifetime was measured to quantify the temperature dependence of the non-radiative relaxation rate. This work aims to characterize Co:CdTe as a novel gain medium for compact, tunable mid-infrared lasers operating within the atmospheric transmission window.

  7. Optical resonators and neural networks

    NASA Astrophysics Data System (ADS)

    Anderson, Dana Z.

    1986-08-01

    It may be possible to implement neural network models using continuous field optical architectures. These devices offer the inherent parallelism of propagating waves and an information density in principle dictated by the wavelength of light and the quality of the bulk optical elements. Few components are needed to construct a relatively large equivalent network. Various associative memories based on optical resonators have been demonstrated in the literature, a ring resonator design is discussed in detail here. Information is stored in a holographic medium and recalled through a competitive processes in the gain medium supplying energy to the ring rsonator. The resonator memory is the first realized example of a neural network function implemented with this kind of architecture.

  8. Spatially detailed retrievals of spring phenology from single-season high-resolution image time series

    NASA Astrophysics Data System (ADS)

    Vrieling, Anton; Skidmore, Andrew K.; Wang, Tiejun; Meroni, Michele; Ens, Bruno J.; Oosterbeek, Kees; O'Connor, Brian; Darvishzadeh, Roshanak; Heurich, Marco; Shepherd, Anita; Paganini, Marc

    2017-07-01

    Vegetation indices derived from satellite image time series have been extensively used to estimate the timing of phenological events like season onset. Medium spatial resolution (≥250 m) satellite sensors with daily revisit capability are typically employed for this purpose. In recent years, phenology is being retrieved at higher resolution (≤30 m) in response to increasing availability of high-resolution satellite data. To overcome the reduced acquisition frequency of such data, previous attempts involved fusion between high- and medium-resolution data, or combinations of multi-year acquisitions in a single phenological reconstruction. The objectives of this study are to demonstrate that phenological parameters can now be retrieved from single-season high-resolution time series, and to compare these retrievals against those derived from multi-year high-resolution and single-season medium-resolution satellite data. The study focuses on the island of Schiermonnikoog, the Netherlands, which comprises a highly-dynamic saltmarsh, dune vegetation, and agricultural land. Combining NDVI series derived from atmospherically-corrected images from RapidEye (5 m-resolution) and the SPOT5 Take5 experiment (10m-resolution) acquired between March and August 2015, phenological parameters were estimated using a function fitting approach. We then compared results with phenology retrieved from four years of 30 m Landsat 8 OLI data, and single-year 100 m Proba-V and 250 m MODIS temporal composites of the same period. Retrieved phenological parameters from combined RapidEye/SPOT5 displayed spatially consistent results and a large spatial variability, providing complementary information to existing vegetation community maps. Retrievals that combined four years of Landsat observations into a single synthetic year were affected by the inclusion of years with warmer spring temperatures, whereas adjustment of the average phenology to 2015 observations was only feasible for a few pixels due to cloud cover around phenological transition dates. The Proba-V and MODIS phenology retrievals scaled poorly relative to their high-resolution equivalents, indicating that medium-resolution phenology retrievals need to be interpreted with care, particularly in landscapes with fine-scale land cover variability.

  9. Toward a Singleton Undergraduate Computer Graphics Course in Small and Medium-Sized Colleges

    ERIC Educational Resources Information Center

    Shesh, Amit

    2013-01-01

    This article discusses the evolution of a single undergraduate computer graphics course over five semesters, driven by a primary question: if one could offer only one undergraduate course in graphics, what would it include? This constraint is relevant to many small and medium-sized colleges that lack resources, adequate expertise, and enrollment…

  10. The influence of place on weight gain during early childhood: a population-based, longitudinal study.

    PubMed

    Carter, Megan Ann; Dubois, Lise; Tremblay, Mark S; Taljaard, Monica

    2013-04-01

    The objective of this paper was to determine the influence of place factors on weight gain in a contemporary cohort of children while also adjusting for early life and individual/family social factors. Participants from the Québec Longitudinal Study of Child Development comprised the sample for analysis (n = 1,580). A mixed-effects regression analysis was conducted to determine the longitudinal relationship between these place factors and standardized BMI, from age 4 to 10 years. The average relationship with time was found to be quadratic (rate of weight gain increased over time). Neighborhood material deprivation was found to be positively related to weight gain. Social deprivation, social disorder, and living in a medium density area were inversely related, while no association was found for social cohesion. Early life factors and genetic proxies appeared to be important in explaining weight gain in this sample. This study suggests that residential environments may play a role in childhood weight change; however, pathways are likely to be complex and interacting and perhaps not as important as early life factors and genetic proxies. Further work is required to clarify these relationships.

  11. Small-signal amplifier based on single-layer MoS2

    NASA Astrophysics Data System (ADS)

    Radisavljevic, Branimir; Whitwick, Michael B.; Kis, Andras

    2012-07-01

    In this letter we demonstrate the operation of an analog small-signal amplifier based on single-layer MoS2, a semiconducting analogue of graphene. Our device consists of two transistors integrated on the same piece of single-layer MoS2. The high intrinsic band gap of 1.8 eV allows MoS2-based amplifiers to operate with a room temperature gain of 4. The amplifier operation is demonstrated for the frequencies of input signal up to 2 kHz preserving the gain higher than 1. Our work shows that MoS2 can effectively amplify signals and that it could be used for advanced analog circuits based on two-dimensional materials.

  12. Sound pressure level gain in an acoustic metamaterial cavity.

    PubMed

    Song, Kyungjun; Kim, Kiwon; Hur, Shin; Kwak, Jun-Hyuk; Park, Jihyun; Yoon, Jong Rak; Kim, Jedo

    2014-12-11

    The inherent attenuation of a homogeneous viscous medium limits radiation propagation, thereby restricting the use of many high-frequency acoustic devices to only short-range applications. Here, we design and experimentally demonstrate an acoustic metamaterial localization cavity which is used for sound pressure level (SPL) gain using double coiled up space like structures thereby increasing the range of detection. This unique behavior occurs within a subwavelength cavity that is 1/10(th) of the wavelength of the incident acoustic wave, which provides up to a 13 dB SPL gain. We show that the amplification results from the Fabry-Perot resonance of the cavity, which has a simultaneously high effective refractive index and effective impedance. We also experimentally verify the SPL amplification in an underwater environment at higher frequencies using a sample with an identical unit cell size. The versatile scalability of the design shows promising applications in many areas, especially in acoustic imaging and underwater communication.

  13. Parametric instabilities and their control in multidimensional nonuniform gain media

    NASA Astrophysics Data System (ADS)

    Charbonneau-Lefort, Mathieu; Afeyan, Bedros; Fejer, Martin

    2007-11-01

    In order to control parametric instabilities in large scale long pulse laser produced plasmas, optical mixing techniques seem most promising [1]. We examine ways of controlling the growth of some modes while creating other unstable ones in nonuniform gain media, including the effects of transverse localization of the pump wave. We show that multidimensional effects are essential to understand laser-gain medium interactions [2] and that one dimensional models such as the celebrated Rosenbluth result [3] can be misleading [4]. These findings are verified in experiments carried out in a chirped quasi-phase-matched gratings in optical parametric amplifiers where thousands of shots can be taken and statistically significant and stable results obtained. [1] B. Afeyan, et al., IFSA Proceedings, 2003. [2] M. M. Sushchik and G. I. Freidman, Radiofizika 13, 1354 (1970). [3] M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972). [4] M. Charbonneau-Lefort, PhD thesis, Stanford University, 2007.

  14. Immediate and long term effects of compaction on the stress-strain behaviour of soil

    NASA Astrophysics Data System (ADS)

    Noor, Sarah T.; Chowdhury, Prantick; Chowdhury, Tasnim

    2018-04-01

    This paper explores whether delay in construction after compaction can benefit from the gain in soil’s strength and stability point of view. An experimental investigation has been carried out to examine the gradual development of soil’s shear strength by ageing of mechanically compacted soil at three relative densities. In order to separate the gain in strength due to ageing from that occurring from the reduction in soil moisture, the soil samples prepared in moulds were kept in desiccators for different periods of time (1, 9 and 17 days) before testing unconfined compressive strength test. The soil in densely compacted state is found to gain in strength due to ageing faster than that in medium compacted state. Only due to ageing of 9 days or more, unconfined compressive strength of compacted soil is found about 1.7 to 2.4 times of that attained in day 1 after compaction.

  15. Generalized radiative transfer theory for scattering by particles in an absorbing gas: Addressing both spatial and spectral integration in multi-angle remote sensing of optically thin aerosol layers

    NASA Astrophysics Data System (ADS)

    Davis, Anthony B.; Xu, Feng; Diner, David J.

    2018-01-01

    We demonstrate the computational advantage gained by introducing non-exponential transmission laws into radiative transfer theory for two specific situations. One is the problem of spatial integration over a large domain where the scattering particles cluster randomly in a medium uniformly filled with an absorbing gas, and only a probabilistic description of the variability is available. The increasingly important application here is passive atmospheric profiling using oxygen absorption in the visible/near-IR spectrum. The other scenario is spectral integration over a region where the absorption cross-section of a spatially uniform gas varies rapidly and widely and, moreover, there are scattering particles embedded in the gas that are distributed uniformly, or not. This comes up in many applications, O2 A-band profiling being just one instance. We bring a common framework to solve these problems both efficiently and accurately that is grounded in the recently developed theory of Generalized Radiative Transfer (GRT). In GRT, the classic exponential law of transmission is replaced by one with a slower power-law decay that accounts for the unresolved spectral or spatial variability. Analytical results are derived in the single-scattering limit that applies to optically thin aerosol layers. In spectral integration, a modest gain in accuracy is obtained. As for spatial integration of near-monochromatic radiance, we find that, although both continuum and in-band radiances are affected by moderate levels of sub-pixel variability, only extreme variability will affect in-band/continuum ratios.

  16. Gain measurements and spatial coherence in neon-like x-ray lasers

    NASA Astrophysics Data System (ADS)

    Krishnan, J.; Cairns, C.; Dwivedi, L.; Holden, M.; Key, M. H.; Lewis, C. L. S.; MacPhee, A.; Neely, D.; Norreys, P. A.; Pert, G. J.; Ramsden, S. A.; Smith, C. G.; Tallents, G. J.; Zhang, J.

    1995-05-01

    Many of the applications with x-ray lasers require high quality output radiation with properties such as short wavelength and a high degree of coherence (longitudinal and spatial). Ne-like Yttrium (Z=39) is potentially a bright and monochromatic XUV lasing medium. The output at 15.5 nm is monochromatic due to the overlap of the J=2-1 and J=0-1 lines. A gain coefficient of 3±1 was obtained at 15.5 nm by irradiating 100 μm wide yttrium stripes at 6×1013 W/cm2 with 1.06 μm, 650 ps pulses from the Rutherford Appleton Laboratory VULCAN laser. We have investigated improving x-ray laser spatial coherence utilizing a series of amplifiers instead of the standard double target configuration. An ``injector-amplifier'' scheme was successfully demonstrated with the Ne-like Ge x-ray laser. A spatially small and coherent part of the 23 nm beam from the standard double target geometry has been relayed using a W/Si multilayer mirror onto a single or double target configuration situated at a distance of ˜1.5 m from the mirror and pumped by two 150 mm diameter beams of VULCAN laser. A beam ``foot-print monitor'' was employed with a flat mirror to relay 23 nm output onto a film pack to record the spatial variation of the x-ray laser beam. Analyzing the fringes obtained through a cross-wire placed in front of the beam shows that an increase in spatial coherence was achieved by adding amplifiers to the x-ray laser beam line.

  17. Resolving the mystery of milliwatt-threshold opto-mechanical self-oscillation in dual-nanoweb fiber

    NASA Astrophysics Data System (ADS)

    Koehler, J. R.; Noskov, R. E.; Sukhorukov, A. A.; Butsch, A.; Novoa, D.; Russell, P. St. J.

    2016-08-01

    It is interesting to pose the question: How best to design an optomechanical device, with no electronics, optical cavity, or laser gain, that will self-oscillate when pumped in a single pass with only a few mW of single-frequency laser power? One might begin with a mechanically resonant and highly compliant system offering very high optomechanical gain. Such a system, when pumped by single-frequency light, might self-oscillate at its resonant frequency. It is well-known, however, that this will occur only if the group velocity dispersion of the light is high enough so that phonons causing pump-to-Stokes conversion are sufficiently dissimilar to those causing pump-to-anti-Stokes conversion. Recently it was reported that two light-guiding membranes 20 μm wide, ˜500 nm thick and spaced by ˜500 nm, suspended inside a glass fiber capillary, oscillated spontaneously at its mechanical resonant frequency (˜6 MHz) when pumped with only a few mW of single-frequency light. This was surprising, since perfect Raman gain suppression would be expected. In detailed measurements, using an interferometric side-probing technique capable of resolving nanoweb movements as small as 10 pm, we map out the vibrations along the fiber and show that stimulated intermodal scattering to a higher-order optical mode frustrates gain suppression, permitting the structure to self-oscillate. A detailed theoretical analysis confirms this picture. This novel mechanism makes possible the design of single-pass optomechanical oscillators that require only a few mW of optical power, no electronics nor any optical resonator. The design could also be implemented in silicon or any other suitable material.

  18. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., heat damaged, and paddy kernels (singly or combined) Total (number in 500 grams) Heat damaged kernels and objectionable seeds (number in 500 grams) Red rice and damaged kernels (singly or combined...

  19. Brain signatures of monetary loss and gain: outcome-related potentials in a single outcome gambling task

    PubMed Central

    Kamarajan, Chella; Porjesz, Bernice; Rangaswamy, Madhavi; Tang, Yongqiang; Chorlian, David B.; Padmanabhapillai, Ajayan; Saunders, Ramotse; Pandey, Ashwini K.; Roopesh, Bangalore N.; Manz, Niklas; Stimus, Arthur T.; Begleiter, Henri

    2009-01-01

    This study evaluates the event-related potential (ERP) components in a single outcome gambling task that involved monetary losses and gains. The participants were 50 healthy young volunteers (25 males and 25 females). The gambling task involved valence (loss and gain) and amount (50¢ and 10¢) as outcomes. The outcome-related negativity (ORN/N2) and outcome-related positivity (ORP/P3) were analyzed and compared across conditions and gender. Monetary gain (compared to loss) and higher amount (50¢ compared to 10¢) produced higher amplitudes and shorter latencies in both ORN and ORP components. Difference wave plots showed that earlier processing (200-400 ms) is dominated by the valence (loss/gain) while later processing (after 400 ms) is marked by the amount (50¢/10¢). Functional mapping using Low Resolution Electromagnetic Tomography (LORETA) indicated that the ORN separated the loss against gain in both genders, while the ORP activity distinguished the 50¢ against 10¢ in males. This study further strengthens the view that separate brain processes/circuitry may mediate loss and gain. Although there were no gender differences in behavioral and impulsivity scores, ORN and ORP measures for different task conditions had significant correlations with behavioral scores. This gambling paradigm may potentially offer valuable indicators to study outcome processing and impulsivity in normals as well as in clinical populations. PMID:18775749

  20. Modeling of genetic gain for single traits from marker-assisted seedling selection in clonally propagated crops

    PubMed Central

    Ru, Sushan; Hardner, Craig; Carter, Patrick A; Evans, Kate; Main, Dorrie; Peace, Cameron

    2016-01-01

    Seedling selection identifies superior seedlings as candidate cultivars based on predicted genetic potential for traits of interest. Traditionally, genetic potential is determined by phenotypic evaluation. With the availability of DNA tests for some agronomically important traits, breeders have the opportunity to include DNA information in their seedling selection operations—known as marker-assisted seedling selection. A major challenge in deploying marker-assisted seedling selection in clonally propagated crops is a lack of knowledge in genetic gain achievable from alternative strategies. Existing models based on additive effects considering seed-propagated crops are not directly relevant for seedling selection of clonally propagated crops, as clonal propagation captures all genetic effects, not just additive. This study modeled genetic gain from traditional and various marker-based seedling selection strategies on a single trait basis through analytical derivation and stochastic simulation, based on a generalized seedling selection scheme of clonally propagated crops. Various trait-test scenarios with a range of broad-sense heritability and proportion of genotypic variance explained by DNA markers were simulated for two populations with different segregation patterns. Both derived and simulated results indicated that marker-based strategies tended to achieve higher genetic gain than phenotypic seedling selection for a trait where the proportion of genotypic variance explained by marker information was greater than the broad-sense heritability. Results from this study provides guidance in optimizing genetic gain from seedling selection for single traits where DNA tests providing marker information are available. PMID:27148453

  1. Propagation of single-cycle terahertz pulses in random media.

    PubMed

    Pearce, J; Mittleman, D M

    2001-12-15

    We describe what are to our knowledge the first measurements of the propagation of coherent, single-cycle pulses of terahertz radiation in a scattering medium. By measuring the transmission as a function of the length L of the medium, we extract the scattering mean free path l(s)(omega) over a broad bandwidth. We observe variations in l(s) ranging over nearly 2 orders of magnitude and covering the entire thin sample regime from L/l(s)<1 to L/l(s)~10 . We also observe scattering-induced dispersive effects, which can be attributed to the additional path traveled by photons scattered at small angles.

  2. Model of multistep electron transfer in a single-mode polar medium

    NASA Astrophysics Data System (ADS)

    Feskov, S. V.; Yudanov, V. V.

    2017-09-01

    A mathematical model of multistep photoinduced electron transfer (PET) in a polar medium with a single relaxation time (Debye solvent) is developed. The model includes the polarization nonequilibrity formed in the vicinity of the donor-acceptor molecular system at the initial steps of photoreaction and its influence on the subsequent steps of PET. It is established that the results from numerical simulation of transient luminescence spectra of photoexcited donor-acceptor complexes (DAC) conform to calculated data obtained on the basis of the familiar experimental technique used to measure the relaxation function of solvent polarization in the vicinity of DAC in the picosecond and subpicosecond ranges.

  3. Emittance of a finite scattering medium with refractive index greater than unity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosbie, A.L.

    1980-01-01

    Refractive index and scattering can significantly influence the transfer of radiation in a semitransparent medium such as water, glass, plastics, or ceramics. In a recent article (1979), the author presented exact numerical results for the emittance of a semiinfinite scattering medium with a refractive index greater than unity. The present investigation extends the analysis to a finite medium. The physical situation consists of a finite planar layer. The isothermal layer emits, absorbs, and isotropically scatters thermal radiation. It is characterized by single scattering albedo, optical thickness, refractive index, and temperature. A formula for the directional emittance is derived, the directionalmore » emittance being the emittance of the medium multiplied by the interface transmittance. The ratio of hemispherical to normal emittance is tabulated and discussed.« less

  4. How Much Is Enough? Involving Occupational Experts in Setting Standards on a Specific-Purpose Language Test for Health Professionals

    ERIC Educational Resources Information Center

    Pill, John; McNamara, Tim

    2016-01-01

    This paper considers how to establish the minimum required level of professionally relevant oral communication ability in the medium of English for health practitioners with English as an additional language (EAL) to gain admission to practice in jurisdictions where English is the dominant language. A theoretical concern is the construct of…

  5. Navigating the Problem Space: The Medium of Simulation Games in the Teaching of History

    ERIC Educational Resources Information Center

    McCall, Jeremiah

    2012-01-01

    Simulation games can play a critical role in enabling students to navigate the problem spaces of the past while simultaneously critiquing the models designers offer to represent those problem spaces. There is much to be gained through their use. This includes rich opportunities for students to engage the past as independent historians; to consider…

  6. Strategies of Adolescent Girls and Boys for Coping with School-Related Stress

    ERIC Educational Resources Information Center

    Wilhsson, Marie; Svedberg, Petra; Högdin, Sara; Nygren, Jens M.

    2017-01-01

    Stress among adolescents in Western societies is becoming an issue of increasing concern of adolescent's health. The aim of this study was to gain greater knowledge about how girls and boys perceive and cope with school-related stress. Participants were 14- to 15-year-old adolescents from a medium-sized municipality in southern Sweden. The data…

  7. Learning Te Reo Maori via Online Distance Education: A Case Study

    ERIC Educational Resources Information Center

    Jeurissen, Maree

    2015-01-01

    Despite some gains in the regeneration of te reo Maori, the indigenous language of Aotearoa New Zealand, its long-term survival remains threatened. One avenue for regeneration seldom considered is the English-medium secondary school. This article reports on a case study where students in one such school chose te reo Maori as an option and, and,…

  8. The Impact of CLIL on L2 Vocabulary Development and Content Knowledge

    ERIC Educational Resources Information Center

    Xanthou, Maria

    2011-01-01

    This paper examines whether students involved in CLIL are able to learn content through the medium of L2 and simultaneously exhibit significant gains in L2 vocabulary knowledge. Two experiments were set up in two public primary schools. Two groups of 6th grade students participated in each experiment. The first group was taught three 80-minute…

  9. Interacting with a Computer-Simulated Pet: Factors Influencing Children's Humane Attitudes and Empathy

    ERIC Educational Resources Information Center

    Tsai, Yueh-Feng; Kaufman, David

    2014-01-01

    Previous research by Tsai and Kaufman (2010a, 2010b) has suggested that computer-simulated virtual pet dogs can be used as a potential medium to enhance children's development of empathy and humane attitudes toward animals. To gain a deeper understanding of how and why interacting with a virtual pet dog might influence children's social and…

  10. Progress on Raman laser for sodium resonance fluorescence lidar

    NASA Astrophysics Data System (ADS)

    Li, Steven X.; Yu, Anthony W.; Krainak, Michael A.; Bai, Yingxin; Konoplev, Oleg; Fahey, Molly E.; Numata, Kenji

    2018-02-01

    We are developing a Q-switched narrow linewidth intra-cavity Raman laser for a space based sodium lidar application. A novel Raman laser injection seeding scheme is proposed and is experimentally verified. A Q-switched, diode pumped, c-cut Nd:YVO4 laser has been designed to emit a fundamental wavelength at 1066.6 nm. This fundamental wavelength is used as the pump in an intra-cavity Raman conversion in a Gd0.2Y0.8VO4 composite material. By tuning the temperature of the crystal, we tuned the Raman shifting to the desired sodium absorption line. A diode end pumped, T-shaped laser cavity has been built for experimental investigation. The fundamental pump laser cavity is a twisted mode cavity to eliminate the spatial hole burning for effective injection seeding. The Raman laser cavity is a linear standing wave cavity because Raman gain medium does not suffer spatial hole burning as traditional laser gain medium. The linewidth and temporal profile of the Raman laser is experimentally investigated with narrow and broadband fundamental pump emission. We have, for the first time, demonstrated an injection seeded, high peak power, narrow linewidth intra-cavity Raman laser for potential use in a sodium resonance fluorescence lidar.

  11. A semi-analytical model of a time reversal cavity for high-amplitude focused ultrasound applications

    NASA Astrophysics Data System (ADS)

    Robin, J.; Tanter, M.; Pernot, M.

    2017-09-01

    Time reversal cavities (TRC) have been proposed as an efficient approach for 3D ultrasound therapy. They allow the precise spatio-temporal focusing of high-power ultrasound pulses within a large region of interest with a low number of transducers. Leaky TRCs are usually built by placing a multiple scattering medium, such as a random rod forest, in a reverberating cavity, and the final peak pressure gain of the device only depends on the temporal length of its impulse response. Such multiple scattering in a reverberating cavity is a complex phenomenon, and optimisation of the device’s gain is usually a cumbersome process, mostly empirical, and requiring numerical simulations with extremely long computation times. In this paper, we present a semi-analytical model for the fast optimisation of a TRC. This model decouples ultrasound propagation in an empty cavity and multiple scattering in a multiple scattering medium. It was validated numerically and experimentally using a 2D-TRC and numerically using a 3D-TRC. Finally, the model was used to determine rapidly the optimal parameters of the 3D-TRC which had been confirmed by numerical simulations.

  12. Influences of thermal deformation of cavity mirrors induced by high energy DF laser to beam quality under the simulated real physical circumstances

    NASA Astrophysics Data System (ADS)

    Deng, Shaoyong; Zhang, Shiqiang; He, Minbo; Zhang, Zheng; Guan, Xiaowei

    2017-05-01

    The positive-branch confocal unstable resonator with inhomogeneous gain medium was studied for the normal used high energy DF laser system. The fast changing process of the resonator's eigenmodes was coupled with the slow changing process of the thermal deformation of cavity mirrors. Influences of the thermal deformation of cavity mirrors to the outcoupled beam quality and transmission loss of high frequency components of high energy laser were computed. The simulations are done through programs compiled by MATLAB and GLAD software and the method of combination of finite elements and Fox-li iteration algorithm was used. Effects of thermal distortion, misaligned of cavity mirrors and inhomogeneous distribution of gain medium were introduced to simulate the real physical circumstances of laser cavity. The wavefront distribution and beam quality (including RMS of wavefront, power in the bucket, Strehl ratio, diffraction limit β, position of the beam spot center, spot size and intensity distribution in far-field ) of the distorted outcoupled beam were studied. The conclusions of the simulation agree with the experimental results. This work would supply references of wavefront correction range to the adaptive optics system of interior alleyway.

  13. Improved Murine Blastocyst Quality and Development in a Single Culture Medium Compared to Sequential Culture Media

    PubMed Central

    Hennings, Justin M.; Zimmer, Randall L.; Nabli, Henda; Davis, J. Wade; Sutovsky, Peter; Sutovsky, Miriam; Sharpe-Timms, Kathy L.

    2015-01-01

    Objective: Validate single versus sequential culture media for murine embryo development. Design: Prospective laboratory experiment. Setting: Assisted Reproduction Laboratory. Animals: Murine embryos. Interventions: Thawed murine zygotes cultured for 3 or 5 days (d3 or d5) in single or sequential embryo culture media developed for human in vitro fertilization. Main Outcome Measures: On d3, zygotes developing to the 8 cell (8C) stage or greater were quantified using 4’,6-diamidino-2-phenylindole (DAPI), and quality was assessed by morphological analysis. On d5, the number of embryos reaching the blastocyst stage was counted. DAPI was used to quantify total nuclei and inner cell mass nuclei. Localization of ubiquitin C-terminal hydrolase L1 (UCHL1) and ubiquitin C-terminal hydrolase L3 (UCHL3) was reference points for evaluating cell quality. Results: Comparing outcomes in single versus to sequential media, the odds of embryos developing to the 8C stage on d3 were 2.34 time greater (P = .06). On d5, more embryos reached the blastocyst stage (P = <.0001), hatched, and had significantly more trophoblast cells (P = .005) contributing to the increased total cell number. Also at d5, localization of distinct cytoplasmic UCHL1 and nuclear UCHL3 was found in high-quality hatching blastocysts. Localization of UCHL1 and UCHL3 was diffuse and inappropriately dispersed throughout the cytoplasm in low-quality nonhatching blastocysts. Conclusions: Single medium yields greater cell numbers, an increased growth rate, and more hatching of murine embryos. Cytoplasmic UCHL1 and nuclear UHCL3 localization patterns were indicative of embryo quality. Our conclusions are limited to murine embryos but one might speculate that single medium may also be more beneficial for human embryo culture. Human embryo studies are needed. PMID:26668049

  14. Improved Murine Blastocyst Quality and Development in a Single Culture Medium Compared to Sequential Culture Media.

    PubMed

    Hennings, Justin M; Zimmer, Randall L; Nabli, Henda; Davis, J Wade; Sutovsky, Peter; Sutovsky, Miriam; Sharpe-Timms, Kathy L

    2016-03-01

    Validate single versus sequential culture media for murine embryo development. Prospective laboratory experiment. Assisted Reproduction Laboratory. Murine embryos. Thawed murine zygotes cultured for 3 or 5 days (d3 or d5) in single or sequential embryo culture media developed for human in vitro fertilization. On d3, zygotes developing to the 8 cell (8C) stage or greater were quantified using 4',6-diamidino-2-phenylindole (DAPI), and quality was assessed by morphological analysis. On d5, the number of embryos reaching the blastocyst stage was counted. DAPI was used to quantify total nuclei and inner cell mass nuclei. Localization of ubiquitin C-terminal hydrolase L1 (UCHL1) and ubiquitin C-terminal hydrolase L3 (UCHL3) was reference points for evaluating cell quality. Comparing outcomes in single versus to sequential media, the odds of embryos developing to the 8C stage on d3 were 2.34 time greater (P = .06). On d5, more embryos reached the blastocyst stage (P = <.0001), hatched, and had significantly more trophoblast cells (P = .005) contributing to the increased total cell number. Also at d5, localization of distinct cytoplasmic UCHL1 and nuclear UCHL3 was found in high-quality hatching blastocysts. Localization of UCHL1 and UCHL3 was diffuse and inappropriately dispersed throughout the cytoplasm in low-quality nonhatching blastocysts. Single medium yields greater cell numbers, an increased growth rate, and more hatching of murine embryos. Cytoplasmic UCHL1 and nuclear UHCL3 localization patterns were indicative of embryo quality. Our conclusions are limited to murine embryos but one might speculate that single medium may also be more beneficial for human embryo culture. Human embryo studies are needed. © The Author(s) 2015.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rod, M.L. Alam, K.Y.; Cunningham, P.R.; Clark, D.P.

    When grown at high osmotic pressure, some strains of Escherichia coli K-12 synthesized substantial levels of free sugar and accumulated proline if it was present in the growth medium. The sugar was identified as trehalose. Strains of E. coli K-12 could be divided into two major classes with respect of osmoregulation. Those of class A showed a large increase in trehalose levels with increasing medium osmolarity and also accumulated proline from the medium, whereas those in class B showed no accumulation of trehalose or proline. Most class A strains carried suppressor mutations which arose during their derivation from the wildmore » type, whereas the osmodefective strains of class B were suppressor free. When amber suppressor mutations at the supD, supE, or supF loci were introduced into such sup{sup o} osmodefective strains, they became osmotolerant and gained the ability to accumulate trehalose in response to elevated medium osmolarity. It appears that the original K-12 strain of E. coli carries an amber mutation in a gene affecting osmoregulation. Mutants lacking ADP-glucose synthetase (glgC) accumulated trehalose normally, whereas mutants lacking UDP-glucose synthetase (galU) did not make trehalose and grew poorly in medium of high osmolarity. Trehalose synthesis was repressed by exogenous glycine betaine but not by proline.« less

  16. Considerations for the Systematic Analysis and Use of Single-Case Research

    ERIC Educational Resources Information Center

    Horner, Robert H.; Swaminathan, Hariharan; Sugai, George; Smolkowski, Keith

    2012-01-01

    Single-case research designs provide a rigorous research methodology for documenting experimental control. If single-case methods are to gain wider application, however, a need exists to define more clearly (a) the logic of single-case designs, (b) the process and decision rules for visual analysis, and (c) an accepted process for integrating…

  17. Health benefits and cost-effectiveness of a hybrid screening strategy for colorectal cancer.

    PubMed

    Dinh, Tuan; Ladabaum, Uri; Alperin, Peter; Caldwell, Cindy; Smith, Robert; Levin, Theodore R

    2013-09-01

    Colorectal cancer (CRC) screening guidelines recommend screening schedules for each single type of test except for concurrent sigmoidoscopy and fecal occult blood test (FOBT). We investigated the cost-effectiveness of a hybrid screening strategy that was based on a fecal immunological test (FIT) and colonoscopy. We conducted a cost-effectiveness analysis by using the Archimedes Model to evaluate the effects of different CRC screening strategies on health outcomes and costs related to CRC in a population that represents members of Kaiser Permanente Northern California. The Archimedes Model is a large-scale simulation of human physiology, diseases, interventions, and health care systems. The CRC submodel in the Archimedes Model was derived from public databases, published epidemiologic studies, and clinical trials. A hybrid screening strategy led to substantial reductions in CRC incidence and mortality, gains in quality-adjusted life years (QALYs), and reductions in costs, comparable with those of the best single-test strategies. Screening by annual FIT of patients 50-65 years old and then a single colonoscopy when they were 66 years old (FIT/COLOx1) reduced CRC incidence by 72% and gained 110 QALYs for every 1000 people during a period of 30 years, compared with no screening. Compared with annual FIT, FIT/COLOx1 gained 1400 QALYs/100,000 persons at an incremental cost of $9700/QALY gained and required 55% fewer FITs. Compared with FIT/COLOx1, colonoscopy at 10-year intervals gained 500 QALYs/100,000 at an incremental cost of $35,100/QALY gained but required 37% more colonoscopies. Over the ranges of parameters examined, the cost-effectiveness of hybrid screening strategies was slightly more sensitive to the adherence rate with colonoscopy than the adherence rate with yearly FIT. Uncertainties associated with estimates of FIT performance within a program setting and sensitivities for flat and right-sided lesions are expected to have significant impacts on the cost-effectiveness results. In our simulation model, a strategy of annual or biennial FIT, beginning when patients are 50 years old, with a single colonoscopy when they are 66 years old, delivers clinical and economic outcomes similar to those of CRC screening by single-modality strategies, with a favorable impact on resources demand. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. An optical channel modeling of a single mode fiber

    NASA Astrophysics Data System (ADS)

    Nabavi, Neda; Liu, Peng; Hall, Trevor James

    2018-05-01

    The evaluation of the optical channel model that accurately describes the single mode fibre as a coherent transmission medium is reviewed through analytical, numerical and experimental analysis. We used the numerical modelling of the optical transmission medium and experimental measurements to determine the polarization drift as a function of time for a fixed length of fibre. The probability distribution of the birefringence vector was derived, which is associated to the 'Poole' equation. The theory and experimental evidence that has been disclosed in the literature in the context of polarization mode dispersion - Stokes & Jones formulations and solutions for key statistics by integration of stochastic differential equations has been investigated. Besides in-depth definition of the single-mode fibre-optic channel, the modelling which concerns an ensemble of fibres each with a different instance of environmental perturbation has been analysed.

  19. Does Embryo Culture Medium Influence the Health and Development of Children Born after In Vitro Fertilization?

    PubMed

    Bouillon, Céline; Léandri, Roger; Desch, Laurent; Ernst, Alexandra; Bruno, Céline; Cerf, Charline; Chiron, Alexandra; Souchay, Céline; Burguet, Antoine; Jimenez, Clément; Sagot, Paul; Fauque, Patricia

    2016-01-01

    In animal studies, extensive data revealed the influence of culture medium on embryonic development, foetal growth and the behaviour of offspring. However, this impact has never been investigated in humans. For the first time, we investigated in depth the effects of embryo culture media on health, growth and development of infants conceived by In Vitro Fertilization until the age of 5 years old. This single-centre cohort study was based on an earlier randomized study. During six months, in vitro fertilization attempts (No. 371) were randomized according to two media (Single Step Medium--SSM group) or Global medium (Global group). This randomized study was stopped prematurely as significantly lower pregnancy and implantation rates were observed in the SSM group. Singletons (No. 73) conceived in the randomized study were included (42 for Global and 31 for SSM). The medical data for gestational, neonatal and early childhood periods were extracted from medical records and parental interviews (256 variables recorded). The developmental profiles of the children in eight domains (social, self-help, gross motor, fine motor, expressive language, language comprehension, letter knowledge and number knowledge--270 items) were compared in relation to the culture medium. The delivery rate was significantly lower in the SSM group than in the Global group (p<0.05). The culture medium had no significant effect on birthweight, risk of malformation (minor and major), growth and the frequency of medical concerns. However, the children of the Global group were less likely than those of the SSM group to show developmental problems (p = 0.002), irrespective of the different domains. In conclusion, our findings showed that the embryo culture medium may have an impact on further development.

  20. Verification of a new biocompatible single-use film formulation with optimized additive content for multiple bioprocess applications.

    PubMed

    Jurkiewicz, Elke; Husemann, Ute; Greller, Gerhard; Barbaroux, Magali; Fenge, Christel

    2014-01-01

    Single-use bioprocessing bags and bioreactors gained significant importance in the industry as they offer a number of advantages over traditional stainless steel solutions. However, there is continued concern that the plastic materials might release potentially toxic substances negatively impacting cell growth and product titers, or even compromise drug safety when using single-use bags for intermediate or drug substance storage. In this study, we have focused on the in vitro detection of potentially cytotoxic leachables originating from the recently developed new polyethylene (PE) multilayer film called S80. This new film was developed to guarantee biocompatibility for multiple bioprocess applications, for example, storage of process fluids, mixing, and cell culture bioreactors. For this purpose, we examined a protein-free cell culture medium that had been used to extract leachables from freshly gamma-irradiated sample bags in a standardized cell culture assay. We investigated sample bags from films generated to establish the operating ranges of the film extrusion process. Further, we studied sample bags of different age after gamma-irradiation and finally, we performed extended media extraction trials at cold room conditions using sample bags. In contrast to a nonoptimized film formulation, our data demonstrate no cytotoxic effect of the S80 polymer film formulation under any of the investigated conditions. The S80 film formulation is based on an optimized PE polymer composition and additive package. Full traceability alongside specifications and controls of all critical raw materials, and process controls of the manufacturing process, that is, film extrusion and gamma-irradiation, have been established to ensure lot-to-lot consistency. © 2014 American Institute of Chemical Engineers.

  1. Common base amplifier with 7 - dB gain at 176 GHz in InP mesa DHBT technology

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Paidi, V.; Griffith, Z.; Dahlstrom, M.; Wei, Y.; Urteaga, M.; Rodell, M. J. W.; Fung, A.

    2004-01-01

    We report a single stage tunded amplifier that exhibits 7 dB small signal gain at 176 GHz. Common Base topology is chosen as it has the best maximum stable gain (MSG) in this frequency band when compared to common emitter and common collector topologies. The amplifiers are designed and fabricated in InP mesa double heterojunction bipolar transistor (DHBT) technology.

  2. Active microwave remote sensing of an anisotropic random medium layer

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Kong, J. A.

    1985-01-01

    A two-layer anisotropic random medium model has been developed to study the active remote sensing of the earth. The dyadic Green's function for a two-layer anisotropic medium is developed and used in conjunction with the first-order Born approximation to calculate the backscattering coefficients. It is shown that strong cross-polarization occurs in the single scattering process and is indispensable in the interpretation of radar measurements of sea ice at different frequencies, polarizations, and viewing angles. The effects of anisotropy on the angular responses of backscattering coefficients are also illustrated.

  3. Investigation of Inter-Node B Macro Diversity for Single-Carrier Based Radio Access in Evolved UTRA Uplink

    NASA Astrophysics Data System (ADS)

    Kawai, Hiroyuki; Morimoto, Akihito; Higuchi, Kenichi; Sawahashi, Mamoru

    This paper investigates the gain of inter-Node B macro diversity for a scheduled-based shared channel using single-carrier FDMA radio access in the Evolved UTRA (UMTS Terrestrial Radio Access) uplink based on system-level simulations. More specifically, we clarify the gain of inter-Node B soft handover (SHO) with selection combining at the radio frame length level (=10msec) compared to that for hard handover (HHO) for a scheduled-based shared data channel, considering the gains of key packet-specific techniques including channel-dependent scheduling, adaptive modulation and coding (AMC), hybrid automatic repeat request (ARQ) with packet combining, and slow transmission power control (TPC). Simulation results show that the inter-Node B SHO increases the user throughput at the cell edge by approximately 10% for a short cell radius such as 100-300m due to the diversity gain from a sudden change in other-cell interference, which is a feature specific to full scheduled-based packet access. However, it is also shown that the gain of inter-Node B SHO compared to that for HHO is small in a macrocell environment when the cell radius is longer than approximately 500m due to the gains from hybrid ARQ with packet combining, slow TPC, and proportional fairness based channel-dependent scheduling.

  4. Effects of internal gain assumptions in building energy calculations

    NASA Astrophysics Data System (ADS)

    Christensen, C.; Perkins, R.

    1981-01-01

    The utilization of direct solar gains in buildings can be affected by operating profiles, such as schedules for internal gains, thermostat controls, and ventilation rates. Building energy analysis methods use various assumptions about these profiles. The effects of typical internal gain assumptions in energy calculations are described. Heating and cooling loads from simulations using the DOE 2.1 computer code are compared for various internal gain inputs: typical hourly profiles, constant average profiles, and zero gain profiles. Prototype single-family-detached and multifamily-attached residential units are studied with various levels of insulation and infiltration. Small detached commercial buildings and attached zones in large commercial buildings are studied with various levels of internal gains. The results indicate that calculations of annual heating and cooling loads are sensitive to internal gains, but in most cases are relatively insensitive to hourly variations in internal gains.

  5. Methods and devices based on brillouin selective sideband amplification

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2003-01-01

    Opto-electronic devices and techniques using Brillouin scattering to select a sideband in a modulated optical carrier signal for amplification. Two lasers respectively provide a carrier signal beam and a Brillouin pump beam which are fed into an Brillouin optical medium in opposite directions. The relative frequency separation between the lasers is adjusted to align the frequency of the backscattered Brillouin signal with a desired sideband in the carrier signal to effect a Brillouin gain on the sideband. This effect can be used to implement photonic RF signal mixing and conversion with gain, conversion from phase modulation to amplitude modulation, photonic RF frequency multiplication, optical and RF pulse generation and manipulation, and frequency-locking of lasers.

  6. Land vehicle antennas for satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Haddad, H. A.; Paschen, D.; Pieper, B. V.

    1985-01-01

    Antenna designs applicable to future satellite mobile vehicle communications are examined. Microstrip disk, quadrifilar helix, cylindrical microstrip, and inverted V and U crossed-dipole low gain antennas (3-5 dBic) that provide omnidirectional coverage are described. Diagrams of medium gain antenna (9-12 dBic) concepts are presented; the antennas are classified into three types: (1) electronically steered with digital phase shifters; (2) electronically switched with switchable power divider/combiner; and (3) mechanically steered with motor. The operating characteristics of a conformal antenna with electronic beam steering and a nonconformal design with mechanical steering are evaluated with respect to isolation levels in a multiple satellite system. Vehicle antenna pointing systems and antenna system costs are investigated.

  7. NONLINEAR AND FIBER OPTICS: Influence of the Stark effect on the nature of stimulated Raman scattering of ultrashort adiabatic pump radiation

    NASA Astrophysics Data System (ADS)

    Kryzhanovskiĭ, B. V.

    1990-04-01

    An investigation is made of the serious limitations on the growth of the amplitude of a Stokes wave associated with the optical Stark effect and with the dispersion of the group velocities of the interacting pulses. It is shown that when the distance traversed exceeds a certain length, the gain due to stimulated Raman scattering reaches saturation whereas the spectrum of the scattered light becomes broader and acquires a line structure. Saturation of the scattering is not manifested at pump intensities sufficient to bleach the scattering medium. The gain can be optimized by altering the offset from a resonance.

  8. Giant-pulse Nd:YVO4 microchip laser with MW-level peak power by emission cross-sectional control.

    PubMed

    Kausas, Arvydas; Taira, Takunori

    2016-02-22

    We present a giant-pulse generation laser realized by the emission cross-section control of a gain medium in a passively Q-switched Nd:YVO4 microchip laser with a Cr4+:YAG saturable absorber. Up to 1.17 MW peak power and 1.03 mJ pulse energy were obtained with a 100 Hz repetition rate. By combining the Nd:YVO4 crystal with a Sapphire plate, lower temperature difference between a pump region in the gain crystal and a crystal holder was obtained which helped to keep the cavity in stability zone at elevated temperatures and allowed the achievement of the high peak power for this laser system.

  9. Experimental Investigation of 60 GHz Transmission Characteristics Between Computers on a Conference Table for WPAN Applications

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Amadjikpe, Arnaud L.; Choudhury, Debabani; Papapolymerou, John

    2011-01-01

    In this paper, the first measurements of the received radiated power between antennas located on a conference table to simulate the environment of antennas embedded in laptop computers for 60 GHz Wireless Personal Area Network (WPAN) applications is presented. A high gain horn antenna and a medium gain microstrip patch antenna for two linear polarizations are compared. It is shown that for a typical conference table arrangement with five computers, books, pens, and coffee cups, the antennas should be placed a minimum of 5 cm above the table, but that a height of greater than 20 cm may be required to maximize the received power in all cases.

  10. Dynamic chirp control of all-optical format-converted pulsed data from a multi-wavelength inverse-optical-comb injected semiconductor optical amplifier.

    PubMed

    Lin, Gong-Ru; Pan, Ci-Ling; Yu, Kun-Chieh

    2007-10-01

    By spectrally and temporally reshaping the gain-window of a traveling-wave semiconductor optical amplifier (TWSOA) with a backward injected multi- or single-wavelength inverse-optical-comb, we theoretically and experimentally investigate the dynamic frequency chirp of the all-optical 10GBit/s Return-to-Zero (RZ) data-stream format-converted from the TWSOA under strong cross-gain depletion scheme. The multi-wavelength inverse-optical-comb injection effectively depletes the TWSOA gain spectrally and temporally, remaining a narrow gain-window and a reduced spectral linewidth and provide a converted RZ data with a smaller peak-to-peak frequency chirp of 6.7 GHz. Even at high inverse-optical-comb injection power and highly biased current condition for improving the operational bit-rate, the chirp of the multi-wavelength-injection converted RZ pulse is still 2.1-GHz smaller than that obtained by using single-wavelength injection at a cost of slight pulse-width broadening by 1 ps.

  11. Channel-capacity gain in entanglement-assisted communication protocols based exclusively on linear optics, single-photon inputs, and coincidence photon counting

    DOE PAGES

    Lougovski, P.; Uskov, D. B.

    2015-08-04

    Entanglement can effectively increase communication channel capacity as evidenced by dense coding that predicts a capacity gain of 1 bit when compared to entanglement-free protocols. However, dense coding relies on Bell states and when implemented using photons the capacity gain is bounded by 0.585 bits due to one's inability to discriminate between the four optically encoded Bell states. In this research we study the following question: Are there alternative entanglement-assisted protocols that rely only on linear optics, coincidence photon counting, and separable single-photon input states and at the same time provide a greater capacity gain than 0.585 bits? In thismore » study, we show that besides the Bell states there is a class of bipartite four-mode two-photon entangled states that facilitate an increase in channel capacity. We also discuss how the proposed scheme can be generalized to the case of two-photon N-mode entangled states for N=6,8.« less

  12. Dispersion, controlled dispersion, and three applications

    NASA Astrophysics Data System (ADS)

    Bradshaw, Douglas H.

    Causality dictates that all physical media must be dispersive. (We will call a medium dispersive if its refractive index varies with frequency.) Ordinarily, strong dispersion is accompanied either by strong absorption or strong gain. However, over the past 15 years several groups have demonstrated that it is possible to have media that are both strongly dispersive and roughly transparent for some finite bandwidth. In these media, group and phase velocities may differ from each other by many orders of magnitude and even by sign. Relationships and intuitive models that are satisfactory when it is reasonable to neglect dispersion may then fail dramatically. In this dissertation we analyze three such cases of failure. Before looking at the specific cases, we review some basic ideas relating to dispersion. We review some of the geometric meanings of group velocity, touch on the relationship between group velocity and causality, and give some examples of techniques by which the group velocity may be manipulated. We describe the interplay between group velocity and energy density for non-absorbing dispersive media. We discuss the ideas of temporary absorption and emission as dictated by an instantaneous spectrum. We then apply these concepts in three specific areas. First, non-dispersive formulations for the momentum of light in a medium must be adjusted to account for dispersion. For over 100 years, there has been a gradual discussion of the proper form for the per-photon momentum. Two forms, each of which has experimental relevance in a 'dispersionless' medium, are the Abraham momentum, and the Minkowski momentum. If h is the angular frequency, n is the refractive index, h is Planck's constant, and c is the speed of light, then these reduce in a dispersionless medium to per-photon momenta of ho/(nc), and nho/c respectively. A simple generalization of the two momenta to dispersive media entails multiplying each per-photon momentum by n/ng, where ng is the group refractive index. The resulting forms are experimentally relevant for the case of the Abraham momentum, but not for the Minkowski momentum. We show how dispersion modulates the displacement of a sphere embedded in a dispersive medium by a pulse. Second, pulse transformation in a nonstationary medium is modulated by the presence of dispersion. Dispersion may enhance or mitigate the frequency response of a pulse to a changing refractive index, and if dispersion changes with time, the pulse bandwidth must change in a compensatory fashion. We introduce an explicit description of the kinetics of dispersive nonstationary inhomogeneous media. Using this description, we show how the group velocity can modulate the frequency response to a change in the refractive index and how Doppler shifts may become large in a dispersive medium as the velocity of the Doppler shifting surface approaches the group velocity. We explain a simple way to use existing technology to either compress or decompress a given pulse, changing its bandwidth and spatial extent by several orders of magnitude while otherwise preserving its envelope shape. We then introduce a dynamic descriptions of two simple media--one dispersive and one nondispersive. We compare the transformation of basic quantities like photon number, momentum density, and frequency by a temporal change in the refractive index in a specific non-dispersive medium to those wrought by a temporal change in the group refractive index in a specific dispersive medium. The differences between to media are fundamental and emphasize the salience of dispersion in the study of nonstationary media. Finally, we note that the nature of a single optical cavity quasimode depends on intracavity dispersion. We show that the quantum field noise associated with a single cavity mode may be modulated by dispersion. For a well-chosen mode in a high-Q cavity, this can amount to either an increase or a decrease in total vacuum field energy by several orders of magnitude. We focus on the "white light cavity," showing that the quantum noise of an ideal white light cavity diverges as the cavity finesse improves.

  13. The temporal representation of the delay of dynamic iterated rippled noise with positive and negative gain by single units in the ventral cochlear nucleus.

    PubMed

    Sayles, Mark; Winter, Ian Michael

    2007-09-26

    Spike trains were recorded from single units in the ventral cochlear nucleus of the anaesthetised guinea-pig in response to dynamic iterated rippled noise with positive and negative gain. The short-term running waveform autocorrelation functions of these stimuli show peaks at integer multiples of the time-varying delay when the gain is +1, and troughs at odd-integer multiples and peaks at even-integer multiples of the time-varying delay when the gain is -1. In contrast, the short-term autocorrelation of the Hilbert envelope shows peaks at integer multiples of the time-varying delay for both positive and negative gain stimuli. A running short-term all-order interspike interval analysis demonstrates the ability of single units to represent the modulated pitch contour in their short-term interval statistics. For units with low best frequency (approximate < or = 1.1 kHz) the temporal discharge pattern reflected the waveform fine structure regardless of unit classification (Primary-like, Chopper). For higher best frequency units the pattern of response varied according to unit type. Chopper units with best frequency approximate > or = 1.1 kHz responded to envelope modulation; showing no difference between their response to stimuli with positive and negative gain. Primary-like units with best frequencies in the range 1-3 kHz were still able to represent the difference in the temporal fine structure between dynamic rippled noise with positive and negative gain. No unit with a best frequency above 3 kHz showed a response to the temporal fine structure. Chopper units in this high frequency group showed significantly greater representation of envelope modulation relative to primary-like units with the same range of best frequencies. These results show that at the level of the cochlear nucleus there exists sufficient information in the time domain to represent the time-varying pitch associated with dynamic iterated rippled noise.

  14. PreImplantation Factor (PIF) correlates with early mammalian embryo development-bovine and murine models

    PubMed Central

    2011-01-01

    Background PreImplantation Factor (PIF), a novel peptide secreted by viable embryos is essential for pregnancy: PIF modulates local immunity, promotes decidual pro-adhesion molecules and enhances trophoblast invasion. To determine the role of PIF in post-fertilization embryo development, we measured the peptide's concentration in the culture medium and tested endogenous PIF's potential trophic effects and direct interaction with the embryo. Methods Determine PIF levels in culture medium of multiple mouse and single bovine embryos cultured up to the blastocyst stage using PIF-ELISA. Examine the inhibitory effects of anti-PIF-monoclonal antibody (mAb) added to medium on cultured mouse embryos development. Test FITC-PIF uptake by cultured bovine blastocysts using fluorescent microscopy. Results PIF levels in mouse embryo culture medium significantly increased from the morula to the blastocyst stage (ANOVA, P = 0.01). In contrast, atretic embryos medium was similar to the medium only control. Detectable - though low - PIF levels were secreted already by 2-cell stage mouse embryos. In single bovine IVF-derived embryos, PIF levels in medium at day 3 of culture were higher than non-cleaving embryos (control) (P = 0.01) and at day 7 were higher than day 3 (P = 0.03). In non-cleaving embryos culture medium was similar to medium alone (control). Anti-PIF-mAb added to mouse embryo cultures lowered blastocyst formation rate 3-fold in a dose-dependent manner (2-way contingency table, multiple groups, X2; P = 0.01) as compared with non-specific mouse mAb, and medium alone, control. FITC-PIF was taken-up by cultured bovine blastocysts, but not by scrambled FITC-PIF (control). Conclusions PIF is an early embryo viability marker that has a direct supportive role on embryo development in culture. PIF-ELISA use to assess IVF embryo quality prior to transfer is warranted. Overall, our data supports PIF's endogenous self sustaining role in embryo development and the utility of PIF- ELISA to detect viable embryos in a non-invasive manner. PMID:21569635

  15. Experimental Study on Ultrafine Particle Removal Performance of Portable Air Cleaners with Different Filters in an Office Room

    PubMed Central

    Ma, Huan; Shen, Henggen; Shui, Tiantian; Li, Qing; Zhou, Liuke

    2016-01-01

    Size- and time-dependent aerodynamic behaviors of indoor particles, including PM1.0, were evaluated in a school office in order to test the performance of air-cleaning devices using different filters. In-situ real-time measurements were taken using an optical particle counter. The filtration characteristics of filter media, including single-pass efficiency, volume and effectiveness, were evaluated and analyzed. The electret filter (EE) medium shows better initial removal efficiency than the high efficiency (HE) medium in the 0.3–3.5 μm particle size range, while under the same face velocity, the filtration resistance of the HE medium is several times higher than that of the EE medium. During service life testing, the efficiency of the EE medium decreased to 60% with a total purifying air flow of 25 × 104 m3/m2. The resistance curve rose slightly before the efficiency reached the bottom, and then increased almost exponentially. The single-pass efficiency of portable air cleaner (PAC) with the pre-filter (PR) or the active carbon granule filter (CF) was relatively poor. While PAC with the pre-filter and the high efficiency filter (PR&HE) showed maximum single-pass efficiency for PM1.0 (88.6%), PAC with the HE was the most effective at removing PM1.0. The enhancement of PR with HE and electret filters augmented the single-pass efficiency, but lessened the airflow rate and effectiveness. Combined with PR, the decay constant of large-sized particles could be greater than for PACs without PR. Without regard to the lifetime, the electret filters performed better with respect to resource saving and purification improvement. A most penetrating particle size range (MPPS: 0.4–0.65 μm) exists in both HE and electret filters; the MPPS tends to become larger after HE and electret filters are combined with PR. These results serve to provide a better understanding of the indoor particle removal performance of PACs when combined with different kinds of filters in school office buildings. PMID:26742055

  16. Optical filter finesses enhancement based on nested coupled cavities and active medium

    NASA Astrophysics Data System (ADS)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2016-04-01

    Optical filters with relatively large FSR and narrow linewidth are simultaneously needed for different applications. The ratio between the FSR and the 3-dB linewidth is given by finesse of the filter, which is solely determined by the different energy loss mechanisms limited by the technology advancement. In this work, we present a novel coupled-cavity configuration embedding an optical filter and a gain medium; allowing an overall finesse enhancement and simultaneous FSR and 3-dB linewidth engineering beyond the technological limits of the filter fabrication method. The configuration consists of two resonators. An active ring resonator comprises an optical gain medium and a passive resonator. In one configuration, the optical filter is the passive resonator itself. In a second configuration, the passive resonator is another ring resonator that embeds the optical filter. The presented configurations using a semiconductor optical amplifier are applied one time to a mechanically Fabry-Perot filter in the first presented configuration; and a second time to a fiber ring filter in the second presented configuration. The mechanical filter has an original 3-dB linewidth of 1nm and an FSR that is larger than 100nm while the enhanced linewidth is about 0.3nm. The fiber ring filter length is 4 m and directional coupler ratios of 90/10corresponding to a 3-dBlinewidth of about 4MHz and an FSR of 47 MHz. The enhanced 3- dBlinewidth of the overall filter configuration is 200kHz, demonstrating finesse enhancement up to20 times the original finesse of the filter.

  17. 20 CFR Appendix A to Part 718 - Standards for Administration and Interpretation of Chest Roentgenograms (X-Rays)

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... be a single postero-anterior projection at full inspiration on a 14 by 17 inch film. Additional chest films or views shall be obtained if they are necessary for clarification and classification. The film... source or focal spot to film distance shall be at least 6 feet; (iii) Only medium-speed film and medium...

  18. Absorption and emission of single attosecond light pulses in an autoionizing gaseous medium dressed by a time-delayed control field

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Chun; Lin, C. D.

    2013-01-01

    An extreme ultraviolet (EUV) single attosecond pulse passing through a laser-dressed dense gas is studied theoretically. The weak EUV pulse pumps the helium gas from the ground state to the 2s2p(1P) autoionizing state, which is coupled to the 2s2(1S) autoionizing state by a femtosecond infrared laser with the intensity in the order of 1012 W/cm2. The simulation shows how the transient absorption and emission of the EUV are modified by the coupling laser. A simple analytical expression for the atomic response derived for δ-function pulses reveals the strong modification of the Fano lineshape in the spectra, where these features are quite universal and remain valid for realistic pulse conditions. We further account for the propagation of pulses in the medium and show that the EUV signal at the atomic resonance can be enhanced in the gaseous medium by more than 50% for specifically adjusted laser parameters, and that this enhancement persists as the EUV propagates in the gaseous medium. Our result demonstrates the high-level control of nonlinear optical effects that are achievable with attosecond pulses.

  19. In-Medium Parton Branching Beyond Eikonal Approximation

    NASA Astrophysics Data System (ADS)

    Apolinário, Liliana

    2017-03-01

    The description of the in-medium modifications of partonic showers has been at the forefront of current theoretical and experimental efforts in heavy-ion collisions. It provides a unique laboratory to extend our knowledge frontier of the theory of the strong interactions, and to assess the properties of the hot and dense medium (QGP) that is produced in ultra-relativistic heavy-ion collisions at RHIC and the LHC. The theory of jet quenching, a commonly used alias for the modifications of the parton branching resulting from the interactions with the QGP, has been significantly developed over the last years. Within a weak coupling approach, several elementary processes that build up the parton shower evolution, such as single gluon emissions, interference effects between successive emissions and corrections to radiative energy loss of massive quarks, have been addressed both at eikonal accuracy and beyond by taking into account the Brownian motion that high-energy particles experience when traversing a hot and dense medium. In this work, by using the setup of single gluon emission from a color correlated quark-antiquark pair in a singlet state (qbar{q} antenna), we calculate the in-medium gluon radiation spectrum beyond the eikonal approximation. The results show that we are able to factorize broadening effects from the modifications of the radiation process itself. This constitutes the final proof that a probabilistic picture of the parton shower evolution holds even in the presence of a QGP.

  20. High gain durable anti-reflective coating with oblate voids

    DOEpatents

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze'ev

    2016-06-28

    Disclosed herein are single layer transparent coatings with an anti-reflective property, a hydrophobic property, and that are highly abrasion resistant. The single layer transparent coatings contain a plurality of oblate voids. At least 1% of the oblate voids are open to a surface of the single layer transparent coatings.

Top