Sample records for single input channel

  1. Intermediate conductance calcium-activated potassium channels modulate summation of parallel fiber input in cerebellar Purkinje cells.

    PubMed

    Engbers, Jordan D T; Anderson, Dustin; Asmara, Hadhimulya; Rehak, Renata; Mehaffey, W Hamish; Hameed, Shahid; McKay, Bruce E; Kruskic, Mirna; Zamponi, Gerald W; Turner, Ray W

    2012-02-14

    Encoding sensory input requires the expression of postsynaptic ion channels to transform key features of afferent input to an appropriate pattern of spike output. Although Ca(2+)-activated K(+) channels are known to control spike frequency in central neurons, Ca(2+)-activated K(+) channels of intermediate conductance (KCa3.1) are believed to be restricted to peripheral neurons. We now report that cerebellar Purkinje cells express KCa3.1 channels, as evidenced through single-cell RT-PCR, immunocytochemistry, pharmacology, and single-channel recordings. Furthermore, KCa3.1 channels coimmunoprecipitate and interact with low voltage-activated Cav3.2 Ca(2+) channels at the nanodomain level to support a previously undescribed transient voltage- and Ca(2+)-dependent current. As a result, subthreshold parallel fiber excitatory postsynaptic potentials (EPSPs) activate Cav3 Ca(2+) influx to trigger a KCa3.1-mediated regulation of the EPSP and subsequent after-hyperpolarization. The Cav3-KCa3.1 complex provides powerful control over temporal summation of EPSPs, effectively suppressing low frequencies of parallel fiber input. KCa3.1 channels thus contribute to a high-pass filter that allows Purkinje cells to respond preferentially to high-frequency parallel fiber bursts characteristic of sensory input.

  2. Single- and multi-channel underwater acoustic communication channel capacity: a computational study.

    PubMed

    Hayward, Thomas J; Yang, T C

    2007-09-01

    Acoustic communication channel capacity determines the maximum data rate that can be supported by an acoustic channel for a given source power and source/receiver configuration. In this paper, broadband acoustic propagation modeling is applied to estimate the channel capacity for a time-invariant shallow-water waveguide for a single source-receiver pair and for vertical source and receiver arrays. Without bandwidth constraints, estimated single-input, single-output (SISO) capacities approach 10 megabitss at 1 km range, but beyond 2 km range they decay at a rate consistent with previous estimates by Peloquin and Leinhos (unpublished, 1997), which were based on a sonar equation calculation. Channel capacities subject to source bandwidth constraints are approximately 30-90% lower than for the unconstrained case, and exhibit a significant wind speed dependence. Channel capacity is investigated for single-input, multi-output (SIMO) and multi-input, multi-output (MIMO) systems, both for finite arrays and in the limit of a dense array spanning the entire water column. The limiting values of the SIMO and MIMO channel capacities for the modeled environment are found to be about four times higher and up to 200-400 times higher, respectively, than for the SISO case. Implications for underwater acoustic communication systems are discussed.

  3. Passive states as optimal inputs for single-jump lossy quantum channels

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Mari, Andrea; Lloyd, Seth; Giovannetti, Vittorio

    2016-06-01

    The passive states of a quantum system minimize the average energy among all the states with a given spectrum. We prove that passive states are the optimal inputs of single-jump lossy quantum channels. These channels arise from a weak interaction of the quantum system of interest with a large Markovian bath in its ground state, such that the interaction Hamiltonian couples only consecutive energy eigenstates of the system. We prove that the output generated by any input state ρ majorizes the output generated by the passive input state ρ0 with the same spectrum of ρ . Then, the output generated by ρ can be obtained applying a random unitary operation to the output generated by ρ0. This is an extension of De Palma et al. [IEEE Trans. Inf. Theory 62, 2895 (2016)], 10.1109/TIT.2016.2547426, where the same result is proved for one-mode bosonic Gaussian channels. We also prove that for finite temperature this optimality property can fail already in a two-level system, where the best input is a coherent superposition of the two energy eigenstates.

  4. HCN1 channels in cerebellar Purkinje cells promote late stages of learning and constrain synaptic inhibition

    PubMed Central

    Rinaldi, Arianna; Defterali, Cagla; Mialot, Antoine; Garden, Derek L F; Beraneck, Mathieu; Nolan, Matthew F

    2013-01-01

    Neural computations rely on ion channels that modify neuronal responses to synaptic inputs. While single cell recordings suggest diverse and neurone type-specific computational functions for HCN1 channels, their behavioural roles in any single neurone type are not clear. Using a battery of behavioural assays, including analysis of motor learning in vestibulo-ocular reflex and rotarod tests, we find that deletion of HCN1 channels from cerebellar Purkinje cells selectively impairs late stages of motor learning. Because deletion of HCN1 modifies only a subset of behaviours involving Purkinje cells, we asked whether the channel also has functional specificity at a cellular level. We find that HCN1 channels in cerebellar Purkinje cells reduce the duration of inhibitory synaptic responses but, in the absence of membrane hyperpolarization, do not affect responses to excitatory inputs. Our results indicate that manipulation of subthreshold computation in a single neurone type causes specific modifications to behaviour. PMID:24000178

  5. A channel estimation scheme for MIMO-OFDM systems

    NASA Astrophysics Data System (ADS)

    He, Chunlong; Tian, Chu; Li, Xingquan; Zhang, Ce; Zhang, Shiqi; Liu, Chaowen

    2017-08-01

    In view of the contradiction of the time-domain least squares (LS) channel estimation performance and the practical realization complexity, a reduced complexity channel estimation method for multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) based on pilot is obtained. This approach can transform the complexity of MIMO-OFDM channel estimation problem into a simple single input single output-orthogonal frequency division multiplexing (SISO-OFDM) channel estimation problem and therefore there is no need for large matrix pseudo-inverse, which greatly reduces the complexity of algorithms. Simulation results show that the bit error rate (BER) performance of the obtained method with time orthogonal training sequences and linear minimum mean square error (LMMSE) criteria is better than that of time-domain LS estimator and nearly optimal performance.

  6. Channel characterization and empirical model for ergodic capacity of free-space optical communication link

    NASA Astrophysics Data System (ADS)

    Alimi, Isiaka; Shahpari, Ali; Ribeiro, Vítor; Sousa, Artur; Monteiro, Paulo; Teixeira, António

    2017-05-01

    In this paper, we present experimental results on channel characterization of single input single output (SISO) free-space optical (FSO) communication link that is based on channel measurements. The histograms of the FSO channel samples and the log-normal distribution fittings are presented along with the measured scintillation index. Furthermore, we extend our studies to diversity schemes and propose a closed-form expression for determining ergodic channel capacity of multiple input multiple output (MIMO) FSO communication systems over atmospheric turbulence fading channels. The proposed empirical model is based on SISO FSO channel characterization. Also, the scintillation effects on the system performance are analyzed and results for different turbulence conditions are presented. Moreover, we observed that the histograms of the FSO channel samples that we collected from a 1548.51 nm link have good fits with log-normal distributions and the proposed model for MIMO FSO channel capacity is in conformity with the simulation results in terms of normalized mean-square error (NMSE).

  7. On the constrained classical capacity of infinite-dimensional covariant quantum channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holevo, A. S.

    The additivity of the minimal output entropy and that of the χ-capacity are known to be equivalent for finite-dimensional irreducibly covariant quantum channels. In this paper, we formulate a list of conditions allowing to establish similar equivalence for infinite-dimensional covariant channels with constrained input. This is then applied to bosonic Gaussian channels with quadratic input constraint to extend the classical capacity results of the recent paper [Giovannetti et al., Commun. Math. Phys. 334(3), 1553-1571 (2015)] to the case where the complex structures associated with the channel and with the constraint operator need not commute. In particular, this implies a multimodemore » generalization of the “threshold condition,” obtained for single mode in Schäfer et al. [Phys. Rev. Lett. 111, 030503 (2013)], and the proof of the fact that under this condition the classical “Gaussian capacity” resulting from optimization over only Gaussian inputs is equal to the full classical capacity. Complex structures correspond to different squeezings, each with its own normal modes, vacuum and coherent states, and the gauge. Thus our results apply, e.g., to multimode channels with a squeezed Gaussian noise under the standard input energy constraint, provided the squeezing is not too large as to violate the generalized threshold condition. We also investigate the restrictiveness of the gauge-covariance condition for single- and multimode bosonic Gaussian channels.« less

  8. Interfacing sensory input with motor output: does the control architecture converge to a serial process along a single channel?

    PubMed Central

    van de Kamp, Cornelis; Gawthrop, Peter J.; Gollee, Henrik; Lakie, Martin; Loram, Ian D.

    2013-01-01

    Modular organization in control architecture may underlie the versatility of human motor control; but the nature of the interface relating sensory input through task-selection in the space of performance variables to control actions in the space of the elemental variables is currently unknown. Our central question is whether the control architecture converges to a serial process along a single channel? In discrete reaction time experiments, psychologists have firmly associated a serial single channel hypothesis with refractoriness and response selection [psychological refractory period (PRP)]. Recently, we developed a methodology and evidence identifying refractoriness in sustained control of an external single degree-of-freedom system. We hypothesize that multi-segmental whole-body control also shows refractoriness. Eight participants controlled their whole body to ensure a head marker tracked a target as fast and accurately as possible. Analysis showed enhanced delays in response to stimuli with close temporal proximity to the preceding stimulus. Consistent with our preceding work, this evidence is incompatible with control as a linear time invariant process. This evidence is consistent with a single-channel serial ballistic process within the intermittent control paradigm with an intermittent interval of around 0.5 s. A control architecture reproducing intentional human movement control must reproduce refractoriness. Intermittent control is designed to provide computational time for an online optimization process and is appropriate for flexible adaptive control. For human motor control we suggest that parallel sensory input converges to a serial, single channel process involving planning, selection, and temporal inhibition of alternative responses prior to low dimensional motor output. Such design could aid robots to reproduce the flexibility of human control. PMID:23675342

  9. Application of convolve-multiply-convolve SAW processor for satellite communications

    NASA Technical Reports Server (NTRS)

    Lie, Y. S.; Ching, M.

    1991-01-01

    There is a need for a satellite communications receiver than can perform simultaneous multi-channel processing of single channel per carrier (SCPC) signals originating from various small (mobile or fixed) earth stations. The number of ground users can be as many as 1000. Conventional techniques of simultaneously processing these signals is by employing as many RF-bandpass filters as the number of channels. Consequently, such an approach would result in a bulky receiver, which becomes impractical for satellite applications. A unique approach utilizing a realtime surface acoustic wave (SAW) chirp transform processor is presented. The application of a Convolve-Multiply-Convolve (CMC) chirp transform processor is described. The CMC processor transforms each input channel into a unique timeslot, while preserving its modulation content (in this case QPSK). Subsequently, each channel is individually demodulated without the need of input channel filters. Circuit complexity is significantly reduced, because the output frequency of the CMC processor is common for all input channel frequencies. The results of theoretical analysis and experimental results are in good agreement.

  10. Attenuation and bit error rate for four co-propagating spatially multiplexed optical communication channels of exactly same wavelength in step index multimode fibers

    NASA Astrophysics Data System (ADS)

    Murshid, Syed H.; Chakravarty, Abhijit

    2011-06-01

    Spatial domain multiplexing (SDM) utilizes co-propagation of exactly the same wavelength in optical fibers to increase the bandwidth by integer multiples. Input signals from multiple independent single mode pigtail laser sources are launched at different input angles into a single multimode carrier fiber. The SDM channels follow helical paths and traverse through the carrier fiber without interfering with each other. The optical energy from the different sources is spatially distributed and takes the form of concentric circular donut shaped rings, where each ring corresponds to an independent laser source. At the output end of the fiber these donut shaped independent channels can be separated either with the help of bulk optics or integrated concentric optical detectors. This presents the experimental setup and results for a four channel SDM system. The attenuation and bit error rate for individual channels of such a system is also presented.

  11. Five-wave-packet quantum error correction based on continuous-variable cluster entanglement

    PubMed Central

    Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi

    2015-01-01

    Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit. PMID:26498395

  12. Workflow Optimization for Tuning Prostheses with High Input Channel

    DTIC Science & Technology

    2017-10-01

    of Specific Aim 1 by driving a commercially available two DoF wrist and single DoF hand. The high -level control system will provide analog signals...AWARD NUMBER: W81XWH-16-1-0767 TITLE: Workflow Optimization for Tuning Prostheses with High Input Channel PRINCIPAL INVESTIGATOR: Daniel Merrill...Unlimited The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department

  13. Low-mobility channel tracking for MIMO-OFDM communication systems

    NASA Astrophysics Data System (ADS)

    Pagadarai, Srikanth; Wyglinski, Alexander M.; Anderson, Christopher R.

    2013-12-01

    It is now well understood that by exploiting the available additional spatial dimensions, multiple-input multiple-output (MIMO) communication systems provide capacity gains, compared to a single-input single-output systems without increasing the overall transmit power or requiring additional bandwidth. However, these large capacity gains are feasible only when the perfect knowledge of the channel is available to the receiver. Consequently, when the channel knowledge is imperfect, as is common in practical settings, the impact of the achievable capacity needs to be evaluated. In this study, we begin with a general MIMO framework at the outset and specialize it to the case of orthogonal frequency division multiplexing (OFDM) systems by decoupling channel estimation from data detection. Cyclic-prefixed OFDM systems have attracted widespread interest due to several appealing characteristics not least of which is the fact that a single-tap frequency-domain equalizer per subcarrier is sufficient due to the circulant structure of the resulting channel matrix. We consider a low-mobility wireless channel which exhibits inter-block channel variations and apply Kalman tracking when MIMO-OFDM communication is performed. Furthermore, we consider the signal transmission to contain a stream of training and information symbols followed by information symbols alone. By relying on predicted channel states when training symbols are absent, we aim to understand how the improvements in channel capacity are affected by imperfect channel knowledge. We show that the Kalman recursion procedure can be simplified by the optimal minimum mean square error training design. Using the simplified recursion, we derive capacity upper and lower bounds to evaluate the performance of the system.

  14. Nonlinear channel equalization for QAM signal constellation using artificial neural networks.

    PubMed

    Patra, J C; Pal, R N; Baliarsingh, R; Panda, G

    1999-01-01

    Application of artificial neural networks (ANN's) to adaptive channel equalization in a digital communication system with 4-QAM signal constellation is reported in this paper. A novel computationally efficient single layer functional link ANN (FLANN) is proposed for this purpose. This network has a simple structure in which the nonlinearity is introduced by functional expansion of the input pattern by trigonometric polynomials. Because of input pattern enhancement, the FLANN is capable of forming arbitrarily nonlinear decision boundaries and can perform complex pattern classification tasks. Considering channel equalization as a nonlinear classification problem, the FLANN has been utilized for nonlinear channel equalization. The performance of the FLANN is compared with two other ANN structures [a multilayer perceptron (MLP) and a polynomial perceptron network (PPN)] along with a conventional linear LMS-based equalizer for different linear and nonlinear channel models. The effect of eigenvalue ratio (EVR) of input correlation matrix on the equalizer performance has been studied. The comparison of computational complexity involved for the three ANN structures is also provided.

  15. Dispersion and dispersion slope compensation impact on high channel bit rate optical signal transmission degradation

    NASA Astrophysics Data System (ADS)

    Hamidine, Mahamadou; Yuan, Xiuhua

    2011-11-01

    In this article a numerical simulation is carried out on a single channel optical transmission system with channel bit rate greater than 40 Gb/s to investigate optical signal degradation due to the impact of dispersion and dispersion slope of both transmitting and dispersion compensating fibers. By independently varying the input signal power and the dispersion slope of both transmitting and dispersion compensating fibers of an optical link utilizing a channel bit rate of 86 Gb/s, a good quality factor (Q factor) is obtained with a dispersion slope compensation ratio change of +/-10% for a faithful transmission. With this ratio change a minimum Q factor of 16 dB is obtained in the presence of amplifier noise figure of 5 dB and fiber nonlinearities effects at input signal power of 5 dBm and 3 spans of 100 km standard single mode fiber with a dispersion (D) value of 17 ps/nm.km.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guha, Saikat; Shapiro, Jeffrey H.; Erkmen, Baris I.

    Previous work on the classical information capacities of bosonic channels has established the capacity of the single-user pure-loss channel, bounded the capacity of the single-user thermal-noise channel, and bounded the capacity region of the multiple-access channel. The latter is a multiple-user scenario in which several transmitters seek to simultaneously and independently communicate to a single receiver. We study the capacity region of the bosonic broadcast channel, in which a single transmitter seeks to simultaneously and independently communicate to two different receivers. It is known that the tightest available lower bound on the capacity of the single-user thermal-noise channel is thatmore » channel's capacity if, as conjectured, the minimum von Neumann entropy at the output of a bosonic channel with additive thermal noise occurs for coherent-state inputs. Evidence in support of this minimum output entropy conjecture has been accumulated, but a rigorous proof has not been obtained. We propose a minimum output entropy conjecture that, if proved to be correct, will establish that the capacity region of the bosonic broadcast channel equals the inner bound achieved using a coherent-state encoding and optimum detection. We provide some evidence that supports this conjecture, but again a full proof is not available.« less

  17. CLARO: an ASIC for high rate single photon counting with multi-anode photomultipliers

    NASA Astrophysics Data System (ADS)

    Baszczyk, M.; Carniti, P.; Cassina, L.; Cotta Ramusino, A.; Dorosz, P.; Fiorini, M.; Gotti, C.; Kucewicz, W.; Malaguti, R.; Pessina, G.

    2017-08-01

    The CLARO is a radiation-hard 8-channel ASIC designed for single photon counting with multi-anode photomultiplier tubes. Each channel outputs a digital pulse when the input signal from the photomultiplier crosses a configurable threshold. The fast return to baseline, typically within 25 ns, and below 50 ns in all conditions, allows to count up to 107 hits/s on each channel, with a power consumption of about 1 mW per channel. The ASIC presented here is a much improved version of the first 4-channel prototype. The threshold can be precisely set in a wide range, between 30 ke- (5 fC) and 16 Me- (2.6 pC). The noise of the amplifier with a 10 pF input capacitance is 3.5 ke- (0.6 fC) RMS. All settings are stored in a 128-bit configuration and status register, protected against soft errors with triple modular redundancy. The paper describes the design of the ASIC at transistor-level, and demonstrates its performance on the test bench.

  18. Device for modular input high-speed multi-channel digitizing of electrical data

    DOEpatents

    VanDeusen, Alan L.; Crist, Charles E.

    1995-09-26

    A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages.

  19. All-optical regenerator of multi-channel signals.

    PubMed

    Li, Lu; Patki, Pallavi G; Kwon, Young B; Stelmakh, Veronika; Campbell, Brandon D; Annamalai, Muthiah; Lakoba, Taras I; Vasilyev, Michael

    2017-10-12

    One of the main reasons why nonlinear-optical signal processing (regeneration, logic, etc.) has not yet become a practical alternative to electronic processing is that the all-optical elements with nonlinear input-output relationship have remained inherently single-channel devices (just like their electronic counterparts) and, hence, cannot fully utilise the parallel processing potential of optical fibres and amplifiers. The nonlinear input-output transfer function requires strong optical nonlinearity, e.g. self-phase modulation, which, for fundamental reasons, is always accompanied by cross-phase modulation and four-wave mixing. In processing multiple wavelength-division-multiplexing channels, large cross-phase modulation and four-wave mixing crosstalks among the channels destroy signal quality. Here we describe a solution to this problem: an optical signal processor employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without such nonlinear crosstalk. We demonstrate, for the first time to our knowledge, simultaneous all-optical regeneration of up to 16 wavelength-division-multiplexing channels by one device. This multi-channel concept can be extended to other nonlinear-optical processing schemes.Nonlinear optical processing devices are not yet fully practical as they are single channel. Here the authors demonstrate all-optical regeneration of up to 16 channels by one device, employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without nonlinear inter-channel crosstalk.

  20. Average BER analysis of SCM-based free-space optical systems by considering the effect of IM3 with OSSB signals under turbulence channels.

    PubMed

    Lim, Wansu; Cho, Tae-Sik; Yun, Changho; Kim, Kiseon

    2009-11-09

    In this paper, we derive the average bit error rate (BER) of subcarrier multiplexing (SCM)-based free space optics (FSO) systems using a dual-drive Mach-Zehnder modulator (DD-MZM) for optical single-sideband (OSSB) signals under atmospheric turbulence channels. In particular, we consider the third-order intermodulation (IM3), a significant performance degradation factor, in the case of high input signal power systems. The derived average BER, as a function of the input signal power and the scintillation index, is employed to determine the optimum number of SCM users upon the designing FSO systems. For instance, when the user number doubles, the input signal power decreases by almost 2 dBm under the log-normal and exponential turbulence channels at a given average BER.

  1. Device for modular input high-speed multi-channel digitizing of electrical data

    DOEpatents

    VanDeusen, A.L.; Crist, C.E.

    1995-09-26

    A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages. 1 fig.

  2. Entanglement-enhanced quantum metrology in a noisy environment

    NASA Astrophysics Data System (ADS)

    Wang, Kunkun; Wang, Xiaoping; Zhan, Xiang; Bian, Zhihao; Li, Jian; Sanders, Barry C.; Xue, Peng

    2018-04-01

    Quantum metrology overcomes standard precision limits and plays a central role in science and technology. Practically, it is vulnerable to imperfections such as decoherence. Here we demonstrate quantum metrology for noisy channels such that entanglement with ancillary qubits enhances the quantum Fisher information for phase estimation but not otherwise. Our photonic experiment covers a range of noise for various types of channels, including for two randomly alternating channels such that assisted entanglement fails for each noisy channel individually. We simulate noisy channels by implementing space-multiplexed dual interferometers with quantum photonic inputs. We demonstrate the advantage of entanglement-assisted protocols in a phase estimation experiment run with either a single-probe or multiprobe approach. These results establish that entanglement with ancillae is a valuable approach for delivering quantum-enhanced metrology. Our approach to entanglement-assisted quantum metrology via a simple linear-optical interferometric network with easy-to-prepare photonic inputs provides a path towards practical quantum metrology.

  3. Optical frequency comb based multi-band microwave frequency conversion for satellite applications.

    PubMed

    Yang, Xinwu; Xu, Kun; Yin, Jie; Dai, Yitang; Yin, Feifei; Li, Jianqiang; Lu, Hua; Liu, Tao; Ji, Yuefeng

    2014-01-13

    Based on optical frequency combs (OFC), we propose an efficient and flexible multi-band frequency conversion scheme for satellite repeater applications. The underlying principle is to mix dual coherent OFCs with one of which carrying the input signal. By optically channelizing the mixed OFCs, the converted signal in different bands can be obtained in different channels. Alternatively, the scheme can be configured to generate multi-band local oscillators (LO) for widely distribution. Moreover, the scheme realizes simultaneous inter- and intra-band frequency conversion just in a single structure and needs only three frequency-fixed microwave sources. We carry out a proof of concept experiment in which multiple LOs with 2 GHz, 10 GHz, 18 GHz, and 26 GHz are generated. A C-band signal of 6.1 GHz input to the proposed scheme is successfully converted to 4.1 GHz (C band), 3.9 GHz (C band) and 11.9 GHz (X band), etc. Compared with the back-to-back (B2B) case measured at 0 dBm input power, the proposed scheme shows a 9.3% error vector magnitude (EVM) degradation at each output channel. Furthermore, all channels satisfy the EVM limit in a very wide input power range.

  4. MUSIC: An 8 channel readout ASIC for SiPM arrays

    NASA Astrophysics Data System (ADS)

    Gómez, Sergio; Gascón, David; Fernández, Gerard; Sanuy, Andreu; Mauricio, Joan; Graciani, Ricardo; Sanchez, David

    2016-04-01

    This paper presents an 8 channel ASIC for SiPM anode readout based on a novel low input impedance current conveyor (under patent1). This Multiple Use SiPM Integrated Circuit (MUSIC) has been designed to serve several purposes, including, for instance, the readout of SiPM arrays for some of the Cherenkov Telescope Array (CTA) cameras. The current division scheme at the very front end part of the circuit splits the input current into differently scaled copies which are connected to independent current mirrors. The circuit contains a tunable pole zero cancellation of the SiPM recovery time constant to deal with sensors from different manufacturers. Decay times up to 100 ns are supported covering most of the available SiPM devices in the market. MUSIC offers three main features: (1) differential output of the sum of the individual input channels; (2) 8 individual single ended analog outputs and; (3) 8 individual binary outputs. The digital outputs encode the amount of collected charge in the duration of the digital signal using a time over threshold technique. For each individual channel, the user must select the analog or digital output. Each functionality, the signal sum and the 8 A/D outputs, include a selectable dual-gain configuration. Moreover, the signal sum implements dual-gain output providing a 15 bit dynamic range. Full die simulation results of the MUSIC designed using AMS 0.35 µm SiGe technology are presented: total die size of 9 mm2, 500 MHz bandwidth for channel sum and 150 MHz bandwidth for A/D channels, low input impedance (≍32 Ω), single photon output pulse width at half maximum (FWHM) between 5 and 10 ns and with a power consumption of ≍ 30 mW/ch plus ≍ 200 mW for the 8 ch sum. Encapsulated prototype samples of the MUSIC are expected by March 2016.

  5. The generalized Lyapunov theorem and its application to quantum channels

    NASA Astrophysics Data System (ADS)

    Burgarth, Daniel; Giovannetti, Vittorio

    2007-05-01

    We give a simple and physically intuitive necessary and sufficient condition for a map acting on a compact metric space to be mixing (i.e. infinitely many applications of the map transfer any input into a fixed convergency point). This is a generalization of the 'Lyapunov direct method'. First we prove this theorem in topological spaces and for arbitrary continuous maps. Finally we apply our theorem to maps which are relevant in open quantum systems and quantum information, namely quantum channels. In this context, we also discuss the relations between mixing and ergodicity (i.e. the property that there exists only a single input state which is left invariant by a single application of the map) showing that the two are equivalent when the invariant point of the ergodic map is pure.

  6. Iterative MMSE Detection for MIMO/BLAST DS-CDMA Systems in Frequency Selective Fading Channels - Achieving High Performance in Fully Loaded Systems

    NASA Astrophysics Data System (ADS)

    Silva, João Carlos; Souto, Nuno; Cercas, Francisco; Dinis, Rui

    A MMSE (Minimum Mean Square Error) DS-CDMA (Direct Sequence-Code Division Multiple Access) receiver coupled with a low-complexity iterative interference suppression algorithm was devised for a MIMO/BLAST (Multiple Input, Multiple Output / Bell Laboratories Layered Space Time) system in order to improve system performance, considering frequency selective fading channels. The scheme is compared against the simple MMSE receiver, for both QPSK and 16QAM modulations, under SISO (Single Input, Single Output) and MIMO systems, the latter with 2Tx by 2Rx and 4Tx by 4Rx (MIMO order 2 and 4 respectively) antennas. To assess its performance in an existing system, the uncoded UMTS HSDPA (High Speed Downlink Packet Access) standard was considered.

  7. Design, modeling, and analysis of multi-channel demultiplexer/demodulator

    NASA Technical Reports Server (NTRS)

    Lee, David D.; Woo, K. T.

    1991-01-01

    Traditionally, satellites have performed the function of a simple repeater. Newer data distribution satellite architectures, however, require demodulation of many frequency division multiplexed uplink channels by a single demultiplexer/demodulator unit, baseband processing and routing of individual voice/data circuits, and remodulation into time division multiplexed (TDM) downlink carriers. The TRW MCDD (Multichannel Demultiplexer/Multirate Demodulator) operates on a 37.4 MHz composite input signal. Individual channel data rates are either 64 Kbps or 2.048 Mbps. The wideband demultiplexer divides the input signal into 1.44 MHz segments containing either a single 2.048 Mbps channel or thirty two 64 Kbps channels. In the latter case, the narrowband demultiplexer further divides the single 1.44 MHz wideband channel into thirty two 45 KHz narrowband channels. With this approach the time domain Fast Fourier Transformation (FFT) channelizer processing capacity is matched well to the bandwidth and number of channels to be demultiplexed. By using a multirate demodulator fewer demodulators are required while achieving greater flexibility. Each demodulator can process a wideband channel or thirty two narrowband channels. Either all wideband channels, a mixture of wideband and narrowband channels, or all narrowband channels can be demodulated. The multirate demodulator approach also has lower nonrecurring costs since only one design and development effort is needed. TRW has developed a proof of concept (POC) model which fully demonstrates the signal processing fuctions of MCDD. It is capable of processing either three 2.048 Mbps channels or two 2.048 Mbps channels and thirty two 64 Kbps channels. An overview of important MCDD system engineering issues is presented as well as discussion on some of the Block Oriented System Simulation analyses performed for design verification and selection of operational parameters of the POC model. Systems engineering analysis of the POC model confirmed that the MCDD concepts are not only achievable but also balance the joint goals of minimizing on-board complexity and cost of ground equipment, while retaining the flexibility needed to meet a wide range of system requirements.

  8. Multiplexing of Radio-Frequency Single Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We present results on wavelength division multiplexing of radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. A two-channel demonstration of this concept using discrete components successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.

  9. A three-channel LED driver with single line transportation technique

    NASA Astrophysics Data System (ADS)

    Yu, Caideng; Du, Yiying; Jiang, Qiao; Zhou, Yun; Lv, Jian

    2012-10-01

    Designed a three-channel LED driver, realized the single-wire transmission of cascade signal between the drive IC of LED. Including the MCU digital interface, date register, clock synchronization, PWM grayscale adjustment circuit, as well as high voltage driver circuit for LED, etc… The driver control LED displaying 256 gray. Chip will generate synchronous sampling clock signals according to the received serial signals, when 24 bits dates have been received, the output pin begins to transport the dates followed-up which are automotive shaped to the input of the next chip. When the date receiving becomes low level that represent RESET, the red, green and blue channels will export different signals based on different input dates. Through the external MCU, it is realized the Separate luminance, and by connecting chips in series it achieved the control of outdoor big screen' colorful display. The automatic shaping forward technique makes the number of chips cascading immune to the limitations of signal transmission, but only limited by the refresh speed.

  10. Multi-flux-transformer MRI detection with an atomic magnetometer.

    PubMed

    Savukov, Igor; Karaulanov, Todor

    2014-12-01

    Recently, anatomical ultra-low field (ULF) MRI has been demonstrated with an atomic magnetometer (AM). A flux-transformer (FT) has been used for decoupling MRI fields and gradients to avoid their negative effects on AM performance. The field of view (FOV) was limited because of the need to compromise between the size of the FT input coil and MRI sensitivity per voxel. Multi-channel acquisition is a well-known solution to increase FOV without significantly reducing sensitivity. In this paper, we demonstrate twofold FOV increase with the use of three FT input coils. We also show that it is possible to use a single atomic magnetometer and single acquisition channel to acquire three independent MRI signals by applying a frequency-encoding gradient along the direction of the detection array span. The approach can be generalized to more channels and can be critical for imaging applications of non-cryogenic ULF MRI where FOV needs to be large, including head, hand, spine, and whole-body imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Multi-flux-transformer MRI detection with an atomic magnetometer

    PubMed Central

    Savukov, Igor; Karaulanov, Todor

    2014-01-01

    Recently, anatomical ultra-low field (ULF) MRI has been demonstrated with an atomic magnetometer (AM). A flux-transformer (FT) has been used for decoupling MRI fields and gradients to avoid their negative effects on AM performance. The field of view (FOV) was limited because of the need to compromise between the size of the FT input coil and MRI sensitivity per voxel. Multi-channel acquisition is a well-known solution to increase FOV without significantly reducing sensitivity. In this paper, we demonstrate two-fold FOV increase with the use of three FT input coils. We also show that it is possible to use a single atomic magnetometer and single acquisition channel to acquire three independent MRI signals by applying a frequency-encoding gradient along the direction of the detection array span. The approach can be generalized to more channels and can be critical for imaging applications of non-cryogenic ULF MRI where FOV needs to be large, including head, hand, spine, and whole-body imaging. PMID:25462946

  12. Channel-capacity gain in entanglement-assisted communication protocols based exclusively on linear optics, single-photon inputs, and coincidence photon counting

    DOE PAGES

    Lougovski, P.; Uskov, D. B.

    2015-08-04

    Entanglement can effectively increase communication channel capacity as evidenced by dense coding that predicts a capacity gain of 1 bit when compared to entanglement-free protocols. However, dense coding relies on Bell states and when implemented using photons the capacity gain is bounded by 0.585 bits due to one's inability to discriminate between the four optically encoded Bell states. In this research we study the following question: Are there alternative entanglement-assisted protocols that rely only on linear optics, coincidence photon counting, and separable single-photon input states and at the same time provide a greater capacity gain than 0.585 bits? In thismore » study, we show that besides the Bell states there is a class of bipartite four-mode two-photon entangled states that facilitate an increase in channel capacity. We also discuss how the proposed scheme can be generalized to the case of two-photon N-mode entangled states for N=6,8.« less

  13. Single mechanically-gated cation channel currents can trigger action potentials in neocortical and hippocampal pyramidal neurons.

    PubMed

    Nikolaev, Yury A; Dosen, Peter J; Laver, Derek R; van Helden, Dirk F; Hamill, Owen P

    2015-05-22

    The mammalian brain is a mechanosensitive organ that responds to different mechanical forces ranging from intrinsic forces implicated in brain morphogenesis to extrinsic forces that can cause concussion and traumatic brain injury. However, little is known of the mechanosensors that transduce these forces. In this study we use cell-attached patch recording to measure single mechanically-gated (MG) channel currents and their affects on spike activity in identified neurons in neonatal mouse brain slices. We demonstrate that both neocortical and hippocampal pyramidal neurons express stretch-activated MG cation channels that are activated by suctions of ~25mm Hg, have a single channel conductance for inward current of 50-70pS and show weak selectivity for alkali metal cations (i.e., Na(+)

  14. 106-17 Telemetry Standards. Annex A.4. Asynchronous Recorder Multiplexer Output Re-Constructor (ARMOR)

    DTIC Science & Technology

    2017-07-01

    Output Re-Constructor 1. General This standard defines the recommended multiplexer format for single-channel data recording on small-format (1/2 in...which is 1-based, is determined by the position of the channel’s module in the ARMOR system . The first input channel found in the ARMOR system is

  15. MURI: Impact of Oceanographic Variability on Acoustic Communications

    DTIC Science & Technology

    2011-09-01

    multiplexing ( OFDM ), multiple- input/multiple-output ( MIMO ) transmissions, and multi-user single-input/multiple-output (SIMO) communications. Lastly... MIMO - OFDM communications: Receiver design for Doppler distorted underwater acoustic channels,” Proc. Asilomar Conf. on Signals, Systems, and... MIMO ) will be of particular interest. Validating experimental data will be obtained during the ONR acoustic communications experiment in summer 2008

  16. Tunable single-photon multi-channel quantum router based on an optomechanical system

    NASA Astrophysics Data System (ADS)

    Ma, Peng-Cheng; Yan, Lei-Lei; Zhang, Jian; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang

    2018-01-01

    Routing of photons plays a key role in optical communication networks and quantum networks. Although the quantum routing of signals has been investigated for various systems, both in theory and experiment, the general form of a quantum router with multi-output terminals still needs to be explored. Here, we propose an experimentally accessible tunable single-photon multi-channel routing scheme using an optomechanics cavity which is Coulomb coupled to a nanomechanical resonator. The router can extract single photons from the coherent input signal and directly modulate them into three different output channels. More importantly, the two output signal frequencies can be selected by adjusting the Coulomb coupling strength. For application purposes, we justify that there is insignificant influence from the vacuum and thermal noises on the performance of the router under cryogenic conditions. Our proposal may pave a new avenue towards multi-channel routers and quantum networks.

  17. Three-dimensional analysis of flow-chemical interaction within a single square channel of a lean NO x trap catalyst.

    PubMed

    Fornarelli, Francesco; Dadduzio, Ruggiero; Torresi, Marco; Camporeale, Sergio Mario; Fortunato, Bernardo

    2018-02-01

    A fully 3D unsteady Computational Fluid Dynamics (CFD) approach coupled with heterogeneous reaction chemistry is presented in order to study the behavior of a single square channel as part of a Lean [Formula: see text] Traps. The reliability of the numerical tool has been validated against literature data considering only active BaO site. Even though the input/output performance of such catalyst has been well known, here the spatial distribution within a single channel is investigated in details. The square channel geometry influences the flow field and the catalyst performance being the flow velocity distribution on the cross section non homogeneous. The mutual interaction between the flow and the active catalyst walls influences the spatial distribution of the volumetric species. Low velocity regions near the square corners and transversal secondary flows are shown in several cross-sections along the streamwise direction at different instants. The results shed light on the three-dimensional characteristic of both the flow field and species distribution within a single square channel of the catalyst with respect to 0-1D approaches.

  18. Complementary functions of SK and Kv7/M potassium channels in excitability control and synaptic integration in rat hippocampal dentate granule cells

    PubMed Central

    Mateos-Aparicio, Pedro; Murphy, Ricardo; Storm, Johan F

    2014-01-01

    The dentate granule cells (DGCs) form the most numerous neuron population of the hippocampal memory system, and its gateway for cortical input. Yet, we have only limited knowledge of the intrinsic membrane properties that shape their responses. Since SK and Kv7/M potassium channels are key mechanisms of neuronal spiking and excitability control, afterhyperpolarizations (AHPs) and synaptic integration, we studied their functions in DGCs. The specific SK channel blockers apamin or scyllatoxin increased spike frequency (excitability), reduced early spike frequency adaptation, fully blocked the medium-duration AHP (mAHP) after a single spike or spike train, and increased postsynaptic EPSP summation after spiking, but had no effect on input resistance (Rinput) or spike threshold. In contrast, blockade of Kv7/M channels by XE991 increased Rinput, lowered the spike threshold, and increased excitability, postsynaptic EPSP summation, and EPSP–spike coupling, but only slightly reduced mAHP after spike trains (and not after single spikes). The SK and Kv7/M channel openers 1-EBIO and retigabine, respectively, had effects opposite to the blockers. Computational modelling reproduced many of these effects. We conclude that SK and Kv7/M channels have complementary roles in DGCs. These mechanisms may be important for the dentate network function, as CA3 neurons can be activated or inhibition recruited depending on DGC firing rate. PMID:24366266

  19. Audio distribution and Monitoring Circuit

    NASA Technical Reports Server (NTRS)

    Kirkland, J. M.

    1983-01-01

    Versatile circuit accepts and distributes TV audio signals. Three-meter audio distribution and monitoring circuit provides flexibility in monitoring, mixing, and distributing audio inputs and outputs at various signal and impedance levels. Program material is simultaneously monitored on three channels, or single-channel version built to monitor transmitted or received signal levels, drive speakers, interface to building communications, and drive long-line circuits.

  20. Wavelength Division Multiplexing Scheme for Radio-Frequency Single Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We describe work on a wavelength division multiplexing scheme for radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. Using discrete components, we made a two-channel demonstration of this concept and successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.

  1. A method to synchronize signals from multiple patient monitoring devices through a single input channel for inclusion in list-mode acquisitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen

    2013-12-15

    Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequencemore » is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be implemented using minimal external hardware and software modification through a single input channel, while still recording cardiac gating signals.« less

  2. On codes with multi-level error-correction capabilities

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1987-01-01

    In conventional coding for error control, all the information symbols of a message are regarded equally significant, and hence codes are devised to provide equal protection for each information symbol against channel errors. However, in some occasions, some information symbols in a message are more significant than the other symbols. As a result, it is desired to devise codes with multilevel error-correcting capabilities. Another situation where codes with multi-level error-correcting capabilities are desired is in broadcast communication systems. An m-user broadcast channel has one input and m outputs. The single input and each output form a component channel. The component channels may have different noise levels, and hence the messages transmitted over the component channels require different levels of protection against errors. Block codes with multi-level error-correcting capabilities are also known as unequal error protection (UEP) codes. Structural properties of these codes are derived. Based on these structural properties, two classes of UEP codes are constructed.

  3. Injector-concentrator electrodes for microchannel electrophoresis

    DOEpatents

    Swierkowski, Stefan P.

    2003-05-06

    An input port geometry, with injector-concentrator electrodes, for planar microchannel array for electrophoresis. This input port geometry enables efficient extraction and injection of the DNA sample from a single input port. The geometry, which utilizes injector-concentrator electrodes, allows simultaneous concentration, in different channels, of the sample into a longitudinally narrow strip just before releasing it for a run with enhanced injection spatial resolution, and time resolution. Optional multiple electrodes, at a different bias than the concentrator electrodes, may be used to discriminate against sample impurity ions. Electrode passivation can be utilized to prevent electrolysis. An additional electrode in or on the input hole can better define the initial loading. The injector-concentrator electrodes are positioned so that they cross the drift channel in a narrow strip at the bond plane between the top and bottom plates of the instrument and are located close to the inlet hole. The optional sample purification electrodes are located at a greater distance from the input hole than the injector-concentrate electrodes.

  4. Astrocytes regulate heterogeneity of presynaptic strengths in hippocampal networks

    PubMed Central

    Letellier, Mathieu; Park, Yun Kyung; Chater, Thomas E.; Chipman, Peter H.; Gautam, Sunita Ghimire; Oshima-Takago, Tomoko; Goda, Yukiko

    2016-01-01

    Dendrites are neuronal structures specialized for receiving and processing information through their many synaptic inputs. How input strengths are modified across dendrites in ways that are crucial for synaptic integration and plasticity remains unclear. We examined in single hippocampal neurons the mechanism of heterosynaptic interactions and the heterogeneity of synaptic strengths of pyramidal cell inputs. Heterosynaptic presynaptic plasticity that counterbalances input strengths requires N-methyl-d-aspartate receptors (NMDARs) and astrocytes. Importantly, this mechanism is shared with the mechanism for maintaining highly heterogeneous basal presynaptic strengths, which requires astrocyte Ca2+ signaling involving NMDAR activation, astrocyte membrane depolarization, and L-type Ca2+ channels. Intracellular infusion of NMDARs or Ca2+-channel blockers into astrocytes, conditionally ablating the GluN1 NMDAR subunit, or optogenetically hyperpolarizing astrocytes with archaerhodopsin promotes homogenization of convergent presynaptic inputs. Our findings support the presence of an astrocyte-dependent cellular mechanism that enhances the heterogeneity of presynaptic strengths of convergent connections, which may help boost the computational power of dendrites. PMID:27118849

  5. Anabranching rivers on the Northern Plains of arid central Australia

    NASA Astrophysics Data System (ADS)

    Tooth, Stephen; Nanson, Gerald C.

    1999-09-01

    Anabranching rivers are a widespread feature of the Northern Plains in the Alice Springs region of central Australia but their unusual characteristics previously have not been described. On the Northern Plains, anabranching occurs on rivers transporting bedloads of coarse sand and gravel and is characterised by channels of variable size and shape which occur within a broader, typically well-defined, channel-train. Channels are separated by channel-train ridges—narrow, flow-aligned, vegetated features—or by wider islands. Ridges and islands are either depositional features (formed in situ by accretionary processes) or erosional features (formed by excision from once-continuous areas of floodplain). Vegetation plays a key role in the initiation, survival and growth of depositional forms through its influence on flow, sediment transport and ridge and island stability. Anabranching is also related to the influence of tributaries, for some large rivers alternate from single-thread to anabranching along their length in response to tributary inputs of water and sediment. Tributary inputs occur during flow events that are either independent from, or in concert with, floods in the trunk channel. Ridges and islands form in association with tributaries as a result of various hydrological, depositional and erosional processes, including irrigation of enhanced numbers of in-channel trees and resulting lee-side sediment accretion, floodplain scour, and the formation and maintenance of deferred-junction tributaries. The change from single-thread to anabranching downstream of tributary junctions occurs in the absence of any significant change in channel gradient or degree of channel confinement. On the Northern Plains, anabranching appears to be a stable river pattern that helps to maintain the throughput of relatively coarse sediment in low-gradient (typically 0.0005-0.002) channels characterised by an abundance of within-channel vegetation and subject to declining downstream discharges.

  6. Note: optical receiver system for 152-channel magnetoencephalography.

    PubMed

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2014-11-01

    An optical receiver system composing 13 serial data restore/synchronizer modules and a single module combiner converted optical 32-bit serial data into 32-bit synchronous parallel data for a computer to acquire 152-channel magnetoencephalography (MEG) signals. A serial data restore/synchronizer module identified 32-bit channel-voltage bits from 48-bit streaming serial data, and then consecutively reproduced 13 times of 32-bit serial data, acting in a synchronous clock. After selecting a single among 13 reproduced data in each module, a module combiner converted it into 32-bit parallel data, which were carried to 32-port digital input board in a computer. When the receiver system together with optical transmitters were applied to 152-channel superconducting quantum interference device sensors, this MEG system maintained a field noise level of 3 fT/√Hz @ 100 Hz at a sample rate of 1 kSample/s per channel.

  7. Dual Input AND Gate Fabricated From a Single Channel Poly (3-Hexylthiophene) Thin Film Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    Pinto, N. J.; Perez, R.; Mueller, C. H.; Theofylaktos, N.; Miranda, F. A.

    2006-01-01

    A regio-regular poly (3-hexylthiophene) (RRP3HT) thin film transistor having a split-gate architecture has been fabricated on a doped silicon/silicon nitride substrate and characterized. This device demonstrates AND logic functionality. The device functionality was controlled by applying either 0 or -10 V to each of the gate electrodes. When -10 V was simultaneously applied to both gates, the device was conductive (ON), while any other combination of gate voltages rendered the device resistive (OFF). The p-type carrier charge mobility was about 5x10(exp -4) per square centimeter per V-sec. The low mobility is attributed to the sharp contours of the RRP3HT film due to substrate non-planarity. A significant advantage of this architecture is that AND logic devices with multiple inputs can be fabricated using a single RRP3HT channel with multiple gates.

  8. Low-Cutoff, High-Pass Digital Filtering of Neural Signals

    NASA Technical Reports Server (NTRS)

    Mojarradi,Mohammad; Johnson, Travis; Ortiz, Monico; Cunningham, Thomas; Andersen, Richard

    2004-01-01

    The figure depicts the major functional blocks of a system, now undergoing development, for conditioning neural signals acquired by electrodes implanted in a brain. The overall functions to be performed by this system can be summarized as preamplification, multiplexing, digitization, and high-pass filtering. Other systems under development for recording neural signals typically contain resistor-capacitor analog low-pass filters characterized by cutoff frequencies in the vicinity of 100 Hz. In the application for which this system is being developed, there is a requirement for a cutoff frequency of 5 Hz. Because the resistors needed to obtain such a low cutoff frequency would be impractically large, it was decided to perform low-pass filtering by use of digital rather than analog circuitry. In addition, it was decided to timemultiplex the digitized signals from the multiple input channels into a single stream of data in a single output channel. The signal in each input channel is first processed by a preamplifier having a voltage gain of approximately 50. Embedded in each preamplifier is a low-pass anti-aliasing filter having a cutoff frequency of approximately 10 kHz. The anti-aliasing filters make it possible to couple the outputs of the preamplifiers to the input ports of a multiplexer. The output of the multiplexer is a single stream of time-multiplexed samples of analog signals. This stream is processed by a main differential amplifier, the output of which is sent to an analog-to-digital converter (ADC). The output of the ADC is sent to a digital signal processor (DSP).

  9. A New MEMS Gyroscope Used for Single-Channel Damping

    PubMed Central

    Zhang, Zengping; Zhang, Wei; Zhang, Fuxue; Wang, Biao

    2015-01-01

    The silicon micromechanical gyroscope, which will be introduced in this paper, represents a novel MEMS gyroscope concept. It is used for the damping of a single-channel control system of rotating aircraft. It differs from common MEMS gyroscopes in that does not have a drive structure, itself, and only has a sense structure. It is installed on a rotating aircraft, and utilizes the aircraft spin to make its sensing element obtain angular momentum. When the aircraft is subjected to an angular rotation, a periodic Coriolis force is induced in the direction orthogonal to both the angular momentum and the angular velocity input axis. This novel MEMS gyroscope can thus sense angular velocity inputs. The output sensing signal is exactly an amplitude-modulation signal. Its envelope is proportional to the input angular velocity, and the carrier frequency corresponds to the spin frequency of the rotating aircraft, so the MEMS gyroscope can not only sense the transverse angular rotation of an aircraft, but also automatically change the carrier frequency over the change of spin frequency, making it very suitable for the damping of a single-channel control system of a rotating aircraft. In this paper, the motion equation of the MEMS gyroscope has been derived. Then, an analysis has been carried to solve the motion equation and dynamic parameters. Finally, an experimental validation has been done based on a precision three axis rate table. The correlation coefficients between the tested data and the theoretical values are 0.9969, 0.9872 and 0.9842, respectively. These results demonstrate that both the design and sensing mechanism are correct. PMID:25942638

  10. Binary full adder, made of fusion gates, in a subexcitable Belousov-Zhabotinsky system

    NASA Astrophysics Data System (ADS)

    Adamatzky, Andrew

    2015-09-01

    In an excitable thin-layer Belousov-Zhabotinsky (BZ) medium a localized perturbation leads to the formation of omnidirectional target or spiral waves of excitation. A subexcitable BZ medium responds to asymmetric local perturbation by producing traveling localized excitation wave-fragments, distant relatives of dissipative solitons. The size and life span of an excitation wave-fragment depend on the illumination level of the medium. Under the right conditions the wave-fragments conserve their shape and velocity vectors for extended time periods. I interpret the wave-fragments as values of Boolean variables. When two or more wave-fragments collide they annihilate or merge into a new wave-fragment. States of the logic variables, represented by the wave-fragments, are changed in the result of the collision between the wave-fragments. Thus, a logical gate is implemented. Several theoretical designs and experimental laboratory implementations of Boolean logic gates have been proposed in the past but little has been done cascading the gates into binary arithmetical circuits. I propose a unique design of a binary one-bit full adder based on a fusion gate. A fusion gate is a two-input three-output logical device which calculates the conjunction of the input variables and the conjunction of one input variable with the negation of another input variable. The gate is made of three channels: two channels cross each other at an angle, a third channel starts at the junction. The channels contain a BZ medium. When two excitation wave-fragments, traveling towards each other along input channels, collide at the junction they merge into a single wave-front traveling along the third channel. If there is just one wave-front in the input channel, the front continues its propagation undisturbed. I make a one-bit full adder by cascading two fusion gates. I show how to cascade the adder blocks into a many-bit full adder. I evaluate the feasibility of my designs by simulating the evolution of excitation in the gates and adders using the numerical integration of Oregonator equations.

  11. Experimental demonstration of a frequency-domain Volterra series nonlinear equalizer in polarization-multiplexed transmission.

    PubMed

    Guiomar, Fernando P; Reis, Jacklyn D; Carena, Andrea; Bosco, Gabriella; Teixeira, António L; Pinto, Armando N

    2013-01-14

    Employing 100G polarization-multiplexed quaternary phase-shift keying (PM-QPSK) signals, we experimentally demonstrate a dual-polarization Volterra series nonlinear equalizer (VSNE) applied in frequency-domain, to mitigate intra-channel nonlinearities. The performance of the dual-polarization VSNE is assessed in both single-channel and in wavelength-division multiplexing (WDM) scenarios, providing direct comparisons with its single-polarization version and with the widely studied back-propagation split-step Fourier (SSF) approach. In single-channel transmission, the optimum power has been increased by about 1 dB, relatively to the single-polarization equalizers, and up to 3 dB over linear equalization, with a corresponding bit error rate (BER) reduction of up to 63% and 85%, respectively. Despite of the impact of inter-channel nonlinearities, we show that intra-channel nonlinear equalization is still able to provide approximately 1 dB improvement in the optimum power and a BER reduction of ~33%, considering a 66 GHz WDM grid. By means of simulation, we demonstrate that the performance of nonlinear equalization can be substantially enhanced if both optical and electrical filtering are optimized, enabling the VSNE technique to outperform its SSF counterpart at high input powers.

  12. Self-calibrating threshold detector

    NASA Technical Reports Server (NTRS)

    Barnes, J. R.; Huang, M. Y. (Inventor)

    1980-01-01

    A self calibrating threshold detector comprises a single demodulating channel which includes a mixer having one input receiving the incoming signal and another input receiving a local replica code. During a short time interval, an incorrect local code is applied to the mixer to incorrectly demodulate the incoming signal and to provide a reference level that calibrates the noise propagating through the channel. A sample and hold circuit is coupled to the channel for storing a sample of the reference level. During a relatively long time interval, the correct replica code provides an output level which ranges between the reference level and a maximum level that represents incoming signal presence and synchronism with the replica code. A summer substracts the stored sample reference from the output level to provide a resultant difference signal indicative of the acquisition of the expected signal.

  13. Performance Analysis for Channel Estimation With 1-Bit ADC and Unknown Quantization Threshold

    NASA Astrophysics Data System (ADS)

    Stein, Manuel S.; Bar, Shahar; Nossek, Josef A.; Tabrikian, Joseph

    2018-05-01

    In this work, the problem of signal parameter estimation from measurements acquired by a low-complexity analog-to-digital converter (ADC) with $1$-bit output resolution and an unknown quantization threshold is considered. Single-comparator ADCs are energy-efficient and can be operated at ultra-high sampling rates. For analysis of such systems, a fixed and known quantization threshold is usually assumed. In the symmetric case, i.e., zero hard-limiting offset, it is known that in the low signal-to-noise ratio (SNR) regime the signal processing performance degrades moderately by ${2}/{\\pi}$ ($-1.96$ dB) when comparing to an ideal $\\infty$-bit converter. Due to hardware imperfections, low-complexity $1$-bit ADCs will in practice exhibit an unknown threshold different from zero. Therefore, we study the accuracy which can be obtained with receive data processed by a hard-limiter with unknown quantization level by using asymptotically optimal channel estimation algorithms. To characterize the estimation performance of these nonlinear algorithms, we employ analytic error expressions for different setups while modeling the offset as a nuisance parameter. In the low SNR regime, we establish the necessary condition for a vanishing loss due to missing offset knowledge at the receiver. As an application, we consider the estimation of single-input single-output wireless channels with inter-symbol interference and validate our analysis by comparing the analytic and experimental performance of the studied estimation algorithms. Finally, we comment on the extension to multiple-input multiple-output channel models.

  14. Evaluation of RCA thinned buried channel charge-coupled devices /CCDs/ for scientific applications

    NASA Technical Reports Server (NTRS)

    Zucchino, P.; Long, D.; Lowrance, J. L.; Renda, G.; Crawshaw, D. D.; Battson, D. F.

    1981-01-01

    An experimental version of a thinned illuminated buried-channel 512 x 320 pixel CCD with reduced amplifier input capacitance has been produced which is characterized by lower readout noise. Changes made to the amplifier are discussed, and readout noise measurements obtained by several different techniques are presented. The single energetic electron response of the CCD in the electron-bombarded mode and the single 5.9 keV X-ray pulse height distribution are reported. Results are also given on the dark current versus temperature and the spatial frequency response as a function of signal level.

  15. Mechanisms of Gain Control by Voltage-Gated Channels in Intrinsically-Firing Neurons

    PubMed Central

    Patel, Ameera X.; Burdakov, Denis

    2015-01-01

    Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems. PMID:25816008

  16. Optical Communications Channel Combiner

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Quirk, Kevin J.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    NASA has identified deep-space optical communications links as an integral part of a unified space communication network in order to provide data rates in excess of 100 Mb/s. The distances and limited power inherent in a deep-space optical downlink necessitate the use of photon-counting detectors and a power-efficient modulation such as pulse position modulation (PPM). For the output of each photodetector, whether from a separate telescope or a portion of the detection area, a communication receiver estimates a log-likelihood ratio for each PPM slot. To realize the full effective aperture of these receivers, their outputs must be combined prior to information decoding. A channel combiner was developed to synchronize the log-likelihood ratio (LLR) sequences of multiple receivers, and then combines these into a single LLR sequence for information decoding. The channel combiner synchronizes the LLR sequences of up to three receivers and then combines these into a single LLR sequence for output. The channel combiner has three channel inputs, each of which takes as input a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The cross-correlation between the channels LLR time series are calculated and used to synchronize the sequences prior to combining. The output of the channel combiner is a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The unit is controlled through a 1 Gb/s Ethernet UDP/IP interface. A deep-space optical communication link has not yet been demonstrated. This ground-station channel combiner was developed to demonstrate this capability and is unique in its ability to process such a signal.

  17. Influence of asymmetric attenuation of single and paired dendritic inputs on summation of synaptic potentials and initiation of action potentials.

    PubMed

    Fortier, Pierre A; Bray, Chelsea

    2013-04-16

    Previous studies revealed mechanisms of dendritic inputs leading to action potential initiation at the axon initial segment and backpropagation into the dendritic tree. This interest has recently expanded toward the communication between different parts of the dendritic tree which could preprocess information before reaching the soma. This study tested for effects of asymmetric voltage attenuation between different sites in the dendritic tree on summation of synaptic inputs and action potential initiation using the NEURON simulation environment. Passive responses due to the electrical equivalent circuit of the three-dimensional neuron architecture with leak channels were examined first, followed by the responses after adding voltage-gated channels and finally synaptic noise. Asymmetric attenuation of voltage, which is a function of asymmetric input resistance, was seen between all pairs of dendritic sites but the transfer voltages (voltage recorded at the opposite site from stimulation among a pair of dendritic sites) were equal and also summed linearly with local voltage responses during simultaneous stimulation of both sites. In neurons with voltage-gated channels, we reproduced the observations where a brief stimulus to the proximal ascending dendritic branch of a pyramidal cell triggers a local action potential but a long stimulus triggers a somal action potential. Combined stimulation of a pair of sites in this proximal dendrite did not alter this pattern. The attraction of the action potential onset toward the soma with a long stimulus in the absence of noise was due to the higher density of voltage-gated sodium channels at the axon initial segment. This attraction was, however, negligible at the most remote distal dendritic sites and was replaced by an effect due to high input resistance. Action potential onset occurred at the dendritic site of higher input resistance among a pair of remote dendritic sites, irrespective of which of these two sites received the synaptic input. Exploration of the parameter space showed how the gradient of voltage-gated channel densities and input resistances along a dendrite could draw the action potential onset away from the stimulation site. The attraction of action potential onset toward the higher density of voltage-gated channels in the soma during stimulation of the proximal dendrite was, however, reduced after the addition of synaptic noise. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. An enhanced multi-channel bacterial foraging optimization algorithm for MIMO communication system

    NASA Astrophysics Data System (ADS)

    Palanimuthu, Senthilkumar Jayalakshmi; Muthial, Chandrasekaran

    2017-04-01

    Channel estimation and optimisation are the main challenging tasks in Multi Input Multi Output (MIMO) wireless communication systems. In this work, a Multi-Channel Bacterial Foraging Optimization Algorithm approach is proposed for the selection of antenna in a transmission area. The main advantage of this method is, it reduces the loss of bandwidth during data transmission effectively. Here, we considered the channel estimation and optimisation for improving the transmission speed and reducing the unused bandwidth. Initially, the message is given to the input of the communication system. Then, the symbol mapping process is performed for converting the message into signals. It will be encoded based on the space-time encoding technique. Here, the single signal is divided into multiple signals and it will be given to the input of space-time precoder. Hence, the multiplexing is applied to transmission channel estimation. In this paper, the Rayleigh channel is selected based on the bandwidth range. This is the Gaussian distribution type channel. Then, the demultiplexing is applied on the obtained signal that is the reverse function of multiplexing, which splits the combined signal arriving from a medium into the original information signal. Furthermore, the long-term evolution technique is used for scheduling the time to channels during transmission. Here, the hidden Markov model technique is employed to predict the status information of the channel. Finally, the signals are decoded and the reconstructed signal is obtained after performing the scheduling process. The experimental results evaluate the performance of the proposed MIMO communication system in terms of bit error rate, mean squared error, average throughput, outage capacity and signal to interference noise ratio.

  19. A study of partial coherence for identifying interior noise sources and paths on general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.

    1979-01-01

    The partial coherence analysis method for noise source/path determination is summarized and the application to a two input, single output system with coherence between the inputs is illustrated. The augmentation of the calculations on a digital computer interfaced with a two channel, real time analyzer is also discussed. The results indicate possible sources of error in the computations and suggest procedures for avoiding these errors.

  20. A multichannel integrated circuit for electrical recording of neural activity, with independent channel programmability.

    PubMed

    Mora Lopez, Carolina; Prodanov, Dimiter; Braeken, Dries; Gligorijevic, Ivan; Eberle, Wolfgang; Bartic, Carmen; Puers, Robert; Gielen, Georges

    2012-04-01

    Since a few decades, micro-fabricated neural probes are being used, together with microelectronic interfaces, to get more insight in the activity of neuronal networks. The need for higher temporal and spatial recording resolutions imposes new challenges on the design of integrated neural interfaces with respect to power consumption, data handling and versatility. In this paper, we present an integrated acquisition system for in vitro and in vivo recording of neural activity. The ASIC consists of 16 low-noise, fully-differential input channels with independent programmability of its amplification (from 100 to 6000 V/V) and filtering (1-6000 Hz range) capabilities. Each channel is AC-coupled and implements a fourth-order band-pass filter in order to steeply attenuate out-of-band noise and DC input offsets. The system achieves an input-referred noise density of 37 nV/√Hz, a NEF of 5.1, a CMRR > 60 dB, a THD < 1% and a sampling rate of 30 kS/s per channel, while consuming a maximum of 70 μA per channel from a single 3.3 V. The ASIC was implemented in a 0.35 μm CMOS technology and has a total area of 5.6 × 4.5 mm². The recording system was successfully validated in in vitro and in vivo experiments, achieving simultaneous multichannel recordings of cell activity with satisfactory signal-to-noise ratios.

  1. Compact universal logic gates realized using quantization of current in nanodevices.

    PubMed

    Zhang, Wancheng; Wu, Nan-Jian; Yang, Fuhua

    2007-12-12

    This paper proposes novel universal logic gates using the current quantization characteristics of nanodevices. In nanodevices like the electron waveguide (EW) and single-electron (SE) turnstile, the channel current is a staircase quantized function of its control voltage. We use this unique characteristic to compactly realize Boolean functions. First we present the concept of the periodic-threshold threshold logic gate (PTTG), and we build a compact PTTG using EW and SE turnstiles. We show that an arbitrary three-input Boolean function can be realized with a single PTTG, and an arbitrary four-input Boolean function can be realized by using two PTTGs. We then use one PTTG to build a universal programmable two-input logic gate which can be used to realize all two-input Boolean functions. We also build a programmable three-input logic gate by using one PTTG. Compared with linear threshold logic gates, with the PTTG one can build digital circuits more compactly. The proposed PTTGs are promising for future smart nanoscale digital system use.

  2. Direct demonstration of persistent Na+ channel activity in dendritic processes of mammalian cortical neurones

    PubMed Central

    Magistretti, Jacopo; Ragsdale, David S; Alonso, Angel

    1999-01-01

    Single Na+ channel activity was recorded in patch-clamp, cell-attached experiments performed on dendritic processes of acutely isolated principal neurones from rat entorhinal-cortex layer II. The distances of the recording sites from the soma ranged from ≈20 to ≈100 μm.Step depolarisations from holding potentials of −120 to −100 mV to test potentials of −60 to +10 mV elicited Na+ channel openings in all of the recorded patches (n= 16).In 10 patches, besides transient Na+ channel openings clustered within the first few milliseconds of the depolarising pulses, prolonged and/or late Na+ channel openings were also regularly observed. This ‘persistent’ Na+ channel activity produced net inward, persistent currents in ensemble-average traces, and remained stable over the entire duration of the experiments (≈9 to 30 min).Two of these patches contained <= 3 channels. In these cases, persistent Na+ channel openings could be attributed to the activity of one single channel.The voltage dependence of persistent-current amplitude in ensemble-average traces closely resembled that of whole-cell, persistent Na+ current expressed by the same neurones, and displayed the same characteristic low threshold of activation.Dendritic, persistent Na+ channel openings had relatively high single-channel conductance (≈20 pS), similar to what is observed for somatic, persistent Na+ channels.We conclude that a stable, persistent Na+ channel activity is expressed by proximal dendrites of entorhinal-cortex layer II principal neurones, and can contribute a significant low-threshold, persistent Na+ current to the dendritic processing of excitatory synaptic inputs. PMID:10601494

  3. Joint Channel and Phase Noise Estimation in MIMO-OFDM Systems

    NASA Astrophysics Data System (ADS)

    Ngebani, I. M.; Chuma, J. M.; Zibani, I.; Matlotse, E.; Tsamaase, K.

    2017-05-01

    The combination of multiple-input multiple-output (MIMO) techniques with orthogonal frequency division multiplexing (OFDM), MIMO-OFDM, is a promising way of achieving high spectral efficiency in wireless communication systems. However, the performance of MIMO-ODFM systems is highly degraded by radio frequency (RF) impairments such as phase noise. Similar to the single-input single-output (SISO) case, phase noise in MIMO-OFDM systems results in a common phase error (CPE) and inter carrier interference (ICI). In this paper the problem of joint channel and phase noise estimation in a system with multiple transmit and receive antennas where each antenna is equipped with its own independent oscillator is tackled. The technique employed makes use of a novel placement of pilot carriers in the preamble and data portion of the MIMO-OFDM frame. Numerical results using a 16 and 64 quadrature amplitude modulation QAM schemes are provided to illustrate the effectiveness of the proposed scheme for MIMO-OFDM systems.

  4. Experimental study on the statistic characteristics of a 3x3 RF MIMO channel over a single conventional multimode fiber.

    PubMed

    Lei, Yi; Li, Jianqiang; Wu, Rui; Fan, Yuting; Fu, Songnian; Yin, Feifei; Dai, Yitang; Xu, Kun

    2017-06-01

    Based on the observed random fluctuation phenomenon of speckle pattern across multimode fiber (MMF) facet and received optical power distribution across three output ports, we experimentally investigate the statistic characteristics of a 3×3 radio frequency multiple-input multiple-output (MIMO) channel enabled by mode division multiplexing in a conventional 50 µm MMF using non-mode-selective three-dimensional waveguide photonic lanterns as mode multiplexer and demultiplexer. The impacts of mode coupling on the MIMO channel coefficients, channel matrix, and channel capacity have been analyzed over different fiber lengths. The results indicate that spatial multiplexing benefits from the greater fiber length with stronger mode coupling, despite a higher optical loss.

  5. Two-pole microring weight banks.

    PubMed

    Tait, Alexander N; Wu, Allie X; Ferreira de Lima, Thomas; Nahmias, Mitchell A; Shastri, Bhavin J; Prucnal, Paul R

    2018-05-15

    Weighted addition is an elemental multi-input to single-output operation that can be implemented with high-performance photonic devices. Microring (MRR) weight banks bring programmable weighted addition to silicon photonics. Prior work showed that their channel limits are affected by coherent inter-channel effects that occur uniquely in weight banks. We fabricate two-pole designs that exploit this inter-channel interference in a way that is robust to dynamic tuning and fabrication variation. Scaling analysis predicts a channel count improvement of 3.4-fold, which is substantially greater than predicted by incoherent analysis used in conventional MRR devices. Advances in weight bank design expand the potential of reconfigurable analog photonic networks and multivariate microwave photonics.

  6. Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells.

    PubMed

    Rudolph, Stephanie; Hull, Court; Regehr, Wade G

    2015-11-25

    Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries these functions. The extent of inhibition depends on both spontaneous activity of GoCs and the excitatory synaptic input they receive. In this study, we find that different types of calcium channels are differentially distributed, with dendritic calcium channels being activated by somatic activity, boosting synaptic inputs and enabling bursting, and somatic calcium cannels promoting regular firing. We therefore challenge the current view that GoC dendrites are passive and identify the mechanisms that contribute to GoCs regulating the flow of sensory information in the cerebellar cortex. Copyright © 2015 the authors 0270-6474/15/3515492-13$15.00/0.

  7. Digital transceiver design for two-way AF-MIMO relay systems with imperfect CSI

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Chang; Chou, Yu-Fei; Chen, Kui-He

    2013-09-01

    In the paper, combined optimization of the terminal precoders/equalizers and single-relay precoder is proposed for an amplify-and-forward (AF) multiple-input multiple-output (MIMO) two-way single-relay system with correlated channel uncertainties. Both terminal transceivers and relay precoding matrix are designed based on the minimum mean square error (MMSE) criterion when terminals are unable to erase completely self-interference due to imperfect correlated channel state information (CSI). This robust joint optimization problem of beamforming and precoding matrices under power constraints belongs to neither concave nor convex so that a nonlinear matrix-form conjugate gradient (MCG) algorithm is applied to explore local optimal solutions. Simulation results show that the robust transceiver design is able to overcome effectively the loss of bit-error-rate (BER) due to inclusion of correlated channel uncertainties and residual self-interference.

  8. Integrated-Optic Wavelength Multiplexer In Glass Fabricated By A Charge Controlled Ion Exchange

    NASA Astrophysics Data System (ADS)

    Klein, R.; Jestel, D.; Lilienhof, H. J.; Rottman, F.; Voges, E.

    1989-02-01

    Integrated-optic wavelength division multiplexing (WDM) is commonly used in communication systems. These WDM-devices are also well suited to build up optical fiber networks for both intensity and interferometric sensor types. The operation principle of our wavelength division multiplexing devise is based on the wavelength dependent two-mode interference in a two-moded waveguide, which is coupled adiabatically to the single-mode input and output strip waveguides. The single-mode input and output waveguides are connected via two Y-branches ( "'kJ- 1° branching angle ) with a two-moded intersection region. The ratio of the light powers in the single-mode output waveguides depends on wavelength . The two-mode interference within the two-moded center waveguide leads to an almost wavelength periodic transmission caracteristic . Dual-channel multiplexers/demultiplexers were fabricated by a charge controlled field assisted pottasium exchange in B-270 glass (Desag). The devices have a typical channel separation of 30 - 40 nm and a far-end crosstalk attenuation of better than 16 dB. The operation wavelength regions of the fabricated devices are 0.6 - 0.8 µm and 1.3 - 1.6 µm, respectively.

  9. Non Contacting Evaluation of Strains and Cracking Using Optical and Infrared Imaging Techniques

    DTIC Science & Technology

    1988-08-22

    Compatible Zenith Z-386 microcomputer with plotter II. 3-D Motion Measurinq System 1. Complete OPTOTRAK three dimensional digitizing system. System includes...acquisition unit - 16 single ended analog input channels 3. Data Analysis Package software (KINEPLOT) 4. Extra OPTOTRAK Camera (max 224 per system

  10. Effect of a dual inlet channel on cell loading in microfluidics.

    PubMed

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2014-11-01

    Unwanted sedimentation and attachment of a number of cells onto the bottom channel often occur on relatively large-scale inlets of conventional microfluidic channels as a result of gravity and fluid shear. Phenomena such as sedimentation have become recognized problems that can be overcome by performing microfluidic experiments properly, such as by calculating a meaningful output efficiency with respect to real input. Here, we present a dual-inlet design method for reducing cell loss at the inlet of channels by adding a new " upstream inlet " to a single main inlet design. The simple addition of an upstream inlet can create a vertically layered sheath flow prior to the main inlet for cell loading. The bottom layer flow plays a critical role in preventing the cells from attaching to the bottom of the channel entrance, resulting in a low possibility of cell sedimentation at the main channel entrance. To provide proof-of-concept validation, we applied our design to a microfabricated flow cytometer system (μFCS) and compared the cell counting efficiency of the proposed μFCS with that of the previous single-inlet μFCS and conventional FCS. We used human white blood cells and fluorescent microspheres to quantitatively evaluate the rate of cell sedimentation in the main inlet and to measure fluorescence sensitivity at the detection zone of the flow cytometer microchip. Generating a sheath flow as the bottom layer was meaningfully used to reduce the depth of field as well as the relative deviation of targets in the z-direction (compared to the x-y flow plane), leading to an increased counting sensitivity of fluorescent detection signals. Counting results using fluorescent microspheres showed both a 40% reduction in the rate of sedimentation and a 2-fold higher sensitivity in comparison with the single-inlet μFCS. The results of CD4(+) T-cell counting also showed that the proposed design results in a 25% decrease in the rate of cell sedimentation and a 28% increase in sensitivity when compared to the single-inlet μFCS. This method is simple and easy to use in design, yet requires no additional time or cost in fabrication. Furthermore, we expect that this approach could potentially be helpful for calculating exact cell loading and counting efficiency for a small input number of cells, such as primary cells and rare cells, in microfluidic channel applications.

  11. Single neuron computation: from dynamical system to feature detector.

    PubMed

    Hong, Sungho; Agüera y Arcas, Blaise; Fairhall, Adrienne L

    2007-12-01

    White noise methods are a powerful tool for characterizing the computation performed by neural systems. These methods allow one to identify the feature or features that a neural system extracts from a complex input and to determine how these features are combined to drive the system's spiking response. These methods have also been applied to characterize the input-output relations of single neurons driven by synaptic inputs, simulated by direct current injection. To interpret the results of white noise analysis of single neurons, we would like to understand how the obtained feature space of a single neuron maps onto the biophysical properties of the membrane, in particular, the dynamics of ion channels. Here, through analysis of a simple dynamical model neuron, we draw explicit connections between the output of a white noise analysis and the underlying dynamical system. We find that under certain assumptions, the form of the relevant features is well defined by the parameters of the dynamical system. Further, we show that under some conditions, the feature space is spanned by the spike-triggered average and its successive order time derivatives.

  12. LOW CONDUCTANCE HCN1 ION CHANNELS AUGMENT THE FREQUENCY RESPONSE OF ROD AND CONE PHOTORECEPTORS

    PubMed Central

    Barrow, Andrew J.; Wu, Samuel M.

    2009-01-01

    Hyperpolarization-activated cyclic nucleotide gated (HCN) ion channels are expressed in several tissues throughout the body, including the heart, the CNS, and the retina. HCN channels are found in many neurons in the retina, but their most established role is in generating the hyperpolarization-activated current, Ih, in photoreceptors. This current makes the light response of rod and cone photoreceptors more transient, an effect similar to that of a high-pass filter. A unique property of HCN channels is their small single channel current, which is below the thermal noise threshold of measuring electronics. We use nonstationary fluctuation analysis (NSFA) in the intact retina to estimate the conductance of single HCN channels, revealing a conductance of approximately 650 fS in both rod and cone photoreceptors. We also analyze the properties of HCN channels in salamander rods and cones, from the biophysical to the functional level, showing that HCN1 is the predominant isoform in both cells, and demonstrate how HCN1 channels speed up the light response of both rods and cones under distinct adaptational conditions. We show that in rods and cones, HCN channels increase the natural frequency response of single cells by modifying the photocurrent input, which is limited in its frequency response by the speed of a molecular signaling cascade. In doing so, HCN channels form the first of several systems in the retina that augment the speed of the visual response, allowing an animal to perceive visual stimuli that change more quickly than the underlying photocurrent. PMID:19420251

  13. A Froude-scaled model of a bedrock-alluvial channel reach: 2. Sediment cover

    NASA Astrophysics Data System (ADS)

    Hodge, Rebecca A.; Hoey, Trevor B.

    2016-09-01

    Previous research into sediment cover in bedrock-alluvial channels has focussed on total sediment cover, rather than the spatial distribution of cover within the channel. The latter is important because it determines the bedrock areas that are protected from erosion and the start and end of sediment transport pathways. We use a 1:10 Froude-scaled model of an 18 by 9 m reach of a bedrock-alluvial channel to study the production and erosion of sediment patches and hence the spatial relationships between flow, bed topography, and sediment dynamics. The hydraulic data from this bed are presented in the companion paper. In these experiments specified volumes of sediment were supplied at the upstream edge of the model reach as single inputs, at each of a range of discharges. This sediment formed patches, and once these stabilized, flow was steadily increased to erode the patches. In summary: (1) patches tend to initiate in the lowest areas of the bed, but areas of topographically induced high flow velocity can inhibit patch development; (2) at low sediment inputs the extent of sediment patches is determined by the bed topography and can be insensitive to the exact volume of sediment supplied; and (3) at higher sediment inputs more extensive patches are produced, stabilized by grain-grain and grain-flow interactions and less influenced by the bed topography. Bedrock topography can therefore be an important constraint on sediment patch dynamics, and topographic metrics are required that incorporate its within-reach variability. The magnitude and timing of sediment input events controls reach-scale sediment cover.

  14. Dedicated multichannel readout ASIC coupled with single crystal diamond for dosimeter application

    NASA Astrophysics Data System (ADS)

    Fabbri, A.; Falco, M. D.; De Notaristefani, F.; Galasso, M.; Marinelli, M.; Orsolini Cencelli, V.; Tortora, L.; Verona, C.; Verona Rinati, G.

    2013-02-01

    This paper reports on the tests of a low-noise, multi-channel readout integrated circuit used as a readout electronic front-end for a diamond multi-pixel dosimeter. The system is developed for dose distribution measurement in radiotherapy applications. The first 10-channel prototype chip was designed and fabricated in a 0.18 um CMOS process. Every channel includes a charge integrator with a 10 pF capacitor and a double slope A/D converter. The diamond multi-pixel detector, based on CVD synthetic single crystal diamond Schottky diodes, is made by a 3 × 3 sensor matrix. The overall device has been tested under irradiation with 6 MeV radio therapeutic photon beams at the Policlinico ``Tor Vergata'' (PTV) hospital. Measurements show a 20 fA RMS leakage current from the front-end input stage and a negligible dark current from the diamond detector, a stable temporal response and a good linear behaviour as a function of both dose and dose rate. These characteristics were common to each tested channel.

  15. Ultralow power complementary inverter circuits using axially doped p- and n-channel Si nanowire field effect transistors.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2016-06-09

    We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (<3 V) while maintaining a high voltage gain (∼6) and ultralow static power dissipation (≤0.3 pW) at an input voltage of ±3 V. This result offers a viable way for the fabrication of a high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics.

  16. Instability in extensional microflow of aqueous gel

    NASA Astrophysics Data System (ADS)

    Bryce, Robert; Freeman, Mark

    2007-03-01

    Microfluidic devices are typically characterized by laminar flows, often leading to diffusion limited mixing. Recently it has been demonstrated that the addition of polymer to fluids can lead to elastic instabilities and, under some conditions, turbulence at arbitrarily low Reynolds numbers in mechanically driven flows [1]. We investigated electroosmotic driven extensional flow of an aqueous polymer gel. Microchannels with 100 micron width and 20 micron depth with the characteristic ``D'' chemical etch cross section were formed in glass. A Y-channel geometry with two input channels and a single output created extensional flow at the channel intersection. Instabilities where observed in the extensional region by fluorescently tagging one input stream. Instabilities were characterized by 1/f spectra in laser induced fluorescent brightness profiles. Due to the simple geometry of extensional flow and the importance of electroosmotic flows for integrated applications and in scaling, this is of interest for device applications. [1] A. Groisman and V. Steinberg, Nature 405, 53-55, 2000.

  17. A User''s Guide to the Zwikker-Kosten Transmission Line Code (ZKTL)

    NASA Technical Reports Server (NTRS)

    Kelly, J. J.; Abu-Khajeel, H.

    1997-01-01

    This user's guide documents updates to the Zwikker-Kosten Transmission Line Code (ZKTL). This code was developed for analyzing new liner concepts developed to provide increased sound absorption. Contiguous arrays of multi-degree-of-freedom (MDOF) liner elements serve as the model for these liner configurations, and Zwikker and Kosten's theory of sound propagation in channels is used to predict the surface impedance. Transmission matrices for the various liner elements incorporate both analytical and semi-empirical methods. This allows standard matrix techniques to be employed in the code to systematically calculate the composite impedance due to the individual liner elements. The ZKTL code consists of four independent subroutines: 1. Single channel impedance calculation - linear version (SCIC) 2. Single channel impedance calculation - nonlinear version (SCICNL) 3. Multi-channel, multi-segment, multi-layer impedance calculation - linear version (MCMSML) 4. Multi-channel, multi-segment, multi-layer impedance calculation - nonlinear version (MCMSMLNL) Detailed examples, comments, and explanations for each liner impedance computation module are included. Also contained in the guide are depictions of the interactive execution, input files and output files.

  18. Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties.

    PubMed

    Li, Zhijun; Su, Chun-Yi

    2013-09-01

    In this paper, adaptive neural network control is investigated for single-master-multiple-slaves teleoperation in consideration of time delays and input dead-zone uncertainties for multiple mobile manipulators carrying a common object in a cooperative manner. Firstly, concise dynamics of teleoperation systems consisting of a single master robot, multiple coordinated slave robots, and the object are developed in the task space. To handle asymmetric time-varying delays in communication channels and unknown asymmetric input dead zones, the nonlinear dynamics of the teleoperation system are transformed into two subsystems through feedback linearization: local master or slave dynamics including the unknown input dead zones and delayed dynamics for the purpose of synchronization. Then, a model reference neural network control strategy based on linear matrix inequalities (LMI) and adaptive techniques is proposed. The developed control approach ensures that the defined tracking errors converge to zero whereas the coordination internal force errors remain bounded and can be made arbitrarily small. Throughout this paper, stability analysis is performed via explicit Lyapunov techniques under specific LMI conditions. The proposed adaptive neural network control scheme is robust against motion disturbances, parametric uncertainties, time-varying delays, and input dead zones, which is validated by simulation studies.

  19. Amortized entanglement of a quantum channel and approximately teleportation-simulable channels

    NASA Astrophysics Data System (ADS)

    Kaur, Eneet; Wilde, Mark M.

    2018-01-01

    This paper defines the amortized entanglement of a quantum channel as the largest difference in entanglement between the output and the input of the channel, where entanglement is quantified by an arbitrary entanglement measure. We prove that the amortized entanglement of a channel obeys several desirable properties, and we also consider special cases such as the amortized relative entropy of entanglement and the amortized Rains relative entropy. These latter quantities are shown to be single-letter upper bounds on the secret-key-agreement and PPT-assisted quantum capacities of a quantum channel, respectively. Of especial interest is a uniform continuity bound for these latter two special cases of amortized entanglement, in which the deviation between the amortized entanglement of two channels is bounded from above by a simple function of the diamond norm of their difference and the output dimension of the channels. We then define approximately teleportation- and positive-partial-transpose-simulable (PPT-simulable) channels as those that are close in diamond norm to a channel which is either exactly teleportation- or PPT-simulable, respectively. These results then lead to single-letter upper bounds on the secret-key-agreement and PPT-assisted quantum capacities of channels that are approximately teleportation- or PPT-simulable, respectively. Finally, we generalize many of the concepts in the paper to the setting of general resource theories, defining the amortized resourcefulness of a channel and the notion of ν-freely-simulable channels, connecting these concepts in an operational way as well.

  20. Interpreting anomalously low voltage noise in two-channel measurement systems.

    PubMed

    Ivanov, Eugene N; Walls, Fred L

    2002-01-01

    In this work we 1) analyze and give a theoretical explanation for the anomalously low cross-spectral density of voltage fluctuations that is observed when two thermal noise sources with matched intensities are coupled to the inputs of two-channel phase modulation (PM) or amplitude modulation (AM) noise measurement systems (NMS), 2) empirically evaluate spectral resolutions of different types of measurement systems, and 3) discuss noise measurement techniques involving cross-correlation signal processing. Our work shows that the statistical uncertainty, which sets the ultimate spectral resolution in the thermal noise limited regime, is approximately the same for both systems. However, in practical terms, the non-stationary nature of the noise, the temporal separation of calibration and measurement, and the difficulty of reproducing the calibrations for two measurements make it extremely difficult to resolve noise that is more than 10 dB below the noise floor in a single channel NMS. In a two-channel NMS, however, the calibrations of the two channels are carried out simultaneously, and one can take full advantage of a large number of averages and make reproducible noise measurements with resolution 10 dB below the noise floor of a single channel NMS.

  1. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    PubMed Central

    Chakravarty, Swapnajit; Yang, Chun-Ju; Wang, Zheng; Tang, Naimei; Fan, Donglei; Chen, Ray T.

    2015-01-01

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed. PMID:25829549

  2. Generation of sub-femtoliter droplet by T-junction splitting on microfluidic chips

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Jun; Feng, Xuan; Xu, Na; Pang, Dai-Wen; Zhang, Zhi-Ling

    2013-03-01

    In the paper, sub-femtoliter droplets were easily produced by droplet splitting at a simple T-junction with orifice, which did not need expensive equipments, complex photolithography skill, or high energy input. The volume of the daughter droplet was not limited by channel size but controlled by channel geometry and fluidic characteristic. Moreover, single bead sampling and bead quantification in different orders of magnitude of droplet volumes were investigated. The droplets split at our T-junction chip had small volume and monodispersed size and could be produced efficiently, orderly, and controllably.

  3. Teleportation of atomic and photonic states in low-Q cavity QED

    NASA Astrophysics Data System (ADS)

    Peng, Zhao-Hui; Zou, Jian; Liu, Xiao-Juan; Kuang, Le-Man

    2012-11-01

    We propose two alternative teleportation protocols in low-Q cavity QED. Through the input-output process of photons, we can generate atom-photon entangled states as the quantum channel. Then we propose to teleport single-atom (two-atom entangled) state using coherent photonic states, and to teleport single photonic state with the assistance of three-level atom. The distinct feature of our protocols is that we can teleport both atomic and photonic states via the input-output process of photons in the low-Q cavity. Furthermore, as our protocols work in low-Q cavities and only involve virtual excitation of atoms, they are insensitive to both cavity decay and atomic spontaneous emission, and may be feasible with current technology.

  4. High-speed asynchronous data mulitiplexer/demultiplexer for high-density digital recorders

    NASA Astrophysics Data System (ADS)

    Berdugo, Albert; Small, Martin B.

    1996-11-01

    Modern High Density Digital Recorders are ideal devices for the storage of large amounts of digital and/or wideband analog data. Ruggedized versions of these recorders are currently available and are supporting many military and commercial flight test applications. However, in certain cases, the storage format becomes very critical, e.g., when a large number of data types are involved, or when channel- to-channel correlation is critical, or when the original data source must be accurately recreated during post mission analysis. A properly designed storage format will not only preserve data quality, but will yield the maximum storage capacity and record time for any given recorder family or data type. This paper describes a multiplex/demultiplex technique that formats multiple high speed data sources into a single, common format for recording. The method is compatible with many popular commercial recorder standards such as DCRsi, VLDS, and DLT. Types of input data typically include PCM, wideband analog data, video, aircraft data buses, avionics, voice, time code, and many others. The described method preserves tight data correlation with minimal data overhead. The described technique supports full reconstruction of the original input signals during data playback. Output data correlation across channels is preserved for all types of data inputs. Simultaneous real- time data recording and reconstruction are also supported.

  5. Ion channel mechanisms underlying frequency-firing patterns of the avian nucleus magnocellularis: A computational model

    PubMed Central

    Lu, Ting; Wade, Kirstie; Sanchez, Jason Tait

    2017-01-01

    ABSTRACT We have previously shown that late-developing avian nucleus magnocellularis (NM) neurons (embryonic [E] days 19–21) fire action potentials (APs) that resembles a band-pass filter in response to sinusoidal current injections of varying frequencies. NM neurons located in the mid- to high-frequency regions of the nucleus fire preferentially at 75 Hz, but only fire a single onset AP to frequency inputs greater than 200 Hz. Surprisingly, NM neurons do not fire APs to sinusoidal inputs less than 20 Hz regardless of the strength of the current injection. In the present study we evaluated intrinsic mechanisms that prevent AP generation to low frequency inputs. We constructed a computational model to simulate the frequency-firing patterns of NM neurons based on experimental data at both room and near physiologic temperatures. The results from our model confirm that the interaction among low- and high-voltage activated potassium channels (KLVA and KHVA, respectively) and voltage dependent sodium channels (NaV) give rise to the frequency-firing patterns observed in vitro. In particular, we evaluated the regulatory role of KLVA during low frequency sinusoidal stimulation. The model shows that, in response to low frequency stimuli, activation of large KLVA current counterbalances the slow-depolarizing current injection, likely permitting NaV closed-state inactivation and preventing the generation of APs. When the KLVA current density was reduced, the model neuron fired multiple APs per sinusoidal cycle, indicating that KLVA channels regulate low frequency AP firing of NM neurons. This intrinsic property of NM neurons may assist in optimizing response to different rates of synaptic inputs. PMID:28481659

  6. Response and recovery of streams to an intense regional flooding event

    NASA Astrophysics Data System (ADS)

    Dethier, E.; Magilligan, F. J.; Renshaw, C. E.; Kantack, K. M.

    2015-12-01

    Determining the relative roles of frequent and infrequent events on landscape form and material transport has implications for understanding landscape development, and informs planning and infrastructure decisions. Flooding due to Tropical Storm Irene in 2011 provides a unique opportunity to examine the effects of a rare, major disturbance across a broad area (14,000 km2). Intense flooding caused variable but widespread channel and riparian reconfiguration, including 995 channel-adjacent mass-wasting events, collectively referred to here as landslides, that mostly occurred in glacial deposits. Of these, about half involved reactivation of existing scars. Landslides were generally small, ranging from 60 - 26,000 m2 in planform, and covered less than 0.01 % of land in the region, yet sediment input from landslides alone (131 mm/kyr when integrated over the study area) exceeded inferred local background erosion rates by 60 times. If Irene inputs are included in a thirty-year erosion record, the estimated erosion rate, 7.2 mm/kyr, aligns closely with long-term regional rates of 5-10 mm/kyr. Landslides also input trees to streams, increasing large wood influence on those reaches. Combined wood and sediment inputs contributed to channel changes downstream of landslides. In four years since Irene, terrestrial lidar and suspended sediment sampling has documented continued large wood and sediment input. Erosion occurred on each of seventeen monitored landslides during snowmelt, but is otherwise limited except during intense precipitation and/or flood events. Repeat lidar models have recorded erosion of up to 5,000 m3 on a single slide in one year, including as much as 4000 m3 during a single event. Tree fall on scarps during erosion events creates sediment traps at the base of landslides, contributing to an observed return to equilibrium slopes. Despite trapping, substantial sediment continues to enter streams. Ninety-five suspended sediment samples from forty sites show that landslides remain important sediment sources. Across a range of flows, 2014 - 2015 sediment flux for a given discharge is an order of magnitude higher than pre-Irene flux. Though landslide slope relaxation suggests incipient recovery from Irene, persistent rapid erosion of large wood and sediment indicates that recovery is still on-going.

  7. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hai, E-mail: hai.yan@utexas.edu; Zou, Yi; Yang, Chun-Ju

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experimentmore » showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.« less

  8. Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons.

    PubMed

    Mensi, Skander; Hagens, Olivier; Gerstner, Wulfram; Pozzorini, Christian

    2016-02-01

    The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong inputs, neurons modify their coding strategy by progressively reducing their selective sensitivity to rapid input fluctuations. Combining mathematical modeling with in vitro experiments, we demonstrate that, in L5 pyramidal neurons, the firing threshold dynamics adaptively adjust the effective timescale of somatic integration in order to preserve sensitivity to rapid signals over a broad range of input statistics. For that, a new Generalized Integrate-and-Fire model featuring nonlinear firing threshold dynamics and conductance-based adaptation is introduced that outperforms state-of-the-art neuron models in predicting the spiking activity of neurons responding to a variety of in vivo-like fluctuating currents. Our model allows for efficient parameter extraction and can be analytically mapped to a Generalized Linear Model in which both the input filter--describing somatic integration--and the spike-history filter--accounting for spike-frequency adaptation--dynamically adapt to the input statistics, as experimentally observed. Overall, our results provide new insights on the computational role of different biophysical processes known to underlie adaptive coding in single neurons and support previous theoretical findings indicating that the nonlinear dynamics of the firing threshold due to Na+-channel inactivation regulate the sensitivity to rapid input fluctuations.

  9. How bees distinguish patterns by green and blue modulation

    PubMed Central

    Horridge, Adrian

    2015-01-01

    In the 1920s, Mathilde Hertz found that trained bees discriminated between shapes or patterns of similar size by something related to total length of contrasting contours. This input is now interpreted as modulation in green and blue receptor channels as flying bees scan in the horizontal plane. Modulation is defined as total contrast irrespective of sign multiplied by length of edge displaying that contrast, projected to vertical, therefore, combining structure and contrast in a single input. Contrast is outside the eye; modulation is a phasic response in receptor pathways inside. In recent experiments, bees trained to distinguish color detected, located, and measured three independent inputs and the angles between them. They are the tonic response of the blue receptor pathway and modulation of small-field green or (less preferred) blue receptor pathways. Green and blue channels interacted intimately at a peripheral level. This study explores in more detail how various patterns are discriminated by these cues. The direction of contrast at a boundary was not detected. Instead, bees located and measured total modulation generated by horizontal scanning of contrasts, irrespective of pattern. They also located the positions of isolated vertical edges relative to other landmarks and distinguished the angular widths between vertical edges by green or blue modulation alone. The preferred inputs were the strongest green modulation signal and angular width between outside edges, irrespective of color. In the absence of green modulation, the remaining cue was a measure and location of blue modulation at edges. In the presence of green modulation, blue modulation was inhibited. Black/white patterns were distinguished by the same inputs in blue and green receptor channels. Left–right polarity and mirror images could be discriminated by retinotopic green modulation alone. Colors in areas bounded by strong green contrast were distinguished as more or less blue than the background. The blue content could also be summed over the whole target. There were no achromatic patterns for bees and no evidence that they detected black, white, or gray levels apart from the differences in blue content or modulation at edges. Most of these cues would be sensitive to background color but some were influenced by changes in illumination. The bees usually learned only to avoid the unrewarded target. Exactly the same preferences of the same inputs were used in the detection of single targets as in discrimination between two targets. PMID:28539796

  10. Quad-channel beam switching WR3-band transmitter MMIC

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Eren, Gülesin; Wagner, Sandrine; Tessmann, Axel; Leuther, Arnulf; Zwick, Thomas; Kallfass, Ingmar

    2017-05-01

    Millimeter wave radar systems offer several advantages such as the combination of high resolution and the penetration of adverse atmosphere like smoke, dust or rain. This paper presents a monolithic millimeter wave integrated circuit (MMIC) transmitter which offers four channel beam steering capabilities and can be used as a radar or communication system transmitter. At the local oscillator input, in order to simplify packaging, a frequency tripler is used to multiply the 76.6 - 83.3 GHz input signal to the intended 230 - 250 GHz output frequency range. A resistive mixer is used for the conversion of the intermediate frequency signal into the RF domain. The actual beam steering network is realized using an active single pole quadruple throw (SP4T) switch, which is connected to a integrated Butler matrix. The MMIC was fabricated in a 35 nm InGaAs mHEMT process and has a size of 4.0 mm × 1.5 mm

  11. Postselection technique for quantum channels with applications to quantum cryptography.

    PubMed

    Christandl, Matthias; König, Robert; Renner, Renato

    2009-01-16

    We propose a general method for studying properties of quantum channels acting on an n-partite system, whose action is invariant under permutations of the subsystems. Our main result is that, in order to prove that a certain property holds for an arbitrary input, it is sufficient to consider the case where the input is a particular de Finetti-type state, i.e., a state which consists of n identical and independent copies of an (unknown) state on a single subsystem. Our technique can be applied to the analysis of information-theoretic problems. For example, in quantum cryptography, we get a simple proof for the fact that security of a discrete-variable quantum key distribution protocol against collective attacks implies security of the protocol against the most general attacks. The resulting security bounds are tighter than previously known bounds obtained with help of the exponential de Finetti theorem.

  12. A 128-channel Time-to-Digital Converter (TDC) inside a Virtex-5 FPGA on the GANDALF module

    NASA Astrophysics Data System (ADS)

    Büchele, M.; Fischer, H.; Gorzellik, M.; Herrmann, F.; Königsmann, K.; Schill, C.; Schopferer, S.

    2012-03-01

    The GANDALF 6U-VME64x/VXS module has been developed for the digitization and real time analysis of detector signals. To perform different applications such as analog-to-digital or time-to-digital conversions, coincidence matrix formation, fast pattern recognition and trigger generation, this module comes with exchangeable analog and digital mezzanine cards. Based on this platform, we present a 128-channel TDC which is implemented in a single Xilinx Virtex-5 FPGA using a shifted clock sampling method. In contrast to common TDC concepts, the input signal is sampled by 16 equidistant phase-shifted clocks. A particular challenge of the design is the minimum skew routing of the input signals to the sampling flip-flops. We present measurement results for the differential nonlinearity and the time resolution of the TDC readout system.

  13. An Efficient, Highly Flexible Multi-Channel Digital Downconverter Architecture

    NASA Technical Reports Server (NTRS)

    Goodhart, Charles E.; Soriano, Melissa A.; Navarro, Robert; Trinh, Joseph T.; Sigman, Elliott H.

    2013-01-01

    In this innovation, a digital downconverter has been created that produces a large (16 or greater) number of output channels of smaller bandwidths. Additionally, this design has the flexibility to tune each channel independently to anywhere in the input bandwidth to cover a wide range of output bandwidths (from 32 MHz down to 1 kHz). Both the flexibility in channel frequency selection and the more than four orders of magnitude range in output bandwidths (decimation rates from 32 to 640,000) presented significant challenges to be solved. The solution involved breaking the digital downconversion process into a two-stage process. The first stage is a 2 oversampled filter bank that divides the whole input bandwidth as a real input signal into seven overlapping, contiguous channels represented with complex samples. Using the symmetry of the sine and cosine functions in a similar way to that of an FFT (fast Fourier transform), this downconversion is very efficient and gives seven channels fixed in frequency. An arbitrary number of smaller bandwidth channels can be formed from second-stage downconverters placed after the first stage of downconversion. Because of the overlapping of the first stage, there is no gap in coverage of the entire input bandwidth. The input to any of the second-stage downconverting channels has a multiplexer that chooses one of the seven wideband channels from the first stage. These second-stage downconverters take up fewer resources because they operate at lower bandwidths than doing the entire downconversion process from the input bandwidth for each independent channel. These second-stage downconverters are each independent with fine frequency control tuning, providing extreme flexibility in positioning the center frequency of a downconverted channel. Finally, these second-stage downconverters have flexible decimation factors over four orders of magnitude The algorithm was developed to run in an FPGA (field programmable gate array) at input data sampling rates of up to 1,280 MHz. The current implementation takes a 1,280-MHz real input, and first breaks it up into seven 160-MHz complex channels, each spaced 80 MHz apart. The eighth channel at baseband was not required for this implementation, and led to more optimization. Afterwards, 16 second stage narrow band channels with independently tunable center frequencies and bandwidth settings are implemented A future implementation in a larger Xilinx FPGA will hold up to 32 independent second-stage channels.

  14. Intelligent switches of integrated lightwave circuits with core telecommunication functions

    NASA Astrophysics Data System (ADS)

    Izhaky, Nahum; Duer, Reuven; Berns, Neil; Tal, Eran; Vinikman, Shirly; Schoenwald, Jeffrey S.; Shani, Yosi

    2001-05-01

    We present a brief overview of a promising switching technology based on Silica on Silicon thermo-optic integrated circuits. This is basically a 2D solid-state optical device capable of non-blocking switching operation. Except of its excellent performance (insertion loss<5dB, switching time<2ms...), the switch enables additional important build-in functionalities. It enables single-to- single channel switching and single-to-multiple channel multicasting/broadcasting. In addition, it has the capability of channel weighting and variable output power control (attenuation), for instance, to equalize signal levels and compensate for unbalanced different optical input powers, or to equalize unbalanced EDFA gain curve. We examine the market segments appropriate for the switch size and technology, followed by a discussion of the basic features of the technology. The discussion is focused on important requirements from the switch and the technology (e.g., insertion loss, power consumption, channel isolation, extinction ratio, switching time, and heat dissipation). The mechanical design is also considered. It must take into account integration of optical fiber, optical planar wafer, analog electronics and digital microprocessor controls, embedded software, and heating power dissipation. The Lynx Photon.8x8 switch is compared to competing technologies, in terms of typical market performance requirements.

  15. Energy-constrained two-way assisted private and quantum capacities of quantum channels

    NASA Astrophysics Data System (ADS)

    Davis, Noah; Shirokov, Maksim E.; Wilde, Mark M.

    2018-06-01

    With the rapid growth of quantum technologies, knowing the fundamental characteristics of quantum systems and protocols is essential for their effective implementation. A particular communication setting that has received increased focus is related to quantum key distribution and distributed quantum computation. In this setting, a quantum channel connects a sender to a receiver, and their goal is to distill either a secret key or entanglement, along with the help of arbitrary local operations and classical communication (LOCC). In this work, we establish a general theory of energy-constrained, LOCC-assisted private and quantum capacities of quantum channels, which are the maximum rates at which an LOCC-assisted quantum channel can reliably establish a secret key or entanglement, respectively, subject to an energy constraint on the channel input states. We prove that the energy-constrained squashed entanglement of a channel is an upper bound on these capacities. We also explicitly prove that a thermal state maximizes a relaxation of the squashed entanglement of all phase-insensitive, single-mode input bosonic Gaussian channels, generalizing results from prior work. After doing so, we prove that a variation of the method introduced by Goodenough et al. [New J. Phys. 18, 063005 (2016), 10.1088/1367-2630/18/6/063005] leads to improved upper bounds on the energy-constrained secret-key-agreement capacity of a bosonic thermal channel. We then consider a multipartite setting and prove that two known multipartite generalizations of the squashed entanglement are in fact equal. We finally show that the energy-constrained, multipartite squashed entanglement plays a role in bounding the energy-constrained LOCC-assisted private and quantum capacity regions of quantum broadcast channels.

  16. Device-independent tests of quantum channels

    NASA Astrophysics Data System (ADS)

    Dall'Arno, Michele; Brandsen, Sarah; Buscemi, Francesco

    2017-03-01

    We develop a device-independent framework for testing quantum channels. That is, we falsify a hypothesis about a quantum channel based only on an observed set of input-output correlations. Formally, the problem consists of characterizing the set of input-output correlations compatible with any arbitrary given quantum channel. For binary (i.e. two input symbols, two output symbols) correlations, we show that extremal correlations are always achieved by orthogonal encodings and measurements, irrespective of whether or not the channel preserves commutativity. We further provide a full, closed-form characterization of the sets of binary correlations in the case of: (i) any dihedrally covariant qubit channel (such as any Pauli and amplitude-damping channels) and (ii) any universally-covariant commutativity-preserving channel in an arbitrary dimension (such as any erasure, depolarizing, universal cloning and universal transposition channels).

  17. Device-independent tests of quantum channels.

    PubMed

    Dall'Arno, Michele; Brandsen, Sarah; Buscemi, Francesco

    2017-03-01

    We develop a device-independent framework for testing quantum channels. That is, we falsify a hypothesis about a quantum channel based only on an observed set of input-output correlations. Formally, the problem consists of characterizing the set of input-output correlations compatible with any arbitrary given quantum channel. For binary (i.e. two input symbols, two output symbols) correlations, we show that extremal correlations are always achieved by orthogonal encodings and measurements, irrespective of whether or not the channel preserves commutativity. We further provide a full, closed-form characterization of the sets of binary correlations in the case of: (i) any dihedrally covariant qubit channel (such as any Pauli and amplitude-damping channels) and (ii) any universally-covariant commutativity-preserving channel in an arbitrary dimension (such as any erasure, depolarizing, universal cloning and universal transposition channels).

  18. Scheme for implementing 1 → M symmetric economical phase-covariant telecloning based on quantum logic network

    NASA Astrophysics Data System (ADS)

    Zhou, Yan-Hui; Wang, Lei

    2012-04-01

    The quantum logic network to implement 1 → M symmetric economical phase-covariant telecloning is presented. The scheme includes two parts: the first part is used to create the telecloning channel and the second part to teleport the input state. The telecloning channel which works without ancilla is constructed by two kinds of elementary unitary transformations, single-qubit rotation and multiple-qubit controlled operation. The probability of success is 50%, which is the same with the scheme in [Meng, F.Y.; Zhu, A.D. J. Mod. Opt. 2009, 56, 1255-1259].

  19. The improved z-scan technique: potentialities of the additional right-angle scattering channel and the input polarization control

    NASA Astrophysics Data System (ADS)

    Volchkov, S. S.; Yuvchenko, S. A.; Zimnyakov, D. A.

    2018-04-01

    The theoretical possibility of retrieving the additional information on the dielectric properties of the nanoparticles material by single scattering in suspensions was studied. We have demonstrated a method of recreating the dielectric function of the material in the fundamental absorption band using the closed aperture z-scanning with the simultaneous Rayleigh scattering intensity measurements and the polarization control of an input laser beam. A possibility to recreate the form factor of the non-spherical particles or anisotropic nonlinear sensitivity for the sphere-like particles was also observed.

  20. Tunable filters based on an SOI nano-wire waveguide micro ring resonator

    NASA Astrophysics Data System (ADS)

    Shuai, Li; Yuanda, Wu; Xiaojie, Yin; Junming, An; Jianguang, Li; Hongjie, Wang; Xiongwei, Hu

    2011-08-01

    Micro ring resonator (MRR) filters based on a silicon on insulator (SOI) nanowire waveguide are fabricated by electron beam photolithography (EBL) and inductive coupled plasma (ICP) etching technology. The cross-section size of the strip waveguides is 450 × 220 nm2, and the bending radius of the micro ring is around 5 μm. The test results from the tunable filter based on a single ring show that the free spectral range (FSR) is 16.8 nm and the extinction ratio (ER) around the wavelength 1550 nm is 18.1 dB. After thermal tuning, the filter's tuning bandwidth reaches 4.8 nm with a tuning efficiency of 0.12 nm/°C Meanwhile, we fabricated and studied multi-channel filters based on a single ring and a double ring. After measurement, we drew the following conclusions: during the signal transmission of multi-channel filters, crosstalk exists mainly among different transmission channels and are fairly distinct when there are signals input to add ports.

  1. Vector Beam Polarization State Spectrum Analyzer.

    PubMed

    Moreno, Ignacio; Davis, Jeffrey A; Badham, Katherine; Sánchez-López, María M; Holland, Joseph E; Cottrell, Don M

    2017-05-22

    We present a proof of concept for a vector beam polarization state spectrum analyzer based on the combination of a polarization diffraction grating (PDG) and an encoded harmonic q-plate grating (QPG). As a result, a two-dimensional polarization diffraction grating is formed that generates six different q-plate channels with topological charges from -3 to +3 in the horizontal direction, and each is split in the vertical direction into the six polarization channels at the cardinal points of the corresponding higher-order Poincaré sphere. Consequently, 36 different channels are generated in parallel. This special polarization diffractive element is experimentally demonstrated using a single phase-only spatial light modulator in a reflective optical architecture. Finally, we show that this system can be used as a vector beam polarization state spectrum analyzer, where both the topological charge and the state of polarization of an input vector beam can be simultaneously determined in a single experiment. We expect that these results would be useful for applications in optical communications.

  2. Performance analysis of visible light communication using the STBC-OFDM technique for intelligent transportation systems

    NASA Astrophysics Data System (ADS)

    Li, Changping; Yi, Ying; Lee, Kyujin; Lee, Kyesan

    2014-08-01

    Visible light communication (VLC) applied in an intelligent transportation system (ITS) has attracted growing attentions, but it also faces challenges, for example deep path loss and optical multi-path dispersion. In this work, we modelled an actual outdoor optical channel as a Rician channel and further proposed space-time block coding (STBC) orthogonal frequency-division multiplexing (OFDM) technology to reduce the influence of severe optical multi-path dispersion associated with such a mock channel for achieving the effective BER of 10-6 even at a low signal-to-noise ratio (SNR). In this case, the optical signals transmission distance can be extended as long as possible. Through the simulation results of STBC-OFDM and single-input-single-output (SISO) counterparts in bit error rate (BER) performance comparison, we can distinctly observe that the VLC-ITS system using STBC-OFDM technique can obtain a strongly improved BER performance due to multi-path dispersion alleviation.

  3. Adiabatic Edge Channel Transport in a Nanowire Quantum Point Contact Register.

    PubMed

    Heedt, S; Manolescu, A; Nemnes, G A; Prost, W; Schubert, J; Grützmacher, D; Schäpers, Th

    2016-07-13

    We report on a prototype device geometry where a number of quantum point contacts are connected in series in a single quasi-ballistic InAs nanowire. At finite magnetic field the backscattering length is increased up to the micron-scale and the quantum point contacts are connected adiabatically. Hence, several input gates can control the outcome of a ballistic logic operation. The absence of backscattering is explained in terms of selective population of spatially separated edge channels. Evidence is provided by regular Aharonov-Bohm-type conductance oscillations in transverse magnetic fields, in agreement with magnetoconductance calculations. The observation of the Shubnikov-de Haas effect at large magnetic fields corroborates the existence of spatially separated edge channels and provides a new means for nanowire characterization.

  4. RATIO COMPUTER

    DOEpatents

    Post, R.F.

    1958-11-11

    An electronic computer circuit is described for producing an output voltage proportional to the product or quotient of tbe voltages of a pair of input signals. ln essence, the disclosed invention provides a computer having two channels adapted to receive separate input signals and each having amplifiers with like fixed amplification factors and like negatlve feedback amplifiers. One of the channels receives a constant signal for comparison purposes, whereby a difference signal is produced to control the amplification factors of the variable feedback amplifiers. The output of the other channel is thereby proportional to the product or quotient of input signals depending upon the relation of input to fixed signals in the first mentioned channel.

  5. Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons

    PubMed Central

    Mensi, Skander; Hagens, Olivier; Gerstner, Wulfram; Pozzorini, Christian

    2016-01-01

    The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong inputs, neurons modify their coding strategy by progressively reducing their selective sensitivity to rapid input fluctuations. Combining mathematical modeling with in vitro experiments, we demonstrate that, in L5 pyramidal neurons, the firing threshold dynamics adaptively adjust the effective timescale of somatic integration in order to preserve sensitivity to rapid signals over a broad range of input statistics. For that, a new Generalized Integrate-and-Fire model featuring nonlinear firing threshold dynamics and conductance-based adaptation is introduced that outperforms state-of-the-art neuron models in predicting the spiking activity of neurons responding to a variety of in vivo-like fluctuating currents. Our model allows for efficient parameter extraction and can be analytically mapped to a Generalized Linear Model in which both the input filter—describing somatic integration—and the spike-history filter—accounting for spike-frequency adaptation—dynamically adapt to the input statistics, as experimentally observed. Overall, our results provide new insights on the computational role of different biophysical processes known to underlie adaptive coding in single neurons and support previous theoretical findings indicating that the nonlinear dynamics of the firing threshold due to Na+-channel inactivation regulate the sensitivity to rapid input fluctuations. PMID:26907675

  6. High-Speed Isolation Board for Flight Hardware Testing

    NASA Technical Reports Server (NTRS)

    Yamamoto, Clifford K.; Goodpasture, Richard L.

    2011-01-01

    There is a need to provide a portable and cost-effective galvanic isolation between ground support equipment and flight hardware such that any unforeseen voltage differential between ground and power supplies is eliminated. An interface board was designed for use between the ground support equipment and the flight hardware that electrically isolates all input and output signals and faithfully reproduces them on each side of the interface. It utilizes highly integrated multi-channel isolating devices to minimize size and reduce assembly time. This single-board solution provides appropriate connector hardware and breakout of required flight signals to individual connectors as needed for various ground support equipment. The board utilizes multi-channel integrated circuits that contain transformer coupling, thereby allowing input and output signals to be isolated from one another while still providing high-fidelity reproduction of the signal up to 90 MHz. The board also takes in a single-voltage power supply input from the ground support equipment and in turn provides a transformer-derived isolated voltage supply to power the portion of the circuitry that is electrically connected to the flight hardware. Prior designs used expensive opto-isolated couplers that were required for each signal to isolate and were time-consuming to assemble. In addition, these earlier designs were bulky and required a 2U rack-mount enclosure. The new design is smaller than a piece of 8.5 11-in. (.22 28-mm) paper and can be easily hand-carried where needed. The flight hardware in question is based on a lineage of existing software-defined radios (SDRs) that utilize a common interface connector with many similar input-output signals present. There are currently four to five variations of this SDR, and more upcoming versions are planned based on the more recent design.

  7. Binary power multiplier for electromagnetic energy

    DOEpatents

    Farkas, Zoltan D.

    1988-01-01

    A technique for converting electromagnetic pulses to higher power amplitude and shorter duration, in binary multiples, splits an input pulse into two channels, and subjects the pulses in the two channels to a number of binary pulse compression operations. Each pulse compression operation entails combining the pulses in both input channels and selectively steering the combined power to one output channel during the leading half of the pulses and to the other output channel during the trailing half of the pulses, and then delaying the pulse in the first output channel by an amount equal to half the initial pulse duration. Apparatus for carrying out each of the binary multiplication operation preferably includes a four-port coupler (such as a 3 dB hybrid), which operates on power inputs at a pair of input ports by directing the combined power to either of a pair of output ports, depending on the relative phase of the inputs. Therefore, by appropriately phase coding the pulses prior to any of the pulse compression stages, the entire pulse compression (with associated binary power multiplication) can be carried out solely with passive elements.

  8. Theory of optimal information transmission in E. coli chemotaxis pathway

    NASA Astrophysics Data System (ADS)

    Micali, Gabriele; Endres, Robert G.

    Bacteria live in complex microenvironments where they need to make critical decisions fast and reliably. These decisions are inherently affected by noise at all levels of the signaling pathway, and cells are often modeled as an input-output device that transmits extracellular stimuli (input) to internal proteins (channel), which determine the final behavior (output). Increasing the amount of transmitted information between input and output allows cells to better infer extracellular stimuli and respond accordingly. However, in contrast to electronic devices, the separation into input, channel, and output is not always clear in biological systems. Output might feed back into the input, and the channel, made by proteins, normally interacts with the input. Furthermore, a biological channel is affected by mutations and can change under evolutionary pressure. Here, we present a novel approach to maximize information transmission: given cell-external and internal noise, we analytically identify both input distributions and input-output relations that optimally transmit information. Using E. coli chemotaxis as an example, we conclude that its pathway is compatible with an optimal information transmission device despite the ultrasensitive rotary motors.

  9. Optoelectronic Reservoir Computing

    PubMed Central

    Paquot, Y.; Duport, F.; Smerieri, A.; Dambre, J.; Schrauwen, B.; Haelterman, M.; Massar, S.

    2012-01-01

    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an optoelectronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations. PMID:22371825

  10. The GANDALF 128-Channel Time-to-Digital Converter

    NASA Astrophysics Data System (ADS)

    Büchele, M.; Fischer, H.; Herrmann, F.; Königsmann, K.; Schill, C.; Schopferer, S.

    The GANDALF 6U-VME64x/VXS module has been designed to cope with a variety of readout tasks in high energy and nuclear physics experiments, in particular the COMPASS experiment at CERN. The exchangeable mezzanine cards allow for an employment of the system in very different applications such as analog-to-digital or time-to-digital conversions, coincidence matrix formation, fast pattern recognition or fast trigger generation. Based on this platform, we present a 128-channel TDC which is implemented in a single Xilinx Virtex-5 FPGA using a shifted clock sampling method. In this concept each input signal is continuously sampled by 16 flip-flops using equidistant phase-shifted clocks. Compared to previous FPGA designs, usually based on delay lines and comprising few TDC channels with resolutions in the order of 10 ps, our design permits the implementation of a large number of TDC channels with a resolution of 64 ps in a single FPGA. Predictable placement of logic components and uniform routing inside the FPGA fabric is a particular challenge of this design. We present measurement results for the time resolution and the nonlinearity of the TDC readout system.

  11. Switching of transmission resonances in a two-channels coupler: A Boundary Wall Method scattering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunes, A.; Zanetti, F.M.; Lyra, M.L., E-mail: marcelo@fis.ufal.br

    2016-10-15

    In this work, we study the transmission characteristics of a two-channels coupler model system using the Boundary Wall Method (BWM) to determine the solution of the corresponding scattering problem of an incident plane wave. We show that the BWM provides detailed information regarding the transmission resonances. In particular, we focus on the case of single channel input aiming to explore the energy switching performance of the coupler. We show that the coupler geometry can be tailored to allow for the first transmission resonances to be predominantly transmitted on specific output channels, an important characteristic for the realization of logical operations.more » - Highlights: • The switching performance of a coupled waveguide device is studied via the boundary wall method. • The method efficiently identifies all resonant transmission modes. • Energy switching is controlled and optimized as a function of the device geometry.« less

  12. Statistics of optimal information flow in ensembles of regulatory motifs

    NASA Astrophysics Data System (ADS)

    Crisanti, Andrea; De Martino, Andrea; Fiorentino, Jonathan

    2018-02-01

    Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables and parameters that maximize the mutual information between inputs and outputs. Since the mid-2000s, such optima have been well characterized in several biologically relevant cases. Here we use methods of statistical field theory to calculate the statistics of the maximal mutual information (the "capacity") achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller regulates N targets. Assuming (i) sufficiently large N , (ii) quenched random kinetic parameters, and (iii) small noise affecting the input-output channels, we can accurately reproduce numerical simulations both for the mean capacity and for the whole distribution. Our results provide insight into the inherent variability in effectiveness occurring in regulatory systems with heterogeneous kinetic parameters.

  13. Probing vacancy-type free-volume defects in Li2B4O7 single crystal by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Shpotyuk, O.; Adamiv, V.; Teslyuk, I.; Ingram, A.; Demchenko, P.

    2018-01-01

    Vacancy-type free-volume defects in lithium tetraborate Li2B4O7 single crystal, grown by the Czochralski technique, are probed with positron annihilation spectroscopy in the lifetime measuring mode. The experimental positron lifetime spectrum is reconstructed within the three-component fitting, involving channels of positron and positronium Ps trapping, as well as within the two-component fitting with a positronium-compensating source input. Structural configurations of the most efficient positron traps are considered using the crystallographic specificity of lithium tetraborate with the main accent on cation-type vacancies. Possible channels of positron trapping are visualized using the electronic structure calculations with density functional theory at the basis of structural parameters proper to Li2B4O7. Spatially-extended positron-trapping complexes involving singly-ionized lithium vacancies, with character lifetime close to 0.32 ns, are responsible for positron trapping in the nominally undoped lithium tetraborate Li2B4O7 crystal.

  14. Dependence of the bit error rate on the signal power and length of a single-channel coherent single-span communication line (100 Gbit s{sup -1}) with polarisation division multiplexing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurkin, N V; Konyshev, V A; Novikov, A G

    2015-01-31

    We have studied experimentally and using numerical simulations and a phenomenological analytical model the dependences of the bit error rate (BER) on the signal power and length of a coherent single-span communication line with transponders employing polarisation division multiplexing and four-level phase modulation (100 Gbit s{sup -1} DP-QPSK format). In comparing the data of the experiment, numerical simulations and theoretical analysis, we have found two optimal powers: the power at which the BER is minimal and the power at which the fade margin in the line is maximal. We have derived and analysed the dependences of the BER on themore » optical signal power at the fibre line input and the dependence of the admissible input signal power range for implementation of the communication lines with a length from 30 – 50 km up to a maximum length of 250 km. (optical transmission of information)« less

  15. A 1-channel 3-band wide dynamic range compression chip for vibration transducer of implantable hearing aids.

    PubMed

    Kim, Dongwook; Seong, Kiwoong; Kim, Myoungnam; Cho, Jinho; Lee, Jyunghyun

    2014-01-01

    In this paper, a digital audio processing chip which uses a wide dynamic range compression (WDRC) algorithm is designed and implemented for implantable hearing aids system. The designed chip operates at a single voltage of 3.3V and drives a 16 bit parallel input and output at 32 kHz sample. The designed chip has 1-channel 3-band WDRC composed of a FIR filter bank, a level detector, and a compression part. To verify the performance of the designed chip, we measured the frequency separations of bands and compression gain control to reflect the hearing threshold level.

  16. A polarization-division multiplexing SSB-OFDM system with beat interference cancellation receivers

    NASA Astrophysics Data System (ADS)

    Yang, Peiling; Ma, Jianxin; Zhang, Junyi

    2018-06-01

    In this paper, we have proposed a polarization-division multiplexing (PDM) single-sideband optical orthogonal frequency division multiplexing (SSB-OOFDM) scheme with signal-signal beat interference cancellation receivers with balanced detection (ICRBD). This system can double channel capacity and improve spectrum efficiency (SE) with the reduced guard band (GB) due to the PDM. Multiple input multiple output (MIMO) technique is used to solve polarization mode dispersion (PMD) associated with channel estimation and equalization. By simulation, we demonstrate the efficacy of the proposed technique for a 2 ×40 Gbit/s 16-QAM SSB-PDM-OOFDM system according to the error vector magnitude (EVM) and the constellation diagrams.

  17. A programmable time alignment scheme for detector signals from the upgraded muon spectrometer at the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Wang, Jinhong; Guan, Liang; Chapman, J.; Zhou, Bing; Zhu, Junjie

    2017-11-01

    We present a programmable time alignment scheme used in an ASIC for the ATLAS forward muon trigger development. The scheme utilizes regenerated clocks with programmable phases to compensate for the timing offsets introduced by different detector trace lengths. Each ASIC used in the design has 104 input channels with delay compensation circuitry providing steps of ∼3 ns and a full range of 25 ns for each channel. Detailed implementation of the scheme including majority logic to suppress single-event effects is presented. The scheme is flexible and fully synthesizable. The approach is adaptable to other applications with similar phase shifting requirements. In addition, the design is resource efficient and is suitable for cost-effective digital implementation with a large number of channels.

  18. A System for Multiplexed Direct Electrical Detection of DNA Synthesis.

    PubMed

    Anderson, Erik P; Daniels, Jonathan S; Yu, Heng; Karhanek, Miloslav; Lee, Thomas H; Davis, Ronald W; Pourmand, Nader

    2008-01-29

    An electronic system for the multiplexed detection of DNA polymerization is designed and characterized. DNA polymerization is detected by the measurement of small transient currents arising from ion diffusion during polymerization. A transimpedance amplifier is used to detect these small currents; we implemented a twenty-four channel recording system on a single printed circuit board. Various contributions to the input-referred current noise are analyzed and characterized, as it limits the minimum detectable current and thus the biological limit of detection. We obtained 8.5 pA RMS mean noise current (averaged over all 24 channels) over the recording bandwidth (DC to 2 kHz). With digital filtering, the input-referred current noise of the acquisition system is reduced to 2.4 pA, which is much lower than the biological noise. Electrical crosstalk between channels is measured, and a model for the crosstalk is presented. Minimizing the crosstalk is critical because it can lead to erroneous microarray data. With proper precautions, crosstalk is reduced to a negligible value (less than 1.4%). Using a micro-fabricated array of 24 gold electrodes, we demonstrated system functionality by detecting the presence of a target DNA oligonucleotide which hybridized onto its corresponding target.

  19. Model-Free Primitive-Based Iterative Learning Control Approach to Trajectory Tracking of MIMO Systems With Experimental Validation.

    PubMed

    Radac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M

    2015-11-01

    This paper proposes a novel model-free trajectory tracking of multiple-input multiple-output (MIMO) systems by the combination of iterative learning control (ILC) and primitives. The optimal trajectory tracking solution is obtained in terms of previously learned solutions to simple tasks called primitives. The library of primitives that are stored in memory consists of pairs of reference input/controlled output signals. The reference input primitives are optimized in a model-free ILC framework without using knowledge of the controlled process. The guaranteed convergence of the learning scheme is built upon a model-free virtual reference feedback tuning design of the feedback decoupling controller. Each new complex trajectory to be tracked is decomposed into the output primitives regarded as basis functions. The optimal reference input for the control system to track the desired trajectory is next recomposed from the reference input primitives. This is advantageous because the optimal reference input is computed straightforward without the need to learn from repeated executions of the tracking task. In addition, the optimization problem specific to trajectory tracking of square MIMO systems is decomposed in a set of optimization problems assigned to each separate single-input single-output control channel that ensures a convenient model-free decoupling. The new model-free primitive-based ILC approach is capable of planning, reasoning, and learning. A case study dealing with the model-free control tuning for a nonlinear aerodynamic system is included to validate the new approach. The experimental results are given.

  20. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  1. Impact Response Characteristics of Polymeric Materials

    DTIC Science & Technology

    1981-11-01

    amplitude-frequency domain. In the language of signal communications an input signal given by some time dependence FAt) is introduced into a " channel ...fixed and not altered by the signal. The channel can be charac- terized by its own function H(t), called the transfer function. This concept can be...rcpresented schematically as follows: Input Signal - [ Channel ] -- Output Signal At) H(t) G(t) In our case the input signal is the impact event, the output

  2. The relative degree enhancement problem for MIMO nonlinear systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenwald, D.A.; Oezguener, Ue.

    1995-07-01

    The authors present a result for linearizing a nonlinear MIMO system by employing partial feedback - feedback at all but one input-output channel such that the SISO feedback linearization problem is solvable at the remaining input-output channel. The partial feedback effectively enhances the relative degree at the open input-output channel provided the feedback functions are chosen to satisfy relative degree requirements. The method is useful for nonlinear systems that are not feedback linearizable in a MIMO sense. Several examples are presented to show how these feedback functions can be computed. This strategy can be combined with decentralized observers for amore » completely decentralized feedback linearization result for at least one input-output channel.« less

  3. Quantum incompatibility of channels with general outcome operator algebras

    NASA Astrophysics Data System (ADS)

    Kuramochi, Yui

    2018-04-01

    A pair of quantum channels is said to be incompatible if they cannot be realized as marginals of a single channel. This paper addresses the general structure of the incompatibility of completely positive channels with a fixed quantum input space and with general outcome operator algebras. We define a compatibility relation for such channels by identifying the composite outcome space as the maximal (projective) C*-tensor product of outcome algebras. We show theorems that characterize this compatibility relation in terms of the concatenation and conjugation of channels, generalizing the recent result for channels with quantum outcome spaces. These results are applied to the positive operator valued measures (POVMs) by identifying each of them with the corresponding quantum-classical (QC) channel. We also give a characterization of the maximality of a POVM with respect to the post-processing preorder in terms of the conjugate channel of the QC channel. We consider another definition of compatibility of normal channels by identifying the composite outcome space with the normal tensor product of the outcome von Neumann algebras. We prove that for a given normal channel, the class of normally compatible channels is upper bounded by a special class of channels called tensor conjugate channels. We show the inequivalence of the C*- and normal compatibility relations for QC channels, which originates from the possibility and impossibility of copying operations for commutative von Neumann algebras in C*- and normal compatibility relations, respectively.

  4. A probabilistic model of debris-flow delivery to stream channels, demonstrated for the Coast Range of Oregon, USA

    Treesearch

    Daniel J. Miller; Kelly M. Burnett

    2008-01-01

    Debris flows are important geomorphic agents in mountainous terrains that shape channel environments and add a dynamic element to sediment supply and channel disturbance. Identification of channels susceptible to debris-flow inputs of sediment and organic debris, and quantification of the likelihood and magnitude of those inputs, are key tasks for characterizing...

  5. Single-channel EEG-based mental fatigue detection based on deep belief network.

    PubMed

    Pinyi Li; Wenhui Jiang; Fei Su

    2016-08-01

    Mental fatigue has a pernicious influence on road and work place safety as well as a negative symptom of many acute and chronic illnesses, since the ability of concentrating, responding and judging quickly decreases during the fatigue or drowsiness stage. Electroencephalography (EEG) has been proven to be a robust physiological indicator of human cognitive state over the last few decades. But most existing EEG-based fatigue detection methods have poor performance in accuracy. This paper proposed a single-channel EEG-based mental fatigue detection method based on Deep Belief Network (DBN). The fused nonliear features from specified sub-bands and dynamic analysis, a total of 21 features are extracted as the input of the DBN to discriminate three classes of mental state including alert, slight fatigue and severe fatigue. Experimental results show the good performance of the proposed model comparing with those state-of-art methods.

  6. Single sensor for multiple analytes in different optical channel: Applying for multi-ion response modulation

    NASA Astrophysics Data System (ADS)

    Liang, Chunshuang; Jiang, Shimei

    2017-08-01

    A Schiff-base, (2,4-di-tert-butyl-6-((2-hydroxyphenyl-imino)-methyl)phenol) (L), has been improved to function as a simultaneous multi-ion probe in different optical channel. The probe changes from colorless to orangish upon being deprotonated by F-, while the presence of Al3+ significantly enhances the fluorescence of the probe due to the inhibition of Cdbnd N isomerization, cation-induced inhibition of excited-state intramolecular proton transfer (ESIPT), and chelation enhanced fluorescence (CHEF). Dual-channel "off-on" switching behavior resulted from the sequential input of F- and Al3+, reflecting the balance of independent reactions of Al3+ and F- with L and with one another. This sensing phenomenon realizes transformation between multiple states and beautifully mimics a "Write-Read-Erase-Read" logic circuit with two feedback loops.

  7. SAMPA Chip: the New 32 Channels ASIC for the ALICE TPC and MCH Upgrades

    NASA Astrophysics Data System (ADS)

    Adolfsson, J.; Ayala Pabon, A.; Bregant, M.; Britton, C.; Brulin, G.; Carvalho, D.; Chambert, V.; Chinellato, D.; Espagnon, B.; Hernandez Herrera, H. D.; Ljubicic, T.; Mahmood, S. M.; Mjörnmark, U.; Moraes, D.; Munhoz, M. G.; Noël, G.; Oskarsson, A.; Osterman, L.; Pilyar, A.; Read, K.; Ruette, A.; Russo, P.; Sanches, B. C. S.; Severo, L.; Silvermyr, D.; Suire, C.; Tambave, G. J.; Tun-Lanoë, K. M. M.; van Noije, W.; Velure, A.; Vereschagin, S.; Wanlin, E.; Weber, T. O.; Zaporozhets, S.

    2017-04-01

    This paper presents the test results of the second prototype of SAMPA, the ASIC designed for the upgrade of read-out front end electronics of the ALICE Time Projection Chamber (TPC) and Muon Chamber (MCH). SAMPA is made in a 130 nm CMOS technology with 1.25 V nominal voltage supply and provides 32 channels, with selectable input polarity, and three possible combinations of shaping time and sensitivity. Each channel consists of a Charge Sensitive Amplifier, a semi-Gaussian shaper and a 10-bit ADC; a Digital Signal Processor provides digital filtering and compression capability. In the second prototype run both full chip and single test blocks were fabricated, allowing block characterization and full system behaviour studies. Experimental results are here presented showing agreement with requirements for both the blocks and the full chip.

  8. Radio frequency sensing measurements and methods for location classification in wireless networks

    NASA Astrophysics Data System (ADS)

    Maas, Dustin C.

    The wireless radio channel is typically thought of as a means to move information from transmitter to receiver, but the radio channel can also be used to detect changes in the environment of the radio link. This dissertation is focused on the measurements we can make at the physical layer of wireless networks, and how we can use those measurements to obtain information about the locations of transceivers and people. The first contribution of this work is the development and testing of an open source, 802.11b sounder and receiver, which is capable of decoding packets and using them to estimate the channel impulse response (CIR) of a radio link at a fraction of the cost of traditional channel sounders. This receiver improves on previous implementations by performing optimized matched filtering on the field-programmable gate array (FPGA) of the Universal Software Radio Peripheral (USRP), allowing it to operate at full bandwidth. The second contribution of this work is an extensive experimental evaluation of a technology called location distinction, i.e., the ability to identify changes in radio transceiver position, via CIR measurements. Previous location distinction work has focused on single-input single-output (SISO) radio links. We extend this work to the context of multiple-input multiple-output (MIMO) radio links, and study system design trade-offs which affect the performance of MIMO location distinction. The third contribution of this work introduces the "exploiting radio windows" (ERW) attack, in which an attacker outside of a building surreptitiously uses the transmissions of an otherwise secure wireless network inside of the building to infer location information about people inside the building. This is possible because of the relative transparency of external walls to radio transmissions. The final contribution of this dissertation is a feasibility study for building a rapidly deployable radio tomographic (RTI) imaging system for special operations forces (SOF). We show that it is possible to obtain valuable tracking information using as few as 10 radios over a single floor of a typical suburban home, even without precise radio location measurements.

  9. Evolutionary conservation and changes in insect TRP channels.

    PubMed

    Matsuura, Hironori; Sokabe, Takaaki; Kohno, Keigo; Tominaga, Makoto; Kadowaki, Tatsuhiko

    2009-09-10

    TRP (Transient Receptor Potential) channels respond to diverse stimuli and thus function as the primary integrators of varied sensory information. They are also activated by various compounds and secondary messengers to mediate cell-cell interactions as well as to detect changes in the local environment. Their physiological roles have been primarily characterized only in mice and fruit flies, and evolutionary studies are limited. To understand the evolution of insect TRP channels and the mechanisms of integrating sensory inputs in insects, we have identified and compared TRP channel genes in Drosophila melanogaster, Bombyx mori, Tribolium castaneum, Apis mellifera, Nasonia vitripennis, and Pediculus humanus genomes as part of genome sequencing efforts. All the insects examined have 2 TRPV, 1 TRPN, 1 TRPM, 3 TRPC, and 1 TRPML subfamily members, demonstrating that these channels have the ancient origins in insects. The common pattern also suggests that the mechanisms for detecting mechanical and visual stimuli and maintaining lysosomal functions may be evolutionarily well conserved in insects. However, a TRPP channel, the most ancient TRP channel, is missing in B. mori, A. mellifera, and N. vitripennis. Although P. humanus and D. melanogaster contain 4 TRPA subfamily members, the other insects have 5 TRPA subfamily members. T. castaneum, A. mellifera, and N. vitripennis contain TRPA5 channels, which have been specifically retained or gained in Coleoptera and Hymenoptera. Furthermore, TRPA1, which functions for thermotaxis in Drosophila, is missing in A. mellifera and N. vitripennis; however, they have other Hymenoptera-specific TRPA channels (AmHsTRPA and NvHsTRPA). NvHsTRPA expressed in HEK293 cells is activated by temperature increase, demonstrating that HsTRPAs function as novel thermal sensors in Hymenoptera. The total number of insect TRP family members is 13-14, approximately half that of mammalian TRP family members. As shown for mammalian TRP channels, this may suggest that single TRP channels are responsible for integrating diverse sensory inputs to maintain the insect sensory systems. The above results demonstrate that there are both evolutionary conservation and changes in insect TRP channels. In particular, the evolutionary processes have been accelerated in the TRPA subfamily, indicating divergence in the mechanisms that insects use to detect environmental temperatures.

  10. Ways to suppress click and pop for class D amplifiers

    NASA Astrophysics Data System (ADS)

    Haishi, Wang; Bo, Zhang; Jiang, Sun

    2012-08-01

    Undesirable audio click and pop may be generated in a speaker or headphone. Compared to linear (class A/B/AB) amplifiers, class D amplifiers that comprise of an input stage and a modulation stage are more prone to producing click and pop. This article analyzes sources that generate click and pop in class D amplifiers, and corresponding ways to suppress them. For a class D amplifier with a single-ended input, click and pop is likely to be due to two factors. One is from a voltage difference (VDIF) between the voltage of an input capacitance (VCIN) and a reference voltage (VREF) of the input stage, and the other one is from the non-linear switching during the setting up of the bias and feedback voltages/currents (BFVC) of the modulation stage. In this article, a fast charging loop is introduced into the input stage to charge VCIN to roughly near VREF. Then a correction loop further charges or discharges VCIN, substantially equalizing it with VREF. Dummy switches are introduced into the modulation stage to provide switching signals for setting up BFVC, and the power switches are disabled until the BFVC are set up successfully. A two channel single-ended class D amplifier with the above features is fabricated with 0.5 μm Bi-CMOS process. Road test and fast Fourier transform analysis indicate that there is no noticeable click and pop.

  11. Multi-carrier Communications over Time-varying Acoustic Channels

    NASA Astrophysics Data System (ADS)

    Aval, Yashar M.

    Acoustic communication is an enabling technology for many autonomous undersea systems, such as those used for ocean monitoring, offshore oil and gas industry, aquaculture, or port security. There are three main challenges in achieving reliable high-rate underwater communication: the bandwidth of acoustic channels is extremely limited, the propagation delays are long, and the Doppler distortions are more pronounced than those found in wireless radio channels. In this dissertation we focus on assessing the fundamental limitations of acoustic communication, and designing efficient signal processing methods that cam overcome these limitations. We address the fundamental question of acoustic channel capacity (achievable rate) for single-input-multi-output (SIMO) acoustic channels using a per-path Rician fading model, and focusing on two scenarios: narrowband channels where the channel statistics can be approximated as frequency- independent, and wideband channels where the nominal path loss is frequency-dependent. In each scenario, we compare several candidate power allocation techniques, and show that assigning uniform power across all frequencies for the first scenario, and assigning uniform power across a selected frequency-band for the second scenario, are the best practical choices in most cases, because the long propagation delay renders the feedback information outdated for power allocation based on the estimated channel response. We quantify our results using the channel information extracted form the 2010 Mobile Acoustic Communications Experiment (MACE'10). Next, we focus on achieving reliable high-rate communication over underwater acoustic channels. Specifically, we investigate orthogonal frequency division multiplexing (OFDM) as the state-of-the-art technique for dealing with frequency-selective multipath channels, and propose a class of methods that compensate for the time-variation of the underwater acoustic channel. These methods are based on multiple-FFT demodulation, and are implemented as partial (P), shaped (S), fractional (F), and Taylor series expansion (T) FFT demodulation. They replace the conventional FFT demodulation with a few FFTs and a combiner. The input to each FFT is a specific transformation of the input signal (P,S,F,T), while the combiner performs weighted summation of the FFT outputs. We design an adaptive algorithm of stochastic gradient type to learn the combiner weights for coherent and differentially coherent detection. The algorithm is cast into the framework of multiple receiving elements to take advantage of spatial diversity. Synthetic data, as well as experimental data from the MACE'10 experiment are used to demonstrate the performance of the proposed methods, showing significant improvement over conventional detection techniques with or without inter-carrier interference equalization (5 dB--7 dB on average over multiple hours), as well as improved bandwidth efficiency.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ide, Toshiki; Hofmann, Holger F.; JST-CREST, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama 1-3-1, Higashi Hiroshima 739-8530

    The information encoded in the polarization of a single photon can be transferred to a remote location by two-channel continuous-variable quantum teleportation. However, the finite entanglement used in the teleportation causes random changes in photon number. If more than one photon appears in the output, the continuous-variable teleportation accidentally produces clones of the original input photon. In this paper, we derive the polarization statistics of the N-photon output components and show that they can be decomposed into an optimal cloning term and completely unpolarized noise. We find that the accidental cloning of the input photon is nearly optimal at experimentallymore » feasible squeezing levels, indicating that the loss of polarization information is partially compensated by the availability of clones.« less

  13. Computer simulator for a mobile telephone system

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1981-01-01

    A software simulator was developed to assist NASA in the design of the land mobile satellite service. Structured programming techniques were used by developing the algorithm using an ALCOL-like pseudo language and then encoding the algorithm into FORTRAN 4. The basic input data to the system is a sine wave signal although future plans call for actual sampled voice as the input signal. The simulator is capable of studying all the possible combinations of types and modes of calls through the use of five communication scenarios: single hop systems; double hop, signal gateway system; double hop, double gateway system; mobile to wireline system; and wireline to mobile system. The transmitter, fading channel, and interference source simulation are also discussed.

  14. Capacity of the generalized PPM channel

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon; Klimesh, Matt; McEliece, Bob; Moision, Bruce

    2004-01-01

    We show the capacity of a generalized pulse-position-modulation (PPM) channel, where the input vectors may be any set that allows a transitive group of coordinate permutations, is achieved by a uniform input distribution.

  15. Regularized maximum pure-state input-output fidelity of a quantum channel

    NASA Astrophysics Data System (ADS)

    Ernst, Moritz F.; Klesse, Rochus

    2017-12-01

    As a toy model for the capacity problem in quantum information theory we investigate finite and asymptotic regularizations of the maximum pure-state input-output fidelity F (N ) of a general quantum channel N . We show that the asymptotic regularization F ˜(N ) is lower bounded by the maximum output ∞ -norm ν∞(N ) of the channel. For N being a Pauli channel, we find that both quantities are equal.

  16. The Possible Role of TASK Channels in Rank-Ordered Recruitment of Motoneurons in the Dorsolateral Part of the Trigeminal Motor Nucleus.

    PubMed

    Okamoto, Keiko; Emura, Norihito; Sato, Hajime; Fukatsu, Yuki; Saito, Mitsuru; Tanaka, Chie; Morita, Yukako; Nishimura, Kayo; Kuramoto, Eriko; Xu Yin, Dong; Furutani, Kazuharu; Okazawa, Makoto; Kurachi, Yoshihisa; Kaneko, Takeshi; Maeda, Yoshinobu; Yamashiro, Takashi; Takada, Kenji; Toyoda, Hiroki; Kang, Youngnam

    2016-01-01

    Because a rank-ordered recruitment of motor units occurs during isometric contraction of jaw-closing muscles, jaw-closing motoneurons (MNs) may be recruited in a manner dependent on their soma sizes or input resistances (IRs). In the dorsolateral part of the trigeminal motor nucleus (dl-TMN) in rats, MNs abundantly express TWIK (two-pore domain weak inwardly rectifying K channel)-related acid-sensitive-K(+) channel (TASK)-1 and TASK3 channels, which determine the IR and resting membrane potential. Here we examined how TASK channels are involved in IR-dependent activation/recruitment of MNs in the rat dl-TMN by using multiple methods. The real-time PCR study revealed that single large MNs (>35 μm) expressed TASK1 and TASK3 mRNAs more abundantly compared with single small MNs (15-20 μm). The immunohistochemistry revealed that TASK1 and TASK3 channels were complementarily distributed in somata and dendrites of MNs, respectively. The density of TASK1 channels seemed to increase with a decrease in soma diameter while there were inverse relationships between the soma size of MNs and IR, resting membrane potential, or spike threshold. Dual whole-cell recordings obtained from smaller and larger MNs revealed that the recruitment of MNs depends on their IRs in response to repetitive stimulation of the presumed Ia afferents. 8-Bromoguanosine-cGMP decreased IRs in small MNs, while it hardly changed those in large MNs, and subsequently decreased the difference in spike-onset latency between the smaller and larger MNs, causing a synchronous activation of MNs. These results suggest that TASK channels play critical roles in rank-ordered recruitment of MNs in the dl-TMN.

  17. A 16 channel discriminator VME board with enhanced triggering capabilities

    NASA Astrophysics Data System (ADS)

    Borsato, E.; Garfagnini, A.; Menon, G.

    2012-08-01

    Electronics and data acquisition systems used in small and large scale laboratories often have to handle analog signals with varying polarity, amplitude and duration which have to be digitized to be used as trigger signals to validate the acquired data. In the specific case of experiments dealing with ionizing radiation, ancillary particle detectors (for instance plastic scintillators or Resistive Plate Chambers) are used to trigger and select the impinging particles for the experiment. A novel approach using commercial LVDS line receivers as discriminator devices is presented. Such devices, with a proper calibration, can handle positive and negative analog signals in a wide dynamic range (from 20 mV to 800 mV signal amplitude). The clear advantages, with respect to conventional discriminator devices, are reduced costs, high reliability of a mature technology and the possibility of high integration scale. Moreover, commercial discriminator boards with positive input signal and a wide threshold swing are not available on the market. The present paper describes the design and characterization of a VME board capable to handle 16 differential or single-ended input channels. The output digital signals, available independently for each input, can be combined in the board into three independent trigger logic units which provide additional outputs for the end user.

  18. Diversity amongst trigeminal neurons revealed by high throughput single cell sequencing

    PubMed Central

    Nguyen, Minh Q.; Wu, Youmei; Bonilla, Lauren S.; von Buchholtz, Lars J.

    2017-01-01

    The trigeminal ganglion contains somatosensory neurons that detect a range of thermal, mechanical and chemical cues and innervate unique sensory compartments in the head and neck including the eyes, nose, mouth, meninges and vibrissae. We used single-cell sequencing and in situ hybridization to examine the cellular diversity of the trigeminal ganglion in mice, defining thirteen clusters of neurons. We show that clusters are well conserved in dorsal root ganglia suggesting they represent distinct functional classes of somatosensory neurons and not specialization associated with their sensory targets. Notably, functionally important genes (e.g. the mechanosensory channel Piezo2 and the capsaicin gated ion channel Trpv1) segregate into multiple clusters and often are expressed in subsets of cells within a cluster. Therefore, the 13 genetically-defined classes are likely to be physiologically heterogeneous rather than highly parallel (i.e., redundant) lines of sensory input. Our analysis harnesses the power of single-cell sequencing to provide a unique platform for in silico expression profiling that complements other approaches linking gene-expression with function and exposes unexpected diversity in the somatosensory system. PMID:28957441

  19. On demand nanoliter-scale microfluidic droplet generation, injection, and mixing using a passive microfluidic device

    PubMed Central

    Tangen, Uwe; Sharma, Abhishek

    2015-01-01

    We here present and characterize a programmable nanoliter scale droplet-on-demand device that can be used separately or readily integrated into low cost single layer rapid prototyping microfluidic systems for a wide range of user applications. The passive microfluidic device allows external (off-the-shelf) electronically controlled pinch valves to program the delivery of nanoliter scale aqueous droplets from up to 9 different inputs to a central outlet channel. The inputs can be either continuous aqueous fluid streams or microliter scale aqueous plugs embedded in a carrier fluid, in which case the number of effective input solutions that can be employed in an experiment is no longer strongly constrained (100 s–1000 s). Both nanoliter droplet sequencing output and nanoliter-scale droplet mixing are reported with this device. Optimization of the geometry and pressure relationships in the device was achieved in several hardware iterations with the support of open source microfluidic simulation software and equivalent circuit models. The requisite modular control of pressure relationships within the device is accomplished using hydrodynamic barriers and matched resistance channels with three different channel heights, custom parallel reversible microfluidic I/O connections, low dead-volume pinch valves, and a simply adjustable array of external screw valves. Programmable sequences of droplet mixes or chains of droplets can be achieved with the device at low Hz frequencies, limited by device elasticity, and could be further enhanced by valve integration. The chip has already found use in the characterization of droplet bunching during export and the synthesis of a DNA library. PMID:25759752

  20. On demand nanoliter-scale microfluidic droplet generation, injection, and mixing using a passive microfluidic device.

    PubMed

    Tangen, Uwe; Sharma, Abhishek; Wagler, Patrick; McCaskill, John S

    2015-01-01

    We here present and characterize a programmable nanoliter scale droplet-on-demand device that can be used separately or readily integrated into low cost single layer rapid prototyping microfluidic systems for a wide range of user applications. The passive microfluidic device allows external (off-the-shelf) electronically controlled pinch valves to program the delivery of nanoliter scale aqueous droplets from up to 9 different inputs to a central outlet channel. The inputs can be either continuous aqueous fluid streams or microliter scale aqueous plugs embedded in a carrier fluid, in which case the number of effective input solutions that can be employed in an experiment is no longer strongly constrained (100 s-1000 s). Both nanoliter droplet sequencing output and nanoliter-scale droplet mixing are reported with this device. Optimization of the geometry and pressure relationships in the device was achieved in several hardware iterations with the support of open source microfluidic simulation software and equivalent circuit models. The requisite modular control of pressure relationships within the device is accomplished using hydrodynamic barriers and matched resistance channels with three different channel heights, custom parallel reversible microfluidic I/O connections, low dead-volume pinch valves, and a simply adjustable array of external screw valves. Programmable sequences of droplet mixes or chains of droplets can be achieved with the device at low Hz frequencies, limited by device elasticity, and could be further enhanced by valve integration. The chip has already found use in the characterization of droplet bunching during export and the synthesis of a DNA library.

  1. A high-throughput two channel discrete wavelet transform architecture for the JPEG2000 standard

    NASA Astrophysics Data System (ADS)

    Badakhshannoory, Hossein; Hashemi, Mahmoud R.; Aminlou, Alireza; Fatemi, Omid

    2005-07-01

    The Discrete Wavelet Transform (DWT) is increasingly recognized in image and video compression standards, as indicated by its use in JPEG2000. The lifting scheme algorithm is an alternative DWT implementation that has a lower computational complexity and reduced resource requirement. In the JPEG2000 standard two lifting scheme based filter banks are introduced: the 5/3 and 9/7. In this paper a high throughput, two channel DWT architecture for both of the JPEG2000 DWT filters is presented. The proposed pipelined architecture has two separate input channels that process the incoming samples simultaneously with minimum memory requirement for each channel. The architecture had been implemented in VHDL and synthesized on a Xilinx Virtex2 XCV1000. The proposed architecture applies DWT on a 2K by 1K image at 33 fps with a 75 MHZ clock frequency. This performance is achieved with 70% less resources than two independent single channel modules. The high throughput and reduced resource requirement has made this architecture the proper choice for real time applications such as Digital Cinema.

  2. MEDIPIX: a VLSI chip for a GaAs pixel detector for digital radiology

    NASA Astrophysics Data System (ADS)

    Amendolia, S. R.; Bertolucci, E.; Bisogni, M. G.; Bottigli, U.; Ceccopieri, A.; Ciocci, M. A.; Conti, M.; Delogu, P.; Fantacci, M. E.; Maestro, P.; Marzulli, V.; Pernigotti, E.; Romeo, N.; Rosso, V.; Rosso, P.; Stefanini, A.; Stumbo, S.

    1999-02-01

    A GaAs pixel detector designed for digital mammography, equipped with a 36-channel single photon counting discrete read-out electronics, was tested using a test object developed for quality control purposes in mammography. Each pixel was 200×200 μm 2 large, and 200 μm deep. The choice of GaAs with respect to silicon (largely used in other applications and with a more established technique) has been made because of the much better detection efficiency at mammographic energies, combined with a very good charge collection efficiency achieved thanks to new ohmic contacts. This GaAs detector is able to perform a measurement of low-contrast details, with minimum contrast lower (nearly a factor two) than that typically achievable with standard mammographic film+screen systems in the same conditions of clinical routine. This should allow for an earlier diagnosis of breast tumour masses. Due to these encouraging results, the next step in the evolution of our imaging system based on GaAs detectors has been the development of a VLSI front-end prototype chip (MEDIPIX ) in order to cover a much larger diagnostic area. The chip reads 64×64 channels in single photon counting mode, each one 170 μm wide. Each channel contains also a test input where a signal can be simulated, injecting a known charge through a 16 f F capacitor. Fake signals have been injected via the test input measuring and equalizing minimum thresholds for all the channels. On an average, in most of the performing chips available up to now, we have found that it is possible to set a threshold as low as 1800 electrons with an RMS of 150 electrons (10 standard deviations lower than the 20 keV photon signal roughly equivalent to 4500 electrons). The detector, bump-bonded to the chip, will be tested and a ladder of detectors will be prepared to be able to scan large surface objects.

  3. Sediment budget analysis of slope channel coupling and in-channel sediment storage in an upland catchment, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Smith, Hugh G.; Dragovich, Deirdre

    2008-11-01

    Slope-channel coupling and in-channel sediment storage can be important factors that influence sediment delivery through catchments. Sediment budgets offer an appropriate means to assess the role of these factors by quantifying the various components in the catchment sediment transfer system. In this study a fine (< 63 µm) sediment budget was developed for a 1.64-km 2 gullied upland catchment in southeastern Australia. A process-based approach was adopted that involved detailed monitoring of hillslope and bank erosion, channel change, and suspended sediment output in conjunction with USLE-based hillslope erosion estimation and sediment source tracing using 137Cs and 210Pb ex. The sediment budget developed from these datasets indicated channel banks accounted for an estimated 80% of total sediment inputs. Valley floor and in-channel sediment storage accounted for 53% of inputs, with the remaining 47% being discharged from the catchment outlet. Estimated hillslope sediment input to channels was low (5.7 t) for the study period compared to channel bank input (41.6 t). However an estimated 56% of eroded hillslope sediment reached channels, suggesting a greater level of coupling between the two subsystems than was apparent from comparison of sediment source inputs. Evidently the interpretation of variability in catchment sediment yield is largely dependent on the dynamics of sediment supply and storage in channels in response to patterns of rainfall and discharge. This was reflected in the sediment delivery ratios (SDR) for individual measurement intervals, which ranged from 1 to 153%. Bank sediment supply during low rainfall periods was reduced but ongoing from subaerial processes delivering sediment to channels, resulting in net accumulation on the channel bed with insufficient flow to transport this material to the catchment outlet. Following the higher flow period in spring of the first year of monitoring, the sediment supplied to channels during this interval was removed as well as an estimated 72% of the sediment accumulated on the channel bed since the start of the study period. Given the seasonal and drought-dependent variability in storage and delivery, the period of monitoring may have an important influence on the overall SDR. On the basis of these findings, this study highlights the potential importance of sediment dynamics in channels for determining contemporary sediment yields from small gullied upland catchments in southeastern Australia.

  4. Solute transport along a single fracture in a porous rock: a simple analytical solution and its extension for modeling velocity dispersion

    NASA Astrophysics Data System (ADS)

    Liu, Longcheng; Neretnieks, Ivars; Shahkarami, Pirouz; Meng, Shuo; Moreno, Luis

    2018-02-01

    A simple and robust solution is developed for the problem of solute transport along a single fracture in a porous rock. The solution is referred to as the solution to the single-flow-path model and takes the form of a convolution of two functions. The first function is the probability density function of residence-time distribution of a conservative solute in the fracture-only system as if the rock matrix is impermeable. The second function is the response of the fracture-matrix system to the input source when Fickian-type dispersion is completely neglected; thus, the effects of Fickian-type dispersion and matrix diffusion have been decoupled. It is also found that the solution can be understood in a way in line with the concept of velocity dispersion in fractured rocks. The solution is therefore extended into more general cases to also account for velocity variation between the channels. This leads to a development of the multi-channel model followed by detailed statistical descriptions of channel properties and sensitivity analysis of the model upon changes in the model key parameters. The simulation results obtained by the multi-channel model in this study fairly well agree with what is often observed in field experiments—i.e. the unchanged Peclet number with distance, which cannot be predicted by the classical advection-dispersion equation. In light of the findings from the aforementioned analysis, it is suggested that forced-gradient experiments can result in considerably different estimates of dispersivity compared to what can be found in natural-gradient systems for typical channel widths.

  5. Large woody debris budgets in the Caspar Creek Experimental Watersheds

    Treesearch

    Sue Hilton

    2012-01-01

    Monitoring of large woody debris (LWD) in the two mainstem channels of the Caspar Creek Experimental Watersheds since 1998, combined with older data from other work in the watersheds, gives estimates of channel wood input rates, survival, and outputs in intermediate-sized channels in coastal redwood forests. Input rates from standing trees for the two reaches over a 15...

  6. Effects of ion channel noise on neural circuits: an application to the respiratory pattern generator to investigate breathing variability.

    PubMed

    Yu, Haitao; Dhingra, Rishi R; Dick, Thomas E; Galán, Roberto F

    2017-01-01

    Neural activity generally displays irregular firing patterns even in circuits with apparently regular outputs, such as motor pattern generators, in which the output frequency fluctuates randomly around a mean value. This "circuit noise" is inherited from the random firing of single neurons, which emerges from stochastic ion channel gating (channel noise), spontaneous neurotransmitter release, and its diffusion and binding to synaptic receptors. Here we demonstrate how to expand conductance-based network models that are originally deterministic to include realistic, physiological noise, focusing on stochastic ion channel gating. We illustrate this procedure with a well-established conductance-based model of the respiratory pattern generator, which allows us to investigate how channel noise affects neural dynamics at the circuit level and, in particular, to understand the relationship between the respiratory pattern and its breath-to-breath variability. We show that as the channel number increases, the duration of inspiration and expiration varies, and so does the coefficient of variation of the breath-to-breath interval, which attains a minimum when the mean duration of expiration slightly exceeds that of inspiration. For small channel numbers, the variability of the expiratory phase dominates over that of the inspiratory phase, and vice versa for large channel numbers. Among the four different cell types in the respiratory pattern generator, pacemaker cells exhibit the highest sensitivity to channel noise. The model shows that suppressing input from the pons leads to longer inspiratory phases, a reduction in breathing frequency, and larger breath-to-breath variability, whereas enhanced input from the raphe nucleus increases breathing frequency without changing its pattern. A major source of noise in neuronal circuits is the "flickering" of ion currents passing through the neurons' membranes (channel noise), which cannot be suppressed experimentally. Computational simulations are therefore the best way to investigate the effects of this physiological noise by manipulating its level at will. We investigate the role of noise in the respiratory pattern generator and show that endogenous, breath-to-breath variability is tightly linked to the respiratory pattern. Copyright © 2017 the American Physiological Society.

  7. An intelligent 1:2 demultiplexer as an intracellular theranostic device based on DNA/Ag cluster-gated nanovehicles

    NASA Astrophysics Data System (ADS)

    Ran, Xiang; Wang, Zhenzhen; Ju, Enguo; Pu, Fang; Song, Yanqiu; Ren, Jinsong; Qu, Xiaogang

    2018-02-01

    The logic device demultiplexer can convey a single input signal into one of multiple output channels. The choice of the output channel is controlled by a selector. Several molecules and biomolecules have been used to mimic the function of a demultiplexer. However, the practical application of logic devices still remains a big challenge. Herein, we design and construct an intelligent 1:2 demultiplexer as a theranostic device based on azobenzene (azo)-modified and DNA/Ag cluster-gated nanovehicles. The configuration of azo and the conformation of the DNA ensemble can be regulated by light irradiation and pH, respectively. The demultiplexer which uses light as the input and acid as the selector can emit red fluorescence or a release drug under different conditions. Depending on different cells, the intelligent logic device can select the mode of cellular imaging in healthy cells or tumor therapy in tumor cells. The study incorporates the logic gate with the theranostic device, paving the way for tangible applications of logic gates in the future.

  8. An intelligent 1:2 demultiplexer as an intracellular theranostic device based on DNA/Ag cluster-gated nanovehicles.

    PubMed

    Ran, Xiang; Wang, Zhenzhen; Ju, Enguo; Pu, Fang; Song, Yanqiu; Ren, Jinsong; Qu, Xiaogang

    2018-02-09

    The logic device demultiplexer can convey a single input signal into one of multiple output channels. The choice of the output channel is controlled by a selector. Several molecules and biomolecules have been used to mimic the function of a demultiplexer. However, the practical application of logic devices still remains a big challenge. Herein, we design and construct an intelligent 1:2 demultiplexer as a theranostic device based on azobenzene (azo)-modified and DNA/Ag cluster-gated nanovehicles. The configuration of azo and the conformation of the DNA ensemble can be regulated by light irradiation and pH, respectively. The demultiplexer which uses light as the input and acid as the selector can emit red fluorescence or a release drug under different conditions. Depending on different cells, the intelligent logic device can select the mode of cellular imaging in healthy cells or tumor therapy in tumor cells. The study incorporates the logic gate with the theranostic device, paving the way for tangible applications of logic gates in the future.

  9. Adaptive gain and filtering circuit for a sound reproduction system

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)

    1998-01-01

    Adaptive compressive gain and level dependent spectral shaping circuitry for a hearing aid include a microphone to produce an input signal and a plurality of channels connected to a common circuit output. Each channel has a preset frequency response. Each channel includes a filter with a preset frequency response to receive the input signal and to produce a filtered signal, a channel amplifier to amplify the filtered signal to produce a channel output signal, a threshold register to establish a channel threshold level, and a gain circuit. The gain circuit increases the gain of the channel amplifier when the channel output signal falls below the channel threshold level and decreases the gain of the channel amplifier when the channel output signal rises above the channel threshold level. A transducer produces sound in response to the signal passed by the common circuit output.

  10. The Experimental Demonstration of High Efficiency Interaction-free Measurement for Quantum Counterfactual-like Communication.

    PubMed

    Liu, Chao; Liu, Jinhong; Zhang, Junxiang; Zhu, Shiyao

    2017-09-07

    We present an interaction-free measurement with quantum Zeno effect and a high efficiency η = 74.6% ± 0.15%. As a proof-of-principle demonstration, this measurement can be used to implement a quantum counterfactual-like communication protocol. Instead of a single photon state, we use a coherent light as the input source and show that the output agrees with the proposed quantum counterfactual communication protocol according to Salih et al. Although the counterfactuality is not achieved due to the presence of a few photons in the public channel, we show that the signal light is nearly absent in the public channel, which exhibits a proof-of-principle quantum counterfactual-like property of communication.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, W.; Yin, J.; Li, C.

    This paper presents a novel front-end electronics based on a front-end ASIC with post digital filtering and calibration dedicated to CZT detectors for PET imaging. A cascade amplifier based on split-leg topology is selected to realize the charge-sensitive amplifier (CSA) for the sake of low noise performances and the simple scheme of the power supplies. The output of the CSA is connected to a variable-gain amplifier to generate the compatible signals for the A/D conversion. A multi-channel single-slope ADC is designed to sample multiple points for the digital filtering and shaping. The digital signal processing algorithms are implemented by amore » FPGA. To verify the proposed scheme, a front-end readout prototype ASIC is designed and implemented in 0.35 μm CMOS process. In a single readout channel, a CSA, a VGA, a 10-bit ADC and registers are integrated. Two dummy channels, bias circuits, and time controller are also integrated. The die size is 2.0 mm x 2.1 mm. The input range of the ASIC is from 2000 e{sup -} to 100000 e{sup -}, which is suitable for the detection of the X-and gamma ray from 11.2 keV to 550 keV. The linearity of the output voltage is less than 1 %. The gain of the readout channel is 40.2 V/pC. The static power dissipation is about 10 mW/channel. The above tested results show that the electrical performances of the ASIC can well satisfy PET imaging applications. (authors)« less

  12. Miniaturized Ka-Band Dual-Channel Radar

    NASA Technical Reports Server (NTRS)

    Hoffman, James P.; Moussessian, Alina; Jenabi, Masud; Custodero, Brian

    2011-01-01

    Smaller (volume, mass, power) electronics for a Ka-band (36 GHz) radar interferometer were required. To reduce size and achieve better control over RFphase versus temperature, fully hybrid electronics were developed for the RF portion of the radar s two-channel receiver and single-channel transmitter. In this context, fully hybrid means that every active RF device was an open die, and all passives were directly attached to the subcarrier. Attachments were made using wire and ribbon bonding. In this way, every component, even small passives, was selected for the fabrication of the two radar receivers, and the devices were mounted relative to each other in order to make complementary components isothermal and to isolate other components from potential temperature gradients. This is critical for developing receivers that can track each other s phase over temperature, which is a key mission driver for obtaining ocean surface height. Fully hybrid, Ka-band (36 GHz) radar transmitter and dual-channel receiver were developed for spaceborne radar interferometry. The fully hybrid fabrication enables control over every aspect of the component selection, placement, and connection. Since the two receiver channels must track each other to better than 100 millidegrees of RF phase over several minutes, the hardware in the two receivers must be "identical," routed the same (same line lengths), and as isothermal as possible. This level of design freedom is not possible with packaged components, which include many internal passive, unknown internal connection lengths/types, and often a single orientation of inputs and outputs.

  13. Experimental demonstration of MIMO-OFDM underwater wireless optical communication

    NASA Astrophysics Data System (ADS)

    Song, Yuhang; Lu, Weichao; Sun, Bin; Hong, Yang; Qu, Fengzhong; Han, Jun; Zhang, Wei; Xu, Jing

    2017-11-01

    In this paper, we propose and experimentally demonstrate a multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) underwater wireless optical communication (UWOC) system, with a gross bit rate of 33.691 Mb/s over a 2-m water channel using low-cost blue light-emitting-diodes (LEDs) and 10-MHz PIN photodiodes. The system is capable of realizing robust data transmission within a relatively large reception area, leading to relaxed alignment requirement for UWOC. In addition, we have compared the system performance of repetition coding OFDM (RC-OFDM), Alamouti-OFDM and multiple-input single-output OFDM (MISO-OFDM) in turbid water. Results show that the Alamouti-OFDM UWOC is more resistant to delay than the RC-OFDM-based system.

  14. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.

    PubMed

    Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-06-15

    We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.

  15. Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes

    PubMed Central

    Du, Jiangang; Blanche, Timothy J.; Harrison, Reid R.; Lester, Henry A.; Masmanidis, Sotiris C.

    2011-01-01

    Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable. PMID:22022568

  16. Modified superposition: A simple time series approach to closed-loop manual controller identification

    NASA Technical Reports Server (NTRS)

    Biezad, D. J.; Schmidt, D. K.; Leban, F.; Mashiko, S.

    1986-01-01

    Single-channel pilot manual control output in closed-tracking tasks is modeled in terms of linear discrete transfer functions which are parsimonious and guaranteed stable. The transfer functions are found by applying a modified super-position time series generation technique. A Levinson-Durbin algorithm is used to determine the filter which prewhitens the input and a projective (least squares) fit of pulse response estimates is used to guarantee identified model stability. Results from two case studies are compared to previous findings, where the source of data are relatively short data records, approximately 25 seconds long. Time delay effects and pilot seasonalities are discussed and analyzed. It is concluded that single-channel time series controller modeling is feasible on short records, and that it is important for the analyst to determine a criterion for best time domain fit which allows association of model parameter values, such as pure time delay, with actual physical and physiological constraints. The purpose of the modeling is thus paramount.

  17. Cryogenic refrigeration apparatus

    DOEpatents

    Crunkleton, James A.

    1992-01-01

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling.

  18. Cryogenic refrigeration apparatus

    DOEpatents

    Crunkleton, J.A.

    1992-03-31

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling. 6 figs.

  19. Equivalent ZF precoding scheme for downlink indoor MU-MIMO VLC systems

    NASA Astrophysics Data System (ADS)

    Fan, YangYu; Zhao, Qiong; Kang, BoChao; Deng, LiJun

    2018-01-01

    In indoor visible light communication (VLC) systems, the channels of photo detectors (PDs) at one user are highly correlated, which determines the choice of spatial diversity model for individual users. In a spatial diversity model, the signals received by PDs belonging to one user carry the same information, and can be combined directly. Based on the above, we propose an equivalent zero-forcing (ZF) precoding scheme for multiple-user multiple-input single-output (MU-MIMO) VLC systems by transforming an indoor MU-MIMO VLC system into an indoor multiple-user multiple-input single-output (MU-MISO) VLC system through simply processing. The power constraints of light emitting diodes (LEDs) are also taken into account. Comprehensive computer simulations in three scenarios indicate that our scheme can not only reduce the computational complexity, but also guarantee the system performance. Furthermore, the proposed scheme does not require noise information in the calculating of the precoding weights, and has no restrictions on the numbers of APs and PDs.

  20. Fast single image dehazing based on image fusion

    NASA Astrophysics Data System (ADS)

    Liu, Haibo; Yang, Jie; Wu, Zhengping; Zhang, Qingnian

    2015-01-01

    Images captured in foggy weather conditions often fade the colors and reduce the contrast of the observed objects. An efficient image fusion method is proposed to remove haze from a single input image. First, the initial medium transmission is estimated based on the dark channel prior. Second, the method adopts an assumption that the degradation level affected by haze of each region is the same, which is similar to the Retinex theory, and uses a simple Gaussian filter to get the coarse medium transmission. Then, pixel-level fusion is achieved between the initial medium transmission and coarse medium transmission. The proposed method can recover a high-quality haze-free image based on the physical model, and the complexity of the proposed method is only a linear function of the number of input image pixels. Experimental results demonstrate that the proposed method can allow a very fast implementation and achieve better restoration for visibility and color fidelity compared to some state-of-the-art methods.

  1. Microfluidic Flows and Heat Transfer and Their Influence on Optical Modes in Microstructure Fibers

    PubMed Central

    Davies, Edward; Christodoulides, Paul; Florides, George; Kalli, Kyriacos

    2014-01-01

    A finite element analysis (FEA) model has been constructed to predict the thermo-fluidic and optical properties of a microstructure optical fiber (MOF) accounting for changes in external temperature, input water velocity and optical fiber geometry. Modeling a water laminar flow within a water channel has shown that the steady-state temperature is dependent on the water channel radius while independent of the input velocity. There is a critical channel radius below which the steady-state temperature of the water channel is constant, while above, the temperature decreases. However, the distance required to reach steady state within the water channel is dependent on both the input velocity and the channel radius. The MOF has been found capable of supporting multiple modes. Despite the large thermo-optic coefficient of water, the bound modes’ response to temperature was dominated by the thermo-optic coefficient of glass. This is attributed to the majority of the light being confined within the glass, which increased with increasing external temperature due to a larger difference in the refractive index between the glass core and the water channel. PMID:28788263

  2. A micromachined silicon parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT)

    NASA Astrophysics Data System (ADS)

    Cho, Young Y.; Chang, Cheng-Chung; Wang, Lihong V.; Zou, Jun

    2015-03-01

    To achieve real-time photoacoustic tomography (PAT), massive transducer arrays and data acquisition (DAQ) electronics are needed to receive the PA signals simultaneously, which results in complex and high-cost ultrasound receiver systems. To address this issue, we have developed a new PA data acquisition approach using acoustic time delay. Optical fibers were used as parallel acoustic delay lines (PADLs) to create different time delays in multiple channels of PA signals. This makes the PA signals reach a single-element transducer at different times. As a result, they can be properly received by single-channel DAQ electronics. However, due to their small diameter and fragility, using optical fiber as acoustic delay lines poses a number of challenges in the design, construction and packaging of the PADLs, thereby limiting their performances and use in real imaging applications. In this paper, we report the development of new silicon PADLs, which are directly made from silicon wafers using advanced micromachining technologies. The silicon PADLs have very low acoustic attenuation and distortion. A linear array of 16 silicon PADLs were assembled into a handheld package with one common input port and one common output port. To demonstrate its real-time PAT capability, the silicon PADL array (with its output port interfaced with a single-element transducer) was used to receive 16 channels of PA signals simultaneously from a tissue-mimicking optical phantom sample. The reconstructed PA image matches well with the imaging target. Therefore, the silicon PADL array can provide a 16× reduction in the ultrasound DAQ channels for real-time PAT.

  3. Entanglement in channel discrimination with restricted measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, William; Piani, Marco; Watrous, John

    2010-09-15

    We study the power of measurements implementable with local quantum operations and classical communication (LOCC) measurements in the setting of quantum channel discrimination. More precisely, we consider discrimination procedures that attempt to identify an unknown channel, chosen uniformly from two known alternatives, that take the following form: (i) the input to the unknown channel is prepared in a possibly entangled state with an ancillary system, (ii) the unknown channel is applied to the input system, and (iii) an LOCC measurement is performed on the output and ancillary systems, resulting in a guess for which of the two channels was given.more » The restriction of the measurement in such a procedure to be an LOCC measurement is of interest because it isolates the entanglement in the initial input-ancillary systems as a resource in the setting of channel discrimination. We prove that there exist channel discrimination problems for which restricted procedures of this sort can be at either of the two extremes: they may be optimal within the set of all discrimination procedures (and simultaneously outperform all strategies that make no use of entanglement), or they may be no better than unentangled strategies (and simultaneously suboptimal within the set of all discrimination procedures).« less

  4. CTF Preprocessor User's Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avramova, Maria; Salko, Robert K.

    2016-05-26

    This document describes how a user should go about using the CTF pre- processor tool to create an input deck for modeling rod-bundle geometry in CTF. The tool was designed to generate input decks in a quick and less error-prone manner for CTF. The pre-processor is a completely independent utility, written in Fortran, that takes a reduced amount of input from the user. The information that the user must supply is basic information on bundle geometry, such as rod pitch, clad thickness, and axial location of spacer grids--the pre-processor takes this basic information and determines channel placement and connection informationmore » to be written to the input deck, which is the most time-consuming and error-prone segment of creating a deck. Creation of the model is also more intuitive, as the user can specify assembly and water-tube placement using visual maps instead of having to place them by determining channel/channel and rod/channel connections. As an example of the benefit of the pre-processor, a quarter-core model that contains 500,000 scalar-mesh cells was read into CTF from an input deck containing 200,000 lines of data. This 200,000 line input deck was produced automatically from a set of pre-processor decks that contained only 300 lines of data.« less

  5. Relationships among low-frequency local field potentials, spiking activity, and three-dimensional reach and grasp kinematics in primary motor and ventral premotor cortices

    PubMed Central

    Vargas-Irwin, Carlos E.; Truccolo, Wilson; Donoghue, John P.

    2011-01-01

    A prominent feature of motor cortex field potentials during movement is a distinctive low-frequency local field potential (lf-LFP) (<4 Hz), referred to as the movement event-related potential (mEP). The lf-LFP appears to be a global signal related to regional synaptic input, but its relationship to nearby output signaled by single unit spiking activity (SUA) or to movement remains to be established. Previous studies comparing information in primary motor cortex (MI) lf-LFPs and SUA in the context of planar reaching tasks concluded that lf-LFPs have more information than spikes about movement. However, the relative performance of these signals was based on a small number of simultaneously recorded channels and units, or for data averaged across sessions, which could miss information of larger-scale spiking populations. Here, we simultaneously recorded LFPs and SUA from two 96-microelectrode arrays implanted in two major motor cortical areas, MI and ventral premotor (PMv), while monkeys freely reached for and grasped objects swinging in front of them. We compared arm end point and grip aperture kinematics′ decoding accuracy for lf-LFP and SUA ensembles. The results show that lf-LFPs provide enough information to reconstruct kinematics in both areas with little difference in decoding performance between MI and PMv. Individual lf-LFP channels often provided more accurate decoding of single kinematic variables than any one single unit. However, the decoding performance of the best single unit among the large population usually exceeded that of the best single lf-LFP channel. Furthermore, ensembles of SUA outperformed the pool of lf-LFP channels, in disagreement with the previously reported superiority of lf-LFP decoding. Decoding results suggest that information in lf-LFPs recorded from intracortical arrays may allow the reconstruction of reach and grasp for real-time neuroprosthetic applications, thus potentially supplementing the ability to decode these same features from spiking populations. PMID:21273313

  6. The fate of large sediment inputs in rivers: Implications for watershed and waterway management

    Treesearch

    Thomas E. Lisle

    2000-01-01

    Valued resources in and along stream channels are commonly many river miles downstream of large sediment inputs such as landslides. Evaluating and predicting the arrival, severity, and duration of sediment impacts thus requires an understanding of how river channels digest elevated sediment loads.

  7. Pinched-flow hydrodynamic stretching of single-cells.

    PubMed

    Dudani, Jaideep S; Gossett, Daniel R; Tse, Henry T K; Di Carlo, Dino

    2013-09-21

    Reorganization of cytoskeletal networks, condensation and decondensation of chromatin, and other whole cell structural changes often accompany changes in cell state and can reflect underlying disease processes. As such, the observable mechanical properties, or mechanophenotype, which is closely linked to intracellular architecture, can be a useful label-free biomarker of disease. In order to make use of this biomarker, a tool to measure cell mechanical properties should accurately characterize clinical specimens that consist of heterogeneous cell populations or contain small diseased subpopulations. Because of the heterogeneity and potential for rare populations in clinical samples, single-cell, high-throughput assays are ideally suited. Hydrodynamic stretching has recently emerged as a powerful method for carrying out mechanical phenotyping. Importantly, this method operates independently of molecular probes, reducing cost and sample preparation time, and yields information-rich signatures of cell populations through significant image analysis automation, promoting more widespread adoption. In this work, we present an alternative mode of hydrodynamic stretching where inertially-focused cells are squeezed in flow by perpendicular high-speed pinch flows that are extracted from the single inputted cell suspension. The pinched-flow stretching method reveals expected differences in cell deformability in two model systems. Furthermore, hydraulic circuit design is used to tune stretching forces and carry out multiple stretching modes (pinched-flow and extensional) in the same microfluidic channel with a single fluid input. The ability to create a self-sheathing flow from a single input solution should have general utility for other cytometry systems and the pinched-flow design enables an order of magnitude higher throughput (65,000 cells s(-1)) compared to our previously reported deformability cytometry method, which will be especially useful for identification of rare cell populations in clinical body fluids in the future.

  8. On base station cooperation using statistical CSI in jointly correlated MIMO downlink channels

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Jiang, Bin; Jin, Shi; Gao, Xiqi; Wong, Kai-Kit

    2012-12-01

    This article studies the transmission of a single cell-edge user's signal using statistical channel state information at cooperative base stations (BSs) with a general jointly correlated multiple-input multiple-output (MIMO) channel model. We first present an optimal scheme to maximize the ergodic sum capacity with per-BS power constraints, revealing that the transmitted signals of all BSs are mutually independent and the optimum transmit directions for each BS align with the eigenvectors of the BS's own transmit correlation matrix of the channel. Then, we employ matrix permanents to derive a closed-form tight upper bound for the ergodic sum capacity. Based on these results, we develop a low-complexity power allocation solution using convex optimization techniques and a simple iterative water-filling algorithm (IWFA) for power allocation. Finally, we derive a necessary and sufficient condition for which a beamforming approach achieves capacity for all BSs. Simulation results demonstrate that the upper bound of ergodic sum capacity is tight and the proposed cooperative transmission scheme increases the downlink system sum capacity considerably.

  9. SPECIAL ISSUE DEVOTED TO THE 25th ANNIVERSARY OF THE A.M. PROKHOROV GENERAL PHYSICS INSTITUTE: High-speed ablation of ultradeep channels by a phase-conjugate dynamically controlled passively Q-switched Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Basiev, T. T.; Garnov, S. V.; Klimentov, S. M.; Pivovarov, P. A.; Gavrilov, A. V.; Smetanin, S. N.; Solokhin, S. A.; Fedin, A. V.

    2007-10-01

    Parameters of high-speed ablation of ultradeep channels by controlled pulse trains from a single-mode phase-conjugate dynamic cavity Nd:YAG laser emitting 20-200-ns, 70-250-mJ pulses at a pulse repetition rate in a train of 40-250 kHz are studied. The optimal parameters of ablation are found, for which a long-lived region of a hot rarefied gas was maintained in the ultradeep channel, which suppressed the shielding action of the surface plasma. The control of the lasing process during ablation optimises not only the heating and plasma formation, but also the removal of the processed material in the pause between laser pulses. Adaptive regulation of lasing parameters during ablation made it possible to obtain ultradeep channels of length 8-27 mm and diameters 80-300 μm of the input and output holes in metals (aluminium, steel and Inconel 718 nickel superalloy) and ultrahard ceramics (Al2O3, AlN, SiC).

  10. Eight-Channel Continuous Timer

    NASA Technical Reports Server (NTRS)

    Cole, Steven

    2004-01-01

    A custom laboratory electronic timer circuit measures the durations of successive cycles of nominally highly stable input clock signals in as many as eight channels, for the purpose of statistically quantifying the small instabilities of these signals. The measurement data generated by this timer are sent to a personal computer running software that integrates the measurements to form a phase residual for each channel and uses the phase residuals to compute Allan variances for each channel. (The Allan variance is a standard statistical measure of instability of a clock signal.) Like other laboratory clock-cycle-measuring circuits, this timer utilizes an externally generated reference clock signal having a known frequency (100 MHz) much higher than the frequencies of the input clock signals (between 100 and 120 Hz). It counts the number of reference-clock cycles that occur between successive rising edges of each input clock signal of interest, thereby affording a measurement of the input clock-signal period to within the duration (10 ns) of one reference clock cycle. Unlike typical prior laboratory clock-cycle-measuring circuits, this timer does not skip some cycles of the input clock signals. The non-cycle-skipping feature is an important advantage because in applications that involve integration of measurements over long times for characterizing nominally highly stable clock signals, skipping cycles can degrade accuracy. The timer includes a field-programmable gate array that functions as a 20-bit counter running at the reference clock rate of 100 MHz. The timer also includes eight 20-bit latching circuits - one for each channel - at the output terminals of the counter. Each transition of an input signal from low to high causes the corresponding latching circuit to latch the count at that instant. Each such transition also sets a status flip-flop circuit to indicate the presence of the latched count. A microcontroller reads the values of all eight status flipflops and then reads the latched count for each channel for which the flip-flop indicates the presence of a count. Reading the count for each channel automatically causes the flipflop of that channel to be reset. The microcontroller places the counts in time order, identifies the channel number for each count, and transmits these data to the personal computer.

  11. Proton transfer in the K-channel analog of B-type Cytochrome c oxidase from Thermus thermophilus.

    PubMed

    Woelke, Anna Lena; Wagner, Anke; Galstyan, Gegham; Meyer, Tim; Knapp, Ernst-Walter

    2014-11-04

    A key enzyme in aerobic metabolism is cytochrome c oxidase (CcO), which catalyzes the reduction of molecular oxygen to water in the mitochondrial and bacterial membranes. Substrate electrons and protons are taken up from different sides of the membrane and protons are pumped across the membrane, thereby generating an electrochemical gradient. The well-studied A-type CcO uses two different entry channels for protons: the D-channel for all pumped and two consumed protons, and the K-channel for the other two consumed protons. In contrast, the B-type CcO uses only a single proton input channel for all consumed and pumped protons. It has the same location as the A-type K-channel (and thus is named the K-channel analog) without sharing any significant sequence homology. In this study, we performed molecular-dynamics simulations and electrostatic calculations to characterize the K-channel analog in terms of its energetic requirements and functionalities. The function of Glu-15B as a proton sink at the channel entrance is demonstrated by its rotational movement out of the channel when it is deprotonated and by its high pKA value when it points inside the channel. Tyr-244 in the middle of the channel is identified as the valve that ensures unidirectional proton transfer, as it moves inside the hydrogen-bond gap of the K-channel analog only while being deprotonated. The electrostatic energy landscape was calculated for all proton-transfer steps in the K-channel analog, which functions via proton-hole transfer. Overall, the K-channel analog has a very stable geometry without large energy barriers.

  12. Proton Transfer in the K-Channel Analog of B-Type Cytochrome c Oxidase from Thermus thermophilus

    PubMed Central

    Woelke, Anna Lena; Wagner, Anke; Galstyan, Gegham; Meyer, Tim; Knapp, Ernst-Walter

    2014-01-01

    A key enzyme in aerobic metabolism is cytochrome c oxidase (CcO), which catalyzes the reduction of molecular oxygen to water in the mitochondrial and bacterial membranes. Substrate electrons and protons are taken up from different sides of the membrane and protons are pumped across the membrane, thereby generating an electrochemical gradient. The well-studied A-type CcO uses two different entry channels for protons: the D-channel for all pumped and two consumed protons, and the K-channel for the other two consumed protons. In contrast, the B-type CcO uses only a single proton input channel for all consumed and pumped protons. It has the same location as the A-type K-channel (and thus is named the K-channel analog) without sharing any significant sequence homology. In this study, we performed molecular-dynamics simulations and electrostatic calculations to characterize the K-channel analog in terms of its energetic requirements and functionalities. The function of Glu-15B as a proton sink at the channel entrance is demonstrated by its rotational movement out of the channel when it is deprotonated and by its high pKA value when it points inside the channel. Tyr-244 in the middle of the channel is identified as the valve that ensures unidirectional proton transfer, as it moves inside the hydrogen-bond gap of the K-channel analog only while being deprotonated. The electrostatic energy landscape was calculated for all proton-transfer steps in the K-channel analog, which functions via proton-hole transfer. Overall, the K-channel analog has a very stable geometry without large energy barriers. PMID:25418102

  13. ELECTRONIC SYSTEM

    DOEpatents

    Robison, G.H. et al.

    1960-11-15

    An electronic system is described for indicating the occurrence of a plurality of electrically detectable events within predetermined time intervals. It is comprised of separate input means electrically associated with the events under observation: an electronic channel associated with each input means including control means and indicating means; timing means associated with each of the input means and the control means and adapted to derive a signal from the input means and apply it after a predetermined time to the control means to effect deactivation of each of the channels; and means for resetting the system to its initial condition after observation of each group of events.

  14. Ultrahigh capacity 2 × 2 MIMO RoF system at 60  GHz employing single-sideband single-carrier modulation.

    PubMed

    Lin, Chun-Ting; Ho, Chun-Hung; Huang, Hou-Tzu; Cheng, Yu-Hsuan

    2014-03-15

    This article proposes and experimentally demonstrates a radio-over-fiber system employing single-sideband single-carrier (SSB-SC) modulation at 60 GHz. SSB-SC modulation has a lower peak-to-average-power ratio than orthogonal frequency division multiplex (OFDM) modulation; therefore, the SSB-SC signals provide superior nonlinear tolerance, compared to OFDM signals. Moreover, multiple-input multiple-output (MIMO) technology was used extensively to enhance spectral efficiency. A least-mean-square-based equalizer was implemented, including MIMO channel estimation, frequency response equalization, and I/Q imbalance compensation to recover the MIMO signals. Thus, using 2×2 MIMO technology and 64-QAM SSB-SC signals, we achieved the highest data rate of 84 Gbps with 12  bit/s/Hz spectral efficiency using the 7-GHz license-free band at 60 GHz.

  15. PULSE HEIGHT ANALYZER

    DOEpatents

    Johnstone, C.W.

    1958-01-21

    An anticoincidence device is described for a pair of adjacent channels of a multi-channel pulse height analyzer for preventing the lower channel from generating a count pulse in response to an input pulse when the input pulse has sufficient magnitude to reach the upper level channel. The anticoincidence circuit comprises a window amplifier, upper and lower level discriminators, and a biased-off amplifier. The output of the window amplifier is coupled to the inputs of the discriminators, the output of the upper level discriminator is connected to the resistance end of a series R-C network, the output of the lower level discriminator is coupled to the capacitance end of the R-C network, and the grid of the biased-off amplifier is coupled to the junction of the R-C network. In operation each discriminator produces a negative pulse output when the input pulse traverses its voltage setting. As a result of the connections to the R-C network, a trigger pulse will be sent to the biased-off amplifier when the incoming pulse level is sufficient to trigger only the lower level discriminator.

  16. Investigation of Multi-Input Multi-Output Robust Control Methods to Handle Parametric Uncertainties in Autopilot Design.

    PubMed

    Kasnakoğlu, Coşku

    2016-01-01

    Some level of uncertainty is unavoidable in acquiring the mass, geometry parameters and stability derivatives of an aerial vehicle. In certain instances tiny perturbations of these could potentially cause considerable variations in flight characteristics. This research considers the impact of varying these parameters altogether. This is a generalization of examining the effects of particular parameters on selected modes present in existing literature. Conventional autopilot designs commonly assume that each flight channel is independent and develop single-input single-output (SISO) controllers for every one, that are utilized in parallel for actual flight. It is demonstrated that an attitude controller built like this can function flawlessly on separate nominal cases, but can become unstable with a perturbation no more than 2%. Two robust multi-input multi-output (MIMO) design strategies, specifically loop-shaping and μ-synthesis are outlined as potential substitutes and are observed to handle large parametric changes of 30% while preserving decent performance. Duplicating the loop-shaping procedure for the outer loop, a complete flight control system is formed. It is confirmed through software-in-the-loop (SIL) verifications utilizing blade element theory (BET) that the autopilot is capable of navigation and landing exposed to high parametric variations and powerful winds.

  17. Investigation of Multi-Input Multi-Output Robust Control Methods to Handle Parametric Uncertainties in Autopilot Design

    PubMed Central

    Kasnakoğlu, Coşku

    2016-01-01

    Some level of uncertainty is unavoidable in acquiring the mass, geometry parameters and stability derivatives of an aerial vehicle. In certain instances tiny perturbations of these could potentially cause considerable variations in flight characteristics. This research considers the impact of varying these parameters altogether. This is a generalization of examining the effects of particular parameters on selected modes present in existing literature. Conventional autopilot designs commonly assume that each flight channel is independent and develop single-input single-output (SISO) controllers for every one, that are utilized in parallel for actual flight. It is demonstrated that an attitude controller built like this can function flawlessly on separate nominal cases, but can become unstable with a perturbation no more than 2%. Two robust multi-input multi-output (MIMO) design strategies, specifically loop-shaping and μ-synthesis are outlined as potential substitutes and are observed to handle large parametric changes of 30% while preserving decent performance. Duplicating the loop-shaping procedure for the outer loop, a complete flight control system is formed. It is confirmed through software-in-the-loop (SIL) verifications utilizing blade element theory (BET) that the autopilot is capable of navigation and landing exposed to high parametric variations and powerful winds. PMID:27783706

  18. Optical spatial solitons at the interface between two dissimilar periodic media: theory and experiment.

    PubMed

    Suntsov, S; Makris, K G; Christodoulides, D N; Stegeman, G I; Morandotti, R; Volatier, M; Aimez, V; Arès, R; Yang, E H; Salamo, G

    2008-07-07

    Discrete spatial solitons traveling along the interface between two dissimilar one-dimensional arrays of waveguides were observed for the first time. Two interface solitons were found theoretically, each one with a peak in a different boundary channel. One evolves into a soliton from a linear mode at an array separation larger than a critical separation where-as the second soliton always exhibits a power threshold. These solitons exhibited different power thresholds which depended on the characteristics of the two lattices. For excitation of single channels near and at the boundary, the evolution behavior with propagation distance indicates that the solitons peaked near and at the interface experience an attractive potential on one side of the boundary, and a repulsive one on the opposite side. The power dependence of the solitons at variable distance from the boundary was found to be quite different on opposite sides of the interface and showed evidence for soliton switching between channels with increasing input power.

  19. On Modeling and Analysis of MIMO Wireless Mesh Networks with Triangular Overlay Topology

    DOE PAGES

    Cao, Zhanmao; Wu, Chase Q.; Zhang, Yuanping; ...

    2015-01-01

    Multiple input multiple output (MIMO) wireless mesh networks (WMNs) aim to provide the last-mile broadband wireless access to the Internet. Along with the algorithmic development for WMNs, some fundamental mathematical problems also emerge in various aspects such as routing, scheduling, and channel assignment, all of which require an effective mathematical model and rigorous analysis of network properties. In this paper, we propose to employ Cartesian product of graphs (CPG) as a multichannel modeling approach and explore a set of unique properties of triangular WMNs. In each layer of CPG with a single channel, we design a node coordinate scheme thatmore » retains the symmetric property of triangular meshes and develop a function for the assignment of node identity numbers based on their coordinates. We also derive a necessary-sufficient condition for interference-free links and combinatorial formulas to determine the number of the shortest paths for channel realization in triangular WMNs.« less

  20. Effectiveness of a multi-channel volumetric air receiver for a solar power tower

    NASA Astrophysics Data System (ADS)

    Jung, Eui Guk; Boo, Joon Hong; Kang, Yong Heak; Kim, Nak Hoon

    2013-08-01

    In this study, the heat transfer performance of a multi-channel volumetric air receiver for a solar power tower was numerically analyzed. The governing equations, including the solar radiation heat flux, conduction, convection and radiation heat transfer for a single channel, were solved on the basis of valid related references and a methodology that can predict the temperature distribution of the receiver wall and the heat transfer fluid for specific dimensions and input conditions. Furthermore, a mathematical model of the effectiveness of the receiver was derived from an analysis of the temperature profiles of the wall and the heat transfer fluid. The receiver effectiveness as an appropriate criterion to assess economic feasibility regarding geometric size was investigated, as it would be applied to the design process of the receiver. The main parameters for the thermal performance simulations described in this paper are the air mass flow rate, receiver length and the influence of these parameters on the heat transfer performance from the viewpoint of receiver efficiency and effectiveness.

  1. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, S.; Labanca, I.; Rech, I.

    2014-10-15

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments.more » However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.« less

  2. TOFPET 2: A high-performance circuit for PET time-of-flight

    NASA Astrophysics Data System (ADS)

    Di Francesco, Agostino; Bugalho, Ricardo; Oliveira, Luis; Rivetti, Angelo; Rolo, Manuel; Silva, Jose C.; Varela, Joao

    2016-07-01

    We present a readout and digitization ASIC featuring low-noise and low-power for time-of flight (TOF) applications using SiPMs. The circuit is designed in standard CMOS 110 nm technology, has 64 independent channels and is optimized for time-of-flight measurement in Positron Emission Tomography (TOF-PET). The input amplifier is a low impedance current conveyor based on a regulated common-gate topology. Each channel has quad-buffered analogue interpolation TDCs (time binning 20 ps) and charge integration ADCs with linear response at full scale (1500 pC). The signal amplitude can also be derived from the measurement of time-over-threshold (ToT). Simulation results show that for a single photo-electron signal with charge 200 (550) fC generated by a SiPM with (320 pF) capacitance the circuit has 24 (30) dB SNR, 75 (39) ps r.m.s. resolution, and 4 (8) mW power consumption. The event rate is 600 kHz per channel, with up to 2 MHz dark counts rejection.

  3. Computer modeling of multiple-channel input signals and intermodulation losses caused by nonlinear traveling wave tube amplifiers

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.

    1982-01-01

    The multiple channel input signal to a soft limiter amplifier as a traveling wave tube is represented as a finite, linear sum of Gaussian functions in the frequency domain. Linear regression is used to fit the channel shapes to a least squares residual error. Distortions in output signal, namely intermodulation products, are produced by the nonlinear gain characteristic of the amplifier and constitute the principal noise analyzed in this study. The signal to noise ratios are calculated for various input powers from saturation to 10 dB below saturation for two specific distributions of channels. A criterion for the truncation of the series expansion of the nonlinear transfer characteristic is given. It is found that he signal to noise ratios are very sensitive to the coefficients used in this expansion. Improper or incorrect truncation of the series leads to ambiguous results in the signal to noise ratios.

  4. Capacity of the Generalized Pulse-Position Modulation Channel

    NASA Technical Reports Server (NTRS)

    Hamkins, J.; Klimesh, M.; McElience, R.; Moision, B.

    2005-01-01

    We show the capacity of a generalized pulse-position modulation (PPM) channel, where the input vectors may be any set that allows a transitive group of coordinate permutations, is achieved by a uniform input distribution. We derive a simple expression in terms of the Kullback Leibler distance for the binary case, and the asymptote in the PPM order. We prove a sub-additivity result for the PPM channel and use it to show PPM capacity is monotonic in the order.

  5. Electronic system

    DOEpatents

    Robison, G H; Dickson, J F

    1960-11-15

    An electronic system is designed for indicating the occurrence of a plurality of electrically detectable events within predetermined time intervals. The system comprises separate input means electrically associated with the events under observation an electronic channel associated with each input means, including control means and indicating means; timing means adapted to apply a signal from the input means after a predetermined time to the control means to deactivate each of the channels; and means for resetting the system to its initial condition after the observation of each group of events. (D.L.C.)

  6. Instrument development and field application of the in situ pH Calibrator at the Ocean Observatory

    NASA Astrophysics Data System (ADS)

    Tan, C.; Ding, K.; Seyfried, W. E.

    2012-12-01

    A novel, self-calibrating instrument for in-situ measurement of pH in deep sea environments up to 4000 m has recently been developed. The device utilizes a compact fluid delivery system to perform measurement and two-point calibration of the solid state pH sensor array (Ir|IrOx| Ag|AgCl), which is sealed in a flow cell to enhance response time. The fluid delivery system is composed of a metering pump and valves, which periodically deliver seawater samples into the flow cell to perform measurements. Similarly, pH buffer solutions can be delivered into the flow cell to calibrate the electrodes under operational conditions. Sensor signals are acquired and processed by a high resolution (0.25 mV) datalogger circuit with a size of 114 mm×31 mm×25 mm. Eight input channels are available: two high impedance sensor input channels, two low impedance sensor input channel, two thermocouple input channels and two thermistor input channels. These eight channels provide adequate measurement flexibility to enhance applications in deep sea environments. The two high impedance channels of the datalogger are especially designed with the input impedance of 1016 Ω for YSZ (yittria-stabilized zirconia) ceramic electrodes characterized by the extremely low input bias current and high resistance. Field tests have been performed in 2008 by ROV at the depth up to 3200 m. Using the continuous power supply and TCP/IP network capability of the Monterey Accelerated Research System (MARS) ocean observatory, the so-called "pH Calibrator" has the capability of long term operation up to six months. In the observatory mode, the electronics are configured with DC-DC power converter modules and Ethernet to serial module to gain access to the science port of seafloor junction box. The pH Calibrator will be deployed at the ocean observatory in October and the in situ data will be on line on the internet. The pH Calibrator presents real time pH data at high pressures and variable temperatures, while the in situ calibration capability enhances the accuracy of electrochemical measurements of seawater pH, fulfilling the need for long term objectives for marine studies.

  7. A Novel Feature Optimization for Wearable Human-Computer Interfaces Using Surface Electromyography Sensors

    PubMed Central

    Zhang, Xiong; Zhao, Yacong; Zhang, Yu; Zhong, Xuefei; Fan, Zhaowen

    2018-01-01

    The novel human-computer interface (HCI) using bioelectrical signals as input is a valuable tool to improve the lives of people with disabilities. In this paper, surface electromyography (sEMG) signals induced by four classes of wrist movements were acquired from four sites on the lower arm with our designed system. Forty-two features were extracted from the time, frequency and time-frequency domains. Optimal channels were determined from single-channel classification performance rank. The optimal-feature selection was according to a modified entropy criteria (EC) and Fisher discrimination (FD) criteria. The feature selection results were evaluated by four different classifiers, and compared with other conventional feature subsets. In online tests, the wearable system acquired real-time sEMG signals. The selected features and trained classifier model were used to control a telecar through four different paradigms in a designed environment with simple obstacles. Performance was evaluated based on travel time (TT) and recognition rate (RR). The results of hardware evaluation verified the feasibility of our acquisition systems, and ensured signal quality. Single-channel analysis results indicated that the channel located on the extensor carpi ulnaris (ECU) performed best with mean classification accuracy of 97.45% for all movement’s pairs. Channels placed on ECU and the extensor carpi radialis (ECR) were selected according to the accuracy rank. Experimental results showed that the proposed FD method was better than other feature selection methods and single-type features. The combination of FD and random forest (RF) performed best in offline analysis, with 96.77% multi-class RR. Online results illustrated that the state-machine paradigm with a 125 ms window had the highest maneuverability and was closest to real-life control. Subjects could accomplish online sessions by three sEMG-based paradigms, with average times of 46.02, 49.06 and 48.08 s, respectively. These experiments validate the feasibility of proposed real-time wearable HCI system and algorithms, providing a potential assistive device interface for persons with disabilities. PMID:29543737

  8. 8-Channel acquisition system for Time-Correlated Single-Photon Counting.

    PubMed

    Antonioli, S; Miari, L; Cuccato, A; Crotti, M; Rech, I; Ghioni, M

    2013-06-01

    Nowadays, an increasing number of applications require high-performance analytical instruments capable to detect the temporal trend of weak and fast light signals with picosecond time resolution. The Time-Correlated Single-Photon Counting (TCSPC) technique is currently one of the preferable solutions when such critical optical signals have to be analyzed and it is fully exploited in biomedical and chemical research fields, as well as in security and space applications. Recent progress in the field of single-photon detector arrays is pushing research towards the development of high performance multichannel TCSPC systems, opening the way to modern time-resolved multi-dimensional optical analysis. In this paper we describe a new 8-channel high-performance TCSPC acquisition system, designed to be compact and versatile, to be used in modern TCSPC measurement setups. We designed a novel integrated circuit including a multichannel Time-to-Amplitude Converter with variable full-scale range, a D∕A converter, and a parallel adder stage. The latter is used to adapt each converter output to the input dynamic range of a commercial 8-channel Analog-to-Digital Converter, while the integrated DAC implements the dithering technique with as small as possible area occupation. The use of this monolithic circuit made the design of a scalable system of very small dimensions (95 × 40 mm) and low power consumption (6 W) possible. Data acquired from the TCSPC measurement are digitally processed and stored inside an FPGA (Field-Programmable Gate Array), while a USB transceiver allows real-time transmission of up to eight TCSPC histograms to a remote PC. Eventually, the experimental results demonstrate that the acquisition system performs TCSPC measurements with high conversion rate (up to 5 MHz/channel), extremely low differential nonlinearity (<0.04 peak-to-peak of the time bin width), high time resolution (down to 20 ps Full-Width Half-Maximum), and very low crosstalk between channels.

  9. Identifying the Minimum Model Features to Replicate Historic Morphodynamics of a Juvenile Delta

    NASA Astrophysics Data System (ADS)

    Czapiga, M. J.; Parker, G.

    2017-12-01

    We introduce a quasi-2D morphodynamic delta model that improves on past models that require many simplifying assumptions, e.g. a single channel representative of a channel network, fixed channel width, and spatially uniform deposition. Our model is useful for studying long-term progradation rates of any generic micro-tidal delta system with specification of: characteristic grain size, input water and sediment discharges and basin morphology. In particular, we relax the assumption of a single, implicit channel sweeping across the delta topset in favor of an implicit channel network. This network, coupled with recent research on channel-forming Shields number, quantitative assessments of the lateral depositional length of sand (corresponding loosely to levees) and length between bifurcations create a spatial web of deposition within the receiving basin. The depositional web includes spatial boundaries for areas infilling with sands carried as bed material load, as well as those filling via passive deposition of washload mud. Our main goal is to identify the minimum features necessary to accurately model the morphodynamics of channel number, width, depth, and overall delta progradation rate in a juvenile delta. We use the Wax Lake Delta in Louisiana as a test site due to its rapid growth in the last 40 years. Field data including topset/island bathymetry, channel bathymetry, topset/island width, channel width, number of channels, and radial topset length are compiled from US Army Corps of Engineers data for 1989, 1998, and 2006. Additional data is extracted from a DEM from 2015. These data are used as benchmarks for the hindcast model runs. The morphology of Wax Lake Delta is also strongly affected by a pre-delta substrate that acts as a lower "bedrock" boundary. Therefore, we also include closures for a bedrock-alluvial transition and an excess shear rate-law incision model to estimate bedrock incision. The model's framework is generic, but inclusion of individual sub-models, such as those mentioned above, allow us to answer basic research questions without the parameterization necessary in higher resolution models. Thus, this type of model offers an alternative to higher-resolution models.

  10. Active integration of glutamatergic input to the inferior olive generates bidirectional postsynaptic potentials

    PubMed Central

    Garden, Derek L. F.; Rinaldi, Arianna

    2016-01-01

    Key points We establish experimental preparations for optogenetic investigation of glutamatergic input to the inferior olive.Neurones in the principal olivary nucleus receive monosynaptic extra‐somatic glutamatergic input from the neocortex.Glutamatergic inputs to neurones in the inferior olive generate bidirectional postsynaptic potentials (PSPs), with a fast excitatory component followed by a slower inhibitory component.Small conductance calcium‐activated potassium (SK) channels are required for the slow inhibitory component of glutamatergic PSPs and oppose temporal summation of inputs at intervals ≤ 20 ms.Active integration of synaptic input within the inferior olive may play a central role in control of olivo‐cerebellar climbing fibre signals. Abstract The inferior olive plays a critical role in motor coordination and learning by integrating diverse afferent signals to generate climbing fibre inputs to the cerebellar cortex. While it is well established that climbing fibre signals are important for motor coordination, the mechanisms by which neurones in the inferior olive integrate synaptic inputs and the roles of particular ion channels are unclear. Here, we test the hypothesis that neurones in the inferior olive actively integrate glutamatergic synaptic inputs. We demonstrate that optogenetically activated long‐range synaptic inputs to the inferior olive, including projections from the motor cortex, generate rapid excitatory potentials followed by slower inhibitory potentials. Synaptic projections from the motor cortex preferentially target the principal olivary nucleus. We show that inhibitory and excitatory components of the bidirectional synaptic potentials are dependent upon AMPA (GluA) receptors, are GABAA independent, and originate from the same presynaptic axons. Consistent with models that predict active integration of synaptic inputs by inferior olive neurones, we find that the inhibitory component is reduced by blocking large conductance calcium‐activated potassium channels with iberiotoxin, and is abolished by blocking small conductance calcium‐activated potassium channels with apamin. Summation of excitatory components of synaptic responses to inputs at intervals ≤ 20 ms is increased by apamin, suggesting a role for the inhibitory component of glutamatergic responses in temporal integration. Our results indicate that neurones in the inferior olive implement novel rules for synaptic integration and suggest new principles for the contribution of inferior olive neurones to coordinated motor behaviours. PMID:27767209

  11. Control channels in the brain and their influence on brain executive functions

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Choa, Fow-Sen; Hong, Elliot; Wang, Zhiguang; Islam, Mohammad

    2014-05-01

    In a computer network there are distinct data channels and control channels where massive amount of visual information are transported through data channels but the information streams are routed and controlled by intelligent algorithm through "control channels". Recent studies on cognition and consciousness have shown that the brain control channels are closely related to the brainwave beta (14-40 Hz) and alpha (7-13 Hz) oscillations. The high-beta wave is used by brain to synchronize local neural activities and the alpha oscillation is for desynchronization. When two sensory inputs are simultaneously presented to a person, the high-beta is used to select one of the inputs and the alpha is used to deselect the other so that only one input will get the attention. In this work we demonstrated that we can scan a person's brain using binaural beats technique and identify the individual's preferred control channels. The identified control channels can then be used to influence the subject's brain executive functions. In the experiment, an EEG measurement system was used to record and identify a subject's control channels. After these channels were identified, the subject was asked to do Stroop tests. Binaural beats was again used to produce these control-channel frequencies on the subject's brain when we recorded the completion time of each test. We found that the high-beta signal indeed speeded up the subject's executive function performance and reduced the time to complete incongruent tests, while the alpha signal didn't seem to be able to slow down the executive function performance.

  12. New Technique for Retrieving Liquid Water Path over Land using Satellite Microwave Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deeter, M.N.; Vivekanandan, J.

    2005-03-18

    We present a new methodology for retrieving liquid water path over land using satellite microwave observations. As input, the technique exploits the Advanced Microwave Scanning Radiometer for earth observing plan (EOS) (AMSR-E) polarization-difference signals at 37 and 89 GHz. Regression analysis performed on model simulations indicates that over variable atmospheric and surface conditions the polarization-difference signals can be simply parameterized in terms of the surface emissivity polarization difference ({Delta}{var_epsilon}), surface temperature, liquid water path (LWP), and precipitable water vapor (PWV). The resulting polarization-difference parameterization (PDP) enables fast and direct (noniterative) retrievals of LWP with minimal requirements for ancillary data. Single-more » and dual-channel retrieval methods are described and demonstrated. Data gridding is used to reduce the effects of instrumental noise. The methodology is demonstrated using AMSR-E observations over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site during a six day period in November and December, 2003. Single- and dual-channel retrieval results mostly agree with ground-based microwave retrievals of LWP to within approximately 0.04 mm.« less

  13. Planar waveguide microlenses for nonblocking photonic switches and optical interconnects

    NASA Astrophysics Data System (ADS)

    Glebov, Alexei L.; Huang, Lidu; Lee, Michael; Aoki, Shigenori; Yokouchi, Kishio

    2004-09-01

    Different types of planar waveguide microlenses are fabricated with PLC technologies from a variety of optical materials such as silica, photo-definable epoxy resins, and a number of other optical polymers. Hybrid microlenses are also fabricated in which the base of the lens, with a double concave gap, is formed from silica and the gap is filled with an optical polymer. The optimized lens structures provide the maximum coupling efficiencies between the input and output channels at distances up to 100 mm with a minimum channel pitch of 0.5-0.7 mm. Experimental and theoretical studies provide results on collimation and focusing properties of single and double microlenses made of silica, polymer, and silica/polymer. The evaluation of the temperature and wavelength effects on the collimation characteristics of the lenses demonstrate that the single lenses are more stable and, thus, more suitable for operations under varying conditions. Examples of the planar waveguide microlens applications are presented. In one application the microlens arrays are integrated in fast electrooptic photonic switching modules. In the other application the microlenses are embedded in the backplanes with nonblocking optical interconnects.

  14. Multi-diversity combining and selection for relay-assisted mixed RF/FSO system

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wang, Weidong

    2017-12-01

    We propose and analyze multi-diversity combining and selection to enhance the performance of relay-assisted mixed radio frequency/free-space optics (RF/FSO) system. We focus on a practical scenario for cellular network where a single-antenna source is communicating to a multi-apertures destination through a relay equipped with multiple receive antennas and multiple transmit apertures. The RF single input multiple output (SIMO) links employ either maximal-ratio combining (MRC) or receive antenna selection (RAS), and the FSO multiple input multiple output (MIMO) links adopt either repetition coding (RC) or transmit laser selection (TLS). The performance is evaluated via an outage probability analysis over Rayleigh fading RF links and Gamma-Gamma atmospheric turbulence FSO links with pointing errors where channel state information (CSI) assisted amplify-and-forward (AF) scheme is considered. Asymptotic closed-form expressions at high signal-to-noise ratio (SNR) are also derived. Coding gain and diversity order for different combining and selection schemes are further discussed. Numerical results are provided to verify and illustrate the analytical results.

  15. Nutrient delivery to Lake Winnipeg from the Red-Assiniboine River Basin – A binational application of the SPARROW model

    USGS Publications Warehouse

    Benoy, Glenn A.; Jenkinson, R. Wayne; Robertson, Dale M.; Saad, David A.

    2016-01-01

    Excessive phosphorus (TP) and nitrogen (TN) inputs from the Red–Assiniboine River Basin (RARB) have been linked to eutrophication of Lake Winnipeg; therefore, it is important for the management of water resources to understand where and from what sources these nutrients originate. The RARB straddles the Canada–United States border and includes portions of two provinces and three states. This study represents the first binationally focused application of SPAtially Referenced Regressions on Watershed attributes (SPARROW) models to estimate loads and sources of TP and TN by jurisdiction and basin at multiple spatial scales. Major hurdles overcome to develop these models included: (1) harmonization of geospatial data sets, particularly construction of a contiguous stream network; and (2) use of novel calibration steps to accommodate limitations in spatial variability across the model extent and in the number of calibration sites. Using nutrient inputs for a 2002 base year, a RARB TP SPARROW model was calibrated that included inputs from agriculture, forests and wetlands, wastewater treatment plants (WWTPs) and stream channels, and a TN model was calibrated that included inputs from agriculture, WWTPs and atmospheric deposition. At the RARB outlet, downstream from Winnipeg, Manitoba, the majority of the delivered TP and TN came from the Red River Basin (90%), followed by the Upper Assiniboine River and Souris River basins. Agriculture was the single most important TP and TN source for each major basin, province and state. In general, stream channels (historically deposited nutrients and from bank erosion) were the second most important source of TP. Performance metrics for the RARB SPARROW model are similarly robust compared to other, larger US SPARROW models making it a potentially useful tool to address questions of where nutrients originate and their relative contributions to loads delivered to Lake Winnipeg.

  16. Optically-synchronized encoder and multiplexer scheme for interleaved photonics analog-to-digital conversion

    NASA Astrophysics Data System (ADS)

    Villa, Carlos; Kumavor, Patrick; Donkor, Eric

    2008-04-01

    Photonics Analog-to-Digital Converters (ADCs) utilize a train of optical pulses to sample an electrical input waveform applied to an electrooptic modulator or a reverse biased photodiode. In the former, the resulting train of amplitude-modulated optical pulses is detected (converter to electrical) and quantized using a conversional electronics ADC- as at present there are no practical, cost-effective optical quantizers available with performance that rival electronic quantizers. In the latter, the electrical samples are directly quantized by the electronics ADC. In both cases however, the sampling rate is limited by the speed with which the electronics ADC can quantize the electrical samples. One way to increase the sampling rate by a factor N is by using the time-interleaved technique which consists of a parallel array of N electrical ADC converters, which have the same sampling rate but different sampling phase. Each operating at a quantization rate of fs/N where fs is the aggregated sampling rate. In a system with no real-time operation, the N channels digital outputs are stored in memory, and then aggregated (multiplexed) to obtain the digital representation of the analog input waveform. Alternatively, for real-time operation systems the reduction of storing time in the multiplexing process is desired to improve the time response of the ADC. The complete elimination of memories come expenses of concurrent timing and synchronization in the aggregation of the digital signal that became critical for a good digital representation of the analog signal waveform. In this paper we propose and demonstrate a novel optically synchronized encoder and multiplexer scheme for interleaved photonics ADCs that utilize the N optical signals used to sample different phases of an analog input signal to synchronize the multiplexing of the resulting N digital output channels in a single digital output port. As a proof of concept, four 320 Megasamples/sec 12-bit of resolution digital signals were multiplexed to form an aggregated 1.28 Gigasamples/sec single digital output signal.

  17. Overexpression of calcium-activated potassium channels underlies cortical dysfunction in a model of PTEN-associated autism.

    PubMed

    Garcia-Junco-Clemente, Pablo; Chow, David K; Tring, Elaine; Lazaro, Maria T; Trachtenberg, Joshua T; Golshani, Peyman

    2013-11-05

    De novo phosphatase and tensin homolog on chromosome ten (PTEN) mutations are a cause of sporadic autism. How single-copy loss of PTEN alters neural function is not understood. Here we report that Pten haploinsufficiency increases the expression of small-conductance calcium-activated potassium channels. The resultant augmentation of this conductance increases the amplitude of the afterspike hyperpolarization, causing a decrease in intrinsic excitability. In vivo, this change in intrinsic excitability reduces evoked firing rates of cortical pyramidal neurons but does not alter receptive field tuning. The decreased in vivo firing rate is not associated with deficits in the dendritic integration of synaptic input or with changes in dendritic complexity. These findings identify calcium-activated potassium channelopathy as a cause of cortical dysfunction in the PTEN model of autism and provide potential molecular therapeutic targets.

  18. Amplifiers for bioelectric events: a design with a minimal number of parts.

    PubMed

    MettingVanRijn, A C; Peper, A; Grimbergen, C A

    1994-05-01

    A design for an amplifier for bioelectric events is presented that has fewer parts than conventional designs. The design allows the construction of amplifiers of a high quality in terms of noise and common mode rejection, with reduced dimensions and with a lower power consumption. Gain, bandwidth and number of channels are easily adapted to a wide range of biomedical applications. An application example is given in the form of a multichannel EEG amplifier (gain is 20,000), in which each channel consists of three operational amplifiers (one single and one dual), six resistors and two capacitors. The equivalent input noise voltage and current are 0.15 microVrms and 1 pArms, respectively, in a bandwidth of 0.2-40 Hz, and a common mode rejection ratio of 136 dB is achieved without trimming.

  19. Tunable single-to-dual channel wavelength conversion in an ultra-wideband SC-PPLN.

    PubMed

    Ahlawat, Meenu; Bostani, Ameneh; Tehranchi, Amirhossein; Kashyap, Raman

    2013-11-18

    We experimentally demonstrate tunable dual channel broadcasting of a signal over the C-band for wavelength division multiplexed (WDM) optical networks. This is based on cascaded χ(2) nonlinear mixing processes in a specially engineered, 20-mm-long step-chirped periodically poled lithium niobate with a broad 28-nm second harmonic (SH) bandwidth in the 1.55-μm spectral range. A 10-GHz picosecond mode-locked laser was used as a signal along with a CW pump to generate two pulsed idlers, which are simultaneously tuned across the C-band by detuning of the pump wavelength within the broad SH bandwidth. Variable-input, variable-output scheme of tuned idlers is successfully achieved by tuning the signal wavelength. Pump or signal wavelength tuning of ~10 nm results in the idlers spreading across 30 nm in the C-band.

  20. Performance analysis of MISO multi-hop FSO links over log-normal channels with fog and beam divergence attenuations

    NASA Astrophysics Data System (ADS)

    Abaza, Mohamed; Mesleh, Raed; Mansour, Ali; Aggoune, el-Hadi

    2015-01-01

    The performance analysis of a multi-hop decode and forward relaying free-space optical (FSO) communication system is presented in this paper. The considered FSO system uses intensity modulation and direct detection as means of transmission and reception. Atmospheric turbulence impacts are modeled as a log-normal channel, and different weather attenuation effects and geometric losses are taken into account. It is shown that multi-hop is an efficient technique to mitigate such effects in FSO communication systems. A comparison with direct link and multiple-input single-output (MISO) systems considering correlation effects at the transmitter is provided. Results show that MISO multi-hop FSO systems are superior than their counterparts over links exhibiting high attenuation. Monte Carlo simulation results are provided to validate the bit error rate (BER) analyses and conclusions.

  1. Computational models of O-LM cells are recruited by low or high theta frequency inputs depending on h-channel distributions

    PubMed Central

    Sekulić, Vladislav; Skinner, Frances K

    2017-01-01

    Although biophysical details of inhibitory neurons are becoming known, it is challenging to map these details onto function. Oriens-lacunosum/moleculare (O-LM) cells are inhibitory cells in the hippocampus that gate information flow, firing while phase-locked to theta rhythms. We build on our existing computational model database of O-LM cells to link model with function. We place our models in high-conductance states and modulate inhibitory inputs at a wide range of frequencies. We find preferred spiking recruitment of models at high (4–9 Hz) or low (2–5 Hz) theta depending on, respectively, the presence or absence of h-channels on their dendrites. This also depends on slow delayed-rectifier potassium channels, and preferred theta ranges shift when h-channels are potentiated by cyclic AMP. Our results suggest that O-LM cells can be differentially recruited by frequency-modulated inputs depending on specific channel types and distributions. This work exposes a strategy for understanding how biophysical characteristics contribute to function. DOI: http://dx.doi.org/10.7554/eLife.22962.001 PMID:28318488

  2. The Influence of Landslides on Channel Flood Response: A Case Study from the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Bennett, G. L.; Ryan, S. E.; Sholtes, J.; Rathburn, S. L.

    2016-12-01

    Studies have identified the role of thresholds and gradients in stream power in inducing geomorphic change during floods. At much longer time scales, empirical and modeling studies suggest the role of landslides in modifying channel response to external forcing (e.g. tectonic uplift); landslide-delivered sediment may behave as a tool, enhancing channel incision, or as cover, reducing channel incision. However, the influence of landslides on channel response to an individual flood event remains to be elucidated. Here we explore the influence of landslides on channel response to a 200-yr flood in Colorado, USA. From 9 - 15th September 2013 up to 450 mm of rain fell across a 100 km-wide swath of the Colorado Front Range, triggering >1000 landslides and inducing major flooding in several catchments. The flood caused extensive channel erosion, deposition and planform change, resulting in significant damage to property and infrastructure and even loss of life. We use a combination of pre and post flood LiDAR and field mapping to quantify geomorphic change in several catchments spanning the flooded region. We make a reach-by-reach analysis of channel geomorphic change metrics (e.g. volume of erosion) in relation to landslide sediment input and total stream power as calculated from radar-based rainfall measurements. Preliminary results suggest that landslide-sediment input may complicate the predictive relationship between channel erosion and stream power. Low volumes of landslide sediment input appear to enhance channel erosion (a tools effect), whilst very large volumes appear to reduce channel erosion (a cover effect). These results have implications for predicting channel response to floods and for flood planning and mitigation.

  3. Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper.

    PubMed

    Barclay, Paul; Srinivasan, Kartik; Painter, Oskar

    2005-02-07

    A technique is demonstrated which efficiently transfers light between a tapered standard single-mode optical fiber and a high-Q, ultra-small mode volume, silicon photonic crystal resonant cavity. Cavity mode quality factors of 4.7x10(4) are measured, and a total fiber-to-cavity coupling efficiency of 44% is demonstrated. Using this efficient cavity input and output channel, the steady-state nonlinear absorption and dispersion of the photonic crystal cavity is studied. Optical bistability is observed for fiber input powers as low as 250 microW, corresponding to a dropped power of 100 microW and 3 fJ of stored cavity energy. A high-density effective free-carrier lifetime for these silicon photonic crystal resonators of ~ 0.5 ns is also estimated from power dependent loss and dispersion measurements.

  4. Modulation frequency discrimination with single and multiple channels in cochlear implant users

    PubMed Central

    Galvin, John J.; Oba, Sandy; Başkent, Deniz; Fu, Qian-Jie

    2015-01-01

    Temporal envelope cues convey important speech information for cochlear implant (CI) users. Many studies have explored CI users’ single-channel temporal envelope processing. However, in clinical CI speech processors, temporal envelope information is processed by multiple channels. Previous studies have shown that amplitude modulation frequency discrimination (AMFD) thresholds are better when temporal envelopes are delivered to multiple rather than single channels. In clinical fitting, current levels on single channels must often be reduced to accommodate multi-channel loudness summation. As such, it is unclear whether the multi-channel advantage in AMFD observed in previous studies was due to coherent envelope information distributed across the cochlea or to greater loudness associated with multi-channel stimulation. In this study, single- and multi-channel AMFD thresholds were measured in CI users. Multi-channel component electrodes were either widely or narrowly spaced to vary the degree of overlap between neural populations. The reference amplitude modulation (AM) frequency was 100 Hz, and coherent modulation was applied to all channels. In Experiment 1, single- and multi-channel AMFD thresholds were measured at similar loudness. In this case, current levels on component channels were higher for single- than for multi-channel AM stimuli, and the modulation depth was approximately 100% of the perceptual dynamic range (i.e., between threshold and maximum acceptable loudness). Results showed no significant difference in AMFD thresholds between similarly loud single- and multi-channel modulated stimuli. In Experiment 2, single- and multi-channel AMFD thresholds were compared at substantially different loudness. In this case, current levels on component channels were the same for single-and multi-channel stimuli (“summation-adjusted” current levels) and the same range of modulation (in dB) was applied to the component channels for both single- and multi-channel testing. With the summation-adjusted current levels, loudness was lower with single than with multiple channels and the AM depth resulted in substantial stimulation below single-channel audibility, thereby reducing the perceptual range of AM. Results showed that AMFD thresholds were significantly better with multiple channels than with any of the single component channels. There was no significant effect of the distribution of electrodes on multi-channel AMFD thresholds. The results suggest that increased loudness due to multi-channel summation may contribute to the multi-channel advantage in AMFD, and that that overall loudness may matter more than the distribution of envelope information in the cochlea. PMID:25746914

  5. Orientation independence of single-vacancy and single-ion permeability ratios.

    PubMed Central

    McGill, P; Schumaker, M F

    1995-01-01

    Single-vacancy models have been proposed as open channel permeation mechanisms for K+ channels. Single-ion models have been used to describe permeation through Na+ channels. This paper demonstrates that these models have a distinctive symmetry property. Their permeability ratios, measured under biionic conditions, are independent of channel orientation when the reversal potential is zero. This symmetry is a property of general m-site single-vacancy channels, m-site shaking-stack channels, as well as m-site single-ion channels. An experimental finding that the permeability ratios of a channel did not have this symmetry would provide evidence that a single-vacancy or single-ion model is an incorrect or incomplete description of permeation. Images FIGURE 1 PMID:7669913

  6. Ergodic channel capacity of spatial correlated multiple-input multiple-output free space optical links using multipulse pulse-position modulation

    NASA Astrophysics Data System (ADS)

    Wang, Huiqin; Wang, Xue; Cao, Minghua

    2017-02-01

    The spatial correlation extensively exists in the multiple-input multiple-output (MIMO) free space optical (FSO) communication systems due to the channel fading and the antenna space limitation. Wilkinson's method was utilized to investigate the impact of spatial correlation on the MIMO FSO communication system employing multipulse pulse-position modulation. Simulation results show that the existence of spatial correlation reduces the ergodic channel capacity, and the reception diversity is more competent to resist this kind of performance degradation.

  7. Neuronal networks with NMDARs and lateral inhibition implement winner-takes-all

    PubMed Central

    Shoemaker, Patrick A.

    2015-01-01

    A neural circuit that relies on the electrical properties of NMDA synaptic receptors is shown by numerical and theoretical analysis to be capable of realizing the winner-takes-all function, a powerful computational primitive that is often attributed to biological nervous systems. This biophysically-plausible model employs global lateral inhibition in a simple feedback arrangement. As its inputs increase, high-gain and then bi- or multi-stable equilibrium states may be assumed in which there is significant depolarization of a single neuron and hyperpolarization or very weak depolarization of other neurons in the network. The state of the winning neuron conveys analog information about its input. The winner-takes-all characteristic depends on the nonmonotonic current-voltage relation of NMDA receptor ion channels, as well as neural thresholding, and the gain and nature of the inhibitory feedback. Dynamical regimes vary with input strength. Fixed points may become unstable as the network enters a winner-takes-all regime, which can lead to entrained oscillations. Under some conditions, oscillatory behavior can be interpreted as winner-takes-all in nature. Stable winner-takes-all behavior is typically recovered as inputs increase further, but with still larger inputs, the winner-takes-all characteristic is ultimately lost. Network stability may be enhanced by biologically plausible mechanisms. PMID:25741276

  8. Opacity annotation of diffuse lung diseases using deep convolutional neural network with multi-channel information

    NASA Astrophysics Data System (ADS)

    Mabu, Shingo; Kido, Shoji; Hashimoto, Noriaki; Hirano, Yasushi; Kuremoto, Takashi

    2018-02-01

    This research proposes a multi-channel deep convolutional neural network (DCNN) for computer-aided diagnosis (CAD) that classifies normal and abnormal opacities of diffuse lung diseases in Computed Tomography (CT) images. Because CT images are gray scale, DCNN usually uses one channel for inputting image data. On the other hand, this research uses multi-channel DCNN where each channel corresponds to the original raw image or the images transformed by some preprocessing techniques. In fact, the information obtained only from raw images is limited and some conventional research suggested that preprocessing of images contributes to improving the classification accuracy. Thus, the combination of the original and preprocessed images is expected to show higher accuracy. The proposed method realizes region of interest (ROI)-based opacity annotation. We used lung CT images taken in Yamaguchi University Hospital, Japan, and they are divided into 32 × 32 ROI images. The ROIs contain six kinds of opacities: consolidation, ground-glass opacity (GGO), emphysema, honeycombing, nodular, and normal. The aim of the proposed method is to classify each ROI into one of the six opacities (classes). The DCNN structure is based on VGG network that secured the first and second places in ImageNet ILSVRC-2014. From the experimental results, the classification accuracy of the proposed method was better than the conventional method with single channel, and there was a significant difference between them.

  9. Maximal privacy without coherence.

    PubMed

    Leung, Debbie; Li, Ke; Smith, Graeme; Smolin, John A

    2014-07-18

    Privacy is a fundamental feature of quantum mechanics. A coherently transmitted quantum state is inherently private. Remarkably, coherent quantum communication is not a prerequisite for privacy: there are quantum channels that are too noisy to transmit any quantum information reliably that can nevertheless send private classical information. Here, we ask how much private classical information a channel can transmit if it has little quantum capacity. We present a class of channels N(d) with input dimension d(2), quantum capacity Q(N(d)) ≤ 1, and private capacity P(N(d)) = log d. These channels asymptotically saturate an interesting inequality P(N) ≤ (1/2)[log d(A) + Q(N)] for any channel N with input dimension d(A) and capture the essence of privacy stripped of the confounding influence of coherence.

  10. Output-only modal dynamic identification of frames by a refined FDD algorithm at seismic input and high damping

    NASA Astrophysics Data System (ADS)

    Pioldi, Fabio; Ferrari, Rosalba; Rizzi, Egidio

    2016-02-01

    The present paper deals with the seismic modal dynamic identification of frame structures by a refined Frequency Domain Decomposition (rFDD) algorithm, autonomously formulated and implemented within MATLAB. First, the output-only identification technique is outlined analytically and then employed to characterize all modal properties. Synthetic response signals generated prior to the dynamic identification are adopted as input channels, in view of assessing a necessary condition for the procedure's efficiency. Initially, the algorithm is verified on canonical input from random excitation. Then, modal identification has been attempted successfully at given seismic input, taken as base excitation, including both strong motion data and single and multiple input ground motions. Rather than different attempts investigating the role of seismic response signals in the Time Domain, this paper considers the identification analysis in the Frequency Domain. Results turn-out very much consistent with the target values, with quite limited errors in the modal estimates, including for the damping ratios, ranging from values in the order of 1% to 10%. Either seismic excitation and high values of damping, resulting critical also in case of well-spaced modes, shall not fulfill traditional FFD assumptions: this shows the consistency of the developed algorithm. Through original strategies and arrangements, the paper shows that a comprehensive rFDD modal dynamic identification of frames at seismic input is feasible, also at concomitant high damping.

  11. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    PubMed Central

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. The formation of a salt plug in response to changes in river discharge was investigated using a conductivity-temperature-depth (CTD) recorder during spring and neap tides in the dry and wet seasons in 2014. An exportation of saline water from the Shibsa River Estuary (SRE) to the PRE through the Chunkhuri Channel occurred during the dry season, and a salt plug was created and persisted from December to June near Chalna in the PRE. A discharge-induced, relatively high water level in the PRE during the wet season exerted hydrostatic pressure towards the SRE from the PRE and thereby prevented the intrusion of salt water from the SRE to the PRE. PMID:27255892

  12. Dynamics of Braided Channels, Bars, and Associated Deposits Under Experimental Density Currents

    NASA Astrophysics Data System (ADS)

    Limaye, A. B. S.; Jean-Louis, G.; Paola, C.

    2015-12-01

    Turbidity currents are the principal agents that transfer clastic sediment from continental margins to the deep ocean. The extensive sedimentary deposits that result can record influences from fluvial transport, ocean currents, and seafloor bathymetry; decoding these controls is key to understanding long-term continental denudation and the formation of hydrocarbon reservoirs. Experimental turbidity currents often use pre-formed, single-thread channels, but more recent experiments and seafloor observations suggest that braided channels also develop in submarine environments. Yet controls on the formation of submarine braided channels and relationships between these channels and stratigraphic evolution remain largely untested. We have conducted a series of experiments to determine the conditions conducive to forming braided submarine channels, and to relate channel geometry and kinematics to deposit architecture. Dissolved salt supplies the excess density of the experimental turbidity currents, which transport plastic, sand-sized sediment as bedload across a test section two meters long and one meter wide. Our experiments indicate that braided channels can form as constructional features without prior erosion for a range of input water and sediment fluxes. Channel migration, avulsion, and aggradation construct sedimentary deposits with bars at a variety of scales. Bar geometry and channel kinematics are qualitatively similar under subaerial and subaqueous experiments with other parameters fixed. We will present quantitative analyses of the relationships between channel geometry and mobility and deposit architecture, at scales from individual bars to the entire deposit, and compare these results to control experiments with subaerial braiding. These experimental results suggest parallels between subaerial and subaqueous braiding, and help to constrain forward models for stratigraphic evolution and inverse methods for estimating flow conditions from turbidites.

  13. Shift-variant linear system modeling for multispectral scanners

    NASA Astrophysics Data System (ADS)

    Amini, Abolfazl M.; Ioup, George E.; Ioup, Juliette W.

    1995-07-01

    Multispectral scanner data are affected both by the spatial impulse response of the sensor and the spectral response of each channel. To achieve a realistic representation for the output data for a given scene spectral input, both of these effects must be incorporated into a forward model. Each channel can have a different spatial response and each has its characteristic spectral response. A forward model is built which includes the shift invariant spatial broadening of the input for the channels and the shift variant spectral response across channels. The model is applied to the calibrated airborne multispectral scanner as well as the airborne terrestrial applications sensor developed at NASA Stennis Space Center.

  14. Reconfigurable Drive Current System

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2017-01-01

    A reconfigurable drive current system includes drive stages, each of which includes a high-side transistor and a low-side transistor in a totem pole configuration. A current monitor is coupled to an output of each drive stage. Input channels are provided to receive input signals. A processor is coupled to the input channels and to each current monitor for generating at least one drive signal using at least one of the input signals and current measured by at least one of the current monitors. A pulse width modulation generator is coupled to the processor and each drive stage for varying the drive signals as a function of time prior to being supplied to at least one of the drive stages.

  15. Extended Horizon Liftings for Periodic Gain Adjustments in Control Systems, and for Equalization of Communication Channels

    NASA Technical Reports Server (NTRS)

    Bayard, David S. (Inventor)

    1996-01-01

    Periodic gain adjustment in plants of irreducible order, n, or for equalization of communications channels is effected in such a way that the plant (system) appears to be minimum phase by choosing a horizon time N greater then n of liftings in periodic input and output windows Pu and Py, respectively, where N is an integer chosen to define the extent (length) of each of the windows Pu and Py, and n is the order of an irreducible input/output plant. The plant may be an electrical, mechanical or chemical system, in which case output tracking (OT) is carried out for feedback control or a communication channel, in which case input tracking (IT) is carried out. Conditions for OT are distinct from IT in terms of zero annihilation, namely for OT and of IT, where the OT conditions are intended for gain adjustments in the control system, and IT conditions are intended for equalization for communication channels.

  16. Blind Channel Equalization with Colored Source Based on Constrained Optimization Methods

    NASA Astrophysics Data System (ADS)

    Wang, Yunhua; DeBrunner, Linda; DeBrunner, Victor; Zhou, Dayong

    2008-12-01

    Tsatsanis and Xu have applied the constrained minimum output variance (CMOV) principle to directly blind equalize a linear channel—a technique that has proven effective with white inputs. It is generally assumed in the literature that their CMOV method can also effectively equalize a linear channel with a colored source. In this paper, we prove that colored inputs will cause the equalizer to incorrectly converge due to inadequate constraints. We also introduce a new blind channel equalizer algorithm that is based on the CMOV principle, but with a different constraint that will correctly handle colored sources. Our proposed algorithm works for channels with either white or colored inputs and performs equivalently to the trained minimum mean-square error (MMSE) equalizer under high SNR. Thus, our proposed algorithm may be regarded as an extension of the CMOV algorithm proposed by Tsatsanis and Xu. We also introduce several methods to improve the performance of our introduced algorithm in the low SNR condition. Simulation results show the superior performance of our proposed methods.

  17. Automatic channel trimming for control systems: A concept

    NASA Technical Reports Server (NTRS)

    Vandervoort, R. J.; Sykes, H. A.

    1977-01-01

    Set of bias signals added to channel inputs automatically normalize differences between channels. Algorithm and second feedback loop compute trim biases. Concept could be applied to regulators and multichannel servosystems for remote manipulators in undersea mining.

  18. The subcellular distribution of T-type Ca2+ channels in interneurons of the lateral geniculate nucleus.

    PubMed

    Allken, Vaneeda; Chepkoech, Joy-Loi; Einevoll, Gaute T; Halnes, Geir

    2014-01-01

    Inhibitory interneurons (INs) in the lateral geniculate nucleus (LGN) provide both axonal and dendritic GABA output to thalamocortical relay cells (TCs). Distal parts of the IN dendrites often enter into complex arrangements known as triadic synapses, where the IN dendrite plays a dual role as postsynaptic to retinal input and presynaptic to TC dendrites. Dendritic GABA release can be triggered by retinal input, in a highly localized process that is functionally isolated from the soma, but can also be triggered by somatically elicited Ca(2+)-spikes and possibly by backpropagating action potentials. Ca(2+)-spikes in INs are predominantly mediated by T-type Ca(2+)-channels (T-channels). Due to the complex nature of the dendritic signalling, the function of the IN is likely to depend critically on how T-channels are distributed over the somatodendritic membrane (T-distribution). To study the relationship between the T-distribution and several IN response properties, we here run a series of simulations where we vary the T-distribution in a multicompartmental IN model with a realistic morphology. We find that the somatic response to somatic current injection is facilitated by a high T-channel density in the soma-region. Conversely, a high T-channel density in the distal dendritic region is found to facilitate dendritic signalling in both the outward direction (increases the response in distal dendrites to somatic input) and the inward direction (the soma responds stronger to distal synaptic input). The real T-distribution is likely to reflect a compromise between several neural functions, involving somatic response patterns and dendritic signalling.

  19. The Subcellular Distribution of T-Type Ca2+ Channels in Interneurons of the Lateral Geniculate Nucleus

    PubMed Central

    Allken, Vaneeda; Chepkoech, Joy-Loi; Einevoll, Gaute T.; Halnes, Geir

    2014-01-01

    Inhibitory interneurons (INs) in the lateral geniculate nucleus (LGN) provide both axonal and dendritic GABA output to thalamocortical relay cells (TCs). Distal parts of the IN dendrites often enter into complex arrangements known as triadic synapses, where the IN dendrite plays a dual role as postsynaptic to retinal input and presynaptic to TC dendrites. Dendritic GABA release can be triggered by retinal input, in a highly localized process that is functionally isolated from the soma, but can also be triggered by somatically elicited Ca2+-spikes and possibly by backpropagating action potentials. Ca2+-spikes in INs are predominantly mediated by T-type Ca2+-channels (T-channels). Due to the complex nature of the dendritic signalling, the function of the IN is likely to depend critically on how T-channels are distributed over the somatodendritic membrane (T-distribution). To study the relationship between the T-distribution and several IN response properties, we here run a series of simulations where we vary the T-distribution in a multicompartmental IN model with a realistic morphology. We find that the somatic response to somatic current injection is facilitated by a high T-channel density in the soma-region. Conversely, a high T-channel density in the distal dendritic region is found to facilitate dendritic signalling in both the outward direction (increases the response in distal dendrites to somatic input) and the inward direction (the soma responds stronger to distal synaptic input). The real T-distribution is likely to reflect a compromise between several neural functions, involving somatic response patterns and dendritic signalling. PMID:25268996

  20. An Investigation of How the Channel of Input and Access to Test Questions Affect L2 Listening Test Performance

    ERIC Educational Resources Information Center

    Wagner, Elvis

    2013-01-01

    The use of video technology has become widespread in the teaching and testing of second-language (L2) listening, yet research into how this technology affects the learning and testing process has lagged. The current study investigated how the channel of input (audiovisual vs. audio-only) used on an L2 listening test affected test-taker…

  1. Study of digital charge coupled devices

    NASA Technical Reports Server (NTRS)

    Wilson, D. D.; Young, V. F.

    1980-01-01

    Charge coupled devices represent unique usage of the metal oxide semiconductor concept. These devices can sample an AC signal at the input, transfer charge proportional to this signal through the CCD shift register and then provide an output of the same frequency and shape as the input. The delay time between input and output is controlled by the CCD operating frequency and the number of stages in the shift resistor. This work is a reliability evaluation of the buried channel and surface channel CCD technologies. The constructions are analyzed, failure modes are described, and test results are reported.

  2. Quantum teleportation of nonclassical wave packets: An effective multimode theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benichi, Hugo; Takeda, Shuntaro; Lee, Noriyuki

    2011-07-15

    We develop a simple and efficient theoretical model to understand the quantum properties of broadband continuous variable quantum teleportation. We show that, if stated properly, the problem of multimode teleportation can be simplified to teleportation of a single effective mode that describes the input state temporal characteristic. Using that model, we show how the finite bandwidth of squeezing and external noise in the classical channel affect the output teleported quantum field. We choose an approach that is especially relevant for the case of non-Gaussian nonclassical quantum states and we finally back-test our model with recent experimental results.

  3. A Modular Pipelined Processor for High Resolution Gamma-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Veiga, Alejandro; Grunfeld, Christian

    2016-02-01

    The design of a digital signal processor for gamma-ray applications is presented in which a single ADC input can simultaneously provide temporal and energy characterization of gamma radiation for a wide range of applications. Applying pipelining techniques, the processor is able to manage and synchronize very large volumes of streamed real-time data. Its modular user interface provides a flexible environment for experimental design. The processor can fit in a medium-sized FPGA device operating at ADC sampling frequency, providing an efficient solution for multi-channel applications. Two experiments are presented in order to characterize its temporal and energy resolution.

  4. On the false lock behavior of polarity-type Costas loops with Manchester coded input. [for Space Shuttle Orbiter communication

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1977-01-01

    A modification of a Costas loop is described, and the false lock behavior of this system is studied. The modified Costas loop hard limits the output of the in-phase channel, replaces the analog multiplier with a chopper-type device, and is equipped with single-pole arm filters in the loop. The false lock behavior associated with the use of Manchester coded data is investigated; the results can be applied to the assessment of the false lock margin on the Ku-band uplink to the Space Shuttle Orbiter through the TURSS.

  5. Method and apparatus for characterizing propagation delays of integrated circuit devices

    NASA Technical Reports Server (NTRS)

    Blaes, Brent R. (Inventor); Buehler, Martin G. (Inventor)

    1987-01-01

    Propagation delay of a signal through a channel is measured by cyclically generating a first step-wave signal for transmission through the channel to a two-input logic element and a second step-wave signal with a controlled delay to the second input terminal of the logic element. The logic element determines which signal is present first at its input terminals and stores a binary signal indicative of that determination for control of the delay of the second signal which is advanced or retarded for the next cycle until both the propagation delayed first step-wave signal and the control delayed step-wave signal are coincident. The propagation delay of the channel is then determined by measuring the time between the first and second step-wave signals out of the controlled step-wave signal generator.

  6. Role of Structural Asymmetry in Controlling Drop Spacing in Microfluidic Ladder Networks

    NASA Astrophysics Data System (ADS)

    Wang, William; Maddala, Jeevan; Vanapalli, Siva; Rengasamy, Raghunathan

    2012-02-01

    Manipulation of drop spacing is crucial to many processes in microfluidic devices including drop coalescence, detection and storage. Microfluidic ladder networks ---where two droplet-carrying parallel channels are connected by narrow bypass channels through which the motion of drops is forbidden---have been proposed as a means to control relative separation between pairs of drops. Prior studies in microfluidic ladder networks with vertical bypasses, which possess fore-aft structural symmetry, have revealed that pairs of drops can only undergo reduction in drop spacing at the ladder exit. We investigate the dynamics of drops in microfluidic ladder networks with both vertical and slanted bypasses. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative spacing between drops, enabling them to contract, synchronize, expand or even flip at the ladder exit. Our experiments confirm all the behaviors predicted by theory. Numerical analysis further shows that ladders containing several identical bypasses can only linearly transform the input drop spacing. Finally, we find that ladders with specific combinations of vertical and slanted bypasses can generate non-linear transformation of input drop spacing, despite the absence of drop decision-making events at the bypass junctions.

  7. Control of soft machines using actuators operated by a Braille display.

    PubMed

    Mosadegh, Bobak; Mazzeo, Aaron D; Shepherd, Robert F; Morin, Stephen A; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M

    2014-01-07

    One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds-often built for a single purpose-are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled Braille display and a micropneumatic device. The Braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface.

  8. Control of Soft Machines using Actuators Operated by a Braille Display

    PubMed Central

    Mosadegh, Bobak; Mazzeo, Aaron D.; Shepherd, Robert F.; Morin, Stephen A.; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M.

    2013-01-01

    One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds—often built for a single purpose—are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled braille display and a micropneumatic device. The braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface. PMID:24196070

  9. Multichannel Phase and Power Detector

    NASA Technical Reports Server (NTRS)

    Li, Samuel; Lux, James; McMaster, Robert; Boas, Amy

    2006-01-01

    An electronic signal-processing system determines the phases of input signals arriving in multiple channels, relative to the phase of a reference signal with which the input signals are known to be coherent in both phase and frequency. The system also gives an estimate of the power levels of the input signals. A prototype of the system has four input channels that handle signals at a frequency of 9.5 MHz, but the basic principles of design and operation are extensible to other signal frequencies and greater numbers of channels. The prototype system consists mostly of three parts: An analog-to-digital-converter (ADC) board, which coherently digitizes the input signals in synchronism with the reference signal and performs some simple processing; A digital signal processor (DSP) in the form of a field-programmable gate array (FPGA) board, which performs most of the phase- and power-measurement computations on the digital samples generated by the ADC board; and A carrier board, which allows a personal computer to retrieve the phase and power data. The DSP contains four independent phase-only tracking loops, each of which tracks the phase of one of the preprocessed input signals relative to that of the reference signal (see figure). The phase values computed by these loops are averaged over intervals, the length of which is chosen to obtain output from the DSP at a desired rate. In addition, a simple sum of squares is computed for each channel as an estimate of the power of the signal in that channel. The relative phases and the power level estimates computed by the DSP could be used for diverse purposes in different settings. For example, if the input signals come from different elements of a phased-array antenna, the phases could be used as indications of the direction of arrival of a received signal and/or as feedback for electronic or mechanical beam steering. The power levels could be used as feedback for automatic gain control in preprocessing of incoming signals. For another example, the system could be used to measure the phases and power levels of outputs of multiple power amplifiers to enable adjustment of the amplifiers for optimal power combining.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lougovski, P.; Uskov, D. B.

    Entanglement can effectively increase communication channel capacity as evidenced by dense coding that predicts a capacity gain of 1 bit when compared to entanglement-free protocols. However, dense coding relies on Bell states and when implemented using photons the capacity gain is bounded by 0.585 bits due to one's inability to discriminate between the four optically encoded Bell states. In this research we study the following question: Are there alternative entanglement-assisted protocols that rely only on linear optics, coincidence photon counting, and separable single-photon input states and at the same time provide a greater capacity gain than 0.585 bits? In thismore » study, we show that besides the Bell states there is a class of bipartite four-mode two-photon entangled states that facilitate an increase in channel capacity. We also discuss how the proposed scheme can be generalized to the case of two-photon N-mode entangled states for N=6,8.« less

  11. A miniaturized digital telemetry system for physiological data transmission

    NASA Technical Reports Server (NTRS)

    Portnoy, W. M.; Stotts, L. J.

    1978-01-01

    A physiological date telemetry system, consisting basically of a portable unit and a ground base station was designed, built, and tested. The portable unit to be worn by the subject is composed of a single crystal controlled transmitter with AM transmission of digital data and narrowband FM transmission of voice; a crystal controlled FM receiver; thirteen input channels follwed by a PCM encoder (three of these channels are designed for ECG data); a calibration unit; and a transponder control system. The ground base station consists of a standard telemetry reciever, a decoder, and an FM transmitter for transmission of voice and transponder signals to the portable unit. The ground base station has complete control of power to all subsystems in the portable unit. The phase-locked loop circuit which is used to decode the data, remains in operation even when the signal from the portable unit is interrupted.

  12. A ten-element array of individually addressable channeled-substrate-planar AlGaAs diode lasers

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Goldstein, B.; Bednarz, J. P.; Harvey, M. G.; Dinkel, N. A.

    1987-01-01

    The fabrication of arrays of channeled-substrate-planar (CSP) AlGaAs diode lasers which emit up to 150 mW CW in a single spatial mode and are applicable to mulitchannel optical recording systems is described. The CSP diode lasers are incorporated in ten-array geometry, and each array is 1.95 nm in width and 100 microns in thickness and is cleaved to have a cavity length of 200 microns and coated to produce 90-percent reflectivity on the back facet and 10-percent reflectivity on the front facet. The array is attached to a thermoelectrically cooled submount. The optical output power versus input current characteristics for the array are evaluated, and the lateral far-field intensity profiles for each of the lasers (at 30 mW CW) and CW spectra of the lasers are analyzed.

  13. Purity of Gaussian states: Measurement schemes and time evolution in noisy channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paris, Matteo G.A.; Illuminati, Fabrizio; Serafini, Alessio

    2003-07-01

    We present a systematic study of the purity for Gaussian states of single-mode continuous variable systems. We prove the connection of purity to observable quantities for these states, and show that the joint measurement of two conjugate quadratures is necessary and sufficient to determine the purity at any time. The statistical reliability and the range of applicability of the proposed measurement scheme are tested by means of Monte Carlo simulated experiments. We then consider the dynamics of purity in noisy channels. We derive an evolution equation for the purity of general Gaussian states both in thermal and in squeezed thermalmore » baths. We show that purity is maximized at any given time for an initial coherent state evolving in a thermal bath, or for an initial squeezed state evolving in a squeezed thermal bath whose asymptotic squeezing is orthogonal to that of the input state.« less

  14. Digital multi-channel stabilization of four-mode phase-sensitive parametric multicasting.

    PubMed

    Liu, Lan; Tong, Zhi; Wiberg, Andreas O J; Kuo, Bill P P; Myslivets, Evgeny; Alic, Nikola; Radic, Stojan

    2014-07-28

    Stable four-mode phase-sensitive (4MPS) process was investigated as a means to enhance two-pump driven parametric multicasting conversion efficiency (CE) and signal to noise ratio (SNR). Instability of multi-beam, phase sensitive (PS) device that inherently behaves as an interferometer, with output subject to ambient induced fluctuations, was addressed theoretically and experimentally. A new stabilization technique that controls phases of three input waves of the 4MPS multicaster and maximizes CE was developed and described. Stabilization relies on digital phase-locked loop (DPLL) specifically was developed to control pump phases to guarantee stable 4MPS operation that is independent of environmental fluctuations. The technique also controls a single (signal) input phase to optimize the PS-induced improvement of the CE and SNR. The new, continuous-operation DPLL has allowed for fully stabilized PS parametric broadband multicasting, demonstrating CE improvement over 20 signal copies in excess of 10 dB.

  15. Underwater wireless optical MIMO system with spatial modulation and adaptive power allocation

    NASA Astrophysics Data System (ADS)

    Huang, Aiping; Tao, Linwei; Niu, Yilong

    2018-04-01

    In this paper, we investigate the performance of underwater wireless optical multiple-input multiple-output communication system combining spatial modulation (SM-UOMIMO) with flag dual amplitude pulse position modulation (FDAPPM). Channel impulse response for coastal and harbor ocean water links are obtained by Monte Carlo (MC) simulation. Moreover, we obtain the closed-form and upper bound average bit error rate (BER) expressions for receiver diversity including optical combining, equal gain combining and selected combining. And a novel adaptive power allocation algorithm (PAA) is proposed to minimize the average BER of SM-UOMIMO system. Our numeric results indicate an excellent match between the analytical results and numerical simulations, which confirms the accuracy of our derived expressions. Furthermore, the results show that adaptive PAA outperforms conventional fixed factor PAA and equal PAA obviously. Multiple-input single-output system with adaptive PAA obtains even better BER performance than MIMO one, at the same time reducing receiver complexity effectively.

  16. The passive cable properties of hair cell stereocilia and their contribution to somatic capacitance measurements.

    PubMed

    Breneman, Kathryn D; Highstein, Stephen M; Boyle, Richard D; Rabbitt, Richard D

    2009-01-01

    Somatic measurements of whole-cell capacitance are routinely used to understand physiologic events occurring in remote portions of cells. These studies often assume the intracellular space is voltage-clamped. We questioned this assumption in auditory and vestibular hair cells with respect to their stereocilia based on earlier studies showing that neurons, with radial dimensions similar to stereocilia, are not always isopotential under voltage-clamp. To explore this, we modeled the stereocilia as passive cables with transduction channels located at their tips. We found that the input capacitance measured at the soma changes when the transduction channels at the tips of the stereocilia are open compared to when the channels are closed. The maximum capacitance is felt with the transducer closed but will decrease as the transducer opens due to a length-dependent voltage drop along the stereocilium length. This potential drop is proportional to the intracellular resistance and stereocilium tip conductance and can produce a maximum capacitance error on the order of fF for single stereocilia and pF for the bundle.

  17. TOFPET2: a high-performance ASIC for time and amplitude measurements of SiPM signals in time-of-flight applications

    NASA Astrophysics Data System (ADS)

    Di Francesco, A.; Bugalho, R.; Oliveira, L.; Pacher, L.; Rivetti, A.; Rolo, M.; Silva, J. C.; Silva, R.; Varela, J.

    2016-03-01

    We present a readout and digitization ASIC featuring low-noise and low-power for time-of flight (TOF) applications using SiPMs. The circuit is designed in standard CMOS 110 nm technology, has 64 independent channels and is optimized for time-of-flight measurement in Positron Emission Tomography (TOF-PET). The input amplifier is a low impedance current conveyor based on a regulated common-gate topology. Each channel has quad-buffered analogue interpolation TDCs (time binning 20 ps) and charge integration ADCs with linear response at full scale (1500 pC). The signal amplitude can also be derived from the measurement of time-over-threshold (ToT). Simulation results show that for a single photo-electron signal with charge 200 (550) fC generated by a SiPM with 320 pF capacitance the circuit has 24 (30) dB SNR, 75(39) ps r.m.s. resolution, and 4(8) mW power consumption. The event rate is 600 kHz per channel, with up to 2 MHz dark counts rejection.

  18. Increased Cell-Intrinsic Excitability Induces Synaptic Changes in New Neurons in the Adult Dentate Gyrus That Require Npas4

    PubMed Central

    Sim, Shuyin; Antolin, Salome; Lin, Chia-Wei; Lin, Ying-Xi

    2013-01-01

    Electrical activity regulates the manner in which neurons mature and form connections to each other. However, it remains unclear whether increased single-cell activity is sufficient to alter the development of synaptic connectivity of that neuron or whether a global increase in circuit activity is necessary. To address this question, we genetically increased neuronal excitability of in vivo individual adult-born neurons in the mouse dentate gyrus via expression of a voltage-gated bacterial sodium channel. We observed that increasing the excitability of new neurons in an otherwise unperturbed circuit leads to changes in both their input and axonal synapses. Furthermore, the activity-dependent transcription factor Npas4 is necessary for the changes in the input synapses of these neurons, but it is not involved in changes to their axonal synapses. Our results reveal that an increase in cell-intrinsic activity during maturation is sufficient to alter the synaptic connectivity of a neuron with the hippocampal circuit and that Npas4 is required for activity-dependent changes in input synapses. PMID:23637184

  19. Graphene ballistic nano-rectifier with very high responsivity

    PubMed Central

    Auton, Gregory; Zhang, Jiawei; Kumar, Roshan Krishna; Wang, Hanbin; Zhang, Xijian; Wang, Qingpu; Hill, Ernie; Song, Aimin

    2016-01-01

    Although graphene has the longest mean free path of carriers of any known electronic material, very few novel devices have been reported to harness this extraordinary property. Here we demonstrate a ballistic nano-rectifier fabricated by creating an asymmetric cross-junction in single-layer graphene sandwiched between boron nitride flakes. A mobility ∼200,000 cm2 V−1 s−1 is achieved at room temperature, well beyond that required for ballistic transport. This enables a voltage responsivity as high as 23,000 mV mW−1 with a low-frequency input signal. Taking advantage of the output channels being orthogonal to the input terminals, the noise is found to be not strongly influenced by the input. Hence, the corresponding noise-equivalent power is as low as 0.64 pW Hz−1/2. Such performance is even comparable to superconducting bolometers, which however need to operate at cryogenic temperatures. Furthermore, output oscillations are observed at low temperatures, the period of which agrees with the lateral size quantization. PMID:27241162

  20. Towards a general theory of neural computation based on prediction by single neurons.

    PubMed

    Fiorillo, Christopher D

    2008-10-01

    Although there has been tremendous progress in understanding the mechanics of the nervous system, there has not been a general theory of its computational function. Here I present a theory that relates the established biophysical properties of single generic neurons to principles of Bayesian probability theory, reinforcement learning and efficient coding. I suggest that this theory addresses the general computational problem facing the nervous system. Each neuron is proposed to mirror the function of the whole system in learning to predict aspects of the world related to future reward. According to the model, a typical neuron receives current information about the state of the world from a subset of its excitatory synaptic inputs, and prior information from its other inputs. Prior information would be contributed by synaptic inputs representing distinct regions of space, and by different types of non-synaptic, voltage-regulated channels representing distinct periods of the past. The neuron's membrane voltage is proposed to signal the difference between current and prior information ("prediction error" or "surprise"). A neuron would apply a Hebbian plasticity rule to select those excitatory inputs that are the most closely correlated with reward but are the least predictable, since unpredictable inputs provide the neuron with the most "new" information about future reward. To minimize the error in its predictions and to respond only when excitation is "new and surprising," the neuron selects amongst its prior information sources through an anti-Hebbian rule. The unique inputs of a mature neuron would therefore result from learning about spatial and temporal patterns in its local environment, and by extension, the external world. Thus the theory describes how the structure of the mature nervous system could reflect the structure of the external world, and how the complexity and intelligence of the system might develop from a population of undifferentiated neurons, each implementing similar learning algorithms.

  1. State-space estimation of the input stimulus function using the Kalman filter: a communication system model for fMRI experiments.

    PubMed

    Ward, B Douglas; Mazaheri, Yousef

    2006-12-15

    The blood oxygenation level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments in response to input stimuli is temporally delayed and distorted due to the blurring effect of the voxel hemodynamic impulse response function (IRF). Knowledge of the IRF, obtained during the same experiment, or as the result of a separate experiment, can be used to dynamically obtain an estimate of the input stimulus function. Reconstruction of the input stimulus function allows the fMRI experiment to be evaluated as a communication system. The input stimulus function may be considered as a "message" which is being transmitted over a noisy "channel", where the "channel" is characterized by the voxel IRF. Following reconstruction of the input stimulus function, the received message is compared with the transmitted message on a voxel-by-voxel basis to determine the transmission error rate. Reconstruction of the input stimulus function provides insight into actual brain activity during task activation with less temporal blurring, and may be considered as a first step toward estimation of the true neuronal input function.

  2. Evaluating post-glacial aggradational rates and transport processes, and assessing impacts of the Grand Ditch on the Lulu City wetland, Rocky Mountain National Park, Colorado

    NASA Astrophysics Data System (ADS)

    Rubin, Z.; Rathburn, S. L.; Wohl, E. E.

    2009-12-01

    The success of channel restoration rests in accurately assessing the context for, and goal of, restoration. This research aims to assess the historical range of variability of sedimentation rates and identify historic depositional environments, and to therefore contextualize the impacts of recent anthropogenic sediment inputs. In May 2003, a breach in Grand Ditch initiated a debris flow in Rocky Mountain National Park that transported approximately 36,000 m3 of sediment into the Upper Colorado River. Several other failures of Grand Ditch have occurred since 1937. This research was conducted in the Lulu City wetland, a wide, low gradient portion of the Upper Colorado River where fine sediment deposition occurred in 2003. Similarly, aerial photos show a change from a single thread, meandering channel in 1937 to the presently braided system- suggesting an altered sediment regime that has persisted for seventy years. A ground penetrating radar (GPR) survey was completed to investigate post-glacial sedimentation history of the valley. Trenching, coring, and radiocarbon dating methods were also used to further map sediment deposits, assess aggradational rates, and quantify dominant transport processes (channel, overbank, hillslope, beaver dams). Preliminary interpretation of the GPR reflections suggests approximately 10 meters of sediment exists above bedrock. It appears there is a marked difference between the modern (with anthropogenic influence) and historical sediment regimes. Specifically, the dominant transport process has shifted away from overbank and beaver dam deposits towards a regime dominated by hillslope inputs.

  3. On the Problem of Bandwidth Partitioning in FDD Block-Fading Single-User MISO/SIMO Systems

    NASA Astrophysics Data System (ADS)

    Ivrlač, Michel T.; Nossek, Josef A.

    2008-12-01

    We report on our research activity on the problem of how to optimally partition the available bandwidth of frequency division duplex, multi-input single-output communication systems, into subbands for the uplink, the downlink, and the feedback. In the downlink, the transmitter applies coherent beamforming based on quantized channel information which is obtained by feedback from the receiver. As feedback takes away resources from the uplink, which could otherwise be used to transfer payload data, it is highly desirable to reserve the "right" amount of uplink resources for the feedback. Under the assumption of random vector quantization, and a frequency flat, independent and identically distributed block-fading channel, we derive closed-form expressions for both the feedback quantization and bandwidth partitioning which jointly maximize the sum of the average payload data rates of the downlink and the uplink. While we do introduce some approximations to facilitate mathematical tractability, the analytical solution is asymptotically exact as the number of antennas approaches infinity, while for systems with few antennas, it turns out to be a fairly accurate approximation. In this way, the obtained results are meaningful for practical communication systems, which usually can only employ a few antennas.

  4. Extended horizon lifting for periodic gain adjustment in control systems, and for equalization of communication channels

    NASA Technical Reports Server (NTRS)

    Bayard, David S. (Inventor)

    1994-01-01

    Periodic gain adjustment in plants of irreducible order, n, or for equalization of communications channels is effected in such a way that the plant (system) appears to be minimum phase by choosing a horizon time N is greater than n of liftings in periodic input and output windows rho sub u and rho sub y, respectively, where N is an integer chosen to define the extent (length) of each of the windows rho sub u and rho sub y, and n is the order of an irreducible input/output plant. The plant may be an electrical, mechanical, or chemical system, in which case output tracking (OT) is carried out for feedback control or a communication channel, in which case input tracking (IT) is performed. Conditions for OT are distinct from IT in terms of zero annihilation, namely H(sub s)H(sub s)(sup +) = I for OT and H(sub s)H(sub s)(sup +) = I of IT, where the OT conditions are intended for gain adjustments in the control system, and IT conditions are intended for equalization for communication channels.

  5. Tactile communication.

    DOT National Transportation Integrated Search

    1962-05-01

    Tactile communication presents a relatively unexploited channel of information transmission in the field of aviation. Visual and auditory input channels frequently reach an information saturation point during various flight operations. A cutaneous co...

  6. Efficient design of multituned transmission line NMR probes: the electrical engineering approach.

    PubMed

    Frydel, J A; Krzystyniak, M; Pienkowski, D; Pietrzak, M; de Sousa Amadeu, N; Ratajczyk, T; Idzik, K; Gutmann, T; Tietze, D; Voigt, S; Fenn, A; Limbach, H H; Buntkowsky, G

    2011-01-01

    Transmission line-based multi-channel solid state NMR probes have many advantages regarding the cost of construction, number of RF-channels, and achievable RF-power levels. Nevertheless, these probes are only rarely employed in solid state-NMR-labs, mainly owing to the difficult experimental determination of the necessary RF-parameters. Here, the efficient design of multi-channel solid state MAS-NMR probes employing transmission line theory and modern techniques of electrical engineering is presented. As technical realization a five-channel ((1)H, (31)P, (13)C, (2)H and (15)N) probe for operation at 7 Tesla is described. This very cost efficient design goal is a multi port single coil transmission line probe based on the design developed by Schaefer and McKay. The electrical performance of the probe is determined by measuring of Scattering matrix parameters (S-parameters) in particular input/output ports. These parameters are compared to the calculated parameters of the design employing the S-matrix formalism. It is shown that the S-matrix formalism provides an excellent tool for examination of transmission line probes and thus the tool for a rational design of these probes. On the other hand, the resulting design provides excellent electrical performance. From a point of view of Nuclear Magnetic Resonance (NMR), calibration spectra of particular ports (channels) are of great importance. The estimation of the π/2 pulses length for all five NMR channels is presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Simultaneous optical and electrical recording of a single ion-channel.

    PubMed

    Ide, Toru; Takeuchi, Yuko; Aoki, Takaaki; Yanagida, Toshio

    2002-10-01

    In recent years, the single-molecule imaging technique has proven to be a valuable tool in solving many basic problems in biophysics. The technique used to measure single-molecule functions was initially developed to study electrophysiological properties of channel proteins. However, the technology to visualize single channels at work has not received as much attention. In this study, we have for the first time, simultaneously measured the optical and electrical properties of single-channel proteins. The large conductance calcium-activated potassium channel (BK-channel) labeled with fluorescent dye molecules was incorporated into a planar bilayer membrane and the fluorescent image captured with a total internal reflection fluorescence microscope simultaneously with single-channel current recording. This innovative technology will greatly advance the study of channel proteins as well as signal transduction processes that involve ion permeation processes.

  8. Eight-Channel Digital Signal Processor and Universal Trigger Module

    NASA Astrophysics Data System (ADS)

    Skulski, Wojtek; Wolfs, Frank

    2003-04-01

    A 10-bit, 8-channel, 40 megasamples per second digital signal processor and waveform digitizer DDC-8 (nicknamed Universal Trigger Module) is presented. The digitizer features 8 analog inputs, 1 analog output for a reconstructed analog waveform, 16 NIM logic inputs, 8 NIM logic outputs, and a pool of 16 TTL logic lines which can be individually configured as either inputs or outputs. The first application of this device is to enhance the present trigger electronics for PHOBOS at RHIC. The status of the development and the first results are presented. Possible applications of the new device are discussed. Supported by the NSF grant PHY-0072204.

  9. Wideband Fully-Programmable Dual-Mode CMOS Analogue Front-End for Electrical Impedance Spectroscopy

    PubMed Central

    Valente, Virgilio; Demosthenous, Andreas

    2016-01-01

    This paper presents a multi-channel dual-mode CMOS analogue front-end (AFE) for electrochemical and bioimpedance analysis. Current-mode and voltage-mode readouts, integrated on the same chip, can provide an adaptable platform to correlate single-cell biosensor studies with large-scale tissue or organ analysis for real-time cancer detection, imaging and characterization. The chip, implemented in a 180-nm CMOS technology, combines two current-readout (CR) channels and four voltage-readout (VR) channels suitable for both bipolar and tetrapolar electrical impedance spectroscopy (EIS) analysis. Each VR channel occupies an area of 0.48 mm2, is capable of an operational bandwidth of 8 MHz and a linear gain in the range between −6 dB and 42 dB. The gain of the CR channel can be set to 10 kΩ, 50 kΩ or 100 kΩ and is capable of 80-dB dynamic range, with a very linear response for input currents between 10 nA and 100 μA. Each CR channel occupies an area of 0.21 mm2. The chip consumes between 530 μA and 690 μA per channel and operates from a 1.8-V supply. The chip was used to measure the impedance of capacitive interdigitated electrodes in saline solution. Measurements show close matching with results obtained using a commercial impedance analyser. The chip will be part of a fully flexible and configurable fully-integrated dual-mode EIS system for impedance sensors and bioimpedance analysis. PMID:27463721

  10. Nonlinear channelizer.

    PubMed

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  11. Infrared spectrometry studies: Spectral digital data acquisition system (1971 version)

    NASA Technical Reports Server (NTRS)

    Lu, L.; Lyon, R. J. P.

    1971-01-01

    The construction of the Stanford Spectral Digital Data Acquisition System is described. The objective of the system is to record both the spectral distribution of incoming radiation from the rock samples measured by the spectroradiometer (Exotech Model 10-34 Circular Variable Filter Infrared Spectroradiometer) together with other weather information. This system is designed for both laboratory and field measurement programs. The multichannel inputs (8 channels) of the system are as follows: Ch 1 the Spectro-radiometer, Ch 2 the radiometer (PRT-5), and Ch 3 to Ch 8 for the weather information. The system records data from channel 1 and channel 2 alternately for 48 times, before a fast sweep across the six weather channels, to form a single scan in the scan counter. The operation is illustrated in a block diagram, and the theory of operation is described. The outputs are written on a 7-track magnetic tape with IBM compatible form. The format of the tape and the playback computer programs are included. The micro-pac digital modules and a CIPHER model 70 tape recorder (Cipher Data Products) are used. One of the major characteristics of this system is that it is externally clocked by the spectroradiometer instead of taking data at intervals of various wavelengths by using internal-clocking.

  12. Information origins of the chemical bond: Bond descriptors from molecular communication channels in orbital resolution

    NASA Astrophysics Data System (ADS)

    Nalewajski, Roman F.

    The flow of information in the molecular communication networks in the (condensed) atomic orbital (AO) resolution is investigated and the plane-wave (momentum-space) interpretation of the average Fisher information in the molecular information system is given. It is argued using the quantum-mechanical superposition principle that, in the LCAO MO theory the squares of corresponding elements of the Charge and Bond-Order (CBO) matrix determine the conditional probabilities between AO, which generate the molecular communication system of the Orbital Communication Theory (OCT) of the chemical bond. The conditional-entropy ("noise," information-theoretic "covalency") and the mutual-information (information flow, information-theoretic "ionicity") descriptors of these molecular channels are related to Wiberg's covalency indices of chemical bonds. The illustrative application of OCT to the three-orbital model of the chemical bond X-Y, which is capable of describing the forward- and back-donations as well as the atom promotion accompanying the bond formation, is reported. It is demonstrated that the entropy/information characteristics of these separate bond-effects can be extracted by an appropriate reduction of the output of the molecular information channel, carried out by combining several exits into a single (condensed) one. The molecular channels in both the AO and hybrid orbital representations are examined for both the molecular and representative promolecular input probabilities.

  13. Distributed capillary adiabatic tissue homogeneity model in parametric multi-channel blind AIF estimation using DCE-MRI.

    PubMed

    Kratochvíla, Jiří; Jiřík, Radovan; Bartoš, Michal; Standara, Michal; Starčuk, Zenon; Taxt, Torfinn

    2016-03-01

    One of the main challenges in quantitative dynamic contrast-enhanced (DCE) MRI is estimation of the arterial input function (AIF). Usually, the signal from a single artery (ignoring contrast dispersion, partial volume effects and flow artifacts) or a population average of such signals (also ignoring variability between patients) is used. Multi-channel blind deconvolution is an alternative approach avoiding most of these problems. The AIF is estimated directly from the measured tracer concentration curves in several tissues. This contribution extends the published methods of multi-channel blind deconvolution by applying a more realistic model of the impulse residue function, the distributed capillary adiabatic tissue homogeneity model (DCATH). In addition, an alternative AIF model is used and several AIF-scaling methods are tested. The proposed method is evaluated on synthetic data with respect to the number of tissue regions and to the signal-to-noise ratio. Evaluation on clinical data (renal cell carcinoma patients before and after the beginning of the treatment) gave consistent results. An initial evaluation on clinical data indicates more reliable and less noise sensitive perfusion parameter estimates. Blind multi-channel deconvolution using the DCATH model might be a method of choice for AIF estimation in a clinical setup. © 2015 Wiley Periodicals, Inc.

  14. Flow distribution in parallel microfluidic networks and its effect on concentration gradient

    PubMed Central

    Guermonprez, Cyprien; Michelin, Sébastien; Baroud, Charles N.

    2015-01-01

    The architecture of microfluidic networks can significantly impact the flow distribution within its different branches and thereby influence tracer transport within the network. In this paper, we study the flow rate distribution within a network of parallel microfluidic channels with a single input and single output, using a combination of theoretical modeling and microfluidic experiments. Within the ladder network, the flow rate distribution follows a U-shaped profile, with the highest flow rate occurring in the initial and final branches. The contrast with the central branches is controlled by a single dimensionless parameter, namely, the ratio of hydrodynamic resistance between the distribution channel and the side branches. This contrast in flow rates decreases when the resistance of the side branches increases relative to the resistance of the distribution channel. When the inlet flow is composed of two parallel streams, one of which transporting a diffusing species, a concentration variation is produced within the side branches of the network. The shape of this concentration gradient is fully determined by two dimensionless parameters: the ratio of resistances, which determines the flow rate distribution, and the Péclet number, which characterizes the relative speed of diffusion and advection. Depending on the values of these two control parameters, different distribution profiles can be obtained ranging from a flat profile to a step distribution of solute, with well-distributed gradients between these two limits. Our experimental results are in agreement with our numerical model predictions, based on a simplified 2D advection-diffusion problem. Finally, two possible applications of this work are presented: the first one combines the present design with self-digitization principle to encapsulate the controlled concentration in nanoliter chambers, while the second one extends the present design to create a continuous concentration gradient within an open flow chamber. PMID:26487905

  15. Dendritic sodium channels promote active decorrelation and reduce phase locking to parkinsonian input oscillations in model globus pallidus neurons

    PubMed Central

    Edgerton, Jeremy R.; Jaeger, Dieter

    2011-01-01

    Correlated firing among populations of neurons is present throughout the brain and is often rhythmic in nature, observable as an oscillatory fluctuation in the local field potential. Although rhythmic population activity is believed to be critical for normal function in many brain areas, synchronized neural oscillations are associated with disease states in other cases. In the globus pallidus (GP in rodents, homolog of the primate GPe), pairs of neurons generally have uncorrelated firing in normal animals despite an anatomical organization suggesting that they should receive substantial common input. By contrast, correlated and rhythmic GP firing is observed in animal models of Parkinson's disease (PD). Based in part on these findings it has been proposed that an important part of basal ganglia function is active decorrelation, whereby redundant information is compressed. Mechanisms that implement active decorrelation, and changes that cause it to fail in PD, are subjects of great interest. Rat GP neurons express fast, transient voltage-dependent sodium channels (NaF channels) in their dendrites, with the expression level being highest near asymmetric synapses. We recently showed that the dendritic NaF density strongly influences the responsiveness of model GP neurons to synchronous excitatory inputs. In the present study we use rat GP neuron models to show that dendritic NaF channel expression is a potential cellular mechanism of active decorrelation. We further show that model neurons with lower dendritic NaF channel expression have a greater tendency to phase lock with oscillatory synaptic input patterns like those observed in PD. PMID:21795543

  16. Tools for Brain-Computer Interaction: A General Concept for a Hybrid BCI

    PubMed Central

    Müller-Putz, Gernot R.; Breitwieser, Christian; Cincotti, Febo; Leeb, Robert; Schreuder, Martijn; Leotta, Francesco; Tavella, Michele; Bianchi, Luigi; Kreilinger, Alex; Ramsay, Andrew; Rohm, Martin; Sagebaum, Max; Tonin, Luca; Neuper, Christa; Millán, José del. R.

    2011-01-01

    The aim of this work is to present the development of a hybrid Brain-Computer Interface (hBCI) which combines existing input devices with a BCI. Thereby, the BCI should be available if the user wishes to extend the types of inputs available to an assistive technology system, but the user can also choose not to use the BCI at all; the BCI is active in the background. The hBCI might decide on the one hand which input channel(s) offer the most reliable signal(s) and switch between input channels to improve information transfer rate, usability, or other factors, or on the other hand fuse various input channels. One major goal therefore is to bring the BCI technology to a level where it can be used in a maximum number of scenarios in a simple way. To achieve this, it is of great importance that the hBCI is able to operate reliably for long periods, recognizing and adapting to changes as it does so. This goal is only possible if many different subsystems in the hBCI can work together. Since one research institute alone cannot provide such different functionality, collaboration between institutes is necessary. To allow for such a collaboration, a new concept and common software framework is introduced. It consists of four interfaces connecting the classical BCI modules: signal acquisition, preprocessing, feature extraction, classification, and the application. But it provides also the concept of fusion and shared control. In a proof of concept, the functionality of the proposed system was demonstrated. PMID:22131973

  17. Toward a Role of Light Absorption in Initiation Chemistry of Shocked HMX single Crystals and Crystalline High Explosives

    NASA Astrophysics Data System (ADS)

    Plaksin, Igor; Rodrigues, L.

    2013-06-01

    Question which mechanism is driving radiation-induced reactions, thermal or athermal becomes a subject of conflicting discussions. Major challenge of this work is to identify at micro- (sub-granular), meso- (grain level) and macro-scale roles of these two mechanisms in triggering initiation chemistry in HMX-based HEs. Four acceptor-patterns were tested at 20 GPa input pressure: single HMX crystal-in-water, HMX/water-slurry, PBX(HMX/HTPB) & inert PBX-simulant (HMX-particles replaced by crystalline sucrose). Scenario of reaction onset-localizations-dissipation was spatially resolved using Multi-Channel Optical Analyzer MCOA-UC (96 channels, 100um-spatial accuracy, 0.2ns-timeresolution, 450-850 nm-spectral range) through real-time panoramic recording emitted reaction light and shock field in standard optic monitor. Experiments reveal a dual nature of initiation chemistry: athermal and thermal. Single-crystal tests disclose origination of photo-induced reactions downstream of emitting reaction spot due to intensified radiation absorption in surface micro-defects. Polycrystalline samples reveal cyclic reproducibility of radiation-induced thermal precursors in which radiation absorption causes thermal expansion/phase-changes of HMX-grains resulting in oscillating detonation. Work was supported by the Office of Naval Research under the ONR and ONR Global Grants N00014-12-1-0477 and N62909-12-1-7131 with Drs. Cliff Bedford and Shawn Thorne Program Managers.

  18. Compact pulse width modulation circuitry for silicon photomultiplier readout.

    PubMed

    Bieniosek, M F; Olcott, P D; Levin, C S

    2013-08-07

    The adoption of solid-state photodetectors for positron emission tomography (PET) system design and the interest in 3D interaction information from PET detectors has lead to an increasing number of readout channels in PET systems. To handle these additional readout channels, PET readout electronics should be simplified to reduce the power consumption, cost, and size of the electronics for a single channel. Pulse-width modulation (PWM), where detector pulses are converted to digital pulses with width proportional to the detected photon energy, promises to simplify PET readout by converting the signals to digital form at the beginning of the processing chain, and allowing a single time-to-digital converter to perform the data acquisition for many channels rather than routing many analogue channels and digitizing in the back end. Integrator based PWM systems, also known as charge-to-time converters (QTCs), are especially compact, reducing the front-end electronics to an op-amp integrator with a resistor discharge, and a comparator. QTCs, however, have a long dead-time during which dark count noise is integrated, reducing the output signal-to-noise ratio. This work presents a QTC based PWM circuit with a gated integrator that shows performance improvements over existing QTC based PWM. By opening and closing an analogue switch on the input of the integrator, the circuit can be controlled to integrate only the portions of the signal with a high signal-to-noise ratio. It also allows for multiplexing different detectors into the same PWM circuit while avoiding uncorrelated noise propagation between photodetector channels. Four gated integrator PWM circuits were built to readout the spatial channels of two position sensitive solid-state photomultiplier (PS-SSPM). Results show a 4 × 4 array 0.9 mm × 0.9 mm × 15 mm of LYSO crystals being identified on the 5 mm × 5 mm PS-SSPM at room temperature with no degradation for twofold multiplexing. In principle, much larger multiplexing ratios are possible, limited only by count rate issues.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giovannetti, Vittorio; Maccone, Lorenzo; Shapiro, Jeffrey H.

    The minimum Renyi and Wehrl output entropies are found for bosonic channels in which the signal photons are either randomly displaced by a Gaussian distribution (classical-noise channel), or coupled to a thermal environment through lossy propagation (thermal-noise channel). It is shown that the Renyi output entropies of integer orders z{>=}2 and the Wehrl output entropy are minimized when the channel input is a coherent state.

  20. Channel Analysis for a 6.4 Gb s-1 DDR5 Data Buffer Receiver Front-End

    NASA Astrophysics Data System (ADS)

    Lehmann, Stefanie; Gerfers, Friedel

    2017-09-01

    In this contribution, the channel characteristic of the next generation DDR5-SDRAM architecture and possible approaches to overcome channel impairments are analysed. Because modern enterprise server applications and networks demand higher memory bandwidth, throughput and capacity, the DDR5-SDRAM specification is currently under development as a follow-up of DDR4-SDRAM technology. In this specification, the data rate is doubled to DDR5-6400 per IO as compared to the former DDR4-3200 architecture, resulting in a total per DIMM data rate of up to 409.6 Gb s-1. The single-ended multi-point-to-point CPU channel architecture in DDRX technology remains the same for DDR5 systems. At the specified target data rate, insertion loss, reflections, cross-talk as well as power supply noise become more severe and have to be considered. Using the data buffer receiver front-end of a load-reduced memory module, sophisticated equalisation techniques can be applied to ensure target BER at the increased data rate. In this work, the worst case CPU back-plane channel is analysed to derive requirements for receiver-side equalisation from the channel response characteristics. First, channel impairments such as inter-symbol-interference, reflections from the multi-point channel structure, and crosstalk from neighboring lines are analysed in detail. Based on these results, different correction methods for DDR5 data buffer front-ends are discussed. An architecture with 1-tap FFE in combination with a multi-tap DFE is proposed. Simulation of the architecture using a random input data stream is used to reveal the required DFE tap filter depth to effectively eliminate the dominant ISI and reflection based error components.

  1. High Frequency Design Considerations for the Large Detector Number and Small Form Factor Dual Electron Spectrometer of the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Kujawski, Joseph T.; Gliese, Ulrik B.; Cao, N. T.; Zeuch, M. A.; White, D.; Chornay, D. J; Lobell, J. V.; Avanov, L. A.; Barrie, A. C.; Mariano, A. J.; hide

    2015-01-01

    Each half of the Dual Electron Spectrometer (DES) of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission utilizes a microchannel plate Chevron stack feeding 16 separate detection channels each with a dedicated anode and amplifier/discriminator chip. The desire to detect events on a single channel with a temporal spacing of 100 ns and a fixed dead-time drove our decision to use an amplifier/discriminator with a very fast (GHz class) front end. Since the inherent frequency response of each pulse in the output of the DES microchannel plate system also has frequency components above a GHz, this produced a number of design constraints not normally expected in electronic systems operating at peak speeds of 10 MHz. Additional constraints are imposed by the geometry of the instrument requiring all 16 channels along with each anode and amplifier/discriminator to be packaged in a relatively small space. We developed an electrical model for board level interactions between the detector channels to allow us to design a board topology which gave us the best detection sensitivity and lowest channel to channel crosstalk. The amplifier/discriminator output was designed to prevent the outputs from one channel from producing triggers on the inputs of other channels. A number of Radio Frequency design techniques were then applied to prevent signals from other subsystems (e.g. the high voltage power supply, command and data handling board, and Ultraviolet stimulation for the MCP) from generating false events. These techniques enabled us to operate the board at its highest sensitivity when operated in isolation and at very high sensitivity when placed into the overall system.

  2. Ground-to-satellite quantum teleportation.

    PubMed

    Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-09-07

    An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale 'quantum internet' the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.

  3. Ground-to-satellite quantum teleportation

    NASA Astrophysics Data System (ADS)

    Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-09-01

    An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale ‘quantum internet’ the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.

  4. [The progress in retrieving land surface temperature based on thermal infrared and microwave remote sensing technologies].

    PubMed

    Zhang, Jia-Hua; Li, Xin; Yao, Feng-Mei; Li, Xian-Hua

    2009-08-01

    Land surface temperature (LST) is an important parameter in the study on the exchange of substance and energy between land surface and air for the land surface physics process at regional and global scales. Many applications of satellites remotely sensed data must provide exact and quantificational LST, such as drought, high temperature, forest fire, earthquake, hydrology and the vegetation monitor, and the models of global circulation and regional climate also need LST as input parameter. Therefore, the retrieval of LST using remote sensing technology becomes one of the key tasks in quantificational remote sensing study. Normally, in the spectrum bands, the thermal infrared (TIR, 3-15 microm) and microwave bands (1 mm-1 m) are important for retrieval of the LST. In the present paper, firstly, several methods for estimating the LST on the basis of thermal infrared (TIR) remote sensing were synthetically reviewed, i. e., the LST measured with an ground-base infrared thermometer, the LST retrieval from mono-window algorithm (MWA), single-channel algorithm (SCA), split-window techniques (SWT) and multi-channels algorithm(MCA), single-channel & multi-angle algorithm and multi-channels algorithm & multi-angle algorithm, and retrieval method of land surface component temperature using thermal infrared remotely sensed satellite observation. Secondly, the study status of land surface emissivity (epsilon) was presented. Thirdly, in order to retrieve LST for all weather conditions, microwave remotely sensed data, instead of thermal infrared data, have been developed recently, and the LST retrieval method from passive microwave remotely sensed data was also introduced. Finally, the main merits and shortcomings of different kinds of LST retrieval methods were discussed, respectively.

  5. Estimates of the location of L-type Ca2+ channels in motoneurons of different sizes: a computational study.

    PubMed

    Grande, Giovanbattista; Bui, Tuan V; Rose, P Ken

    2007-06-01

    In the presence of monoamines, L-type Ca(2+) channels on the dendrites of motoneurons contribute to persistent inward currents (PICs) that can amplify synaptic inputs two- to sixfold. However, the exact location of the L-type Ca(2+) channels is controversial, and the importance of the location as a means of regulating the input-output properties of motoneurons is unknown. In this study, we used a computational strategy developed previously to estimate the dendritic location of the L-type Ca(2+) channels and test the hypothesis that the location of L-type Ca(2+) channels varies as a function of motoneuron size. Compartmental models were constructed based on dendritic trees of five motoneurons that ranged in size from small to large. These models were constrained by known differences in PIC activation reported for low- and high-conductance motoneurons and the relationship between somatic PIC threshold and the presence or absence of tonic excitatory or inhibitory synaptic activity. Our simulations suggest that L-type Ca(2+) channels are concentrated in hotspots whose distance from the soma increases with the size of the dendritic tree. Moving the hotspots away from these sites (e.g., using the hotspot locations from large motoneurons on intermediate-sized motoneurons) fails to replicate the shifts in PIC threshold that occur experimentally during tonic excitatory or inhibitory synaptic activity. In models equipped with a size-dependent distribution of L-type Ca(2+) channels, the amplification of synaptic current by PICs depends on motoneuron size and the location of the synaptic input on the dendritic tree.

  6. Ref Tek Ultra-low Power Seismic Recorder With Low-cost High Speed Internet Telemetry U An Advanced Real-time Seismological Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Passmore, P.; Zimakov, L.; Rozhkov, M.

    The 3rd Generation Seismic Recorder, Model 130-01, has been designed to be easier to use - more compact, lighter in weight, lower power, and requires less maintenance than other recorders. Not only is the hardware optimized for field deployments, soft- ware tools as well have been specially developed to support both field and base station operation. The 130's case is a clamshell design, inherently waterproof, with easy access to all user features on the top of the unit. The 130 has 6 input/output connectors, an LCD display, and a removable lid on top of the case. There are two Channel input connectors on a 6-channel unit (only one on a 3-channel unit), a Terminal connector for setup and control, a Net connector combining Ethernet and Serial PPP for network access, a 12 VDC Power connector, and a GPS receiver connector. The LCD display allows the user to monitor the status of various sub systems within the 130 without having a terminal device attached. For storing large amounts of data the IBM MicrodriveTM is offered. User setup, control and status monitoring is done either with a Personal Digital Assistant (PDA) (Palm OS compatible) using our Palm Field Controller (PFC) software or from a PC/workstation using our REF TEK Network Controller (RNC) GUI interface. StarBand VSAT is the premier two-way, always-on, high-speed satellite Internet ser- vice. StarBand means high-speed Internet without the constraints and congestion of land-based cable or telephone networks. StarBand uses a single satellite dish antenna for receiving and for sending dataUno telephone connection is needed. The hardware ° cost is much less than standard VSAT equipment with double or single hop transmis- sion. REF TEK protocol (RTP) provides end-to-end error-correcting data transmission and command/control. StarBandSs low cost VSAT provides two-way, always-on, high speed satellite Internet data availability. REF TEK and StarBand create the most ad- vanced real-time seismological data acquisition system. 1 Results of data transmission and availability is discussed. 2

  7. Experimental Demonstration of xor Operation in Graphene Magnetologic Gates at Room Temperature

    NASA Astrophysics Data System (ADS)

    Wen, Hua; Dery, Hanan; Amamou, Walid; Zhu, Tiancong; Lin, Zhisheng; Shi, Jing; Žutić, Igor; Krivorotov, Ilya; Sham, L. J.; Kawakami, Roland K.

    2016-04-01

    We report the experimental demonstration of a magnetologic gate built on graphene at room temperature. This magnetologic gate consists of three ferromagnetic electrodes contacting a single-layer graphene spin channel and relies on spin injection and spin transport in the graphene. We utilize electrical bias tuning of spin injection to balance the inputs and achieve "exclusive or" (xor) logic operation. Furthermore, a simulation of the device performance shows that substantial improvement towards spintronic applications can be achieved by optimizing the device parameters such as the device dimensions. This advance holds promise as a basic building block for spin-based information processing.

  8. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees.

    PubMed

    Li, Xiangxin; Samuel, Oluwarotimi Williams; Zhang, Xu; Wang, Hui; Fang, Peng; Li, Guanglin

    2017-01-07

    Most of the modern motorized prostheses are controlled with the surface electromyography (sEMG) recorded on the residual muscles of amputated limbs. However, the residual muscles are usually limited, especially after above-elbow amputations, which would not provide enough sEMG for the control of prostheses with multiple degrees of freedom. Signal fusion is a possible approach to solve the problem of insufficient control commands, where some non-EMG signals are combined with sEMG signals to provide sufficient information for motion intension decoding. In this study, a motion-classification method that combines sEMG and electroencephalography (EEG) signals were proposed and investigated, in order to improve the control performance of upper-limb prostheses. Four transhumeral amputees without any form of neurological disease were recruited in the experiments. Five motion classes including hand-open, hand-close, wrist-pronation, wrist-supination, and no-movement were specified. During the motion performances, sEMG and EEG signals were simultaneously acquired from the skin surface and scalp of the amputees, respectively. The two types of signals were independently preprocessed and then combined as a parallel control input. Four time-domain features were extracted and fed into a classifier trained by the Linear Discriminant Analysis (LDA) algorithm for motion recognition. In addition, channel selections were performed by using the Sequential Forward Selection (SFS) algorithm to optimize the performance of the proposed method. The classification performance achieved by the fusion of sEMG and EEG signals was significantly better than that obtained by single signal source of either sEMG or EEG. An increment of more than 14% in classification accuracy was achieved when using a combination of 32-channel sEMG and 64-channel EEG. Furthermore, based on the SFS algorithm, two optimized electrode arrangements (10-channel sEMG + 10-channel EEG, 10-channel sEMG + 20-channel EEG) were obtained with classification accuracies of 84.2 and 87.0%, respectively, which were about 7.2 and 10% higher than the accuracy by using only 32-channel sEMG input. This study demonstrated the feasibility of fusing sEMG and EEG signals towards improving motion classification accuracy for above-elbow amputees, which might enhance the control performances of multifunctional myoelectric prostheses in clinical application. The study was approved by the ethics committee of Institutional Review Board of Shenzhen Institutes of Advanced Technology, and the reference number is SIAT-IRB-150515-H0077.

  9. Optical power splitter for splitting high power light

    DOEpatents

    English, Jr., Ronald E.; Christensen, John J.

    1995-01-01

    An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel.

  10. Multiple channel programmable coincidence counter

    DOEpatents

    Arnone, Gaetano J.

    1990-01-01

    A programmable digital coincidence counter having multiple channels and featuring minimal dead time. Neutron detectors supply electrical pulses to a synchronizing circuit which in turn inputs derandomized pulses to an adding circuit. A random access memory circuit connected as a programmable length shift register receives and shifts the sum of the pulses, and outputs to a serializer. A counter is input by the adding circuit and downcounted by the seralizer, one pulse at a time. The decoded contents of the counter after each decrement is output to scalers.

  11. Self-Nulling Lock-in Detection Electronics for Capacitance Probe Electrometer

    NASA Technical Reports Server (NTRS)

    Blaes, Brent R.; Schaefer, Rembrandt T.

    2012-01-01

    A multi-channel electrometer voltmeter that employs self-nulling lock-in detection electronics in conjunction with a mechanical resonator with noncontact voltage sensing electrodes has been developed for space-based measurement of an Internal Electrostatic Discharge Monitor (IESDM). The IESDM is new sensor technology targeted for integration into a Space Environmental Monitor (SEM) subsystem used for the characterization and monitoring of deep dielectric charging on spacecraft. Use of an AC-coupled lock-in amplifier with closed-loop sense-signal nulling via generation of an active guard-driving feedback voltage provides the resolution, accuracy, linearity and stability needed for long-term space-based measurement of the IESDM. This implementation relies on adjusting the feedback voltage to drive the sense current received from the resonator s variable-capacitance-probe voltage transducer to approximately zero, as limited by the signal-to-noise performance of the loop electronics. The magnitude of the sense current is proportional to the difference between the input voltage being measured and the feedback voltage, which matches the input voltage when the sense current is zero. High signal-to-noise-ratio (SNR) is achieved by synchronous detection of the sense signal using the correlated reference signal derived from the oscillator circuit that drives the mechanical resonator. The magnitude of the feedback voltage, while the loop is in a settled state with essentially zero sense current, is an accurate estimate of the input voltage being measured. This technique has many beneficial attributes including immunity to drift, high linearity, high SNR from synchronous detection of a single-frequency carrier selected to avoid potentially noisy 1/f low-frequency spectrum of the signal-chain electronics, and high accuracy provided through the benefits of a driven shield encasing the capacitance- probe transducer and guarded input triaxial lead-in. Measurements obtained from a 2- channel prototype electrometer have demonstrated good accuracy (|error| < 0.2 V) and high stability. Twenty-four-hour tests have been performed with virtually no drift. Additionally, 5,500 repeated one-second measurements of 100 V input were shown to be approximately normally distributed with a standard deviation of 140 mV.

  12. Thermal Aspects of Using Alternative Nuclear Fuels in Supercritical Water-Cooled Reactors

    NASA Astrophysics Data System (ADS)

    Grande, Lisa Christine

    A SuperCritical Water-cooled Nuclear Reactor (SCWR) is a Generation IV concept currently being developed worldwide. Unique to this reactor type is the use of light-water coolant above its critical point. The current research presents a thermal-hydraulic analysis of a single fuel channel within a Pressure Tube (PT)-type SCWR with a single-reheat cycle. Since this reactor is in its early design phase many fuel-channel components are being investigated in various combinations. Analysis inputs are: steam cycle, Axial Heat Flux Profile (AHFP), fuel-bundle geometry, and thermophysical properties of reactor coolant, fuel sheath and fuel. Uniform and non-uniform AHFPs for average channel power were applied to a variety of alternative fuels (mixed oxide, thorium dioxide, uranium dicarbide, uranium nitride and uranium carbide) enclosed in an Inconel-600 43-element bundle. The results depict bulk-fluid, outer-sheath and fuel-centreline temperature profiles together with the Heat Transfer Coefficient (HTC) profiles along the heated length of fuel channel. The objective is to identify the best options in terms of fuel, sheath material and AHFPS in which the outer-sheath and fuel-centreline temperatures will be below the accepted temperature limits of 850°C and 1850°C respectively. The 43-element Inconel-600 fuel bundle is suitable for SCWR use as the sheath-temperature design limit of 850°C was maintained for all analyzed cases at average channel power. Thoria, UC2, UN and UC fuels for all AHFPs are acceptable since the maximum fuel-centreline temperature does not exceed the industry accepted limit of 1850°C. Conversely, the fuel-centreline temperature limit was exceeded for MOX at all AHFPs, and UO2 for both cosine and downstream-skewed cosine AHFPs. Therefore, fuel-bundle modifications are required for UO2 and MOX to be feasible nuclear fuels for SCWRs.

  13. VEGA: A low-power front-end ASIC for large area multi-linear X-ray silicon drift detectors: Design and experimental characterization

    NASA Astrophysics Data System (ADS)

    Ahangarianabhari, Mahdi; Macera, Daniele; Bertuccio, Giuseppe; Malcovati, Piero; Grassi, Marco

    2015-01-01

    We present the design and the first experimental characterization of VEGA, an Application Specific Integrated Circuit (ASIC) designed to read out large area monolithic linear Silicon Drift Detectors (SDD's). VEGA consists of an analog and a digital/mixed-signal section to accomplish all the functionalities and specifications required for high resolution X-ray spectroscopy in the energy range between 500 eV and 50 keV. The analog section includes a charge sensitive preamplifier, a shaper with 3-bit digitally selectable shaping times from 1.6 μs to 6.6 μs and a peak stretcher/sample-and-hold stage. The digital/mixed-signal section includes an amplitude discriminator with coarse and fine threshold level setting, a peak discriminator and a logic circuit to fulfill pile-up rejection, signal sampling, trigger generation, channel reset and the preamplifier and discriminators disabling functionalities. A Serial Peripherical Interface (SPI) is integrated in VEGA for loading and storing all configuration parameters in an internal register within few microseconds. The VEGA ASIC has been designed and manufactured in 0.35 μm CMOS mixed-signal technology in single and 32 channel versions with dimensions of 200 μm×500 μm per channel. A minimum intrinsic Equivalent Noise Charge (ENC) of 12 electrons r.m.s. at 3.6 μs peaking time and room temperature is measured and the linearity error is between -0.9% and +0.6% in the whole input energy range. The total power consumption is 481 μW and 420 μW per channel for the single and 32 channels version, respectively. A comparison with other ASICs for X-ray SDD's shows that VEGA has a suitable low noise and offers high functionality as ADC-ready signal processing but at a power consumption that is a factor of four lower than other similar existing ASICs.

  14. Modeling of a Metal-Ferroelectric-Semiconductor Field-Effect Transistor NAND Gate

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat Duen

    2005-01-01

    Considerable research has been performed by several organizations in the use of the Metal- Ferroelectric-Semiconductor Field-Effect Transistors (MFSFET) in memory circuits. However, research has been limited in expanding the use of the MFSFET to other electronic circuits. This research project investigates the modeling of a NAND gate constructed from MFSFETs. The NAND gate is one of the fundamental building blocks of digital electronic circuits. The first step in forming a NAND gate is to develop an inverter circuit. The inverter circuit was modeled similar to a standard CMOS inverter. A n-channel MFSFET with positive polarization was used for the n-channel transistor, and a n-channel MFSFET with negative polarization was used for the p-channel transistor. The MFSFETs were simulated by using a previously developed current model which utilized a partitioned ferroelectric layer. The inverter voltage transfer curve was obtained over a standard input of zero to five volts. Then a 2-input NAND gate was modeled similar to the inverter circuit. Voltage transfer curves were obtained for the NAND gate for various configurations of input voltages. The resultant data shows that it is feasible to construct a NAND gate with MFSFET transistors.

  15. A Reward-Maximizing Spiking Neuron as a Bounded Rational Decision Maker.

    PubMed

    Leibfried, Felix; Braun, Daniel A

    2015-08-01

    Rate distortion theory describes how to communicate relevant information most efficiently over a channel with limited capacity. One of the many applications of rate distortion theory is bounded rational decision making, where decision makers are modeled as information channels that transform sensory input into motor output under the constraint that their channel capacity is limited. Such a bounded rational decision maker can be thought to optimize an objective function that trades off the decision maker's utility or cumulative reward against the information processing cost measured by the mutual information between sensory input and motor output. In this study, we interpret a spiking neuron as a bounded rational decision maker that aims to maximize its expected reward under the computational constraint that the mutual information between the neuron's input and output is upper bounded. This abstract computational constraint translates into a penalization of the deviation between the neuron's instantaneous and average firing behavior. We derive a synaptic weight update rule for such a rate distortion optimizing neuron and show in simulations that the neuron efficiently extracts reward-relevant information from the input by trading off its synaptic strengths against the collected reward.

  16. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    NASA Astrophysics Data System (ADS)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  17. Mechanisms for Selective Single-Cell Reactivation during Offline Sharp-Wave Ripples and Their Distortion by Fast Ripples.

    PubMed

    Valero, Manuel; Averkin, Robert G; Fernandez-Lamo, Ivan; Aguilar, Juan; Lopez-Pigozzi, Diego; Brotons-Mas, Jorge R; Cid, Elena; Tamas, Gabor; Menendez de la Prida, Liset

    2017-06-21

    Memory traces are reactivated selectively during sharp-wave ripples. The mechanisms of selective reactivation, and how degraded reactivation affects memory, are poorly understood. We evaluated hippocampal single-cell activity during physiological and pathological sharp-wave ripples using juxtacellular and intracellular recordings in normal and epileptic rats with different memory abilities. CA1 pyramidal cells participate selectively during physiological events but fired together during epileptic fast ripples. We found that firing selectivity was dominated by an event- and cell-specific synaptic drive, modulated in single cells by changes in the excitatory/inhibitory ratio measured intracellularly. This mechanism collapses during pathological fast ripples to exacerbate and randomize neuronal firing. Acute administration of a use- and cell-type-dependent sodium channel blocker reduced neuronal collapse and randomness and improved recall in epileptic rats. We propose that cell-specific synaptic inputs govern firing selectivity of CA1 pyramidal cells during sharp-wave ripples. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Development and comparison of multiple regression models to predict bankfull channel dimensions for use in hydrologic models

    USDA-ARS?s Scientific Manuscript database

    Bankfull hydraulic geometry relationships are used to estimate channel dimensions for streamflow simulation models, which require channel geometry data as input parameters. Often, one nationwide curve is used across the entire United States (U.S.) (e.g., in Soil and Water Assessment Tool), even tho...

  19. Towards full band colorless reception with coherent balanced receivers.

    PubMed

    Zhang, Bo; Malouin, Christian; Schmidt, Theodore J

    2012-04-23

    In addition to linear compensation of fiber channel impairments, coherent receivers also provide colorless selection of any desired data channel within multitude of incident wavelengths, without the need of a channel selecting filter. In this paper, we investigate the design requirements for colorless reception using a coherent balanced receiver, considering both the optical front end (OFE) and the transimpedance amplifier (TIA). We develop analytical models to predict the system performance as a function of receiver design parameters and show good agreement against numerical simulations. At low input signal power, an optimum local oscillator (LO) power is shown to exist where the thermal noise is balanced with the residual LO-RIN beat noise. At high input signal power, we show the dominant noise effect is the residual self-beat noise from the out of band (OOB) channels, which scales not only with the number of OOB channels and the common mode rejection ratio (CMRR) of the OFE, but also depends on the link residual chromatic dispersion (CD) and the orientation of the polarization tributaries relative to the receiver. This residual self-beat noise from OOB channels sets the lower bound for the LO power. We also investigate the limitations imposed by overload in the TIA, showing analytically that the DC current scales only with the number of OOB channels, while the differential AC current scales only with the link residual CD, which induces high peak-to-average power ratio (PAPR). Both DC and AC currents at the input to the TIA set the upper bounds for the LO power. Considering both the OFE noise limit and the TIA overload limit, we show that the receiver operating range is notably narrowed for dispersion unmanaged links, as compared to dispersion managed links. © 2012 Optical Society of America

  20. Computer Aided Synthesis or Measurement Schemes for Telemetry applications

    DTIC Science & Technology

    1997-09-02

    5.2.5. Frame structure generation The algorithm generating the frame structure should take as inputs the sampling frequency requirements of the channels...these channels into the frame structure. Generally there can be a lot of ways to divide channels among groups. The algorithm implemented in...groups) first. The algorithm uses the function "try_permutation" recursively to distribute channels among the groups, and the function "try_subtable

  1. Characterization of a Compact Water Vapor Radiometer

    NASA Astrophysics Data System (ADS)

    Gill, Ajay; Selina, Rob

    2018-01-01

    We report on laboratory test results of the Compact Water Vapor Radiometer (CWVR) prototype for the Karl G. Jansky Very Large Array (VLA), a five-channel design centered around the 22 GHz water vapor line. Fluctuations in perceptible water vapor cause fluctuations in atmospheric brightness emission, which are assumed to be proportional to phase fluctuations of the astronomical signal seen by an antenna. The design is intended to support empirical radiometric phase corrections for each baseline in the array.The dynamic range, channel isolation, and gain stability of the device were characterized. The device has a useful dynamic range of order 18 dB after calibration, and the CWVR channel isolation requirement of < -20 dB is met.For the gain stability test, the diode detectors were operated in the square-law region, and a K-band noise diode was used as the broadband input power source to the CWVR over a period of 64 hours. Results indicate that the fluctuations in output counts are negatively correlated to the CWVR enclosure ambient temperature, with a change of ~ 405 counts per 1° C change in temperature.A correction for the CWVR ambient temperature makes a considerable improvement in stability for τ > 102.6 sec. With temperature corrections, the single channel and channel difference gain stability per channel is < 2 x 10-4 over τ = 2.5 - 103 sec, which meets the < 2 x 10-4 requirement. The observable gain stability is < 2.5 x 10-4 over τ = 2.5 - 103 sec, which meets the < 2.5 x 10-4 requirement.Overall, the test results indicate that the CWVR meets required specifications for dynamic range, channel isolation, and gain stability in order to proceed with testing on a pair of VLA antennas.

  2. Single channel recording of a mitochondrial calcium uniporter.

    PubMed

    Wu, Guangyan; Li, Shunjin; Zong, Guangning; Liu, Xiaofen; Fei, Shuang; Shen, Linda; Guan, Xiangchen; Yang, Xue; Shen, Yuequan

    2018-01-29

    Mitochondrial calcium uniporter (MCU) is the pore-forming subunit of the entire uniporter complex and plays an important role in mitochondrial calcium uptake. However, the single channel recording of MCU remains controversial. Here, we expressed and purified different MCU proteins and then reconstituted them into planar lipid bilayers for single channel recording. We showed that MCU alone from Pyronema omphalodes (pMCU) is active with prominent single channel Ca 2+ currents. In sharp contrast, MCU alone from Homo sapiens (hMCU) is inactive. The essential MCU regulator (EMRE) activates hMCU, and therefore, the complex (hMCU-hEMRE) shows prominent single channel Ca 2+ currents. These single channel currents are sensitive to the specific MCU inhibitor Ruthenium Red. Our results clearly demonstrate that active MCU can conduct large amounts of calcium into the mitochondria. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio

    2017-04-01

    We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p →q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.

  4. Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels.

    PubMed

    De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio

    2017-04-21

    We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p→q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.

  5. A multi-channel isolated power supply in non-equipotential circuit

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhao, Bo-Wen; Zhang, Yan-Chi; Xie, Da

    2018-04-01

    A multi-channel isolation power supply is designed for the problems of different MOSFET or IGBT in the non-equipotential circuit in this paper. It mainly includes the square wave generation circuit, the high-frequency transformer and the three-terminal stabilized circuit. The first part is used to generate the 24V square wave, and as the input of the magnetic ring transformer. In the second part, the magnetic ring transformer consists of one input and three outputs to realize multi-channel isolation output. The third part can output different potential and realize non-equal potential function through the three-terminal stabilized chip. In addition, the multi-channel isolation power source proposed in this paper is Small size, high reliability and low price, and it is convenient for power electronic switches that operate on multiple different potentials. Therefore, the research on power supply of power electronic circuit has practical significance.

  6. Vector generator scan converter

    DOEpatents

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  7. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control.

    PubMed

    Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas

    2016-01-01

    Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature.

  8. Blind equalization with criterion with memory nonlinearity

    NASA Astrophysics Data System (ADS)

    Chen, Yuanjie; Nikias, Chrysostomos L.; Proakis, John G.

    1992-06-01

    Blind equalization methods usually combat the linear distortion caused by a nonideal channel via a transversal filter, without resorting to the a priori known training sequences. We introduce a new criterion with memory nonlinearity (CRIMNO) for the blind equalization problem. The basic idea of this criterion is to augment the Godard [or constant modulus algorithm (CMA)] cost function with additional terms that penalize the autocorrelations of the equalizer outputs. Several variations of the CRIMNO algorithms are derived, with the variations dependent on (1) whether the empirical averages or the single point estimates are used to approximate the expectations, (2) whether the recent or the delayed equalizer coefficients are used, and (3) whether the weights applied to the autocorrelation terms are fixed or are allowed to adapt. Simulation experiments show that the CRIMNO algorithm, and especially its adaptive weight version, exhibits faster convergence speed than the Godard (or CMA) algorithm. Extensions of the CRIMNO criterion to accommodate the case of correlated inputs to the channel are also presented.

  9. Improving the reliability of automated non-destructive inspection

    NASA Astrophysics Data System (ADS)

    Brierley, N.; Tippetts, T.; Cawley, P.

    2014-02-01

    In automated NDE a region of an inspected component is often interrogated several times, be it within a single data channel, across multiple channels or over the course of repeated inspections. The systematic combination of these diverse readings is recognized to provide a means to improve the reliability of the inspection, for example by enabling noise suppression. Specifically, such data fusion makes it possible to declare regions of the component defect-free to a very high probability whilst readily identifying indications. Registration, aligning input datasets to a common coordinate system, is a critical pre-computation before meaningful data fusion takes place. A novel scheme based on a multiobjective optimization is described. The developed data fusion framework, that is able to identify and rate possible indications in the dataset probabilistically, based on local data statistics, is outlined. The process is demonstrated on large data sets from the industrial ultrasonic testing of aerospace turbine disks, with major improvements in the probability of detection and probability of false call being obtained.

  10. A power-efficient ZF precoding scheme for multi-user indoor visible light communication systems

    NASA Astrophysics Data System (ADS)

    Zhao, Qiong; Fan, Yangyu; Deng, Lijun; Kang, Bochao

    2017-02-01

    In this study, we propose a power-efficient ZF precoding scheme for visible light communication (VLC) downlink multi-user multiple-input-single-output (MU-MISO) systems, which incorporates the zero-forcing (ZF) and the characteristics of VLC systems. The main idea of this scheme is that the channel matrix used to perform pseudoinverse comes from the set of optical Access Points (APs) shared by more than one user, instead of the set of all involved serving APs as the existing ZF precoding schemes often used. By doing this, the waste of power, which is caused by the transmission of one user's data in the un-serving APs, can be avoided. In addition, the size of the channel matrix needs to perform pseudoinverse becomes smaller, which helps to reduce the computation complexity. Simulation results in two scenarios show that the proposed ZF precoding scheme has higher power efficiency, better bit error rate (BER) performance and lower computation complexity compared with traditional ZF precoding schemes.

  11. Rotorcraft flight control design using quantitative feedback theory and dynamic crossfeeds

    NASA Technical Reports Server (NTRS)

    Cheng, Rendy P.

    1995-01-01

    A multi-input, multi-output controls design with robust crossfeeds is presented for a rotorcraft in near-hovering flight using quantitative feedback theory (QFT). Decoupling criteria are developed for dynamic crossfeed design and implementation. Frequency dependent performance metrics focusing on piloted flight are developed and tested on 23 flight configurations. The metrics show that the resulting design is superior to alternative control system designs using conventional fixed-gain crossfeeds and to feedback-only designs which rely on high gains to suppress undesired off-axis responses. The use of dynamic, robust crossfeeds prior to the QFT design reduces the magnitude of required feedback gain and results in performance that meets current handling qualities specifications relative to the decoupling of off-axis responses. The combined effect of the QFT feedback design following the implementation of low-order, dynamic crossfeed compensator successfully decouples ten of twelve off-axis channels. For the other two channels it was not possible to find a single, low-order crossfeed that was effective.

  12. Investigating nonlinear distortion in the photopolymer materials

    NASA Astrophysics Data System (ADS)

    Malallah, Ra'ed; Cassidy, Derek; Muniraj, Inbarasan; Zhao, Liang; Ryle, James P.; Sheridan, John T.

    2017-05-01

    Propagation and diffraction of a light beam through nonlinear materials are effectively compensated by the effect of selftrapping. The laser beam propagating through photo-sensitive polymer PVA/AA can generate a waveguide of higher refractive index in direction of the light propagation. In order to investigate this phenomenon occurring in light-sensitive photopolymer media, the behaviour of a single light beam focused on the front surface of photopolymer bulk is investigated. As part of this work the self-bending of parallel beams separated in spaces during self-writing waveguides are studied. It is shown that there is strong correlation between the intensity of the input beams and their separation distance and the resulting deformation of waveguide trajectory during channels formation. This self-channeling can be modelled numerically using a three-dimension model to describe what takes place inside the volume of a photopolymer media. Corresponding numerical simulations show good agreement with experimental observations, which confirm the validity of the numerical model that was used to simulate these experiments.

  13. CMOS Rad-Hard Front-End Electronics for Precise Sensors Measurements

    NASA Astrophysics Data System (ADS)

    Sordo-Ibáñez, Samuel; Piñero-García, Blanca; Muñoz-Díaz, Manuel; Ragel-Morales, Antonio; Ceballos-Cáceres, Joaquín; Carranza-González, Luis; Espejo-Meana, Servando; Arias-Drake, Alberto; Ramos-Martos, Juan; Mora-Gutiérrez, José Miguel; Lagos-Florido, Miguel Angel

    2016-08-01

    This paper reports a single-chip solution for the implementation of radiation-tolerant CMOS front-end electronics (FEE) for applications requiring the acquisition of base-band sensor signals. The FEE has been designed in a 0.35μm CMOS process, and implements a set of parallel conversion channels with high levels of configurability to adapt the resolution, conversion rate, as well as the dynamic input range for the required application. Each conversion channel has been designed with a fully-differential implementation of a configurable-gain instrumentation amplifier, followed by an also configurable dual-slope ADC (DS ADC) up to 16 bits. The ASIC also incorporates precise thermal monitoring, sensor conditioning and error detection functionalities to ensure proper operation in extreme environments. Experimental results confirm that the proposed topologies, in conjunction with the applied radiation-hardening techniques, are reliable enough to be used without loss in the performance in environments with an extended temperature range (between -25 and 125 °C) and a total dose beyond 300 krad.

  14. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control

    PubMed Central

    Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas

    2016-01-01

    Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature. PMID:27571209

  15. Force-Balance Dynamic Display

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T.; White, William C.

    1988-01-01

    Balance dynamic display unit (BDDU) is compact system conditioning six dynamic analog signals so they are monitored simultaneously in real time on single-trace oscilloscope. Typical BDDU oscilloscope display in scan mode shows each channel occupying one-sixth of total trace. System features two display modes usable with conventional, single-channel oscilloscope: multiplexed six-channel "bar-graph" format and single-channel display. Two-stage visual and audible limit alarm provided for each channel.

  16. Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems.

    PubMed

    Dey, Samrat; Lewellen, Thomas K; Miyaoka, Robert S; Rudell, Jacques C

    2012-01-01

    Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal reducing readout electronics in support of an 8×8 silicon photomultiplier array. The row/column/diagonal summation circuit significantly reduces the number of required channels, reducing the cost of subsequent digitizing electronics. Current amplifiers are used with a single input from each SiPM cathode. This approach helps to reduce the detector loading, while generating all the necessary row, column and diagonal addressing information. In addition, the single current amplifier used in our Pulse-Positioning architecture facilitates the extraction of pulse timing information. Other components under design at present include a current-mode comparator which enables threshold detection for dark noise current reduction, a transimpedance amplifier and a variable output impedance I/O driver which adapts to a wide range of loading conditions between the ASIC and lines with the off-chip Analog-to-Digital Converters (ADCs).

  17. Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems

    PubMed Central

    Dey, Samrat; Lewellen, Thomas K.; Miyaoka, Robert S.; Rudell, Jacques C.

    2013-01-01

    Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal reducing readout electronics in support of an 8×8 silicon photomultiplier array. The row/column/diagonal summation circuit significantly reduces the number of required channels, reducing the cost of subsequent digitizing electronics. Current amplifiers are used with a single input from each SiPM cathode. This approach helps to reduce the detector loading, while generating all the necessary row, column and diagonal addressing information. In addition, the single current amplifier used in our Pulse-Positioning architecture facilitates the extraction of pulse timing information. Other components under design at present include a current-mode comparator which enables threshold detection for dark noise current reduction, a transimpedance amplifier and a variable output impedance I/O driver which adapts to a wide range of loading conditions between the ASIC and lines with the off-chip Analog-to-Digital Converters (ADCs). PMID:24301987

  18. Low order H∞ optimal control for ACFA blended wing body aircraft

    NASA Astrophysics Data System (ADS)

    Haniš, T.; Kucera, V.; Hromčík, M.

    2013-12-01

    Advanced nonconvex nonsmooth optimization techniques for fixed-order H∞ robust control are proposed in this paper for design of flight control systems (FCS) with prescribed structure. Compared to classical techniques - tuning of and successive closures of particular single-input single-output (SISO) loops like dampers, attitude stabilizers, etc. - all loops are designed simultaneously by means of quite intuitive weighting filters selection. In contrast to standard optimization techniques, though (H2, H∞ optimization), the resulting controller respects the prescribed structure in terms of engaged channels and orders (e. g., proportional (P), proportional-integral (PI), and proportional-integralderivative (PID) controllers). In addition, robustness with regard to multimodel uncertainty is also addressed which is of most importance for aerospace applications as well. Such a way, robust controllers for various Mach numbers, altitudes, or mass cases can be obtained directly, based only on particular mathematical models for respective combinations of the §ight parameters.

  19. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6

    PubMed Central

    Gootenberg, Jonathan S.; Abudayyeh, Omar O.; Kellner, Max J.; Joung, Julia; Collins, James J.; Zhang, Feng

    2018-01-01

    Rapid detection of nucleic acids is integral for clinical diagnostics and biotechnological applications. We recently developed a platform termed SHERLOCK (Specific High Sensitivity Enzymatic Reporter UnLOCKing) that combines isothermal pre-amplification with Cas13 to detect single molecules of RNA or DNA. Through characterization of CRISPR enzymology and application development, we report here four advances integrated into SHERLOCKv2: 1) 4-channel single reaction multiplexing using orthogonal CRISPR enzymes; 2) quantitative measurement of input down to 2 aM; 3) 3.5-fold increase in signal sensitivity by combining Cas13 with Csm6, an auxilary CRISPR-associated enzyme; and 4) lateral flow read-out. SHERLOCKv2 can detect Dengue or Zika virus ssRNA as well as mutations in patient liquid biopsy samples via lateral flow, highlighting its potential as a multiplexable, portable, rapid, and quantitative detection platform of nucleic acids. PMID:29449508

  20. Issues associated with modelling of proton exchange membrane fuel cell by computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Bednarek, Tomasz; Tsotridis, Georgios

    2017-03-01

    The objective of the current study is to highlight possible limitations and difficulties associated with Computational Fluid Dynamics in PEM single fuel cell modelling. It is shown that an appropriate convergence methodology should be applied for steady-state solutions, due to inherent numerical instabilities. A single channel fuel cell model has been taken as numerical example. Results are evaluated for quantitative as well qualitative points of view. The contribution to the polarization curve of the different fuel cell components such as bi-polar plates, gas diffusion layers, catalyst layers and membrane was investigated via their effects on the overpotentials. Furthermore, the potential losses corresponding to reaction kinetics, due to ohmic and mas transport limitations and the effect of the exchange current density and open circuit voltage, were also investigated. It is highlighted that the lack of reliable and robust input data is one of the issues for obtaining accurate results.

  1. Optical power splitter for splitting high power light

    DOEpatents

    English, R.E. Jr.; Christensen, J.J.

    1995-04-18

    An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel. 5 figs.

  2. Multiple estimation channel decoupling and optimization method based on inverse system

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Mu, Rongjun; Zhang, Xin; Deng, Yanpeng

    2018-03-01

    This paper addressed the intelligent autonomous navigation request of intelligent deformation missile, based on the intelligent deformation missile dynamics and kinematics modeling, navigation subsystem solution method and error modeling, and then focuses on the corresponding data fusion and decision fusion technology, decouples the sensitive channel of the filter input through the inverse system of design dynamics to reduce the influence of sudden change of the measurement information on the filter input. Then carrying out a series of simulation experiments, which verified the feasibility of the inverse system decoupling algorithm effectiveness.

  3. Effective seat-to-head transmissibility in whole-body vibration: Effects of posture and arm position

    NASA Astrophysics Data System (ADS)

    Rahmatalla, Salam; DeShaw, Jonathan

    2011-12-01

    Seat-to-head transmissibility is a biomechanical measure that has been widely used for many decades to evaluate seat dynamics and human response to vibration. Traditionally, transmissibility has been used to correlate single-input or multiple-input with single-output motion; it has not been effectively used for multiple-input and multiple-output scenarios due to the complexity of dealing with the coupled motions caused by the cross-axis effect. This work presents a novel approach to use transmissibility effectively for single- and multiple-input and multiple-output whole-body vibrations. In this regard, the full transmissibility matrix is transformed into a single graph, such as those for single-input and single-output motions. Singular value decomposition and maximum distortion energy theory were used to achieve the latter goal. Seat-to-head transmissibility matrices for single-input/multiple-output in the fore-aft direction, single-input/multiple-output in the vertical direction, and multiple-input/multiple-output directions are investigated in this work. A total of ten subjects participated in this study. Discrete frequencies of 0.5-16 Hz were used for the fore-aft direction using supported and unsupported back postures. Random ride files from a dozer machine were used for the vertical and multiple-axis scenarios considering two arm postures: using the armrests or grasping the steering wheel. For single-input/multiple-output, the results showed that the proposed method was very effective in showing the frequencies where the transmissibility is mostly sensitive for the two sitting postures and two arm positions. For multiple-input/multiple-output, the results showed that the proposed effective transmissibility indicated higher values for the armrest-supported posture than for the steering-wheel-supported posture.

  4. Global versus local mechanisms of temperature sensing in ion channels.

    PubMed

    Arrigoni, Cristina; Minor, Daniel L

    2018-05-01

    Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNa V ) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.

  5. Inhibition of presynaptic calcium transients in cortical inputs to the dorsolateral striatum by metabotropic GABAB and mGlu2/3 receptors

    PubMed Central

    Kupferschmidt, David A; Lovinger, David M

    2015-01-01

    Cortical inputs to the dorsolateral striatum (DLS) are dynamically regulated during skill learning and habit formation, and are dysregulated in disorders characterized by impaired action control. Therefore, a mechanistic investigation of the processes regulating corticostriatal transmission is key to understanding DLS-associated circuit function, behaviour and pathology. Presynaptic GABAB and group II metabotropic glutamate (mGlu2/3) receptors exert marked inhibitory control over corticostriatal glutamate release in the DLS, yet the signalling pathways through which they do so are unclear. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 to assess presynaptic Ca2+ in corticostriatal projections to the DLS. Using simultaneous photometric presynaptic Ca2+ and striatal field potential recordings, we report that relative to P/Q-type Ca2+ channels, N-type channels preferentially contributed to evoked presynaptic Ca2+ influx in motor cortex projections to, and excitatory transmission in, the DLS. Activation of GABAB or mGlu2/3 receptors inhibited both evoked presynaptic Ca2+ transients and striatal field potentials. mGlu2/3 receptor-mediated depression did not require functional N-type Ca2+ channels, but was attenuated by blockade of P/Q-type channels. These findings reveal presynaptic mechanisms of inhibitory modulation of corticostriatal function that probably contribute to the selection and shaping of behavioural repertoires. Key points Plastic changes at cortical inputs to the dorsolateral striatum (DLS) underlie skill learning and habit formation, so characterizing the mechanisms by which these inputs are regulated is important for understanding the neural basis of action control. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 and brain slice photometry to assess evoked presynaptic Ca2+ transients in cortical inputs to the DLS and study their regulation by GABAB and mGlu2/3 receptors. GABAB and mGlu2/3 receptor activation caused clear reductions in electrical stimulus-evoked presynaptic Ca2+ transients in corticostriatal inputs to the DLS. Functional P/Q-type voltage-gated Ca2+ channels were required for the normal inhibitory action of corticostriatal mGlu2/3 receptors. We provide direct evidence of presynaptic Ca2+ inhibition by G protein-coupled receptors at corticostriatal projections. PMID:25781000

  6. PyMUS: Python-Based Simulation Software for Virtual Experiments on Motor Unit System.

    PubMed

    Kim, Hojeong; Kim, Minjung

    2018-01-01

    We constructed a physiologically plausible computationally efficient model of a motor unit and developed simulation software that allows for integrative investigations of the input-output processing in the motor unit system. The model motor unit was first built by coupling the motoneuron model and muscle unit model to a simplified axon model. To build the motoneuron model, we used a recently reported two-compartment modeling approach that accurately captures the key cell-type-related electrical properties under both passive conditions (somatic input resistance, membrane time constant, and signal attenuation properties between the soma and the dendrites) and active conditions (rheobase current and afterhyperpolarization duration at the soma and plateau behavior at the dendrites). To construct the muscle unit, we used a recently developed muscle modeling approach that reflects the experimentally identified dependencies of muscle activation dynamics on isometric, isokinetic and dynamic variation in muscle length over a full range of stimulation frequencies. Then, we designed the simulation software based on the object-oriented programing paradigm and developed the software using open-source Python language to be fully operational using graphical user interfaces. Using the developed software, separate simulations could be performed for a single motoneuron, muscle unit and motor unit under a wide range of experimental input protocols, and a hierarchical analysis could be performed from a single channel to the entire system behavior. Our model motor unit and simulation software may represent efficient tools not only for researchers studying the neural control of force production from a cellular perspective but also for instructors and students in motor physiology classroom settings.

  7. Rhenium Disulfide Depletion-Load Inverter

    NASA Astrophysics Data System (ADS)

    McClellan, Connor; Corbet, Chris; Rai, Amritesh; Movva, Hema C. P.; Tutuc, Emanuel; Banerjee, Sanjay K.

    2015-03-01

    Many semiconducting Transition Metal Dichalcogenide (TMD) materials have been effectively used to create Field-Effect Transistor (FET) devices but have yet to be used in logic designs. We constructed a depletion-load voltage inverter using ultrathin layers of Rhenium Disulfide (ReS2) as the semiconducting channel. This ReS2 inverter was fabricated on a single micromechanically-exfoliated flake of ReS2. Electron beam lithography and physical vapor deposition were used to construct Cr/Au electrical contacts, an Alumina top-gate dielectric, and metal top-gate electrodes. By using both low (Aluminum) and high (Palladium) work-function metals as two separate top-gates on a single ReS2 flake, we create a dual-gated depletion mode (D-mode) and enhancement mode (E-mode) FETs in series. Both FETs displayed current saturation in the output characteristics as a result of the FET ``pinch-off'' mechanism and On/Off current ratios of 105. Field-effect mobilities of 23 and 17 cm2V-1s-1 and subthreshold swings of 97 and 551 mV/decade were calculated for the E-mode and D-mode FETs, respectively. With a supply voltage of 1V, at low/negative input voltages the inverter output was at a high logic state of 900 mV. Conversely with high/positive input voltages, the inverter output was at a low logic state of 500 mV. The inversion of the input signal demonstrates the potential for using ReS2 in future integrated circuit designs and the versatility of depletion-load logic devices for TMD research. NRI SWAN Center and ARL STTR Program.

  8. Single Nisoldipine-Sensitive Calcium Channels in Smooth Muscle Cells Isolated from Rabbit Mesenteric Artery

    NASA Astrophysics Data System (ADS)

    Worley, Jennings F.; Deitmer, Joachim W.; Nelson, Mark T.

    1986-08-01

    Single smooth muscle cells were enzymatically isolated from the rabbit mesenteric artery. At physiological levels of external Ca, these cells were relaxed and contracted on exposure to norepinephrine, caffeine, or high levels of potassium. The patch-clamp technique was used to measure unitary currents through single channels in the isolated cells. Single channels were selective for divalent cations and exhibited two conductance levels, 8 pS and 15 pS. Both types of channels were voltage-dependent, and channel activity occurred at potentials positive to -40 mV. The activity of both channel types was almost completely inhibited by 50 nM nisoldipine. These channels appear to be the pathways for voltage-dependent Ca influx in vascular smooth muscle and may be the targets of the clinically used dihydropyridines.

  9. Dual-Input AND Gate From Single-Channel Thin-Film FET

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Pinto, N. J.; Perez, R.; Mueller, C. H.

    2008-01-01

    A regio-regular poly(3-hexylthiophene) (RRP3HT) thin-film transistor having a split-gate architecture has been fabricated on a doped silicon/silicon nitride substrate and characterized. RRP3HT is a semiconducting polymer that has a carrier mobility and on/off ratio when used in a field effect transistor (FET) configuration. This commercially available polymer is very soluble in common organic solvents and is easily processed to form uniform thin films. The most important polymer-based device fabricated and studied is the FET, since it forms the building block in logic circuits and switches for active matrix (light-emitting-diode) (LED) displays, smart cards, and radio frequency identification (RFID) cards.

  10. Two-mode division multiplexing in a silicon-on-insulator ring resonator.

    PubMed

    Dorin, Bryce A; Ye, Winnie N

    2014-02-24

    Mode-division multiplexing (MDM) is an emerging multiple-input multiple-output method, utilizing multimode waveguides to increase channel numbers. In the past, silicon-on-insulator (SOI) devices have been primarily focused on single-mode waveguides. We present the design and fabrication of a two-mode SOI ring resonator for MDM systems. By optimizing the device parameters, we have ensured that each mode is treated equally within the ring. Using adiabatic Bezier curves in the ring bends, our ring demonstrated a signal-to-crosstalk ratio above 18 dB for both modes at the through and drop ports. We conclude that the ring resonator has the potential for filtering and switching for MDM systems on SOI.

  11. Integrator Circuitry for Single Channel Radiation Detector

    NASA Technical Reports Server (NTRS)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2008-01-01

    Input circuitry is provided for a high voltage operated radiation detector to receive pulses from the detector having a rise time in the range of from about one nanosecond to about ten nanoseconds. An integrator circuit, which utilizes current feedback, receives the incoming charge from the radiation detector and creates voltage by integrating across a small capacitor. The integrator utilizes an amplifier which closely follows the voltage across the capacitor to produce an integrator output pulse with a peak value which may be used to determine the energy which produced the pulse. The pulse width of the output is stretched to approximately 50 to 300 nanoseconds for use by subsequent circuits which may then use amplifiers with lower slew rates.

  12. Investigation of the transport shortfall in Alcator C-Mod L-mode plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, N. T.; White, A. E.; Greenwald, M.

    2013-03-15

    A so-called 'transport shortfall,' where ion and electron heat fluxes and turbulence are underpredicted by gyrokinetic codes, has been robustly identified in DIII-D L-mode plasmas for {rho}>0.55[T. L. Rhodes et al., Nucl. Fusion 51(6), 063022 (2011); and C. Holland et al., Phys. Plasmas 16(5), 052301 (2009)]. To probe the existence of a transport shortfall across different tokamaks, a dedicated scan of auxiliary heated L-mode discharges in Alcator C-Mod are studied in detail with nonlinear gyrokinetic simulations for the first time. Two discharges, only differing by the amount of auxiliary heating are investigated using both linear and nonlinear simulation of themore » GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)]. Nonlinear gyrokinetic simulation of the low and high input power discharges reveals a discrepancy between simulation and experiment in only the electron heat flux channel of the low input power discharge. However, both discharges demonstrate excellent agreement in the ion heat flux channel, and the high input power discharge demonstrates simultaneous agreement with experiment in both the electron and ion heat flux channels. A summary of linear and nonlinear gyrokinetic results and a discussion of possible explanations for the agreement/disagreement in each heat flux channel is presented.« less

  13. SCSI Communication Test Bus

    NASA Technical Reports Server (NTRS)

    Hua, Chanh V.; D'Ambrose, John J.; Jaworski, Richard C.; Halula, Elaine M.; Thornton, David N.; Heligman, Robert L.; Turner, Michael R.

    1990-01-01

    Small Computer System Interface (SCSI) communication test bus provides high-data-rate, standard interconnection enabling communication among International Business Machines (IBM) Personal System/2 Micro Channel, other devices connected to Micro Channel, test equipment, and host computer. Serves primarily as nonintrusive input/output attachment to PS/2 Micro Channel bus, providing rapid communication for debugger. Opens up possibility of using debugger in real-time applications.

  14. Spin distribution of evaporation residues formed in complete and incomplete fusion in 16O+154Sm system

    NASA Astrophysics Data System (ADS)

    Singh, D.; Linda, Sneha B.; Giri, Pankaj K.; Mahato, Amritraj; Tripathi, R.; Kumar, Harish; Afzal Ansari, M.; Sathik, N. P. M.; Ali, Rahbar; Kumar, Rakesh; Muralithar, S.; Singh, R. P.

    2017-11-01

    Spin distributions for several evaporation residues populated in the 16O+154Sm system have been measured at projectile energy ≈ 6.2 MeV/A by using the charged particle-γ-coincidence technique. The measured spin distributions of the evaporation residues populated through incomplete fusion associated with 'fast' α and 2α-emission channels are found to be entirely different from fusion-evaporation channels. It is observed that the mean input angular momentum for the evaporation residues formed in incomplete fusion channel is relatively higher than that observed for evaporation residues in complete fusion channels. The feeding intensity profile of evaporation residues populated through complete fusion and incomplete fusion have also been studied. The incomplete fusion channels are found to have narrow range feeding only for high spin states, while complete fusion channels are strongly fed over a broad spin range and widely populated. Comparison of present results with earlier data suggests that the mean input angular momentum values are relatively smaller for spherical target than that of deformed target using the same projectile and incident energy highlighting the role of target deformation in incomplete fusion dynamics.

  15. Design of a Multi-Channel Low-Noise Readout ASIC for CdZnTe-Based X-Ray and γ-Ray Spectrum Analyzer

    NASA Astrophysics Data System (ADS)

    Gan, B.; Wei, T.; Gao, W.; Zheng, R.; Hu, Y.

    2015-10-01

    In this paper, we report on the recent development of a 32-channel low-noise front-end readout ASIC for cadmium zinc telluride (CdZnTe) X-ray and γ-ray detectors. Each readout channel includes a charge sensitive amplifier, a CR-RC shaping amplifier and an analog output buffer. The readout ASIC is implemented using TSMC 0.35 - μm mixed-signal CMOS technology, the die size of the prototype chip is 2.2 mm ×4.8 mm. At room temperature, the equivalent noise level of a typical channel reaches 133 e- (rms) with the input parasitic capacitance of 0 pF for the average power consumption of 2.8 mW per channel. The linearity error is less than ±2% and the input energy dynamic range of the readout ASIC is from 10 keV to 1 MeV. The crosstalk between the channels is less than 0.4%. By connecting the readout ASIC to a CdZnTe detector, we obtained a γ-ray spectrum, the energy resolution is 1.8% at the 662-keV line of 137Cs source.

  16. The properties of single cones isolated from the tiger salamander retina

    PubMed Central

    Attwell, David; Werblin, Frank S.; Wilson, Martin

    1982-01-01

    1. The properties of isolated single cones were studied using the voltage-clamp technique, with two micro-electrodes inserted under visual control. 2. Single cones had input resistances, when impaled with two electrodes, of up to 270 MΩ. This is probably lower than the true membrane resistance, because of damage by the impaling electrodes. The cone capacitance was about 85 pF. 3. The cone membrane contains a time-dependent current, IB, controlled by voltage, and a separate photosensitive current. 4. The gated current, IB, is an inward current with a reversal potential around -25 mV. It is activated by hyperpolarization over the range -30 to -80 mV, and at constant voltage obeys first order (exponential) kinetics. The gating time constant is typically 50 ms at the resting potential of -45 mV, rises to 170 ms at -70 mV, and decreases for further hyperpolarization. 5. The spectral sensitivity curve of the cone light response peaks at 620 nm wave-length, and is narrower than the nomogram for vitamin A2-based pigments. The light responses of isolated cones are spectrally univariant. 6. Voltage-clamped photocurrents were recorded at various membrane potentials, for light steps of various intensities. The photocurrent reversed at around -8 mV. The time course of the photocurrent, for a given intensity, was approximately independent of voltage (although its magnitude was voltage-dependent). The shape of the peak current—voltage relation of the light-sensitive current was independent of light intensity (although its magnitude was intensity-dependent). 7. These results can be explained if: (a) light simply changes the number of photosensitive channels open, without altering the properties of an open channel; (b) the reactions controlling the production of internal transmitter, the binding of internal transmitter to the photosensitive channels, and the closing and opening of the channels are unaffected by the electric field in the cone membrane, even though at least some of these reactions take place in the membrane. 8. IB plays only a small role in shaping the cone voltage response to light. ImagesPlate 1 PMID:7131315

  17. Numerical Investigation of the Influence of the Input Air Irregularity on the Performance of Turbofan Jet Engine

    NASA Astrophysics Data System (ADS)

    Novikova, Y.; Zubanov, V.

    2018-01-01

    The article describes the numerical investigation of the input air irregularity influence of turbofan engine on its characteristics. The investigated fan has a wide-blade, an inlet diameter about 2 meters, a pressure ratio about 1.6 and the bypass ratio about 4.8. The flow irregularity was simulated by the flap input in the fan inlet channel. Input of flap was carried out by an amount of 10 to 22,5% of the input channel diameter with increments of 2,5%. A nonlinear harmonic analysis (NLH-analysis) of NUMECA Fine/Turbo software was used to study the flow irregularity. The behavior of the calculated LPC characteristics repeats the experiment behavior, but there is a quantitative difference: the calculated efficiency and pressure ratio of booster consistent with the experimental data within 3% and 2% respectively, the calculated efficiency and pressure ratio of fan duct - within 4% and 2.5% respectively. An increasing the level of air irregularity in the input stage of the fan reduces the calculated mass flow, maximum pressure ratio and efficiency. With the value of flap input 12.5%, reducing the maximum air flow is 1.44%, lowering the maximum pressure ratio is 2.6%, efficiency decreasing is 3.1%.

  18. Single-channel mixed signal blind source separation algorithm based on multiple ICA processing

    NASA Astrophysics Data System (ADS)

    Cheng, Xiefeng; Li, Ji

    2017-01-01

    Take separating the fetal heart sound signal from the mixed signal that get from the electronic stethoscope as the research background, the paper puts forward a single-channel mixed signal blind source separation algorithm based on multiple ICA processing. Firstly, according to the empirical mode decomposition (EMD), the single-channel mixed signal get multiple orthogonal signal components which are processed by ICA. The multiple independent signal components are called independent sub component of the mixed signal. Then by combining with the multiple independent sub component into single-channel mixed signal, the single-channel signal is expanded to multipath signals, which turns the under-determined blind source separation problem into a well-posed blind source separation problem. Further, the estimate signal of source signal is get by doing the ICA processing. Finally, if the separation effect is not very ideal, combined with the last time's separation effect to the single-channel mixed signal, and keep doing the ICA processing for more times until the desired estimated signal of source signal is get. The simulation results show that the algorithm has good separation effect for the single-channel mixed physiological signals.

  19. Analysis of the performance of a wireless optical multi-input to multi-output communication system.

    PubMed

    Bushuev, Denis; Arnon, Shlomi

    2006-07-01

    We investigate robust optical wireless communication in a highly scattering propagation medium using multielement optical detector arrays. The communication setup consists of synchronized multiple transmitters that send information to a receiver array and an atmospheric propagation channel. The mathematical model that best describes this scenario is multi-input to multi-output communication through stochastic slow changing channels. In this model, signals from m transmitters are received by n receiver-detectors. The channel transfer function matrix is G, and its size is n x m. G(i,j) is the transfer function from transmitter i to detector j, and m > or = n. We adopt a quasi-stationary approach in which the channel time variation has a negligible effect on communication performance over a burst. The G matrix is calculated on the basis of the optical transfer function of the atmospheric channel (composed of aerosol and turbulence elements) and the receiver's optics. In this work we derive a performance model using environmental data, such as documented turbulence and aerosol models and noise statistics. We also present the results of simulations conducted for the proposed detection algorithm.

  20. Networked iterative learning control design for discrete-time systems with stochastic communication delay in input and output channels

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Ruan, Xiaoe

    2017-07-01

    This paper develops two kinds of derivative-type networked iterative learning control (NILC) schemes for repetitive discrete-time systems with stochastic communication delay occurred in input and output channels and modelled as 0-1 Bernoulli-type stochastic variable. In the two schemes, the delayed signal of the current control input is replaced by the synchronous input utilised at the previous iteration, whilst for the delayed signal of the system output the one scheme substitutes it by the synchronous predetermined desired trajectory and the other takes it by the synchronous output at the previous operation, respectively. In virtue of the mathematical expectation, the tracking performance is analysed which exhibits that for both the linear time-invariant and nonlinear affine systems the two kinds of NILCs are convergent under the assumptions that the probabilities of communication delays are adequately constrained and the product of the input-output coupling matrices is full-column rank. Last, two illustrative examples are presented to demonstrate the effectiveness and validity of the proposed NILC schemes.

  1. Evaluation of a novel triple-channel radiochromic film analysis procedure using EBT2.

    PubMed

    van Hoof, Stefan J; Granton, Patrick V; Landry, Guillaume; Podesta, Mark; Verhaegen, Frank

    2012-07-07

    A novel approach to read out radiochromic film was introduced recently by the manufacturer of GafChromic film. In this study, the performance of this triple-channel film dosimetry method was compared against the conventional single-red-channel film dosimetry procedure, with and without inclusion of a pre-irradiation (pre-IR) film scan, using EBT2 film and kilo- and megavoltage photon beams up to 10 Gy. When considering regions of interest averaged doses, the triple-channel method and both single-channel methods produced equivalent results. Absolute dose discrepancies between the triple-channel method, both single-channel methods and the treatment planning system calculated dose values, were no larger than 5 cGy for dose levels up to 2.2 Gy. Signal to noise in triple-channel dose images was found to be similar to signal to noise in single-channel dose images. The accuracy of resulting dose images from the triple- and single-channel methods with inclusion of pre-IR film scan was found to be similar. Results of a comparison of EBT2 data from a kilovoltage depth dose experiment to corresponding Monte Carlo depth dose data produced dose discrepancies of 9.5 ± 12 cGy and 7.6 ± 6 cGy for the single-channel method with inclusion of a pre-IR film scan and the triple-channel method, respectively. EBT2 showed to be energy sensitive at low kilovoltage energies with response differences of 11.9% and 15.6% in the red channel at 2 Gy between 50-225 kVp and 80-225 kVp photon spectra, respectively. We observed that the triple-channel method resulted in non-uniformity corrections of ±1% and consistency values of 0-3 cGy for the batches and dose levels studied. Results of this study indicate that the triple-channel radiochromic film read-out method performs at least as well as the single-channel method with inclusion of a pre-IR film scan, reduces film non-uniformity and saves time with elimination of a pre-IR film scan.

  2. Beamspace Multiple Input Multiple Output. Part II: Steerable Antennas in Mobile Ad Hoc Networks

    DTIC Science & Technology

    2016-09-01

    to the transmitter with half the channel transfer function power , since the actual receiver dwells on each channel only half the time. Fourth diagram...steering in a wireless network to maximize signal power and minimize interference [8–10]. The ability to switch beams adds another diversity dimension to...channel transfer function power , since the actual receiver dwells on each channel only half the time. Fourth diagram: The transmit array sends four

  3. Progress in Low-Power Digital Microwave Radiometer Technologies

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Kim, Edward J.

    2004-01-01

    Three component technologies were combined into a digital correlation microwave radiometer. The radiometer comprises a dual-channel X-band superheterodyne receiver, low-power high-speed cross-correlator (HSCC), three-level ADCs, and a correlated noise source (CNS). The HSCC dissipates 10 mW and operates at 500 MHz clock speed. The ADCs are implemented using ECL components and dissipate more power than desired. Thus, a low-power ADC development is underway. The new ADCs arc predicted to dissipated less than 200 mW and operate at 1 GSps with 1.5 GHz of input bandwidth. The CNS provides different input correlation values for calibration of the radiometer. The correlation channel had a null offset of 0.0008. Test results indicate that the correlation channel can be calibrated with 0.09% error in gain.

  4. Microchannel cross load array with dense parallel input

    DOEpatents

    Swierkowski, Stefan P.

    2004-04-06

    An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.

  5. Photon Counting Using Edge-Detection Algorithm

    NASA Technical Reports Server (NTRS)

    Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.

    2010-01-01

    New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1-bit comparator, which digitizes the input referenced to an adjustable threshold value. This results in four independent serial sample streams of binary 1s and 0s, which are ORed together at rates up to 10 GHz. This single serial stream is then deserialized by a factor of 16 to create 16 signal lines at a rate of 622.5 MHz or lower for input to a high-speed digital processor assembly. The new design and corresponding hardware can be employed with a quad-photon counting detector capable of handling photon rates on the order of multi-gigaphotons per second, whereas prior art was only capable of handling a single input at 1/4 the flux rate. Additionally, the hardware edge-detection algorithm has provided the ability to process 3-10 higher photon flux rates than previously possible by removing the limitation that photoncounting detector output pulses on multiple channels being ORed not overlap. Now, only the leading edges of the pulses are required to not overlap. This new photon counting digitizer hardware architecture supports a universal front end for an optical communications receiver operating at data rates from kilobits to over one gigabit per second to meet increased mission data volume requirements.

  6. ERGONOMICS ABSTRACTS 48347-48982.

    ERIC Educational Resources Information Center

    Ministry of Technology, London (England). Warren Spring Lab.

    IN THIS COLLECTION OF ERGONOMICS ABSTRACTS AND ANNOTATIONS THE FOLLOWING AREAS OF CONCERN ARE REPRESENTED--GENERAL REFERENCES, METHODS, FACILITIES, AND EQUIPMENT RELATING TO ERGONOMICS, SYSTEMS OF MAN AND MACHINES, VISUAL, AUDITORY, AND OTHER SENSORY INPUTS AND PROCESSES (INCLUDING SPEECH AND INTELLIGIBILITY), INPUT CHANNELS, BODY MEASUREMENTS,…

  7. Activation by intracellular GDP, metabolic inhibition and pinacidil of a glibenclamide-sensitive K-channel in smooth muscle cells of rat mesenteric artery.

    PubMed Central

    Zhang, H; Bolton, T B

    1995-01-01

    1. Single-channel recordings were made from cell-attached and isolated patches, and whole-cell currents were recorded under voltage clamp from single smooth muscle cells obtained by enzymic digestion of a small branch of the rat mesenteric artery. 2. In single voltage-clamped cells 1 mM uridine diphosphate (UDP) or guanidine diphosphate (GDP) added to the pipette solution, or pinacidil (100 microM) a K-channel opener (KCO) applied in the bathing solution, evoked an outward current of up to 100pA which was blocked by glibenclamide (10 microM). In single cells from which recordings were made by the 'perforated patch' (nystatin pipette) technique, metabolic inhibition by 1 mM NaCN and 10 mM 2-deoxy-glucose also evoked a similar glibenclamide-sensitive current. 3. Single K-channel activity was observed in cell-attached patches only infrequently unless the metabolism of the cell was inhibited, whereupon channel activity blocked by glibenclamide was seen; pinacidil applied to the cell evoked similar glibenclamide-sensitive channel activity. If the patch was pulled off the cell to form an isolated inside-out patch, similar glibenclamide-sensitive single-channel currents were observed in the presence of UDP and/or pinacidil to those seen in cell-attached mode; channel conductance was 20 pS (60:130 K-gradient) and openings showed no voltage-dependence and noisy inward currents, typical of the nucleoside diphosphate (NDP) activated K-channel (KNDP) seen previously in rabbit portal vein. 4. Formation of an isolated inside-out patch into an ATP-free solution did not increase the probability of channel opening which declined with time even when some single-channel activity had occurred in the cell-attached mode before detachment. However, application of 1 mM UDP or GDP, but not ATP, to inside-out patches evoked single-channel activity. Application of ATP-free solution to isolated patches, previously exposed to ATP and in which channel activity had been seen, did not evoke channel activity. 5. It is concluded that small conductance K-channels (KNDP) open in smooth muscle cells from this small artery in response to UDP or GDP acting from the inside, or pinacidil acting from the outside; the same channels open during inhibition of metabolism presumably mainly due to the rise in nucleoside diphosphates, but a fall in the ATP concentration on the inside of the channel did not by itself evoke channel activity.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7735693

  8. Method and device for measuring single-shot transient signals

    DOEpatents

    Yin, Yan

    2004-05-18

    Methods, apparatus, and systems, including computer program products, implementing and using techniques for measuring multi-channel single-shot transient signals. A signal acquisition unit receives one or more single-shot pulses from a multi-channel source. An optical-fiber recirculating loop reproduces the one or more received single-shot optical pulses to form a first multi-channel pulse train for circulation in the recirculating loop, and a second multi-channel pulse train for display on a display device. The optical-fiber recirculating loop also optically amplifies the first circulating pulse train to compensate for signal losses and performs optical multi-channel noise filtration.

  9. The wavelength-tunable tapered surface plasmon resonance fiber sensor based on separated input-output channels

    NASA Astrophysics Data System (ADS)

    Chen, Shimeng; Liu, Yun; Gao, Xiaotong; Liu, Xiuxin; Peng, Wei

    2014-11-01

    We present a wavelength-tunable tapered optics fiber surface Plasmon resonance (SPR) sensor by polishing the end faces of multimode fibers(MMF).Two hard plastic clad optical fibers joint closely and are used as the light input and output channels. Their end faces are polished to produce two oblique planes, which are coated with gold film to be the sensing surface and the front mirror. The presence of the tapered geometry formed by the two oblique planes in the orthogonal directions makes it possible to adjust incident angle through changing the tilt angles of the two end faces, so as to achieve tuning the SPR coupling wavelength-angle pair. Compared with previous researches based a tapered optic fiber probe, we report the approach theoretically increase the signal noise ratio (SNR) by separating incident and emergent light propagating in the different coordinate fiber. Since fabricating the sensing surface and the front mirror on the two fibers to replace one single fiber tip, there is more incident light can reach the sensing surface and satisfy SPR effective. In addition, this improvement in structure has advantages of large grinding and sensing area, which can lead to high sensitivity and simple manufacture process of the sensor. Experimental measurement demonstrates the sensor has a favorable SPR resonanceabsorption and the ability of measuring refractive index (RI) of aqueous solution. This novel tapered SPR sensor has the potential to be applied to the biological sensing field.

  10. Spike propagation through the dorsal root ganglia in an unmyelinated sensory neuron: a modeling study

    PubMed Central

    Sundt, Danielle; Gamper, Nikita

    2015-01-01

    Unmyelinated C-fibers are a major type of sensory neurons conveying pain information. Action potential conduction is regulated by the bifurcation (T-junction) of sensory neuron axons within the dorsal root ganglia (DRG). Understanding how C-fiber signaling is influenced by the morphology of the T-junction and the local expression of ion channels is important for understanding pain signaling. In this study we used biophysical computer modeling to investigate the influence of axon morphology within the DRG and various membrane conductances on the reliability of spike propagation. As expected, calculated input impedance and the amplitude of propagating action potentials were both lowest at the T-junction. Propagation reliability for single spikes was highly sensitive to the diameter of the stem axon and the density of voltage-gated Na+ channels. A model containing only fast voltage-gated Na+ and delayed-rectifier K+ channels conducted trains of spikes up to frequencies of 110 Hz. The addition of slowly activating KCNQ channels (i.e., KV7 or M-channels) to the model reduced the following frequency to 30 Hz. Hyperpolarization produced by addition of a much slower conductance, such as a Ca2+-dependent K+ current, was needed to reduce the following frequency to 6 Hz. Attenuation of driving force due to ion accumulation or hyperpolarization produced by a Na+-K+ pump had no effect on following frequency but could influence the reliability of spike propagation mutually with the voltage shift generated by a Ca2+-dependent K+ current. These simulations suggest how specific ion channels within the DRG may contribute toward therapeutic treatments for chronic pain. PMID:26334005

  11. Efficacy of bedrock erosion by subglacial water flow

    NASA Astrophysics Data System (ADS)

    Beaud, F.; Flowers, G. E.; Venditti, J. G.

    2015-09-01

    Bedrock erosion by sediment-bearing subglacial water remains little-studied, however the process is thought to contribute to bedrock erosion rates in glaciated landscapes and is implicated in the excavation of tunnel valleys and the incision of inner gorges. We adapt physics-based models of fluvial abrasion to the subglacial environment, assembling the first model designed to quantify bedrock erosion caused by transient subglacial water flow. The subglacial drainage model consists of a one-dimensional network of cavities dynamically coupled to one or several Röthlisberger channels (R-channels). The bedrock erosion model is based on the tools and cover effect, whereby particles entrained by the flow impact exposed bedrock. We explore the dependency of glacial meltwater erosion on the structure and magnitude of water input to the system, the ice geometry and the sediment supply. We find that erosion is not a function of water discharge alone, but also depends on channel size, water pressure and on sediment supply, as in fluvial systems. Modelled glacial meltwater erosion rates are one to two orders of magnitude lower than the expected rates of total glacial erosion required to produce the sediment supply rates we impose, suggesting that glacial meltwater erosion is negligible at the basin scale. Nevertheless, due to the extreme localization of glacial meltwater erosion (at the base of R-channels), this process can carve bedrock (Nye) channels. In fact, our simulations suggest that the incision of bedrock channels several centimetres deep and a few meters wide can occur in a single year. Modelled incision rates indicate that subglacial water flow can gradually carve a tunnel valley and enhance the relief or even initiate the carving of an inner gorge.

  12. Kv1 channels and neural processing in vestibular calyx afferents.

    PubMed

    Meredith, Frances L; Kirk, Matthew E; Rennie, Katherine J

    2015-01-01

    Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.

  13. Measurement of the Electroweak Single Top Quark Production Cross Section and the CKM Matrix Element $$|V_{tb}|$$ at CDF Run II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larana, Bruno Casal

    2010-01-01

    The establishment of the electroweak single top quark production at CDF is experimentally challenging. The small single top signal hidden under large uncertain background processes makes it necessary an excellent understanding of the detector and a detailed study of the processes involved. Moreover, simple counting experiments are not sufficient to extract enough information from the candidate event sample and multivariate analysis techniques are crucial to distinguish signal from background. This thesis presents the world’s most sensitive individual search, together with CDF’s Neural Network analysis, for the combined s- and t-channel single top production. This analysis uses a dataset that correspondsmore » to an integrated luminosity of 3.2fb -1, and is based on a Boosted Decision Tree method that combines information from several input variables to construct a final powerful discriminant, reaching a sensitivity to the combined single top quark production equivalent to 5.2σ. The measured combined single top quark production cross section is 2.1 +0.7 -0.6 pb assuming a top quark mass of 175 GeV/c 2. The probability that this result comes from a background-only fluctuation (p-value) is 0.0002, which corresponds to 3.5σ.« less

  14. Comparison of a single-channel EEG sleep study to polysomnography

    PubMed Central

    Lucey, Brendan P.; McLeland, Jennifer S.; Toedebusch, Cristina D.; Boyd, Jill; Morris, John C.; Landsness, Eric C.; Yamada, Kelvin; Holtzman, David M.

    2016-01-01

    Summary An accurate home sleep study to assess electroencephalography (EEG)-based sleep stages and EEG power would be advantageous for both clinical and research purposes, such as for longitudinal studies measuring changes in sleep stages over time. The purpose of this study was to compare sleep scoring of a single-channel EEG recorded simultaneously on the forehead against attended polysomnography. Participants were recruited from both a clinical sleep center and a longitudinal research study investigating cognitively-normal aging and Alzheimer's disease. Analysis for overall epoch-by-epoch agreement found strong and substantial agreement between the single-channel EEG compared to polysomnography (kappa=0.67). Slow wave activity in the frontal regions was also similar when comparing the single-channel EEG device to polysomnography. As expected, stage N1 showed poor agreement (sensitivity 0.2) due to lack of occipital electrodes. Other sleep parameters such as sleep latency and REM onset latency had decreased agreement. Participants with disrupted sleep consolidation, such as from obstructive sleep apnea, also had poor agreement. We suspect that disagreement in sleep parameters between the single-channel EEG and polysomnography is partially due to altered waveform morphology and/or poorer signal quality in the single-channel derivation. Our results show that single-channel EEG provides comparable results to polysomnography in assessing REM, combined stages N2 and N3 sleep, and several other parameters including frontal slow wave activity. The data establish that single-channel EEG can be a useful research tool. PMID:27252090

  15. Active subthreshold dendritic conductances shape the local field potential

    PubMed Central

    Ness, Torbjørn V.; Remme, Michiel W. H.

    2016-01-01

    Key points The local field potential (LFP), the low‐frequency part of extracellular potentials recorded in neural tissue, is often used for probing neural circuit activity. Interpreting the LFP signal is difficult, however.While the cortical LFP is thought mainly to reflect synaptic inputs onto pyramidal neurons, little is known about the role of the various subthreshold active conductances in shaping the LFP.By means of biophysical modelling we obtain a comprehensive qualitative understanding of how the LFP generated by a single pyramidal neuron depends on the type and spatial distribution of active subthreshold currents.For pyramidal neurons, the h‐type channels probably play a key role and can cause a distinct resonance in the LFP power spectrum.Our results show that the LFP signal can give information about the active properties of neurons and imply that preferred frequencies in the LFP can result from those cellular properties instead of, for example, network dynamics. Abstract The main contribution to the local field potential (LFP) is thought to stem from synaptic input to neurons and the ensuing subthreshold dendritic processing. The role of active dendritic conductances in shaping the LFP has received little attention, even though such ion channels are known to affect the subthreshold neuron dynamics. Here we used a modelling approach to investigate the effects of subthreshold dendritic conductances on the LFP. Using a biophysically detailed, experimentally constrained model of a cortical pyramidal neuron, we identified conditions under which subthreshold active conductances are a major factor in shaping the LFP. We found that, in particular, the hyperpolarization‐activated inward current, I h, can have a sizable effect and cause a resonance in the LFP power spectral density. To get a general, qualitative understanding of how any subthreshold active dendritic conductance and its cellular distribution can affect the LFP, we next performed a systematic study with a simplified model. We found that the effect on the LFP is most pronounced when (1) the synaptic drive to the cell is asymmetrically distributed (i.e. either basal or apical), (2) the active conductances are distributed non‐uniformly with the highest channel densities near the synaptic input and (3) when the LFP is measured at the opposite pole of the cell relative to the synaptic input. In summary, we show that subthreshold active conductances can be strongly reflected in LFP signals, opening up the possibility that the LFP can be used to characterize the properties and cellular distributions of active conductances. PMID:27079755

  16. Blind Equalization and Fading Channel Signal Recovery of OFDM Modulation

    DTIC Science & Technology

    2011-03-01

    Square LTI Linear Time Invariant MIMO Multiple-Input Multiple-Output OFDM Orthogonal Frequency-Division Multiplexing QPSK Quadrature Phase-Shift...AND FADING CHANNEL SIGNAL RECOVERY OF OFDM MODULATION by Anthony G. Stranges March 2011 Thesis Co-Advisors: Roberto Cristi Frank Kragh...Master’s Thesis 4. TITLE AND SUBTITLE Blind Equalization and Fading Channel Signal Recovery of OFDM Modulation 6. AUTHOR(S) Anthony G. Stranges

  17. Wide bandgap matrix switcher, amplifier and oscillator

    DOEpatents

    Sampayan, Stephen

    2016-08-16

    An electronic device comprising an optical gate, an electrical input an electrical output and a wide bandgap material positioned between the electrical input and the electrical output to control an amount of current flowing between the electrical input and the electrical output in response to a stimulus received at the optical gate can be used in wideband telecommunication applications in transmission of multi-channel signals.

  18. Simple, accurate formula for the average bit error probability of multiple-input multiple-output free-space optical links over negative exponential turbulence channels.

    PubMed

    Peppas, Kostas P; Lazarakis, Fotis; Alexandridis, Antonis; Dangakis, Kostas

    2012-08-01

    In this Letter we investigate the error performance of multiple-input multiple-output free-space optical communication systems employing intensity modulation/direct detection and operating over strong atmospheric turbulence channels. Atmospheric-induced strong turbulence fading is modeled using the negative exponential distribution. For the considered system, an approximate yet accurate analytical expression for the average bit error probability is derived and an efficient method for its numerical evaluation is proposed. Numerically evaluated and computer simulation results are further provided to demonstrate the validity of the proposed mathematical analysis.

  19. Switching Matrix For Optical Signals

    NASA Technical Reports Server (NTRS)

    Grove, Charles H.

    1990-01-01

    Proposed matrix of electronically controlled shutters switches signals in optical fibers between multiple input and output channels. Size, weight, and power consumption reduced. Device serves as building block for small, low-power, broad-band television- and data-signal-switching systems providing high isolation between nominally disconnected channels.

  20. Magnetic MIMO Signal Processing and Optimization for Wireless Power Transfer

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Moghadam, Mohammad R. Vedady; Zhang, Rui

    2017-06-01

    In magnetic resonant coupling (MRC) enabled multiple-input multiple-output (MIMO) wireless power transfer (WPT) systems, multiple transmitters (TXs) each with one single coil are used to enhance the efficiency of simultaneous power transfer to multiple single-coil receivers (RXs) by constructively combining their induced magnetic fields at the RXs, a technique termed "magnetic beamforming". In this paper, we study the optimal magnetic beamforming design in a multi-user MIMO MRC-WPT system. We introduce the multi-user power region that constitutes all the achievable power tuples for all RXs, subject to the given total power constraint over all TXs as well as their individual peak voltage and current constraints. We characterize each boundary point of the power region by maximizing the sum-power deliverable to all RXs subject to their minimum harvested power constraints. For the special case without the TX peak voltage and current constraints, we derive the optimal TX current allocation for the single-RX setup in closed-form as well as that for the multi-RX setup. In general, the problem is a non-convex quadratically constrained quadratic programming (QCQP), which is difficult to solve. For the case of one single RX, we show that the semidefinite relaxation (SDR) of the problem is tight. For the general case with multiple RXs, based on SDR we obtain two approximate solutions by applying time-sharing and randomization, respectively. Moreover, for practical implementation of magnetic beamforming, we propose a novel signal processing method to estimate the magnetic MIMO channel due to the mutual inductances between TXs and RXs. Numerical results show that our proposed magnetic channel estimation and adaptive beamforming schemes are practically effective, and can significantly improve the power transfer efficiency and multi-user performance trade-off in MIMO MRC-WPT systems.

  1. Method and apparatus for combinatorial logic signal processor in a digitally based high speed x-ray spectrometer

    DOEpatents

    Warburton, William K.; Zhou, Zhiquing

    1999-01-01

    A high speed, digitally based, signal processing system which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system livetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired.

  2. Hydraulic conditions of flood flows in a Polish Carpathian river subjected to variable human impacts

    NASA Astrophysics Data System (ADS)

    Radecki-Pawlik, Artur; Czech, Wiktoria; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Ruiz-Villanueva, Virginia

    2016-04-01

    Channel morphology of the Czarny Dunajec River, Polish Carpathians, has been considerably modified as a result of channelization and gravel-mining induced channel incision, and now it varies from a single-thread, incised or regulated channel to an unmanaged, multi-thread channel. We investigated effects of these distinct channel morphologies on the conditions for flood flows in a study of 25 cross-sections from the middle river course where the Czarny Dunajec receives no significant tributaries and flood discharges increase little in the downstream direction. Cross-sectional morphology, channel slope and roughness of particular cross-section parts were used as input data for the hydraulic modelling performed with the 1D steady-flow HEC-RAS model for discharges with recurrence interval from 1.5 to 50 years. The model for each cross-section was calibrated with the water level of a 20-year flood from May 2014, determined shortly after the flood on the basis of high-water marks. Results indicated that incised and channelized river reaches are typified by similar flow widths and cross-sectional flow areas, which are substantially smaller than those in the multi-thread reach. However, because of steeper channel slope in the incised reach than in the channelized reach, the three river reaches differ in unit stream power and bed shear stress, which attain the highest values in the incised reach, intermediate values in the channelized reach, and the lowest ones in the multi-thread reach. These patterns of flow power and hydraulic forces are reflected in significant differences in river competence between the three river reaches. Since the introduction of the channelization scheme 30 years ago, sedimentation has reduced its initial flow conveyance by more than half and elevated water stages at given flood discharges by about 0.5-0.7 m. This partly reflects a progressive growth of natural levees along artificially stabilized channel banks. By contrast, sediments of natural levees deposited along the multi-thread channel and subsequently eroded in the course of lateral channel migration and floodplain reworking; as a result, they do not reduce the conveyance of floodplain flows in this reach. This study was performed within the scope of the Research Project DEC-2013/09/B/ST10/00056 financed by the National Science Centre of Poland.

  3. Analog Input Data Acquisition Software

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2009-01-01

    DAQ Master Software allows users to easily set up a system to monitor up to five analog input channels and save the data after acquisition. This program was written in LabVIEW 8.0, and requires the LabVIEW runtime engine 8.0 to run the executable.

  4. Chopper-stabilized phase detector

    NASA Technical Reports Server (NTRS)

    Hopkins, P. M.

    1978-01-01

    Phase-detector circuit for binary-tracking loops and other binary-data acquisition systems minimizes effects of drift, gain imbalance, and voltage offset in detector circuitry. Input signal passes simultaneously through two channels where it is mixed with early and late codes that are alternately switched between channels. Code switching is synchronized with polarity switching of detector output of each channel so that each channel uses each detector for half time. Net result is that dc offset errors are canceled, and effect of gain imbalance is simply change in sensitivity.

  5. Performance analysis of cross-layer design with average PER constraint over MIMO fading channels

    NASA Astrophysics Data System (ADS)

    Dang, Xiaoyu; Liu, Yan; Yu, Xiangbin

    2015-12-01

    In this article, a cross-layer design (CLD) scheme for multiple-input and multiple-output system with the dual constraints of imperfect feedback and average packet error rate (PER) is presented, which is based on the combination of the adaptive modulation and the automatic repeat request protocols. The design performance is also evaluated over wireless Rayleigh fading channel. With the constraint of target PER and average PER, the optimum switching thresholds (STs) for attaining maximum spectral efficiency (SE) are developed. An effective iterative algorithm for finding the optimal STs is proposed via Lagrange multiplier optimisation. With different thresholds available, the analytical expressions of the average SE and PER are provided for the performance evaluation. To avoid the performance loss caused by the conventional single estimate, multiple outdated estimates (MOE) method, which utilises multiple previous channel estimation information, is presented for CLD to improve the system performance. It is shown that numerical simulations for average PER and SE are in consistent with the theoretical analysis and that the developed CLD with average PER constraint can meet the target PER requirement and show better performance in comparison with the conventional CLD with instantaneous PER constraint. Especially, the CLD based on the MOE method can obviously increase the system SE and reduce the impact of feedback delay greatly.

  6. Channel Size Conversion of Phi29 DNA-Packaging Nanomotor for Discrimination of Single- and Double-Stranded Nucleic Acids

    PubMed Central

    Geng, Jia; Wang, Shaoying; Fang, Huaming; Guo, Peixuan

    2013-01-01

    Nanopores have been utilized to detect the conformation and dynamics of polymers, including DNA and RNA. Biological pores are extremely reproducible at the atomic level with uniform channel sizes. The channel of the bacterial virus phi29 DNA packaging motor is a natural conduit for the transportation of double-stranded DNA (dsDNA), and has the largest diameter among the well-studied biological channels. The larger channel facilitates translocation of dsDNA, and offers more space for further channel modification and conjugation. Interestingly, the relatively large wild type channel, which translocates dsDNA, cannot detect single-stranded nucleic acids (ssDNA or ssRNA) under the current experimental conditions. Herein, we reengineered this motor channel by removing the internal loop segment of the channel. The modification resulted in two classes of channels. One class was the same size as the wild type channel, while the other class had a cross-sectional area about 60% of the wild type. This smaller channel was able to detect the real-time translocation of single stranded nucleic acids at single-molecule level. While the wild type connector exhibited a one-way traffic property with respect to dsDNA translocation, the loop deleted connector was able to translocate ssDNA and ssRNA with equal competencies from both termini. This finding of size alterations in reengineered motor channels expands the potential application of the phi29 DNA packaging motor in nanomedicine, nanobiotechnology, and high-throughput single pore DNA sequencing. PMID:23488809

  7. Contribution of sublinear and supralinear dendritic integration to neuronal computations

    PubMed Central

    Tran-Van-Minh, Alexandra; Cazé, Romain D.; Abrahamsson, Therése; Cathala, Laurence; Gutkin, Boris S.; DiGregorio, David A.

    2015-01-01

    Nonlinear dendritic integration is thought to increase the computational ability of neurons. Most studies focus on how supralinear summation of excitatory synaptic responses arising from clustered inputs within single dendrites result in the enhancement of neuronal firing, enabling simple computations such as feature detection. Recent reports have shown that sublinear summation is also a prominent dendritic operation, extending the range of subthreshold input-output (sI/O) transformations conferred by dendrites. Like supralinear operations, sublinear dendritic operations also increase the repertoire of neuronal computations, but feature extraction requires different synaptic connectivity strategies for each of these operations. In this article we will review the experimental and theoretical findings describing the biophysical determinants of the three primary classes of dendritic operations: linear, sublinear, and supralinear. We then review a Boolean algebra-based analysis of simplified neuron models, which provides insight into how dendritic operations influence neuronal computations. We highlight how neuronal computations are critically dependent on the interplay of dendritic properties (morphology and voltage-gated channel expression), spiking threshold and distribution of synaptic inputs carrying particular sensory features. Finally, we describe how global (scattered) and local (clustered) integration strategies permit the implementation of similar classes of computations, one example being the object feature binding problem. PMID:25852470

  8. Distributed parametric amplifier for RZ-DPSK signal transmission system.

    PubMed

    Xu, Xing; Zhang, Chi; Yuk, T I; Wong, Kenneth K Y

    2012-08-13

    We have experimentally demonstrated a single pump distributed parametric amplification (DPA) system for differential phase shift keying (DPSK) signal in a spool of dispersion-shifted fiber (DSF). The gain spectrum of single pump DPA is thoroughly investigated by both simulation and experiment, and a possible reference for optimal input pump power and fiber length relationship is provided to DPA based applications. Furthermore, DPSK format is compared with on-off keying (OOK) within DPA scheme. Eight WDM signal channels at 10-Gb/s are utilized, and approximately 0.5-dB power penalties at the bit-error rate (BER) of 10(-9) are achieved for return-to-zero DPSK (RZ-DPSK), comparing to larger than 1.5-dB with OOK format. In order to improve the system power efficiency, at the receiver, the pump is recycled by a photovoltaic cell and the converted energy can be used by potential low-power-consuming devices, i.e sensors or small-scale electronic circuits. Additionally, with suitable components, the whole DPA concept could be directly applied to the 1.3-μm telecommunication window along the most commonly used single-mode fiber (SMF).

  9. Properties of Single K+ and Cl− Channels in Asclepias tuberosa Protoplasts 1

    PubMed Central

    Schauf, Charles L.; Wilson, Kathryn J.

    1987-01-01

    Potassium and chloride channels were characterized in Asclepias tuberosa suspension cell derived protoplasts by patch voltage-clamp. Whole-cell currents and single channels in excised patches had linear instantaneous current-voltage relations, reversing at the Nernst potentials for K+ and Cl−, respectively. Whole cell K+ currents activated exponentially during step depolarizations, while voltage-dependent Cl− channels were activated by hyperpolarizations. Single K+ channel conductance was 40 ± 5 pS with a mean open time of 4.5 milliseconds at 100 millivolts. Potassium channels were blocked by Cs+ and tetraethylammonium, but were insensitive to 4-aminopyridine. Chloride channels had a single-channel conductance of 100 ± 17 picosiemens, mean open time of 8.8 milliseconds, and were blocked by Zn2+ and ethacrynic acid. Whole-cell Cl− currents were inhibited by abscisic acid, and were unaffected by indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid. Since internal and external composition can be controlled, patch-clamped protoplasts are ideal systems for studying the role of ion channels in plant physiology and development. Images Fig. 5 PMID:16665712

  10. TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear.

    PubMed

    Pan, Bifeng; Géléoc, Gwenaelle S; Asai, Yukako; Horwitz, Geoffrey C; Kurima, Kiyoto; Ishikawa, Kotaro; Kawashima, Yoshiyuki; Griffith, Andrew J; Holt, Jeffrey R

    2013-08-07

    Sensory transduction in auditory and vestibular hair cells requires expression of transmembrane channel-like (Tmc) 1 and 2 genes, but the function of these genes is unknown. To investigate the hypothesis that TMC1 and TMC2 proteins are components of the mechanosensitive ion channels that convert mechanical information into electrical signals, we recorded whole-cell and single-channel currents from mouse hair cells that expressed Tmc1, Tmc2, or mutant Tmc1. Cells that expressed Tmc2 had high calcium permeability and large single-channel currents, while cells with mutant Tmc1 had reduced calcium permeability and reduced single-channel currents. Cells that expressed Tmc1 and Tmc2 had a broad range of single-channel currents, suggesting multiple heteromeric assemblies of TMC subunits. The data demonstrate TMC1 and TMC2 are components of hair cell transduction channels and contribute to permeation properties. Gradients in TMC channel composition may also contribute to variation in sensory transduction along the tonotopic axis of the mammalian cochlea. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. A Two-Color Fourier Transform Mm-Wave Spectrometer for Gas Analysis Operating from 260-295 GHZ

    NASA Astrophysics Data System (ADS)

    Steber, Amanda L.; Harris, Brent J.; Lehmann, Kevin K.; Pate, Brooks H.

    2013-06-01

    We have designed a two-color mm-wave spectrometer for Fourier transform mm-wave spectroscopy that uses consumer level components for the tunable synthesizers, digital control of the pulse modulators, and digitization of the coherent free induction decay (FID). The excitation pulses are generated using an x24 active multiplier chain (AMC) that produces a peak power of 30 mW. The microwave input to the AMC is generated in a frequency up conversion circuit that accepts a microwave input frequency from about 2-4 GHz. This circuit also generates the input to the mm-wave subhamonic mixer that creates the local oscillator from a separate 2-4 GHz microwave input. Excitation pulses at two independently tunable frequencies are generated using a dual-channel source based on a low-cost, wideband synthesizer integrated circuit (Valon Technology Model 5008). The outputs of the synthesizer are pulse modulated using a PIN diode switch that is driven using the arbitrary waveform generator (AWG) output of a USB-controlled high-speed digitizer / arbitrary waveform generator combination unit (Tie Pie HS-5 530 XM). The two pulses are combined using a Wilkinson power divider before input to the up conversion circuit. The FID frequency is down converted in a two-stage mixing process to 65 MHz. The two LO frequencies used in the receiver are provided by a second Valon 5008. The FID is digitized at 200 MSamples/s using the 12-bit Tie Pie digitizer. The digital oscilloscope (and its AWG channel) and the two synthesizers use a 10 MHz reference signal from a Rubidium clock to permit time-domain signal averaging. A key feature of the digital oscilloscope is its deep memory of 32 Mpts (complemented by the 64 Mpt memory in the 240 MS/s AWG). This makes it possible to perform several one- and two-color coherent measurements, including pulse echoes and double-resonance spectroscopy, in a single "readout" experiment to speed the analysis of mm-wave rotational spectra. The spectrometer sensitivity and frequency accuracy are illustrated by high-speed measurements of OCS rotational transitions for low-abundance isotopes. Examples of pulse echo measurements to determine the collisional relaxation rate and two-color double-resonance measurements to confirm the presence of a molecular species will be illustrated using OCS as the room-temperature gas sample.

  12. Factors controlling large-wood transport in a mountain river

    NASA Astrophysics Data System (ADS)

    Ruiz-Villanueva, Virginia; Wyżga, Bartłomiej; Zawiejska, Joanna; Hajdukiewicz, Maciej; Stoffel, Markus

    2016-11-01

    As with bedload transport, wood transport in rivers is governed by several factors such as flow regime, geomorphic configuration of the channel and floodplain, or wood size and shape. Because large-wood tends to be transported during floods, safety and logistical constraints make field measurements difficult. As a result, direct observation and measurements of the conditions of wood transport are scarce. This lack of direct observations and the complexity of the processes involved in wood transport may result in an incomplete understanding of wood transport processes. Numerical modelling provides an alternative approach to addressing some of the unknowns in the dynamics of large-wood in rivers. The aim of this study is to improve the understanding of controls governing wood transport in mountain rivers, combining numerical modelling and direct field observations. By defining different scenarios, we illustrate relationships between the rate of wood transport and discharge, wood size, and river morphology. We test these relationships for a wide, multithread reach and a narrower, partially channelized single-thread reach of the Czarny Dunajec River in the Polish Carpathians. Results indicate that a wide range of quantitative information about wood transport can be obtained from a combination of numerical modelling and field observations and from document contrasting patterns of wood transport in single- and multithread river reaches. On the one hand, log diameter seems to have a greater importance for wood transport in the multithread channel because of shallower flow, lower flow velocity, and lower stream power. Hydrodynamic conditions in the single-thread channel allow transport of large-wood pieces, whereas in the multithread reach, logs with diameters similar to water depth are not being moved. On the other hand, log length also exerts strong control on wood transport, more so in the single-thread than in the multithread reach. In any case, wood transport strongly decreases with increasing piece volume, although this relation is not linear. We also document a nonlinear relationship between wood transport and flood magnitude. A threshold discharge was identified below which wood transport is negligible. This threshold is higher in the multithread reach, while in the single-thread reach floods of lower magnitude are able to transport wood downstream. Wood transport ratio increases with discharge until it reaches an upper threshold or tipping point, and then decreases or increases much more slowly. This threshold is clearly related to bankfull discharge, but it is much higher for the multithread reach than for the single-thread one. Although modelling input and field observations were taken from a specific river, our findings and conclusions are likely to be applicable to a much larger suite of (mountain) rivers.

  13. Lateral Erosion Encourages Vertical Incision in a Bimodal Alluvial River

    NASA Astrophysics Data System (ADS)

    Gran, K. B.

    2015-12-01

    Sand can have a strong impact on gravel transport, increasing gravel transport rates by orders of magnitude as sand content increases. Recent experimental work by others indicates that adding sand to an armored bed can even cause armor to break-up and mobilize. These two elements together help explain observations from a bimodal sand and gravel-bedded river, where lateral migration into sand-rich alluvium breaks up the armor layer, encouraging further incision into the bed. Detailed bedload measurements were coupled with surface and subsurface grain size analyses and cross-sectional surveys in a seasonally-incised channel carved into the upper alluvial fan of the Pasig-Potrero River at Mount Pinatubo, Philippines. Pinatubo erupted in 1991, filling valleys draining the flanks of the volcano with primarily sand-sized pyroclastic flow debris. Twenty years after the eruption, sand-rich sediment inputs are strongly seasonal, with most sediment input to the channel during the rainy season. During the dry season, flow condenses from a wide braided planform to a single-thread channel in most of the upper basin, extending several km onto the alluvial fan. This change in planform creates similar unit discharge ranges in summer and winter. Lower sediment loads in the dry season drive vertical incision until the bed is sufficiently armored. Incision proceeds downstream in a wave, with increasing sediment transport rates and decreasing grain size with distance downstream, eventually reaching a gravel-sand transition and return to a braided planform. Incision depths in the gravel-bedded section exceeded 3 meters in parts of a 4 km-long study reach, a depth too great to be explained by predictions from simple winnowing during incision. Instead, lateral migration into sand-rich alluvium provides sufficient fine sediment to break up the armor surface, allowing incision to start anew and increasing the total depth of the seasonally-incised valley. Lateral migration is recorded in a series of inset terraces within the valley. The importance of sand on channel behavior thus extends beyond transport rates, affecting the depth of incision and volume of material excavated during a rainy to dry season transition.

  14. ERGONOMICS ABSTRACTS 48983-49619.

    ERIC Educational Resources Information Center

    Ministry of Technology, London (England). Warren Spring Lab.

    THE LITERATURE OF ERGONOMICS, OR BIOTECHNOLOGY, IS CLASSIFIED INTO 15 AREAS--METHODS, SYSTEMS OF MEN AND MACHINES, VISUAL AND AUDITORY AND OTHER INPUTS AND PROCESSES, INPUT CHANNELS, BODY MEASUREMENTS, DESIGN OF CONTROLS AND INTEGRATION WITH DISPLAYS, LAYOUT OF PANELS AND CONSOLES, DESIGN OF WORK SPACE, CLOTHING AND PERSONAL EQUIPMENT, SPECIAL…

  15. Characteristics of camel-gate structures with active doping channel profiles

    NASA Astrophysics Data System (ADS)

    Tsai, Jung-Hui; Lour, Wen-Shiung; Laih, Lih-Wen; Liu, Rong-Chau; Liu, Wen-Chau

    1996-03-01

    In this paper, we demonstrate the influence of channel doping profile on the performances of camel-gate field effect transistors (CAMFETs). For comparison, single and tri-step doping channel structures with identical doping thickness products are employed, while other parameters are kept unchanged. The results of a theoretical analysis show that the single doping channel FET with lightly doping active layer has higher barrier height and drain-source saturation current. However, the transconductance is decreased. For a tri-step doping channel structure, it is found that the output drain-source saturation current and the barrier height are enhanced. Furthermore, the relatively voltage independent performances are improved. Two CAMFETs with single and tri-step doping channel structures have been fabricated and discussed. The devices exhibit nearly voltage independent transconductances of 144 mS mm -1 and 222 mS mm -1 for single and tri-step doping channel CAMFETs, respectively. The operation gate voltage may extend to ± 1.5 V for a tri-step doping channel CAMFET. In addition, the drain current densities of > 750 and 405 mA mm -1 are obtained for the tri-step and single doping CAMFETs. These experimental results are inconsistent with theoretical analysis.

  16. User's Manual for LINER: FORTRAN Code for the Numerical Simulation of Plane Wave Propagation in a Lined Two-Dimensional Channel

    NASA Technical Reports Server (NTRS)

    Reichert, R, S.; Biringen, S.; Howard, J. E.

    1999-01-01

    LINER is a system of Fortran 77 codes which performs a 2D analysis of acoustic wave propagation and noise suppression in a rectangular channel with a continuous liner at the top wall. This new implementation is designed to streamline the usage of the several codes making up LINER, resulting in a useful design tool. Major input parameters are placed in two main data files, input.inc and nurn.prm. Output data appear in the form of ASCII files as well as a choice of GNUPLOT graphs. Section 2 briefly describes the physical model. Section 3 discusses the numerical methods; Section 4 gives a detailed account of program usage, including input formats and graphical options. A sample run is also provided. Finally, Section 5 briefly describes the individual program files.

  17. Temperature manipulation of neuronal dynamics in a forebrain motor control nucleus

    PubMed Central

    Mindlin, Gabriel B.

    2017-01-01

    Different neuronal types within brain motor areas contribute to the generation of complex motor behaviors. A widely studied songbird forebrain nucleus (HVC) has been recognized as fundamental in shaping the precise timing characteristics of birdsong. This is based, among other evidence, on the stretching and the “breaking” of song structure when HVC is cooled. However, little is known about the temperature effects that take place in its neurons. To address this, we investigated the dynamics of HVC both experimentally and computationally. We developed a technique where simultaneous electrophysiological recordings were performed during temperature manipulation of HVC. We recorded spontaneous activity and found three effects: widening of the spike shape, decrease of the firing rate and change in the interspike interval distribution. All these effects could be explained with a detailed conductance based model of all the neurons present in HVC. Temperature dependence of the ionic channel time constants explained the first effect, while the second was based in the changes of the maximal conductance using single synaptic excitatory inputs. The last phenomenon, only emerged after introducing a more realistic synaptic input to the inhibitory interneurons. Two timescales were present in the interspike distributions. The behavior of one timescale was reproduced with different input balances received form the excitatory neurons, whereas the other, which disappears with cooling, could not be found assuming poissonian synaptic inputs. Furthermore, the computational model shows that the bursting of the excitatory neurons arises naturally at normal brain temperature and that they have an intrinsic delay at low temperatures. The same effect occurs at single synapses, which may explain song stretching. These findings shed light on the temperature dependence of neuronal dynamics and present a comprehensive framework to study neuronal connectivity. This study, which is based on intrinsic neuronal characteristics, may help to understand emergent behavioral changes. PMID:28829769

  18. Mutual information against correlations in binary communication channels.

    PubMed

    Pregowska, Agnieszka; Szczepanski, Janusz; Wajnryb, Eligiusz

    2015-05-19

    Explaining how the brain processing is so fast remains an open problem (van Hemmen JL, Sejnowski T., 2004). Thus, the analysis of neural transmission (Shannon CE, Weaver W., 1963) processes basically focuses on searching for effective encoding and decoding schemes. According to the Shannon fundamental theorem, mutual information plays a crucial role in characterizing the efficiency of communication channels. It is well known that this efficiency is determined by the channel capacity that is already the maximal mutual information between input and output signals. On the other hand, intuitively speaking, when input and output signals are more correlated, the transmission should be more efficient. A natural question arises about the relation between mutual information and correlation. We analyze the relation between these quantities using the binary representation of signals, which is the most common approach taken in studying neuronal processes of the brain. We present binary communication channels for which mutual information and correlation coefficients behave differently both quantitatively and qualitatively. Despite this difference in behavior, we show that the noncorrelation of binary signals implies their independence, in contrast to the case for general types of signals. Our research shows that the mutual information cannot be replaced by sheer correlations. Our results indicate that neuronal encoding has more complicated nature which cannot be captured by straightforward correlations between input and output signals once the mutual information takes into account the structure and patterns of the signals.

  19. A computer program for analyzing channel geometry

    USGS Publications Warehouse

    Regan, R.S.; Schaffranek, R.W.

    1985-01-01

    The Channel Geometry Analysis Program (CGAP) provides the capability to process, analyze, and format cross-sectional data for input to flow/transport simulation models or other computational programs. CGAP allows for a variety of cross-sectional data input formats through use of variable format specification. The program accepts data from various computer media and provides for modification of machine-stored parameter values. CGAP has been devised to provide a rapid and efficient means of computing and analyzing the physical properties of an open-channel reach defined by a sequence of cross sections. CGAP 's 16 options provide a wide range of methods by which to analyze and depict a channel reach and its individual cross-sectional properties. The primary function of the program is to compute the area, width, wetted perimeter, and hydraulic radius of cross sections at successive increments of water surface elevation (stage) from data that consist of coordinate pairs of cross-channel distances and land surface or channel bottom elevations. Longitudinal rates-of-change of cross-sectional properties are also computed, as are the mean properties of a channel reach. Output products include tabular lists of cross-sectional area, channel width, wetted perimeter, hydraulic radius, average depth, and cross-sectional symmetry computed as functions of stage; plots of cross sections; plots of cross-sectional area and (or) channel width as functions of stage; tabular lists of cross-sectional area and channel width computed as functions of stage for subdivisions of a cross section; plots of cross sections in isometric projection; and plots of cross-sectional area at a fixed stage as a function of longitudinal distance along an open-channel reach. A Command Procedure Language program and Job Control Language procedure exist to facilitate program execution on the U.S. Geological Survey Prime and Amdahl computer systems respectively. (Lantz-PTT)

  20. 3D-templated, fully automated microfluidic input/output multiplexer for endocrine tissue culture and secretion sampling.

    PubMed

    Li, Xiangpeng; Brooks, Jessica C; Hu, Juan; Ford, Katarena I; Easley, Christopher J

    2017-01-17

    A fully automated, 16-channel microfluidic input/output multiplexer (μMUX) has been developed for interfacing to primary cells and to improve understanding of the dynamics of endocrine tissue function. The device utilizes pressure driven push-up valves for precise manipulation of nutrient input and hormone output dynamics, allowing time resolved interrogation of the cells. The ability to alternate any of the 16 channels from input to output, and vice versa, provides for high experimental flexibility without the need to alter microchannel designs. 3D-printed interface templates were custom designed to sculpt the above-channel polydimethylsiloxane (PDMS) in microdevices, creating millimeter scale reservoirs and confinement chambers to interface primary murine islets and adipose tissue explants to the μMUX sampling channels. This μMUX device and control system was first programmed for dynamic studies of pancreatic islet function to collect ∼90 minute insulin secretion profiles from groups of ∼10 islets. The automated system was also operated in temporal stimulation and cell imaging mode. Adipose tissue explants were exposed to a temporal mimic of post-prandial insulin and glucose levels, while simultaneous switching between labeled and unlabeled free fatty acid permitted fluorescent imaging of fatty acid uptake dynamics in real time over a ∼2.5 hour period. Application with varying stimulation and sampling modes on multiple murine tissue types highlights the inherent flexibility of this novel, 3D-templated μMUX device. The tissue culture reservoirs and μMUX control components presented herein should be adaptable as individual modules in other microfluidic systems, such as organ-on-a-chip devices, and should be translatable to different tissues such as liver, heart, skeletal muscle, and others.

  1. Fine sediment in pools: An index of how sediment is affecting a stream channel

    Treesearch

    Tom Lisle; Sue Hilton

    1991-01-01

    One of the basic issues facing managers of fisheries watersheds is how inputs of sediment affect stream channels. In some cases we can measure and even roughly predict effects of land use on erosion and delivery of sediment from hillslopes to streams. But we are at a loss about how a given increase in sediment load will affect channel morphology, flow conditions, and...

  2. Background and tandem-pore potassium channels in magnocellular neurosecretory cells of the rat supraoptic nucleus

    PubMed Central

    Han, Jaehee; Gnatenco, Carmen; Sladek, Celia D; Kim, Donghee

    2003-01-01

    Magnocellular neurosecretory cells (MNCs) were isolated from the supraoptic nucleus of rat hypothalamus, and properties of K+ channels that may regulate the resting membrane potential and the excitability of MNCs were studied. MNCs showed large transient outward currents, typical of vasopressin- and oxytocin-releasing neurons. K+ channels in MNCs were identified by recording K+ channels that were open at rest in cell-attached and inside-out patches in symmetrical 150 mm KCl. Eight different K+ channels were identified and could be distinguished unambiguously by their single-channel kinetics and voltage-dependent rectification. Two K+ channels could be considered functional correlates of TASK-1 and TASK-3, as judged by their single-channel kinetics and high sensitivity to pHo. Three K+ channels showed properties similar to TREK-type tandem-pore K+ channels (TREK-1, TREK-2 and a novel TREK), as judged by their activation by membrane stretch, intracellular acidosis and arachidonic acid. One K+ channel was activated by application of pressure, arachidonic acid and alkaline pHi, and showed single-channel kinetics indistinguishable from those of TRAAK. One K+ channel showed strong inward rectification and single-channel conductance similar to those of a classical inward rectifier, IRK3. Finally, a K+ channel whose cloned counterpart has not yet been identified was highly sensitive to extracellular pH near the physiological range similar to those of TASK channels, and was the most active among all K+ channels. Our results show that in MNCs at rest, eight different types of K+ channels can be found and six of them belong to the tandem-pore K+ channel family. Various physiological and pathophysiological conditions may modulate these K+ channels and regulate the excitability of MNCs. PMID:12562991

  3. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording.

    PubMed

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-05-19

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.

  4. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording

    PubMed Central

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. PMID:27213382

  5. Maximum aposteriori joint source/channel coding

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Gibson, Jerry D.

    1991-01-01

    A maximum aposteriori probability (MAP) approach to joint source/channel coder design is presented in this paper. This method attempts to explore a technique for designing joint source/channel codes, rather than ways of distributing bits between source coders and channel coders. For a nonideal source coder, MAP arguments are used to design a decoder which takes advantage of redundancy in the source coder output to perform error correction. Once the decoder is obtained, it is analyzed with the purpose of obtaining 'desirable properties' of the channel input sequence for improving overall system performance. Finally, an encoder design which incorporates these properties is proposed.

  6. Minimally-Invasive Neural Interface for Distributed Wireless Electrocorticogram Recording Systems

    PubMed Central

    Chang, Sun-Il

    2018-01-01

    This paper presents a minimally-invasive neural interface for distributed wireless electrocorticogram (ECoG) recording systems. The proposed interface equips all necessary components for ECoG recording, such as the high performance front-end integrated circuits, a fabricated flexible microelectrode array, and wireless communication inside a miniaturized custom-made platform. The multiple units of the interface systems can be deployed to cover a broad range of the target brain region and transmit signals via a built-in intra-skin communication (ISCOM) module. The core integrated circuit (IC) consists of 16-channel, low-power push-pull double-gated preamplifiers, in-channel successive approximation register analog-to-digital converters (SAR ADC) with a single-clocked bootstrapping switch and a time-delayed control unit, an ISCOM module for wireless data transfer through the skin instead of a power-hungry RF wireless transmitter, and a monolithic voltage/current reference generator to support the aforementioned analog and mixed-signal circuit blocks. The IC was fabricated using 250 nm CMOS processes in an area of 3.2 × 0.9 mm2 and achieved the low-power operation of 2.5 µW per channel. Input-referred noise was measured as 5.62 µVrms for 10 Hz to 10 kHz and ENOB of 7.21 at 31.25 kS/s. The implemented system successfully recorded multi-channel neural activities in vivo from a primate and demonstrated modular expandability using the ISCOM with power consumption of 160 µW. PMID:29342103

  7. Minimally-Invasive Neural Interface for Distributed Wireless Electrocorticogram Recording Systems.

    PubMed

    Chang, Sun-Il; Park, Sung-Yun; Yoon, Euisik

    2018-01-17

    This paper presents a minimally-invasive neural interface for distributed wireless electrocorticogram (ECoG) recording systems. The proposed interface equips all necessary components for ECoG recording, such as the high performance front-end integrated circuits, a fabricated flexible microelectrode array, and wireless communication inside a miniaturized custom-made platform. The multiple units of the interface systems can be deployed to cover a broad range of the target brain region and transmit signals via a built-in intra-skin communication (ISCOM) module. The core integrated circuit (IC) consists of 16-channel, low-power push-pull double-gated preamplifiers, in-channel successive approximation register analog-to-digital converters (SAR ADC) with a single-clocked bootstrapping switch and a time-delayed control unit, an ISCOM module for wireless data transfer through the skin instead of a power-hungry RF wireless transmitter, and a monolithic voltage/current reference generator to support the aforementioned analog and mixed-signal circuit blocks. The IC was fabricated using 250 nm CMOS processes in an area of 3.2 × 0.9 mm² and achieved the low-power operation of 2.5 µW per channel. Input-referred noise was measured as 5.62 µV rms for 10 Hz to 10 kHz and ENOB of 7.21 at 31.25 kS/s. The implemented system successfully recorded multi-channel neural activities in vivo from a primate and demonstrated modular expandability using the ISCOM with power consumption of 160 µW.

  8. Toward more accurate basal boundary conditions: a new 2-D model of distributed and channelised subglacial drainage

    NASA Astrophysics Data System (ADS)

    Werder, M. A.; Hewitt, I. J.; Schoof, C.; Flowers, G. E.

    2012-04-01

    Basal boundary conditions are one of the least constrained components of today's ice sheet models. To get at these one needs to know the distributed basal water pressure. We present a new glacier drainage system model to contribute to this missing piece of the puzzle. This two dimensional mathematical/numerical model combines distributed and channelised drainage at the ice-bed interface coupled to a water storage component. Notably the model determines the location of the channels as part of the solution. This is achieved by allowing channels (modelled as R-channels) to form on any of the edges of the unstructured triangular grid used to discretise the model. The distributed system is represented by a water sheet which is a continuum description of a linked-cavity system and exchanges water with the channels along their length. Water storage is parameterised as a function of the subglacial water pressure, which can be interpreted as storage in an englacial aquifer or due to elastic processes. The parabolic equation that determines the water pressure is solved using finite elements, the time evolution of the water sheet thickness and channel diameter are governed by local differential equations that are integrated using explicit methods. To explore the model's properties, we apply it to synthetic ice sheet catchments with areas up to 3000km2. We present steady state drainage system configurations and evaluate their channel-network properties (fractal dimensions, channel spacing). We find that an arborescent channel network forms whose density depends on the water sheet conductivity relative to water input. As a further experiment, we force the model with a seasonally and diurnally varying melt water input to investigate how the modelled drainage system evolves on these time scales: a channelised system grows up glacier as meltwater is delivered to the bed in spring and collapses in autumn. Water pressure is highest just before the formation of channels and then drops. Conversely, the diurnal variations in discharge affect the drainage system morphology only slightly. Instead they lead to large water pressure variations which lag meltwater input and coincide with changes in the volume of stored water. By incorporating an evolving R-channel network within a continuum model of distributed water drainage and storage, this 2-D model succeeds in qualitatively reproducing many of the observed and postulated features of the glacier drainage system.

  9. Single-channel kinetics of BK (Slo1) channels

    PubMed Central

    Geng, Yanyan; Magleby, Karl L.

    2014-01-01

    Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1) channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM) models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD) attached to four surrounding transmembrane voltage sensing domains (VSD) and a large intracellular cytosolic domain (CTD), also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with five closed states on the upper tier and five open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states) to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states. PMID:25653620

  10. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices.

    PubMed

    Adamson, David N; Mustafi, Debarshi; Zhang, John X J; Zheng, Bo; Ismagilov, Rustem F

    2006-09-01

    This paper reports a method for the production of arrays of nanolitre plugs with distinct chemical compositions. One of the primary constraints on the use of plug-based microfluidics for large scale biological screening is the difficulty of fabricating arrays of chemically distinct plugs on the nanolitre scale. Here, using microfluidic devices with several T-junctions linked in series, a single input array of large (approximately 320 nL) plugs was split to produce 16 output arrays of smaller (approximately 20 nL) plugs; the composition and configuration of these arrays were identical to that of the input. This paper shows how the passive break-up of plugs in T-junction microchannel geometries can be used to produce a set of smaller-volume output arrays useful for chemical screening from a single large-volume array. A simple theoretical description is presented to describe splitting as a function of the Capillary number, the capillary pressure, the total pressure difference across the channel, and the geometric fluidic resistance. By accounting for these considerations, plug coalescence and plug-plug contamination can be eliminated from the splitting process and the symmetry of splitting can be preserved. Furthermore, single-outlet splitting devices were implemented with both valve- and volume-based methods for coordinating the release of output arrays. Arrays of plugs containing commercial sparse matrix screens were obtained from the presented splitting method and these arrays were used in protein crystallization trials. The techniques presented in this paper may facilitate the implementation of high-throughput chemical and biological screening.

  11. EFFECT OF GEOMORPHOLOGIC RESOLUTION ON MODELING OF RUNOFF HYDROGRAPH AND SEDIMENTOGRAPH OVER SMALL WATERSHEDS

    EPA Science Inventory

    In hydrologic models GIS interfaces are commonly used for extracting the channel network, and delineating the watershed. By overlaying soil and land use maps onto the extracted channel network, input files required by the model are prepared. However, the nature of the extracted c...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giovannetti, Vittorio; Lloyd, Seth; Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

    The Amosov-Holevo-Werner conjecture implies the additivity of the minimum Renyi entropies at the output of a channel. The conjecture is proven true for all Renyi entropies of integer order greater than two in a class of Gaussian bosonic channel where the input signal is randomly displaced or where it is coupled linearly to an external environment.

  13. All unital qubit channels are 4-noisy operations

    NASA Astrophysics Data System (ADS)

    Müller-Hermes, Alexander; Perry, Christopher

    2018-06-01

    We show that any unital qubit channel can be implemented by letting the input system interact unitarily with a four-dimensional environment in the maximally mixed state and then tracing out the environment. We also provide an example where the dimension of such an environment has to be at least 3.

  14. A decade of evaluating the ecological effects of grass filter strips on channelized agricultural headwater streams

    USDA-ARS?s Scientific Manuscript database

    Grass filter strips are a widely used conservation practice in the Midwestern United States for reducing nutrient, pesticide, and sediment inputs into agricultural streams. Previous studies have documented the effectiveness of grass filter strips in reducing the input of agricultural pollutants, bu...

  15. Comparison of dual-k spacer and single-k spacer for single NWFET and 3-stack NWFET

    NASA Astrophysics Data System (ADS)

    Ko, Hyungwoo; Kim, Jongsu; Kim, Minsoo; Kang, Myounggon; Shin, Hyungcheol

    2018-02-01

    The investigation of the Dual-k spacer through comparative analysis of single nanowire-FET(NWFET)/3-stack NWFET and underlap/overlap channel is conducted. It is known that the dug 3-stack NWFET has better delay characteristics than single NWFET with the use of high permittivity material of Cin in Dual-k spacer structure. In addition, there is no difference of delay between overlap and underlap channel when it used Dual-k spacer structure but underlap channel of Dual-k 3-stack NWFET shows better short channel immunity.

  16. Triple-server blind quantum computation using entanglement swapping

    NASA Astrophysics Data System (ADS)

    Li, Qin; Chan, Wai Hong; Wu, Chunhui; Wen, Zhonghua

    2014-04-01

    Blind quantum computation allows a client who does not have enough quantum resources or technologies to achieve quantum computation on a remote quantum server such that the client's input, output, and algorithm remain unknown to the server. Up to now, single- and double-server blind quantum computation have been considered. In this work, we propose a triple-server blind computation protocol where the client can delegate quantum computation to three quantum servers by the use of entanglement swapping. Furthermore, the three quantum servers can communicate with each other and the client is almost classical since one does not require any quantum computational power, quantum memory, and the ability to prepare any quantum states and only needs to be capable of getting access to quantum channels.

  17. 2x2 MIMO-OFDM Gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON.

    PubMed

    Deng, Lei; Pang, Xiaodan; Zhao, Ying; Othman, M B; Jensen, Jesper Bevensee; Zibar, Darko; Yu, Xianbin; Liu, Deming; Monroy, Idelfonso Tafur

    2012-02-13

    We propose a spectral efficient radio over wavelength division multiplexed passive optical network (WDM-PON) system by combining optical polarization division multiplexing (PDM) and wireless multiple input multiple output (MIMO) spatial multiplexing techniques. In our experiment, a training-based zero forcing (ZF) channel estimation algorithm is designed to compensate the polarization rotation and wireless multipath fading. A 797 Mb/s net data rate QPSK-OFDM signal with error free (<1 × 10(5)) performance and a 1.59 Gb/s net data rate 16QAM-OFDM signal with BER performance of 1.2 × 10(2) are achieved after transmission of 22.8 km single mode fiber followed by 3 m and 1 m air distances, respectively.

  18. Resource Theory of Quantum Memories and Their Faithful Verification with Minimal Assumptions

    NASA Astrophysics Data System (ADS)

    Rosset, Denis; Buscemi, Francesco; Liang, Yeong-Cherng

    2018-04-01

    We provide a complete set of game-theoretic conditions equivalent to the existence of a transformation from one quantum channel into another one, by means of classically correlated preprocessing and postprocessing maps only. Such conditions naturally induce tests to certify that a quantum memory is capable of storing quantum information, as opposed to memories that can be simulated by measurement and state preparation (corresponding to entanglement-breaking channels). These results are formulated as a resource theory of genuine quantum memories (correlated in time), mirroring the resource theory of entanglement in quantum states (correlated spatially). As the set of conditions is complete, the corresponding tests are faithful, in the sense that any non-entanglement-breaking channel can be certified. Moreover, they only require the assumption of trusted inputs, known to be unavoidable for quantum channel verification. As such, the tests we propose are intrinsically different from the usual process tomography, for which the probes of both the input and the output of the channel must be trusted. An explicit construction is provided and shown to be experimentally realizable, even in the presence of arbitrarily strong losses in the memory or detectors.

  19. Algorithm for Simulating Atmospheric Turbulence and Aeroelastic Effects on Simulator Motion Systems

    NASA Technical Reports Server (NTRS)

    Ercole, Anthony V.; Cardullo, Frank M.; Kelly, Lon C.; Houck, Jacob A.

    2012-01-01

    Atmospheric turbulence produces high frequency accelerations in aircraft, typically greater than the response to pilot input. Motion system equipped flight simulators must present cues representative of the aircraft response to turbulence in order to maintain the integrity of the simulation. Currently, turbulence motion cueing produced by flight simulator motion systems has been less than satisfactory because the turbulence profiles have been attenuated by the motion cueing algorithms. This report presents a new turbulence motion cueing algorithm, referred to as the augmented turbulence channel. Like the previous turbulence algorithms, the output of the channel only augments the vertical degree of freedom of motion. This algorithm employs a parallel aircraft model and an optional high bandwidth cueing filter. Simulation of aeroelastic effects is also an area where frequency content must be preserved by the cueing algorithm. The current aeroelastic implementation uses a similar secondary channel that supplements the primary motion cue. Two studies were conducted using the NASA Langley Visual Motion Simulator and Cockpit Motion Facility to evaluate the effect of the turbulence channel and aeroelastic model on pilot control input. Results indicate that the pilot is better correlated with the aircraft response, when the augmented channel is in place.

  20. Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones

    PubMed Central

    Higgs, Matthew H; Spain, William J

    2011-01-01

    Abstract Previous studies showed that cortical pyramidal neurones (PNs) have a dynamic spike threshold that functions as a high-pass filter, enhancing spike timing in response to high-frequency input. While it is commonly assumed that Na+ channel inactivation is the primary mechanism of threshold accommodation, the possible role of K+ channel activation in fast threshold changes has not been well characterized. The present study tested the hypothesis that low-voltage activated Kv1 channels affect threshold dynamics in layer 2–3 PNs, using α-dendrotoxin (DTX) or 4-aminopyridine (4-AP) to block these conductances. We found that Kv1 blockade reduced the dynamic changes of spike threshold in response to a variety of stimuli, including stimulus-evoked synaptic input, current steps and ramps of varied duration, and noise. Analysis of the responses to noise showed that Kv1 channels increased the coherence of spike output with high-frequency components of the stimulus. A simple model demonstrates that a dynamic spike threshold can account for this effect. Our results show that the Kv1 conductance is a major mechanism that contributes to the dynamic spike threshold and precise spike timing of cortical PNs. PMID:21911608

  1. Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations.

    PubMed

    Omoto, Jaison Jiro; Keleş, Mehmet Fatih; Nguyen, Bao-Chau Minh; Bolanos, Cheyenne; Lovick, Jennifer Kelly; Frye, Mark Arthur; Hartenstein, Volker

    2017-04-24

    The Drosophila central brain consists of stereotyped neural lineages, developmental-structural units of macrocircuitry formed by the sibling neurons of single progenitors called neuroblasts. We demonstrate that the lineage principle guides the connectivity and function of neurons, providing input to the central complex, a collection of neuropil compartments important for visually guided behaviors. One of these compartments is the ellipsoid body (EB), a structure formed largely by the axons of ring (R) neurons, all of which are generated by a single lineage, DALv2. Two further lineages, DALcl1 and DALcl2, produce neurons that connect the anterior optic tubercle, a central brain visual center, with R neurons. Finally, DALcl1/2 receive input from visual projection neurons of the optic lobe medulla, completing a three-legged circuit that we call the anterior visual pathway (AVP). The AVP bears a fundamental resemblance to the sky-compass pathway, a visual navigation circuit described in other insects. Neuroanatomical analysis and two-photon calcium imaging demonstrate that DALcl1 and DALcl2 form two parallel channels, establishing connections with R neurons located in the peripheral and central domains of the EB, respectively. Although neurons of both lineages preferentially respond to bright objects, DALcl1 neurons have small ipsilateral, retinotopically ordered receptive fields, whereas DALcl2 neurons share a large excitatory receptive field in the contralateral hemifield. DALcl2 neurons become inhibited when the object enters the ipsilateral hemifield and display an additional excitation after the object leaves the field of view. Thus, the spatial position of a bright feature, such as a celestial body, may be encoded within this pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. G4-FETs as Universal and Programmable Logic Gates

    NASA Technical Reports Server (NTRS)

    Johnson, Travis; Fijany, Amir; Mojarradi, Mohammad; Vatan, Farrokh; Toomarian, Nikzad; Kolawa, Elizabeth; Cristoloveanu, Sorin; Blalock, Benjamin

    2007-01-01

    An analysis of a patented generic silicon- on-insulator (SOI) electronic device called a G4-FET has revealed that the device could be designed to function as a universal and programmable logic gate. The universality and programmability could be exploited to design logic circuits containing fewer discrete components than are required for conventional transistor-based circuits performing the same logic functions. A G4-FET is a combination of a junction field-effect transistor (JFET) and a metal oxide/semiconductor field-effect transistor (MOSFET) superimposed in a single silicon island and can therefore be regarded as two transistors sharing the same body. A G4-FET can also be regarded as a single transistor having four gates: two side junction-based gates, a top MOS gate, and a back gate activated by biasing of the SOI substrate. Each of these gates can be used to control the conduction characteristics of the transistor; this possibility creates new options for designing analog, radio-frequency, mixed-signal, and digital circuitry. With proper choice of the specific dimensions for the gates, channels, and ancillary features of the generic G4-FET, the device could be made to function as a three-input, one-output logic gate. As illustrated by the truth table in the top part of the figure, the behavior of this logic gate would be the inverse (the NOT) of that of a majority gate. In other words, the device would function as a NOT-majority gate. By simply adding an inverter, one could obtain a majority gate. In contrast, to construct a majority gate in conventional complementary metal oxide/semiconductor (CMOS) circuitry, one would need four three-input AND gates and a four-input OR gate, altogether containing 32 transistors.

  3. Anaplerotic input is sufficient to induce time-dependent potentiation of insulin release in rat pancreatic islets.

    PubMed

    Gunawardana, Subhadra C; Liu, Yi-Jia; Macdonald, Michael J; Straub, Susanne G; Sharp, Geoffrey W G

    2004-11-01

    Nutrients that induce biphasic insulin release, such as glucose and leucine, provide acetyl-CoA and anaplerotic input in the beta-cell. The first phase of release requires increased ATP production leading to increased intracellular Ca(2+) concentration ([Ca(2+)](i)). The second phase requires increased [Ca(2+)](i) and anaplerosis. There is strong evidence to indicate that the second phase is due to augmentation of Ca(2+)-stimulated release via the K(ATP) channel-independent pathway. To test whether the phenomenon of time-dependent potentiation (TDP) has similar properties to the ATP-sensitive K(+) channel-independent pathway, we monitored the ability of different agents that provide acetyl-CoA and anaplerotic input or both of these inputs to induce TDP. The results show that anaplerotic input is sufficient to induce TDP. Interestingly, among the agents tested, the nonsecretagogue glutamine, the nonhydrolyzable analog of leucine aminobicyclo[2.2.1]heptane-2-carboxylic acid, and succinic acid methyl ester all induced TDP, and all significantly increased alpha-ketoglutarate levels in the islets. In conclusion, anaplerosis that enhances the supply and utilization of alpha-ketoglutarate in the tricarboxylic acid cycle appears to play an essential role in the generation of TDP.

  4. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, C.M.; Deeds, W.E.

    1999-07-13

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

  5. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  6. The use of dwell time cross-correlation functions to study single-ion channel gating kinetics.

    PubMed Central

    Ball, F G; Kerry, C J; Ramsey, R L; Sansom, M S; Usherwood, P N

    1988-01-01

    The derivation of cross-correlation functions from single-channel dwell (open and closed) times is described. Simulation of single-channel data for simple gating models, alongside theoretical treatment, is used to demonstrate the relationship of cross-correlation functions to underlying gating mechanisms. It is shown that time irreversibility of gating kinetics may be revealed in cross-correlation functions. Application of cross-correlation function analysis to data derived from the locust muscle glutamate receptor-channel provides evidence for multiple gateway states and time reversibility of gating. A model for the gating of this channel is used to show the effect of omission of brief channel events on cross-correlation functions. PMID:2462924

  7. Torque-Summing Brushless Motor

    NASA Technical Reports Server (NTRS)

    Vaidya, J. G.

    1986-01-01

    Torque channels function cooperatively but electrically independent for reliability. Brushless, electronically-commutated dc motor sums electromagnetic torques on four channels and applies them to single shaft. Motor operates with any combination of channels and continues if one or more of channels fail electrically. Motor employs single stator and rotor and mechanically simple; however, each of channels electrically isolated from other so that failure of one does not adversely affect others.

  8. A layered abduction model of perception: Integrating bottom-up and top-down processing in a multi-sense agent

    NASA Technical Reports Server (NTRS)

    Josephson, John R.

    1989-01-01

    A layered-abduction model of perception is presented which unifies bottom-up and top-down processing in a single logical and information-processing framework. The process of interpreting the input from each sense is broken down into discrete layers of interpretation, where at each layer a best explanation hypothesis is formed of the data presented by the layer or layers below, with the help of information available laterally and from above. The formation of this hypothesis is treated as a problem of abductive inference, similar to diagnosis and theory formation. Thus this model brings a knowledge-based problem-solving approach to the analysis of perception, treating perception as a kind of compiled cognition. The bottom-up passing of information from layer to layer defines channels of information flow, which separate and converge in a specific way for any specific sense modality. Multi-modal perception occurs where channels converge from more than one sense. This model has not yet been implemented, though it is based on systems which have been successful in medical and mechanical diagnosis and medical test interpretation.

  9. Design study report. Volume 2: Electronic unit

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The recording system discussed is required to record and reproduce wideband data from either of the two primary Earth Resources Technology Satellite sensors: Return Beam Vidicon (RBV) camera or Multi-Spectral Scanner (MSS). The camera input is an analog signal with a bandwidth from dc to 3.5 MHz; this signal is accommodated through FM recording techniques which provide a recorder signal-to-noise ratio in excess of 39 db, black-to-white signal/rms noise, over the specified bandwidth. The MSS provides, as initial output, 26 narrowband channels. These channels are multiplexed prior to transmission, or recording, into a single 15 Megabit/second digital data stream. Within the recorder, the 15 Megabit/second NRZL signal is processed through the same FM electronics as the RBV signal, but the basic FM standards are modified to provide an internal, 10.5 MHz baseland response with signal-to-noise ratio of about 25 db. Following FM demodulation, however, the MSS signal is digitally re-shaped and re-clocked so that good bit stability and signal-to-noise exist at the recorder output.

  10. NASA Tech Briefs, April 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics covered include: Gas Sensors Based on Coated and Doped Carbon Nanotubes; Tactile Robotic Topographical Mapping Without Force or Contact Sensors; Thin-Film Magnetic-Field-Response Fluid-Level Sensor for Non-Viscous Fluids; Progress in Development of Improved Ion-Channel Biosensors; Simulating Operation of a Complex Sensor Network; Using Transponders on the Moon to Increase Accuracy of GPS; Controller for Driving a Piezoelectric Actuator at Resonance; Coaxial Electric Heaters; Dual-Input AND Gate From Single-Channel Thin-Film FET; High-Density, High-Bandwidth, Multilevel Holographic Memory; Fabrication of Gate-Electrode Integrated Carbon-Nanotube Bundle Field Emitters; Hydroxide-Assisted Bonding of Ultra-Low-Expansion Glass; Photochemically Synthesized Polyimides; Optimized Carbonate and Ester-Based Li-Ion Electrolytes; Compact 6-DOF Stage for Optical Adjustments; Ultrasonic/Sonic Impacting Penetrators; Miniature, Lightweight, One-Time-Opening Valve; Supplier Management System; Improved CLARAty Functional-Layer/Decision-Layer Interface; JAVA Stereo Display Toolkit; Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool; PyPele Rewritten To Use MPI; Data Assimilation Cycling for Weather Analysis; Hydrocyclone/Filter for Concentrating Biomarkers from Soil; Activating STAT3 Alpha for Promoting Healing of Neurons; and Probing a Spray Using Frequency-Analyzed Light Scattering.

  11. In-House fabrication and Electrical characterization of planner si-nanogap

    NASA Astrophysics Data System (ADS)

    Dhahi, Th. S.; Adam, Tijjani; Hashim, U.

    2017-10-01

    Nanogap is increasingly known to be beneficial, dependable and higher sensing technology. Another possible purpose is to examine a bioactivity and study the reaction of single molecule. It is important to carefully recognize the differences between the sensor surface and electrode in order to incorporate the biological system with nanogap. Also, it crucial to examine the dielectric properties between the planar nanogap with and without a sample. Electrical concentration between the electrodes could be increased due to integrating of microfluidic channel when the sample is being used. This paper is a report on an electrical point of view of planar nanogap capacitor device with comparison of different excitation frequency with and without microfluidic channel. By using 40 nm Si nanogap devices, the sensitivity of nanogap was compared by dropping deionized water and pH 7 onto the target. Experiments were carried out in wide range of frequencies from 1 Hz to 1 MHz at room temperature with 30 mV input signal (0 V, DC, Offset). Both effects of excitation frequency on capacitance sampling with 10 µm microfluidic integration were analyzed.

  12. Modeling of a microchannel plate working in pulsed mode

    NASA Astrophysics Data System (ADS)

    Secroun, Aurelia; Mens, Alain; Segre, Jacques; Assous, Franck; Piault, Emmanuel; Rebuffie, Jean-Claude

    1997-05-01

    MicroChannel Plates (MCPs) are used in high speed cinematography systems such as MCP framing cameras and streak camera readouts. In order to know the dynamic range or the signal to noise ratio that are available in these devices, a good knowledge of the performances of the MCP is essential. The point of interest of our simulation is the working mode of the microchannel plate--that is light pulsed mode--, in which the signal level is relatively high and its duration can be shorter than the time needed to replenish the wall of the channel, when other papers mainly studied night vision applications with weak continuous and nearly single electron input signal. Also our method allows the simulation of saturation phenomena due to the large number of electrons involved, whereas the discrete models previously used for simulating pulsed mode might not be properly adapted. Here are presented the choices made in modeling the microchannel, more specifically as for the physics laws, the secondary emission parameters and the 3D- geometry. In a last part first results are shown.

  13. Controls design with crossfeeds for hovering rotorcraft using quantitative feedback theory

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Biezad, Daniel J.; Cheng, Rendy

    1996-01-01

    A multi-input, multi-output controls design with dynamic crossfeed pre-compensation is presented for rotorcraft in near-hovering flight using Quantitative Feedback Theory (QFT). The resulting closed-loop control system bandwidth allows the rotorcraft to be considered for use as an inflight simulator. The use of dynamic, robust crossfeeds prior to the QFT design reduces the magnitude of required feedback gain and results in performance that meets most handling qualities specifications relative to the decoupling of off-axis responses. Handling qualities are Level 1 for both low-gain tasks and high-gain tasks in the roll, pitch, and yaw axes except for the 10 deg/sec moderate-amplitude yaw command where the rotorcraft exhibits Level 2 handling qualities in the yaw axis caused by phase lag. The combined effect of the QFT feedback design following the implementation of low-order, dynamic crossfeed compensators successfully decouples ten of twelve off-axis channels. For the other two channels it was not possible to find a single, low-order crossfeed that was effective. This is an area to be investigated in future research.

  14. Orbital-angular-momentum mode-group multiplexed transmission over a graded-index ring-core fiber based on receive diversity and maximal ratio combining

    NASA Astrophysics Data System (ADS)

    Zhang, Junwei; Zhu, Guoxuan; Liu, Jie; Wu, Xiong; Zhu, Jiangbo; Du, Cheng; Luo, Wenyong; Chen, Yujie; Yu, Siyuan

    2018-02-01

    An orbital-angular-momentum (OAM) mode-group multiplexing (MGM) scheme based on a graded-index ring-core fiber (GIRCF) is proposed, in which a single-input two-output (or receive diversity) architecture is designed for each MG channel and simple digital signal processing (DSP) is utilized to adaptively resist the mode partition noise resulting from random intra-group mode crosstalk. There is no need of complex multiple-input multiple-output (MIMO) equalization in this scheme. Furthermore, the signal-to-noise ratio (SNR) of the received signals can be improved if a simple maximal ratio combining (MRC) technique is employed on the receiver side to efficiently take advantage of the diversity gain of receiver. Intensity-modulated direct-detection (IM-DD) systems transmitting three OAM mode groups with total 100-Gb/s discrete multi-tone (DMT) signals over a 1-km GIRCF and two OAM mode groups with total 40-Gb/s DMT signals over an 18-km GIRCF are experimentally demonstrated, respectively, to confirm the feasibility of our proposed OAM-MGM scheme.

  15. Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves.

    PubMed

    Bierer, Julie Arenberg; Faulkner, Kathleen F

    2010-04-01

    The goal of this study was to evaluate the ability of a threshold measure, made with a restricted electrode configuration, to identify channels exhibiting relatively poor spatial selectivity. With a restricted electrode configuration, channel-to-channel variability in threshold may reflect variations in the interface between the electrodes and auditory neurons (i.e., nerve survival, electrode placement, and tissue impedance). These variations in the electrode-neuron interface should also be reflected in psychophysical tuning curve (PTC) measurements. Specifically, it is hypothesized that high single-channel thresholds obtained with the spatially focused partial tripolar (pTP) electrode configuration are predictive of wide or tip-shifted PTCs. Data were collected from five cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp., Sylmar, CA). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the pTP configuration for which a fraction of current (sigma) from a center-active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. Forward-masked PTCs were obtained for channels with the highest, lowest, and median tripolar (sigma = 1 or 0.9) thresholds. The probe channel and level were fixed and presented with either the monopolar (sigma = 0) or a more focused pTP (sigma > or = 0.55) configuration. The masker channel and level were varied, whereas the configuration was fixed to sigma = 0.5. A standard, three-interval, two-alternative forced choice procedure was used for thresholds and masked levels. Single-channel threshold and variability in threshold across channels systematically increased as the compensating current, sigma, increased and the presumed electrical field became more focused. Across subjects, channels with the highest single-channel thresholds, when measured with a narrow, pTP stimulus, had significantly broader PTCs than the lowest threshold channels. In two subjects, the tips of the tuning curves were shifted away from the probe channel. Tuning curves were also wider for the monopolar probes than with pTP probes for both the highest and lowest threshold channels. These results suggest that single-channel thresholds measured with a restricted stimulus can be used to identify cochlear implant channels with poor spatial selectivity. Channels having wide or tip-shifted tuning characteristics would likely not deliver the appropriate spectral information to the intended auditory neurons, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception.

  16. Bidirectional optical subassembly-shaped 20-Gbit/s compact single-mode four-channel wavelength-division multiplexing optical modules for optical multimedia interfaces

    NASA Astrophysics Data System (ADS)

    Lim, Kwon-Seob; Yu, Hong-Yeon; Park, Hyoung-Jun; Kang, Hyun Seo; Jang, Jae-Hyung

    2016-06-01

    Low-cost single-mode four-channel optical transmitter and receiver modules using the wavelength-division multiplexing (WDM) method have been developed for long-reach fiber optic applications. The single-mode four-channel WDM optical transmitter and receiver modules consist of two dual-wavelength optical transmitter and receiver submodules, respectively. The integration of two channels in a glass-sealed transistor outline-can package is an effective way to reduce cost and size and to extend the number of channels. The clear eye diagrams with more than about 6 dB of the extinction ratio and the minimum receiver sensitivity of lower than -16 dBm at a bit error rate of 10-12 have been obtained for the transmitter and receiver modules, respectively, at 5 Gbps/channel. The 4K ultrahigh definition contents have been transmitted over a 1-km-long single-mode fiber using a pair of proposed four-channel transmitter optical subassembly and receiver optical subassembly.

  17. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  18. Local anaesthetics transiently block currents through single acetylcholine-receptor channels.

    PubMed Central

    Neher, E; Steinbach, J H

    1978-01-01

    1. Single channel currents through acetylcholine receptor channels (ACh channels) were recorded at chronically denervated frog muscle extrajunctional membranes in the absence and presence of the lidocaine derivatives QX-222 and QX-314. 2. The current wave forms due to the opening and closing of single ACh channels (activated by suberyldicholine) normally are square pulses. These single pulses appear to be chopped into bursts of much shorter pulses, when the drug QX-222 is present in addition to the agonist. 3. The mean duration of the bursts is comparable to or longer than the normal channel open time, and increases with increasing drug concentration. 4. The duration of the short pulses within a burst decreases with increasing drug concentration. 5. It is concluded that drug molecules reversibly block open end-plate channels and that the flickering within a burst represents this fast, repeatedly occurring reaction. 6. The voltage dependence of the reaction rates involved, suggested that the site of the blocking reaction is in the centre of the membrane, probably inside the ionic channel. PMID:306437

  19. Landscape response to rare flood events: a feedback cycle in channel-hillslope coupling

    NASA Astrophysics Data System (ADS)

    Golly, Antonius; Turowski, Jens; Hovius, Niels; Badoux, Alexandre

    2017-04-01

    Fluvial channels and the surrounding landscapes are in a permanent feedback relation, exchanging mass and energy. Only rarely we get the opportunity to observe the processes at work and study the underlying cause and effect relations. This is especially difficult, since processes can be highly non-linear, and the response to a trigger may occur after a lag time such that their correspondence is not immediately obvious. In the Erlenbach, a mountain stream in the Swiss Prealps, we study the mechanistic relations between in-channel hydrology, channel morphology, external climatic forcing and the surrounding sediment sources to identify relevant controls of sediment input and their characteristic scales. Here, we present time-lapse observations of a suspended slow-moving landslide complex with a direct connection to the channel. The channel-hillslope system was in a stable system state for several months. Only after a flood event, in which a channel step was eroded at the base of the hillslope, the hillslope was destabilized through debuttressing. As a consequence, the landslide was reactivated and entered a sustained phase of integral motion. The response phase ended when the landslide material reached the channel and formed a new channel step, re-buttressing the hillslope. The observations reveal that, at least in the Erlenbach, sediment input from the hillslopes is not a uniform process controlled by precipitation only. Instead, a perturbation of the system in form of the erosion of an alluvial channel step was necessary to initiate the feedback cycle. The observation illustrates the importance of a thorough identification of the process mechanics to understand the sediment dynamics and the formation of landscapes on long time-scales.

  20. The Tweeting Ice Shelf: geophysics and outreach

    NASA Astrophysics Data System (ADS)

    Van Liefferinge, Brice; Berger, Sophie; Drews, Reinhard; Pattyn, Frank

    2015-04-01

    Over the last decade the Antarctic and Greenland ice sheets have contributed about one third of the annual sea level rise (Hanna et al., 2013). However, it remains difficult to reconcile global mass balance estimates obtained from different satellite-based methods. A typical approach is to balance the mass input from atmospheric modelling with the outgoing mass flux at the ice-sheet boundary (Shepherd et al., 2012). The flux calculations at the boundary rely on satellite-derived surface velocities, which are currently only available as snapshots in time, and which need ground truth for validation. Here, we report on continuous, year-round measurements that aim at improving the input-output method in several aspects and carefully map the flow speed allowing for detecting seasonal variability. For this purpose, we set up in December 2014 three stand-alone single-frequency GPSes on the Roi Baudouin ice shelf (East Antarctica). The GPSes are installed across a surface depression (typical for large ice-shelf channels), where subglacial melting is expected. This setup allows us to investigate how these channels behave, i.e., if they become wider, whether or not they enhance the ice flow, and, in combination with an installed phase-sensitive radar, what amount of melting occurs below the channels in contact with the ocean. The GPS data are transmitted on a daily basis. Ice-shelf velocity is derived from the raw hourly location following the methods described in den Ouden et al. (2010), Dunse et al. (2012), and Ahlstrøm et al. (2013). However, a reference station has not been used for the correction. Basic processing involves outliers removal, smoothing, time-series analysis and comparison with tidal models. The project comes alongside an outreach event: on a weekly basis, the ice shelf 'tweets' its position, motion and relays other information with respect to the project. The GPS systems can be followed on Twitter via @TweetinIceShelf as well as the Tweeting Ice Shelf's blog (http://tweetiniceshelf.blogspot.com).

  1. Effects of myelin or cell body brainstem lesions on 3-channel Lissajous' trajectories of feline auditory brainstem evoked potentials.

    PubMed

    Pratt, H; Zaaroor, M; Bleich, N; Starr, A

    1991-06-01

    Auditory brainstem evoked potentials (ABEP) were recorded from 16 awake cats to obtain 3-Channel Lissajous' Trajectories (3CLTs) using three orthogonal differential electrode configurations (nasion-midline nuchal ridge, left-right mastoids, vertex-midline under the mandible). Potentials, evoked by monaural 80 dBnHL (re, human threshold) clicks, were studied before, and up to 7 weeks after inducing neuronal lesions localized to the cochlear nucleus (CN) or the superior olivary complex (SOC), or myelin lesions localized to the fibers of the trapezoid body connecting these two structures. Neuronal lesions were induced by injection of kainic acid (KA), while myelin lesions were induced by injection of L-alpha-lysophosphatidylcholine (LPC). With CN neuronal lesions the major changes in 3CLT were in the time domain of 'b', 'c' and 'd' (components P2, P3 and P4 of single-channel ABEP). With SOC neuronal lesions the major changes were in 'c' and 'd' of 3CLT (P3 and P4 of ABEP). With trapezoid body lesions the major change was in 'c' (P3 of ABEP). The results are compatible with the peripheral generation of the first ABEP components (P1a and P1b). The second component (P2) is generated by ipsilateral CN neurones and their outputs. The third component (P3) is generated primarily by ipsilateral SOC neurones and their outputs, with the ipsilateral CN providing input. The The fourth component (P4) is generated bilaterally by the SOC neurones and their outputs, receiving their inputs from ipsilateral CN. The fifth ABEP component (P5) is generated by structures central to the SOCs and their immediate outputs. Neither focal neuronal nor myelin lesions were sufficient to produce obliteration of any component, consistent with a set of generators for each of the ABEP components, consisting of both cell bodies and their output fibers, that is distributed spatially in the brainstem.

  2. The effects of non-stationary noise on electromagnetic response estimates

    NASA Astrophysics Data System (ADS)

    Banks, R. J.

    1998-11-01

    The noise in natural electromagnetic time series is typically non-stationary. Sections of data with high magnetic noise levels bias impedances and generate unreliable error estimates. Sections containing noise that is coherent between electric and magnetic channels also produce inappropriate impedances and errors. The answer is to compute response values for data sections which are as short as is feasible, i.e. which are compatible both with the chosen bandwidth and with the need to over-determine the least-squares estimation of the impedance and coherence. Only those values that are reliable are selected, and the best single measure of the reliability of Earth impedance estimates is their temporal invariance, which is tested by the coherence between the measured and predicted electric fields. Complex demodulation is the method used here to explore the temporal structure of electromagnetic fields in the period range 20-6000 s. For periods above 300 s, noisy sections are readily identified in time series of impedance values. The corresponding estimates deviate strongly from the normal value, are biased towards low impedance values, and are associated with low coherences. Plots of the impedance against coherence are particularly valuable diagnostic aids. For periods below 300 s, impedance bias increases systematically as the coherence falls, identifying input channel noise as the cause. By selecting sections with high coherence (equivalent to the impedance being invariant over the section) unbiased impedances and realistic errors can be determined. The scatter in impedance values among high-coherence sections is due to noise that is coherent between input and output channels, implying the presence of two or more systems for which a consistent response can be defined. Where the Earth and noise responses are significantly different, it may be possible to improve estimates of the former by rejecting sections that do not generate satisfactory values for all the response elements.

  3. Modelling the flooding capacity of a Polish Carpathian river: A comparison of constrained and free channel conditions

    NASA Astrophysics Data System (ADS)

    Czech, Wiktoria; Radecki-Pawlik, Artur; Wyżga, Bartłomiej; Hajdukiewicz, Hanna

    2016-11-01

    The gravel-bed Biała River, Polish Carpathians, was heavily affected by channelization and channel incision in the twentieth century. Not only were these impacts detrimental to the ecological state of the river, but they also adversely modified the conditions of floodwater retention and flood wave passage. Therefore, a few years ago an erodible corridor was delimited in two sections of the Biała to enable restoration of the river. In these sections, short, channelized reaches located in the vicinity of bridges alternate with longer, unmanaged channel reaches, which either avoided channelization or in which the channel has widened after the channelization scheme ceased to be maintained. Effects of these alternating channel morphologies on the conditions for flood flows were investigated in a study of 10 pairs of neighbouring river cross sections with constrained and freely developed morphology. Discharges of particular recurrence intervals were determined for each cross section using an empirical formula. The morphology of the cross sections together with data about channel slope and roughness of particular parts of the cross sections were used as input data to the hydraulic modelling performed with the one-dimensional steady-flow HEC-RAS software. The results indicated that freely developed cross sections, usually with multithread morphology, are typified by significantly lower water depth but larger width and cross-sectional flow area at particular discharges than single-thread, channelized cross sections. They also exhibit significantly lower average flow velocity, unit stream power, and bed shear stress. The pattern of differences in the hydraulic parameters of flood flows apparent between the two types of river cross sections varies with the discharges of different frequency, and the contrasts in hydraulic parameters between unmanaged and channelized cross sections are most pronounced at low-frequency, high-magnitude floods. However, because of the deep incision of the river, both cross section types are typified by a similar, low potential for the retention of floodwater in floodplain areas. The study indicated that even though river restoration has only begun here, it already brings beneficial effects for flood risk management, reducing flow energy and shear forces exerted on the bed and banks of the channel in unmanaged river reaches. Only within wide, unmanaged channel reaches can the flows of low-frequency, high-magnitude floods be conveyed with relatively low shear forces exerted on the channel boundary. In contrast, in channelized reaches, flow velocity and shear forces are substantially higher, inevitably causing bank erosion and channel incision.

  4. Downlink data multiplexer

    NASA Technical Reports Server (NTRS)

    Holland, S. Douglas (Inventor); Steele, Glen F. (Inventor); Romero, Denise M. (Inventor); Koudelka, Robert David (Inventor)

    2008-01-01

    A data multiplexer that accommodates both industry standard CCSDS data packets and bits streams and standard IEEE 1394 data is described. The multiplexer provides a statistical allotment of bandwidth to the channels in turn, preferably four, but expandable in increments of four up to sixteen. A microcontroller determines bandwidth requested by the plurality of channels, as well as the bandwidth available, and meters out the available bandwidth on a statistical basis employing flow control to the input channels.

  5. Multiplexed chirp waveform synthesizer

    DOEpatents

    Dudley, Peter A.; Tise, Bert L.

    2003-09-02

    A synthesizer for generating a desired chirp signal has M parallel channels, where M is an integer greater than 1, each channel including a chirp waveform synthesizer generating at an output a portion of a digital representation of the desired chirp signal; and a multiplexer for multiplexing the M outputs to create a digital representation of the desired chirp signal. Preferably, each channel receives input information that is a function of information representing the desired chirp signal.

  6. Correction of I/Q channel errors without calibration

    DOEpatents

    Doerry, Armin W.; Tise, Bertice L.

    2002-01-01

    A method of providing a balanced demodular output for a signal such as a Doppler radar having an analog pulsed input; includes adding a variable phase shift as a function of time to the input signal, applying the phase shifted input signal to a demodulator; and generating a baseband signal from the input signal. The baseband signal is low-pass filtered and converted to a digital output signal. By removing the variable phase shift from the digital output signal, a complex data output is formed that is representative of the output of a balanced demodulator.

  7. Real Time Sensing and Discrimination of Single Chemicals Using Channel of Phi29 DNA Packaging Nanomotor

    PubMed Central

    Haque, Farzin; Lunn, Jennifer; Fang, Huaming; Smithrud, David; Guo, Peixuan

    2012-01-01

    A highly sensitive and reliable method to sense and identify a single chemical at extremely low concentrations and high contamination is important for environmental surveillance, homeland security, athlete drug monitoring, toxin/drug screening, and earlier disease diagnosis. This manuscript reports a method for precise detection of single chemicals. The hub of the bacteriophage phi29 DNA packaging motor is a connector consisting of twelve protein subunits encircled into a 3.6-nm channel as a path for dsDNA to enter during packaging and to exit during infection. The connector has previously been inserted into a lipid bilayer to serve as a membrane-embedded channel. Herein we report the modification of the phi29 channel to develop a class of sensors to detect single chemicals. The Lysine-234 of each protein subunit was mutated to cysteine, generating 12-SH ring lining the channel wall. Chemicals passing through this robust channel and interactions with the SH-group generated extremely reliable, precise, and sensitive current signatures as revealed by single channel conductance assays. Ethane (57 Daltons), thymine (167 Daltons), and benzene (105 Daltons) with reactive thioester moieties were clearly discriminated upon interaction with the available set of cysteine residues. The covalent attachment of each analyte induced discrete step-wise blockage in current signature with a corresponding decrease in conductance due to the physical blocking of the channel. Transient binding of the chemicals also produced characteristic fingerprints that were deduced from the unique blockage amplitude and pattern of the signals. This study shows that the phi29 connector can be used to sense chemicals with reactive thioesters or maleimide using single channel conduction assays based on their distinct fingerprints. The results demonstrated that this channel system could be further developed into very sensitive sensing devices. PMID:22458779

  8. Characteristics of single Ca(2+) channel kinetics in feline hypertrophied ventricular myocytes.

    PubMed

    Yang, Xiangjun; Hui, Jie; Jiang, Tingbo; Song, Jianping; Liu, Zhihua; Jiang, Wenping

    2002-04-01

    To explore the mechanism underlying the prolongation of action potential and delayed inactivation of the L-type Ca(2+) (I(Ca, L)) current in a feline model of left ventricular system hypertension and concomitant hypertrophy. Single Ca(2+) channel properties in myocytes isolated from normal and pressure overloaded cat left ventricles were studied, using patch-clamp techniques. Left ventricular pressure overload was induced by partial ligation of the ascending aorta for 4 - 6 weeks. The amplitude of single Ca(2+) channel current evoked by depolarizing pulses from -40 mV to 0 mV was 1.02 +/- 0.03 pA in normal cells and 1.05 +/- 0.03 pA in hypertrophied cells, and there was no difference in single channel current-voltage relationships between the groups since slope conductance was 26.2 +/- 1.0 pS in normal and hypertrophied cells, respectively. Peak amplitudes of the ensemble-averaged single Ca(2+) channel currents were not different between the two groups of cells. However, the amplitude of this averaged current at the end of the clamp pulse was significantly larger in hypertrophied cells than in normal cells. Open-time histograms revealed that open-time distribution was fitted by a single exponential function in channels of normal cells and by a two exponential function in channels of hypertrophied cells. The number of long-lasting openings was increased in channels of hypertrophied cells, and therefore the calculated mean open time of the channel was significantly longer compared to normal controls. Kinetic changes in the Ca(2+) channel may underlie both hypertrophy-associated delayed inactivation of the Ca(2+) current and, in part, the pressure overload-induced action potential lengthening in this cat model of ventricular left systolic hypertension and hypertrophy.

  9. Real-time sensing and discrimination of single chemicals using the channel of phi29 DNA packaging nanomotor.

    PubMed

    Haque, Farzin; Lunn, Jennifer; Fang, Huaming; Smithrud, David; Guo, Peixuan

    2012-04-24

    A highly sensitive and reliable method to sense and identify a single chemical at extremely low concentrations and high contamination is important for environmental surveillance, homeland security, athlete drug monitoring, toxin/drug screening, and earlier disease diagnosis. This article reports a method for precise detection of single chemicals. The hub of the bacteriophage phi29 DNA packaging motor is a connector consisting of 12 protein subunits encircled into a 3.6 nm channel as a path for dsDNA to enter during packaging and to exit during infection. The connector has previously been inserted into a lipid bilayer to serve as a membrane-embedded channel. Herein we report the modification of the phi29 channel to develop a class of sensors to detect single chemicals. The lysine-234 of each protein subunit was mutated to cysteine, generating 12-SH ring lining the channel wall. Chemicals passing through this robust channel and interactions with the SH group generated extremely reliable, precise, and sensitive current signatures as revealed by single channel conductance assays. Ethane (57 Da), thymine (167 Da), and benzene (105 Da) with reactive thioester moieties were clearly discriminated upon interaction with the available set of cysteine residues. The covalent attachment of each analyte induced discrete stepwise blockage in current signature with a corresponding decrease in conductance due to the physical blocking of the channel. Transient binding of the chemicals also produced characteristic fingerprints that were deduced from the unique blockage amplitude and pattern of the signals. This study shows that the phi29 connector can be used to sense chemicals with reactive thioesters or maleimide using single channel conduction assays based on their distinct fingerprints. The results demonstrated that this channel system could be further developed into very sensitive sensing devices.

  10. Monitoring Single-channel Water Permeability in Polarized Cells*

    PubMed Central

    Erokhova, Liudmila; Horner, Andreas; Kügler, Philipp; Pohl, Peter

    2011-01-01

    So far the determination of unitary permeability (pf) of water channels that are expressed in polarized cells is subject to large errors because the opening of a single water channel does not noticeably increase the water permeability of a membrane patch above the background. That is, in contrast to the patch clamp technique, where the single ion channel conductance may be derived from a single experiment, two experiments separated in time and/or space are required to obtain the single-channel water permeability pf as a function of the incremental water permeability (Pf,c) and the number (n) of water channels that contributed to Pf,c. Although the unitary conductance of ion channels is measured in the native environment of the channel, pf is so far derived from reconstituted channels or channels expressed in oocytes. To determine the pf of channels from live epithelial monolayers, we exploit the fact that osmotic volume flow alters the concentration of aqueous reporter dyes adjacent to the epithelia. We measure these changes by fluorescence correlation spectroscopy, which allows the calculation of both Pf,c and osmolyte dilution within the unstirred layer. Shifting the focus of the laser from the aqueous solution to the apical and basolateral membranes allowed the FCS-based determination of n. Here we validate the new technique by determining the pf of aquaporin 5 in Madin-Darby canine kidney cell monolayers. Because inhibition and subsequent activity rescue are monitored on the same sample, drug effects on exocytosis or endocytosis can be dissected from those on pf. PMID:21940624

  11. Classical capacity of Gaussian thermal memory channels

    NASA Astrophysics Data System (ADS)

    De Palma, G.; Mari, A.; Giovannetti, V.

    2014-10-01

    The classical capacity of phase-invariant Gaussian channels has been recently determined under the assumption that such channels are memoryless. In this work we generalize this result by deriving the classical capacity of a model of quantum memory channel, in which the output states depend on the previous input states. In particular we extend the analysis of Lupo et al. [Phys. Rev. Lett. 104, 030501 (2010), 10.1103/PhysRevLett.104.030501 and Phys. Rev. A 82, 032312 (2010), 10.1103/PhysRevA.82.032312] from quantum limited channels to thermal attenuators and thermal amplifiers. Our result applies in many situations in which the physical communication channel is affected by nonzero memory and by thermal noise.

  12. Two multichannel integrated circuits for neural recording and signal processing.

    PubMed

    Obeid, Iyad; Morizio, James C; Moxon, Karen A; Nicolelis, Miguel A L; Wolf, Patrick D

    2003-02-01

    We have developed, manufactured, and tested two analog CMOS integrated circuit "neurochips" for recording from arrays of densely packed neural electrodes. Device A is a 16-channel buffer consisting of parallel noninverting amplifiers with a gain of 2 V/V. Device B is a 16-channel two-stage analog signal processor with differential amplification and high-pass filtering. It features selectable gains of 250 and 500 V/V as well as reference channel selection. The resulting amplifiers on Device A had a mean gain of 1.99 V/V with an equivalent input noise of 10 microV(rms). Those on Device B had mean gains of 53.4 and 47.4 dB with a high-pass filter pole at 211 Hz and an equivalent input noise of 4.4 microV(rms). Both devices were tested in vivo with electrode arrays implanted in the somatosensory cortex.

  13. Total ionizing dose effect in an input/output device for flash memory

    NASA Astrophysics Data System (ADS)

    Liu, Zhang-Li; Hu, Zhi-Yuan; Zhang, Zheng-Xuan; Shao, Hua; Chen, Ming; Bi, Da-Wei; Ning, Bing-Xu; Zou, Shi-Chang

    2011-12-01

    Input/output devices for flash memory are exposed to gamma ray irradiation. Total ionizing dose has been shown great influence on characteristic degradation of transistors with different sizes. In this paper, we observed a larger increase of off-state leakage in the short channel device than in long one. However, a larger threshold voltage shift is observed for the narrow width device than for the wide one, which is well known as the radiation induced narrow channel effect. The radiation induced charge in the shallow trench isolation oxide influences the electric field of the narrow channel device. Also, the drain bias dependence of the off-state leakage after irradiation is observed, which is called the radiation enhanced drain induced barrier lowing effect. Finally, we found that substrate bias voltage can suppress the off-state leakage, while leading to more obvious hump effect.

  14. Subranging scheme for SQUID sensors

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor)

    2008-01-01

    A readout scheme for measuring the output from a SQUID-based sensor-array using an improved subranging architecture that includes multiple resolution channels (such as a coarse resolution channel and a fine resolution channel). The scheme employs a flux sensing circuit with a sensing coil connected in series to multiple input coils, each input coil being coupled to a corresponding SQUID detection circuit having a high-resolution SQUID device with independent linearizing feedback. A two-resolution configuration (course and fine) is illustrated with a primary SQUID detection circuit for generating a fine readout, and a secondary SQUID detection circuit for generating a course readout, both having feedback current coupled to the respective SQUID devices via feedback/modulation coils. The primary and secondary SQUID detection circuits function and derive independent feedback. Thus, the SQUID devices may be monitored independently of each other (and read simultaneously) to dramatically increase slew rates and dynamic range.

  15. Vector generator scan converter

    DOEpatents

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tauke-Pedretti, Anna; Skogen, Erik J; Vawter, Gregory A

    An optical sampler includes a first and second 1.times.n optical beam splitters splitting an input optical sampling signal and an optical analog input signal into n parallel channels, respectively, a plurality of optical delay elements providing n parallel delayed input optical sampling signals, n photodiodes converting the n parallel optical analog input signals into n respective electrical output signals, and n optical modulators modulating the input optical sampling signal or the optical analog input signal by the respective electrical output signals, and providing n successive optical samples of the optical analog input signal. A plurality of output photodiodes and eADCsmore » convert the n successive optical samples to n successive digital samples. The optical modulator may be a photodiode interconnected Mach-Zehnder Modulator. A method of sampling the optical analog input signal is disclosed.« less

  17. Neural network classification of myoelectric signal for prosthesis control.

    PubMed

    Kelly, M F; Parker, P A; Scott, R N

    1991-12-01

    An alternate approach to deriving control for multidegree of freedom prosthetic arms is considered. By analyzing a single-channel myoelectric signal (MES), we can extract information that can be used to identify different contraction patterns in the upper arm. These contraction patterns are generated by subjects without previous training and are naturally associated with specific functions. Using a set of normalized MES spectral features, we can identify contraction patterns for four arm functions, specifically extension and flexion of the elbow and pronation and supination of the forearm. Performing identification independent of signal power is advantageous because this can then be used as a means for deriving proportional rate control for a prosthesis. An artificial neural network implementation is applied in the classification task. By using three single-layer perceptron networks, the MES is classified, with the spectral representations as input features. Trials performed on five subjects with normal limbs resulted in an average classification performance level of 85% for the four functions. Copyright © 1991. Published by Elsevier Ltd.

  18. The dynamics of bedrock channel adjustment: Modeling the influence of sediment supply, weathering, and lithology on channel cross-sectional and longitudinal shape

    NASA Astrophysics Data System (ADS)

    Wobus, C.; Tucker, G.; Anderson, R.; Kean, J.; Small, E.; Hancock, G.

    2007-12-01

    The cross-sectional form of a natural river channel controls the capacity of the system to carry water off a landscape, to convey sediment derived from hillslopes, and to erode its bed and banks. Numerical models that describe the response of a landscape to changes in climate or tectonics therefore require formulations that can accommodate changes in channel cross-sectional geometry through time. We have developed a 2D numerical model that computes the formation of a channel in a cohesive, detachment-limited substrate subject to steady, unidirectional flow. Boundary shear stress is calculated using a simple approximation of the flow field in which log-velocity profiles are assumed to apply along vectors that are perpendicular to the local boundary surface. The resulting model predictions for the velocity structure, peak boundary shear stress, and equilibrium channel shape compare well with the predictions of a more sophisticated but more computationally demanding ray-isovel model. For example, the mean velocities computed by the two models are consistent to within ~3%, and the predicted peak shear stress is consistent to within ~7%. The efficiency of our model makes it suitable for calculations of long-term morphologic change both in single cross-sections and in series of cross-sections arrayed downstream. For a uniform substrate, the model predicts a strong tendency toward a fixed width-to-depth ratio, regardless of gradient or discharge. The model predicts power-law relationships between width and discharge with an exponent near 2/5, and between width and gradient with an exponent near -1/5. Recent enhancements to the model include the addition of sediment, which increases the width-to-depth ratio at steady state by favoring erosion of the channel walls relative to the channel bed (the "cover effect"). Inclusion of a probability density function of discharges with a simple parameterization of weathering along channel banks leads to the formation of model strath terraces. Downstream changes in substrate erodibility or tectonic uplift rate lead to step-function changes in channel width, consistent with empirical observations. Finally, explicit inclusion of bedload transport allows channel width, gradient, and the pattern of sediment flux to evolve dynamically, allowing us to explore the response of bedrock channels to both spatial patterns of rock uplift, and temporal variations in sediment input.

  19. Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter

    NASA Technical Reports Server (NTRS)

    Ehsan, Negar; U-yen, Kongpop; Brown, Ari; Hsieh, Wen-Ting; Wollack, Edward; Moseley, Samuel

    2013-01-01

    This innovation is a compact, superconducting, channelizing bandpass filter on a single-crystal (0.45 m thick) silicon substrate, which operates from 300 to 600 GHz. This device consists of four channels with center frequencies of 310, 380, 460, and 550 GHz, with approximately 50-GHz bandwidth per channel. The filter concept is inspired by the mammalian cochlea, which is a channelizing filter that covers three decades of bandwidth and 3,000 channels in a very small physical space. By using a simplified physical cochlear model, and its electrical analog of a channelizing filter covering multiple octaves bandwidth, a large number of output channels with high inter-channel isolation and high-order upper stopband response can be designed. A channelizing filter is a critical component used in spectrometer instruments that measure the intensity of light at various frequencies. This embodiment was designed for MicroSpec in order to increase the resolution of the instrument (with four channels, the resolution will be increased by a factor of four). MicroSpec is a revolutionary wafer-scale spectrometer that is intended for the SPICA (Space Infrared Telescope for Cosmology and Astrophysics) Mission. In addition to being a vital component of MicroSpec, the channelizing filter itself is a low-resolution spectrometer when integrated with only an antenna at its input, and a detector at each channel s output. During the design process for this filter, the available characteristic impedances, possible lumped element ranges, and fabrication tolerances were identified for design on a very thin silicon substrate. Iterations between full-wave and lumped-element circuit simulations were performed. Each channel s circuit was designed based on the availability of characteristic impedances and lumped element ranges. This design was based on a tabular type bandpass filter with no spurious harmonic response. Extensive electromagnetic modeling for each channel was performed. Four channels, with 50-GHz bandwidth, were designed, each using multiple transmission line media such as microstrip, coplanar waveguide, and quasi-lumped components on 0.45- m thick silicon. In the design process, modeling issues had to be overcome. Due to the extremely high frequencies, very thin Si substrate, and the superconducting metal layers, most commercially available software fails in various ways. These issues were mitigated by using alternative software that was capable of handling them at the expense of greater simulation time. The design of on-chip components for the filter characterization, such as a broadband antenna, Wilkinson power dividers, attenuators, detectors, and transitions has been completed.

  20. Development of bankfull hydraulic geometry relationships for the physiographic divisions of the United States

    USDA-ARS?s Scientific Manuscript database

    Bankfull hydraulic geometry relationships are used to estimate channel dimensions for stream flow simulation models, which require channel geometry data as input parameters. Often, one nationwide curve is used across the entire U.S. (e.g. in SWAT), even though studies have shown that the use of reg...

  1. Wireless Computing Architecture III

    DTIC Science & Technology

    2013-09-01

    MIMO Multiple-Input and Multiple-Output MIMO /CON MIMO with concurrent hannel access and estimation MU- MIMO Multiuser MIMO OFDM Orthogonal...compressive sensing \\; a design for concurrent channel estimation in scalable multiuser MIMO networking; and novel networking protocols based on machine...Network, Antenna Arrays, UAV networking, Angle of Arrival, Localization MIMO , Access Point, Channel State Information, Compressive Sensing 16

  2. High-quality recording of bioelectric events. Part 2. Low-noise, low-power multichannel amplifier design.

    PubMed

    Metting van Rijn, A C; Peper, A; Grimbergen, C A

    1991-07-01

    A multichannel instrumentation amplifier, developed to be used in a miniature universal eight-channel amplifier module, is described. After discussing the specific properties of a bioelectric recording, the difficulties of meeting the demanded specifications with a design based on operational amplifiers are reviewed. Because it proved impossible to achieve the demanded combination of low noise and low power consumption using commercially available operational amplifiers, an amplifier equipped with an input stage with discrete transistors was developed. A new design concept was used to expand the design to a multichannel version with an equivalent input noise voltage of 0.35 microV RMS in a bandwidth of 0.1-100 Hz and a power consumption of 0.6 mW per channel. The results of this study are applied to miniature, universal, eight-channel amplifier modules, manufactured with thick-film production techniques. The modules can be coupled to satisfy the demand for a multiple of eight channels. The low power consumption enables the modules to be used in all kinds of portable and telemetry measurement systems and simplifies the power supply in stationary measurement systems.

  3. Method and apparatus for combinatorial logic signal processor in a digitally based high speed x-ray spectrometer

    DOEpatents

    Warburton, W.K.

    1999-02-16

    A high speed, digitally based, signal processing system is disclosed which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system lifetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired. 31 figs.

  4. Performance analysis of MIMO wireless optical communication system with Q-ary PPM over correlated log-normal fading channel

    NASA Astrophysics Data System (ADS)

    Wang, Huiqin; Wang, Xue; Lynette, Kibe; Cao, Minghua

    2018-06-01

    The performance of multiple-input multiple-output wireless optical communication systems that adopt Q-ary pulse position modulation over spatial correlated log-normal fading channel is analyzed in terms of its un-coded bit error rate and ergodic channel capacity. The analysis is based on the Wilkinson's method which approximates the distribution of a sum of correlated log-normal random variables to a log-normal random variable. The analytical and simulation results corroborate the increment of correlation coefficients among sub-channels lead to system performance degradation. Moreover, the receiver diversity has better performance in resistance of spatial correlation caused channel fading.

  5. Robust Transceiver Design for Multiuser MIMO Downlink with Channel Uncertainties

    NASA Astrophysics Data System (ADS)

    Miao, Wei; Li, Yunzhou; Chen, Xiang; Zhou, Shidong; Wang, Jing

    This letter addresses the problem of robust transceiver design for the multiuser multiple-input-multiple-output (MIMO) downlink where the channel state information at the base station (BS) is imperfect. A stochastic approach which minimizes the expectation of the total mean square error (MSE) of the downlink conditioned on the channel estimates under a total transmit power constraint is adopted. The iterative algorithm reported in [2] is improved to handle the proposed robust optimization problem. Simulation results show that our proposed robust scheme effectively reduces the performance loss due to channel uncertainties and outperforms existing methods, especially when the channel errors of the users are different.

  6. A 16-Channel CMOS Chopper-Stabilized Analog Front-End ECoG Acquisition Circuit for a Closed-Loop Epileptic Seizure Control System.

    PubMed

    Wu, Chung-Yu; Cheng, Cheng-Hsiang; Chen, Zhi-Xin

    2018-06-01

    In this paper, a 16-channel analog front-end (AFE) electrocorticography signal acquisition circuit for a closed-loop seizure control system is presented. It is composed of 16 input protection circuits, 16 auto-reset chopper-stabilized capacitive-coupled instrumentation amplifiers (AR-CSCCIA) with bandpass filters, 16 programmable transconductance gain amplifiers, a multiplexer, a transimpedance amplifier, and a 128-kS/s 10-bit delta-modulated successive-approximation-register analog-to-digital converter (SAR ADC). In closed-loop seizure control system applications, the stimulator shares the same electrode with the AFE amplifier for effective suppression of epileptic seizures. To prevent from overstress in MOS devices caused by high stimulation voltage, an input protection circuit with a high-voltage-tolerant switch is proposed for the AFE amplifier. Moreover, low input-referred noise is achieved by using the chopper modulation technique in the AR-CSCCIA. To reduce the undesired effects of chopper modulation, an improved offset reduction loop is proposed to reduce the output offset generated by input chopper mismatches. The digital ripple reduction loop is also used to reduce the chopper ripple. The fabricated AFE amplifier has 49.1-/59.4-/67.9-dB programmable gain and 2.02-μVrms input referred noise in a bandwidth of 0.59-117 Hz. The measured power consumption of the AFE amplifier is 3.26 μW per channel, and the noise efficiency factor is 3.36. The in vivo animal test has been successfully performed to verify the functions. It is shown that the proposed AFE acquisition circuit is suitable for implantable closed-loop seizure control systems.

  7. Liposomal quercetin potentiates maxi-K channel openings in smooth muscles and restores its activity after oxidative stress.

    PubMed

    Melnyk, Mariia I; Dryn, Dariia O; Al Kury, Lina T; Zholos, Alexander V; Soloviev, Anatoly I

    2018-04-19

    The effects of quercetin-loaded liposomes (PCL-Q) and their constituents, that is, free quercetin (Q) and 'empty' phosphatidylcholine vesicles (PCL), on maxi-K channel activity were studied in single mouse ileal myocytes before and after H 2 O 2 -induced oxidative stress. Macroscopic Maxi-K channel currents were recorded using whole-cell patch clamp techniques, while single BK Ca channel currents were recorded in the cell-attached configuration. Bath application of PCL-Q (100 μg/ml of lipid and 3 μg/ml of quercetin) increased single Maxi-K channel activity more than threefold, from 0.010 ± 0.003 to 0.034 ± 0.004 (n = 5; p < 0.05), whereas single-channel conductance increased non-significantly from 138 to 146 pS. In the presence of PCL-Q multiple simultaneous channel openings were observed, with up to eight active channels in the membrane patch. Surprisingly, 'empty' PCL (100 μg/ml) also produced some channel activation, although it was less potent compared to PCL-Q, that is, these increased NPo from 0.010 ± 0.003 to 0.019 ± 0.003 (n = 5; p < 0.05) and did not affect single-channel conductance (139 pS). Application of PCL-Q restored macroscopic Maxi-K currents suppressed by H 2 O 2 -induced oxidative stress in ileal smooth muscle cells. We conclude that PCL-Q can activate Maxi-K channels in ileal myocytes mainly by increasing channel open probability, as well as maintain Maxi-K-mediated whole-cell current under the conditions of oxidative stress. While fusion of the 'pure' liposomes with the plasma membrane may indirectly activate Maxi-K channels by altering channel's phospholipids environment, the additional potentiating action of quercetin may be due to its better bioavailability.

  8. Strategies for mapping synaptic inputs on dendrites in vivo by combining two-photon microscopy, sharp intracellular recording, and pharmacology

    PubMed Central

    Levy, Manuel; Schramm, Adrien E.; Kara, Prakash

    2012-01-01

    Uncovering the functional properties of individual synaptic inputs on single neurons is critical for understanding the computational role of synapses and dendrites. Previous studies combined whole-cell patch recording to load neurons with a fluorescent calcium indicator and two-photon imaging to map subcellular changes in fluorescence upon sensory stimulation. By hyperpolarizing the neuron below spike threshold, the patch electrode ensured that changes in fluorescence associated with synaptic events were isolated from those caused by back-propagating action potentials. This technique holds promise for determining whether the existence of unique cortical feature maps across different species may be associated with distinct wiring diagrams. However, the use of whole-cell patch for mapping inputs on dendrites is challenging in large mammals, due to brain pulsations and the accumulation of fluorescent dye in the extracellular milieu. Alternatively, sharp intracellular electrodes have been used to label neurons with fluorescent dyes, but the current passing capabilities of these high impedance electrodes may be insufficient to prevent spiking. In this study, we tested whether sharp electrode recording is suitable for mapping functional inputs on dendrites in the cat visual cortex. We compared three different strategies for suppressing visually evoked spikes: (1) hyperpolarization by intracellular current injection, (2) pharmacological blockade of voltage-gated sodium channels by intracellular QX-314, and (3) GABA iontophoresis from a perisomatic electrode glued to the intracellular electrode. We found that functional inputs on dendrites could be successfully imaged using all three strategies. However, the best method for preventing spikes was GABA iontophoresis with low currents (5–10 nA), which minimally affected the local circuit. Our methods advance the possibility of determining functional connectivity in preparations where whole-cell patch may be impractical. PMID:23248588

  9. Performance evaluation of an architecture for the characterisation of photo-devices: design, fabrication and test on a CMOS technology

    NASA Astrophysics Data System (ADS)

    Castillo-Cabrera, G.; García-Lamont, J.; Reyes-Barranca, M. A.; Moreno-Cadenas, J. A.; Escobosa-Echavarría, A.

    2011-03-01

    In this report, the performance of a particular pixel's architecture is evaluated. It consists mainly of an optical sensor coupled to an amplifier. The circuit contains photoreceptors such as phototransistors and photodiodes. The circuit integrates two main blocks: (a) the pixel architecture, containing four p-channel transistors and a photoreceptor, and (b) a current source for biasing the signal conditioning amplifier. The generated photocurrent is integrated through the gate capacitance of the input p-channel MOS transistor, then converted to voltage and amplified. Both input transistor and current source are implemented as a voltage amplifier having variable gain (between 10dB and 32dB). Considering characterisation purposes, this last fact is relevant since it gives a degree of freedom to the measurement of different kinds of photo-devices and is not limited to either a single operating point of the circuit or one kind and size of photo-sensor. The gain of the amplifier can be adjusted with an external DC power supply that also sets the DC quiescent point of the circuit. Design of the row-select transistor's aspect ratio used in the matrix array is critical for the pixel's amplifier performance. Based on circuit design data such as capacitance magnitude, time and voltage integration, and amplifier gain, characterisation of all the architecture can be readily carried out and evaluated. For the specific technology used in this work, the spectral response of photo-sensors reveals performance differences between phototransistors and photodiodes. Good approximation between simulation and measurement was obtained.

  10. Radio-frequency response of single pores and artificial ion channels

    NASA Astrophysics Data System (ADS)

    Kim, H. S.; Ramachandran, S.; Stava, E.; van der Weide, D. W.; Blick, R. H.

    2011-09-01

    Intercellular communication relies on ion channels and pores in cell membranes. These protein-formed channels enable the exchange of ions and small molecules to electrically and/or chemically interact with the cells. Traditionally, recordings on single-ion channels and pores are performed in the dc regime, due to the extremely high impedance of these molecular junctions. This paper is intended as an introduction to radio-frequency (RF) recordings of single-molecule junctions in bilipid membranes. First, we demonstrate how early approaches to using microwave circuitry as readout devices for ion channel formation were realized. The second step will then focus on how to engineer microwave coupling into the high-impedance channel by making use of bio-compatible micro-coaxial lines. We then demonstrate integration of an ultra-broadband microwave circuit for the direct sampling of single α-hemolysin pores in a suspended bilipid membrane. Simultaneous direct current recordings reveal that we can monitor and correlate the RF transmission signal. This enables us to relate the open-close states of the direct current to the RF signal. Altogether, our experiments lay the ground for an RF-readout technique to perform real-time in vitro recordings of pores. The technique thus holds great promise for research and drug screening applications. The possible enhancement of sampling rates of single channels and pores by the large recording bandwidth will allow us to track the passage of single ions.

  11. Fusion of Night Vision and Thermal Images

    DTIC Science & Technology

    2006-12-01

    with the walls of the MCP channels. Thus, a thin metal oxide coating commonly known as an ion barrier film is added to the input side of the MCP to...with film ion barrier to filmless gated tubes. An important improvement for Gen 4 products is a greater target identification range and higher target...Metal Seals with S-25 Cathode Mircro-channel plate Ceramic/Metal Seals with GaAS Cathode Mircro-channel plate with ion barrier film Ceramic

  12. Data-Logger Interface And Test Controller

    NASA Technical Reports Server (NTRS)

    Burch, Donnie R.

    1995-01-01

    Data-logger interface and test controller developed to enable automation of tests in conjunction with data-acquisition functions performed by data loggers that have output-switching capabilities. Includes relay logic circuits that remain deenergized until out-of-tolerance condition on any data channel discovered. Designed to be connected to Fluke model 2286A (or equivalent) data-logger system, which features 3 control channels with 6 data inputs per channel. Includes elapsed-time counter that keeps track of power outages.

  13. MEDUSA-32: A low noise, low power silicon strip detector front-end electronics, for space applications

    NASA Astrophysics Data System (ADS)

    Cicuttin, Andres; Colavita, Alberto; Cerdeira, Alberto; Fratnik, Fabio; Vacchi, Andrea

    1997-02-01

    In this report we describe a mixed analog-digital integrated circuit (IC) designed as the front-end electronics for silicon strip-detectors for space applications. In space power consumption, compactness and robustness become critical constraints for a pre-amplifier design. The IC is a prototype with 32 complete channels, and it is intended for a large area particle tracker of a new generation of gamma ray telescopes. Each channel contains a charge sensitive amplifier, a pulse shaper, a discriminator and two digital buffers. The reference trip point of the discriminator is adjustable. This chip also has a custom PMOSFET transistor per channel, included in order to provide the high dynamic resistance needed to reverse-bias the strip diode. The digital part of the chip is used to store and serially shift out the state of the channels. There is also a storage buffer that allows the disabling of non-functioning channels if it is required by the data acquisition system. An input capacitance of 30 pF introduced at the input of the front-end produces less than 1000 electrons of RMS equivalent noise charge (ENC), for a total power dissipation of only 60 μW per channel. The chip was made using Orbit's 1.2 μm double poly, double metal n-well low noise CMOS process. The dimensions of the IC are 2400 μm × 8840 μm.

  14. Two-ply channels for faster wicking in paper-based microfluidic devices.

    PubMed

    Camplisson, Conor K; Schilling, Kevin M; Pedrotti, William L; Stone, Howard A; Martinez, Andres W

    2015-12-07

    This article describes the development of porous two-ply channels for paper-based microfluidic devices that wick fluids significantly faster than conventional, porous, single-ply channels. The two-ply channels were made by stacking two single-ply channels on top of each other and were fabricated entirely out of paper, wax and toner using two commercially available printers, a convection oven and a thermal laminator. The wicking in paper-based channels was studied and modeled using a modified Lucas-Washburn equation to account for the effect of evaporation, and a paper-based titration device incorporating two-ply channels was demonstrated.

  15. Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves

    PubMed Central

    Bierer, Julie Arenberg; Faulkner, Kathleen F.

    2010-01-01

    Objectives The goal of this study was to evaluate the ability of a threshold measure, made with a restricted electrode configuration, to identify channels exhibiting relatively poor spatial selectivity. With a restricted electrode configuration, channel-to-channel variability in threshold may reflect variations in the interface between the electrodes and auditory neurons (i.e., nerve survival, electrode placement, tissue impedance). These variations in the electrode-neuron interface should also be reflected in psychophysical tuning curve measurements. Specifically, it is hypothesized that high single-channel thresholds obtained with the spatially focused partial tripolar electrode configuration are predictive of wide or tip-shifted psychophysical tuning curves. Design Data were collected from five cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. Forward-masked psychophysical tuning curves were obtained for channels with the highest, lowest, and median tripolar (σ=1 or 0.9) thresholds. The probe channel and level were fixed and presented with either the monopolar (σ=0) or a more focused partial tripolar (σ ≥ 0.55) configuration. The masker channel and level were varied while the configuration was fixed to σ = 0.5. A standard, three-interval, two-alternative forced choice procedure was used for thresholds and masked levels. Results Single-channel threshold and variability in threshold across channels systematically increased as the compensating current, σ, increased and the presumed electrical field became more focused. Across subjects, channels with the highest single-channel thresholds, when measured with a narrow, partial tripolar stimulus, had significantly broader psychophysical tuning curves than the lowest threshold channels. In two subjects, the tips of the tuning curves were shifted away from the probe channel. Tuning curves were also wider for the monopolar probes than with partial tripolar probes, for both the highest and lowest threshold channels. Conclusions These results suggest that single-channel thresholds measured with a restricted stimulus can be used to identify cochlear implant channels with poor spatial selectivity. Channels having wide or tip-shifted tuning characteristics would likely not deliver the appropriate spectral information to the intended auditory neurons, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception. PMID:20090533

  16. Channel characteristics and coordination in three-echelon dual-channel supply chain

    NASA Astrophysics Data System (ADS)

    Saha, Subrata

    2016-02-01

    We explore the impact of channel structure on the manufacturer, the distributer, the retailer and the entire supply chain by considering three different channel structures in radiance of with and without coordination. These structures include a traditional retail channel and two manufacturer direct channels with and without consistent pricing. By comparing the performance of the manufacturer, the distributer and the retailer, and the entire supply chain in three different supply chain structures, it is established analytically that, under some conditions, a dual channel can outperform a single retail channel; as a consequence, a coordination mechanism is developed that not only coordinates the dual channel but also outperforms the non-cooperative single retail channel. All the analytical results are further analysed through numerical examples.

  17. Characterization of network structure in stereoEEG data using consensus-based partial coherence.

    PubMed

    Ter Wal, Marije; Cardellicchio, Pasquale; LoRusso, Giorgio; Pelliccia, Veronica; Avanzini, Pietro; Orban, Guy A; Tiesinga, Paul He

    2018-06-06

    Coherence is a widely used measure to determine the frequency-resolved functional connectivity between pairs of recording sites, but this measure is confounded by shared inputs to the pair. To remove shared inputs, the 'partial coherence' can be computed by conditioning the spectral matrices of the pair on all other recorded channels, which involves the calculation of a matrix (pseudo-) inverse. It has so far remained a challenge to use the time-resolved partial coherence to analyze intracranial recordings with a large number of recording sites. For instance, calculating the partial coherence using a pseudoinverse method produces a high number of false positives when it is applied to a large number of channels. To address this challenge, we developed a new method that randomly aggregated channels into a smaller number of effective channels on which the calculation of partial coherence was based. We obtained a 'consensus' partial coherence (cPCOH) by repeating this approach for several random aggregations of channels (permutations) and only accepting those activations in time and frequency with a high enough consensus. Using model data we show that the cPCOH method effectively filters out the effect of shared inputs and performs substantially better than the pseudo-inverse. We successfully applied the cPCOH procedure to human stereotactic EEG data and demonstrated three key advantages of this method relative to alternative procedures. First, it reduces the number of false positives relative to the pseudo-inverse method. Second, it allows for titration of the amount of false positives relative to the false negatives by adjusting the consensus threshold, thus allowing the data-analyst to prioritize one over the other to meet specific analysis demands. Third, it substantially reduced the number of identified interactions compared to coherence, providing a sparser network of connections from which clear spatial patterns emerged. These patterns can serve as a starting point of further analyses that provide insight into network dynamics during cognitive processes. These advantages likely generalize to other modalities in which shared inputs introduce confounds, such as electroencephalography (EEG) and magneto-encephalography (MEG). Copyright © 2018. Published by Elsevier Inc.

  18. COMPUTER DATA PROCESSING SYSTEM. PROJECT ROVER, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narin, F.

    ABS>A system was created for processing large volumes of data from Project ROVER tests at the Nevada Test Site. The data are compiled as analog, frequency modulated tape, which is translated in a Packard-Bell Tape-to-Tape converter into a binary coded decimal (BCD) IBM 7090 computer input tape. This input tape, tape A5, is processed on the 7090 by the RDH-D FORTRAN-II code and its 20 FAP and FORTRAN subroutines. Outputs from the 7090 run are tapes A3, which is a BCD tape used for listing on the IBM 1401 input-output computer, tape B5 which is a binary tape used asmore » input to a Stromberg-Carlson 40/20 cathode ray tube (CRT) plotter, and tape B6 which is a binary tape used for permanent data storage and input to specialized subcodes. The information on tape B5 commands the 40/20 to write grids, data points, and other information on the face of a CRT; the information on the CRT is photographed on 35 mm film which is subsequently developed; full-size (10" x 10") plots are made from the 35 mm film on a Xerox 1824 printer. The 7090 processes a data channel in approximately 4 seconds plus 4 seconds per plot to be made on the 40/20 for that channel. Up to 4500 data and calibration points on any one channel may be processed in one pass of the RDH-D code. This system has been used to produce more than 100,000 prints on the 1824 printer from more than 10,000 different 40/20 plots. At 00 per minute of 7090 time, it costs 60 to process a typical, 3-plot data channel on the 7090; each print on the 1824 costs between 5 and 10 cents including rental, supplies, and operator time. All automatic computer stops in the codes and subroutines are accompanied by on-line instructions to the operator. Extensive redundancy checking is incorporated in the FAP tape handling subroutines. (auth)« less

  19. Dalitz plot distributions in presence of triangle singularities

    DOE PAGES

    Szczepaniak, Adam P.

    2016-03-25

    We discuss properties of three-particle Dalitz distributions in coupled channel systems in presence of triangle singularities. The single channel case was discussed long ago where it was found that as a consequence of unitarity, effects of a triangle singularity seen in the Dalitz plot are not seen in Dalitz plot projections. In the coupled channel case we find the same is true for the sum of intensities of all interacting channels. As a result, unlike the single channel case, however, triangle singularities do remain visible in Dalitz plot projections of individual channels.

  20. Dalitz plot distributions in presence of triangle singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczepaniak, Adam P.

    We discuss properties of three-particle Dalitz distributions in coupled channel systems in presence of triangle singularities. The single channel case was discussed long ago where it was found that as a consequence of unitarity, effects of a triangle singularity seen in the Dalitz plot are not seen in Dalitz plot projections. In the coupled channel case we find the same is true for the sum of intensities of all interacting channels. As a result, unlike the single channel case, however, triangle singularities do remain visible in Dalitz plot projections of individual channels.

  1. Parallel Processing Strategies of the Primate Visual System

    PubMed Central

    Nassi, Jonathan J.; Callaway, Edward M.

    2009-01-01

    Preface Incoming sensory information is sent to the brain along modality-specific channels corresponding to the five senses. Each of these channels further parses the incoming signals into parallel streams to provide a compact, efficient input to the brain. Ultimately, these parallel input signals must be elaborated upon and integrated within the cortex to provide a unified and coherent percept. Recent studies in the primate visual cortex have greatly contributed to our understanding of how this goal is accomplished. Multiple strategies including retinal tiling, hierarchical and parallel processing and modularity, defined spatially and by cell type-specific connectivity, are all used by the visual system to recover the rich detail of our visual surroundings. PMID:19352403

  2. Multi-channel detector readout method and integrated circuit

    DOEpatents

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2006-12-12

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  3. Multi-channel detector readout method and integrated circuit

    DOEpatents

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2004-05-18

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  4. Data Processing for a High Resolution Preclinical PET Detector Based on Philips DPC Digital SiPMs

    NASA Astrophysics Data System (ADS)

    Schug, David; Wehner, Jakob; Goldschmidt, Benjamin; Lerche, Christoph; Dueppenbecker, Peter Michael; Hallen, Patrick; Weissler, Bjoern; Gebhardt, Pierre; Kiessling, Fabian; Schulz, Volkmar

    2015-06-01

    In positron emission tomography (PET) systems, light sharing techniques are commonly used to readout scintillator arrays consisting of scintillation elements, which are smaller than the optical sensors. The scintillating element is then identified evaluating the signal heights in the readout channels using statistical algorithms, the center of gravity (COG) algorithm being the simplest and mostly used one. We propose a COG algorithm with a fixed number of input channels in order to guarantee a stable calculation of the position. The algorithm is implemented and tested with the raw detector data obtained with the Hyperion-II D preclinical PET insert which uses Philips Digital Photon Counting's (PDPC) digitial SiPMs. The gamma detectors use LYSO scintillator arrays with 30 ×30 crystals of 1 ×1 ×12 mm3 in size coupled to 4 ×4 PDPC DPC 3200-22 sensors (DPC) via a 2-mm-thick light guide. These self-triggering sensors are made up of 2 ×2 pixels resulting in a total of 64 readout channels. We restrict the COG calculation to a main pixel, which captures most of the scintillation light from a crystal, and its (direct and diagonal) neighboring pixels and reject single events in which this data is not fully available. This results in stable COG positions for a crystal element and enables high spatial image resolution. Due to the sensor layout, for some crystals it is very likely that a single diagonal neighbor pixel is missing as a result of the low light level on the corresponding DPC. This leads to a loss of sensitivity, if these events are rejected. An enhancement of the COG algorithm is proposed which handles the potentially missing pixel separately both for the crystal identification and the energy calculation. Using this advancement, we show that the sensitivity of the Hyperion-II D insert using the described scintillator configuration can be improved by 20-100% for practical useful readout thresholds of a single DPC pixel ranging from 17-52 photons. Furthermore, we show that the energy resolution of the scanner is superior for all readout thresholds if singles with a single missing pixel are accepted and correctly handled compared to the COG method only accepting singles with all neighbors present by 0-1.6% (relative difference). The presented methods can not only be applied to gamma detectors employing DPC sensors, but can be generalized to other similarly structured and self-triggering detectors, using light sharing techniques, as well.

  5. Single step sequential polydimethylsiloxane wet etching to fabricate a microfluidic channel with various cross-sectional geometries

    NASA Astrophysics Data System (ADS)

    Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.

    2017-11-01

    Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.

  6. Characterization of individual polynucleotide molecules using a membrane channel

    NASA Technical Reports Server (NTRS)

    Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W.

    1996-01-01

    We show that an electric field can drive single-stranded RNA and DNA molecules through a 2.6-nm diameter ion channel in a lipid bilayer membrane. Because the channel diameter can accommodate only a single strand of RNA or DNA, each polymer traverses the membrane as an extended chain that partially blocks the channel. The passage of each molecule is detected as a transient decrease of ionic current whose duration is proportional to polymer length. Channel blockades can therefore be used to measure polynucleotide length. With further improvements, the method could in principle provide direct, high-speed detection of the sequence of bases in single molecules of DNA or RNA.

  7. Pre-Processed Recursive Lattice Reduction for Complexity Reduction in Spatially and Temporally Correlated MIMO Channels

    NASA Astrophysics Data System (ADS)

    An, Chan-Ho; Yang, Janghoon; Jang, Seunghun; Kim, Dong Ku

    In this letter, a pre-processed lattice reduction (PLR) scheme is developed for the lattice reduction aided (LRA) detection of multiple input multiple-output (MIMO) systems in spatially correlated channel. The PLR computes the LLL-reduced matrix of the equivalent matrix, which is the product of the present channel matrix and unimodular transformation matrix for LR of spatial correlation matrix, rather than the present channel matrix itself. In conjunction with PLR followed by recursive lattice reduction (RLR) scheme [7], pre-processed RLR (PRLR) is shown to efficiently carry out the LR of the channel matrix, especially for the burst packet message in spatially and temporally correlated channel while matching the performance of conventional LRA detection.

  8. Muscle length-dependent contribution of motoneuron Cav1.3 channels to force production in model slow motor unit.

    PubMed

    Kim, Hojeong

    2017-07-01

    Persistent inward current (PIC)-generating Ca v 1.3 channels in spinal motoneuron dendrites are thought to be actively recruited during normal behaviors. However, whether and how the activation of PIC channels influences force output of motor unit remains elusive. Here, building a physiologically realistic model of slow motor unit I demonstrated that force production induced by the PIC activation is much smaller for short than lengthened muscles during the regular firing of the motoneuron that transitions from the quiescent state by either a brief current pulse at the soma or a brief synaptic excitation at the dendrites. By contrast, the PIC-induced force potentiation was maximal for short muscles when the motoneuron switched from a stable low-frequency firing state to a stable high-frequency firing state by the current pulse at the soma. Under the synaptic excitation at the dendrites, however, the force could not be potentiated by the transitioning of the motoneuron from a low- to a high-frequency firing state due to the simultaneous onset of PIC at the dendrites and firing at the soma. The strong dependency of the input-output relationship of the motor unit on the neuromodulation and Ia afferent inputs for the PIC channels was further shown under static variations in muscle length. Taken together, these findings suggest that the PIC activation in the motoneuron dendrites may differentially affect the force production of the motor unit, depending not only on the firing state history of the motoneuron and the variation in muscle length but also on the mode of motor activity. NEW & NOTEWORTHY Ca v 1.3 channels in motoneuron dendrites are actively involved during normal motor activities. To investigate the effects of the activation of motoneuron Ca v 1.3 channels on force production, a model motor unit was built based on best-available data. The simulation results suggest that force potentiation induced by Ca v 1.3 channel activation is strongly modulated not only by firing history of the motoneuron but also by length variation of the muscle as well as neuromodulation inputs from the brainstem. Copyright © 2017 the American Physiological Society.

  9. OpenPET: A Flexible Electronics System for Radiotracer Imaging

    NASA Astrophysics Data System (ADS)

    Moses, W. W.; Buckley, S.; Vu, C.; Peng, Q.; Pavlov, N.; Choong, W.-S.; Wu, J.; Jackson, C.

    2010-10-01

    We present the design for OpenPET, an electronics readout system designed for prototype radiotracer imaging instruments. The critical requirements are that it has sufficient performance, channel count, channel density, and power consumption to service a complete camera, and yet be simple, flexible, and customizable enough to be used with almost any detector or camera design. An important feature of this system is that each analog input is processed independently. Each input can be configured to accept signals of either polarity as well as either differential or ground referenced signals. Each signal is digitized by a continuously sampled ADC, which is processed by an FPGA to extract pulse height information. A leading edge discriminator creates a timing edge that is “time stamped” by a TDC implemented inside the FPGA. This digital information from each channel is sent to an FPGA that services 16 analog channels, and information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc. As all of this processing is controlled by firmware and software, it can be modified/customized easily. The system is open source, meaning that all technical data (specifications, schematics and board layout files, source code, and instructions) will be publicly available.

  10. Design of a Multi-Channel Front-End Readout ASIC With Low Noise and Large Dynamic Input Range for APD-Based PET Imaging

    NASA Astrophysics Data System (ADS)

    Fang, X. C.; Hu-Guo, Ch.; Ollivier-Henry, N.; Brasse, D.; Hu, Y.

    2010-06-01

    This paper represents the design of a low-noise, wide band multi-channel readout integrated circuit (IC) used as front end readout electronics of avalanche photo diodes (APD) dedicated to a small animal positron emission tomography (PET) system. The first ten-channel prototype chip (APD-Chip) of the analog parts has been designed and fabricated in a 0.35 μm CMOS process. Every channel of the APD_Chip includes a charge-sensitive preamplifier (CSA), a CR-(RC)2 shaper, and an analog buffer. In a channel, the CSA reads charge signals (10 bits dynamic range) from an APD array having 10 pF of capacitance per pixel. A linearized degenerated differential pair which ensures high linearity in all dynamical range is used as the high feedback resistor for preventing pile up of signals. The designed CSA has the capability of compensating automatically up to 200 nA leakage current from the detector. The CR-(RC)2 shaper filters and shapes the output signal of the CSA. An equivalent input noise charge obtained from test is 275 e -+ 10 e-/pF. In this paper the prototype is presented for both its theoretical analysis and its test results.

  11. Modeling of Single Noninactivating Na+ Channels: Evidence for Two Open and Several Fast Inactivated States

    PubMed Central

    The, Yu-Kai; Fernandes, Jacqueline; Popa, M. Oana; Alekov, Alexi K.; Timmer, Jens; Lerche, Holger

    2006-01-01

    Voltage-gated Na+ channels play a fundamental role in the excitability of nerve and muscle cells. Defects in fast Na+ channel inactivation can cause hereditary muscle diseases with hyper- or hypoexcitability of the sarcolemma. To explore the kinetics and gating mechanisms of noninactivating muscle Na+ channels on a molecular level, we analyzed single channel currents from wild-type and five mutant Na+ channels. The mutations were localized in different protein regions which have been previously shown to be important for fast inactivation (D3-D4-linker, D3/S4-S5, D4/S4-S5, D4/S6) and exhibited distinct grades of defective fast inactivation with varying levels of persistent Na+ currents caused by late channel reopenings. Different gating schemes were fitted to the data using hidden Markov models with a correction for time interval omission and compared statistically. For all investigated channels including the wild-type, two open states were necessary to describe our data. Whereas one inactivated state was sufficient to fit the single channel behavior of wild-type channels, modeling the mutants with impaired fast inactivation revealed evidence for several inactivated states. We propose a single gating scheme with two open and three inactivated states to describe the behavior of all five examined mutants. This scheme provides a biological interpretation of the collected data, based on previous investigations in voltage-gated Na+ and K+ channels. PMID:16513781

  12. Choice: 36 band feature selection software with applications to multispectral pattern recognition

    NASA Technical Reports Server (NTRS)

    Jones, W. C.

    1973-01-01

    Feature selection software was developed at the Earth Resources Laboratory that is capable of inputting up to 36 channels and selecting channel subsets according to several criteria based on divergence. One of the criterion used is compatible with the table look-up classifier requirements. The software indicates which channel subset best separates (based on average divergence) each class from all other classes. The software employs an exhaustive search technique, and computer time is not prohibitive. A typical task to select the best 4 of 22 channels for 12 classes takes 9 minutes on a Univac 1108 computer.

  13. Base norms and discrimination of generalized quantum channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenčová, A.

    2014-02-15

    We introduce and study norms in the space of hermitian matrices, obtained from base norms in positively generated subspaces. These norms are closely related to discrimination of so-called generalized quantum channels, including quantum states, channels, and networks. We further introduce generalized quantum decision problems and show that the maximal average payoffs of decision procedures are again given by these norms. We also study optimality of decision procedures, in particular, we obtain a necessary and sufficient condition under which an optimal 1-tester for discrimination of quantum channels exists, such that the input state is maximally entangled.

  14. The progenitors of supernovae Type Ia

    NASA Astrophysics Data System (ADS)

    Toonen, Silvia

    2014-09-01

    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. SNeIa are generally thought to be thermonuclear explosions of carbon/oxygen (CO) white dwarfs (WDs). The canonical scenarios involve white dwarfs reaching the Chandrasekhar mass, either by accretion from a non-degenerate companion (single-degenerate channel, SD) or by a merger of two CO WDs (double-degenerate channel, DD). The study of SNeIa progenitors is a very active field of research for binary population synthesis (BPS) studies. The strength of the BPS approach is to study the effect of uncertainties in binary evolution on the macroscopic properties of a binary population, in order to constrain binary evolutionary processes. I will discuss the expected SNeIa rate from the BPS approach and the uncertainties in their progenitor evolution, and compare with current observations. I will also discuss the results of the POPCORN project in which four BPS codes were compared to better understand the differences in the predicted SNeIa rate of the SD channel. The goal of this project is to investigate whether differences in the simulated populations are due to numerical effects or whether they can be explained by differences in the input physics. I will show which assumptions in BPS codes affect the results most and hence should be studied in more detail.

  15. Determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution, appendix 2

    NASA Technical Reports Server (NTRS)

    Ioup, George E.; Ioup, Juliette W.

    1988-01-01

    This thesis reviews the technique established to clear channels in the Power Spectral Estimate by applying linear combinations of well known window functions to the autocorrelation function. The need for windowing the auto correlation function is due to the fact that the true auto correlation is not generally used to obtain the Power Spectral Estimate. When applied, the windows serve to reduce the effect that modifies the auto correlation by truncating the data and possibly the autocorrelation has on the Power Spectral Estimate. It has been shown in previous work that a single channel has been cleared, allowing for the detection of a small peak in the presence of a large peak in the Power Spectral Estimate. The utility of this method is dependent on the robustness of it on different input situations. We extend the analysis in this paper, to include clearing up to three channels. We examine the relative positions of the spikes to each other and also the effect of taking different percentages of lags of the auto correlation in the Power Spectral Estimate. This method could have application wherever the Power Spectrum is used. An example of this is beam forming for source location, where a small target can be located next to a large target. Other possibilities extend into seismic data processing. As the method becomes more automated other applications may present themselves.

  16. A bipolar analog front-end integrated circuit for the SDC silicon tracker

    NASA Astrophysics Data System (ADS)

    Kipnis, I.; Spieler, H.; Collins, T.

    1993-11-01

    A low noise, low power, high bandwidth, radiation hard, silicon bipolar transistor full-custom integrated circuit (IC) containing 64 channels of analog signal processing has been developed for the SDC silicon tracker. The IC was designed and tested at LBL and was fabricated using CBIC-U2, 4 GHz f(sub T) complementary bipolar technology. Each channel contains the following functions: low noise preamplification, pulse shaping, and threshold discrimination. This is the first iteration of the production analog IC for the SDC silicon tracker. The IC is laid out to directly match the 50 micron pitch double-sided silicon strip detector. The chip measures 6.8 mm by 3.1 mm and contains 3,600 transistors. Three stages of amplification provide 180 mV/fC of gain with a 35 nsec peaking time at the comparator input. For a 14 pF detector capacitance, the equivalent noise charge is 1300 el. rms at a power consumption of 1 mW/channel from a single 3.5 V supply. With the discriminator threshold set to four times the noise level, a 16 nsec time-walk for 1.25 to 10 fC signals is achieved using a time-walk compensation network. Irradiation tests at TRIUMF to a Phi = 10(exp 14) protons/sq cm have been performed on the IC, demonstrating the radiation hardness of the complementary bipolar process.

  17. Robotics control using isolated word recognition of voice input

    NASA Technical Reports Server (NTRS)

    Weiner, J. M.

    1977-01-01

    A speech input/output system is presented that can be used to communicate with a task oriented system. Human speech commands and synthesized voice output extend conventional information exchange capabilities between man and machine by utilizing audio input and output channels. The speech input facility is comprised of a hardware feature extractor and a microprocessor implemented isolated word or phrase recognition system. The recognizer offers a medium sized (100 commands), syntactically constrained vocabulary, and exhibits close to real time performance. The major portion of the recognition processing required is accomplished through software, minimizing the complexity of the hardware feature extractor.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragone, A; /SLAC; Pratte, J.F.

    An ASIC for the readout of signals from X-ray Active Matrix Pixel Sensor (XAMPS) detectors to be used at the Linac Coherent Light Source (LCLS) is presented. The X-ray Pump Probe (XPP) instrument, for which the ASIC has been designed, requires a large input dynamic range on the order of 104 photons at 8 keV with a resolution of half a photon FWHM. Due to the size of the pixel and the length of the readout line, large input capacitance is expected, leading to stringent requirement on the noise optimization. Furthermore, the large number of pixels needed for a goodmore » position resolution and the fixed LCLS beam period impose limitations on the time available for the single pixel readout. Considering the periodic nature of the LCLS beam, the ASIC developed for this application is a time-variant system providing low-noise charge integration, filtering and correlated double sampling. In order to cope with the large input dynamic range a charge pump scheme implementing a zero-balance measurement method has been introduced. It provides an on chip 3-bit coarse digital conversion of the integrated charge. The residual charge is sampled using correlated double sampling into analog memory and measured with the required resolution. The first 64 channel prototype of the ASIC has been fabricated in TSMC CMOS 0.25 {micro}m technology. In this paper, the ASIC architecture and performances are presented.« less

  19. The dominance of dispersion in the evolution of bed material waves in gravel-bed rivers

    Treesearch

    Thomas E. Lisle; Yantao Cui; Gary Parker; James E. Pizzuto; Annjanette M. Dodd

    2001-01-01

    Abstract - Bed material waves are temporary zones of sediment accumulation created by large sediment inputs. Recent theoretical, experimental and field studies examine factors in fluencing dispersion and translation of bed material waves in quasi-uniform, gravel-bed channels. Exchanges of sediment between a channel and its floodplain are...

  20. User's Guide for Mixed-Size Sediment Transport Model for Networks of One-Dimensional Open Channels

    USGS Publications Warehouse

    Bennett, James P.

    2001-01-01

    This user's guide describes a mathematical model for predicting the transport of mixed sizes of sediment by flow in networks of one-dimensional open channels. The simulation package is useful for general sediment routing problems, prediction of erosion and deposition following dam removal, and scour in channels at road embankment crossings or other artificial structures. The model treats input hydrographs as stepwise steady-state, and the flow computation algorithm automatically switches between sub- and supercritical flow as dictated by channel geometry and discharge. A variety of boundary conditions including weirs and rating curves may be applied both external and internal to the flow network. The model may be used to compute flow around islands and through multiple openings in embankments, but the network must be 'simple' in the sense that the flow directions in all channels can be specified before simulation commences. The location and shape of channel banks are user specified, and all bedelevation changes take place between these banks and above a user-specified bedrock elevation. Computation of sediment-transport emphasizes the sand-size range (0.0625-2.0 millimeter) but the user may select any desired range of particle diameters including silt and finer (<0.0625 millimeter). As part of data input, the user may set the original bed-sediment composition of any number of layers of known thickness. The model computes the time evolution of total transport and the size composition of bed- and suspended-load sand through any cross section of interest. It also tracks bed -surface elevation and size composition. The model is written in the FORTRAN programming language for implementation on personal computers using the WINDOWS operating system and, along with certain graphical output display capability, is accessed from a graphical user interface (GUI). The GUI provides a framework for selecting input files and parameters of a number of components of the sediment-transport process. There are no restrictions in the use of the model as to numbers of channels, channel junctions, cross sections per channel, or points defining the cross sections. Following completion of the simulation computations, the GUI accommodates display of longitudinal plots of either bed elevation and size composition, or of transport rate and size composition of the various components, for individual channels and selected times during the simulation period. For individual cross sections, the GUI also allows display of time series of transport rate and size composition of the various components and of bed elevation and size composition.

  1. 78 FR 58923 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Grotto...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... stream channel, minimal sedimentation, organic input into caves during rain events, and a sufficient prey..., pp. 111-112; Niemiller et al. 2006, p. 43). Prey availability is related to the organic input that is transported with sediment and other organic materials via sinkholes into stream habitats (Burr et al. 2001, p...

  2. On the suitability of fibre optical parametric amplifiers for use in all-optical agile photonic networks

    NASA Astrophysics Data System (ADS)

    Gryspolakis, Nikolaos

    The objective of this thesis is to investigate the suitability of fibre optical parametric amplifiers (FOPAs) for use in multi-channel, dynamic networks. First, we investigate their quasi-static behaviour in such an environment. We study the behaviour of a FOPA under realistic conditions and we examine the impact on the gain spectrum of channel addition for several different operating conditions and regimes. In particular, we examine the impact of surviving channel(s) position, input power and channel spacing. We see how these parameters affect the gain tilt as well as its dynamic characteristics, namely the generation of under or over-shoots at the transition point, possible dependence of rise and fall times on any of the aforementioned parameters and how the gain excursions depend on those parameters. For these studies we assume continuous wave operation for all signals. We observe that the gain spectrum changes are a function of the position and the spacing of the channels. We also find that the gain excursion can reach several dBs (up to 5 dB) in the case of channel add/drop and are heavily dependent on the position of the surviving channels. The channels located in the middle of the transmission band are more prone to channel add/drop-induced gain changes. Moreover, we investigate for the first time the FOPA dynamic behaviour in a packet switching scenario. This part of the study assumes that all but one channels normally vary in a packet-switched fashion. The remaining channel (probe channel) is expected to undergo gain variations due to the perturbation of the system experienced by the other channels. Furthermore, we consider several different scenarios for which the channels spacing, per channel input power (PCIP), variance of the power fluctuation and position of the probe channel will change. We find that when the FOPA operates near saturation the target gain is not achieved more than 50% of the time while the peak-to-peak gain excursions can exceed 1 dB. Next, we introduce modulated channels to the amplifier in order to compare their effect on the Bit Error Rate (BER) performance. We consider the impact on FOPAs when employing different modulation formats, such as RZ, NRZ and RZ-DPSK. Carefully selected modulation formats can improve BER performance and reduce the effects of cross-phase modulation, four wave mixing (FWM) products generation or dispersion (non-linear and linear inter-channel interference). Especially for the case of FOPAs, because of the ultra-fast interaction times of the FWM phenomenon, cross gain modulation can be a great deterrent for using FOPAs. We use RZ-DPSK in order to suppress the WDM signal crosstalk. Only by using RZ-DPSK, we obtain an improved receiver sensitivity of 5 dB when operating at 40 Gb/s. Finally, we investigate ways to mitigate such effects as the ones described above (gain excursions, gain tilt, etc.). We demonstrate that by using a ring configuration with optical feedback for the first time in FOPAs, we can achieve all-optical gain clamping (AOGC), mitigating gain excursions and attaining gain, independent of channel input power for a large range of PCIP. For example, with the use of AOGC, we reduce the add/drop-induced gain excursions from 4 dB to 0.6 dB. Also, by the combined use of AOGC and RZ-DPSK, we mitigate most of the aforementioned hindrances described above.

  3. A reconfigurable continuous-flow fluidic routing fabric using a modular, scalable primitive.

    PubMed

    Silva, Ryan; Bhatia, Swapnil; Densmore, Douglas

    2016-07-05

    Microfluidic devices, by definition, are required to move liquids from one physical location to another. Given a finite and frequently fixed set of physical channels to route fluids, a primitive design element that allows reconfigurable routing of that fluid from any of n input ports to any n output ports will dramatically change the paradigms by which these chips are designed and applied. Furthermore, if these elements are "regular" regarding their design, the programming and fabrication of these elements becomes scalable. This paper presents such a design element called a transposer. We illustrate the design, fabrication and operation of a single transposer. We then scale this design to create a programmable fabric towards a general-purpose, reconfigurable microfluidic platform analogous to the Field Programmable Gate Array (FPGA) found in digital electronics.

  4. Adaptive optics compensation of orbital angular momentum beams with a modified Gerchberg-Saxton-based phase retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Chang, Huan; Yin, Xiao-li; Cui, Xiao-zhou; Zhang, Zhi-chao; Ma, Jian-xin; Wu, Guo-hua; Zhang, Li-jia; Xin, Xiang-jun

    2017-12-01

    Practical orbital angular momentum (OAM)-based free-space optical (FSO) communications commonly experience serious performance degradation and crosstalk due to atmospheric turbulence. In this paper, we propose a wave-front sensorless adaptive optics (WSAO) system with a modified Gerchberg-Saxton (GS)-based phase retrieval algorithm to correct distorted OAM beams. We use the spatial phase perturbation (SPP) GS algorithm with a distorted probe Gaussian beam as the only input. The principle and parameter selections of the algorithm are analyzed, and the performance of the algorithm is discussed. The simulation results show that the proposed adaptive optics (AO) system can significantly compensate for distorted OAM beams in single-channel or multiplexed OAM systems, which provides new insights into adaptive correction systems using OAM beams.

  5. Evoked potential correlates of selective attention with multi-channel auditory inputs

    NASA Technical Reports Server (NTRS)

    Schwent, V. L.; Hillyard, S. A.

    1975-01-01

    Ten subjects were presented with random, rapid sequences of four auditory tones which were separated in pitch and apparent spatial position. The N1 component of the auditory vertex evoked potential (EP) measured relative to a baseline was observed to increase with attention. It was concluded that the N1 enhancement reflects a finely tuned selective attention to one stimulus channel among several concurrent, competing channels. This EP enhancement probably increases with increased information load on the subject.

  6. FY92 Progress Report for the Gyrotron Backward-Wave-Oscillator Experiment

    DTIC Science & Technology

    1993-07-01

    C. SAMPLE CABLE CALIBRATION 23 D. ASYST CHANNEL SETUPS 26 E. SAMPLE MAGNET INPUT DATA DECK FOR THE GYRO-BWO 32 F. SAMPLE EGUN INPUT DATA DECK FOR THE...of the first coil of the Helmholtz pair; zero also corresponds to the diode end of the experiment). Another computer code used was the EGUN code (Ref...a short computer program was written to superimpose the two magnetic fields; DC and Helmholtz). An example of an EGUN input data file is included in

  7. DC/DC Converter Stability Testing Study

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2008-01-01

    This report presents study results on hybrid DC/DC converter stability testing methods. An input impedance measurement method and a gain/phase margin measurement method were evaluated to be effective to determine front-end oscillation and feedback loop oscillation. In particular, certain channel power levels of converter input noises have been found to have high degree correlation with the gain/phase margins. It becomes a potential new method to evaluate stability levels of all type of DC/DC converters by utilizing the spectral analysis on converter input noises.

  8. A new generation of ultra-dense optical I/O for silicon photonics

    NASA Astrophysics Data System (ADS)

    Wlodawski, Mitchell S.; Kopp, Victor I.; Park, Jongchul; Singer, Jonathan; Hubner, Eric E.; Neugroschl, Daniel; Chao, Norman; Genack, Azriel Z.

    2014-03-01

    In response to the optical packaging needs of a rapidly growing silicon photonics market, Chiral Photonics, Inc. (CPI) has developed a new generation of ultra-dense-channel, bi-directional, all-optical, input/output (I/O) couplers that bridge the data transport gap between standard optical fibers and photonic integrated circuits. These couplers, called Pitch Reducing Optical Fiber Arrays (PROFAs), provide a means to simultaneously match both the mode field and channel spacing (i.e. pitch) between an optical fiber array and a photonic integrated circuit (PIC). Both primary methods for optically interfacing with PICs, via vertical grating couplers (VGCs) and edge couplers, can be addressed with PROFAs. PROFAs bring the signal-carrying cores, either multimode or singlemode, of many optical fibers into close proximity within an all-glass device that can provide low loss coupling to on-chip components, including waveguides, gratings, detectors and emitters. Two-dimensional (2D) PROFAs offer more than an order of magnitude enhancement in channel density compared to conventional one-dimensional (1D) fiber arrays. PROFAs can also be used with low vertical profile solutions that simplify optoelectronic packaging while reducing PIC I/O real estate usage requirements. PROFA technology is based on a scalable production process for microforming glass preform assemblies as they are pulled through a small oven. An innovative fiber design, called the "vanishing core," enables tailoring the mode field along the length of the PROFA to meet the coupling needs of disparate waveguide technologies, such as fiber and onchip. Examples of single- and multi-channel couplers fabricated using this technology will be presented.

  9. A watershed scale spatially-distributed model for streambank erosion rate driven by channel curvature

    NASA Astrophysics Data System (ADS)

    McMillan, Mitchell; Hu, Zhiyong

    2017-10-01

    Streambank erosion is a major source of fluvial sediment, but few large-scale, spatially distributed models exist to quantify streambank erosion rates. We introduce a spatially distributed model for streambank erosion applicable to sinuous, single-thread channels. We argue that such a model can adequately characterize streambank erosion rates, measured at the outsides of bends over a 2-year time period, throughout a large region. The model is based on the widely-used excess-velocity equation and comprised three components: a physics-based hydrodynamic model, a large-scale 1-dimensional model of average monthly discharge, and an empirical bank erodibility parameterization. The hydrodynamic submodel requires inputs of channel centerline, slope, width, depth, friction factor, and a scour factor A; the large-scale watershed submodel utilizes watershed-averaged monthly outputs of the Noah-2.8 land surface model; bank erodibility is based on tree cover and bank height as proxies for root density. The model was calibrated with erosion rates measured in sand-bed streams throughout the northern Gulf of Mexico coastal plain. The calibrated model outperforms a purely empirical model, as well as a model based only on excess velocity, illustrating the utility of combining a physics-based hydrodynamic model with an empirical bank erodibility relationship. The model could be improved by incorporating spatial variability in channel roughness and the hydrodynamic scour factor, which are here assumed constant. A reach-scale application of the model is illustrated on ∼1 km of a medium-sized, mixed forest-pasture stream, where the model identifies streambank erosion hotspots on forested and non-forested bends.

  10. Dual-user nonlinear teleoperation subjected to varying time delay and bounded inputs.

    PubMed

    Zakerimanesh, Amir; Hashemzadeh, Farzad; Ghiasi, Amir Rikhtehgar

    2017-05-01

    A novel trilateral control architecture for Dual-master/Single-slave teleoperation system with taking account of saturation in actuators, nonlinear dynamics for telemanipulators and bounded varying time delay which affects the transmitted signals in the communication channels, is proposed in this paper. In this research, we will address the stability and desired position coordination problem of trilateral teleoperation system by extension of (nP+D) controller that is used for Single-master/Single-slave teleoperation system. Our proposed controller is weighted summation of nonlinear Proportional plus Damping (nP+D) controller that incorporate gravity compensation and the weights are specified by the dominance factor, which determines the supremacy of each user over the slave robot and over the other user. The asymptotic stability of closed loop dynamics is studied using Lyapunov-Krasovskii functional under conditions on the controller parameters, the actuator saturation characteristics and the maximum values of varying time delays. It is shown that these controllers satisfy the desired position coordination problem in free motion condition. To show the effectiveness of the proposed method, a number of simulations have been conducted on a varying time delay Dual-master/Single-slave teleoperation system using 3-DOF planar robots for each telemanipulator subjected to actuator saturation. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Monodisperse Picoliter Droplets for Low-Bias and Contamination-Free Reactions in Single-Cell Whole Genome Amplification

    PubMed Central

    Maruyama, Toru; Yamagishi, Keisuke; Mori, Tetsushi; Takeyama, Haruko

    2015-01-01

    Whole genome amplification (WGA) is essential for obtaining genome sequences from single bacterial cells because the quantity of template DNA contained in a single cell is very low. Multiple displacement amplification (MDA), using Phi29 DNA polymerase and random primers, is the most widely used method for single-cell WGA. However, single-cell MDA usually results in uneven genome coverage because of amplification bias, background amplification of contaminating DNA, and formation of chimeras by linking of non-contiguous chromosomal regions. Here, we present a novel MDA method, termed droplet MDA, that minimizes amplification bias and amplification of contaminants by using picoliter-sized droplets for compartmentalized WGA reactions. Extracted DNA fragments from a lysed cell in MDA mixture are divided into 105 droplets (67 pL) within minutes via flow through simple microfluidic channels. Compartmentalized genome fragments can be individually amplified in these droplets without the risk of encounter with reagent-borne or environmental contaminants. Following quality assessment of WGA products from single Escherichia coli cells, we showed that droplet MDA minimized unexpected amplification and improved the percentage of genome recovery from 59% to 89%. Our results demonstrate that microfluidic-generated droplets show potential as an efficient tool for effective amplification of low-input DNA for single-cell genomics and greatly reduce the cost and labor investment required for determination of nearly complete genome sequences of uncultured bacteria from environmental samples. PMID:26389587

  12. Heterogeneous firing responses predict diverse couplings to presynaptic activity in mice layer V pyramidal neurons

    PubMed Central

    2017-01-01

    In this study, we present a theoretical framework combining experimental characterizations and analytical calculus to capture the firing rate input-output properties of single neurons in the fluctuation-driven regime. Our framework consists of a two-step procedure to treat independently how the dendritic input translates into somatic fluctuation variables, and how the latter determine action potential firing. We use this framework to investigate the functional impact of the heterogeneity in firing responses found experimentally in young mice layer V pyramidal cells. We first design and calibrate in vitro a simplified morphological model of layer V pyramidal neurons with a dendritic tree following Rall's branching rule. Then, we propose an analytical derivation for the membrane potential fluctuations at the soma as a function of the properties of the synaptic input in dendrites. This mathematical description allows us to easily emulate various forms of synaptic input: either balanced, unbalanced, synchronized, purely proximal or purely distal synaptic activity. We find that those different forms of dendritic input activity lead to various impact on the somatic membrane potential fluctuations properties, thus raising the possibility that individual neurons will differentially couple to specific forms of activity as a result of their different firing response. We indeed found such a heterogeneous coupling between synaptic input and firing response for all types of presynaptic activity. This heterogeneity can be explained by different levels of cellular excitability in the case of the balanced, unbalanced, synchronized and purely distal activity. A notable exception appears for proximal dendritic inputs: increasing the input level can either promote firing response in some cells, or suppress it in some other cells whatever their individual excitability. This behavior can be explained by different sensitivities to the speed of the fluctuations, which was previously associated to different levels of sodium channel inactivation and density. Because local network connectivity rather targets proximal dendrites, our results suggest that this aspect of biophysical heterogeneity might be relevant to neocortical processing by controlling how individual neurons couple to local network activity. PMID:28410418

  13. Surprise! Infants consider possible bases of generalization for a single input example.

    PubMed

    Gerken, LouAnn; Dawson, Colin; Chatila, Razanne; Tenenbaum, Josh

    2015-01-01

    Infants have been shown to generalize from a small number of input examples. However, existing studies allow two possible means of generalization. One is via a process of noting similarities shared by several examples. Alternatively, generalization may reflect an implicit desire to explain the input. The latter view suggests that generalization might occur when even a single input example is surprising, given the learner's current model of the domain. To test the possibility that infants are able to generalize based on a single example, we familiarized 9-month-olds with a single three-syllable input example that contained either one surprising feature (syllable repetition, Experiment 1) or two features (repetition and a rare syllable, Experiment 2). In both experiments, infants generalized only to new strings that maintained all of the surprising features from familiarization. This research suggests that surprise can promote very rapid generalization. © 2014 John Wiley & Sons Ltd.

  14. Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus

    PubMed Central

    Aponte, Yexica; Lien, Cheng-Chang; Reisinger, Ellen; Jonas, Peter

    2006-01-01

    Hyperpolarization-activated channels (Ih or HCN channels) are widely expressed in principal neurons in the central nervous system. However, Ih in inhibitory GABAergic interneurons is less well characterized. We examined the functional properties of Ih in fast-spiking basket cells (BCs) of the dentate gyrus, using hippocampal slices from 17- to 21-day-old rats. Bath application of the Ih channel blocker ZD 7288 at a concentration of 30 μm induced a hyperpolarization of 5.7 ± 1.5 mV, an increase in input resistance and a correlated increase in apparent membrane time constant. ZD 7288 blocked a hyperpolarization-activated current in a concentration-dependent manner (IC50, 1.4 μm). The effects of ZD 7288 were mimicked by external Cs+. The reversal potential of Ih was −27.4 mV, corresponding to a Na+ to K+ permeability ratio (PNa/PK) of 0.36. The midpoint potential of the activation curve of Ih was −83.9 mV, and the activation time constant at −120 mV was 190 ms. Single-cell expression analysis using reverse transcription followed by quantitative polymerase chain reaction revealed that BCs coexpress HCN1 and HCN2 subunit mRNA, suggesting the formation of heteromeric HCN1/2 channels. ZD 7288 increased the current threshold for evoking antidromic action potentials by extracellular stimulation, consistent with the expression of Ih in BC axons. Finally, ZD 7288 decreased the frequency of miniature inhibitory postsynaptic currents (mIPSCs) in hippocampal granule cells, the main target cells of BCs, to 70 ± 4% of the control value. In contrast, the amplitude of mIPSCs was unchanged, consistent with the presence of Ih in inhibitory terminals. In conclusion, our results suggest that Ih channels are expressed in the somatodendritic region, axon and presynaptic elements of fast-spiking BCs in the hippocampus. PMID:16690716

  15. Sodium Channel β2 Subunits Prevent Action Potential Propagation Failures at Axonal Branch Points.

    PubMed

    Cho, In Ha; Panzera, Lauren C; Chin, Morven; Hoppa, Michael B

    2017-09-27

    Neurotransmitter release depends on voltage-gated Na + channels (Na v s) to propagate an action potential (AP) successfully from the axon hillock to a synaptic terminal. Unmyelinated sections of axon are very diverse structures encompassing branch points and numerous presynaptic terminals with undefined molecular partners of Na + channels. Using optical recordings of Ca 2+ and membrane voltage, we demonstrate here that Na + channel β2 subunits (Na v β2s) are required to prevent AP propagation failures across the axonal arborization of cultured rat hippocampal neurons (mixed male and female). When Na v β2 expression was reduced, we identified two specific phenotypes: (1) membrane excitability and AP-evoked Ca 2+ entry were impaired at synapses and (2) AP propagation was severely compromised with >40% of axonal branches no longer responding to AP-stimulation. We went on to show that a great deal of electrical signaling heterogeneity exists in AP waveforms across the axonal arborization independent of axon morphology. Therefore, Na v β2 is a critical regulator of axonal excitability and synaptic function in unmyelinated axons. SIGNIFICANCE STATEMENT Voltage-gated Ca 2+ channels are fulcrums of neurotransmission that convert electrical inputs into chemical outputs in the form of vesicle fusion at synaptic terminals. However, the role of the electrical signal, the presynaptic action potential (AP), in modulating synaptic transmission is less clear. What is the fidelity of a propagating AP waveform in the axon and what molecules shape it throughout the axonal arborization? Our work identifies several new features of AP propagation in unmyelinated axons: (1) branches of a single axonal arborization have variable AP waveforms independent of morphology, (2) Na + channel β2 subunits modulate AP-evoked Ca 2+ -influx, and (3) β2 subunits maintain successful AP propagation across the axonal arbor. These findings are relevant to understanding the flow of excitation in the brain. Copyright © 2017 the authors 0270-6474/17/379519-15$15.00/0.

  16. Diadenosine tetraphosphate-gating of recombinant pancreatic ATP-sensitive K(+) channels.

    PubMed

    Jovanovic, S; Jovanovic, A

    2001-02-01

    Diadenosine tetraphosphate (Ap4A) has been recently discovered in the pancreatic beta cells where targets ATP-sensitive K(+) (K(ATP)) channels, depolarizes the cell membrane and induces insulin secretion. However, whether Ap4A inhibit pancreatic K(ATP) channels by targeting protein channel complex itself was unknown. Therefore, we coexpressed pancreatic K(ATP) channel subunits, Kir6.2 and SUR1, in COS-7 cells and examined the effect of Ap4A on the single channel behavior using the inside-out configuration of the patch-clamp technique. Ap4A inhibited channel opening in a concentration-dependent manner. Analysis of single channels demonstrated that Ap4A did not change intraburst kinetic behavior of K(ATP) channels, but rather decreased burst duration and increased between-burst duration. It is concluded that Ap4A antagonizes K(ATP) channel opening by targeting channel subunits themselves and by keeping channels longer in closed interburst states.

  17. Locking of correlated neural activity to ongoing oscillations

    PubMed Central

    Helias, Moritz

    2017-01-01

    Population-wide oscillations are ubiquitously observed in mesoscopic signals of cortical activity. In these network states a global oscillatory cycle modulates the propensity of neurons to fire. Synchronous activation of neurons has been hypothesized to be a separate channel of signal processing information in the brain. A salient question is therefore if and how oscillations interact with spike synchrony and in how far these channels can be considered separate. Experiments indeed showed that correlated spiking co-modulates with the static firing rate and is also tightly locked to the phase of beta-oscillations. While the dependence of correlations on the mean rate is well understood in feed-forward networks, it remains unclear why and by which mechanisms correlations tightly lock to an oscillatory cycle. We here demonstrate that such correlated activation of pairs of neurons is qualitatively explained by periodically-driven random networks. We identify the mechanisms by which covariances depend on a driving periodic stimulus. Mean-field theory combined with linear response theory yields closed-form expressions for the cyclostationary mean activities and pairwise zero-time-lag covariances of binary recurrent random networks. Two distinct mechanisms cause time-dependent covariances: the modulation of the susceptibility of single neurons (via the external input and network feedback) and the time-varying variances of single unit activities. For some parameters, the effectively inhibitory recurrent feedback leads to resonant covariances even if mean activities show non-resonant behavior. Our analytical results open the question of time-modulated synchronous activity to a quantitative analysis. PMID:28604771

  18. Plasma oscillation effects on nested Hall thruster operation and stability

    NASA Astrophysics Data System (ADS)

    McDonald, M. S.; Sekerak, M. J.; Gallimore, A. D.; Hofer, R. R.

    High-power Hall thrusters capable of throughput on the order of 100 kW are currently under development, driven by more demanding mission profiles and rapid growth in on-orbit solar power generation capability. At these power levels the nested Hall thruster (NHT), a new design that concentrically packs multiple thrusters into a single body with a shared magnetic circuit, offers performance and logistical advantages over conventional single-channel Hall thrusters. An important area for risk reduction in NHT development is quantifying inter-channel coupling between discharge channels. This work presents time- and frequency-domain discharge current and voltage measurements paired with high-speed video of the X2, a 10-kW class dual channel NHT. Two “ triads” of operating conditions at 150 V, 3.6 kW and 250 V, 8.6 kW were examined, including each channel in individual operation and both channels in joint operation. For both triads tested, dual-channel operation did not noticeably destabilize the discharge. Partial coupling of outer channel oscillations into the inner channel occurred at 150 V, though oscillation amplitudes did not change greatly. As a percentage of mean discharge current, RMS oscillations at 150 V increased from 8% to 13% on the inner channel and decreased from 10% to 8% on the outer channel from single- to dual-channel operation. At 250 V the RMS/mean level stayed steady at 13% on the inner channel and decreased from 7% to 6% on the outer channel. The only mean discharge parameter noticeably affected was the cathode floating potential, which decreased in magnitude below ground with increased absolute cathode flow rate in dual-channel mode. Rotating spokes were detected on high-speed video across all X2 operating cases with wavelength 12-18 cm, and spoke velocity generally increased from single- to dual-channel operation.

  19. Imaging Large Cohorts of Single Ion Channels and Their Activity

    PubMed Central

    Hiersemenzel, Katia; Brown, Euan R.; Duncan, Rory R.

    2013-01-01

    As calcium is the most important signaling molecule in neurons and secretory cells, amongst many other cell types, it follows that an understanding of calcium channels and their regulation of exocytosis is of vital importance. Calcium imaging using calcium dyes such as Fluo3, or FRET-based dyes that have been used widely has provided invaluable information, which combined with modeling has estimated the subtypes of channels responsible for triggering the exocytotic machinery as well as inferences about the relative distances away from vesicle fusion sites these molecules adopt. Importantly, new super-resolution microscopy techniques, combined with novel Ca2+ indicators and imaginative imaging approaches can now define directly the nano-scale locations of very large cohorts of single channel molecules in relation to single vesicles. With combinations of these techniques the activity of individual channels can be visualized and quantified using novel Ca2+ indicators. Fluorescently labeled specific channel toxins can also be used to localize endogenous assembled channel tetramers. Fluorescence lifetime imaging microscopy and other single-photon-resolution spectroscopic approaches offer the possibility to quantify protein–protein interactions between populations of channels and the SNARE protein machinery for the first time. Together with simultaneous electrophysiology, this battery of quantitative imaging techniques has the potential to provide unprecedented detail describing the locations, dynamic behaviors, interactions, and conductance activities of many thousands of channel molecules and vesicles in living cells. PMID:24027557

  20. Rectification of Acetylcholine-Elicited Currents in PC12 Pheochromocytoma Cells

    NASA Astrophysics Data System (ADS)

    Ifune, C. K.; Steinbach, J. H.

    1990-06-01

    The current-voltage (I-V) relationship for acetylcholine-elicited currents in the rat pheochromocytoma cell line PC12 is nonlinear. Two voltage-dependent processes that could account for the whole-cell current rectification were examined, receptor channel gating and single receptor channel permeation. We found that both factors are involved in the rectification of the whole-cell currents. The voltage dependence of channel gating determines the shape of the I-V curve at negative potentials. The single-channel I-V relationship is inwardly rectifying and largely responsible for the characteristic shape of the whole-cell I-V curve at positive potentials. The rectification of the single-channel currents is produced by the voltage-dependent block of outward currents by intracellular Mg2+ ions.

  1. Coherent state coding approaches the capacity of non-Gaussian bosonic channels

    NASA Astrophysics Data System (ADS)

    Huber, Stefan; König, Robert

    2018-05-01

    The additivity problem asks if the use of entanglement can boost the information-carrying capacity of a given channel beyond what is achievable by coding with simple product states only. This has recently been shown not to be the case for phase-insensitive one-mode Gaussian channels, but remains unresolved in general. Here we consider two general classes of bosonic noise channels, which include phase-insensitive Gaussian channels as special cases: these are attenuators with general, potentially non-Gaussian environment states and classical noise channels with general probabilistic noise. We show that additivity violations, if existent, are rather minor for all these channels: the maximal gain in classical capacity is bounded by a constant independent of the input energy. Our proof shows that coding by simple classical modulation of coherent states is close to optimal.

  2. Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells

    PubMed Central

    Gu, Ning; Vervaeke, Koen; Hu, Hua; Storm, Johan F

    2005-01-01

    In hippocampal pyramidal cells, a single action potential (AP) or a burst of APs is followed by a medium afterhyperpolarization (mAHP, lasting ∼0.1 s). The currents underlying the mAHP are considered to regulate excitability and cause early spike frequency adaptation, thus dampening the response to sustained excitatory input relative to responses to abrupt excitation. The mAHP was originally suggested to be primarily caused by M-channels (at depolarized potentials) and h-channels (at more negative potentials), but not SK channels. In recent reports, however, the mAHP was suggested to be generated mainly by SK channels or only by h-channels. We have now re-examined the mechanisms underlying the mAHP and early spike frequency adaptation in CA1 pyramidal cells by using sharp electrode and whole-cell recording in rat hippocampal slices. The specific M-channel blocker XE991 (10 μm) suppressed the mAHP following 1–5 APs evoked by current injection at −60 mV. XE991 also enhanced the excitability of the cell, i.e. increased the number of APs evoked by a constant depolarizing current pulse, reduced their rate of adaptation, enhanced the afterdepolarization and promoted bursting. Conversely, the M-channel opener retigabine reduced excitability. The h-channel blocker ZD7288 (4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride; 10 μm) fully suppressed the mAHP at −80 mV, but had little effect at −60 mV, whereas XE991 did not measurably affect the mAHP at −80 mV. Likewise, ZD7288 had little or no effect on excitability or adaptation during current pulses injected from −60 mV, but changed the initial discharge during depolarizing pulses injected from −80 mV. In contrast to previous reports, we found that blockade of Ca2+-activated K+ channels of the SK/KCa type by apamin (100–400 nm) failed to affect the mAHP or adaptation. A computational model of a CA1 pyramidal cell predicted that M- and h-channels will generate mAHPs in a voltage-dependent manner, as indicated by the experiments. We conclude that M- and h-channels generate the somatic mAHP in hippocampal pyramidal cells, with little or no net contribution from SK channels. PMID:15890705

  3. [Single channel analysis of aconitine blockade of calcium channels in rat myocardiocytes].

    PubMed

    Chen, L; Ma, C; Cai, B C; Lu, Y M; Wu, H

    1995-01-01

    Ventricular myocardiocytes from neonatal Wistar rats were isolated and cultured. Aconitine, Ca2+ channel blocker verapamil or Ca2+ channel activator BAY K8644 were added to the bath solution separately. Using the cell-attached configuration of the patch clamp technique, the single channel activities of L type Ca2+ channel were recorded before and after addition of all three drugs. The results showed the blocking effect of aconitine (50 micrograms.ml-1) on L type Ca2+ channels. Its mechanism may be relevant to the decrease in both open state probability and the mean open time of Ca2+ channel. The difference was statistically significant compared with control group (P < 0.01). The amplitude of Ba2+ currents, which flow through open L type Ca2+ channel was unchanged.

  4. The English Channel: Contamination status of its transitional and coastal waters.

    PubMed

    Tappin, A D; Millward, G E

    2015-06-30

    The chemical contamination (organic compounds, metals, radionuclides, microplastics, nutrients) of English Channel waters has been reviewed, focussing on the sources, concentrations and impacts. River loads were only reliable for Pb, whereas atmospheric loads appeared robust for Cd, Pb, Hg, PCB-153 and γ-HCH. Temporal trends in atmospheric inputs were decreasing. Contaminant concentrations in biota were relatively constant or decreasing, but not for Cd, Hg and HBCDD, and deleterious impacts on fish and copepods were reported. However, data on ecotoxicological effects were generally sparse for legacy and emerging contaminants. Intercomparison of activity concentrations of artificial radionuclides in sediments and biota on both Channel coasts was hindered by differences in methodological approaches. Riverine phosphate loads decreased with time, while nitrate loads remained uniform. Increased biomass of algae, attributable to terrestrial inputs of nutrients, has affected benthic production and shellfisheries. A strategic approach to the identification of contaminant impacts on marine biota is recommended. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Deep convolutional neural network based antenna selection in multiple-input multiple-output system

    NASA Astrophysics Data System (ADS)

    Cai, Jiaxin; Li, Yan; Hu, Ying

    2018-03-01

    Antenna selection of wireless communication system has attracted increasing attention due to the challenge of keeping a balance between communication performance and computational complexity in large-scale Multiple-Input MultipleOutput antenna systems. Recently, deep learning based methods have achieved promising performance for large-scale data processing and analysis in many application fields. This paper is the first attempt to introduce the deep learning technique into the field of Multiple-Input Multiple-Output antenna selection in wireless communications. First, the label of attenuation coefficients channel matrix is generated by minimizing the key performance indicator of training antenna systems. Then, a deep convolutional neural network that explicitly exploits the massive latent cues of attenuation coefficients is learned on the training antenna systems. Finally, we use the adopted deep convolutional neural network to classify the channel matrix labels of test antennas and select the optimal antenna subset. Simulation experimental results demonstrate that our method can achieve better performance than the state-of-the-art baselines for data-driven based wireless antenna selection.

  6. A novel high-speed CMOS circuit based on a gang of capacitors

    NASA Astrophysics Data System (ADS)

    Sharroush, Sherif M.

    2017-08-01

    There is no doubt that complementary metal-oxide semiconductor (CMOS) circuits with wide fan-in suffers from the relatively sluggish operation. In this paper, a circuit that contains a gang of capacitors sharing their charge with each other is proposed as an alternative to long N-channel MOS and P-channel MOS stacks. The proposed scheme is investigated quantitatively and verified by simulation using the 45-nm CMOS technology with VDD = 1 V. The time delay, area and power consumption of the proposed scheme are investigated and compared with the conventional static CMOS logic circuit. It is verified that the proposed scheme achieves 52% saving in the average propagation delay for eight inputs and that it has a smaller area compared to the conventional CMOS logic when the number of inputs exceeds three and a smaller power consumption for a number of inputs exceeding two. The impacts of process variations, component mismatches and technology scaling on the proposed scheme are also investigated.

  7. Method and apparatus for stabilizing pulsed microwave amplifiers

    DOEpatents

    Hopkins, Donald B.

    1993-01-01

    Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage. Sequential readout of the increments during the next pulse provides variable control voltages to a voltage controlled phase shifter and voltage controlled amplitude modulator in the amplifier input signal path.

  8. Electric generation and ratcheted transport of contact-charged drops

    NASA Astrophysics Data System (ADS)

    Cartier, Charles A.; Graybill, Jason R.; Bishop, Kyle J. M.

    2017-10-01

    We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

  9. Electric generation and ratcheted transport of contact-charged drops.

    PubMed

    Cartier, Charles A; Graybill, Jason R; Bishop, Kyle J M

    2017-10-01

    We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

  10. Method and apparatus for stabilizing pulsed microwave amplifiers

    DOEpatents

    Hopkins, D.B.

    1993-01-26

    Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage. Sequential readout of the increments during the next pulse provides variable control voltages to a voltage controlled phase shifter and voltage controlled amplitude modulator in the amplifier input signal path.

  11. Input integration around the dendritic branches in hippocampal dentate granule cells.

    PubMed

    Kamijo, Tadanobu Chuyo; Hayakawa, Hirofumi; Fukushima, Yasuhiro; Kubota, Yoshiyuki; Isomura, Yoshikazu; Tsukada, Minoru; Aihara, Takeshi

    2014-08-01

    Recent studies have shown that the dendrites of several neurons are not simple translators but are crucial facilitators of excitatory postsynaptic potential (EPSP) propagation and summation of synaptic inputs to compensate for inherent voltage attenuation. Granule cells (GCs)are located at the gateway for valuable information arriving at the hippocampus from the entorhinal cortex. However, the underlying mechanisms of information integration along the dendrites of GCs in the hippocampus are still unclear. In this study, we investigated the input integration around dendritic branches of GCs in the rat hippocampus. We applied differential spatiotemporal stimulations to the dendrites using a high-speed glutamate-uncaging laser. Our results showed that when two sites close to and equidistant from a branching point were simultaneously stimulated, a nonlinear summation of EPSPs was observed at the soma. In addition, nonlinear summation (facilitation) depended on the stimulus location and was significantly blocked by the application of a voltage-dependent Ca(2+) channel antagonist. These findings suggest that the nonlinear summation of EPSPs around the dendritic branches of hippocampal GCs is a result of voltage-dependent Ca(2+) channel activation and may play a crucial role in the integration of input information.

  12. Wet-chemical fabrication of a single leakage-channel grating coupler

    NASA Astrophysics Data System (ADS)

    Weisenbach, Lori; Zelinski, Brian J. J.; Roncone, Ronald L.; Burke, James J.

    1995-04-01

    We demonstrate the fabrication of a unique optical device, the single leakage-channel grating coupler, using sol-gel techniques. Design specifications are outlined to establish the material criteria for the sol-gel compositions. Material choice and preparation are described. We evaluate the characteristics and performance of the single leakage-channel grating coupler by comparing the predicted and the measured branching ratios. The branching ratio of the solution-derived device is within 3% of the theoretically predicted value.

  13. Single-channel in-ear-EEG detects the focus of auditory attention to concurrent tone streams and mixed speech.

    PubMed

    Fiedler, Lorenz; Wöstmann, Malte; Graversen, Carina; Brandmeyer, Alex; Lunner, Thomas; Obleser, Jonas

    2017-06-01

    Conventional, multi-channel scalp electroencephalography (EEG) allows the identification of the attended speaker in concurrent-listening ('cocktail party') scenarios. This implies that EEG might provide valuable information to complement hearing aids with some form of EEG and to install a level of neuro-feedback. To investigate whether a listener's attentional focus can be detected from single-channel hearing-aid-compatible EEG configurations, we recorded EEG from three electrodes inside the ear canal ('in-Ear-EEG') and additionally from 64 electrodes on the scalp. In two different, concurrent listening tasks, participants (n  =  7) were fitted with individualized in-Ear-EEG pieces and were either asked to attend to one of two dichotically-presented, concurrent tone streams or to one of two diotically-presented, concurrent audiobooks. A forward encoding model was trained to predict the EEG response at single EEG channels. Each individual participants' attentional focus could be detected from single-channel EEG response recorded from short-distance configurations consisting only of a single in-Ear-EEG electrode and an adjacent scalp-EEG electrode. The differences in neural responses to attended and ignored stimuli were consistent in morphology (i.e. polarity and latency of components) across subjects. In sum, our findings show that the EEG response from a single-channel, hearing-aid-compatible configuration provides valuable information to identify a listener's focus of attention.

  14. Multi-channel distributed coordinated function over single radio in wireless sensor networks.

    PubMed

    Campbell, Carlene E-A; Loo, Kok-Keong Jonathan; Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band.

  15. Multi-Channel Distributed Coordinated Function over Single Radio in Wireless Sensor Networks

    PubMed Central

    Campbell, Carlene E.-A.; Loo, Kok-Keong (Jonathan); Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band. PMID:22346614

  16. Microfluidics platform for single-shot dose-response analysis of chloride channel-modulating compounds.

    PubMed

    Jin, Byung-Ju; Ko, Eun-A; Namkung, Wan; Verkman, A S

    2013-10-07

    We previously developed cell-based kinetics assays of chloride channel modulators utilizing genetically encoded yellow fluorescent proteins. Fluorescence platereader-based high-throughput screens yielded small-molecule activators and inhibitors of the cAMP-activated chloride channel CFTR and calcium-activated chloride channels, including TMEM16A. Here, we report a microfluidics platform for single-shot determination of concentration-activity relations in which a 1.5 × 1.5 mm square area of adherent cultured cells is exposed for 5-10 min to a pseudo-logarithmic gradient of test compound generated by iterative, two-component channel mixing. Cell fluorescence is imaged following perfusion with an iodide-containing solution to give iodide influx rate at each location in the image field, thus quantifying modulator effects over a wide range of concentrations in a single measurement. IC50 determined for CFTR and TMEM16A activators and inhibitors by single-shot microfluidics were in agreement with conventional plate reader measurements. The microfluidics approach developed here may accelerate the discovery and characterization of chloride channel-targeted drugs.

  17. Investigation of airflow effects on the dielectric barrier discharge with single/double discharge channel arrangement

    NASA Astrophysics Data System (ADS)

    Fan, Zhihui; Yan, Huijie; Liu, Yidi; Guo, Hongfei; Wang, Yuying; Ren, Chunsheng

    2018-05-01

    Atmospheric-pressure dielectric barrier discharge (DBD) with airflow participation has been widely used in recent years. In this paper, effects of airflow on DBD characteristics are experimentally investigated by single/double pin-to-plate DBD arrangements with an AC exciting source. The discharge electrical characteristics and the movements of discharge channels in airflow are investigated with a single pin electrode arrangement. The current intensities increase in positive cycles and decrease in negative cycles with the increase in airflow velocity. The transition from a filamentary discharge to a diffuse discharge is observed under certain airflow conditions, and the discharge channels move with the airflow with a movement velocity less than the corresponding airflow velocity. In the cases of double pin electrode arrangements, the repulsion between double pin discharge channels is apparent at a 10 mm distance but is not obvious at a 20 mm distance. When the airflow is introduced into the discharge gap, not as in the case of single pin electrode arrangement, the movements of discharge channels in airflow are affected by adjacent discharge channels. The corresponding reasons are analyzed in the paper.

  18. Mechanisms for Rapid Adaptive Control of Motion Processing in Macaque Visual Cortex.

    PubMed

    McLelland, Douglas; Baker, Pamela M; Ahmed, Bashir; Kohn, Adam; Bair, Wyeth

    2015-07-15

    A key feature of neural networks is their ability to rapidly adjust their function, including signal gain and temporal dynamics, in response to changes in sensory inputs. These adjustments are thought to be important for optimizing the sensitivity of the system, yet their mechanisms remain poorly understood. We studied adaptive changes in temporal integration in direction-selective cells in macaque primary visual cortex, where specific hypotheses have been proposed to account for rapid adaptation. By independently stimulating direction-specific channels, we found that the control of temporal integration of motion at one direction was independent of motion signals driven at the orthogonal direction. We also found that individual neurons can simultaneously support two different profiles of temporal integration for motion in orthogonal directions. These findings rule out a broad range of adaptive mechanisms as being key to the control of temporal integration, including untuned normalization and nonlinearities of spike generation and somatic adaptation in the recorded direction-selective cells. Such mechanisms are too broadly tuned, or occur too far downstream, to explain the channel-specific and multiplexed temporal integration that we observe in single neurons. Instead, we are compelled to conclude that parallel processing pathways are involved, and we demonstrate one such circuit using a computer model. This solution allows processing in different direction/orientation channels to be separately optimized and is sensible given that, under typical motion conditions (e.g., translation or looming), speed on the retina is a function of the orientation of image components. Many neurons in visual cortex are understood in terms of their spatial and temporal receptive fields. It is now known that the spatiotemporal integration underlying visual responses is not fixed but depends on the visual input. For example, neurons that respond selectively to motion direction integrate signals over a shorter time window when visual motion is fast and a longer window when motion is slow. We investigated the mechanisms underlying this useful adaptation by recording from neurons as they responded to stimuli moving in two different directions at different speeds. Computer simulations of our results enabled us to rule out several candidate theories in favor of a model that integrates across multiple parallel channels that operate at different time scales. Copyright © 2015 the authors 0270-6474/15/3510268-13$15.00/0.

  19. Biophysical Properties of ATP-sensitive Potassium Channels in CA3 Hippocampal Neurons

    NASA Astrophysics Data System (ADS)

    Obregón-Herrera, Armando; Márquez-Gamiño, Sergio; Onetti, Carlos G.

    2004-09-01

    Single-channel activity of glucose-sensitive channels from CA3 neurons of the rat hippocampus, was studied in cell-attached membrane patches. Single-channel activity was totally abolished at 20 mM external glucose. Glucose-sensitive channels were selective to K+ ions; the unitary conductance was 170 pS in 140 mM K+, and the K+ permeability was 3.86×10-13 cmṡs-1. The open-state probability (PO) increased with membrane depolarization as a result of mean open time enhancement and shortening of the closure periods. The activation midpoint was -79 mV. Glucose-sensitive K+ channel of CA3 neurons could be considered as an ATP-sensitive potassium channel.

  20. Experimental demonstration of a measurement-based realisation of a quantum channel

    NASA Astrophysics Data System (ADS)

    McCutcheon, W.; McMillan, A.; Rarity, J. G.; Tame, M. S.

    2018-03-01

    We introduce and experimentally demonstrate a method for realising a quantum channel using the measurement-based model. Using a photonic setup and modifying the basis of single-qubit measurements on a four-qubit entangled cluster state, representative channels are realised for the case of a single qubit in the form of amplitude and phase damping channels. The experimental results match the theoretical model well, demonstrating the successful performance of the channels. We also show how other types of quantum channels can be realised using our approach. This work highlights the potential of the measurement-based model for realising quantum channels which may serve as building blocks for simulations of realistic open quantum systems.

Top