Out-of-School Time Program Test Score Impact for Black Children of Single-Parents
ERIC Educational Resources Information Center
Nagle, Barry T.
2013-01-01
Out-of-School Time programs and their impact on standardized college entrance exam scores for black or African-American children of single parents who have applied for a competitive college scholarship program is the study focus. Study importance is supported by the large percentage of black children raised by single parents, the large percentage…
Sparse deconvolution for the large-scale ill-posed inverse problem of impact force reconstruction
NASA Astrophysics Data System (ADS)
Qiao, Baijie; Zhang, Xingwu; Gao, Jiawei; Liu, Ruonan; Chen, Xuefeng
2017-01-01
Most previous regularization methods for solving the inverse problem of force reconstruction are to minimize the l2-norm of the desired force. However, these traditional regularization methods such as Tikhonov regularization and truncated singular value decomposition, commonly fail to solve the large-scale ill-posed inverse problem in moderate computational cost. In this paper, taking into account the sparse characteristic of impact force, the idea of sparse deconvolution is first introduced to the field of impact force reconstruction and a general sparse deconvolution model of impact force is constructed. Second, a novel impact force reconstruction method based on the primal-dual interior point method (PDIPM) is proposed to solve such a large-scale sparse deconvolution model, where minimizing the l2-norm is replaced by minimizing the l1-norm. Meanwhile, the preconditioned conjugate gradient algorithm is used to compute the search direction of PDIPM with high computational efficiency. Finally, two experiments including the small-scale or medium-scale single impact force reconstruction and the relatively large-scale consecutive impact force reconstruction are conducted on a composite wind turbine blade and a shell structure to illustrate the advantage of PDIPM. Compared with Tikhonov regularization, PDIPM is more efficient, accurate and robust whether in the single impact force reconstruction or in the consecutive impact force reconstruction.
The debate over the Cretaceous-Tertiary boundary
NASA Technical Reports Server (NTRS)
Alvarez, W.; Asaro, F.; Alvarez, L. W.; Michel, H. V.
1988-01-01
Large-body impact on the Earth is a rare but indisputable geologic process. The impact rate is approximately known from objects discovered in Earth-crossing orbits and from the statistics of craters on the Earth's surface. Tektite and microtektite strewn fields constitute unmistakable ejecta deposits that can be due only to large-body impacts. The Cretaceous-Tertiary (K-T) boundary coincides with an unusually severe biological trauma, and this stratigraphic horizon is marked on a worldwide basis by anomalous concentrations of noble metals in chondritic proportions, mineral spherules with relict quench-crystallization textures, and mineral and rock grains showing shock deformation. These features are precisely compatible with an impact origin. Although only impact explains all the types of K-T boundary evidence, the story may not be as simple as once thought. The original hypothesis envisioned one large impact, triggering one great extinction. Newer evidence hints at various complications. Different challenges are faced by the occupants of each apex of a three-cornered argument over the K-T event. Proponents of a non-impact explanation must show that the evidence fits their preferred model better than it fits the impact scenario. Proponents of the single impact-single extinction view must explain away the complications. Proponents of a more complex impact crisis must develop a reasonable scenario which honors the new evidence.
Assessing economic and demographic impacts of intermodal transportation systems.
DOT National Transportation Integrated Search
2010-08-14
There exists a large literature of transportation impacts on economic and demographic change. Prior studies have focused on single modes of transportation individually rather than integrating these modes. Yet, little work has been undertaken to study...
ERIC Educational Resources Information Center
Datnow, Amanda; Hubbard, Lea; Woody, Elisabeth
In 1997, California became the first state to conduct large-scale experimentation with single gender public education. This longitudinal study examined the impact of single gender academies in six California districts, focusing on equity implications. Data from observations and interviews with educators, policymakers, and students indicated that…
Failure propagation in multi-cell lithium ion batteries
Lamb, Joshua; Orendorff, Christopher J.; Steele, Leigh Anna M.; ...
2014-10-22
Traditionally, safety and impact of failure concerns of lithium ion batteries have dealt with the field failure of single cells. However, large and complex battery systems require the consideration of how a single cell failure will impact the system as a whole. Initial failure that leads to the thermal runaway of other cells within the system creates a much more serious condition than the failure of a single cell. This work examines the behavior of small modules of cylindrical and stacked pouch cells after thermal runaway is induced in a single cell through nail penetration trigger [1] within the module.more » Cylindrical cells are observed to be less prone to propagate, if failure propagates at all, owing to the limited contact between neighboring cells. However, the electrical connectivity is found to be impactful as the 10S1P cylindrical cell module did not show failure propagation through the module, while the 1S10P module had an energetic thermal runaway consuming the module minutes after the initiation failure trigger. Modules built using pouch cells conversely showed the impact of strong heat transfer between cells. In this case, a large surface area of the cells was in direct contact with its neighbors, allowing failure to propagate through the entire battery within 60-80 seconds for all configurations (parallel or series) tested. This work demonstrates the increased severity possible when a point failure impacts the surrounding battery system.« less
FLORIDA LARGE BUILDING STUDY - POLK COUNTY ADMINISTRATION BUILDING
The report describes an extensive characterization and parameter assessment study of a single, large building in Bartow, FL, with the purpose of assessing the impact on radon entry of design, construction, and operating features of the building, particularly the mechanical subsys...
The relationship between elastic constants and structure of shock waves in a zinc single crystal
NASA Astrophysics Data System (ADS)
Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.
2017-12-01
The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.
High throughput single cell counting in droplet-based microfluidics.
Lu, Heng; Caen, Ouriel; Vrignon, Jeremy; Zonta, Eleonora; El Harrak, Zakaria; Nizard, Philippe; Baret, Jean-Christophe; Taly, Valérie
2017-05-02
Droplet-based microfluidics is extensively and increasingly used for high-throughput single-cell studies. However, the accuracy of the cell counting method directly impacts the robustness of such studies. We describe here a simple and precise method to accurately count a large number of adherent and non-adherent human cells as well as bacteria. Our microfluidic hemocytometer provides statistically relevant data on large populations of cells at a high-throughput, used to characterize cell encapsulation and cell viability during incubation in droplets.
NASA Astrophysics Data System (ADS)
Simonson, B. M.; Davies, D.; Wallace, M.; Reeves, S.; Hassler, S.
1996-03-01
The early Precambrian Hamersley Group of Western Australia contains two thick packages of carbonate-rich strata, the Carawine Dolomite and the Wittenoom Formation, that occupy mutually exclusive areas within the Hamersley Basin. Within each of these formations is a single horizon which contains sand- to fine gravel-size particles believed to be distal ejecta from a large bolide impact. In the Carawine Dolomite, the ejecta are restricted to a coarse-grained dolomitic debris flow deposit up to 25 m thick. In the Wittenoom Formation, the ejecta are restricted to a turbidite which is <=1.3 m thick and consists largely of sand-size carbonate and argillite intraclasts. Together, these two horizons constitute a single, unique layer that appears to have been deposited rapidly over an area >= 50,000 km2 by a single high-energy event around 2.5 Ga. Deposition is inferred to have taken place in a series of distinct stages as follows: (1.) ballistic dispersal of mostly sand-size particles from the impact site to the seafloor in the Hamersley Basin, (2.) reworking of the newly deposited ejecta in the Hamersley Basin into large symmetrical ripples by impact-generated tsunami waves, and (3.) subsequent erosion and re-sedimentation of most of the ejecta by one to three large sedimentary gravity flows that moved south and west down the paleoslope of the Hamersley Basin. New data will be presented concerning the two main types of ejecta found in this layer: microkrystites and quartz grains. Specifically, microkrystite-rich samples are enriched in Ir and Ru by an order of magnitude or more relative to the surrounding strata, but other siderophile elements (Pd, Pt, Au, Cr, Co, and Ni) display neither anomalously high concentrations nor chondritic interelement ratios. As for the quartz grains, their petrographic characteristics clearly indicate they are not volcanic in origin, but they do not appear to have planar deformation features like those reported from numerous other impact ejecta horizons.
A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addessio, Francis L.; Bronkhorst, Curt Allan; Bolme, Cynthia Anne
2016-08-09
An anisotropic, rate-dependent, single-crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientationsmore » relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.« less
Planar Impacts in Rollover Crashes: Significance, Distribution and Injury Epidemiology
Bose, Dipan; Kerrigan, Jason R.; Foster, Jonathan B.; Crandall, Jeff R.; Tobaru, Shigeo
2011-01-01
While one third of all fatal motor vehicle crashes involve rollover of the vehicle, a substantially large portion of these rollover crashes involve planar impacts (e.g., frontal, side or rear impact) that influence the crash kinematics and subsequently the injury outcome. The objective of the study was to evaluate the distribution of planar impacts in rollover crashes, and in particular, to describe the differences in the underlying crash kinematics, injury severity and the regional distribution of injuries when compared to the rollover-dominated crashes without significant planar impact (i.e., primary rollovers). Sampled cases (n=6,900) from the U.S. National Automotive Sampling System – Crashworthiness Data System, representing approximately 3.3 million belted drivers involved in a rollover crash in years 1998–2008, were analyzed. Single vehicle rollover crashes with significant planar impact (21% of all rollover crashes) were in general more likely to result in occupant fatality and involved higher incidence of moderate to severe injuries compared to single vehicle primary rollovers (p<0.05). A substantial proportion of the planar impact rollovers ended in single quarter turn crashes (30%), mostly resulting from a frontal impact (59%). While chest was the most frequently injured body region among all rollover victims sustaining severe injuries, severe injuries sustained in primary rollovers were more isolated (single body region) in comparison to the ones sustained in rollovers with planar impacts. The results emphasize the higher risk of rollover victims sustaining an injury and the differences in distribution of injuries sustained when a planar impact is associated with the rollover crash. PMID:22105400
Free vibration analysis of linear particle chain impact damper
NASA Astrophysics Data System (ADS)
Gharib, Mohamed; Ghani, Saud
2013-11-01
Impact dampers have gained much research interest over the past decades that resulted in several analytical and experimental studies being conducted in that area. The main emphasis of such research was on developing and enhancing these popular passive control devices with an objective of decreasing the three parameters of contact forces, accelerations, and noise levels. To that end, the authors of this paper have developed a novel impact damper, called the Linear Particle Chain (LPC) impact damper, which mainly consists of a linear chain of spherical balls of varying sizes. The LPC impact damper was designed utilizing the kinetic energy of the primary system through placing, in the chain arrangement, a small-sized ball between each two large-sized balls. The concept of the LPC impact damper revolves around causing the small-sized ball to collide multiple times with the larger ones upon exciting the primary system. This action is believed to lead to the dissipation of part of the kinetic energy at each collision with the large balls. This paper focuses on the outcome of studying the free vibration of a single degree freedom system that is equipped with the LPC impact damper. The proposed LPC impact damper is validated by means of comparing the responses of a single unit conventional impact damper with those resulting from the LPC impact damper. The results indicated that the latter is considerably more efficient than the former impact damper. In order to further investigate the LPC impact damper effective number of balls and efficient geometry when used in a specific available space in the primary system, a parametric study was conducted and its result is also explained herein. Single unit impact damper [14-16]. Multiunit impact damper [17,18]. Bean bag impact damper [19,20]. Particle/granular impact damper [21,23,22]. Resilient impact damper [24]. Buffered impact damper [25-27]. Multiunit impact damper consists of multiple masses instead of a single mass. This produces a smaller contact force for each mass while maintaining the same effect of the single unit impact damper. The analytical and experimental work showed that the multiunit impact damper is more functional than the conventional single unit impact damper in reducing noise and vibration [17]. The bean bag impact damper is considered as another form of multiunit impact damper. It consists of a flexible bag packed with small spherical particles (e.g. lead shots). The resilience of the damper can be varied by adjusting the tightness of the flexible bag. It is found that the bean bag impact damper is better than the conventional impact damper in vibration suppression, contact forces reductions, and noise attenuation [19]. The particle/granular impact damper consists of a cavity(s) filled with ceramic/metal particles or powders with small granule sizes. Better damping performances are achieved when using metal particles with high density (lead or tungsten steel) [23]. Other investigations recommended using multiple particle impact dampers that involve friction, impact and shear mechanisms to achieve optimal damping effect [22]. The resilient impact damper is similar to the conventional impact dampers. The only difference is that the deformation of the impact damper with the stops during the collision is taken into account [24]. The buffered impact damper is an extension of the resilient impact damper by adding a flexible buffer layer to the stops to absorb the energy of the moving mass. The experimental work shows that the buffer zone reduces the impact forces, avoids high acceleration and reduces the contact forces by absorbing more of the impact energy and increasing the contact time [25].
Impact of single particle oscillations on screening of a test charge
NASA Astrophysics Data System (ADS)
Ramazanov, Tlekkabul S.; Moldabekov, Zhandos A.; Gabdullin, Maratbek T.
2018-06-01
Screening of a test charge by electrons oscillating in an external alternating electrical (laser) field is analyzed. It is shown that single particle oscillations lead to the creation of an oscillatory pattern of the test charge's potential at large distances. Analysis has been done by considering and neglecting the contribution of ions on the screening. Impact of the quantum diffraction (non-locality) and of the collisional damping on the test charge's potential is considered. It is shown that electrons are unable to provide screening of the test charge if the frequency of the induced single particle oscillations larger than the electron-plasma frequency. In the opposite case of low frequencies, the potential of the test charge changes its sign if the screening by ions is neglected.
ERIC Educational Resources Information Center
Walter, Howard Maurice
Central to this dissertation is an attempt to investigate whether or not a single-sex environment has a positive impact upon girls' attitudes and beliefs, as they pertain to the learning of mathematics. All learners of mathematics are enveloped by the social practices pertaining to both mathematics and society at large. Underlying these social…
Photoacoustic measurements of photokinetics in single optically trapped aerosol droplets
NASA Astrophysics Data System (ADS)
Covert, Paul; Cremer, Johannes; Signorell, Ruth; Thaler, Klemens; Haisch, Christoph
2017-04-01
It is well established that interaction of light with atmospheric aerosols has a large impact on the Earth's climate. However, uncertainties in the magnitude of this impact remain large, due in part to broad distributions of aerosol size, composition, and chemical reactivity. In this context, photoacoustic spectroscopy is commonly used to measure light absorption by aerosols. Here, we present photoacoustic measurements of single, optically-trapped nanodroplets to reveal droplet size-depencies of photochemical and physical processes. Theoretical considerations have pointed to a size-dependence in the magnitude and phase of the photoacoustic response from aerosol droplets. This dependence is thought to originate from heat transfer processes that are slow compared to the acoustic excitation frequency. In the case of a model aerosol, our measurements of single particle absorption cross-section versus droplet size confirm these theoretical predictions. In a related study, using the same model aerosol, we also demonstrate a droplet size-dependence of photochemical reaction rates [1]. Within sub-micron sized particles, photolysis rates were observed to be an order of magnitude greater than those observed in larger droplets. [1] J. W. Cremer, K. M. Thaler, C. Haisch, and R. Signorell. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat. Commun., 7:10941, 2016.
Impact Characteristics of Candidate Materials for Single-Stage-to-Orbit (SSTO) Technology
NASA Technical Reports Server (NTRS)
Nettles, Alan
1995-01-01
Four fiber/resin systems were compared for resistance to damage and damage tolerance. One toughened epoxy and three toughened bismaleimide (BMI) resins were used., all with IM7 carbon fiber reinforcement. A statistical design of experiments technique was used to evaluate the effects of impact energy, specimen thickness and tup diameter on the damage area and residual compression-after-impact (CAI) strength. Results showed that two of the BMI systems sustained relatively large damage areas yet had an excellent retention of CAI strength.
NASA Astrophysics Data System (ADS)
Tang, S.; Xie, S.; Tang, Q.; Zhang, Y.
2017-12-01
Two types of instruments, the eddy correlation flux measurement system (ECOR) and the energy balance Bowen ratio system (EBBR), are used at the Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site to measure surface latent and sensible fluxes. ECOR and EBBR typically sample different land surface types, and the domain-mean surface fluxes derived from ECOR and EBBR are not always consistent. The uncertainties of the surface fluxes will have impacts on the derived large-scale forcing data and further affect the simulations of single-column models (SCM), cloud-resolving models (CRM) and large-eddy simulation models (LES), especially for the shallow-cumulus clouds which are mainly driven by surface forcing. This study aims to quantify the uncertainties of the large-scale forcing caused by surface turbulence flux measurements and investigate the impacts on cloud simulations using long-term observations from the ARM SGP site.
Effects of Cryopreservation Duration on the Outcome of Single-Unit Cord Blood Transplantation.
Jaing, Tang-Her; Chen, Shih-Hsiang; Wen, Yu-Chuan; Chang, Tsung-Yen; Yang, Ya-Chun; Tsay, Pei-Kwei
2018-01-01
Cryopreservation is widely used in umbilical cord blood (UCB) banking, yet its impact on progenitor cell function remains largely unaddressed. It is unknown whether long-term cryopreservation affects UCB transplantation outcomes. Herein, we evaluated the impact of UCB age on clinical outcomes and investigated the effect of cryopreservation duration of UCB on hematopoietic potency in 91 patients receiving single cord blood transplantations. UCB cryopreservation duration was 0.7 to 13.4 y. The most common indication of transplant was thalassemia (48%). There was no significant association between cryopreservation duration and neutrophil engraftment probability ( P = 0.475). Cryopreservation duration did not affect the post-thaw viability and subsequent neutrophil engraftment rate. Therefore, UCB units can undergo cryopreservation for at least 8 y with no impact on clinical outcomes.
ERIC Educational Resources Information Center
What Works Clearinghouse, 2014
2014-01-01
The 2013 study, "Daily Online Testing in Large Classes: Boosting College Performance While Reducing Achievement Gaps," examined the impact of frequent online testing and immediate feedback on the academic performance of college students. The study was conducted at the University of Texas in the fall of 2008 and 2011. Researchers found…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabash, Rozaliya; Ice, Gene E; Liu, Wenjun
A spatially resolved X-ray diffraction method - with a submicron 3D resolution together with SEM and OIM analysis are applied to understand the arrangements of voids, geometrically necessary dislocations and strain gradient distributions in samples of Al (1 2 3) and Cu (0 0 1) single crystals shocked to incipient spallation fracture. We describe how geometrically necessary dislocations and the effective strain gradient alter white beam Laue patterns of the shocked materials. Several distinct structural zones are observed at different depths under the impact surface. The density of geometrically necessary dislocations (GNDs) is extremely high near the impact and backmore » surface of the shock recovered crystals. The spall region is characterized by a large density of mesoscale voids and GNDs. The spall region is separated from the impact and back surfaces by compressed regions with high total dislocation density but lower GNDs density. Self-organization of shear bands is observed in the shock recovered Cu single crystal.« less
Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Tribedi, L. C.
2007-09-01
Se have investigated single and double ionization of C60 molecule in collisions with 2.33 MeV/u Siq+ (q=6-14) and 3.125 MeV/u Oq+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening.
The impact of ordinate scaling on the visual analysis of single-case data.
Dart, Evan H; Radley, Keith C
2017-08-01
Visual analysis is the primary method for detecting the presence of treatment effects in graphically displayed single-case data and it is often referred to as the "gold standard." Although researchers have developed standards for the application of visual analysis (e.g., Horner et al., 2005), over- and underestimation of effect size magnitude is not uncommon among analysts. Several characteristics have been identified as potential contributors to these errors; however, researchers have largely focused on characteristics of the data itself (e.g., autocorrelation), paying less attention to characteristics of the graphic display which are largely in control of the analyst (e.g., ordinate scaling). The current study investigated the impact that differences in ordinate scaling, a graphic display characteristic, had on experts' accuracy in judgments regarding the magnitude of effect present in single-case percentage data. 32 participants were asked to evaluate eight ABAB data sets (2 each presenting null, small, moderate, and large effects) along with three iterations of each (32 graphs in total) in which only the ordinate scale was manipulated. Results suggest that raters are less accurate in their detection of treatment effects as the ordinate scale is constricted. Additionally, raters were more likely to overestimate the size of a treatment effect when the ordinate scale was constricted. Copyright © 2017 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Accounting for multiple sources of uncertainty in impact assessments: The example of the BRACE study
NASA Astrophysics Data System (ADS)
O'Neill, B. C.
2015-12-01
Assessing climate change impacts often requires the use of multiple scenarios, types of models, and data sources, leading to a large number of potential sources of uncertainty. For example, a single study might require a choice of a forcing scenario, climate model, bias correction and/or downscaling method, societal development scenario, model (typically several) for quantifying elements of societal development such as economic and population growth, biophysical model (such as for crop yields or hydrology), and societal impact model (e.g. economic or health model). Some sources of uncertainty are reduced or eliminated by the framing of the question. For example, it may be useful to ask what an impact outcome would be conditional on a given societal development pathway, forcing scenario, or policy. However many sources of uncertainty remain, and it is rare for all or even most of these sources to be accounted for. I use the example of a recent integrated project on the Benefits of Reduced Anthropogenic Climate changE (BRACE) to explore useful approaches to uncertainty across multiple components of an impact assessment. BRACE comprises 23 papers that assess the differences in impacts between two alternative climate futures: those associated with Representative Concentration Pathways (RCPs) 4.5 and 8.5. It quantifies difference in impacts in terms of extreme events, health, agriculture, tropical cyclones, and sea level rise. Methodologically, it includes climate modeling, statistical analysis, integrated assessment modeling, and sector-specific impact modeling. It employs alternative scenarios of both radiative forcing and societal development, but generally uses a single climate model (CESM), partially accounting for climate uncertainty by drawing heavily on large initial condition ensembles. Strengths and weaknesses of the approach to uncertainty in BRACE are assessed. Options under consideration for improving the approach include the use of perturbed physics ensembles of CESM, employing results from multiple climate models, and combining the results from single impact models with statistical representations of uncertainty across multiple models. A key consideration is the relationship between the question being addressed and the uncertainty approach.
Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; ...
2015-01-20
Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scalesmore » larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.« less
NASA Technical Reports Server (NTRS)
Freeman, D. C., Jr.; Powell, R. W.
1979-01-01
Aft center-of-gravity locations dictated by the large number of rocket engines required has been a continuing problem of single-stage-to-orbit vehicles. Recent work at Langley has demonstrated that these aft center-of-gravity problems become more pronounced for the proposed heavy-lift mission, creating some unique design problems for both the SSTO and staged vehicle systems. During the course of this study, an effort was made to bring together automated vehicle design, wind-tunnel tests, and flight control analyses to assess the impact of longitudinal and lateral-directional instability, and control philosophy on entry vehicle design technology.
Haiwu, Rong; Wang, Xiangdong; Xu, Wei; Fang, Tong
2009-08-01
The subharmonic response of single-degree-of-freedom nonlinear vibro-impact oscillator with a one-sided barrier to narrow-band random excitation is investigated. The narrow-band random excitation used here is a filtered Gaussian white noise. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, or velocity jumps, thereby permitting the applications of asymptotic averaging over the "fast" variables. The averaged stochastic equations are solved exactly by the method of moments for the mean-square response amplitude for the case of linear system with zero offset. A perturbation-based moment closure scheme is proposed and the formula of the mean-square amplitude is obtained approximately for the case of linear system with nonzero offset. The perturbation-based moment closure scheme is used once again to obtain the algebra equation of the mean-square amplitude of the response for the case of nonlinear system. The effects of damping, detuning, nonlinear intensity, bandwidth, and magnitudes of random excitations are analyzed. The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show that the peak amplitudes may be strongly reduced at large detunings or large nonlinear intensity.
The Impact of a Large Object on Jupiter in 2009 July
NASA Technical Reports Server (NTRS)
Sanchez-Lavega, A.; Wesley, A.; Orton, G.; Hueso, R.; Perez-Hoyos, S.; Fletcher, L. N.; Yanamandra-Fisher, P.; Legarreta, J.; de Pater, I.; Hammel, H.;
2010-01-01
On 2009 July 19, we observed a single, large impact on Jupiter at a planetocentric latitude of 55 S. This and the Shoemaker-Levy 9 (SL9) impacts on Jupiter in 1994 are the only planetary-scale impacts ever observed. The 2009 impact had an entry trajectory in the opposite direction and with a Tower incidence angle than that of SL9. Comparison of the initial aerosol cloud debris properties, spanning 4800 km east west and 2500 km north south, with those produced by the SL9 fragments and dynamical calculations of pre-impact orbit indicates that the impactor was most probably an icy body with a size of 0.5-1 km. The collision rate of events of this magnitude may be five to ten times more frequent than previously thought. The search for unpredicted impacts, such as the current one, could be best performed in 890 nm and K (2.03--2.36 micrometer) filters in strong gaseous absorption, where the high-altitude aerosols are more reflective than Jupiter's primary clouds.
Aksyonov, S A; Williams, P
2001-01-01
Impact desolvation of electrosprayed microdroplets (IDEM) is a new method for producing gas-phase ions of large biomolecules. Analytes are dissolved in an electrolyte solution which is electrosprayed in vacuum, producing highly charged micron and sub-micron sized droplets (microdroplets). These microdroplets are accelerated through potential differences approximately 5 - 10 kV to velocities of several km/s and allowed to impact a target surface. The energetic impacts vaporize the droplets and release desolvated gas-phase ions of the analyte molecules. Oligonucleotides (2- to 12-mer) and peptides (bradykinin, neurotensin) yield singly and doubly charged molecular ions with no detectable fragmentation. Because the extent of multiple charging is significantly less than in atmospheric pressure electrospray ionization, and the method produces ions largely free of adducts from solutions of high ionic strength, IDEM has some promise as a method for coupling to liquid chromatographic techniques and for mixture analysis. Ions are produced in vacuum at a flat equipotential surface, potentially allowing efficient ion extraction. Copyright 2001 John Wiley & Sons, Ltd.
Slobounov, Semyon M; Walter, Alexa; Breiter, Hans C; Zhu, David C; Bai, Xiaoxiao; Bream, Tim; Seidenberg, Peter; Mao, Xianglun; Johnson, Brian; Talavage, Thomas M
2017-01-01
The cumulative effect of repetitive subconcussive collisions on the structural and functional integrity of the brain remains largely unknown. Athletes in collision sports, like football, experience a large number of impacts across a single season of play. The majority of these impacts, however, are generally overlooked, and their long-term consequences remain poorly understood. This study sought to examine the effects of repetitive collisions across a single competitive season in NCAA Football Bowl Subdivision athletes using advanced neuroimaging approaches. Players were evaluated before and after the season using multiple MRI sequences, including T 1 -weighted imaging, diffusion tensor imaging (DTI), arterial spin labeling (ASL), resting-state functional MRI (rs-fMRI), and susceptibility weighted imaging (SWI). While no significant differences were found between pre- and post-season for DTI metrics or cortical volumes, seed-based analysis of rs-fMRI revealed significant ( p < 0.05) changes in functional connections to right isthmus of the cingulate cortex (ICC), left ICC, and left hippocampus. ASL data revealed significant ( p < 0.05) increases in global cerebral blood flow (CBF), with a specific regional increase in right postcentral gyrus. SWI data revealed that 44% of the players exhibited outlier rates ( p < 0.05) of regional decreases in SWI signal. Of key interest, athletes in whom changes in rs-fMRI, CBF and SWI were observed were more likely to have experienced high G impacts on a daily basis. These findings are indicative of potential pathophysiological changes in brain integrity arising from only a single season of participation in the NCAA Football Bowl Subdivision, even in the absence of clinical symptoms or a diagnosis of concussion. Whether these changes reflect compensatory adaptation to cumulative head impacts or more lasting alteration of brain integrity remains to be further explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marion, William F; Deline, Christopher A; Asgharzadeh, Amir
In this paper, we present the effect of installation parameters (tilt angle, height above ground, and albedo) on the bifacial gain and energy yield of three south-facing photovoltaic (PV) system configurations: a single module, a row of five modules, and five rows of five modules utilizing RADIANCE-based ray tracing model. We show that height and albedo have a direct impact on the performance of bifacial systems. However, the impact of the tilt angle is more complicated. Seasonal optimum tilt angles are dependent on parameters such as height, albedo, size of the system, weather conditions, and time of the year. Formore » a single bifacial module installed in Albuquerque, NM, USA (35 degrees N) with a reasonable clearance (~1 m) from the ground, the seasonal optimum tilt angle is lowest (~5 degrees) for the summer solstice and highest (~65 degrees) for the winter solstice. For larger systems, seasonal optimum tilt angles are usually higher and can be up to 20 degrees greater than that for a single module system. Annual simulations also indicate that for larger fixed-tilt systems installed on a highly reflective ground (such as snow or a white roofing material with an albedo of ~81%), the optimum tilt angle is higher than the optimum angle of the smaller size systems. We also show that modules in larger scale systems generate lower energy due to horizon blocking and large shadowing area cast by the modules on the ground. For albedo of 21%, the center module in a large array generates up to 7% less energy than a single bifacial module. To validate our model, we utilize measured data from Sandia National Laboratories' fixed-tilt bifacial PV testbed and compare it with our simulations.« less
Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading
Fan, D.; Huang, J. W.; Zeng, X. L.; ...
2016-05-23
We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less
Single particle momentum and angular distributions in hadron-hadron collisions at ultrahigh energies
NASA Technical Reports Server (NTRS)
Chou, T. T.; Chen, N. Y.
1985-01-01
The forward-backward charged multiplicity distribution (P n sub F, n sub B) of events in the 540 GeV antiproton-proton collider has been extensively studied by the UA5 Collaboration. It was pointed out that the distribution with respect to n = n sub F + n sub B satisfies approximate KNO scaling and that with respect to Z = n sub F - n sub B is binomial. The geometrical model of hadron-hadron collision interprets the large multiplicity fluctuation as due to the widely different nature of collisions at different impact parameters b. For a single impact parameter b, the collision in the geometrical model should exhibit stochastic behavior. This separation of the stochastic and nonstochastic (KNO) aspects of multiparticle production processes gives conceptually a lucid and attractive picture of such collisions, leading to the concept of partition temperature T sub p and the single particle momentum spectrum to be discussed in detail.
Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, D.; Huang, J. W.; Zeng, X. L.
We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less
Rapid impact testing for quantitative assessment of large populations of bridges
NASA Astrophysics Data System (ADS)
Zhou, Yun; Prader, John; DeVitis, John; Deal, Adrienne; Zhang, Jian; Moon, Franklin; Aktan, A. Emin
2011-04-01
Although the widely acknowledged shortcomings of visual inspection have fueled significant advances in the areas of non-destructive evaluation and structural health monitoring (SHM) over the last several decades, the actual practice of bridge assessment has remained largely unchanged. The authors believe the lack of adoption, especially of SHM technologies, is related to the 'single structure' scenarios that drive most research. To overcome this, the authors have developed a concept for a rapid single-input, multiple-output (SIMO) impact testing device that will be capable of capturing modal parameters and estimating flexibility/deflection basins of common highway bridges during routine inspections. The device is composed of a trailer-mounted impact source (capable of delivering a 50 kip impact) and retractable sensor arms, and will be controlled by an automated data acquisition, processing and modal parameter estimation software. The research presented in this paper covers (a) the theoretical basis for SISO, SIMO and MIMO impact testing to estimate flexibility, (b) proof of concept numerical studies using a finite element model, and (c) a pilot implementation on an operating highway bridge. Results indicate that the proposed approach can estimate modal flexibility within a few percent of static flexibility; however, the estimated modal flexibility matrix is only reliable for the substructures associated with the various SIMO tests. To overcome this shortcoming, a modal 'stitching' approach for substructure integration to estimate the full Eigen vector matrix is developed, and preliminary results of these methods are also presented.
Norris, Scott A; Samela, Juha; Bukonte, Laura; Backman, Marie; Djurabekova, Flyura; Nordlund, Kai; Madi, Charbel S; Brenner, Michael P; Aziz, Michael J
2011-01-01
Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here we predict the mechanism governing the transition from pattern formation to flatness using only parameter-free molecular dynamics simulations of single-ion impacts as input into a multiscale analysis, obtaining good agreement with experiment. Our results overturn the paradigm attributing these phenomena to the removal of target atoms via sputter erosion: the mechanism dominating both stability and instability is the impact-induced redistribution of target atoms that are not sputtered away, with erosive effects being essentially irrelevant. We discuss the potential implications for the formation of a mysterious nanoscale topography, leading to surface degradation, of tungsten plasma-facing fusion reactor walls. Consideration of impact-induced redistribution processes may lead to a new design criterion for stability under irradiation.
Simulation of pyroshock environments using a tunable resonant fixture
Davie, N.T.
1996-10-15
Disclosed are a method and apparatus for simulating pyrotechnic shock for the purpose of qualifying electronic components for use in weapons, satellite, and aerospace applications. According to the invention, a single resonant bar fixture has an adjustable resonant frequency in order to exhibit a desired shock response spectrum upon mechanical impact. The invention eliminates the need for availability of a large number of different fixtures, capable of exhibiting a range of shock response characteristics, in favor of a single tunable system. 32 figs.
Simulation of pyroshock environments using a tunable resonant fixture
Davie, Neil T.
1996-01-01
Disclosed are a method and apparatus for simulating pyrotechnic shock for the purpose of qualifying electronic components for use in weapons, satellite, and aerospace applications. According to the invention, a single resonant bar fixture has an adjustable resonant frequency in order to exhibit a desired shock response spectrum upon mechanical impact. The invention eliminates the need for availability of a large number of different fixtures, capable of exhibiting a range of shock response characteristics, in favor of a single tunable system.
Three-body Coulomb problem probed by mapping the Bethe surface in ionizing ion-atom collisions.
Moshammer, R; Perumal, A; Schulz, M; Rodríguez, V D; Kollmus, H; Mann, R; Hagmann, S; Ullrich, J
2001-11-26
The three-body Coulomb problem has been explored in kinematically complete experiments on single ionization of helium by 100 MeV/u C(6+) and 3.6 MeV/u Au(53+) impact. Low-energy electron emission ( E(e)<150 eV) as a function of the projectile deflection theta(p) (momentum transfer), i.e., the Bethe surface [15], has been mapped with Delta theta(p)+/-25 nanoradian resolution at extremely large perturbations ( 3.6 MeV/u Au(53+)) where single ionization occurs at impact parameters of typically 10 times the He K-shell radius. The experimental data are not in agreement with state-of-the-art continuum distorted wave-eikonal initial state theory.
Comparison of the Single Molecule Dynamics of Linear and Circular DNAs in Planar Extensional Flows
NASA Astrophysics Data System (ADS)
Li, Yanfei; Hsiao, Kai-Wen; Brockman, Christopher; Yates, Daniel; McKenna, Gregory; Schroeder, Charles; San Francisco, Michael; Kornfield, Julie; Anderson, Rae
2015-03-01
Chain topology has a profound impact on the flow behaviors of single macromolecules. The absence of free ends separates circular polymers from other chain architectures, i.e., linear, star, and branched. In the present work, we study the single chain dynamics of large circular and linear DNA molecules by comparing the relaxation dynamics, steady state coil-stretch transition, and transient molecular individualism behaviors for the two types of macromolecules. To this end, large circular DNA molecules were biologically synthesized and studied in a microfluidic device that has a cross-slot geometry to develop a stagnation point extensional flow. Although the relaxation time of rings scales in the same way as for the linear analog, the circular polymers show quantitatively different behaviors in the steady state extension and qualitatively different behaviors during a transient stretch. The existence of some commonality between these two topologies is proposed. Texas Tech University John R. Bradford Endowment.
Stardust impact analogs: Resolving pre- and postimpact mineralogy in Stardust Al foils
NASA Astrophysics Data System (ADS)
Wozniakiewicz, Penelope J.; Ishii, Hope A.; Kearsley, Anton T.; Burchell, Mark J.; Bradley, John P.; Price, Mark C.; Teslich, Nick; Lee, Martin R.; Cole, Mike J.
2012-04-01
The grains returned by NASA's Stardust mission from comet 81P/Wild 2 represent a valuable sample set that is significantly advancing our understanding of small solar system bodies. However, the grains were captured via impact at ˜6.1 km s-1 and have experienced pressures and temperatures that caused alteration. To ensure correct interpretations of comet 81P/Wild 2 mineralogy, and therefore preaccretional or parent body processes, an understanding of the effects of capture is required. Using a two-stage light-gas gun, we recreated Stardust encounter conditions and generated a series of impact analogs for a range of minerals of cometary relevance into flight spare Al foils. Through analyses of both preimpact projectiles and postimpact analogs by transmission electron microscopy, we explore the impact processes occurring during capture and distinguish between those materials inherent to the impactor and those that are the product of capture. We review existing and present additional data on olivine, diopside, pyrrhotite, and pentlandite. We find that surviving crystalline material is observed in most single grain impactor residues. However, none is found in that of a relatively monodisperse aggregate. A variety of impact-generated components are observed in all samples. Al incorporation into melt-derived phases allows differentiation between melt and shock-induced phases. In single grain impactor residues, impact-generated phases largely retain original (nonvolatile) major element ratios. We conclude that both surviving and impact-generated phases in residues of single grain impactors provide valuable information regarding the mineralogy of the impacting grain whilst further studies are required to fully understand aggregate impacts and the role of subgrain interactions during impact.
High-mass diffraction in the QCD dipole picture
NASA Astrophysics Data System (ADS)
Bialas, A.; Navelet, H.; Peschanski, R.
1998-05-01
Using the QCD dipole picture of the BFKL pomeron, the cross-section of single diffractive dissociation of virtual photons at high energy and large diffractively excited masses is calculated. The calculation takes into account the full impact-parameter phase-space and thus allows to obtain an exact value of the triple BFKL Pomeron vertex. It appears large enough to compensate the perturbative 6-gluon coupling factor (α/π)3 thus suggesting a rather appreciable diffractive cross-section.
Valera, Alexandra; López-Guillermo, Armando; Cardesa-Salzmann, Teresa; Climent, Fina; González-Barca, Eva; Mercadal, Santiago; Espinosa, Íñigo; Novelli, Silvana; Briones, Javier; Mate, José L.; Salamero, Olga; Sancho, Juan M.; Arenillas, Leonor; Serrano, Sergi; Erill, Nadina; Martínez, Daniel; Castillo, Paola; Rovira, Jordina; Martínez, Antonio; Campo, Elias; Colomo, Luis
2013-01-01
MYC alterations influence the survival of patients with diffuse large B-cell lymphoma. Most studies have focused on MYC translocations but there is little information regarding the impact of numerical alterations and protein expression. We analyzed the genetic alterations and protein expression of MYC, BCL2, BCL6, and MALT1 in 219 cases of diffuse large B-cell lymphoma. MYC rearrangement occurred as the sole abnormality (MYC single-hit) in 3% of cases, MYC and concurrent BCL2 and/or BCL6 rearrangements (MYC double/triple-hit) in 4%, MYC amplifications in 2% and MYC gains in 19%. MYC single-hit, MYC double/triple-hit and MYC amplifications, but not MYC gains or other gene rearrangements, were associated with unfavorable progression-free survival and overall survival. MYC protein expression, evaluated using computerized image analysis, captured the unfavorable prognosis of MYC translocations/amplifications and identified an additional subset of patients without gene alterations but with similar poor prognosis. Patients with tumors expressing both MYC/BCL2 had the worst prognosis, whereas those with double-negative tumors had the best outcome. High MYC expression was associated with shorter overall survival irrespectively of the International Prognostic Index and BCL2 expression. In conclusion, MYC protein expression identifies a subset of diffuse large B-cell lymphoma with very poor prognosis independently of gene alterations and other prognostic parameters. PMID:23716551
Valera, Alexandra; López-Guillermo, Armando; Cardesa-Salzmann, Teresa; Climent, Fina; González-Barca, Eva; Mercadal, Santiago; Espinosa, Iñigo; Novelli, Silvana; Briones, Javier; Mate, José L; Salamero, Olga; Sancho, Juan M; Arenillas, Leonor; Serrano, Sergi; Erill, Nadina; Martínez, Daniel; Castillo, Paola; Rovira, Jordina; Martínez, Antonio; Campo, Elias; Colomo, Luis
2013-10-01
MYC alterations influence the survival of patients with diffuse large B-cell lymphoma. Most studies have focused on MYC translocations but there is little information regarding the impact of numerical alterations and protein expression. We analyzed the genetic alterations and protein expression of MYC, BCL2, BCL6, and MALT1 in 219 cases of diffuse large B-cell lymphoma. MYC rearrangement occurred as the sole abnormality (MYC single-hit) in 3% of cases, MYC and concurrent BCL2 and/or BCL6 rearrangements (MYC double/triple-hit) in 4%, MYC amplifications in 2% and MYC gains in 19%. MYC single-hit, MYC double/triple-hit and MYC amplifications, but not MYC gains or other gene rearrangements, were associated with unfavorable progression-free survival and overall survival. MYC protein expression, evaluated using computerized image analysis, captured the unfavorable prognosis of MYC translocations/amplifications and identified an additional subset of patients without gene alterations but with similar poor prognosis. Patients with tumors expressing both MYC/BCL2 had the worst prognosis, whereas those with double-negative tumors had the best outcome. High MYC expression was associated with shorter overall survival irrespectively of the International Prognostic Index and BCL2 expression. In conclusion, MYC protein expression identifies a subset of diffuse large B-cell lymphoma with very poor prognosis independently of gene alterations and other prognostic parameters.
Eby, Stephanie; Burkepile, Deron E; Fynn, Richard W S; Burns, Catherine E; Govender, Navashni; Hagenah, Nicole; Koerner, Sally E; Matchett, Katherine J; Thompson, Dave I; Wilcox, Kevin R; Collins, Scott L; Kirkman, Kevin P; Knapp, Alan K; Smith, Melinda D
2014-05-01
Large herbivore grazing is a widespread disturbance in mesic savanna grasslands which increases herbaceous plant community richness and diversity. However, humans are modifying the impacts of grazing on these ecosystems by removing grazers. A more general understanding of how grazer loss will impact these ecosystems is hampered by differences in the diversity of large herbivore assemblages among savanna grasslands, which can affect the way that grazing influences plant communities. To avoid this we used two unique enclosures each containing a single, functionally similar large herbivore species. Specifically, we studied a bison (Bos bison) enclosure at Konza Prairie Biological Station, USA and an African buffalo (Syncerus caffer) enclosure in Kruger National Park, South Africa. Within these enclosures we erected exclosures in annually burned and unburned sites to determine how grazer loss would impact herbaceous plant communities, while controlling for potential fire-grazing interactions. At both sites, removal of the only grazer decreased grass and forb richness, evenness and diversity, over time. However, in Kruger these changes only occurred with burning. At both sites, changes in plant communities were driven by increased dominance with herbivore exclusion. At Konza, this was caused by increased abundance of one grass species, Andropogon gerardii, while at Kruger, three grasses, Themeda triandra, Panicum coloratum, and Digitaria eriantha increased in abundance.
Albertson, Lindsey K.; Cardinale, Bradley J.; Sklar, Leonard S.
2014-01-01
Previous studies have shown that biological structures such as plant roots can have large impacts on landscape morphodynamics, and that physical models that do not incorporate biology can generate qualitatively incorrect predictions of sediment transport. However, work to date has focused almost entirely on the impacts of single, usually dominant, species. Here we ask whether multiple, coexisting species of hydropsychid caddisfly larvae have different impacts on sediment mobility compared to single-species systems due to competitive interactions and niche differences. We manipulated the presence of two common species of net-spinning caddisfly (Ceratopsyche oslari, Arctopsyche californica) in laboratory mesocosms and measured how their silk filtration nets influence the critical shear stress required to initiate sediment grain motion when they were in monoculture versus polyculture. We found that critical shear stress increases non-additively in polycultures where species were allowed to interact. Critical shear stress was 26% higher in multi-species assemblages compared to the average single-species monoculture, and 21% greater than levels of stability achieved by the species having the largest impact on sediment motion in monoculture. Supplementary behavioral experiments suggest the non-additive increase in critical shear stress may have occurred as competition among species led to shifts in the spatial distribution of the two populations and complementary habitat use. To explore the implications of these results for field conditions, we used results from the laboratory study to parameterize a common model of sediment transport. We then used this model to estimate potential bed movement in a natural stream for which we had measurements of channel geometry, grain size, and daily discharge. Although this extrapolation is speculative, it illustrates that multi-species impacts could be sufficiently large to reduce bedload sediment flux over annual time scales in streams where multiple species of caddisfly are present. PMID:25101964
Impact crater densities on volcanoes and coronae on venus: implications for volcanic resurfacing.
Namiki, N; Solomon, S C
1994-08-12
The density of impact craters on large volcanoes on Venus is half the average crater density for the planet. The crater density on some classes of coronae is not significantly different from the global average density, but coronae with extensive associated volcanic deposits have lower crater densities. These results are inconsistent with both single-age and steady-state models for global resurfacing and suggest that volcanoes and coronae with associated volcanism have been active on Venus over the last 500 million years.
The Impact of Language Factors on Learner Achievement in Science
ERIC Educational Resources Information Center
Prinsloo, C. H.; Rogers, S. C.; Harvey, J. C.
2018-01-01
South African learner achievement remains poor, despite large investment in schooling over the last two decades. Literature and research findings offer no single explanation or solution. In this article, the authors explored the relative contribution of specific language factors such as the role of home- and school-language equivalence, cultural…
DEVELOPMENT OF A SAMPLING PROCEDURE FOR LARGE NITROGEN- AND SULFUR-BEARING AEROSOLS
A single-stage impactor was modified to utilize a removable TFE impaction surface mounted on the end of an annular denuder. hen used with a polycarbonate filter coated with silicone oil, its cut point was 2.5 um and bounce was <1% for 8-um particles. ignificant bounce occurred wi...
The origin and emergence of life under impact bombardment.
Cockell, Charles S
2006-10-29
Craters formed by asteroids and comets offer a number of possibilities as sites for prebiotic chemistry, and they invite a literal application of Darwin's 'warm little pond'. Some of these attributes, such as prolonged circulation of heated water, are found in deep-ocean hydrothermal vent systems, previously proposed as sites for prebiotic chemistry. However, impact craters host important characteristics in a single location, which include the formation of diverse metal sulphides, clays and zeolites as secondary hydrothermal minerals (which can act as templates or catalysts for prebiotic syntheses), fracturing of rock during impact (creating a large surface area for reactions), the delivery of iron in the case of the impact of iron-containing meteorites (which might itself act as a substrate for prebiotic reactions), diverse impact energies resulting in different rates of hydrothermal cooling and thus organic syntheses, and the indiscriminate nature of impacts into every available lithology-generating large numbers of 'experiments' in the origin of life. Following the evolution of life, craters provide cryptoendolithic and chasmoendolithic habitats, particularly in non-sedimentary lithologies, where limited pore space would otherwise restrict colonization. In impact melt sheets, shattered, mixed rocks ultimately provided diverse geochemical gradients, which in present-day craters support the growth of microbial communities.
NASA Astrophysics Data System (ADS)
Bargués Tobella, A.; Reese, H.; Almaw, A.; Bayala, J.; Malmer, A.; Laudon, H.; Ilstedt, U.
2014-04-01
Water scarcity constrains the livelihoods of millions of people in tropical drylands. Tree planting in these environments is generally discouraged due to the large water consumption by trees, but this view may neglect their potential positive impacts on water availability. The effect of trees on soil hydraulic properties linked to groundwater recharge is poorly understood. In this study, we performed 18 rainfall simulations and tracer experiments in an agroforestry parkland in Burkina Faso to investigate the effect of trees and associated termite mounds on soil infiltrability and preferential flow. The sampling points were distributed in transects each consisting of three positions: (i) under a single tree, (ii) in the middle of an open area, and (iii) under a tree associated with a termite mound. The degree of preferential flow was quantified through parameters based on the dye infiltration patterns, which were analyzed using image analysis of photographs. Our results show that the degree of preferential flow was highest under trees associated with termite mounds, intermediate under single trees, and minimal in the open areas. Tree density also had an influence on the degree of preferential flow, with small open areas having more preferential flow than large ones. Soil infiltrability was higher under single trees than in the open areas or under trees associated with a termite mound. The findings from this study demonstrate that trees have a positive impact on soil hydraulic properties influencing groundwater recharge, and thus such effects must be considered when evaluating the impact of trees on water resources in drylands.
Improvement of single domain antibody stability by disulfide bond introduction.
Hagihara, Yoshihisa; Saerens, Dirk
2012-01-01
The successful medical application of single domain antibodies largely depends on their functionality. This feature is partly determined by the intrinsic stability of the single domain. Therefore a lot of research has gone into the elucidation of rules to uniformly increase stability of antibodies. Recently, a novel intra-domain disulfide bond was independently discovered by two research groups, after either rational design or careful investigation of the naturally occurring camelid antibody repertoire. By introducing this particular disulfide bond within a single domain antibody, the conformational stability can be increased in general. In this chapter it is described how to introduce this extra intra-domain disulfide bond and how to estimate the biophysical and biochemical impact of this cystine on the domain.
NASA Technical Reports Server (NTRS)
Kyte, Frank T.
2002-01-01
A total of 1.7g of unmelted meteorite particles have been recovered from FS Polarstern piston cores collected on expedition ANT XII/4 that contain ejecta from the Eltanin impact event. Most of the mass (1.2 g) is a large, single specimen that is a polymict breccia, similar in mineralogy and chemistry to howardites or the silicate fraction of mesosiderites. Most of the remaining mass is in several large individual pieces (20-75mg each) that are polymict breccias, fragments dominated by pyroxene, and an igneous rock fragment. The latter has highly fractionated REE, similar to those reported in mafic clasts from mesosiderites. Other types of specimens identified include fragments dominated by maskelynite or olivine. These pieces of the projectile probably survived impact by being blown off the back surface of the Eltanin asteroid during its impact into the Bellingshausen Sea.
Nanodiamonds do not provide unique evidence for a Younger Dryas impact
Tian, H.; Schryvers, D.; Claeys, Ph.
2011-01-01
Microstructural, δ13C isotope and C/N ratio investigations were conducted on excavated material from the black Younger Dryas boundary in Lommel, Belgium, aiming for a characterisation of the carbon content and structures. Cubic diamond nanoparticles are found in large numbers. The larger ones with diameters around or above 10 nm often exhibit single or multiple twins. The smaller ones around 5 nm in diameter are mostly defect-free. Also larger flake-like particles, around 100 nm in lateral dimension, with a cubic diamond structure are observed as well as large carbon onion structures. The combination of these characteristics does not yield unique evidence for an exogenic impact related to the investigated layer. PMID:21173270
Application of the inner solar system cratering record to the Earth
NASA Technical Reports Server (NTRS)
Barlow, Nadine G.
1990-01-01
The cratering records on the Moon, Mercury, and Mars are studied to provide constraints on: (1) terrestrial conditions prior to about 3.8 Ga, (2) why biology was not extensively established prior to 3.5 Ga, (3) whether impact-induced volcanism can explain some feature of the Cretaceous/Tertiary boundary event, and (4) how common large single-impact events are in the inner solar system. Earth underwent a period of high impact rates and large basin-forming events early in its history, based on the cratering record retained in the Lunar, Mercurian, and Martian highlands. The widespread occurrence of life around 3.5 Ga is linked to the cessation of high impact rates. Impact of a 10-km-diam object into terrestrial oceans could excavate through crustal material and into mantle reservoirs, creating extended basaltic volcanic activity. Scaling laws, coupled with the record retained on Lunar and Martian plains, indicate that between one and seven craters of 90 km diam or greater could have formed on Earth in the past 65 million years.
Hypervelocity nanoparticle impacts on free-standing graphene: A sui generis mode of sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eller, Michael J.; Della-Negra, Serge; Liang, Chao-Kai
The study of the interaction of hypervelocity nano-particles with a 2D material and ultra-thin targets (single layer graphene, multi-layer graphene, and amorphous carbon foils) has been performed using mass selected gold nano-particles produced from a liquid metal ion source. During these impacts, a large number of atoms are ejected from the graphene, corresponding to a hole of ∼60 nm{sup 2}. Additionally, for the first time, secondary ions have been observed simultaneously in both the transmission and reflection direction (with respect to the path of the projectile) from a 2D target. The ejected area is much larger than that predicted bymore » molecular dynamic simulations and a large ionization rate is observed. The mass distribution and characteristics of the emitted secondary ions are presented and offer an insight into the process to produce the large hole observed in the graphene.« less
Spray printing of organic semiconducting single crystals
NASA Astrophysics Data System (ADS)
Rigas, Grigorios-Panagiotis; Payne, Marcia M.; Anthony, John E.; Horton, Peter N.; Castro, Fernando A.; Shkunov, Maxim
2016-11-01
Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics.
Effective grain size and charpy impact properties of high-toughness X70 pipeline steels
NASA Astrophysics Data System (ADS)
Hwang, Byoungchul; Kim, Yang Gon; Lee, Sunghak; Kim, Young Min; Kim, Nack J.; Yoo, Jang Yong
2005-08-01
The correlation of microstructure and Charpy V-notch (CVN) impact properties of a high-toughness API X70 pipeline steel was investigated in this study. Six kinds of steel were fabricated by varying the hot-rolling conditions, and their microstructures, effective grain sizes, and CVN impact properties were analyzed. The CVN impact test results indicated that the steels rolled in the single-phase region had higher upper-shelf energies (USEs) and lower energy-transition temperatures (ETTs) than the steels rolled in the two-phase region because their microstructures were composed of acicular ferrite (AF) and fine polygonal ferrite (PF). The decreased ETT in the steels rolled in the single-phase region could be explained by the decrease in the overall effective grain size due to the presence of AF having a smaller effective grain size. On the other hand, the absorbed energy of the steels rolled in the two-phase region was considerably lower because a large amount of dislocations were generated inside PFs during rolling. It was further decreased when coarse martensite or cementite was formed during the cooling process.
2014-01-01
Background Large colon impactions are a common cause of colic in the horse. There are no scientific reports on the clinical presentation, diagnostic tests and treatments used in first opinion practice for large colon impaction cases. The aim of this study was to describe the presentation, diagnostic approach and treatment at the primary assessment of horses with large colon impactions. Methods Data were collected prospectively from veterinary practitioners on the primary assessment of equine colic cases over a 12 month period. Inclusion criteria were a diagnosis of primary large colon impaction and positive findings on rectal examination. Data recorded for each case included history, signalment, clinical and diagnostic findings, treatment on primary assessment and final case outcome. Case outcomes were categorised into three groups: simple medical (resolved with single treatment), complicated medical (resolved with multiple medical treatments) and critical (required surgery, were euthanased or died). Univariable analysis using one-way ANOVA and Tukey’s post-hoc test, Kruskal Wallis with Dunn’s post-hoc test and Chi squared analysis were used to compare between different outcome categories. Results 1032 colic cases were submitted by veterinary practitioners: 120 cases met the inclusion criteria for large colon impaction. Fifty three percent of cases were categorised as simple medical, 36.6% as complicated medical, and 9.2% as critical. Most cases (42.1%) occurred during the winter. Fifty nine percent of horses had had a recent change in management, 43% of horses were not ridden, and 12.5% had a recent / current musculoskeletal injury. Mean heart rate was 43bpm (range 26-88) and most cases showed mild signs of pain (67.5%) and reduced gut sounds (76%). Heart rate was significantly increased and gut sounds significantly decreased in critical compared to simple medical cases (p<0.05). Fifty different treatment combinations were used, with NSAIDs (93%) and oral fluids (71%) being administered most often. Conclusions Large colon impactions typically presented with mild signs of colic; heart rate and gut sounds were the most useful parameters to distinguish between simple and critical cases at the primary assessment. The findings of seasonal incidence and associated management factors are consistent with other studies. Veterinary practitioners currently use a wide range of different treatment combinations for large colon impactions. PMID:25238179
Simulation of Hypervelocity Impact on Aluminum-Nextel-Kevlar Orbital Debris Shields
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
2000-01-01
An improved hybrid particle-finite element method has been developed for hypervelocity impact simulation. The method combines the general contact-impact capabilities of particle codes with the true Lagrangian kinematics of large strain finite element formulations. Unlike some alternative schemes which couple Lagrangian finite element models with smooth particle hydrodynamics, the present formulation makes no use of slidelines or penalty forces. The method has been implemented in a parallel, three dimensional computer code. Simulations of three dimensional orbital debris impact problems using this parallel hybrid particle-finite element code, show good agreement with experiment and good speedup in parallel computation. The simulations included single and multi-plate shields as well as aluminum and composite shielding materials. at an impact velocity of eleven kilometers per second.
A unified theory of impact crises and mass extinctions: quantitative tests.
Rampino, M R; Haggerty, B M; Pagano, T C
1997-05-30
Several quantitative tests of a general hypothesis linking impacts of large asteroids and comets with mass extinctions of life are possible based on astronomical data, impact dynamics, and geological information. The waiting times of large-body impacts on the Earth derived from the flux of Earth-crossing asteroids and comets, and the estimated size of impacts capable of causing, large-scale environmental disasters, predict the impacts of objects > or = 5 km in diameter (> or = 10(7) Mt TNT equivalent) could be sufficient to explain the record of approximately 25 extinction pulses in the last 540 Myr, with the 5 recorded major mass extinctions related to impacts of the largest objects of > or = 10 km in diameter (> or = 10(8) Mt events). Smaller impacts (approximately 10(6) Mt), with significant regional environmental effects, could be responsible for the lesser boundaries in the geologic record. Tests of the "kill curve" relationship for impact-induced extinctions based on new data on extinction intensities, and several well-dated large impact craters, also suggest that major mass extinctions require large impacts, and that a step in the kill curve may exist at impacts that produce craters of approximately 100 km diameter, smaller impacts being capable of only relatively weak extinction pulses. Single impact craters less than approximately 60 km in diameter should not be associated with detectable global extinction pulses (although they may explain stage and zone boundaries marked by lesser faunal turnover), but multiple impacts in that size range may produce significant stepped extinction pulses. Statistical tests of the last occurrences of species at mass-extinction boundaries are generally consistent with predictions for abrupt or stepped extinctions, and several boundaries are known to show "catastrophic" signatures of environmental disasters and biomass crash, impoverished postextinction fauna and flora dominated by stress-tolerant and opportunistic species, and gradual ecological recovery and radiation of new taxa. Isotopic and other geochemical signatures are also generally consistent with the expected after-effects of catastrophic impacts. Seven of the recognized extinction pulses seem to be associated with concurrent (in some cases multiple) stratigraphic impact markers (e.g., layers with high iridium, shocked minerals, microtektites), and/or large, dated impact craters. Other less well-studied crisis intervals show elevated iridium, but well below that of the K/T spike, which might be explained by low-Ir impactors, ejecta blowoff, or sedimentary reworking and dilution of impact signatures. The best explanation for a possible periodic component of approximately 30 Myr in mass extinctions and clusters of impacts is the pulselike modulation of the comet flux associated with the solar system's periodic passage through the plane of the Milky Way Galaxy. The quantitative agreement between paleontologic and astronomical data suggests an important underlying unification of the processes involved.
Damage tolerance of candidate thermoset composites for use on single stage to orbit vehicles
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Lance, D.; Hodge, A.
1994-01-01
Four fiber/resin systems were compared for resistance to damage and damage tolerance. One toughened epoxy and three toughened bismaleimide (BMI) resins were used, all with IM7 carbon fiber reinforcement. A statistical design of experiments technique was used to evaluate the effects of impact energy, specimen thickness, and impactor diameter on the damage area, as computed by C-scans, and residual compression-after-impact (CAI) strength. Results showed that two of the BMI systems sustained relatively large damage zones yet had an excellent retention of CAI strength.
Consumer perception of salt-reduced breads: Comparison of single and two-bites evaluation.
Antúnez, Lucía; Giménez, Ana; Alcaire, Florencia; Vidal, Leticia; Ares, Gastón
2017-10-01
Salt-reduction in processed products has been proposed as a high-impact intervention for reducing the sodium intake at population level. A major limitation for this approach is its potential negative impact on the sensory characteristics of products. The current practice in sensory and consumer science involves single sip/bite evaluations, which may not properly reflect the sensory experience that occurs during product consumption. In this context, the aim of the present work was to compare single and two bite evaluations of consumer sensory and hedonic perception of salt-reduced breads. Five studies with a total of 499 consumers were carried out, in which overall-liking scores of five salt-reduced bread samples were collected after the first and the second bite evaluation. In one of the studies consumers also answered a CATA (check-all-that-apply) question after the first and the second bite. Neither bite nor the interaction between samples and bite had a significant effect on hedonic scores. However, when hedonic scores were analysed separately for each bite, the overall liking scores from the second bite evaluation better reflected differences among samples according to their salt content in two of the five studies. The sensory characterization of the samples did not largely vary between the first and the second bite. Results suggest that consumers' perception of salt reduced bread samples did not largely vary between a single and a two bites evaluation. Further research is warranted in this regard, in particular considering more complex products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Progress in modelling agricultural impacts of and adaptations to climate change.
Rötter, R P; Hoffmann, M P; Koch, M; Müller, C
2018-06-01
Modelling is a key tool to explore agricultural impacts of and adaptations to climate change. Here we report recent progress made especially referring to the large project initiatives MACSUR and AgMIP; in particular, in modelling potential crop impacts from field to global using multi-model ensembles. We identify two main fields where further progress is necessary: a more mechanistic understanding of climate impacts and management options for adaptation and mitigation; and focusing on cropping systems and integrative multi-scale assessments instead of single season and crops, especially in complex tropical and neglected but important cropping systems. Stronger linking of experimentation with statistical and eco-physiological crop modelling could facilitate the necessary methodological advances. Copyright © 2018 Elsevier Ltd. All rights reserved.
The spatial distribution and time evolution of impact-generated magnetic fields
NASA Technical Reports Server (NTRS)
Crawford, D. A.; Schultz, P. H.
1991-01-01
The production of magnetic fields was revealed by laboratory hypervelocity impacts in easily vaporized targets. As quantified by pressure measurements, high frame-rate photography, and electrostatic probes, these impacts tend to produce large quantities of slightly ionized vapor, which is referred to as impact-generated plasma. Nonaligned electron density and temperature gradients within this plasma may lead to production of the observed magnetic fields. Past experiments were limited to measuring a single component of the impact-generated magnetic fields at only a few locations about the developing impact crater and consequently gave little information about the field production mechanism. To understand this mechanism, the techniques were extended to map the three components of the magnetic field both in space and time. By conducting many otherwise identical experiments with arrayed magnetic detectors, a preliminary 3-D picture was produced of impact-generated magnetic fields as they develop through time.
Bargués Tobella, A; Reese, H; Almaw, A; Bayala, J; Malmer, A; Laudon, H; Ilstedt, U
2014-04-01
Water scarcity constrains the livelihoods of millions of people in tropical drylands. Tree planting in these environments is generally discouraged due to the large water consumption by trees, but this view may neglect their potential positive impacts on water availability. The effect of trees on soil hydraulic properties linked to groundwater recharge is poorly understood. In this study, we performed 18 rainfall simulations and tracer experiments in an agroforestry parkland in Burkina Faso to investigate the effect of trees and associated termite mounds on soil infiltrability and preferential flow. The sampling points were distributed in transects each consisting of three positions: (i) under a single tree, (ii) in the middle of an open area, and (iii) under a tree associated with a termite mound. The degree of preferential flow was quantified through parameters based on the dye infiltration patterns, which were analyzed using image analysis of photographs. Our results show that the degree of preferential flow was highest under trees associated with termite mounds, intermediate under single trees, and minimal in the open areas. Tree density also had an influence on the degree of preferential flow, with small open areas having more preferential flow than large ones. Soil infiltrability was higher under single trees than in the open areas or under trees associated with a termite mound. The findings from this study demonstrate that trees have a positive impact on soil hydraulic properties influencing groundwater recharge, and thus such effects must be considered when evaluating the impact of trees on water resources in drylands. Trees in dryland landscapes increase soil infiltrability and preferential flow Termite mounds in association with trees further enhance preferential flow.
Bargués Tobella, A; Reese, H; Almaw, A; Bayala, J; Malmer, A; Laudon, H; Ilstedt, U
2014-01-01
Water scarcity constrains the livelihoods of millions of people in tropical drylands. Tree planting in these environments is generally discouraged due to the large water consumption by trees, but this view may neglect their potential positive impacts on water availability. The effect of trees on soil hydraulic properties linked to groundwater recharge is poorly understood. In this study, we performed 18 rainfall simulations and tracer experiments in an agroforestry parkland in Burkina Faso to investigate the effect of trees and associated termite mounds on soil infiltrability and preferential flow. The sampling points were distributed in transects each consisting of three positions: (i) under a single tree, (ii) in the middle of an open area, and (iii) under a tree associated with a termite mound. The degree of preferential flow was quantified through parameters based on the dye infiltration patterns, which were analyzed using image analysis of photographs. Our results show that the degree of preferential flow was highest under trees associated with termite mounds, intermediate under single trees, and minimal in the open areas. Tree density also had an influence on the degree of preferential flow, with small open areas having more preferential flow than large ones. Soil infiltrability was higher under single trees than in the open areas or under trees associated with a termite mound. The findings from this study demonstrate that trees have a positive impact on soil hydraulic properties influencing groundwater recharge, and thus such effects must be considered when evaluating the impact of trees on water resources in drylands. Key Points Trees in dryland landscapes increase soil infiltrability and preferential flow Termite mounds in association with trees further enhance preferential flow PMID:25641996
The origin and emergence of life under impact bombardment
Cockell, Charles S
2006-01-01
Craters formed by asteroids and comets offer a number of possibilities as sites for prebiotic chemistry, and they invite a literal application of Darwin's ‘warm little pond’. Some of these attributes, such as prolonged circulation of heated water, are found in deep-ocean hydrothermal vent systems, previously proposed as sites for prebiotic chemistry. However, impact craters host important characteristics in a single location, which include the formation of diverse metal sulphides, clays and zeolites as secondary hydrothermal minerals (which can act as templates or catalysts for prebiotic syntheses), fracturing of rock during impact (creating a large surface area for reactions), the delivery of iron in the case of the impact of iron-containing meteorites (which might itself act as a substrate for prebiotic reactions), diverse impact energies resulting in different rates of hydrothermal cooling and thus organic syntheses, and the indiscriminate nature of impacts into every available lithology—generating large numbers of ‘experiments’ in the origin of life. Following the evolution of life, craters provide cryptoendolithic and chasmoendolithic habitats, particularly in non-sedimentary lithologies, where limited pore space would otherwise restrict colonization. In impact melt sheets, shattered, mixed rocks ultimately provided diverse geochemical gradients, which in present-day craters support the growth of microbial communities. PMID:17008223
Large tubular colonic duplication in an adult treated with a small midline incision
Yong, Yuen Geng; Jung, Kyung Uk; Cho, Yong Beom; Yun, Seong Hyeon; Kim, Hee Cheol; Lee, Woo Yong
2012-01-01
Tubular colonic duplication presenting in adults is rare and difficult to diagnose preoperatively. Only a few cases have been reported in the literature. We report a case of a 29-year-old lady presenting with a long history of chronic constipation, abdominal mass and repeated episodes of abdominal pain. The abdominal-pelvic computed tomography scan showed segmental bowel wall thickening thought to be small bowel, and dilatation with stasis of intraluminal content. The provisional diagnosis was small bowel duplication. She was scheduled for single port laparoscopic resection. However, a T-shaped tubular colonic duplication at sigmoid colon was found intraoperatively. Resection of the large T-shaped tubular colonic duplication containing multiple impacted large fecaloma and primary anastomosis was performed. There was no perioperative complication. We report, herein, the case of a T-shaped tubular colonic duplication at sigmoid colon in an adult who was successfully treated through mini-laparotomy assisted by single port laparoscopic surgery. PMID:22403754
ERIC Educational Resources Information Center
Boekeloo, Bradley O.; Novik, Melinda G.; Bush, Elizabeth N.; O'Grady, Kevin E.
2009-01-01
An intervention to reduce college alcohol use and secondhand effects was tested. Freshmen dormitory wings at a large Mid-Atlantic public university were assigned to single-gender (SG) or mixed-gender (MG) Information-Motivation-Behavior (IMB) workshops implemented during the first weeks of school, or a control condition. Students were surveyed…
USDA-ARS?s Scientific Manuscript database
Nigeria is the fourth largest cacao producer in the world. Field performance and quality of cacao hybrid families is largely dependent on the genetic integrity of parental clones obtained from field genebank collections. However, information on the impact of mislabeling on seed garden output and ger...
Impact of Installation Faults on Heat Pump Performance
Hourahan, Glenn; Baxter, Van D.
2015-01-01
Numerous studies and surveys indicate that typically-installed HVAC equipment operate inefficiently and waste considerable energy due to varied installation errors (faults) such as improper refrigerant charge, incorrect airflow, oversized equipment, and leaky ducts. This article summarizes the results of a large United States (U.S.) experimental/analytical study (U.S. contribution to IEA HPP Annex 36) of the impact that different faults have on the performance of an air-source heat pump (ASHP) in a typical U.S. single-family house. It combines building effects, equipment effects, and climate effects in an evaluation of the faults impact on seasonal energy consumption through simulations of the house/ASHPmore » pump system.« less
NASA Astrophysics Data System (ADS)
Dhakal, N.; Jain, S.
2013-12-01
Rare and unusually large events (such as hurricanes and floods) can create unusual and interesting trends in statistics. Generalized Extreme Value (GEV) distribution is usually used to statistically describe extreme rainfall events. A number of the recent studies have shown that the frequency of extreme rainfall events has increased over the last century and as a result, there has been change in parameters of GEV distribution with the time (non-stationary). But what impact does a single unusually large rainfall event (e.g., hurricane Irene) have on the GEV parameters and consequently on the level of risks or the return periods used in designing the civil infrastructures? In other words, if such a large event occurs today, how will it influence the level of risks (estimated based on past rainfall records) for the civil infrastructures? To answer these questions, we performed sensitivity analysis of the distribution parameters of GEV as well as the return periods to unusually large outlier events. The long-term precipitation records over the period of 1981-2010 from 12 USHCN stations across the state of Maine were used for analysis. For most of the stations, addition of each outlier event caused an increase in the shape parameter with a huge decrease on the corresponding return period. This is a key consideration for time-varying engineering design. These isolated extreme weather events should simultaneously be considered with traditional statistical methodology related to extreme events while designing civil infrastructures (such as dams, bridges, and culverts). Such analysis is also useful in understanding the statistical uncertainty of projecting extreme events into future.
A new large initial condition ensemble to assess avoided impacts in a climate mitigation scenario
NASA Astrophysics Data System (ADS)
Sanderson, B. M.; Tebaldi, C.; Knutti, R.; Oleson, K. W.
2014-12-01
It has recently been demonstrated that when considering timescales of up to 50 years, natural variability may play an equal role to anthropogenic forcing on subcontinental trends for a variety of climate indicators. Thus, for many questions assessing climate impacts on such time and spatial scales, it has become clear that a significant number of ensemble members may be required to produce robust statistics (and especially so for extreme events). However, large ensemble experiments to date have considered the role of variability in a single scenario, leaving uncertain the relationship between the forced climate trajectory and the variability about that path. To address this issue, we present a new, publicly available, 15 member initial condition ensemble of 21st century climate projections for the RCP 4.5 scenario using the CESM1.1 Earth System Model, which we propose as a companion project to the existing 40 member CESM large ensemble which uses the higher greenhouse gas emission future of RCP8.5. This provides a valuable data set for assessing what societal and ecological impacts might be avoided through a moderate mitigation strategy in contrast to a fossil fuel intensive future. We present some early analyses of these combined ensembles to assess to what degree the climate variability can be considered to combine linearly with the underlying forced response. In regions where there is no detectable relationship between the mean state and the variability about the mean trajectory, then linear assumptions can be trivially exploited to utilize a single ensemble or control simulation to characterize the variability in any scenario of interest. We highlight regions where there is a detectable nonlinearity in extreme event frequency, how far in the future they will be manifested and propose mechanisms to account for these effects.
Determinants of health-related quality of life in psoriasis patients in Malaysia.
Nyunt, Wint Wint Thu; Low, Wah Yun; Ismail, Rokiah; Sockalingam, Sargunan; Min, Aung Ko Ko
2015-03-01
Psoriasis is a chronic dermatological disorder that has a negative impact on quality of life (QoL). This hospital-based cross-sectional study determined factors associated with health-related QoL (HRQoL) impairment in adult psoriasis patients. HRQoL was assessed using the Dermatology Life Quality Index (DLQI). Disease severity was assessed using the Psoriasis Area and Severity Index (PASI). A total of 223 patients, aged 18 to 83 years, were recruited. For 67 (30%) patients, psoriasis had very large to extremely large effect on their life (DLQI score = 11-30). The median DLQI score was 7 (interquartile range = 7). Factors significantly associated with severe impact on HRQoL (DLQI ≥ 10) were disease severity, single status, working status, sports activities, nail dystrophy, exposed area involvement, itch, disturbed sleep, stress, and infection. The factor predictive of severe impact of psoriasis on HRQoL was disease severity. A holistic approach in the management, including psychosocial issues, is absolutely crucial for the optimal care of psoriasis patients. © 2013 APJPH.
Tang, M X; Zhang, Y Y; E, J C; Luo, S N
2018-05-01
Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, M. X.; Zhang, Y. Y.; E, J. C.
Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less
NASA Astrophysics Data System (ADS)
Cho, Joung-min; Mori, Takehiko
2016-06-01
Transistors based on single-crystal films of 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) fabricated using the blade-coating method are investigated by the four-probe method down to low temperatures. The four-probe mobility is as large as 18 cm2/V s at room temperature, and increases to 45 cm2/V s at 80 K. At 60 K the two-probe mobility drops abruptly by about 50%, but the mobility drop is mostly attributed to the increase of the source resistance. The carrier transport in the present single-crystal film is regarded as essentially bandlike down to 30 K.
New impact sensitivity test of liquid explosives
NASA Astrophysics Data System (ADS)
Tiutiaev, Andrei; Trebunskih, Valeri
The sensitivity of liquid explosive in the presence of gas bubbles increases many times as compared with the liquid without gas bubbles. Local hot spot in this case formed as a result of compression and heating of the gas inside the bubbles. If we consider that in the liquid as a result of convection, wave motion, shock, etc. gas bubbles are easily generated, the need to develop a method for determining sensitivity of liquid explosives to impact and a detailed study of the ignition explosives with bubbles is obvious. On a mathematical model of a single steam bubbles in the fluid theoretically considered the process of initiating explosive liquid systems to impact. For the experimental investigation, the well-known K-44 -II with the metal cap were used. Instead of the metal cap in the standard method in this paper there was polyurethane foam cylindrical container with LHE, which is easily deforms by impact. A large number of tests with different liquid explosives were made. It was found that the test LHE to impact with polyurethane foam to a large extent reflect the real mechanical sensitivity due to the small loss of impact energy on the deformation of the metal cap, as well as the best differentiation LHE sensitivity due to the higher resolution method . Results obtained in the samara state technical university.
Late Veneer consequences on Venus' long term evolution
NASA Astrophysics Data System (ADS)
Gillmann, C.; Golabek, G.; Tackley, P. J.; Raymond, S. N.
2017-12-01
Modelling of Venus' evolution is able to produce scenarios consistent with present-day observation. These results are however heavily dependent on atmosphere escape and initial volatile inventory. This primordial history (the first 500 Myr) is heavily influenced by collisions. We investigate how Late Veneer impacts change the initial state of Venus and their consequences on its coupled mantle/atmosphere evolution. We focus on volatile fluxes: atmospheric escape and mantle degassing. Mantle dynamics is simulated using the StagYY code. Atmosphere escape covers both thermal and non-thermal processes. Surface conditions are calculated with a radiative-convective model. Feedback of the atmosphere on the mantle through surface temperature is included. Large impacts are capable of contributing to atmospheric escape, volatile replenishment and energy transfer. We use the SOVA hydrocode to take into account volatile loss and deposition during a collision. Large impacts are not numerous enough to substantially erode Venus' atmosphere. Single impacts don't have enough eroding power. Swarms of small bodies (<50km radius) might be a better candidate for this process. The amount of volatiles brought by large ordinary chondrite impactors is superior to losses and comparable to the degassing caused by the impact. Carbonaceous chondrite impactors are unlikely: they release too many volatiles, causing surface temperature to stay above 900K up to present-day. Mantle dynamics can also be modified by the heating caused by impacts. Heated material propagates by spreading across the upper mantle due to its buoyancy. Old crust is destroyed or remixed in the mantle. A large part of the upper mantle melts, leading to its depletion and degassing. With enough evenly distributed high energy impacts, the mantle can be depleted by more than 90% of its volatiles during Late Veneer. This drastically cuts down degassing in the late history of the planet and leads to lower present-day surface temperatures. Total depletion of the mantle seems unlikely, meaning either few large impacts (1 to 4) or low energy (slow, grazing…) collisions. Combined with the lack of plate tectonics and volatile recycling in the interior of Venus, Late Veneer collisions could help explain why Venus seems dry today.
Impact Crises, Mass Extinctions, and Galactic Dynamics: A Unified Theory
NASA Technical Reports Server (NTRS)
Rampino, M.R.
1997-01-01
A general hypothesis linking mass extinctions of life with impacts of large asteroids and comets is based on astronomical data, impact dynamics, and geological information. The waiting times of large-body impacts on the Earth, derived from the flux of Earth-crossing asteroids and comets, and the estimated size of impacts capable of causing large-scale environmental disasters predict that impacts of objects (sup 3)5 km in diameter ((sup 3)10(exp 7) Mt TNT equivalent) could be sufficient to explain the record of about 25 extinction pulses in the last 540 m.y., with the five recorded major mass extinctions related to the impacts of the largest objects of (sup 3)10 km in diameter ( (sup 3)10(exp 8) Mt events). Smaller impacts (about 10(exp 6)-10(exp 7) Mt), with significant regional and even global environmental effects, could be responsible for the lesser boundaries in the geologic record. Tests of the "kill curve" relationship for impact-induced extinctions based on new data on extinction intensities and several well-dated large impact craters suggest that major mass extinctions require large impacts, and that a step in the kill curve may exist at impacts that produce craters of -100 km diameter, with smaller impacts capable of only relatively weak extinction pulses. Single impact craters < about 60 km in diameter should not be associated with global extinction pulses detectable in the Sepkoski database (although they may explain stage and zone boundaries marked by lesser faunal turnover), but multiple impacts in that size range may produce significant stepped extinction pulses. Statistical tests of the last occurrences of species at mass-extinction boundaries are generally consistent with predictions for abrupt or stepped extinctions, and several boundaries are known to show "catastrophic" signatures of environmental disasters and biomass crash, impoverished postextinction fauna and flora dominated by stress-tolerant and opportunistic species, and gradual ecological recovery and radiation of new taxa. Isotopic and other geochemical signatures are also generally consistent with the expected after-effects of catastrophic impacts. Seven of the recognized extinction pulses are associated with concurrent (in some cases multiple) stratigraphic impact markers (e.g., layers with high Ir, shocked minerals, microtektites), and/or large, dated impact craters. Other less-well-studied crisis intervals show elevated Ir, still well below that of the K/T spike, which might be explained by low-Ir impactors, ejecta blowoff, or the sedimentary reworking and dilution of impact signatures. The best explanation for a possible periodic component of about 30 m.y. in mass extinctions and clusters of impacts is the modulation of the comet flux associated with the solar system's periodic passage through the plane of the Milky Way Galaxy. The quantitative agreement among paleontological, geological, and astronomical data suggests an important underlying unification of the processes involved.
Multi-phase SPH modelling of violent hydrodynamics on GPUs
NASA Astrophysics Data System (ADS)
Mokos, Athanasios; Rogers, Benedict D.; Stansby, Peter K.; Domínguez, José M.
2015-11-01
This paper presents the acceleration of multi-phase smoothed particle hydrodynamics (SPH) using a graphics processing unit (GPU) enabling large numbers of particles (10-20 million) to be simulated on just a single GPU card. With novel hardware architectures such as a GPU, the optimum approach to implement a multi-phase scheme presents some new challenges. Many more particles must be included in the calculation and there are very different speeds of sound in each phase with the largest speed of sound determining the time step. This requires efficient computation. To take full advantage of the hardware acceleration provided by a single GPU for a multi-phase simulation, four different algorithms are investigated: conditional statements, binary operators, separate particle lists and an intermediate global function. Runtime results show that the optimum approach needs to employ separate cell and neighbour lists for each phase. The profiler shows that this approach leads to a reduction in both memory transactions and arithmetic operations giving significant runtime gains. The four different algorithms are compared to the efficiency of the optimised single-phase GPU code, DualSPHysics, for 2-D and 3-D simulations which indicate that the multi-phase functionality has a significant computational overhead. A comparison with an optimised CPU code shows a speed up of an order of magnitude over an OpenMP simulation with 8 threads and two orders of magnitude over a single thread simulation. A demonstration of the multi-phase SPH GPU code is provided by a 3-D dam break case impacting an obstacle. This shows better agreement with experimental results than an equivalent single-phase code. The multi-phase GPU code enables a convergence study to be undertaken on a single GPU with a large number of particles that otherwise would have required large high performance computing resources.
NASA Astrophysics Data System (ADS)
Falzone, Nadia; Myhra, Sverre; Chakalova, Radka; Hill, Mark A.; Thomson, James; Vallis, Katherine A.
2013-11-01
The interactions between energetic ions and biological and/or organic target materials have recently attracted theoretical and experimental attention, due to their implications for detector and device technologies, and for therapeutic applications. Most of the attention has focused on detection of the primary ionization tracks, and their effects, while recoil target atom tracks remain largely unexplored. Detection of tracks by a negative tone photoresist (SU-8), followed by standard development, in combination with analysis by atomic force microscopy, shows that both primary and recoil tracks are revealed as conical spikes, and can be characterized at high spatial resolution. The methodology has the potential to provide detailed information about single impact events, which may lead to more effective and informative detector technologies and advanced therapeutic procedures. In comparison with current characterization methods the advantageous features include: greater spatial resolution by an order of magnitude (20 nm) detection of single primary and associated recoil tracks; increased range of fluence (to 2.5 × 109 cm-2) sensitivity to impacts at grazing angle incidence; and better definition of the lateral interaction volume in target materials.
Multiple beacons for supporting lunar landing navigation
NASA Astrophysics Data System (ADS)
Theil, Stephan; Bora, Leonardo
2018-02-01
The exploration and potential future exploitation of solar system bodies requires technologies for precise and safe landings. Current navigation systems for landing probes are relying on a combination of inertial and optical sensor measurements to determine the current flight state with respect to the target body and the desired landing site. With a future transition from single exploration missions to more frequent first exploration and then exploitation missions, the implementation and operation of these missions changes, since it can be expected that a ground infrastructure on the target body is available in the vicinity of the landing site. In a previous paper, the impact of a single ground-based beacon on the navigation performance was investigated depending on the type of radiometric measurements and on the location of the beacon with respect to the landing site. This paper extends this investigation on options for ground-based multiple beacons supporting the on-board navigation system. It analyzes the impact on the achievable navigation accuracy. For that purpose, the paper introduces briefly the existing navigation architecture based on optical navigation and its extension with radiometric measurements. The same scenario of lunar landing as in the previous paper is simulated. The results are analyzed and discussed. They show a single beacon at a large distance along the landing trajectory and multiple beacons close to the landing site can improve the navigation performance. The results show how large the landing area can be increased where a sufficient navigation performance is achieved using the beacons.
Farbu, Jorunn; Haugen, Margaretha; Meltzer, Helle Margrete; Brantsæter, Anne Lise
2014-12-05
Little attention has been given to the impact of singlehood during pregnancy. The aim of this study was to examine the impact of marital status on diet during pregnancy and pregnancy outcome. The study population comprised 62,773 women participating in the Norwegian Mother and Child Cohort Study. Marital status was categorised into singles living alone, singles living with parents and married/cohabiting (reference group). Participants answered a general health questionnaire in gestational week 15-17 and a food frequency questionnaire in gestational week 22. We used nonparametric tests to compare dietary intakes by marital status, and multiple logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for infants being small for gestational age (SGA), large for gestational age (LGA), and preterm delivery (defined as delivery before gestational week 37). Single women living with parents had lower intakes of fruits and vegetables, higher intake of total energy, higher proportion of energy from added sugar, and lower intake of fibre than the reference group. Singles living alone also had a higher intake of added sugar. In both of the single groups, daily smoking was more prevalent than in women living with a partner. In analyses adjusted for maternal age, pre-pregnancy BMI, energy intake, energy contributed by protein, education, income, parity and nausea, single women living alone had increased risk of SGA with OR = 1.27 (95% CI: 1.05, 1.55). When smoking was included among the confounding variables, the association was no longer significant. Likewise, singles living alone had increased risk of preterm delivery, with OR = 1.32 (95% CI: 1.01, 1.72) in a partly adjusted model, but the association did not remain significant in a model fully adjusted for confounding variables. Single mothers had lower dietary quality and included more smokers than women who lived with a partner. Single mothers living alone had higher prevalence of SGA and preterm delivery, but the associations with adverse pregnancy outcomes were confounded by other variables. This study shows that single mothers should be given special attention during antenatal care and counselling.
Anfo Response To Low-Stress Planar Impacts
NASA Astrophysics Data System (ADS)
Cooper, Marcia A.; Trott, Wayne M.; Schmitt, Robert G.; Short, Mark; Jackson, Scott I.
2012-03-01
Ammonium Nitrate plus Fuel Oil (ANFO) is a non-ideal explosive where the mixing behavior of the mm-diameter prills with the absorbed fuel oil is of critical importance for chemical energy release. The large-scale heterogeneity of ANFO establishes conditions uniquely suited for observation using the spatially- and temporally-resolved line-imaging ORVIS (Optically Recording Velocity Interferometer System) diagnostic. The first demonstration of transmitted wave profiles in ANFO from planar impacts using a single-stage gas gun is reported. Major observations including an extended compaction precursor, post-shock particle velocity variations and between-prill jetting are reported.
ERIC Educational Resources Information Center
What Works Clearinghouse, 2015
2015-01-01
The study authors examined the impact of "Responsive Classroom," a professional development program for teachers, on student achievement. This study took place in a large, ethnically and socioeconomically diverse district in a mid-Atlantic state. The intervention was implemented during 3 school years from 2008 to 2011. Study authors…
CFD-DEM Analysis of Particle Attrition in a Jet in a Fluidised Bed
NASA Astrophysics Data System (ADS)
Fulchini, F.; Nan, W.; Ghadiri, M.; Yazdan Panah, M.; Bertholin, S.; Amblard, B.; Cloupet, A.; Gauthier, T.
2017-06-01
In fluidised bed processes, the solids are in vigorous motion and thus inevitably subjected to mechanical stresses due to inter-particle and particle-wall impacts. These stresses lead to a gradual degradation of the particles by surface wear, abrasion and body fragmentation commonly termed attrition. One significant contribution of attrition comes from the air jets of the fluidised bed distributor. Particles are entrained into the air jet, where they get accelerated and impacted onto the fluidised bed particles. The jet induced attrition only affects the part of the bed which is limited by the jet length, where the mode of attrition is largely collisional. The overall jet attrition rate is therefore the result of the combination of the single particle damage and the flux of particles entering into that region. The attrition behaviour of particles in the jet region is analysed by evaluating their propensity of breakage experimentally and by simulating an air-jet in a bed of particles by CFD-DEM. The frequency of collisions and impact velocities are estimated from which the attrition due to a single air-jet is predicted.
Detection of CS in Neptune's atmosphere from ALMA observations
NASA Astrophysics Data System (ADS)
Moreno, R.; Lellouch, E.; Cavalié, T.; Moullet, A.
2017-12-01
Context. The large and vertically non-uniform abundance of CO in Neptune's atmosphere has been interpreted as the result of past cometary impact(s), either single or distributed in size and time, which could also be at the origin of Neptune's HCN. Aims: We aim to provide observational support for this scenario by searching for other comet-induced species, in particular carbon sulfide (CS) which has been observed continuously in Jupiter since the 1994 Shoemaker-Levy 9 impacts. Methods: In April 2016 we used the ALMA interferometer to search for CS(7-6) at 342.883 GHz in Neptune. Results: We report on the detection of CS in Neptune's atmosphere, the first unambiguous observation of a sulfur-bearing species in a giant planet beyond Jupiter. Carbon sulfide appears to be present only at submillibar levels, with a column density of (2.0-3.1) × 1012 cm-2, and a typical mixing ratio of (2-20) × 10-11 that depends on its precise vertical location. The favoured origin of CS is deposition by a putative large comet impact several centuries ago, and the strong depletion of CS with respect to CO - compared to the Jupiter case - is likely due to the CS sticking to aerosols or clustering to form polymers in Neptune's lower stratosphere. Conclusions: The CS detection, along with recent analyses of the CO profile, reinforces the presumption of a large comet impact into Neptune 1000 yr ago, that delivered CO, CS, and HCN at the same time.
The Case for Modular Redundancy in Large-Scale High Performance Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelmann, Christian; Ong, Hong Hoe; Scott, Stephen L
2009-01-01
Recent investigations into resilience of large-scale high-performance computing (HPC) systems showed a continuous trend of decreasing reliability and availability. Newly installed systems have a lower mean-time to failure (MTTF) and a higher mean-time to recover (MTTR) than their predecessors. Modular redundancy is being used in many mission critical systems today to provide for resilience, such as for aerospace and command \\& control systems. The primary argument against modular redundancy for resilience in HPC has always been that the capability of a HPC system, and respective return on investment, would be significantly reduced. We argue that modular redundancy can significantly increasemore » compute node availability as it removes the impact of scale from single compute node MTTR. We further argue that single compute nodes can be much less reliable, and therefore less expensive, and still be highly available, if their MTTR/MTTF ratio is maintained.« less
SU-F-T-185: Study of the Robustness of a Proton Arc Technique Based On PBS Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Z; Zheng, Y
Purpose: One potential technique to realize proton arc is through using PBS beams from many directions to form overlaid Bragg peak (OBP) spots and placing these OBP spots throughout the target volume to achieve desired dose distribution. In this study, we analyzed the robustness of this proton arc technique. Methods: We used a cylindrical water phantom of 20 cm in radius in our robustness analysis. To study the range uncertainty effect, we changed the density of the phantom by ±3%. To study the setup uncertainty effect, we shifted the phantom by 3 & 5 mm. We also combined the rangemore » and setup uncertainties (3mm/±3%). For each test plan, we performed dose calculation for the nominal and 6 disturbed scenarios. Two test plans were used, one with single OBP spot and the other consisting of 121 OBP spots covering a 10×10cm{sup 2} area. We compared the dose profiles between the nominal and disturbed scenarios to estimate the impact of the uncertainties. Dose calculation was performed with Gate/GEANT based Monte Carlo software in cloud computing environment. Results: For each of the 7 scenarios, we simulated 100k & 10M events for plans consisting of single OBP spot and 121 OBP spots respectively. For single OBP spot, the setup uncertainty had minimum impact on the spot’s dose profile while range uncertainty had significant impact on the dose profile. For plan consisting of 121 OBP spots, similar effect was observed but the extent of disturbance was much less compared to single OBP spot. Conclusion: For PBS arc technique, range uncertainty has significantly more impact than setup uncertainty. Although single OBP spot can be severely disturbed by the range uncertainty, the overall effect is much less when a large number of OBP spots are used. Robustness optimization for PBS arc technique should consider range uncertainty with priority.« less
Large scale anomalies in the microwave background: causation and correlation.
Aslanyan, Grigor; Easther, Richard
2013-12-27
Most treatments of large scale anomalies in the microwave sky are a posteriori, with unquantified look-elsewhere effects. We contrast these with physical models of specific inhomogeneities in the early Universe which can generate these apparent anomalies. Physical models predict correlations between candidate anomalies and the corresponding signals in polarization and large scale structure, reducing the impact of cosmic variance. We compute the apparent spatial curvature associated with large-scale inhomogeneities and show that it is typically small, allowing for a self-consistent analysis. As an illustrative example we show that a single large plane wave inhomogeneity can contribute to low-l mode alignment and odd-even asymmetry in the power spectra and the best-fit model accounts for a significant part of the claimed odd-even asymmetry. We argue that this approach can be generalized to provide a more quantitative assessment of potential large scale anomalies in the Universe.
NASA Astrophysics Data System (ADS)
Cepus, Elvis
This work focuses on the early impact response of textile armour systems. A relatively new data acquisition system, the Enhanced Laser Velocity Sensor (ELVS), was refined and used to generate a large database of results for a 5.57 mm diameter, 3 gram, non-deforming projectile impacting single-ply configurations of Ballistic Nylon, two weaves of Kevlar 129, and Zylon (PBO) over a range of velocities from 61 m/s to 248 m/s. In addition, one Kevlar 129 material was tested in configurations of 2, 3, 4, 8 and 16 plies over a range of strike velocities from 90 m/s to 481 m/s. ELVS results consisted of high-resolution timehistories of displacement, velocity and energy for each system tested. The strain wave velocity and ballistic performance of each system was also determined. Results taken from during the impact event were analysed up to just prior to the strain-wave rebounding from the boundary and returning to the impact point---effectively removing boundary influences. Regardless of system type, a constant rate of energy absorption within the pre-rebound timeframe was found to exist, which scales with the strike velocity to approximately the 8/3-power. Well-established single fibre theory was modified and applied to woven materials. It was assumed that three primary energy absorption mechanisms exist; elastic strain, in-plane kinetic and out-of-plane kinetic. This simple model yields the experimentally observed 8/3 exponent and parametrically predicts the difference between the different single-ply material systems, but underpredicts the observed behaviour by a factor of 2 and cannot address the performance reduction with increasing ply count. This combined experimental and analytical work confirms the long-held assumption that single fibre wave physics is applicable to multi-ply woven systems. More significantly, for the first time, it decouples material response from overall system response and provides the experimental tools and methodology required to analyse textile armour systems in a scientific manner.
NASA Astrophysics Data System (ADS)
Liu, Pengfei; Zeng, Jiaolong; Yuan, Jianmin
2018-04-01
Multiple electron processes occur widely in atoms, molecules, clusters, and condensed matters when they are interacting with energetic particles or intense laser fields. Direct multielectron processes (DMEP) are the most complicated among the general multiple electron processes and are the most difficult to describe theoretically. In this work, a unified and accurate theoretical formalism is proposed on the DMEP of atoms including the multiple auger decay and multiple ionization by an impact of a single electron or a single photon based on the atomic collision theory described by a correlated many-body Green's function. Such a practical treatment is made possible by taking consideration of the different coherence features of the atoms (matter waves) in the initial and final states. We first explain how the coherence characteristics of the ejected continuum electrons is largely destructed, by taking the electron impact direct double ionization process as an example. The direct double ionization process is completely different from the single ionization where the complete interference can be maintained. The detailed expressions are obtained for the energy correlations among the continuum electrons and energy resolved differential and integral cross sections according to the separation of knock-out (KO) and shake-off (SO) mechanisms for the electron impact direct double ionization, direct double and triple auger decay, and double and triple photoionization (TPI) processes. Extension to higher order DMEP than triple ionization is straight forward by adding contributions of the following KO and SO processes. The approach is applied to investigate the electron impact double ionization processes of C+, N+, and O+, the direct double and triple auger decay of the K-shell excited states of C+ 1s2{s}22{p}2{}2D and {}2P, and the double and TPI of lithium. Comparisons with the experimental and other theoretical investigations wherever available in the literature show that our theoretical formalism is accurate and effective in treating the atomic multielectron processes.
Applied Impact Physics Research
NASA Astrophysics Data System (ADS)
Wickert, Matthias
2013-06-01
Applied impact physics research is based on the capability to examine impact processes for a wide range of impact conditions with respect to velocity as well as mass and shape of the projectile. For this reason, Fraunhofer EMI operates a large variety of launchers that address velocities up to ordnance velocities as single stage powder gun but which can also be operated as two-stage light gas guns achieving the regime of low earth orbital velocity. Thereby for projectile masses of up to 100 g hypervelocity impact phenomena up to 7.8 km/s can be addressed. Advanced optical diagnostic techniques like microsecond video are used as commercial systems but - since impact phenomena are mostly related with debris or dust - specialized diagnostics are developed in-house like x-ray cinematography and x-ray tomography. Selected topics of the field of applied impact physics will be presented like the interesting behavior of long rods penetrating low-density materials or experimental findings at hypervelocity for this class of materials as well as new x-ray diagnositic techniques.
NASA Astrophysics Data System (ADS)
Glikson, Andrew
2018-01-01
Ring, dome and crater features on the Australian continent and shelf include (A) 38 structures of confirmed or probable asteroid and meteorite impact origin and (B) numerous buried and exposed ring, dome and crater features of undefined origin. A large number of the latter include structural and geophysical elements consistent with impact structures, pending test by field investigations and/or drilling. This paper documents and briefly describes 43 ring and dome features with the aim of appraising their similarities and differences from those of impact structures. Discrimination between impact structures and igneous plugs, volcanic caldera and salt domes require field work and/or drilling. Where crater-like morphological patterns intersect pre-existing linear structural features and contain central morphological highs and unique thrust and fault patterns an impact connection needs to tested in the field. Hints of potential buried impact structures may be furnished by single or multi-ring TMI patterns, circular TMI quiet zones, corresponding gravity patterns, low velocity and non-reflective seismic zones.
Observing polymersome dynamics in controlled microscale flows
NASA Astrophysics Data System (ADS)
Kumar, Subhalakshmi; Shenoy, Anish; Schroeder, Charles
2015-03-01
Achieving an understanding of single particle rheology for large yet deformable particles with controlled membrane viscoelasticity is major challenge in soft materials. In this work, we directly visualize the dynamics of single polymersomes (~ 10 μm in size) in an extensional flow using optical microscopy. We generate polymer vesicular structures composed of polybutadiene-block-polyethylene oxide (PB-b-PEO) copolymers. Single polymersomes are confined near the stagnation point of a planar extensional flow using an automated microfluidic trap, thereby enabling the direct observation of polymersome dynamics under fluid flows with controlled strains and strain rates. In a series of experiments, we investigate the effect of varying elasticity in vesicular membranes on polymersome deformation, along with the impact of decreasing membrane fluidity upon increasing diblock copolymer molecular weight. Overall, we believe that this approach will enable precise characterization of the role of membrane properties on single particle rheology for deformable polymersomes.
NASA Astrophysics Data System (ADS)
Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin
2016-04-01
Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.
Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin
2016-04-07
Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.
Vonhofen, Geraldine; Evangelista, Tonya; Lordeon, Patricia
2012-04-01
The traditional method of administering radioactive isotopes to pediatric patients undergoing ictal brain single photon emission computed tomography testing has been by manual injections. This method presents certain challenges for nursing, including time requirements and safety risks. This quality improvement project discusses the implementation of an automated injection system for isotope administration and its impact on staffing, safety, and nursing satisfaction. It was conducted in an epilepsy monitoring unit at a large urban pediatric facility. Results of this project showed a decrease in the number of nurses exposed to radiation and improved nursing satisfaction with the use of the automated injection system. In addition, there was a decrease in the number of nursing hours required during ictal brain single photon emission computed tomography testing.
NASA Astrophysics Data System (ADS)
Matthews, John A.; Owen, Geraint; McEwen, Lindsey J.; Shakesby, Richard A.; Hill, Jennifer L.; Vater, Amber E.; Ratcliffe, Anna C.
2017-11-01
This regional inventory and study of a globally uncommon landform type reveals similarities in form and process between craters produced by snow-avalanche and meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, range 10-185 m) were investigated through field research, aerial photographic interpretation and analysis of topographic maps. The craters are sited on valley bottoms or lake margins at the foot of steep avalanche paths (α = 28-59°), generally with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) typically exceeds 15°. Crater diameter correlates with the area of the avalanche start zone, which points to snow-avalanche volume as the main control on crater size. Proximal erosional scars ('blast zones') up to 40 m high indicate up-range ejection of material from the crater, assisted by air-launch of the avalanches and impulse waves generated by their impact into water-filled craters. Formation of distal mounds up to 12 m high of variable shape is favoured by more dispersed down-range deposition of ejecta. Key to the development of snow-avalanche impact craters is the repeated occurrence of topographically-focused snow avalanches that impact with a steep angle on unconsolidated sediment. Secondary craters or pits, a few metres in diameter, are attributed to the impact of individual boulders or smaller bodies of snow ejected from the main avalanche. The process of crater formation by low-density, low-velocity, large-volume snow flows occurring as multiple events is broadly comparable with cratering by single-event, high-density, high-velocity, small-volume projectiles such as small meteorites. Simple comparative modelling of snow-avalanche events associated with a crater of average size (diameter 85 m) indicates that the kinetic energy of a single snow-avalanche impact event is two orders of magnitude less than that of a single meteorite-impact event capable of producing a crater of similar size, which is consistent with the incremental development of snow-avalanche impact craters through the Holocene.
Risk and Safety in Post-Soviet Russia
2008-09-01
radiation exposure databases from Chernobyl , radioactive contamination from long-term operation of large radiochemical atomic plants, and the impact of...64 9.4 Single Irradiation of the Population 65 9.5 Chronic Irradiation of the Population and Personnel 66 9.6. Conclusions 67 10.0 Chernobyl ...Related Radiation Risk for the Public 76 10.1 Introduction 76 10.2 Radioactive Contamination of Russian Territories as a Result of the Chernobyl
Riitta Hyvönen; Göran I. Ågren; Sune Linder; Tryggve Persson; M. Francesca Cotrufo; Alf Ekblad; Michael Freeman; Achim Grelle; Ivan A. Janssens; Paul G. Jarvis; Seppo Kellomäki; Anders Lindroth; Denis Loustau; Tomas Lundmark; Richard J. Norby; Ram Oren; Kim Pilegaard; Michael G. Ryan; Bjarni D. Sigurdsson; Monika Strömgren; Marcel van Oijen; Göran Wallin
2007-01-01
Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic...
Examining the social ecology of a bar-crawl: An exploratory pilot study.
Clapp, John D; Madden, Danielle R; Mooney, Douglas D; Dahlquist, Kristin E
2017-01-01
Many of the problems associated with alcohol occur after a single drinking event (e.g. drink driving, assault). These acute alcohol problems have a huge global impact and account for a large percentage of unintentional and intentional injuries in the world. Nonetheless, alcohol research and preventive interventions rarely focus on drinking at the event-level since drinking events are complex, dynamic, and methodologically challenging to observe. This exploratory study provides an example of how event-level data may be collected, analyzed, and interpreted. The drinking behavior of twenty undergraduate students enrolled at a large Midwestern public university was observed during a single bar crawl event that is organized by students annually. Alcohol use was monitored with transdermal alcohol devices coupled with ecological momentary assessments and geospatial data. "Small N, Big Data" studies have the potential to advance health behavior theory and to guide real-time interventions. However, such studies generate large amounts of within subject data that can be challenging to analyze and present. This study examined how to visually display event-level data and also explored the relationship between some basic indicators and alcohol consumption.
NASA Astrophysics Data System (ADS)
Ali, Esam; Nixon, Kate; Murray, Andrew; Ning, Chuangang; Colgan, James; Madison, Don
2015-10-01
We have recently examined electron-impact ionization of molecules that have one large atom at the center, surrounded by H nuclei (H2O , N H3 , C H4 ). All of these molecules have ten electrons; however, they vary in their molecular symmetry. We found that the triple-differential cross sections (TDCSs) for the highest occupied molecular orbitals (HOMOs) were similar, as was the character of the HOMO orbitals which had a p -type "peanut" shape. In this work, we examine ethane (C2H6 ) which is a molecule that has two large atoms surrounded by H nuclei, so that its HOMO has a double-peanut shape. The experiment was performed using a coplanar symmetric geometry (equal final-state energies and angles). We find the TDCS for ethane is similar to the single-center molecules at higher energies, and is similar to a diatomic molecule at lower energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng
Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version ofmore » the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. As a result, other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.« less
NASA Astrophysics Data System (ADS)
Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamidreza M.
2016-05-01
Predicting equivalent permeability in fractured reservoirs requires an understanding of the fracture network geometry and apertures. There are different methods for defining aperture, based on outcrop observations (power law scaling), fundamental mechanics (sublinear length-aperture scaling), and experiments (Barton-Bandis conductive shearing). Each method predicts heterogeneous apertures, even along single fractures (i.e., intrafracture variations), but most fractured reservoir models imply constant apertures for single fractures. We compare the relative differences in aperture and permeability predicted by three aperture methods, where permeability is modeled in explicit fracture networks with coupled fracture-matrix flow. Aperture varies along single fractures, and geomechanical relations are used to identify which fractures are critically stressed. The aperture models are applied to real-world large-scale fracture networks. (Sub)linear length scaling predicts the largest average aperture and equivalent permeability. Barton-Bandis aperture is smaller, predicting on average a sixfold increase compared to matrix permeability. Application of critical stress criteria results in a decrease in the fraction of open fractures. For the applied stress conditions, Coulomb predicts that 50% of the network is critically stressed, compared to 80% for Barton-Bandis peak shear. The impact of the fracture network on equivalent permeability depends on the matrix hydraulic properties, as in a low-permeable matrix, intrafracture connectivity, i.e., the opening along a single fracture, controls equivalent permeability, whereas for a more permeable matrix, absolute apertures have a larger impact. Quantification of fracture flow regimes using only the ratio of fracture versus matrix permeability is insufficient, as these regimes also depend on aperture variations within fractures.
Robbins, Blaine
2013-01-01
Sociologists, political scientists, and economists all suggest that culture plays a pivotal role in the development of large-scale cooperation. In this study, I used generalized trust as a measure of culture to explore if and how culture impacts intentional homicide, my operationalization of cooperation. I compiled multiple cross-national data sets and used pooled time-series linear regression, single-equation instrumental-variables linear regression, and fixed- and random-effects estimation techniques on an unbalanced panel of 118 countries and 232 observations spread over a 15-year time period. Results suggest that culture and large-scale cooperation form a tenuous relationship, while economic factors such as development, inequality, and geopolitics appear to drive large-scale cooperation.
NASA Technical Reports Server (NTRS)
Spilker, R. L.; Witmer, E. A.; French, S. E.; Rodal, J. J. A.
1980-01-01
Two computer programs are described for predicting the transient large deflection elastic viscoplastic responses of thin single layer, initially flat unstiffened or integrally stiffened, Kirchhoff-Lov ductile metal panels. The PLATE 1 program pertains to structural responses produced by prescribed externally applied transient loading or prescribed initial velocity distributions. The collision imparted velocity method PLATE 1 program concerns structural responses produced by impact of an idealized nondeformable fragment. Finite elements are used to represent the structure in both programs. Strain hardening and strain rate effects of initially isotropic material are considered.
NASA Technical Reports Server (NTRS)
Parisi, M. G.; Brunini, A.
1996-01-01
By means of a simplified dynamical model, we have computed the eccentricity change in the orbit of each giant planet, caused by a single, large impact at the end of the accretion process. In order to set an upper bound on this eccentricity change, we have considered the giant planets' present eccentricities as primordial ones. By means of this procedure, we were able to obtain an implicit relation for the impactor masses and maximum velocities. We have estimated by this method the maximum allowed mass to impact Jupiter to be approx. 1.136 x 10(exp -1), being in the case of Neptune approx. 3.99 x 10(exp -2) (expressed in units of each planet final mass). Due to the similar present eccentricities of Saturn, Uranus and Jupiter, the constraint masses and velocities of the bodies to impact them (in units of each planet final mass and velocity respectively) are almost the same for the three planets. These results are in good agreement with those obtained by Lissauer and Safronov. These bounds might be used to derive the mass distribution of planetesimals in the early solar system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vonhof, Maarten J.; Russell, Amy L.
Documented fatalities of bats at wind turbines have raised serious concerns about the future impacts of increased wind power development on populations of migratory bat species. Yet there is little data on bat population sizes and trends to provide context for understanding the consequences of mortality due to wind power development. Using a large dataset of both nuclear and mitochondrial DNA variation for eastern red bats, we demonstrated that: 1) this species forms a single, panmictic population across their range with no evidence for the historical use of divergent migratory pathways by any portion of the population; 2) the effectivemore » size of this population is in the hundreds of thousands to millions; and 3) for large populations, genetic diversity measures and at least one coalescent method are insensitive to even very high rates of population decline over long time scales and until population size has become very small. Our data provide important context for understanding the population-level impacts of wind power development on affected bat species.« less
Dose reduction in LDR brachytherapy by implanted prostate gold fiducial markers.
Landry, Guillaume; Reniers, Brigitte; Lutgens, Ludy; Murrer, Lars; Afsharpour, Hossein; de Haas-Kock, Danielle; Visser, Peter; van Gils, Francis; Verhaegen, Frank
2012-03-01
The dosimetric impact of gold fiducial markers (FM) implanted prior to external beam radiotherapy of prostate cancer on low dose rate (LDR) brachytherapy seed implants performed in the context of combined therapy was investigated. A virtual water phantom was designed containing a single FM. Single and multi source scenarios were investigated by performing Monte Carlo dose calculations, along with the influence of varying orientation and distance of the FM with respect to the sources. Three prostate cancer patients treated with LDR brachytherapy for a recurrence following external beam radiotherapy with implanted FM were studied as surrogate cases to combined therapy. FM and brachytherapy seeds were identified on post implant CT scans and Monte Carlo dose calculations were performed with and without FM. The dosimetric impact of the FM was evaluated by quantifying the amplitude of dose shadows and the volume of cold spots. D(90) was reported based on the post implant CT prostate contour. Large shadows are observed in the single source-FM scenarios. As expected from geometric considerations, the shadows are dependent on source-FM distance and orientation. Large dose reductions are observed at the distal side of FM, while at the proximal side a dose enhancement is observed. In multisource scenarios, the importance of shadows appears mitigated, although FM at the periphery of the seed distribution caused underdosage (
Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng
2016-01-05
Large-scale atmospheric forcing data can greatly impact the simulations of atmospheric process models including Large Eddy Simulations (LES), Cloud Resolving Models (CRMs) and Single-Column Models (SCMs), and impact the development of physical parameterizations in global climate models. This study describes the development of an ensemble variationally constrained objective analysis of atmospheric large-scale forcing data and its application to evaluate the cloud biases in the Community Atmospheric Model (CAM5). Sensitivities of the variational objective analysis to background data, error covariance matrix and constraint variables are described and used to quantify the uncertainties in the large-scale forcing data. Application of the ensemblemore » forcing in the CAM5 SCM during March 2000 intensive operational period (IOP) at the Southern Great Plains (SGP) of the Atmospheric Radiation Measurement (ARM) program shows systematic biases in the model simulations that cannot be explained by the uncertainty of large-scale forcing data, which points to the deficiencies of physical parameterizations. The SCM is shown to overestimate high clouds and underestimate low clouds. These biases are found to also exist in the global simulation of CAM5 when it is compared with satellite data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng
Large-scale atmospheric forcing data can greatly impact the simulations of atmospheric process models including Large Eddy Simulations (LES), Cloud Resolving Models (CRMs) and Single-Column Models (SCMs), and impact the development of physical parameterizations in global climate models. This study describes the development of an ensemble variationally constrained objective analysis of atmospheric large-scale forcing data and its application to evaluate the cloud biases in the Community Atmospheric Model (CAM5). Sensitivities of the variational objective analysis to background data, error covariance matrix and constraint variables are described and used to quantify the uncertainties in the large-scale forcing data. Application of the ensemblemore » forcing in the CAM5 SCM during March 2000 intensive operational period (IOP) at the Southern Great Plains (SGP) of the Atmospheric Radiation Measurement (ARM) program shows systematic biases in the model simulations that cannot be explained by the uncertainty of large-scale forcing data, which points to the deficiencies of physical parameterizations. The SCM is shown to overestimate high clouds and underestimate low clouds. These biases are found to also exist in the global simulation of CAM5 when it is compared with satellite data.« less
The Impact of a Large Object with Jupiter in July 2009
NASA Astrophysics Data System (ADS)
Sanchez-Lavega, Agustin; Wesley, A.; Orton, G.; Chodas, P.; Hueso, R.; Perez-Hoyos, S.; Fletcher, L.; Yanamandra-Fisher, P.; Legarreta, J.; Gomez-Forrellad, J. M.
2010-05-01
The only major impact ever observed directly in the Solar System was that of a large fragmented comet with Jupiter in July (1994) (Comet Shoemaker-Levy 9; SL9). We report here the observation of a second, single, large impact on Jupiter that occurred on 19 July 2009 at a latitude of -55° with an orthogonal entry trajectory and a lower incidence angle compared to those of SL9. The size of the initial aerosol cloud debris was 4,800 km East-West and 2,500 km North-South. Comparison its properties with those produced by the SL9 fragments, coupled with dynamical calculations of possible pre-impact orbits, indicates that the impactor was most probably an icy body with a size of 0.5-1 km. We calculate that the rate of collisions of this magnitude may be five to ten times more frequent than previously thought. The search for unpredicted impacts, such as the current one, could be best performed in the near-infrared methane absorption bands at 890 nm and in the 2.12 to 2.3 μm K methane-hydrogen absorption band, where the high-altitude aerosols detach by their brightness relative to Jupiter's primary clouds. We present measurements of the debris dispersion by Jovian winds from a long-term imaging campaign with ground-based telescopes. Ackowledgements: Work was supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07, by NASA funds to JPL, Caltech, by the NASA Postdoctoral Program at JPL, and by the Glasstone Fellowship program at Oxford.
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Del Rosario, Ruben; Jankovsky, Amy L.
2015-01-01
Develop and demonstrate technologies that will revolutionize commercial transport aircraft propulsion and accelerate development of all-electric aircraft architectures. Enable radically different propulsion systems that can meet national environmental and fuel burn reduction goals for subsonic commercial aircraft. Focus on future large regional jets and single-aisle twin (Boeing 737- class) aircraft for greatest impact on fuel burn, noise and emissions. Research horizon is long-term but with periodic spinoff of technologies for introduction in aircraft with more- and all-electric architectures. Research aligned with new NASA Aeronautics strategic R&T thrusts in areas of transition to low-carbon propulsion and ultra-efficient commercial transports.
Water Entry by a Train of Droplets
NASA Astrophysics Data System (ADS)
Ohl, Claus-Dieter; Huang, Xin; Chan, Chon U.; Frommhold, Philipp Erhard; Lippert, Alexander
2014-11-01
The impact of single droplets on a deep pool is a well-studied phenomenon which reveals reach fluid mechanics. Lesser studied is the impact of a train of droplet and the accompanied formation of largely elongated cavities, in particular for well controlled droplets. The droplets with diameters of 20-40 μm and velocities of approx. 20 m/s are generated with a piezo-actuated nozzle at rates of 200-300 kHz. Individual droplets are selected by electric charging and deflection and the impact is visualized with stroboscopic photography and high-speed videos. We study in particular the formation and shape of the cavity as by varying the number of droplets from one to 64. The cavities reach centimetres in length with lateral diameters of the order of 100 of micrometres.
Elastic-plastic deformation of molybdenum single crystals shocked along [100
Mandal, A.; Gupta, Y. M.
2017-01-24
To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, A.; Gupta, Y. M.
To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less
Some economics of global warming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schelling, T.C.
1992-03-01
The greenhouse effect itself is simple enough to understand and is not in any real dispute. What is in dispute is its magnitude over the coming century, its translation into changes in climates around the globe, and the impacts of those climate changes on human welfare and the natural environment. These are beyond the professional understanding of any single person. The sciences involved are too numerous and diverse. Demography, economics, biology, and the technology sciences are needed to project emissions; atmospheric chemistry, oceanography, biology, and meteorology are needed to translate emissions into climates; biology, agronomy, health sciences, economics, sociology, andmore » glaciology are needed to identify and assess impacts on human societies and natural ecosystems. And those are not all. There are expert judgments on large pieces of the subject, but no single person clothed in this panoply of disciplines has shown up or is likely to. This article makes an attempt to forecast the economic and social consequences of global warming due to anthropogenic greenhouse gases, and attempting to prevent it.« less
Atmospheric pressure plasma-assisted femtosecond laser engraving of aluminium
NASA Astrophysics Data System (ADS)
Gerhard, Christoph; Gimpel, Thomas; Tasche, Daniel; Koch née Hoffmeister, Jennifer; Brückner, Stephan; Flachenecker, Günter; Wieneke, Stephan; Schade, Wolfgang; Viöl, Wolfgang
2018-05-01
In this contribution, we report on the impact of direct dielectric barrier discharge argon plasma at atmospheric pressure on femtosecond laser engraving of aluminium. It is shown that the assisting plasma strongly affects the surface geometry and formation of spikes of both laser-engraved single lines and patterns of adjacent lines with an appropriate overlap. Further, it was observed that the overall ablation depth is significantly increased in case of large-scale patterning whereas no notable differences in ablation depth are found for single lines. Several possible mechanisms and underlying effects of this behaviour are suggested. The increase in ablation depth is supposed to be due to a plasma-induced removal of debris particles from the cutting point via charging and oxidation as supported by EDX analysis of the re-solidified debris. Furthermore, the impact of a higher degree of surface wrinkling as well as direct interactions of plasma species with the aluminium surface on the ablation process are discussed.
Stability of a giant connected component in a complex network
NASA Astrophysics Data System (ADS)
Kitsak, Maksim; Ganin, Alexander A.; Eisenberg, Daniel A.; Krapivsky, Pavel L.; Krioukov, Dmitri; Alderson, David L.; Linkov, Igor
2018-01-01
We analyze the stability of the network's giant connected component under impact of adverse events, which we model through the link percolation. Specifically, we quantify the extent to which the largest connected component of a network consists of the same nodes, regardless of the specific set of deactivated links. Our results are intuitive in the case of single-layered systems: the presence of large degree nodes in a single-layered network ensures both its robustness and stability. In contrast, we find that interdependent networks that are robust to adverse events have unstable connected components. Our results bring novel insights to the design of resilient network topologies and the reinforcement of existing networked systems.
NASA Astrophysics Data System (ADS)
Zhang, Peijian; Meng, Yang; Liu, Ziyu; Li, Dong; Su, Tao; Meng, Qingyu; Mao, Qi; Pan, Xinyu; Chen, Dongmin; Zhao, Hongwu
2012-03-01
The thermoelectric properties of the bistable resistance states in Nb doped SrTiO3 single crystal have been investigated. The Seebeck coefficients for both low and high resistance states change linearly with temperature. The three-terminals contrast measurement demonstrates that a large fraction of the voltage drop is applied at the tiny volume near the bottom interface between the electrode and the oxide bulk. Therefore, the metallic oxide bulk plays a dominant role in the temperature dependence of Seebeck coefficients. The thermoelectric properties of new resistance switching (RS) devices with minimized non-RS volume could be exploited for the RS mechanism and novel applications.
NASA Astrophysics Data System (ADS)
Ackerman, A. S.; Kelley, M.; Cheng, Y.; Fridlind, A. M.; Del Genio, A. D.; Bauer, S.
2017-12-01
Reduction in cloud-water sedimentation induced by increasing droplet concentrations has been shown in large-eddy simulations (LES) and direct numerical simulation (DNS) to enhance boundary-layer entrainment, thereby reducing cloud liquid water path and offsetting the Twomey effect when the overlying air is sufficiently dry, which is typical. Among recent upgrades to ModelE3, the latest version of the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), are a two-moment stratiform cloud microphysics treatment with prognostic precipitation and a moist turbulence scheme that includes an option in its entrainment closure of a simple parameterization for the effect of cloud-water sedimentation. Single column model (SCM) simulations are compared to LES results for a stratocumulus case study and show that invoking the sedimentation-entrainment parameterization option indeed reduces the dependence of cloud liquid water path on increasing aerosol concentrations. Impacts of variations of the SCM configuration and the sedimentation-entrainment parameterization will be explored. Its impact on global aerosol indirect forcing in the framework of idealized atmospheric GCM simulations will also be assessed.
Natural occurrence of pure nano-polycrystalline diamond from impact crater
NASA Astrophysics Data System (ADS)
Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D.; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P.; Pokhilenko, Nikolai P.
2015-10-01
Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5-50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material.
Natural occurrence of pure nano-polycrystalline diamond from impact crater
Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D.; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P.; Pokhilenko, Nikolai P.
2015-01-01
Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5–50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material. PMID:26424384
Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; ...
2015-07-09
Grain boundaries (GBs) as defects in the crystal lattice detrimentally impact the power conversion efficiency (PCE) of polycrystalline solar cells, particularly in recently emerging hybrid perovskites where non-radiative recombination processes lead to significant carrier losses. Here, the beneficial effects of activated vertical GBs are demonstrated by first growing large, vertically-oriented methylammonium lead tri-iodide (CH 3NH 3PbI 3) single-crystalline grains. We show that infiltration of p-type doped 2 -7,7 -tetrakis(N,Ndi-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) into CH 3NH 3PbI 3 films along the GBs creates space charge regions to suppress non-radiative recombination and enhance carrier collection efficiency. Solar cells with such activated GBs yielded averagemore » PCE of 16.3 ± 0.9%, which are among the best solution-processed perovskite devices. As an important alternative to growing ideal CH 3NH 3PbI 3 single crystal films, which is difficult to achieve for such fast-crystallizing perovskites, activating GBs paves a way to design a new type of bulk heterojunction hybrid perovskite photovoltaics toward theoretical maximum PCE.« less
Is importing second-hand products a good thing? The cases of computers and tires in Cambodia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanthy, Lay, E-mail: Lay.Chanthy@ait.ac.th; Nitivattananon, Vilas, E-mail: vilasn@ait.ac.t
Is importing second-hand products (SHPs) good for Cambodia? To answer this question, one must seriously consider environmental and social effects. The main objective of this study is to identify and assess the economic, social, and environmental impacts of imported SHPs to determine whether or not Cambodia benefits. Imported second-hand computers (SHPCs) and second-hand tires (SHTs) were selected as cases for the study. The study used a scaling checklist to identify significant impacts of these two imported items. Significant impacts were ranked and rated into a single value (score) for integration. Integrated impact assessment showed that imported SHPCs create a verymore » small positive impact (+ 0.1 of + 5) and imported SHTs generate a large negative impact (- 2.83 of - 5). These scores are mainly the result of environmental impact, predominantly waste issues. Thus, current imports of SHPCs and SHTs do not really benefit Cambodia, but instead cause serious environmental problems from their waste issues. The import serves as a channel to transfer waste into developing countries.« less
Sensitivity to sequencing depth in single-cell cancer genomics.
Alves, João M; Posada, David
2018-04-16
Querying cancer genomes at single-cell resolution is expected to provide a powerful framework to understand in detail the dynamics of cancer evolution. However, given the high costs currently associated with single-cell sequencing, together with the inevitable technical noise arising from single-cell genome amplification, cost-effective strategies that maximize the quality of single-cell data are critically needed. Taking advantage of previously published single-cell whole-genome and whole-exome cancer datasets, we studied the impact of sequencing depth and sampling effort towards single-cell variant detection. Five single-cell whole-genome and whole-exome cancer datasets were independently downscaled to 25, 10, 5, and 1× sequencing depth. For each depth level, ten technical replicates were generated, resulting in a total of 6280 single-cell BAM files. The sensitivity of variant detection, including structural and driver mutations, genotyping, clonal inference, and phylogenetic reconstruction to sequencing depth was evaluated using recent tools specifically designed for single-cell data. Altogether, our results suggest that for relatively large sample sizes (25 or more cells) sequencing single tumor cells at depths > 5× does not drastically improve somatic variant discovery, characterization of clonal genotypes, or estimation of single-cell phylogenies. We suggest that sequencing multiple individual tumor cells at a modest depth represents an effective alternative to explore the mutational landscape and clonal evolutionary patterns of cancer genomes.
Giant fluctuations and structural effects in a flocking epithelium
NASA Astrophysics Data System (ADS)
Giavazzi, Fabio; Malinverno, Chiara; Corallino, Salvatore; Ginelli, Francesco; Scita, Giorgio; Cerbino, Roberto
2017-09-01
Epithelial cells cultured in a monolayer are very motile in isolation but reach a near-jammed state when mitotic division increases their number above a critical threshold. We have recently shown that a monolayer can be reawakened by over-expression of a single protein, RAB5A, a master regulator of endocytosis. This reawakening of motility was explained in terms of a flocking transition that promotes the emergence of a large-scale collective migratory pattern. Here we focus on the impact of this reawakening on the structural properties of the monolayer. We find that the unjammed monolayer is characterised by a fluidisation at the single cell level, and by enhanced non-equilibrium large-scale number fluctuations at a larger length scale. Also, with the help of numerical simulations, we trace back the origin of these fluctuations to the self-propelled active nature of the constituents, and to the existence of a local alignment mechanism, leading to the spontaneous breaking of the orientational symmetry.
Combined impacts of global changes on biodiversity across the USA
Bellard, C.; Leclerc, C.; Courchamp, F.
2015-01-01
Most studies of the effects of global changes on biodiversity focus on a single threat, but multiple threats lead to species extinction. We lack spatially explicit assessments of the intensity of multiple threats and their impacts on biodiversity. Here, we used a novel metric of cumulative threats and impacts to assess the consequences of multiple threats on 196 endemic species across the USA. We predict that large areas with high cumulative impact scores for amphibians, birds, mammals, and reptiles will be concentrated in the eastern part of the USA by the 2050 s and 2080 s. These high cumulative impact values are due mainly to the presence of invasive species, climate change, cropland and pasture areas; additionally, a significant proportion of endemic species are vulnerable to some of these threats where they occur. This analysis provides a useful means of identifying where conservation measures and monitoring programs that should consider multiple threats should be implemented in the future. PMID:26149694
Robbins, Blaine
2013-01-01
Sociologists, political scientists, and economists all suggest that culture plays a pivotal role in the development of large-scale cooperation. In this study, I used generalized trust as a measure of culture to explore if and how culture impacts intentional homicide, my operationalization of cooperation. I compiled multiple cross-national data sets and used pooled time-series linear regression, single-equation instrumental-variables linear regression, and fixed- and random-effects estimation techniques on an unbalanced panel of 118 countries and 232 observations spread over a 15-year time period. Results suggest that culture and large-scale cooperation form a tenuous relationship, while economic factors such as development, inequality, and geopolitics appear to drive large-scale cooperation. PMID:23527211
Modeling thermo-optic effect in large mode area double cladding photonic crystal fibers
NASA Astrophysics Data System (ADS)
Coscelli, Enrico; Cucinotta, Annamaria
2014-02-01
The impact of thermally-induced refractive index changes on the single-mode (SM) properties of large mode area (LMA) photonic crystal fibers are thoroughly investigated by means of a full-vector modal solver with integrated thermal model. Three photonic crystal fiber designs are taken into account, namely the 19-cell core fiber, the large-pitch fiber (LPF) and the distributed modal filtering (DMF) fiber, to assess the effects of the interplay between thermal effects and the high-order mode (HOM) suppression mechanisms exploited in order to obtain effectively SM guiding. The results have shown significant differences in the way the SM regime is changed by the increase of heat load, providing useful hints for the design of LMA fibers for high power lasers.
Severe injury in multiple impacts: Analysis of 1997-2015 NASS-CDS.
Viano, David C; Parenteau, Chantal S
2018-07-04
This is a descriptive study of the incidence and risk for severe injury in single-impact and multi-impact crashes by belt use and crash type using NASS-CDS. 1997-2015 NASS-CDS data were used to determine the distribution of crashes by the number of impacts and severe injury (Maximum Abbreviated Injury Score [MAIS] 4+F) to >15-year-old nonejected drivers by seat belt use in 1997+ MY vehicles. It compares the risk for severe injury in a single impact and in crashes involving 2, 3, or 4+ impacts in the collision with a focus on a frontal crash followed by other impacts. Most vehicle crashes involve a single impact (75.4% of 44,889,518 vehicles), followed by 2-impact crashes (19.6%), 3-impact crashes (5.0%) and 4+ impacts (2.6%). For lap-shoulder-belted drivers, the distribution of severe injury was 42.1% in a single impact, 29.3% in 2 impacts, 13.4% in 3 impacts, and 15.1% in 4+ impact crashes. The risk for a belted driver was 0.256 ± 0.031% in a single impact, 0.564 ± 0.079% in 2 impacts, 0.880 ± 0.125% in 3 impacts, and 2.121 ± 0.646% in 4+ impact. The increase in risk from a single crash to multi-impact collisions was statistically significant (P < .001). In a single impact, 53.8% of belted drivers were in a frontal crashes, 22.4% in side crashes, 20% in rear crashes, and 1.7% in rollover crashes. The risk for severe injury was highest in a rollover at 0.677 ± 0.250%, followed by near-side impact at 0.467 ± 0.084% and far-side impact at 0.237 ± 0.071%. Seat belt use was 82.4% effective in preventing severe injury (MAIS 4+F) in a rollover, 47.9% in a near-side impact, and 74.8% in a far-side impact. In 2-impact crashes with a belted driver, the most common sequence was a rear impact followed by a frontal crash at 1,843,506 (21.5%) with a risk for severe injury of 0.100 ± 0.058%. The second most common was a frontal impact followed by another frontal crash at 1,257,264 (14.7%) with a risk of 0.401 ± 0.057%. The risk was 0.658 ± 0.271% in a frontal impact followed by a rear impact. A near-side impact followed by a rear crash had the highest risk for severe injury at 2.073 ± 1.322%. Restraint systems are generally developed for a single crash or sled test. The risk for severe injury was significantly higher in 2-, 3-, and 4+-impact crashes than a single impact. The majority (57.9%) of severe injuries occurred in multi-impact crashes with belted drivers. The evaluation of restraint performance warrants additional study in multi-impact crashes.
Learn how recovering construction and demolition materials from single-family homes and reusing them in building and road construction and other applications helps offset the environmental impacts associated with single-family homes.
Technology for Large Space Systems: A Bibliography with Indexes. Supplement 17
1987-10-01
reduce the total primary reflector weight by a factor Lewis Research Center, Cleveland, Ohio. of 3 to 4 over competing technologies. On-orbit thermal...aperture. Weight and volume estimates are consistent with a single Proceedings of the Twenty-first ;ntersociety Energy Conversion Shuttle launch, and are...Aeronautics and Space Administration fiscal year Station. B.G. 1987 budget is examined. The impact of the loss of the Challenger and its crew on the space
On the Surface Mapping using Individual Cluster Impacts
Fernandez-Lima, F.A.; Eller, M.J.; DeBord, J.D.; Verkhoturov, S.V.; Della-Negra, S.; Schweikert, E.A.
2011-01-01
This paper describes the advantages of using single impacts of large cluster projectiles (e.g. C60 and Au400) for surface mapping and characterization. The analysis of co-emitted time-resolved photon spectra, electron distributions and characteristic secondary ions shows that they can be used as surface fingerprints for target composition, morphology and structure. Photon, electron and secondary ion emission increases with the projectile cluster size and energy. The observed, high abundant secondary ion emission makes cluster projectiles good candidates for surface mapping of atomic and fragment ions (e.g., yield >1 per nominal mass) and molecular ions (e.g., few tens of percent in the 500 < m/z < 1500 range). PMID:22393269
Secondary flow structures in large rivers
NASA Astrophysics Data System (ADS)
Chauvet, H.; Devauchelle, O.; Metivier, F.; Limare, A.; Lajeunesse, E.
2012-04-01
Measuring the velocity field in large rivers remains a challenge, even with recent measurement techniques such as Acoustic Doppler Current Profiler (ADCP). Indeed, due to the diverging angle between its ultrasonic beams, an ADCP cannot detect small-scale flow structures. However, when the measurements are limited to a single location for a sufficient period of time, averaging can reveal large, stationary flow structures. Here we present velocity measurements in a straight reach of the Seine river in Paris, France, where the cross-section is close to rectangular. The transverse modulation of the streamwise velocity indicates secondary flow cells, which seem to occupy the entire width of the river. This observation is reminiscent of the longitudinal vortices observed in laboratory experiments (e.g. Blanckaert et al., Advances in Water Resources, 2010, 33, 1062-1074). Although the physical origin of these secondary structures remains unclear, their measured velocity is sufficient to significantly impact the distribution of streamwise momentum. We propose a model for the transverse profile of the depth-averaged velocity based on a crude representation of the longitudinal vortices, with a single free parameter. Preliminary results are in good agreement with field measurements. This model also provides an estimate for the bank shear stress, which controls bank erosion.
Electroweak production of the top quark in the Run II of the D0 experiment (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clement, Benoit
The work exposed in this thesis deals with the search for electroweak production of top quark (single top) in proton-antiproton collisions at √s = 1.96 TeV. This production mode has not been observed yet. Analyzed data have been collected during the Run II of the D0 experiment at the Fermilab Tevatron collider. These data correspond to an integrated luminosity of 370 pb -1. In the Standard Model, the decay of a top quark always produce a high momentum bottom quark. Therefore bottom quark jets identification plays a major role in this analysis. The large lifetime of b hadrons and themore » subsequent large impact parameters relative to the interaction vertex of charged particle tracks are used to tag bottom quark jets. Impact parameters of tracks attached to a jet are converted into the probability for the jet to originate from the primary vertex. This algorithm has a 45% tagging efficiency for a 0.5% mistag rate. Two processes (s and t channels) dominate single top production with slightly different final states. The searched signature consists in 2 to 4 jets with at least one bottom quark jet, one charged lepton (electron or muon) and missing energy accounting for a neutrino. This final state is background dominated and multivariate techniques are needed to separate the signal from the two main backgrounds: associated production of a W boson and jets and top quarks pair production. The achieved sensitivity is not enough to reach observation and we computed upper limits at the 95% confidence level at 5 pb (s-channel) and 4.3 pb (t-channel) on single top production cross-sections.« less
Cryptic herbivores mediate the strength and form of ungulate impacts on a long-lived savanna tree.
Maclean, Janet E; Goheen, Jacob R; Doak, Daniel F; Palmer, Todd M; Young, Truman P
2011-08-01
Plant populations are regulated by a diverse array of herbivores that impose demographic filters throughout their life cycle. Few studies, however, simultaneously quantify the impacts of multiple herbivore guilds on the lifetime performance or population growth rate of plants. In African savannas, large ungulates (such as elephants) are widely regarded as important drivers of woody plant population dynamics, while the potential impacts of smaller, more cryptic herbivores (such as rodents) have largely been ignored. We combined a large-scale ungulate exclusion experiment with a five-year manipulation of rodent densities to quantify the impacts of three herbivore guilds (wild ungulates, domestic cattle, and rodents) on all life stages of a widespread savanna tree. We utilized demographic modeling to reveal the overall role of each guild in regulating tree population dynamics, and to elucidate the importance of different demographic hurdles in driving population growth under contrasting consumer communities. We found that wild ungulates dramatically reduced population growth, shifting the population trajectory from increase to decline, but that the mechanisms driving these effects were strongly mediated by rodents. The impact of wild ungulates on population growth was predominantly driven by their negative effect on tree reproduction when rodents were excluded, and on adult tree survival when rodents were present. By limiting seedling survival, rodents also reduced population growth; however, this effect was strongly dampened where wild ungulates were present. We suggest that these complex interactions between disparate consumer guilds can have important consequences for the population demography of long-lived species, and that the effects of a single consumer group are often likely to vary dramatically depending on the larger community in which interactions are embedded.
High-speed collision of copper nanoparticle with aluminum surface: Molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Pogorelko, Victor V.; Mayer, Alexander E.; Krasnikov, Vasiliy S.
2016-12-01
We investigate the effect of the high-speed collision of copper nanoparticles with aluminum surface by means of molecular dynamic simulations. Studied diameter of nanoparticles is varied within the range 7.2-22 nm and the velocity of impact is equal to 500 or 1000 m/s. Dislocation analysis shows that a large quantity of dislocations is formed within the impact area. Overall length of dislocations is determined, first of all, by the impact velocity and by the size of incident copper nanoparticle, in other words, by the kinetic energy of the nanoparticle. Dislocations occupy the total volume of the impacted aluminum single crystal layer (40.5 nm in thickness) in the form of intertwined structure in the case of large kinetic energy of the incident nanoparticle. Decrease in the initial kinetic energy or increase in the layer thickness lead to restriction of the penetration depth of the dislocation net; formation of separate dislocation loops is observed in this case. Increase in the initial system temperature slightly raises the dislocation density inside the bombarded layer and considerably decreases the dislocation density inside the nanoparticle. The temperature increase also leads to a deeper penetration of the copper atoms inside the aluminum. Additional molecular dynamic simulations show that the deposited particles demonstrate a very good adhesion even in the case of the considered relatively large nanoparticles. Medium energy of the nanoparticles corresponding to velocity of about 500 m/s and elevated temperature of the system about 700-900 K are optimal parameters for production of high-quality layers of copper on the aluminum surface. These conditions provide both a good adhesion and a less degree of the plastic deformation. At the same time, higher impact velocities can be used for combined treatment consisting of both the plastic deformation and the coating.
Compressed gas combined single- and two-stage light-gas gun
NASA Astrophysics Data System (ADS)
Lamberson, L. E.; Boettcher, P. A.
2018-02-01
With more than 1 trillion artificial objects smaller than 1 μm in low and geostationary Earth orbit, space assets are subject to the constant threat of space debris impact. These collisions occur at hypervelocity or speeds greater than 3 km/s. In order to characterize material behavior under this extreme event as well as study next-generation materials for space exploration, this paper presents a unique two-stage light-gas gun capable of replicating hypervelocity impacts. While a limited number of these types of facilities exist, they typically are extremely large and can be costly and dangerous to operate. The design presented in this paper is novel in two distinct ways. First, it does not use a form of combustion in the first stage. The projectile is accelerated from a pressure differential using air and inert gases (or purely inert gases), firing a projectile in a nominal range of 1-4 km/s. Second, the design is modular in that the first stage sits on a track sled and can be pulled back and used in itself to study lower speed impacts without any further modifications, with the first stage piston as the impactor. The modularity of the instrument allows the ability to investigate three orders of magnitude of impact velocities or between 101 and 103 m/s in a single, relatively small, cost effective instrument.
Compressed gas combined single- and two-stage light-gas gun.
Lamberson, L E; Boettcher, P A
2018-02-01
With more than 1 trillion artificial objects smaller than 1 μm in low and geostationary Earth orbit, space assets are subject to the constant threat of space debris impact. These collisions occur at hypervelocity or speeds greater than 3 km/s. In order to characterize material behavior under this extreme event as well as study next-generation materials for space exploration, this paper presents a unique two-stage light-gas gun capable of replicating hypervelocity impacts. While a limited number of these types of facilities exist, they typically are extremely large and can be costly and dangerous to operate. The design presented in this paper is novel in two distinct ways. First, it does not use a form of combustion in the first stage. The projectile is accelerated from a pressure differential using air and inert gases (or purely inert gases), firing a projectile in a nominal range of 1-4 km/s. Second, the design is modular in that the first stage sits on a track sled and can be pulled back and used in itself to study lower speed impacts without any further modifications, with the first stage piston as the impactor. The modularity of the instrument allows the ability to investigate three orders of magnitude of impact velocities or between 10 1 and 10 3 m/s in a single, relatively small, cost effective instrument.
Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng
2017-08-05
Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version ofmore » the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. As a result, other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.« less
Advanced Technologies and Instrumentation at the National Science Foundation
NASA Astrophysics Data System (ADS)
Kurczynski, Peter; Neff, James E.
2018-01-01
Over its more than thirty-year history, the Advanced Technologies and Instrumentation (ATI) program within the Division of Astronomical Sciences has provided grants to support the development and deployment of detectors and instrumentation for ground-based astronomy. This program has enabled scientific advances in diverse fields from solar physics to exoplanets to cosmology. ATI has provided instrumentation for both small and large observatories from radio through visible wavebands. It has played a role in the early development of major initiatives such as the Large Synoptic Survey Telescope. Technology development for astronomy unfolds over a longer period than the lifetime of a single grant. This review will consider ATI from an historical perspective to assess its impact on astronomy.
Verhoest, Niko E.C; Lievens, Hans; Wagner, Wolfgang; Álvarez-Mozos, Jesús; Moran, M. Susan; Mattia, Francesco
2008-01-01
Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates. The characterization of soil roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the soil moisture retrieval accuracy and scale. PMID:27879932
Single-cell transcriptomics for microbial eukaryotes.
Kolisko, Martin; Boscaro, Vittorio; Burki, Fabien; Lynn, Denis H; Keeling, Patrick J
2014-11-17
One of the greatest hindrances to a comprehensive understanding of microbial genomics, cell biology, ecology, and evolution is that most microbial life is not in culture. Solutions to this problem have mainly focused on whole-community surveys like metagenomics, but these analyses inevitably loose information and present particular challenges for eukaryotes, which are relatively rare and possess large, gene-sparse genomes. Single-cell analyses present an alternative solution that allows for specific species to be targeted, while retaining information on cellular identity, morphology, and partitioning of activities within microbial communities. Single-cell transcriptomics, pioneered in medical research, offers particular potential advantages for uncultivated eukaryotes, but the efficiency and biases have not been tested. Here we describe a simple and reproducible method for single-cell transcriptomics using manually isolated cells from five model ciliate species; we examine impacts of amplification bias and contamination, and compare the efficacy of gene discovery to traditional culture-based transcriptomics. Gene discovery using single-cell transcriptomes was found to be comparable to mass-culture methods, suggesting single-cell transcriptomics is an efficient entry point into genomic data from the vast majority of eukaryotic biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Agreement of Experiment and Theory on the Single Ionization of Helium by Fast Proton Impact.
Gassert, H; Chuluunbaatar, O; Waitz, M; Trinter, F; Kim, H-K; Bauer, T; Laucke, A; Müller, Ch; Voigtsberger, J; Weller, M; Rist, J; Pitzer, M; Zeller, S; Jahnke, T; Schmidt, L Ph H; Williams, J B; Zaytsev, S A; Bulychev, A A; Kouzakov, K A; Schmidt-Böcking, H; Dörner, R; Popov, Yu V; Schöffler, M S
2016-02-19
Even though the study of ion-atom collisions is a mature field of atomic physics, large discrepancies between experiment and theoretical calculations are still common. Here we present experimental results with high momentum resolution on the single ionization of helium induced by 1-MeV protons, and we compare these to theoretical calculations. The overall agreement is strikingly good, and even the first Born approximation yields good agreement between theory and experiment. This has been expected for several decades, but so far has not been accomplished. The influence of projectile coherence effects on the measured data is briefly discussed in terms of an ongoing dispute on the existence of nodal structures in the electron angular emission distributions.
Shock compression experiments on Lithium Deuteride (LiD) single crystals
Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.
2016-12-21
Shock compression experiments in the few hundred GPa (multi-Mabr) regime were performed on Lithium Deuteride (LiD) single crystals. This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17-32 km/s. Measurements included pressure, density, and temperature between ~200-600 GPa along the Principal Hugoniot – the locus of end states achievable through compression by large amplitude shock waves – as well as pressure and density of re - shock states up to ~900 GPa. Lastly, the experimental measurements are compared with recent density functional theorymore » calculations as well as a new tabular equation of state developed at Los Alamos National Labs.« less
Christensen, Bent Jesper; Kallestrup-Lamb, Malene
2012-06-01
The justification bias in the estimated impact of health shocks on retirement is mitigated by using objective health measures from a large, register-based longitudinal data set including medical diagnosis codes, along with labor market status, financial, and socio-economic variables. The duration until retirement is modeled using single and competing risk specifications, observed and unobserved heterogeneity, and flexible baseline hazards. Wealth is used as a proxy for elapsed duration to mitigate the potential selection bias stemming from conditioning on initial participation. The competing risk specification distinguishes complete multiperiod routes to retirement, such as unemployment followed by early retirement. A result on comparison of coefficients across all states is offered. The empirical results indicate a strong impact of health changes on retirement and hence a large potential for public policy measures intended to retain older workers longer in the labor force. Disability responds more to health shocks than early retirement, especially to diseases of the circulatory, respiratory, and musculoskeletal systems, as well as mental and behavioral disorders. Some unemployment spells followed by early retirement appear voluntary and spurred by life style diseases. Copyright © 2012 John Wiley & Sons, Ltd.
Ecological complexity buffers the impacts of future climate on marine consumers
NASA Astrophysics Data System (ADS)
Goldenberg, Silvan U.; Nagelkerken, Ivan; Marangon, Emma; Bonnet, Angélique; Ferreira, Camilo M.; Connell, Sean D.
2018-03-01
Ecological complexity represents a network of interacting components that either propagate or counter the effects of environmental change on individuals and communities1-3. Yet, our understanding of the ecological imprint of ocean acidification (elevated CO2) and climate change (elevated temperature) is largely based on reports of negative effects on single species in simplified laboratory systems4,5. By combining a large mesocosm experiment with a global meta-analysis, we reveal the capacity of consumers (fish and crustaceans) to resist the impacts of elevated CO2. While individual behaviours were impaired by elevated CO2, consumers could restore their performances in more complex environments that allowed for compensatory processes. Consequently, consumers maintained key traits such as foraging, habitat selection and predator avoidance despite elevated CO2 and sustained their populations. Our observed increase in risk-taking under elevated temperature, however, predicts greater vulnerability of consumers to predation. Yet, CO2 as a resource boosted the biomass of consumers through species interactions and may stabilize communities by countering the negative effects of elevated temperature. We conclude that compensatory dynamics inherent in the complexity of nature can buffer the impacts of future climate on species and their communities.
Nature and origin of basin-forming projectiles
NASA Astrophysics Data System (ADS)
Wetherill, G. W.
The formation of the observed lunar multi-ring basins is discussed in the context of current theories of terrestrial planet formation, particularly those in which these planets formed by the accumulation of large planetesimals. The observed number, size, and timing of lunar basin-forming impacts is in the range expected for such theories. Tidal disruption during close encounters to earth and Venus can provide a single mechanism that explains a number of details concerning the number, size distribution, and stochastic nature of the timing of these impacts. A basin time scale is suggested in which Nectaris is associated with the 4.1 b.y. age of the Apollo 16 light matrix breccias. In accordance with the present consensus, Serenitatis is 3.86 b.y., Imbrium and Orientale 3.80-3.82 b.y. in age. Other nearside circular basins (e.g., Humorum and Crisium) are intermediate in age between 3.86 and 4.12 b.y. The large number of 3.8-3.9 b.y. ages is attributed primarily to the magnitude of the Imbrium and Serenitatis impacts, and sampling bias resulting from concentration of collection sites in proximity to these basins.
The Age of the Surface of Venus
NASA Technical Reports Server (NTRS)
Zahnle, K. J.; McKinnon, William B.; Young, Richard E. (Technical Monitor)
1997-01-01
Impact craters on Venus appear to be uniformly and randomly scattered over a once, but no longer, geologically active planet. To first approximation, the planet shows a single surface of a single age. Here we use Monte Carlo cratering simulations to estimate the age of the surface of Venus. The simulations are based on the present populations of Earth-approaching asteroids, Jupiter-family, Halley-family, and long period comets; they use standard Schmidt-Housen crater scalings in the gravity regime; and they describe interaction with the atmosphere using a semi-analytic 'pancake' model that is calibrated to detailed numerical simulations of impactors striking Venus. The lunar and terrestrial cratering records are also simulated. Both of these records suffer from poor statistics. The Moon has few young large craters and fewer still whose ages are known, and the record is biased because small craters tend to look old and large craters tend to look young. The craters of the Earth provide the only reliable ages, but these craters are few, eroded, of uncertain diameter, and statistically incomplete. Together the three cratering records can be inverted to constrain the flux of impacting bodies, crater diameters given impact parameters, and the calibration of atmospheric interactions. The surface age of Venus that results is relatively young. Alternatively, we can use our best estimates for these three input parameters to derive a best estimate for the age of the surface of Venus. Our tentative conclusions are that comets are unimportant, that the lunar and terrestrial crater records are both subject to strong biases, that there is no strong evidence for an increasing cratering flux in recent years, and that that the nominal age of the surface of Venus is about 600 Ma, although the uncertainty is about a factor of two. The chief difference between our estimate and earlier, somewhat younger estimates is that we find that the venusian atmosphere is less permeable to impacting bodies than supposed by earlier studies. An older surface increases the likelihood that Venus is dead.
NASA Technical Reports Server (NTRS)
Asaro, F.; Alvarez, W.; Michel, H. V.; Alvarez, L. W.; Anders, Mark H.; Montanari, A.; Kennett, James P.
1988-01-01
In a study of one million years of Middle Miocene sediment deposition in ODP Hole 689B in the Weddell Sea near Antarctica, a single iridium (Ir) anomaly of 44 (+ or - 10) x 10 to the 12th gram Ir per gram rock (ppt) was observed in core 6H, section 3, 50 to 60 cm, after background contributions associated with manganese precipitates and clay are subtracted. The ODP Hole 689B is 10,000 km away from another site, DSDP Hole 588B in the Tasman Sea north of New Zealand, where a single Ir anomaly of 144 + or - 7 ppt over a background of 11 ppt was found in an earlier study of 3 million years of deposition. From chemical measurements the latter deposition was thought to be impact-related. Ir measurements were made, following neutron activation, with the Iridium Coincidence Spectrometer. The age vs depth calibration curves given in the DSDP and ODP preliminary reports indicate the ages of the Iranomalies are identical, 11.7 million years, but the absolute and relative uncertainties in the curves are not known. Based on the newest age data the age estimate is 10 million years. As the Ir was deposited at the two sites at about the same time and they are one quarter of the way around the world from each other it seems likely that the deposition was world-wide. The impact of a large asteroid or comet could produce the wide distribution, and this data is supportive of the impact relationship deduced for Deep Sea Drilling Project (DSDP) 588B from the chemical evidence. If the surface densities of Ir at the two sites are representative of the world-wide average, the diameter of a Cl type asteroid containing the necessary Ir would be 3 + or - 1 km, which is large enough to cause world-wide darkness and hence extinctions although the latter point is disputed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, Rajreddy; Kumar, B. Mohana; Lee, Won-Jae
Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression ofmore » surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs.« less
Modeling normal shock velocity curvature relations for heterogeneous explosives
NASA Astrophysics Data System (ADS)
Yoo, Choong-Shik; Tomasino, Dane; Smith, Jesse; Kim, Minseob
2017-01-01
Many simple molecules such as N2 and CO2 have the potential to form extended "polymeric" solids under extreme conditions, which can store a large sum of chemical energy in its three-dimensional network structures made of strong covalent bonds. Diatomic nitrogen is particularly of interest because of the uniquely large energy difference between the single (160 kJ/mol) and triple (950 kJ/mol) bonds. As such, the transformation of singly bonded polymeric nitrogen back to triply bonded diatomic nitrogen molecules can release large energy ( 33 kJ/cm3 - three times that of HMX) without any negative environmental impact. Therefore, the goal of the present study has been to investigate the transformation of nitrogen and nitrogen-rich compounds to new singly bonded nitrogen-rich solids at high pressures and temperatures, using heated diamond anvil cells, Raman spectroscopy, and third-generation synchrotron x-ray diffraction. Recently, we have found a new form of singly bonded layered polymeric nitrogen (LP-N), synthesized in the stability pressure-temperature field higher than that of cg-N. This new phase is characterized by a 2D layered structure similar to the predicted Pba2 and two colossal Raman bands, arising from two groups of highly polarized nitrogen atoms. This result also provides a new constraint for the nitrogen phase diagram, highlighting an unusual symmetry lowering 3D cg- to 2D LP-N transition and thereby the enhanced electrostatic contribution to the stabilization of this densely packed LP-N. In this paper, we will review this finding of LP-N, update the phase diagram of nitrogen, and offer a chemistry view of pressure-induced transformations in dense molecular solids.
Real Gas Effects on the Performance of Hydrocarbon-fueled Pulse Detonation Engines
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.; Yungster, Shaye
2003-01-01
This paper presents results for a single-pulse detonation tube wherein the effects of high temperature dissociation and the subsequent recombination influence the sensible heat release available for providing propulsive thrust. The study involved the use of ethylene and air at equivalence ratios of 0.7 and 1.0. The real gas effects on the sensible heat release were found to be significantly large so as to have an impact on the thrust, impulse and fuel consumption of a PDE.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-25
... TENNESSEE VALLEY AUTHORITY Final Supplemental Environmental Impact Statement, Single Nuclear Unit... Environmental Impact Statement for a Single Nuclear Unit at the Bellefonte Plant Site (final SEIS) on September... the ROD. TVA prepared the final SEIS to update the extensive environmental information and analyses...
NASA Technical Reports Server (NTRS)
Younquist, Robert; Haskell, William; Immer, Christopher; Cox, Bobby; Lane, John
2009-01-01
An inexpensive and simple hail monitor design has been developed that has a single piezoelectric ceramic disc and uses a metal plate as a sounding board. The structure is durable and able to withstand the launch environment. This design has several advantages over a multi-ceramic sensor, including reduced cost and complexity, increased durability, and improvement in impact response uniformity over the active surface. However, the most important characteristic of this design is the potential to use frequency discrimination between the spectrum created from raindrop impact and a hailstone impact. The sound of hail hitting a metal plate is distinctly different from the sound of rain hitting the same plate. This fortuitous behavior of the pyramid sensor may lead to a signal processing strategy, which is inherently more reliable than one depending on amplitude processing only. The initial concept has been im proved by forming a shallow pyramid structure so that hail is encouraged to bounce away from the sensor so as not to be counted more than once. The sloped surface also discourages water from collecting. Additionally, the final prototype version includes a mounting box for the piezo-ceramic, which is offset from the pyramid apex, thus helping to reduce non-uniform response (see Figure 2). The frequency spectra from a single raindrop impact and a single ice ball impact have been compared. The most notable feature of the frequency resonant peaks is the ratio of the 5.2 kHz to 3.1 kHz components. In the case of a raindrop, this ratio is very small. But in the case of an ice ball, the ratio is roughly one third. This frequency signature of ice balls should provide a robust method for discriminating raindrops from hailstones. Considering that hail size distributions (HSDs) and fall rates are roughly 1 percent that of rainfall, hailstone sizes range from a few tenths of a centimeter to several centimeters. There may be considerable size overlap between large rain and small hail. As hail occurs infrequently at KSC, the ideal HSD measurement sensor needs to have a collection area roughly 100 times greater than a raindrop-size distribution sensor or disdrometer. The sensitivity should be such that it can detect and count very small hail in the midst of intense rainfall consisting of large raindrop sizes. The dynamic range and durability should allow measurement of the largest hail sizes, and the operation and calibration strategy should consider the infrequent occurrence of hail fall over the KSC area.
Gouveia, Nelson; Junger, Washington Leite
2018-01-01
Air pollution is an important public health concern especially for children who are particularly susceptible. Latin America has a large children population, is highly urbanized and levels of pollution are substantially high, making the potential health impact of air pollution quite large. We evaluated the effect of air pollution on children respiratory mortality in four large urban centers: Mexico City, Santiago, Chile, and Sao Paulo and Rio de Janeiro in Brazil. Generalized Additive Models in Poisson regression was used to fit daily time-series of mortality due to respiratory diseases in infants and children, and levels of PM 10 and O 3 . Single lag and constrained polynomial distributed lag models were explored. Analyses were carried out per cause for each age group and each city. Fixed- and random-effects meta-analysis was conducted in order to combine the city-specific results in a single summary estimate. These cities host nearly 43 million people and pollution levels were above the WHO guidelines. For PM 10 the percentage increase in risk of death due to respiratory diseases in infants in a fixed effect model was 0.47% (0.09-0.85). For respiratory deaths in children 1-5 years old, the increase in risk was 0.58% (0.08-1.08) while a higher effect was observed for lower respiratory infections (LRI) in children 1-14 years old [1.38% (0.91-1.85)]. For O 3 , the only summarized estimate statistically significant was for LRI in infants. Analysis by season showed effects of O 3 in the warm season for respiratory diseases in infants, while negative effects were observed for respiratory and LRI deaths in children. We provided comparable mortality impact estimates of air pollutants across these cities and age groups. This information is important because many public policies aimed at preventing the adverse effects of pollution on health consider children as the population group that deserves the highest protection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Single file diffusion into a semi-infinite tube.
Farrell, Spencer G; Brown, Aidan I; Rutenberg, Andrew D
2015-11-23
We investigate single file diffusion (SFD) of large particles entering a semi-infinite tube, such as luminal diffusion of proteins into microtubules or flagella. While single-file effects have no impact on the evolution of particle density, we report significant single-file effects for individually tracked tracer particle motion. Both exact and approximate ordering statistics of particles entering semi-infinite tubes agree well with our stochastic simulations. Considering initially empty semi-infinite tubes, with particles entering at one end starting from an initial time t = 0, tracked particles are initially super-diffusive after entering the system, but asymptotically diffusive at later times. For finite time intervals, the ratio of the net displacement of individual single-file particles to the average displacement of untracked particles is reduced at early times and enhanced at later times. When each particle is numbered, from the first to enter (n = 1) to the most recent (n = N), we find good scaling collapse of this distance ratio for all n. Experimental techniques that track individual particles, or local groups of particles, such as photo-activation or photobleaching of fluorescently tagged proteins, should be able to observe these single-file effects. However, biological phenomena that depend on local concentration, such as flagellar extension or luminal enzymatic activity, should not exhibit single-file effects.
Hu, Wei; Gibiansky, Maxsim L.; Wang, Jing; Wang, Chuandong; Lux, Renate; Li, Yuezhong; Wong, Gerard C. L.; Shi, Wenyuan
2016-01-01
Myxococcus xanthus performs coordinated social motility of cell groups through the extension and retraction of type IV pili (TFP) on solid surfaces, which requires both TFP and exopolysaccharides (EPS). By submerging cells in a liquid medium containing 1% methylcellulose, M. xanthus TFP-driven motility was induced in isolated cells and independently of EPS. We measured and analyzed the movements of cells using community tracking algorithms, which combine single-cell resolution with statistics from large sample populations. Cells without significant multi-cellular social interactions have surprisingly complex behaviors: EPS− cells exhibited a pronounced increase in the tendency to stand vertically and moved with qualitatively different characteristics than other cells. A decrease in the EPS secretion of cells correlates with a higher instantaneous velocity, but with lower directional persistence in trajectories. Moreover, EPS− cells do not adhere to the surface as strongly as wild-type and EPS overproducing cells, and display a greater tendency to have large deviations between the direction of movement and the cell axis, with cell velocity showing only minimal dependence on the direction of movement. The emerging picture is that EPS does not simply provide rheological resistance to a single mechanism but rather that the availability of EPS impacts motility pattern. PMID:26821939
Segtor: Rapid Annotation of Genomic Coordinates and Single Nucleotide Variations Using Segment Trees
Renaud, Gabriel; Neves, Pedro; Folador, Edson Luiz; Ferreira, Carlos Gil; Passetti, Fabio
2011-01-01
Various research projects often involve determining the relative position of genomic coordinates, intervals, single nucleotide variations (SNVs), insertions, deletions and translocations with respect to genes and their potential impact on protein translation. Due to the tremendous increase in throughput brought by the use of next-generation sequencing, investigators are routinely faced with the need to annotate very large datasets. We present Segtor, a tool to annotate large sets of genomic coordinates, intervals, SNVs, indels and translocations. Our tool uses segment trees built using the start and end coordinates of the genomic features the user wishes to use instead of storing them in a database management system. The software also produces annotation statistics to allow users to visualize how many coordinates were found within various portions of genes. Our system currently can be made to work with any species available on the UCSC Genome Browser. Segtor is a suitable tool for groups, especially those with limited access to programmers or with interest to analyze large amounts of individual genomes, who wish to determine the relative position of very large sets of mapped reads and subsequently annotate observed mutations between the reads and the reference. Segtor (http://lbbc.inca.gov.br/segtor/) is an open-source tool that can be freely downloaded for non-profit use. We also provide a web interface for testing purposes. PMID:22069465
NASA Astrophysics Data System (ADS)
Cai, X.; Riley, W. J.; Zhu, Q.
2017-12-01
Deforestation causes a series of changes to the climate, water, and nutrient cycles. Employing a state-of-the-art earth system model—ACME (Accelerated Climate Modeling for Energy), we comprehensively investigate the impacts of deforestation on these processes. We first assess the performance of the ACME Land Model (ALM) in simulating runoff, evapotranspiration, albedo, and plant productivity at 42 FLUXNET sites. The single column mode of ACME is then used to examine climate effects (temperature cooling/warming) and responses of runoff, evapotranspiration, and nutrient fluxes to deforestation. This approach separates local effects of deforestation from global circulation effects. To better understand the deforestation effects in a global context, we use the coupled (atmosphere, land, and slab ocean) mode of ACME to demonstrate the impacts of deforestation on global climate, water, and nutrient fluxes. Preliminary results showed that the land component of ACME has advantages in simulating these processes and that local deforestation has potentially large impacts on runoff and atmospheric processes.
Direct effects dominate responses to climate perturbations in grassland plant communities.
Chu, Chengjin; Kleinhesselink, Andrew R; Havstad, Kris M; McClaran, Mitchel P; Peters, Debra P; Vermeire, Lance T; Wei, Haiyan; Adler, Peter B
2016-06-08
Theory predicts that strong indirect effects of environmental change will impact communities when niche differences between competitors are small and variation in the direct effects experienced by competitors is large, but empirical tests are lacking. Here we estimate negative frequency dependence, a proxy for niche differences, and quantify the direct and indirect effects of climate change on each species. Consistent with theory, in four of five communities indirect effects are strongest for species showing weak negative frequency dependence. Indirect effects are also stronger in communities where there is greater variation in direct effects. Overall responses to climate perturbations are driven primarily by direct effects, suggesting that single species models may be adequate for forecasting the impacts of climate change in these communities.
A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan
NASA Astrophysics Data System (ADS)
He, Jiaze; Yuan, Fuh-Gwo
2016-10-01
A two-dimensional (2D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric wafer mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region in the vicinity of the PZT to capture the scattered wavefield. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, a reflectivity coefficients of the delamination is calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2D areal scans and 1D line scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.
An enhanced CCRTM (E-CCRTM) damage imaging technique using a 2D areal scan for composite plates
NASA Astrophysics Data System (ADS)
He, Jiaze; Yuan, Fuh-Gwo
2016-04-01
A two-dimensional (2-D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric actuator mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region to capture the scattered wavefield in the vicinity of the PZT. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, the reflectivity coefficients of the delamination can be calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2-D areal scans and linear scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2-D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.
2013-01-01
Stroke is a major cause of disability in the world. The activities of upper limb segments are often compromised following a stroke, impairing most daily tasks. Robotic training is now considered amongst the rehabilitation methods applied to promote functional recovery. However, the implementation of robotic devices remains a major challenge for the bioengineering and clinical community. Latest exoskeletons with multiple degrees of freedom (DOF) may become particularly attractive, because of their low apparent inertia, the multiple actuators generating large torques, and the fact that patients can move the arm in the normal wide workspace. A recent study published in JNER by Milot and colleagues underlines that training with a 6-DOF exoskeleton impacts positively on motor function in patients being in stable phase of recovery after a stroke. Also, multi-joint robotic training was not found to be superior to single-joint robotic training. Although it is often considered that rehabilitation should start from simple movements to complex functional movements as the recovery evolves, this study challenges this widespread notion whose scientific basis has remained uncertain. PMID:24354518
NASA Astrophysics Data System (ADS)
Pogorelko, V. V.; Mayer, A. E.
2016-11-01
With the use of the molecular dynamic simulations, we investigated the effect of the high-speed (500 m/s, 1000 m/s) copper nanoparticle impact on the mechanical properties of an aluminum surface. Dislocation analysis shows that a large number of dislocations are formed in the impact area; the total length of dislocations is determined not only by the speed and size of the incoming copper nanoparticle (kinetic energy of the nanoparticle), but by a temperature of the system as well. The dislocations occupy the whole area of the aluminum single crystal at high kinetic energy of the nanoparticle. With the decrease of the nanoparticle kinetic energy, the dislocation structures are formed in the near-surface layer; formation of the dislocation loops takes place. Temperature rise of the system (aluminum substrate + nanoparticle) reduces the total dislocation length in the single crystal of aluminum; there is deeper penetration of the copper atoms in the aluminum at high temperatures. Average energy of the nanoparticles and room temperature of the system are optimal for production of high-quality layers of copper on the aluminum surface.
Impacts of biological diversity on sediment transport in streams
NASA Astrophysics Data System (ADS)
Albertson, L. K.; Cardinale, B. J.; Sklar, L. S.
2012-12-01
Over the past decade, an increasing number of studies have shown that biological structures (e.g. plant roots) have large impacts on sediment transport, and that physical models that do not incorporate these biological impacts can produce qualitatively incorrect predictions. But while it is now recognized that biological structures influence sediment transport, work to date has focused primarily on the impacts of individual, usually dominant, species. Here, we ask whether competitive interactions cause multi-species communities to have fundamentally different impacts on sediment mobility than single-species systems. We use a model system with caddisfly larvae, which are insects that live in the benthic habitat of streams where they construct silken catchnets across pore spaces between rocks to filter food particles. Because caddisflies can reach densities of 1,000s per m2 with each larva spinning hundreds of silken threads between rocks, studies have shown that caddisflies reduce the probability of bed movement during high discharge events. To test whether streams with multiple species of caddisfly are stabilized any differently than single-species streams, we manipulated the presence or absence of two common species (Ceratopsyche oslari, Arctopsyche californica) in substrate patches (0.15 m2) in experimental stream channels (50-m long x 1-m wide) with fully controlled hydrology at the Sierra Nevada Aquatic Research Laboratory. This experiment was designed to extend the scale of previous laboratory mesocosm studies, which showed that critical shear stress is 31% higher in a multi-species flume mesocosm compared to a single-species mesocosm. Under these more realistic field conditions, we found that critical shear stress was, on average, 30% higher in streams with caddisflies vs. controls with no caddisflies. However, no differences were detected between treatments with 2 vs. 1 species. We hypothesize that the minimal effect of diversity on critical shear stress resulted because intense competitive interactions (fighting, biting, etc.) caused the caddisflies to drift downstream and distribute longitudinally instead of vertically within the sediments, as we had previously observed in the mesocosm study. Taken together with previous results, our findings show that species interactions in multi-species communities can generate synergies that have fundamentally unique impacts on sediment stability compared to just single species communities, but these impacts will be scale dependent and vary with ecosystem complexity. Field tests are the next step to improve our ability to accurately quantify the influence of stream insects on sediment transport conditions, and the results reported here will help refine experimental design for tests in natural streams.
Islam, Samantha; Jones, Steven L; Dye, Daniel
2014-06-01
The research described in this paper analyzed injury severities at a disaggregate level for single-vehicle (SV) and multi-vehicle (MV) large truck at-fault accidents for rural and urban locations in Alabama. Given the occurrence of a crash, four separate random parameter logit models of injury severity (with possible outcomes of major, minor, and possible or no injury) were estimated. The models identified different sets of factors that can lead to effective policy decisions aimed at reducing large truck-at-fault accidents for respective locations. The results of the study clearly indicated that there are differences between the influences of a variety of variables on the injury severities resulting from urban vs. rural SV and MV large truck at-fault accidents. The results showed that some variables were significant only in one type of accident model (SV or MV) but not in the other accident model. Again, some variables were found to be significant in one location (rural or urban) but not in other locations. The study also identified important factors that significantly impact the injury severity resulting from SV and MV large truck at-fault accidents in urban and rural locations based on the estimated values of average direct pseudo-elasticity. A careful study of the results of this study will help policy makers and transportation agencies identify location specific recommendations to increase safety awareness related to large truck involved accidents and to improve overall highway safety. Copyright © 2014 Elsevier Ltd. All rights reserved.
Predicting Market Impact Costs Using Nonparametric Machine Learning Models.
Park, Saerom; Lee, Jaewook; Son, Youngdoo
2016-01-01
Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.
Predicting Market Impact Costs Using Nonparametric Machine Learning Models
Park, Saerom; Lee, Jaewook; Son, Youngdoo
2016-01-01
Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance. PMID:26926235
Goodman, Paul S; Galatioto, Fabio; Thorpe, Neil; Namdeo, Anil K; Davies, Richard J; Bird, Roger N
2016-01-01
Hydraulic fracturing (fracking) has been used extensively in the US and Canada since the 1950s and offers the potential for significant new sources of oil and gas supply. Numerous other countries around the world (including the UK, Germany, China, South Africa, Australia and Argentina) are now giving serious consideration to sanctioning the technique to provide additional security over the future supply of domestic energy. However, relatively high population densities in many countries and the potential negative environmental impacts that may be associated with fracking operations has stimulated controversy and significant public debate regarding if and where fracking should be permitted. Road traffic generated by fracking operations is one possible source of environmental impact whose significance has, until now, been largely neglected in the available literature. This paper therefore presents a scoping-level environmental assessment for individual and groups of fracking sites using a newly-created Traffic Impacts Model (TIM). The model produces estimates of the traffic-related impacts of fracking on greenhouse gas emissions, local air quality emissions, noise and road pavement wear, using a range of hypothetical fracking scenarios to quantify changes in impacts against baseline levels. Results suggest that the local impacts of a single well pad may be short duration but large magnitude. That is, whilst single digit percentile increases in emissions of CO2, NOx and PM are estimated for the period from start of construction to pad completion (potentially several months or years), excess emissions of NOx on individual days of peak activity can reach 30% over baseline. Likewise, excess noise emissions appear negligible (<1dBA) when normalised over the completion period, but may be considerable (+3.4dBA) in particular hours, especially in night-time periods. Larger, regional scale modelling of pad development scenarios over a multi-decade time horizon give modest CO2 emissions that vary between 2.5 and 160.4kT, dependent on the number of wells, and individual well fracking water and flowback waste requirements. The TIM model is designed to be adaptable to any geographic area where the required input data are available (such as fleet characteristics, road type and quality), and we suggest could be deployed as a tool to help reach more informed decisions regarding where and how fracking might take place taking into account the likely scale of traffic-related environmental impacts. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Solar Geoengineering and the Modulation of North Atlantic Tropical Cyclone Frequency
NASA Astrophysics Data System (ADS)
Jones, A. C.; Haywood, J. M.; Hawcroft, M.; Jones, A.; Dunstone, N. J.; Hodges, K.
2017-12-01
Solar geoengineering (SG) refers to a wide range of proposed methods for counteracting global warming by artificially reducing solar insolation at Earth's surface. The most widely known SG proposal is stratospheric aerosol injection (SAI) which has impacts analogous to those from large-scale volcanic eruptions. Observations following major volcanic eruptions indicate that aerosol enhancements confined to a single hemisphere effectively modulate North Atlantic tropical cyclone (TC) activity in the following years. Here we investigate the effects of both single-hemisphere and global SAI scenarios on North Atlantic TC activity using the HadGEM2-ES general circulation model (GCM). We show that a 5 Tg y-1 injection of sulphur dioxide (SO2) into the northern hemisphere (NH) stratosphere would produce a global-mean cooling of 1 K and simultaneously reduce TC activity (to 8 TCs y-1), while the same injection in the southern hemisphere (SH) would enhance TC activity (to 14 TCs y-1), relative to a recent historical period (1950-2000, 10 TCs y-1). Our results reemphasize the risks of regional geoengineering and should motivate policymakers to regulate large-scale unilateral geoengineering deployments.
Banks, Jonathan B; Tartar, Jaime L; Tamayo, Brittney A
2015-12-01
A large and growing body of research demonstrates the impact of psychological stress on working memory. However, the typical study approach tests the effects of a single biological or psychological factor on changes in working memory. The current study attempted to move beyond the standard single-factor assessment by examining the impact of 2 possible factors in stress-related working memory impairments. To this end, 60 participants completed a working memory task before and after either a psychological stressor writing task or a control writing task and completed measures of both cortisol and mind wandering. We also included a measure of state anxiety to examine the direct and indirect effect on working memory. We found that mind wandering mediated the relationship between state anxiety and working memory at the baseline measurement. This indirect relationship was moderated by cortisol, such that the impact of mind wandering on working memory increased as cortisol levels increased. No overall working memory impairment was observed following the stress manipulation, but increases in state anxiety and mind wandering were observed. State anxiety and mind wandering independently mediated the relationship between change in working memory and threat perception. The indirect paths resulted in opposing effects on working memory. Combined, the findings from this study suggest that cortisol enhances the impact of mind wandering on working memory, that state anxiety may not always result in stress-related working memory impairments, and that high working memory performance can protect against mind wandering. (c) 2015 APA, all rights reserved).
Eyjafjallajökull and 9/11: The Impact of Large-Scale Disasters on Worldwide Mobility
Woolley-Meza, Olivia; Grady, Daniel; Thiemann, Christian; Bagrow, James P.; Brockmann, Dirk
2013-01-01
Large-scale disasters that interfere with globalized socio-technical infrastructure, such as mobility and transportation networks, trigger high socio-economic costs. Although the origin of such events is often geographically confined, their impact reverberates through entire networks in ways that are poorly understood, difficult to assess, and even more difficult to predict. We investigate how the eruption of volcano Eyjafjallajökull, the September 11th terrorist attacks, and geographical disruptions in general interfere with worldwide mobility. To do this we track changes in effective distance in the worldwide air transportation network from the perspective of individual airports. We find that universal features exist across these events: airport susceptibilities to regional disruptions follow similar, strongly heterogeneous distributions that lack a scale. On the other hand, airports are more uniformly susceptible to attacks that target the most important hubs in the network, exhibiting a well-defined scale. The statistical behavior of susceptibility can be characterized by a single scaling exponent. Using scaling arguments that capture the interplay between individual airport characteristics and the structural properties of routes we can recover the exponent for all types of disruption. We find that the same mechanisms responsible for efficient passenger flow may also keep the system in a vulnerable state. Our approach can be applied to understand the impact of large, correlated disruptions in financial systems, ecosystems and other systems with a complex interaction structure between heterogeneous components. PMID:23950904
NASA Astrophysics Data System (ADS)
Matsue, Kazuma; Arakawa, Masahiko; Yasui, Minami; Matsumoto, Rie; Tsujido, Sayaka; Takano, Shota; Hasegawa, Sunao
2015-08-01
Introduction: Recent spacecraft surveys clarified that asteroid surfaces were covered with regolith made of boulders and pebbles such as that found on the asteroid Itokawa. It was also found that surface morphologies of asteroids formed on the regolith layer were modified. For example, the high-resolution images of the asteroid Eros revealed the evidence of the downslope movement of the regolith layer, then it could cause the degradation and the erasure of small impact crater. One possible process to explain these observations is the regolith layer collapse caused by seismic vibration after projectile impacts. The impact-induced seismic wave might be an important physical process affecting the morphology change of regolith layer on asteroid surfaces. Therefore, it is significant for us to know the relationship between the impact energy and the impact-induced seismic wave. So in this study, we carried out impact cratering experiments in order to observe the seismic wave propagating through the target far from the impact crater.Experimental method: Impact cratering experiments were conducted by using a single stage vertical gas gun set at Kobe Univ and a two-stage vertical gas gun set at ISAS. We used quartz sands with the particle diameter of 500μm, and the bulk density of 1.48g/cm3. The projectile was a ball made of polycarbonate with the diameter of 4.75mm and aluminum, titan, zirconia, stainless steel, cupper, tungsten carbide projectile with the diameter of 2mm. These projectiles were launched at the impact velocity from 0.2 to 7km/s. The target was set in a vacuum chamber evacuated below 10 Pa. We measured the seismic wave by using a piezoelectric uniaxial accelerometer.Result: The impact-induced seismic wave was measured to show a large single peak and found to attenuate with the propagation distance. The maximum acceleration of the seismic wave was recognized to have a good relationship with the normalized distance x/R, where x is the propagation distance and R is the crater radius, irrespective of the impact velocities: gmax = 160(x/R)-2.98.
Thin film resists for registration of single-ion impacts
NASA Astrophysics Data System (ADS)
Millar, V.; Pakes, C. I.; Prawer, S.; Rout, B.; Jamieson, D. N.
2005-06-01
We demonstrate registration of the location of the impact site of single ions using a thin film polymethyl methacrylate resist on a SiO2/Si substrate. Carbon nanotube-based atomic force microscopy is used to reveal craters in the surface of chemically developed films, consistent with the development of latent damage induced by single-ion impacts. The responses of thin PMMA films to the implantation of He+ and Ga+ ions indicate the role of electronic and nuclear energy loss mechanisms at the single-ion level.
Crash pulse optimization for occupant protection at various impact velocities.
Ito, Daisuke; Yokoi, Yusuke; Mizuno, Koji
2015-01-01
Vehicle deceleration has a large influence on occupant kinematic behavior and injury risks in crashes, and the optimization of the vehicle crash pulse that mitigates occupant loadings has been the subject of substantial research. These optimization research efforts focused on only high-velocity impact in regulatory or new car assessment programs though vehicle collisions occur over a wide range of velocities. In this study, the vehicle crash pulse was optimized for various velocities with a genetic algorithm. Vehicle deceleration was optimized in a full-frontal rigid barrier crash with a simple spring-mass model that represents the vehicle-occupant interaction and a Hybrid III 50th percentile male multibody model. To examine whether the vehicle crash pulse optimized at the high impact velocity is useful for reducing occupant loading at all impact velocities less than the optimized velocity, the occupant deceleration was calculated at various velocities for the optimized crash pulse determined at a high speed. The optimized vehicle deceleration-deformation characteristics that are effective for various velocities were investigated with 2 approaches. The optimized vehicle crash pulse at a single impact velocity consists of a high initial impulse followed by zero deceleration and then constant deceleration in the final stage. The vehicle deceleration optimized with the Hybrid III model was comparable to that determined from the spring-mass model. The optimized vehicle deceleration-deformation characteristics determined at a high speed did not necessarily lead to an occupant deceleration reduction at a lower velocity. The maximum occupant deceleration at each velocity was normalized by the maximum deceleration determined in the single impact velocity optimization. The resulting vehicle deceleration-deformation characteristic was a square crash pulse. The objective function was defined as the number of injuries, which was the product of the number of collisions at the velocity and the probability of occupant injury. The optimized vehicle deceleration consisted of a high deceleration in the initial phase, a small deceleration in the middle phase, and then a high deceleration in the final phase. The optimized vehicle crash pulse at a single impact velocity is effective for reducing occupant deceleration in a crash at the specific impact velocity. However, the crash pulse does not necessarily lead to occupant deceleration reduction at a lower velocity. The optimized vehicle deceleration-deformation characteristics, which are effective for all impact velocities, depend on the weighting of the occupant injury measures at each impact velocity.
NASA Astrophysics Data System (ADS)
McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.
2011-09-01
Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in urban plumes compared to regional aerosol (0.85 versus 0.9-0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.
Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK
NASA Astrophysics Data System (ADS)
McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.
2011-05-01
Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in urban plumes compared to regional aerosol (0.85 versus 0.9-0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.
Computational Modeling Approaches to Multiscale Design of Icephobic Surfaces
NASA Technical Reports Server (NTRS)
Tallman, Aaron; Wang, Yan; Vargas, Mario
2017-01-01
To aid in the design of surfaces that prevent icing, a model and computational simulation of impact ice formation at the single droplet scale was implemented. The nucleation of a single supercooled droplet impacting on a substrate, in rime ice conditions, was simulated. Open source computational fluid dynamics (CFD) software was used for the simulation. To aid in the design of surfaces that prevent icing, a model of impact ice formation at the single droplet scale was proposed•No existing model simulates simultaneous impact and freezing of a single super-cooled water droplet•For the 10-week project, a low-fidelity feasibility study was the goal.
Sensitivity of lod scores to changes in diagnostic status.
Hodge, S E; Greenberg, D A
1992-01-01
This paper investigates effects on lod scores when one individual in a data set changes diagnostic or recombinant status. First we examine the situation in which a single offspring in a nuclear family changes status. The nuclear-family situation, in addition to being of interest in its own right, also has general theoretical importance, since nuclear families are "transparent"; that is, one can track genetic events more precisely in nuclear families than in complex pedigrees. We demonstrate that in nuclear families log10 [(1-theta)/theta] gives an upper limit on the impact that a single offspring's change in status can have on the lod score at that recombination fraction (theta). These limits hold for a fully penetrant dominant condition and fully informative marker, in either phase-known or phase-unknown matings. Moreover, log10 [(1-theta)/theta] (where theta denotes the value of theta at which Zmax occurs) gives an upper limit on the impact of a single offspring's status change on the maximum lod score (Zmax). In extended pedigrees, in contrast to nuclear families, no comparable limit can be set on the impact of a single individual on the lod score. Complex pedigrees are subject to both stabilizing and destabilizing influences, and these are described. Finally, we describe a "sensitivity analysis," in which, after all linkage analysis is completed, every informative individual in the data set is changed, one at a time, to see the effect which each separate change has on the lod scores. The procedure includes identifying "critical individuals," i.e., those who would have the greatest impact on the lod scores, should their diagnostic status in fact change. To illustrate use of the sensitivity analysis, we apply it to the large bipolar pedigree reported by Egeland et al. and Kelsoe et al. We show that the changes in lod scores observed there, on the order of 1.1-1.2 per person, are not unusual. We recommend that investigators include a sensitivity analysis as a standard part of reporting the results of a linkage analysis. PMID:1570835
Sensitivity of lod scores to changes in diagnostic status.
Hodge, S E; Greenberg, D A
1992-05-01
This paper investigates effects on lod scores when one individual in a data set changes diagnostic or recombinant status. First we examine the situation in which a single offspring in a nuclear family changes status. The nuclear-family situation, in addition to being of interest in its own right, also has general theoretical importance, since nuclear families are "transparent"; that is, one can track genetic events more precisely in nuclear families than in complex pedigrees. We demonstrate that in nuclear families log10 [(1-theta)/theta] gives an upper limit on the impact that a single offspring's change in status can have on the lod score at that recombination fraction (theta). These limits hold for a fully penetrant dominant condition and fully informative marker, in either phase-known or phase-unknown matings. Moreover, log10 [(1-theta)/theta] (where theta denotes the value of theta at which Zmax occurs) gives an upper limit on the impact of a single offspring's status change on the maximum lod score (Zmax). In extended pedigrees, in contrast to nuclear families, no comparable limit can be set on the impact of a single individual on the lod score. Complex pedigrees are subject to both stabilizing and destabilizing influences, and these are described. Finally, we describe a "sensitivity analysis," in which, after all linkage analysis is completed, every informative individual in the data set is changed, one at a time, to see the effect which each separate change has on the lod scores. The procedure includes identifying "critical individuals," i.e., those who would have the greatest impact on the lod scores, should their diagnostic status in fact change. To illustrate use of the sensitivity analysis, we apply it to the large bipolar pedigree reported by Egeland et al. and Kelsoe et al. We show that the changes in lod scores observed there, on the order of 1.1-1.2 per person, are not unusual. We recommend that investigators include a sensitivity analysis as a standard part of reporting the results of a linkage analysis.
Eucrite Impact Melt NWA 5218 - Evidence for a Large Crater on Vesta
NASA Technical Reports Server (NTRS)
Wittmann, Axel; Hiroi, Takahiro; Ross, Daniel K.; Herrin, Jason S.; Rumble, Douglas, III; Kring, David A.
2011-01-01
Northwest Africa (NWA) 5218 is a 76 g achondrite that is classified as a eucrite [1]. However, an initial classification [2] describes it as a "eucrite shock-melt breccia...(in which) large, partially melted cumulate basalt clasts are set in a shock melt flow...". We explore the petrology of this clast-bearing impact melt rock (Fig. 1), which could be a characteristic lithology at large impact craters on asteroid Vesta [3]. Methods: Optical microscopy, scanning electronmicroscopy, and Raman spectroscopy were used on a thin section (Fig. 1) for petrographic characterization. The impact melt composition was determined by 20 m diameter defocused-beam analyses with a Cameca SX-100 electron microprobe. The data from 97 spots were corrected for mineral density effects [4]. Constituent mineral phases were analyzed with a focusedbeam. Bidirectonal visible and near-infrared (VNIR) and biconical FT-IR reflectance spectra were measured on the surface of a sample slab on its central melt area and on an eucrite clast, and from 125-500 m and <125 m powders of melt. Results: General petrography: The sample specimen is a coherent, medium dark-grey (N4), melt rock. The thin section captures a central, subophitic-textured melt that contains 1 cm to tens of m-size subangular to rounded, variably-shocked eucrite clasts. Clasts >100 m are coarse-grained with equigranular 1 mm size plagioclase, quartz, and clinopyroxene (Fig. 1). Single crystals of chromite, ilmenite, zircon, Ca-Mg phosphate, Fe-metal, and troilite are embedded in the melt. Polymineralic clasts are mostly compositionally similar to the above mentioned larger clasts but scarce granulitic fragments are observed as well.
Effects of biotic disturbances on forest carbon cycling in the United States and Canada
Vogelmann, James E.; Allen, Craig D.; Hicke, Jeffrey A.; Desai, Ankur R.; Dietze, Michael C.; Hall, Ronald J.; ,
2012-01-01
Forest insects and pathogens are major disturbance agents that have affected millions of hectares in North America in recent decades, implying significant impacts to the carbon (C) cycle. Here, we review and synthesize published studies of the effects of biotic disturbances on forest C cycling in the United States and Canada. Primary productivity in stands was reduced, sometimes considerably, immediately following insect or pathogen attack. After repeated growth reductions caused by some insects or pathogens or a single infestation by some bark beetle species, tree mortality occurred, altering productivity and decomposition. In the years following disturbance, primary productivity in some cases increased rapidly as a result of enhanced growth by surviving vegetation, and in other cases increased slowly because of lower forest regrowth. In the decades following tree mortality, decomposition increased as a result of the large amount of dead organic matter. Net ecosystem productivity decreased immediately following attack, with some studies reporting a switch to a C source to the atmosphere, and increased afterward as the forest regrew and dead organic matter decomposed. Large variability in C cycle responses arose from several factors, including type of insect or pathogen, time since disturbance, number of trees affected, and capacity of remaining vegetation to increase growth rates following outbreak. We identified significant knowledge gaps, including limited understanding of carbon cycle impacts among different biotic disturbance types (particularly pathogens), their impacts at landscape and regional scales, and limited capacity to predict disturbance events and their consequences for carbon cycling. We conclude that biotic disturbances can have major impacts on forest C stocks and fluxes and can be large enough to affect regional C cycling. However, additional research is needed to reduce the uncertainties associated with quantifying biotic disturbance effects on the North American C budget.
Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkholzer, J.T.; Zhou, Q.
Industrial-scale injection of CO{sub 2} into saline sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration reservoirs. In this paper, we discuss how such basin-scale hydrologic impacts can (1) affect regulation of CO{sub 2} storage projects and (2) may reduce current storage capacity estimates. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO{sub 2} storage projects in a core injection area suitable for long-term storage. Each project is assumed to inject five million tonnes of CO{sub 2}more » per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO{sub 2}-brine flow processes and the large-scale groundwater flow patterns in response to CO{sub 2} storage. The far-field pressure buildup predicted for this selected sequestration scenario suggests that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrologic response may be affected by interference between individual sites. Our results also support recent studies in that environmental concerns related to near-field and far-field pressure buildup may be a limiting factor on CO{sub 2} storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO{sub 2}, may have to be revised based on assessments of pressure perturbations and their potential impact on caprock integrity and groundwater resources, respectively. We finally discuss some of the challenges in making reliable predictions of large-scale hydrologic impacts related to CO{sub 2} sequestration projects.« less
Zabetakis, Dan; Olson, Mark A.; Anderson, George P.; Legler, Patricia M.; Goldman, Ellen R.
2014-01-01
Single domain antibodies are the small recombinant variable domains derived from camelid heavy-chain-only antibodies. They are renowned for their stability, in large part due to their ability to refold following thermal or chemical denaturation. In addition to refolding after heat denaturation, A3, a high affinity anti-Staphylococcal Enterotoxin B single domain antibody, possesses a melting temperature of ∼84°C, among the highest reported for a single domain antibody. In this work we utilized the recently described crystal structure of A3 to select locations for the insertion of a second disulfide bond and evaluated the impact that the addition of this second bond had on the melting temperature. Four double-disulfide versions of A3 were constructed and each was found to improve the melting temperature relative to the native structure without reducing affinity. Placement of the disulfide bond at a previously published position between framework regions 2 and 3 yielded the largest improvement (>6°C), suggesting this location is optimal, and seemingly provides a universal route to raise the melting temperature of single domain antibodies. This study further demonstrates that even single domain antibodies with extremely high melting points can be further stabilized by addition of disulfide bonds. PMID:25526640
Chen, Yani; He, Minhong; Peng, Jiajun; Sun, Yong; Liang, Ziqi
2016-04-01
Recently, organic-inorganic halide perovskites have sparked tremendous research interest because of their ground-breaking photovoltaic performance. The crystallization process and crystal shape of perovskites have striking impacts on their optoelectronic properties. Polycrystalline films and single crystals are two main forms of perovskites. Currently, perovskite thin films have been under intensive investigation while studies of perovskite single crystals are just in their infancy. This review article is concentrated upon the control of perovskite structures and growth, which are intimately correlated for improvements of not only solar cells but also light-emitting diodes, lasers, and photodetectors. We begin with the survey of the film formation process of perovskites including deposition methods and morphological optimization avenues. Strategies such as the use of additives, thermal annealing, solvent annealing, atmospheric control, and solvent engineering have been successfully employed to yield high-quality perovskite films. Next, we turn to summarize the shape evolution of perovskites single crystals from three-dimensional large sized single crystals, two-dimensional nanoplates, one-dimensional nanowires, to zero-dimensional quantum dots. Siginificant functions of perovskites single crystals are highlighted, which benefit fundamental studies of intrinsic photophysics. Then, the growth mechanisms of the previously mentioned perovskite crystals are unveiled. Lastly, perspectives for structure and growth control of perovskites are outlined towards high-performance (opto)electronic devices.
Stack, Rebecca Jayne; Meredith, Alex
2018-01-01
Single parent families are at high risk of financial hardship which may impact on psychological wellbeing. This study explored the impact of financial hardship on wellbeing on 15 single parents. Semi-structured interviews were conducted and analysed using constructivist thematic analysis. Participants described food and fuel poverty, and the need to make sacrifices to ensure that children's basic needs were met. In some cases, participants went without food and struggled to pay bills. Isolation, anxiety, depression, paranoia, and suicidal thoughts were described. However, participants reported that psychological services not able to take the needs of single parents in to account. Support for single parents must acknowledge the impact of social circumstances and give more consideration economic drivers of distress.
Climate Change Potential Impacts on the Built Environment and Possible Adaptation Strategies
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.
2014-01-01
The built environment consists of components that exist at a range of scales from small (e.g., houses, shopping malls) to large (e.g., transportation networks) to highly modified landscapes such as cities. Thus, the impacts of climate change on the built environment may have a multitude of effects on humans and the land. The impact of climate change may be exacerbated by the interaction of different events that singly may be minor, but together may have a synergistic set of impacts that are significant. Also, mechanisms may exist wherein the built environment, particularly in the form of cities, may affect weather and the climate on local and regional scales. Hence, a city may be able to cope with prolonged heat waves, but if this is combined with severe drought, the overall result could be significant or even catastrophic, as accelerating demand for energy to cooling taxes water supplies needed both for energy supply and municipal water needs. This presentation surveys potential climate change impacts on the built environment from the perspective of the National Climate Assessment, and explores adaptation measures that can be employed to mitigate these impacts.
High-Power Broad-Area Diode Lasers and Laser Bars
NASA Astrophysics Data System (ADS)
Erbert, Goetz; Baerwolff, Arthur; Sebastian, Juergen; Tomm, Jens
This review presents the basic ideas and some examples of the chip technology of high-power diode lasers ( λ= 650,-1060,) in connection with the achievements of mounted single-stripe emitters in recent years.In the first section the optimization of the epitaxial layer structure for a low facet load and high conversion efficiency is discussed. The so-called broadened waveguide Large Optical Cavity (LOC) concept is described and also some advantages and disadvantages of Al-free material. The next section deals with the processing steps of epitaxial wafers to make single emitters and bars. Several possibilities to realize contact windows (implantation, insulators, and wet chemical oxidation) and laser mirrors are presented. The impact of heating in the CW regime and some aspects of reliability are the following topics. The calculation of thermal distributions in diode lasers, which shows the need for sophisticated mounting, will be given. In the last part the current state-of-the-art of single-stripe emitters will be reviewed.
Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD
Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; ...
2017-09-26
Here, we have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e - rms/pixel. This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime.more » Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.« less
One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!
Herricks, Thurston; Dilworth, David J.; Mast, Fred D.; ...
2016-11-16
Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAYmore » extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.« less
One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herricks, Thurston; Dilworth, David J.; Mast, Fred D.
Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAYmore » extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.« less
Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD
NASA Astrophysics Data System (ADS)
Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; Essig, Rouven; Guardincerri, Yann; Holland, Steve; Volansky, Tomer; Yu, Tien-Tien
2017-09-01
We have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e- rms /pixel . This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime. Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.
Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD.
Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; Essig, Rouven; Guardincerri, Yann; Holland, Steve; Volansky, Tomer; Yu, Tien-Tien
2017-09-29
We have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e^{-} rms/pixel. This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime. Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.
Impact of a single drop on the same liquid: formation, growth and disintegration of jets
NASA Astrophysics Data System (ADS)
Agbaglah, G. Gilou; Deegan, Robert
2015-11-01
One of the simplest splashing scenarios results from the impact of a single drop on on the same liquid. The traditional understanding of this process is that the impact generates a jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are bifurcations in the multiplicity of jets. First, we study the formation, growth and disintegration of jets following the impact of a drop on a thin film of the same liquid using a combination of numerical simulations and linear stability theory. We obtain scaling relations from our simulations and use these as inputs to our stability analysis. We also use experiments and numerical simulations of a single drop impacting on a deep pool to examine the bifurcation from a single jet into two jets. Using high speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet.
Caranica, C; Al-Omari, A; Deng, Z; Griffith, J; Nilsen, R; Mao, L; Arnold, J; Schüttler, H-B
2018-01-01
A major challenge in systems biology is to infer the parameters of regulatory networks that operate in a noisy environment, such as in a single cell. In a stochastic regime it is hard to distinguish noise from the real signal and to infer the noise contribution to the dynamical behavior. When the genetic network displays oscillatory dynamics, it is even harder to infer the parameters that produce the oscillations. To address this issue we introduce a new estimation method built on a combination of stochastic simulations, mass action kinetics and ensemble network simulations in which we match the average periodogram and phase of the model to that of the data. The method is relatively fast (compared to Metropolis-Hastings Monte Carlo Methods), easy to parallelize, applicable to large oscillatory networks and large (~2000 cells) single cell expression data sets, and it quantifies the noise impact on the observed dynamics. Standard errors of estimated rate coefficients are typically two orders of magnitude smaller than the mean from single cell experiments with on the order of ~1000 cells. We also provide a method to assess the goodness of fit of the stochastic network using the Hilbert phase of single cells. An analysis of phase departures from the null model with no communication between cells is consistent with a hypothesis of Stochastic Resonance describing single cell oscillators. Stochastic Resonance provides a physical mechanism whereby intracellular noise plays a positive role in establishing oscillatory behavior, but may require model parameters, such as rate coefficients, that differ substantially from those extracted at the macroscopic level from measurements on populations of millions of communicating, synchronized cells.
Impact of single-site axonal GABAergic synaptic events on cerebellar interneuron activity.
de San Martin, Javier Zorrilla; Jalil, Abdelali; Trigo, Federico F
2015-12-01
Axonal ionotropic receptors are present in a variety of neuronal types, and their function has largely been associated with the modulation of axonal activity and synaptic release. It is usually assumed that activation of axonal GABA(A)Rs comes from spillover, but in cerebellar molecular layer interneurons (MLIs) the GABA source is different: in these cells, GABA release activates presynaptic GABA(A) autoreceptors (autoRs) together with postsynaptic targets, producing an autoR-mediated synaptic event. The frequency of presynaptic, autoR-mediated miniature currents is twice that of their somatodendritic counterparts, suggesting that autoR-mediated responses have an important effect on interneuron activity. Here, we used local Ca(2+) photolysis in MLI axons of juvenile rats to evoke GABA release from individual varicosities to study the activation of axonal autoRs in single release sites. Our data show that single-site autoR conductances are similar to postsynaptic dendritic conductances. In conditions of high [Cl(-)](i), autoR-mediated conductances range from 1 to 5 nS; this corresponds to ∼30-150 GABA(A) channels per presynaptic varicosity, a value close to the number of channels in postsynaptic densities. Voltage responses produced by the activation of autoRs in single varicosities are amplified by a Na(v)-dependent mechanism and propagate along the axon with a length constant of 91 µm. Immunolabeling determination of synapse location shows that on average, one third of the synapses produce autoR-mediated signals that are large enough to reach the axon initial segment. Finally, we show that single-site activation of presynaptic GABA(A) autoRs leads to an increase in MLI excitability and thus conveys a strong feedback signal that contributes to spiking activity. © 2015 Zorrilla de San Martin et al.
Impact of single-site axonal GABAergic synaptic events on cerebellar interneuron activity
Zorrilla de San Martin, Javier; Jalil, Abdelali
2015-01-01
Axonal ionotropic receptors are present in a variety of neuronal types, and their function has largely been associated with the modulation of axonal activity and synaptic release. It is usually assumed that activation of axonal GABAARs comes from spillover, but in cerebellar molecular layer interneurons (MLIs) the GABA source is different: in these cells, GABA release activates presynaptic GABAA autoreceptors (autoRs) together with postsynaptic targets, producing an autoR-mediated synaptic event. The frequency of presynaptic, autoR-mediated miniature currents is twice that of their somatodendritic counterparts, suggesting that autoR-mediated responses have an important effect on interneuron activity. Here, we used local Ca2+ photolysis in MLI axons of juvenile rats to evoke GABA release from individual varicosities to study the activation of axonal autoRs in single release sites. Our data show that single-site autoR conductances are similar to postsynaptic dendritic conductances. In conditions of high [Cl−]i, autoR-mediated conductances range from 1 to 5 nS; this corresponds to ∼30–150 GABAA channels per presynaptic varicosity, a value close to the number of channels in postsynaptic densities. Voltage responses produced by the activation of autoRs in single varicosities are amplified by a Nav-dependent mechanism and propagate along the axon with a length constant of 91 µm. Immunolabeling determination of synapse location shows that on average, one third of the synapses produce autoR-mediated signals that are large enough to reach the axon initial segment. Finally, we show that single-site activation of presynaptic GABAA autoRs leads to an increase in MLI excitability and thus conveys a strong feedback signal that contributes to spiking activity. PMID:26621773
Insights into structural variations and genome rearrangements in prokaryotic genomes.
Periwal, Vinita; Scaria, Vinod
2015-01-01
Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Large-scale production of PMMA/SWCNT composites based on SWCNT modified with PMMA.
Fraser, Robin Anderson; Stoeffler, Karen; Ashrafi, Behnam; Zhang, Yunfa; Simard, Benoit
2012-04-01
In this work, a two-step method consisting of in situ polymerization of polymethyl methacrylate (PMMA) in the presence of single-walled carbon nanotubes (SWCNT), followed by the redispersion of the resulting compound in dimethylformamide (DMF), was used to fabricate SWCNT modified with PMMA (SWCNT-PMMA). Raman spectroscopy revealed that PMMA was merely wrapped around the SWCNT when raw SWCNT or purified SWCNT were used as the starting material. However, PMMA was covalently bonded to SWCNT when acid treated SWCNT (SWCNT-COOH) was used as the starting material. SWCNT-PMMA compounds were further diluted in pure PMMA by conventional melt compounding at large scale (several kilograms) to obtain transparent composites containing 0.09 wt % SWCNT. The micro- and nano-dispersion of the SWCNT in the composites were analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The thermal and mechanical properties of the composites were determined by thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), tensile testing, and Charpy impact testing. At the the low SWCNT loading studied, the tensile properties remain unchanged, whereas the impact strength improves by 20%.
Johnson, R.L.; Clark, B.R.; Landon, M.K.; Kauffman, L.J.; Eberts, S.M.
2011-01-01
Wells screened across multiple aquifers can provide pathways for the movement of surprisingly large volumes of groundwater to confined aquifers used for public water supply (PWS). Using a simple numerical model, we examine the impact of several pumping scenarios on leakage from an unconfined aquifer to a confined aquifer and conclude that a single inactive multi-aquifer well can contribute nearly 10% of total PWS well flow over a wide range of pumping rates. This leakage can occur even when the multi-aquifer well is more than a kilometer from the PWS well. The contribution from multi-aquifer wells may be greater under conditions where seasonal pumping (e.g., irrigation) creates large, widespread downward hydraulic gradients between aquifers. Under those conditions, water can continue to leak down a multi-aquifer well from an unconfined aquifer to a confined aquifer even when those multi-aquifer wells are actively pumped. An important implication is that, if an unconfined aquifer is contaminated, multi-aquifer wells can increase the vulnerability of a confined-aquifer PWS well.
Genetic and environmental origins of obesity relevant to reproduction.
Franks, Stephen
2006-05-01
Obesity has a negative impact on reproductive health, particularly in women with polycystic ovarian syndrome (PCOS). Obesity itself is the product of both genetic and environmental influences, although the current 'epidemic' of obesity is largely related to changes in diet and lifestyle. Single gene defects leading to obesity and disordered reproductive function are rare but can are informative about metabolic pathways involved in appetite regulation. There is good evidence that PCOS has an important genetic background, which probably involves the interaction of several genes. The phenotype of PCOS and its impact on reproductive function is profoundly affected by obesity, which, in turn has both genetic and environmental influences. Understanding the genetic basis of PCOS is important but improvements in diet and lifestyle are the best means of improving reproductive function.
NASA Technical Reports Server (NTRS)
Moser, D. E.; Suggs, R. M.; Ehlert, S. R.
2017-01-01
Meteoroids cannot be observed directly because of their small size. In-situ measurements of the meteoroid environment are rare and have very small collecting areas. The Moon, in contrast, has a large collecting area and therefore can be used as a large meteoroid detector for gram-kilogram sized particles. Meteoroids striking the Moon create an impact flash observable by Earth-based telescopes. Their kinetic energy is converted to luminous energy with some unknown luminous efficiency ?(v), which is likely a function of meteoroid velocity (among other factors). This luminous efficiency is imperative to calculating the kinetic energy and mass of the meteoroid, as well as meteoroid fluxes, and it cannot be determined in the laboratory at meteoroid speeds and sizes due to mechanical constraints. Since laboratory simulations fail to resolve the luminous efficiency problem, observations of the impact flash itself must be utilized. Meteoroids associated with specific meteor showers have known speed and direction, which simplifies the determination of the luminous efficiency. NASA has routinely monitored the Moon for impact flashes since early 2006 [1]. During this time, several meteor showers have produced multiple impact flashes on the Moon, yielding a sufficient sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. [2, 3] and further described by Moser et al. [4], utilizing Earth-based measurements of the shower flux and mass index. The Geminid meteor shower has produced the most impact flashes in the NASA dataset to date with over 80 detections. More than half of these Geminids were recorded in 2015 (locations pictured in Fig. 1), and may represent the largest single-shower impact flash sample known. This work analyzes the 2015 Geminid lunar impacts and calculates their luminous efficiency. The luminous efficiency is then applied to calculate the kinetic energies and mass-es of these shower meteoroids.
Microbial stress-response physiology and its implications for ecosystem function.
Schimel, Joshua; Balser, Teri C; Wallenstein, Matthew
2007-06-01
Microorganisms have a variety of evolutionary adaptations and physiological acclimation mechanisms that allow them to survive and remain active in the face of environmental stress. Physiological responses to stress have costs at the organismal level that can result in altered ecosystem-level C, energy, and nutrient flows. These large-scale impacts result from direct effects on active microbes' physiology and by controlling the composition of the active microbial community. We first consider some general aspects of how microbes experience environmental stresses and how they respond to them. We then discuss the impacts of two important ecosystem-level stressors, drought and freezing, on microbial physiology and community composition. Even when microbial community response to stress is limited, the physiological costs imposed on soil microbes are large enough that they may cause large shifts in the allocation and fate of C and N. For example, for microbes to synthesize the osmolytes they need to survive a single drought episode they may consume up to 5% of total annual net primary production in grassland ecosystems, while acclimating to freezing conditions switches Arctic tundra soils from immobilizing N during the growing season to mineralizing it during the winter. We suggest that more effectively integrating microbial ecology into ecosystem ecology will require a more complete integration of microbial physiological ecology, population biology, and process ecology.
NASA Technical Reports Server (NTRS)
Depaolo, D. J.; Kyte, F. T.; Marshall, B. D.; Oneil, J. R.; Smit, J.
1983-01-01
The results of isotopic and trace-element-abundance analyses of Ir-enriched Cretaceous-Tertiary-boundary clay sediments from Caravaca, Spain, and of adjacent carbonate and marl layers, are presented. Acetic-acid and HCl leachates and residues were analyzed by isotope dilution to determine K, Rb, Sr, Sm, and Nd concentrations and Sr-87/Sr-86 and Nd-143/Nd-144 ratios. The stable isotope ratios delta-D, delta-(C-13), and delta-(0-18) were also determined. The results are presented in tables and graphs and compared with published data on the Caravaca sediments and on samples from other locations. The boundary clay is found to be distinguished from the adjacent layers by its isotopic ratios and to be of mainly terrestrial, lithospheric (deeper than 3-km) origin. Although submarine-weathering effects are evident and difficult to quantify, the degree of variation in Ni, Ir, Sr, and REE concentrations is considered too large to be attributed to postdepositional processes alone. These findings are seen as evidence for the ocean impact of a large single asteroid producing a worldwide blanket of ejecta, a large injection of water vapor into the atmosphere, and perhaps a gigantic tsunami, at the end of the Cretaceous period.
Single Parents and the Work Setting: The Impact of Multiple Job and Homelife Responsibilities.
ERIC Educational Resources Information Center
Burden, Dianne S.
1986-01-01
Examines the impact of combined work/family responsibilities on single-parent employees. Results indicated that parent employees, but particularly single female parents, were at risk for high job-family role strain and reduced levels of well-being. In spite of increased strain, however, single parents exhibited high levels of job satisfaction and…
The Connectivity Between Site-Specific Life Cycle Impact Assessment and Site-Specific Weighting
The goal of many LCIAs is to come to a single score with all of the impacts from a wide variety of impact assessments weighted to form this single score. My past experiences with developing site-specific impact assessment methodologies and how this can change the valuation porti...
ERIC Educational Resources Information Center
What Works Clearinghouse, 2014
2014-01-01
The 2013 study, "Incentives, Selection, and Teacher Performance: Evidence from IMPACT" examined the effects of "IMPACT," a teacher evaluation system used in the District of Columbia Public Schools, on teacher retention and performance. "IMPACT" assigns each teacher a single performance score based on classroom…
NASA Technical Reports Server (NTRS)
Chambon, Philippe; Zhang, Sara Q.; Hou, Arthur Y.; Zupanski, Milija; Cheung, Samson
2013-01-01
The forthcoming Global Precipitation Measurement (GPM) Mission will provide next generation precipitation observations from a constellation of satellites. Since precipitation by nature has large variability and low predictability at cloud-resolving scales, the impact of precipitation data on the skills of mesoscale numerical weather prediction (NWP) is largely affected by the characterization of background and observation errors and the representation of nonlinear cloud/precipitation physics in an NWP data assimilation system. We present a data impact study on the assimilation of precipitation-affected microwave (MW) radiances from a pre-GPM satellite constellation using the Goddard WRF Ensemble Data Assimilation System (Goddard WRF-EDAS). A series of assimilation experiments are carried out in a Weather Research Forecast (WRF) model domain of 9 km resolution in western Europe. Sensitivities to observation error specifications, background error covariance estimated from ensemble forecasts with different ensemble sizes, and MW channel selections are examined through single-observation assimilation experiments. An empirical bias correction for precipitation-affected MW radiances is developed based on the statistics of radiance innovations in rainy areas. The data impact is assessed by full data assimilation cycling experiments for a storm event that occurred in France in September 2010. Results show that the assimilation of MW precipitation observations from a satellite constellation mimicking GPM has a positive impact on the accumulated rain forecasts verified with surface radar rain estimates. The case-study on a convective storm also reveals that the accuracy of ensemble-based background error covariance is limited by sampling errors and model errors such as precipitation displacement and unresolved convective scale instability.
Effects of moisture and grain size on the mechanisms of rainsplash transport
NASA Astrophysics Data System (ADS)
Taube, S. R.; Furbish, D. J.
2010-12-01
Desert shrubs accumulate soil mounds beneath their canopies through rainsplash transport. Previous studies of this process have suggested that there is a preferential concentration of smaller grain sizes closer to the base of the shrub, based on the idea that smaller material is more readily splashed inward beneath the shrub. However, our studies have shown that there are two mechanisms of ejection of the grains with moist soil conditions, each preferentially moving either large or small grain sizes. Larger grains tend to be launched from grain-to-grain collisions following drop impact and travel as individual grains. Smaller grains appear to clump together and move as a single large "grain". The medium-sized grains generally had a greater travel distance than the very large or very small grains, potentially because they involve both modes of transport with a greater effective transfer of energy from the raindrop to the grains. The average travel distance is greatest near 100 microns, which is reflected by the data of Leguedois, et al. (2005). Experiments using high-speed imaging reveals that there is a marked difference between the mechanism of transport when the sediment grains are dry versus when they are moist. The dry grains are rapidly deposited about the impact site with a small proportion moving far from the site. However, moist grains tend to clump together to form “blobs” of water and sediment. Immediately after impact, the drop creates a water corona with entrained sediment, which then contracts into water-sediment blobs that are rocketed outwards from the impact, leaving little to no grain mass near the impact site. Varying degrees of moisture content appeared to have little influence on grain dispersal, leading us to believe that once the soil material is moist (but not saturated), its splash behavior is mostly related to details of the drop corona.
Auer, Lucas; Mariadassou, Mahendra; O'Donohue, Michael; Klopp, Christophe; Hernandez-Raquet, Guillermina
2017-11-01
Next-generation sequencing technologies give access to large sets of data, which are extremely useful in the study of microbial diversity based on 16S rRNA gene. However, the production of such large data sets is not only marred by technical biases and sequencing noise but also increases computation time and disc space use. To improve the accuracy of OTU predictions and overcome both computations, storage and noise issues, recent studies and tools suggested removing all single reads and low abundant OTUs, considering them as noise. Although the effect of applying an OTU abundance threshold on α- and β-diversity has been well documented, the consequences of removing single reads have been poorly studied. Here, we test the effect of singleton read filtering (SRF) on microbial community composition using in silico simulated data sets as well as sequencing data from synthetic and real communities displaying different levels of diversity and abundance profiles. Scalability to large data sets is also assessed using a complete MiSeq run. We show that SRF drastically reduces the chimera content and computational time, enabling the analysis of a complete MiSeq run in just a few minutes. Moreover, SRF accurately determines the actual community diversity: the differences in α- and β-community diversity obtained with SRF and standard procedures are much smaller than the intrinsic variability of technical and biological replicates. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Niu, Xiaojie; Sun, Shiyan; Wang, Fujun; Jia, Xiangfu
2017-08-01
The effect of final-state dynamic correlation is investigated for helium single ionization by 75-keV proton impact analyzing fully differential cross sections (FDCS). The final state is represented by a continuum correlated wave (CCW-PT) function which accounts for the interaction between the projectile and the residual target ion (PT interaction). This continuum correlated wave function partially includes the correlation of electron-projectile and electron-target relative motion as coupling terms of the wave equation. The transition matrix is evaluated using the CCW-PT function and the Born initial state. The analytical expression of the transition matrix has been obtained. We have shown that this series is strongly convergent and analyzed the contribution of their different terms to the FDCS within the perturbation method. Illustrative computations are performed in the scattering plane and in the perpendicular plane. Both the correlation effects and the PT interaction are checked by the preset calculations. Our results are compared with absolute experimental data as well as other theoretical models. We have shown that the dynamic correlation plays an important role in the single ionization of atoms by proton impact at intermediate projectile energies, especially at large transverse momentum transfer. While overall agreement between theory and the experimental data is encouraging, detailed agreement is lacking. The need for more theoretical and experimental work is emphasized.
Addessio, Francis L.; Luscher, Darby Jon; Cawkwell, Marc Jon; ...
2017-05-14
A continuum model for the high-rate, thermo-mechanical deformation of single-crystal cyclotrimethylene trinitramine (RDX) is developed. The model includes the effects of anisotropy, large deformations, nonlinear thermo-elasticity, phase transformations, and plastic slip. A multiplicative decomposition of the deformation gradient is used. The volumetric elastic component of the deformation is accounted for through a free-energy based equation of state for the low- (α) and high-pressure (γ) polymorphs of RDX. Crystal plasticity is addressed using a phenomenological thermal activation model. The deformation gradient for the phase transformation is based on an approach that has been applied to martensitic transformations. Simulations were conducted andmore » compared to high-rate, impact loading of oriented RDX single crystals. The simulations considered multiple orientations of the crystal relative to the direction of shock loading and multiple sample thicknesses. Thirteen slip systems, which were inferred from indentation and x-ray topography, were used to model the α-polymorph. It is shown that by increasing the number of slip systems from the previously considered number of six (6) to thirteen (13) in the α-polymorph, better comparisons with data may be obtained. Simulations of impact conditions in the vicinity of the α- to γ-polymorph transformation (3.8 GPa) are considered. Eleven of the simulations, which were at pressures below the transformation value (3.0 GPa), were compared to experimental data. Comparison of the model was also made with available data for one experiment above the transformation pressure (4.4 GPa). Also, simulations are provided for a nominal pressure of 7.5 GPa to demonstrate the effect of the transformation kinetics on the deformation of a high-rate plate impact problem.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addessio, Francis L.; Luscher, Darby Jon; Cawkwell, Marc Jon
A continuum model for the high-rate, thermo-mechanical deformation of single-crystal cyclotrimethylene trinitramine (RDX) is developed. The model includes the effects of anisotropy, large deformations, nonlinear thermo-elasticity, phase transformations, and plastic slip. A multiplicative decomposition of the deformation gradient is used. The volumetric elastic component of the deformation is accounted for through a free-energy based equation of state for the low- (α) and high-pressure (γ) polymorphs of RDX. Crystal plasticity is addressed using a phenomenological thermal activation model. The deformation gradient for the phase transformation is based on an approach that has been applied to martensitic transformations. Simulations were conducted andmore » compared to high-rate, impact loading of oriented RDX single crystals. The simulations considered multiple orientations of the crystal relative to the direction of shock loading and multiple sample thicknesses. Thirteen slip systems, which were inferred from indentation and x-ray topography, were used to model the α-polymorph. It is shown that by increasing the number of slip systems from the previously considered number of six (6) to thirteen (13) in the α-polymorph, better comparisons with data may be obtained. Simulations of impact conditions in the vicinity of the α- to γ-polymorph transformation (3.8 GPa) are considered. Eleven of the simulations, which were at pressures below the transformation value (3.0 GPa), were compared to experimental data. Comparison of the model was also made with available data for one experiment above the transformation pressure (4.4 GPa). Also, simulations are provided for a nominal pressure of 7.5 GPa to demonstrate the effect of the transformation kinetics on the deformation of a high-rate plate impact problem.« less
NASA Astrophysics Data System (ADS)
Hood, Lon L.
2011-02-01
A re-examination of all available low-altitude LP magnetometer data confirms that magnetic anomalies are present in at least four Nectarian-aged lunar basins: Moscoviense, Mendel-Rydberg, Humboldtianum, and Crisium. In three of the four cases, a single main anomaly is present near the basin center while, in the case of Crisium, anomalies are distributed in a semi-circular arc about the basin center. These distributions, together with a lack of other anomalies near the basins, indicate that the sources of the anomalies are genetically associated with the respective basin-forming events. These central basin anomalies are difficult to attribute to shock remanent magnetization of a shocked central uplift and most probably imply thermoremanent magnetization of impact melt rocks in a steady magnetizing field. Iterative forward modeling of the single strongest and most isolated anomaly, the northern Crisium anomaly, yields a paleomagnetic pole position at 81° ± 19°N, 143° ± 31°E, not far from the present rotational pole. Assuming no significant true polar wander since the Crisium impact, this position is consistent with that expected for a core dynamo magnetizing field. Further iterative forward modeling demonstrates that the remaining Crisium anomalies can be approximately simulated assuming a multiple source model with a single magnetization direction equal to that inferred for the northernmost anomaly. This result is most consistent with a steady, large-scale magnetizing field. The inferred mean magnetization intensity within the strongest basin sources is ˜1 A/m assuming a 1-km thickness for the source layer. Future low-altitude orbital and surface magnetometer measurements will more strongly constrain the depth and/or thicknesses of the sources.
MacMillan, Freya; Karamacoska, Diana; El Masri, Aymen; McBride, Kate A; Steiner, Genevieve Z; Cook, Amelia; Kolt, Gregory S; Klupp, Nerida; George, Emma S
2017-12-01
To systematically review studies of health promotion intervention in the police force. Four databases were searched for articles reporting on prepost single and multigroup studies in police officers and trainees. Data were extracted and bias assessed to evaluate study characteristics, intervention design and the impact of interventions on health. Database searching identified 25 articles reporting on 21 studies relevant to the aims of this review. Few studies (n=3) were of long duration (≥6 months). Nine of 21 studies evaluated structured physical activity and/or diet programmes only, 5 studies used education and behaviour change support-only interventions, 5 combined structured programmes with education and behaviour change support, and 2 studies used computer prompts to minimise sedentary behaviour. A wide array of lifestyle behaviour and health outcomes was measured, with 11/13 multigroup and 8/8 single-group studies reporting beneficial impacts on outcomes. High risk of bias was evident across most studies. In those with the lowest risk of bias (n=2), a large effect on blood pressure and small effects on diet, sleep quality, stress and tobacco use, were reported. Health promotion interventions can impact beneficially on health of the police force, particularly blood pressure, diet, sleep, stress and tobacco use. Limited reporting made comparison of findings challenging. Combined structured programmes with education and behaviour change support and programmes including peer support resulted in the most impact on health-related outcomes. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hai; Zhang, Youjin, E-mail: zyj@ustc.edu.cn; Zhou, Maozhong
Highlights: • Gd(OH){sub 3} large single crystals were prepared by solid KOH assisted hydrothermal method. • The possible growth mechanism of Gd(OH){sub 3} large single crystals was proposed. • The Gd(OH){sub 3} samples emitted a strong narrow-band ultraviolet B (NB-UVB) light. • The Gd(OH){sub 3} samples showed good paramagnetic properties. - Abstract: Large single crystals of gadolinium hydroxide [Gd(OH){sub 3}] in the length of several millimeters were successfully prepared by using solid KOH assisted hydrothermal method. Gd(OH){sub 3} samples were characterized by X-ray diffraction (XRD), 4-circle single-crystal diffraction, Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). FESEM imagemore » shows hexagonal prism morphology for the Gd(OH){sub 3} large crystals. The possible growth mechanism of Gd(OH){sub 3} large single crystals was proposed. The photoluminescence and magnetic properties of Gd(OH){sub 3} species were investigated.« less
Marcus, Hani J.; Seneci, Carlo A.; Hughes-Hallett, Archie; Cundy, Thomas P.; Nandi, Dipankar; Yang, Guang-Zhong; Darzi, Ara
2015-01-01
Background. Surgical approaches such as transanal endoscopic microsurgery, which utilize small operative working spaces, and are necessarily single-port, are particularly demanding with standard instruments and have not been widely adopted. The aim of this study was to compare simultaneously surgical performance in single-port versus multiport approaches, and small versus large working spaces. Methods. Ten novice, 4 intermediate, and 1 expert surgeons were recruited from a university hospital. A preclinical randomized crossover study design was implemented, comparing performance under the following conditions: (1) multiport approach and large working space, (2) multiport approach and intermediate working space, (3) single-port approach and large working space, (4) single-port approach and intermediate working space, and (5) single-port approach and small working space. In each case, participants performed a peg transfer and pattern cutting tasks, and each task repetition was scored. Results. Intermediate and expert surgeons performed significantly better than novices in all conditions (P < .05). Performance in single-port surgery was significantly worse than multiport surgery (P < .01). In multiport surgery, there was a nonsignificant trend toward worsened performance in the intermediate versus large working space. In single-port surgery, there was a converse trend; performances in the intermediate and small working spaces were significantly better than in the large working space. Conclusions. Single-port approaches were significantly more technically challenging than multiport approaches, possibly reflecting loss of instrument triangulation. Surprisingly, in single-port approaches, in which triangulation was no longer a factor, performance in large working spaces was worse than in intermediate and small working spaces. PMID:26464468
Beta decay rates of neutron-rich nuclei
NASA Astrophysics Data System (ADS)
Marketin, Tomislav; Huther, Lutz; Martínez-Pinedo, Gabriel
2015-10-01
Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. Currently, a single large-scale calculation is available based on a QRPA calculation with a schematic interaction on top of the Finite Range Droplet Model. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei.
Olivines and olivine coronas in mesosiderites
NASA Technical Reports Server (NTRS)
Nehru, C. E.; Zucker, S. M.; Harlow, G. E.; Prinz, M.
1980-01-01
The paper presents a study of olivines and their surrounding coronas in mesosiderites texturally and compositionally using optical and microprobe methods. Olivine composition ranges from Fo(58-92) and shows no consistent pattern of distribution within and between mesosiderites; olivine occurs as large single crystals or as partially recrystallized mineral clasts, except for two lithic clasts. These are Emery and Vaca Muerta, and both are shock-modified olivine orthopyroxenites. Fine-grained coronas surround olivine, except for those in impact-melt group mesosiderites and those without tridymite in their matrices. Coronas consist largely of orthopyroxene, plagioclase, clinopyroxene, chromite, merillite, and ilmenite, and are similar to the matrix, but lack metal and tridymite. Texturally the innermost parts of the corona can be divided into three stages of development: (1) radiating acicular, (2) intermediate, and (3) granular.
NASA Astrophysics Data System (ADS)
Fitzgerald, Michael; McKinnon, David H.; Danaia, Lena; Deehan, James
2016-12-01
In this paper, we present the results from a study of the impact on students involved in a large-scale inquiry-based astronomical high school education intervention in Australia. Students in this intervention were led through an educational design allowing them to undertake an investigative approach to understanding the lifecycle of stars more aligned with the `ideal' picture of school science. Through the use of two instruments, one focused on content knowledge gains and the other on student views of school science, we explore the impact of this design. Overall, students made moderate content knowledge gains although these gains were heavily dependent on the individual teacher, the number of times a teacher implemented and the depth to which an individual teacher went with the provided materials. In terms of students' views, there were significant global changes in their views of their experience of the science classroom. However, there were some areas where no change or slightly negative changes of which some were expected and some were not. From these results, we comment on the necessity of sustained long-period implementations rather than single interventions, the requirement for similarly sustained professional development and the importance of monitoring the impact of inquiry-based implementations. This is especially important as inquiry-based approaches to science are required by many new curriculum reforms, most notably in this context, the new Australian curriculum currently being rolled out.
Rapid acquisition of mean Raman spectra of eukaryotic cells for a robust single cell classification.
Schie, Iwan W; Kiselev, Roman; Krafft, Christoph; Popp, Jürgen
2016-11-14
Raman spectroscopy has previously been used to identify eukaryotic and prokaryotic cells. While prokaryotic cells are small in size and can be assessed by a single Raman spectrum, the larger size of eukaryotic cells and their complex organization requires the acquisition of multiple Raman spectra to properly characterize them. A Raman spectrum from a diffraction-limited spot at an arbitrary location within a cell results in spectral variations that affect classification approaches. To probe whole cells with Raman imaging at high spatial resolution is time consuming, because a large number of Raman spectra need to be collected, resulting in low cell throughput and impairing statistical analysis due to low cell numbers. Here we propose a method to overcome the effects of cellular heterogeneity by acquiring integrated Raman spectra covering a large portion of a cell. The acquired spectrum represents the mean macromolecular composition of a cell with an exposure time that is comparable to acquisition of a single Raman spectrum. Data sets were collected from T lymphocyte Jurkat cells, and pancreatic cell lines Capan1 and MiaPaca2. Cell classification by support vector machines was compared for single spectra, spectra of images and integrated Raman spectra of cells. The integrated approach provides better and more stable prediction for individual cells, and in the current implementation, the mean macromolecular information of a cell can be acquired faster than with the acquisition of individual spectra from a comparable region. It is expected that this approach will have a major impact on the implementation of Raman based cell classification.
Near-Earth object hazardous impact: A Multi-Criteria Decision Making approach.
Sánchez-Lozano, J M; Fernández-Martínez, M
2016-11-16
The impact of a near-Earth object (NEO) may release large amounts of energy and cause serious damage. Several NEO hazard studies conducted over the past few years provide forecasts, impact probabilities and assessment ratings, such as the Torino and Palermo scales. These high-risk NEO assessments involve several criteria, including impact energy, mass, and absolute magnitude. The main objective of this paper is to provide the first Multi-Criteria Decision Making (MCDM) approach to classify hazardous NEOs. Our approach applies a combination of two methods from a widely utilized decision making theory. Specifically, the Analytic Hierarchy Process (AHP) methodology is employed to determine the criteria weights, which influence the decision making, and the Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) is used to obtain a ranking of alternatives (potentially hazardous NEOs). In addition, NEO datasets provided by the NASA Near-Earth Object Program are utilized. This approach allows the classification of NEOs by descending order of their TOPSIS ratio, a single quantity that contains all of the relevant information for each object.
Hole-phonon coupling effect on the band dispersion of organic molecular semiconductors.
Bussolotti, F; Yang, J; Yamaguchi, T; Yonezawa, K; Sato, K; Matsunami, M; Tanaka, K; Nakayama, Y; Ishii, H; Ueno, N; Kera, S
2017-08-02
The dynamic interaction between the traveling charges and the molecular vibrations is critical for the charge transport in organic semiconductors. However, a direct evidence of the expected impact of the charge-phonon coupling on the band dispersion of organic semiconductors is yet to be provided. Here, we report on the electronic properties of rubrene single crystal as investigated by angle resolved ultraviolet photoelectron spectroscopy. A gap opening and kink-like features in the rubrene electronic band dispersion are observed. In particular, the latter results in a large enhancement of the hole effective mass (> 1.4), well above the limit of the theoretical estimations. The results are consistent with the expected modifications of the band structures in organic semiconductors as introduced by hole-phonon coupling effects and represent an important experimental step toward the understanding of the charge localization phenomena in organic materials.The charge transport properties in organic semiconductors are affected by the impact of molecular vibrations, yet it has been challenging to quantify them to date. Here, Bussolotti et al. provide direct experimental evidence on the band dispersion modified by molecular vibrations in a rubrene single crystal.
Global mortality from storm surges is decreasing
NASA Astrophysics Data System (ADS)
Bouwer, Laurens M.; Jonkman, Sebastiaan N.
2018-01-01
Changes in society’s vulnerability to natural hazards are important to understand, as they determine current and future risks, and the need to improve protection. Very large impacts including high numbers of fatalities occur due to single storm surge flood events. Here, we report on impacts of global coastal storm surge events since the year 1900, based on a compilation of events and data on loss of life. We find that over the past, more than eight thousand people are killed and 1.5 million people are affected annually by storm surges. The occurrence of very substantial loss of life (>10 000 persons) from single events has however decreased over time. Moreover, there is a consistent decrease in event mortality, measured by the fraction of exposed people that are killed, for all global regions, except South East Asia. Average mortality for storm surges is slightly higher than for river floods, but lower than for flash floods. We also find that for the same coastal surge water level, mortality has decreased over time. This indicates that risk reduction efforts have been successful, but need to be continued with projected climate change, increased rates of sea-level rise and urbanisation in coastal zones.
Recombination activity of threading dislocations in GaInP influenced by growth temperature
NASA Astrophysics Data System (ADS)
Mukherjee, K.; Reilly, C. H.; Callahan, P. G.; Seward, G. G. E.
2018-04-01
Room-temperature non-radiative recombination is studied at single dislocations in Ga0.5In0.5P quantum wells grown on metamorphic templates using cathodoluminescence and electron channeling contrast imaging. An analysis of the light emission intensity profiles around single dislocations reveals that the average recombination strength of a dislocation decreases by a factor of four and seven as a result of decreasing growth temperature of the GaInP quantum well from 725 to 675 and 625 °C, respectively. This reduction occurs despite little change in the diffusion length, precluding the prospect of inducing carrier localization by ordering and phase separation in GaInP at lower growth temperatures. These observations are rationalized by the premise that point defects or impurities are largely responsible for the recombination activity of dislocations, and the extent of decoration of the dislocation core decreases with temperature. Preliminary evidence for the impact of the Burgers vector is also presented. The lowest growth temperature, however, negatively impacts light emission away from dislocations. Carrier recombination in the bulk and at dislocations needs to be considered together for metamorphic devices, and this work can lead to new techniques to limit non-radiative recombination.
Impact of Tropopause Structures on Deep Convective Transport Observed during MACPEX
NASA Astrophysics Data System (ADS)
Mullendore, G. L.; Bigelbach, B. C.; Christensen, L. E.; Maddox, E.; Pinkney, K.; Wagner, S.
2016-12-01
Deep convection is the most efficient method of transporting boundary layer mass to the upper troposphere and stratosphere (UTLS). The Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) was conducted during April of 2011 over the central U.S. With a focus on cirrus clouds, the campaign flights often sampled large cirrus anvils downstream from deep convection and included an extensive observational suite of chemical measurements on a high altitude aircraft. As double-tropopause structures are a common feature in the central U.S. during the springtime, the MACPEX campaign provides a good opportunity to gather cases of deep convective transport in the context of both single and double tropopause structures. Sampling of chemical plumes well downstream from convection allows for sampling in relatively quiescent conditions and analysis of irreversible transport. The analysis presented includes multiple methods to assess air mass source and possible convective processing, including back trajectories and ratios of chemical concentrations. Although missions were flown downstream of deep convection, recent processing by convection does not seem likely in all cases that high altitude carbon monoxide plumes were observed. Additionally, the impact of single and double tropopause structures on deep convective transport is shown to be strongly dependent on high stability layers.
Gutt, Julian; Bertler, Nancy; Bracegirdle, Thomas J; Buschmann, Alexander; Comiso, Josefino; Hosie, Graham; Isla, Enrique; Schloss, Irene R; Smith, Craig R; Tournadre, Jean; Xavier, José C
2015-04-01
A quantitative assessment of observed and projected environmental changes in the Southern Ocean (SO) with a potential impact on the marine ecosystem shows: (i) large proportions of the SO are and will be affected by one or more climate change processes; areas projected to be affected in the future are larger than areas that are already under environmental stress, (ii) areas affected by changes in sea-ice in the past and likely in the future are much larger than areas affected by ocean warming. The smallest areas (<1% area of the SO) are affected by glacier retreat and warming in the deeper euphotic layer. In the future, decrease in the sea-ice is expected to be widespread. Changes in iceberg impact resulting from further collapse of ice-shelves can potentially affect large parts of shelf and ephemerally in the off-shore regions. However, aragonite undersaturation (acidification) might become one of the biggest problems for the Antarctic marine ecosystem by affecting almost the entire SO. Direct and indirect impacts of various environmental changes to the three major habitats, sea-ice, pelagic and benthos and their biota are complex. The areas affected by environmental stressors range from 33% of the SO for a single stressor, 11% for two and 2% for three, to <1% for four and five overlapping factors. In the future, areas expected to be affected by 2 and 3 overlapping factors are equally large, including potential iceberg changes, and together cover almost 86% of the SO ecosystem. © 2014 John Wiley & Sons Ltd.
Large infrequently operated river diversions for Mississippi delta restoration
NASA Astrophysics Data System (ADS)
Day, John W.; Lane, Robert R.; D'Elia, Christopher F.; Wiegman, Adrian R. H.; Rutherford, Jeffrey S.; Shaffer, Gary P.; Brantley, Christopher G.; Kemp, G. Paul
2016-12-01
Currently the Mississippi delta stands as a highly degraded and threatened coastal ecosystem having lost about 25% of coastal wetlands during the 20th century. To address this problem, a 50 billion, 50-year restoration program is underway. A central component of this program is reintroduction of river water back into the deltaic plain to mimic natural functioning of the delta. However, opposition to diversions has developed based on a number of perceived threats. These include over-freshening of coastal estuaries, displacement of fisheries, perceived water quality problems, and assertions that nutrients in river water leads to wetland deterioration. In addition, growing climate impacts and increasing scarcity and cost of energy will make coastal restoration more challenging and limit restoration options. We address these issues in the context of an analysis of natural and artificial diversions, crevasse splays, and small sub-delta lobes. We suggest that episodic large diversions and crevasses (>5000 m3 s-1) can build land quickly while having transient impacts on the estuarine system. Small diversions (<200 m3 s-1) that are more or less continuously operated build land slowly and can lead to over-freshening and water level stress. We use land building rates for different sized diversions and impacts of large periodic inputs of river water to coastal systems in the Mississippi delta to conclude that high discharge diversions operated episodically will lead to rapid coastal restoration and alleviate concerns about diversions. Single diversion events have deposited sediments up to 40 cm in depth over areas up to 130-180 km2. This approach should have broad applicability to deltas globally.
Liu, Jinsong; Viverette, Todd; Virgin, Marlin; Anderson, Mitch; Paresh, Dalal
2005-01-01
The objective of this study was to evaluate the impact of freezing on the lyophilization of a concentrated formulation with a high fill depth. A model system consisting of a 15-mL fill of 15% (w/w) sulfobutylether 7-beta-cyclodextrin (SBECD) solution in a 30-mL vial was selected for this study. Various freezing methods including single-step freezing, two-step freezing with a super-cooling holding, annealing, vacuum-induced freezing, changing ice habit using tert-butyl-alcohol (TBA), ice nucleation with silver iodide (AgI), as well as combinations of some of the methods, were used in the lyophilization of this model system. This work demonstrated that the freezing process had a significant impact on primary drying rate and product quality of a concentrated formulation with a high fill depth. Annealing, vacuum-induced freezing, and addition of either TBA or an ice nucleating agent (AgI) to the formulation accelerated the subsequent ice sublimation process. Two-step freezing or addition of TBA improved the product quality by eliminating vertical heterogeneity within the cake. The combination of two-step freezing in conjunction with an annealing step was shown to be a method of choice for freezing in the lyophilization of a product with a high fill depth. In addition to being an effective method of freezing, it is most applicable for scaling up. An alternative approach is to add a certain amount of TBA to the formulation, if the TBA-formulation interaction or regulatory concerns can be demonstrated as not being an issue. An evaluation of vial size performed in this study showed that although utilizing large-diameter vials to reduce the fill depth can greatly shorten the cycle time of a single batch, it will substantially decrease the product throughput in a large-scale freeze-dryer.
The environmental impact of wind turbine blades
NASA Astrophysics Data System (ADS)
Liu, P.; Barlow, C. Y.
2016-07-01
The first generation of wind turbine (WT) blades are now reaching their end of life, signalling the beginning of a large problem for the future. Currently most waste is sent to landfill, which is not an environmentally desirable solution. Awareness of this issue is rising, but no studies have fully assessed the eco impact of WT blades. The present study aims to provide a macroscopic quantitative assessment of the lifetime environmental impact of WT blades. The first stage has been to analyse global data to calculate the amount of WT blade materials consumed in the past. The life cycle environmental impact of a single WT blade has then been estimated using eco data for raw materials, manufacturing processes, transportation, and operation and maintenance processes. For a typical 45.2 meter 1.5 MW blade this is 795 GJ (CO2 footprint 42.1 tonnes), dominated by manufacturing processes and raw materials (96% of the total. Based on the 2014 installed capacity, the total mass of WTB is 78 kt, their energy consumption is 82 TJ and the carbon dioxide footprint is 4.35 Mt. These figures will provide a basis for suggesting possible solutions to reduce WTB environmental impact.
Computational Modeling of Pathophysiologic Responses to Exercise in Fontan Patients
Kung, Ethan; Perry, James C.; Davis, Christopher; Migliavacca, Francesco; Pennati, Giancarlo; Giardini, Alessandro; Hsia, Tain-Yen; Marsden, Alison
2014-01-01
Reduced exercise capacity is nearly universal among Fontan patients. Although many factors have emerged as possible contributors, the degree to which each impacts the overall hemodynamics is largely unknown. Computational modeling provides a means to test hypotheses of causes of exercise intolerance via precisely controlled virtual experiments and measurements. We quantified the physiological impacts of commonly encountered, clinically relevant dysfunctions introduced to the exercising Fontan system via a previously developed lumped-parameter model of Fontan exercise. Elevated pulmonary arterial pressure was observed in all cases of dysfunction, correlated with lowered cardiac output, and often mediated by elevated atrial pressure. Pulmonary vascular resistance was not the most significant factor affecting exercise performance as measured by cardiac output. In the absence of other dysfunctions, atrioventricular valve insufficiency alone had significant physiological impact, especially under exercise demands. The impact of isolated dysfunctions can be linearly summed to approximate the combined impact of several dysfunctions occurring in the same system. A single dominant cause of exercise intolerance was not identified, though several hypothesized dysfunctions each led to variable decreases in performance. Computational predictions of performance improvement associated with various interventions should be weighed against procedural risks and potential complications, contributing to improvements in routine patient management protocol. PMID:25260878
ERIC Educational Resources Information Center
Callan, Victor J.
1986-01-01
Reports the results of an examination of the impact of a first child on three groups of women: voluntarily childless wives and single women wanting to remain childless; mothers of one child by choice and single women who want an only child; and two-child mothers and single women who want to have two children. (Author/BL)
Dynamic Open-Rotor Composite Shield Impact Test Report
NASA Technical Reports Server (NTRS)
Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Carney, Kelly S.; Emmerling, William C.
2015-01-01
The Federal Aviation Administration (FAA) is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the aircraft. NASA Glenn and Naval Air Warfare Center (NAWC) China Lake collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test a shield that would protect the aircraft passengers and critical systems from a released blade that could impact the fuselage. This report documents the live-fire test from a full-scale rig at NAWC China Lake. NASA provided manpower and photogrammetry expertise to document the impact and damage to the shields. The test was successful: the blade was stopped from penetrating the shield, which validates the design analysis method and the parameters used in the analysis. Additional work is required to implement the shielding into the aircraft.
Relating centrality to impact parameter in nucleus-nucleus collisions
NASA Astrophysics Data System (ADS)
Das, Sruthy Jyothi; Giacalone, Giuliano; Monard, Pierre-Amaury; Ollitrault, Jean-Yves
2018-01-01
In ultrarelativistic heavy-ion experiments, one estimates the centrality of a collision by using a single observable, say n , typically given by the transverse energy or the number of tracks observed in a dedicated detector. The correlation between n and the impact parameter b of the collision is then inferred by fitting a specific model of the collision dynamics, such as the Glauber model, to experimental data. The goal of this paper is to assess precisely which information about b can be extracted from data without any specific model of the collision. Under the sole assumption that the probability distribution of n for a fixed b is Gaussian, we show that the probability distribution of the impact parameter in a narrow centrality bin can be accurately reconstructed up to 5 % centrality. We apply our methodology to data from the Relativistic Heavy Ion Collider and the Large Hadron Collider. We propose a simple measure of the precision of the centrality determination, which can be used to compare different experiments.
Selles, Robert R; Franklin, Martin; Sapyta, Jeffrey; Compton, Scott N; Tommet, Doug; Jones, Richard N; Garcia, Abbe; Freeman, Jennifer
2018-04-01
The present study explored the concept of tolerance for child distress in 46 children (ages 5-8), along with their mothers and fathers, who received family-based CBT for OCD. The study sought to describe baseline tolerance, changes in tolerance with treatment, and the predictive impact of tolerance on symptom improvement. Tolerance was rated by clinicians on a single item and the CY-BOCS was used to measure OCD severity. Descriptive results suggested that all participants had some difficulty tolerating the child's distress at baseline while paired t tests indicated large improvements were made over treatment (d = 1.2-2.0). Fathers' initial tolerance was significantly related to symptom improvement in a multivariate regression as were fathers' and children's changes in distress tolerance over the course of treatment. Overall, results provide support for examining tolerance of child distress including its predictive impact and potential as a supplemental intervention target.
Failure mechanism of resistance-spot-welded specimens impacted on base material by bullets
NASA Astrophysics Data System (ADS)
Fan, Chunlei; Ma, Bohan; Chen, Danian; Wang, Huanran; Ma, Dongfang
2018-01-01
The tests of bullet impact on the base material (BM) of a simple specimen with a single resistance-spot-welded (RSW) nugget of TRIP800 steel are performed to investigate the response of the RSW specimen to the ballistic debris impact on the RSW specimen. A one-stage gas gun is used to fire the bullets while a laser velocity interferometer system for any reflector (VISAR) is used to measure the velocity histories of the free surfaces of the RSW specimen. The recovered RSW specimens are examined with the three-dimensional super depth digital microscope (SDDM) and the scanning electro microscope (SEM). For the tests of small multiple-bullet impact, it is revealed that the wave train of the VISAR measured results and the detachment of the base material interfaces in the recovered RSW specimens are directly related to the reflection and refraction of the curved stress waves incoming to the interfaces and the free surfaces in the RSW specimens. The detachment of BM interfaces can lead to the impact failure of the RSW joints for the larger multiple-bullet impact at higher velocity, the mechanism of which is different from the case for normal incidence (spalling). For the tests of single large bullet impact, it is brought to light experimentally that the plastic strain concentration at the "notch tip" spurs either the crack near the RSW joint or the split of the nugget. The numerical simulation shows up the process of splitting the nugget: a crack initiates at the "notch tip", propagates across the nugget interface and splits the nugget into two parts. It is indicated that the interaction between the stress waves and many interfaces/free surfaces in the RSW specimen under ballistic impact causes variable local stress triaxialities and stress Lode angles, which affects the deformation and fracture mechanism of the RSW specimen including stretching and shearing failure. It is shown that the impact failure of the RSW joints is a mixture of brittle fracture and ductile fracture while the fracture or perforation of the BM is ductile.
Marcus, Hani J; Seneci, Carlo A; Hughes-Hallett, Archie; Cundy, Thomas P; Nandi, Dipankar; Yang, Guang-Zhong; Darzi, Ara
2016-04-01
Surgical approaches such as transanal endoscopic microsurgery, which utilize small operative working spaces, and are necessarily single-port, are particularly demanding with standard instruments and have not been widely adopted. The aim of this study was to compare simultaneously surgical performance in single-port versus multiport approaches, and small versus large working spaces. Ten novice, 4 intermediate, and 1 expert surgeons were recruited from a university hospital. A preclinical randomized crossover study design was implemented, comparing performance under the following conditions: (1) multiport approach and large working space, (2) multiport approach and intermediate working space, (3) single-port approach and large working space, (4) single-port approach and intermediate working space, and (5) single-port approach and small working space. In each case, participants performed a peg transfer and pattern cutting tasks, and each task repetition was scored. Intermediate and expert surgeons performed significantly better than novices in all conditions (P < .05). Performance in single-port surgery was significantly worse than multiport surgery (P < .01). In multiport surgery, there was a nonsignificant trend toward worsened performance in the intermediate versus large working space. In single-port surgery, there was a converse trend; performances in the intermediate and small working spaces were significantly better than in the large working space. Single-port approaches were significantly more technically challenging than multiport approaches, possibly reflecting loss of instrument triangulation. Surprisingly, in single-port approaches, in which triangulation was no longer a factor, performance in large working spaces was worse than in intermediate and small working spaces. © The Author(s) 2015.
Impact simulations on the rubble pile asteroid (2867) Steins
NASA Astrophysics Data System (ADS)
Deller, Jakob; Lowry, Stephen; Snodgrass, Colin; Price, Mark; Sierks, Holger
2015-04-01
Images from the OSIRIS camera system on board the Rosetta spacecraft (Keller et al. 2010) have revealed several interesting features on asteroid (2867) Steins. Its macro porosity of 40%, together with the shape that looks remarkably like a YORP evolved body, both indicate a rubble pile structure. A large crater on the southern pole is evidence for collisional evolution of this rubble pile asteroid. We have developed a new approach for simulating impacts on asteroid bodies that connects formation history to their collisional evolution. This is achieved by representing the interior as a 'rubble pile', created from the gravitational aggregation of spherical 'pebbles' that represent fragments from a major disruption event. These 'pebbles' follow a power-law size function and constitute the building blocks of the rubble pile. This allows us to explicitly model the interior of rubble pile asteroids in hyper-velocity impact simulations in a more realistic way. We present preliminary results of a study validating our approach in a large series of simulated impacts on a typical small main-belt rubble pile asteroid using the Smoothed Particle Hydrodynamics solver in LS-DYNA. We show that this approach allows us to explicitly follow the behavior of a single 'pebble', while preserving the expected properties of the bulk asteroid as known from observations and experiments (Holsapple 2009). On the example of Steins, we use this model to relate surface features like the northern hill at 75/100 degrees lon/lat distance to the largest crater (Jorda et al. 2012), or the catena of depletion pits, to the displacement of large fragments in the interior of the asteroid during the impact. We do this by following the movement of pebbles below the surface feature in simulations that recreate the shape of the impact crater. We show that while it is not straightforward to explain the formation of the hill-like structure, the formation of cracks possibly leading to depletion zones can be observed. References: Keller et al., 2010, Science, 327(5962), pp. 190-193; Jorda et al., 2012, Icarus, vol. 221 (2) pp. 1089-1100; Holsapple, 2009, PSS, 57(2), 127-141.
Impact Simulations on the Rubble Pile Asteroid (2867) Steins
NASA Astrophysics Data System (ADS)
Deller, Jakob; Snodgrass, Colin; Lowry, Stephen C.; Price, Mark C.; Sierks, Holger
2014-11-01
Images from the OSIRIS camera system on board the Rosetta spacecraft (Keller et al. 2010) has revealed several interesting features on asteroid (2867) Steins. Its macro porosity of 40%, together with the shape that looks remarkably like a YORP evolved body, both indicate a rubble pile structure. A large crater on the southern pole is evidence for collisional evolution of this rubble pile asteroid. We have developed a new approach for simulating impacts on asteroid bodies that connects formation history to their collisional evolution. This is achieved by representing the interior as a ‘rubble pile’, created from the gravitational aggregation of spherical ‘pebbles’ that represent fragments from a major disruption event. These ‘pebbles’ follow a power law size function and constitute the building blocks of the rubble pile. This allows us to explicitly model the interior of rubble pile asteroids in hyper-velocity impact simulations in a more realistic way. We present preliminary results of a study validating our approach in a large series of simulated impacts on a typical small main belt rubble pile asteroid using the Smoothed Particle Hydrodynamics solver in Autodyn. We show that this approach allows us to explicitly follow the behavior of a single ‘pebble’, while preserving the expected properties of the bulk asteroid as known from observations and experiments (Holsapple 2009). On the example of Steins, we use this model to investigate if surface features like the northern hill at 75/100 degrees lon/lat distance to the largest crater (Jorda et al. 2012), or the catena of depletion pits, can be explained by the displacement of large fragments in the interior of the asteroid during the impact. We do this by following the movement of pebbles below the surface feature in simulations that recreate the shape of the impact crater.Acknowledgements: Jakob Deller thanks the Planetary Science Institute for a Pierazzo International Student Travel Award that funds his attendance at this conference. References: Keller et al., 2010, Science, 327(5962), pp. 190-193 Jorda et al., 2012, Icarus, vol. 221 (2) pp. 1089-1100; Holsapple, 2009, PSS, 57(2), 127-141.
Ganz, Jennifer B; Earles-Vollrath, Theresa L; Heath, Amy K; Parker, Richard I; Rispoli, Mandy J; Duran, Jaime B
2012-01-01
Many individuals with autism cannot speak or cannot speak intelligibly. A variety of aided augmentative and alternative communication (AAC) approaches have been investigated. Most of the research on these approaches has been single-case research, with small numbers of participants. The purpose of this investigation was to meta-analyze the single case research on the use of aided AAC with individuals with autism spectrum disorders (ASD). Twenty-four single-case studies were analyzed via an effect size measure, the Improvement Rate Difference (IRD). Three research questions were investigated concerning the overall impact of AAC interventions on targeted behavioral outcomes, effects of AAC interventions on individual targeted behavioral outcomes, and effects of three types of AAC interventions. Results indicated that, overall, aided AAC interventions had large effects on targeted behavioral outcomes in individuals with ASD. AAC interventions had positive effects on all of the targeted behavioral outcome; however, effects were greater for communication skills than other categories of skills. Effects of the Picture Exchange Communication System and speech-generating devices were larger than those for other picture-based systems, though picture-based systems did have small effects.
The prevalence of terraced treescapes in analyses of phylogenetic data sets.
Dobrin, Barbara H; Zwickl, Derrick J; Sanderson, Michael J
2018-04-04
The pattern of data availability in a phylogenetic data set may lead to the formation of terraces, collections of equally optimal trees. Terraces can arise in tree space if trees are scored with parsimony or with partitioned, edge-unlinked maximum likelihood. Theory predicts that terraces can be large, but their prevalence in contemporary data sets has never been surveyed. We selected 26 data sets and phylogenetic trees reported in recent literature and investigated the terraces to which the trees would belong, under a common set of inference assumptions. We examined terrace size as a function of the sampling properties of the data sets, including taxon coverage density (the proportion of taxon-by-gene positions with any data present) and a measure of gene sampling "sufficiency". We evaluated each data set in relation to the theoretical minimum gene sampling depth needed to reduce terrace size to a single tree, and explored the impact of the terraces found in replicate trees in bootstrap methods. Terraces were identified in nearly all data sets with taxon coverage densities < 0.90. They were not found, however, in high-coverage-density (i.e., ≥ 0.94) transcriptomic and genomic data sets. The terraces could be very large, and size varied inversely with taxon coverage density and with gene sampling sufficiency. Few data sets achieved a theoretical minimum gene sampling depth needed to reduce terrace size to a single tree. Terraces found during bootstrap resampling reduced overall support. If certain inference assumptions apply, trees estimated from empirical data sets often belong to large terraces of equally optimal trees. Terrace size correlates to data set sampling properties. Data sets seldom include enough genes to reduce terrace size to one tree. When bootstrap replicate trees lie on a terrace, statistical support for phylogenetic hypotheses may be reduced. Although some of the published analyses surveyed were conducted with edge-linked inference models (which do not induce terraces), unlinked models have been used and advocated. The present study describes the potential impact of that inference assumption on phylogenetic inference in the context of the kinds of multigene data sets now widely assembled for large-scale tree construction.
Chen, Yani; He, Minhong; Peng, Jiajun; Sun, Yong
2016-01-01
Recently, organic–inorganic halide perovskites have sparked tremendous research interest because of their ground‐breaking photovoltaic performance. The crystallization process and crystal shape of perovskites have striking impacts on their optoelectronic properties. Polycrystalline films and single crystals are two main forms of perovskites. Currently, perovskite thin films have been under intensive investigation while studies of perovskite single crystals are just in their infancy. This review article is concentrated upon the control of perovskite structures and growth, which are intimately correlated for improvements of not only solar cells but also light‐emitting diodes, lasers, and photodetectors. We begin with the survey of the film formation process of perovskites including deposition methods and morphological optimization avenues. Strategies such as the use of additives, thermal annealing, solvent annealing, atmospheric control, and solvent engineering have been successfully employed to yield high‐quality perovskite films. Next, we turn to summarize the shape evolution of perovskites single crystals from three‐dimensional large sized single crystals, two‐dimensional nanoplates, one‐dimensional nanowires, to zero‐dimensional quantum dots. Siginificant functions of perovskites single crystals are highlighted, which benefit fundamental studies of intrinsic photophysics. Then, the growth mechanisms of the previously mentioned perovskite crystals are unveiled. Lastly, perspectives for structure and growth control of perovskites are outlined towards high‐performance (opto)electronic devices. PMID:27812463
NASA Astrophysics Data System (ADS)
Béthermin, Matthieu; Wu, Hao-Yi; Lagache, Guilaine; Davidzon, Iary; Ponthieu, Nicolas; Cousin, Morgane; Wang, Lingyu; Doré, Olivier; Daddi, Emanuele; Lapi, Andrea
2017-11-01
Follow-up observations at high-angular resolution of bright submillimeter galaxies selected from deep extragalactic surveys have shown that the single-dish sources are comprised of a blend of several galaxies. Consequently, number counts derived from low- and high-angular-resolution observations are in tension. This demonstrates the importance of resolution effects at these wavelengths and the need for realistic simulations to explore them. We built a new 2 deg2 simulation of the extragalactic sky from the far-infrared to the submillimeter. It is based on an updated version of the 2SFM (two star-formation modes) galaxy evolution model. Using global galaxy properties generated by this model, we used an abundance-matching technique to populate a dark-matter lightcone and thus simulate the clustering. We produced maps from this simulation and extracted the sources, and we show that the limited angular resolution of single-dish instruments has a strong impact on (sub)millimeter continuum observations. Taking into account these resolution effects, we are reproducing a large set of observables, as number counts and their evolution with redshift and cosmic infrared background power spectra. Our simulation consistently describes the number counts from single-dish telescopes and interferometers. In particular, at 350 and 500 μm, we find that the number counts measured by Herschel between 5 and 50 mJy are biased towards high values by a factor 2, and that the redshift distributions are biased towards low redshifts. We also show that the clustering has an important impact on the Herschel pixel histogram used to derive number counts from P(D) analysis. We find that the brightest galaxy in the beam of a 500 μm Herschel source contributes on average to only 60% of the Herschel flux density, but that this number will rise to 95% for future millimeter surveys on 30 m-class telescopes (e.g., NIKA2 at IRAM). Finally, we show that the large number density of red Herschel sources found in observations but not in models might be an observational artifact caused by the combination of noise, resolution effects, and the steepness of color- and flux density distributions. Our simulation, called Simulated Infrared Dusty Extragalactic Sky (SIDES), is publicly available. Our simulation Simulated Infrared Dusty Extragalactic Sky (SIDES) is available at http://cesam.lam.fr/sides.
Steichen, Clara; Maluenda, Jérôme; Tosca, Lucie; Luce, Eléanor; Pineau, Dominique; Dianat, Noushin; Hannoun, Zara; Tachdjian, Gérard; Melki, Judith
2015-01-01
Human induced pluripotent stem cells (hiPSCs) hold great promise for cell therapy through their use as vital tools for regenerative and personalized medicine. However, the genomic integrity of hiPSCs still raises some concern and is one of the barriers limiting their use in clinical applications. Numerous articles have reported the occurrence of aneuploidies, copy number variations, or single point mutations in hiPSCs, and nonintegrative reprogramming strategies have been developed to minimize the impact of the reprogramming process on the hiPSC genome. Here, we report the characterization of an hiPSC line generated by daily transfections of modified messenger RNAs, displaying several genomic abnormalities. Karyotype analysis showed a complex genomic rearrangement, which remained stable during long-term culture. Fluorescent in situ hybridization analyses were performed on the hiPSC line showing that this karyotype is balanced. Interestingly, single-nucleotide polymorphism analysis revealed the presence of a large 1q region of uniparental disomy (UPD), demonstrating for the first time that UPD can occur in a noncompensatory context during nonintegrative reprogramming of normal fibroblasts. PMID:25650439
NASA Astrophysics Data System (ADS)
Sweeney, C.; Kort, E. A.; Rella, C.; Conley, S. A.; Karion, A.; Lauvaux, T.; Frankenberg, C.
2015-12-01
Along with a boom in oil and natural gas production in the US, there has been a substantial effort to understand the true environmental impact of these operations on air and water quality, as well asnet radiation balance. This multi-institution effort funded by both governmental and non-governmental agencies has provided a case study for identification and verification of emissions using a multi-scale, top-down approach. This approach leverages a combination of remote sensing to identify areas that need specific focus and airborne in-situ measurements to quantify both regional and large- to mid-size single-point emitters. Ground-based networks of mobile and stationary measurements provide the bottom tier of measurements from which process-level information can be gathered to better understand the specific sources and temporal distribution of the emitters. The motivation for this type of approach is largely driven by recent work in the Barnett Shale region in Texas as well as the San Juan Basin in New Mexico and Colorado; these studies suggest that relatively few single-point emitters dominate the regional emissions of CH4.
NASA Astrophysics Data System (ADS)
Li, Xi-Bing; Wang, Ze-Wei; Dong, Long-Jun
2016-01-01
Microseismic monitoring systems using local location techniques tend to be timely, automatic and stable. One basic requirement of these systems is the automatic picking of arrival times. However, arrival times generated by automated techniques always contain large picking errors (LPEs), which may make the location solution unreliable and cause the integrated system to be unstable. To overcome the LPE issue, we propose the virtual field optimization method (VFOM) for locating single-point sources. In contrast to existing approaches, the VFOM optimizes a continuous and virtually established objective function to search the space for the common intersection of the hyperboloids, which is determined by sensor pairs other than the least residual between the model-calculated and measured arrivals. The results of numerical examples and in-site blasts show that the VFOM can obtain more precise and stable solutions than traditional methods when the input data contain LPEs. Furthermore, we discuss the impact of LPEs on objective functions to determine the LPE-tolerant mechanism, velocity sensitivity and stopping criteria of the VFOM. The proposed method is also capable of locating acoustic sources using passive techniques such as passive sonar detection and acoustic emission.
The Best of Two Worlds: ALMA + IRAM30M Observations of the Orion Integral Shape Filament
NASA Astrophysics Data System (ADS)
Hacar Gonzalez, Alvaro
2018-01-01
We have investigated the internal gas structure of the Orion Integral Shape filament using two large-scale, 150-pointing ALMA-12m mosaics and previous IRAM30m single-dish (SD) observations. From the combination of both single-dish and interferometric data we have produced a high-dynamic range and high-sensitivity map describing the internal gas structure of this filament at scales between 2 pc and 2000 AU (Hacar et al, submitted to A&A). In a series of individual CASA reductions (w/o SD data + w/o feathering), we have investigated the impact of the different uv-coverages on both the total flux and line velocity structure of our ALMA maps. Our analysis highlights the critical role played by the zero-spacing data at the different stages of the cleaning process. The results of these ALMA+IRAM30m experiments emphasize the need of high-sensitivity SD observations for the analysis of large-scale interferometric maps. During my talk, I will discuss the implications of these experiments on the dawn of the ALMA era and in the context of the new AtLAST telescope.
Data Publications Correlate with Citation Impact.
Leitner, Florian; Bielza, Concha; Hill, Sean L; Larrañaga, Pedro
2016-01-01
Neuroscience and molecular biology have been generating large datasets over the past years that are reshaping how research is being conducted. In their wake, open data sharing has been singled out as a major challenge for the future of research. We conducted a comparative study of citations of data publications in both fields, showing that the average publication tagged with a data-related term by the NCBI MeSH (Medical Subject Headings) curators achieves a significantly larger citation impact than the average in either field. We introduce a new metric, the data article citation index (DAC-index), to identify the most prolific authors among those data-related publications. The study is fully reproducible from an executable Rmd (R Markdown) script together with all the citation datasets. We hope these results can encourage authors to more openly publish their data.
Geological implications of impacts of large asteroids and comets on the earth
NASA Technical Reports Server (NTRS)
Silver, L. T. (Editor); Schultz, P. H. (Editor)
1982-01-01
The present conference discusses such topics as large object fluxes in near-earth space and the probabilities of terrestrial impacts, the geological record of impacts, dynamics modeling for large body impacts on continents and oceans, physical, chemical, and biological models of large impacts' atmospheric effects, dispersed impact ejecta and their signatures, general considerations concerning mass biological extinctions, the Cretaceous/Tertiary boundary event, geochemical signatures in the stratigraphic record, and other phanerozoic events. Attention is given to terrestrial impact rates for long- and short-period comets, estimates of crater size for large body impact, a first-order estimate of shock heating and vaporization in oceanic impacts, atmospheric effects in the first few minutes after an impact, a feasibility test for biogeographic extinction, and the planktonic and dinosaur extinctions.
Low-energy electron-impact single ionization of helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colgan, J.; Pindzola, M. S.; Childers, G.
2006-04-15
A study is made of low-energy electron-impact single ionization of ground-state helium. The time-dependent close-coupling method is used to calculate total integral, single differential, double differential, and triple differential ionization cross sections for impact electron energies ranging from 32 to 45 eV. For all quantities, the calculated cross sections are found to be in very good agreement with experiment, and for the triple differential cross sections, good agreement is also found with calculations made using the convergent close-coupling technique.
Study of wind retrieval from space-borne infrared coherent lidar in cloudy atmosphere.
NASA Astrophysics Data System (ADS)
Baron, Philippe; Ishii, Shoken; Mizutani, Kohei; Okamoto, Kozo; Ochiai, Satoshi
2015-04-01
Future spaceborne tropospheric wind missions using infrared coherent lidar are currently being studied in Japan and in the United States [1,2]. The line-of-sight wind velocity is retrieved from the Doppler shift frequency of the signal returned by aerosol particles. However a large percentage (70-80%) of the measured single-shot intensity profiles are expected to be contaminated by clouds [3]. A large number of cloud contaminated profiles (>40%) will be characterized by a cloud-top signal intensity stronger than the aerosol signal by a factor of one order of magnitude, and by a strong attenuation of the signal backscattered from below the clouds. Profiles including more than one cloud layer are also expected. This work is a simulation study dealing with the impacts of clouds on wind retrieval. We focus on the three following points: 1) definition of an algorithm for optimizing the wind retrieval from the cloud-top signal, 2) assessment of the clouds impact on the measurement performance and, 3) definition of a method for averaging the measurements before the retrieval. The retrieval simulations are conducted considering the instrumental characteristics selected for the Japanese study: wavelength at 2 µm, PRF of 30 Hz, pulse power of 0.125 mJ and platform altitude between 200-400 km. Liquid and ice clouds are considered. The analysis uses data from atmospheric models and statistics of cloud effects derived from CALIPSO measurements such as in [3]. A special focus is put on the average method of the measurements before retrieval. Good retrievals in the mid-upper troposphere implie the average of measured single-range power spectra over large horizontal (100 km) and vertical (1 km) ranges. Large differences of signal intensities due to the presence of clouds and the clouds non-uniform distribution have to be taken into account when averaging the data to optimize the measurement performances. References: [1] S. Ishii, T. Iwasaki, M. Sato, R. Oki, K. Okamoto, T. Ishibashi, P. Baron, and T. Nishizawa: Future Doppler lidar wind measurement from space in Japan, Proc. of SPIE Vol. 8529, 2012 [2] D. Wu, J. Tang, Z. Liu, and Y. Hu: Simulation of coherent doppler wind lidar measurement from space based on CALIPSO lidar global aerosol observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 122(0), 79-86, 2013 [3] G.D Emmitt: CFLOS and cloud statistics from satellite and their impact on future space-based Doppler Wind Lidar development. Symposium on Recent Developments in Atmospheric Applications of Radar and Lidar, 2008
Ecological networks to unravel the routes to horizontal transposon transfers.
Venner, Samuel; Miele, Vincent; Terzian, Christophe; Biémont, Christian; Daubin, Vincent; Feschotte, Cédric; Pontier, Dominique
2017-02-01
Transposable elements (TEs) represent the single largest component of numerous eukaryotic genomes, and their activity and dispersal constitute an important force fostering evolutionary innovation. The horizontal transfer of TEs (HTT) between eukaryotic species is a common and widespread phenomenon that has had a profound impact on TE dynamics and, consequently, on the evolutionary trajectory of many species' lineages. However, the mechanisms promoting HTT remain largely unknown. In this article, we argue that network theory combined with functional ecology provides a robust conceptual framework and tools to delineate how complex interactions between diverse organisms may act in synergy to promote HTTs.
The antipsychotic landscape: dopamine and beyond.
Morrison, Paul D; Murray, Robin M
2018-04-01
Until recently, the actions of antipsychotic and pro-psychotic drugs have largely been evaluated in the framework of neuronal doctrine - namely, that neurons communicate by releasing transmitters, and that psychiatric disorders are caused by neurotransmitter imbalances. Moreover, the majority of studies have focused on single transmitter systems - neglecting the fact that in the nervous system, different transmitter systems work in concert and impact on not only their immediate receptors but also downstream pathways that shape structural plasticity. In this review, we discuss the history of understanding the antipsychotic and pro-psychotic actions of drugs, recent developments and future perspectives.
Characteristics of circular features on comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Deller, J. F.; Güttler, C.; Tubiana, C.; Hofmann, M.; Sierks, H.
2017-09-01
Comet 67P/Churyumov-Gerasimenko shows a large variety of circular structures such as pits, elevated roundish features in Imhotep, and even a single occurrence of a plausible fresh impact crater. Imaging the pits in the Ma'at region, aiming to understand their structure and origin drove the design of the final descent trajectory of the Rosetta spacecraft. The high-resolution images obtained during the last mission phase allow us to study these pits as exemplary circular features. A complete catalogue of circular features gives us the possibility to compare and classify these structures systematically.
Guest-host polymer fibers for nonlinear optics
NASA Astrophysics Data System (ADS)
Kuzyk, M. G.; Paek, U. C.; Dirk, C. W.
1991-08-01
We report on the fabrication of poly(methyl methacrylate) (PMMA) nonlinear optical fibers with dye-doped cores. The dye-doped cores have an elevated refractive index that defines a waveguiding region with a large third-order susceptibility and with single-mode dimensions. The measured third-order susceptibility of a squarylium-doped PMMA film material and the measured optical loss of the dye-doped fiber core results in a figure of merit that is suitable for all-optical device applications at λ=1.3 μm. The impact of further improvements in PMMA loss and chromophore nonlinearity are also discussed.
Neonatal Intensive Care Unit Layout and Nurses' Work.
Doede, Megan; Trinkoff, Alison M; Gurses, Ayse P
2018-01-01
Neonatal intensive care units (NICUs) remain one of the few areas in hospitals that still use an open bay (OPBY) design for patient stays greater than 24 hr, housing multiple infants, staff, and families in one large room. This creates high noise levels, contributes to the spread of infection, and affords families little privacy. These problems have given rise to the single-family room NICU. This represents a significant change in the care environment for nurses. This literature review answers the question: When compared to OPBY layout, how does a single family room layout impact neonatal nurses' work? Thirteen studies published between 2006 and 2015 were located. Many studies reported both positive and negative effects on nurses' work and were therefore sorted by their cited advantages and disadvantages. Advantages included improved quality of the physical environment; improved quality of patient care; improved parent interaction; and improvements in nurse job satisfaction, stress, and burnout. Disadvantages included decreased interaction among the NICU patient care team, increased nurse workload, decreased visibility on the unit, and difficult interactions with family. This review suggests that single-family room NICUs introduce a complex situation in which trade-offs occur for nurses, most prominently the trade-off between visibility and privacy. Additionally, the literature is clear on what elements of nurses' work are impacted, but how the built environment influences these elements, and how these elements interact during nurses' work, is not as well understood. The current level of research and directions for future research are also discussed.
Ion Beam Characterization of a NEXT Multi-Thruster Array Plume
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Foster, John E.; Patterson, Michael J.; Diaz, Esther M.; Van Noord, Jonathan L.; McEwen, Heather K.
2006-01-01
Three operational, engineering model, 7-kW ion thrusters and one instrumented, dormant thruster were installed in a cluster array in a large vacuum facility at NASA Glenn Research Center. A series of engineering demonstration tests were performed to evaluate the system performance impacts of operating various multiple-thruster configurations in an array. A suite of diagnostics was installed to investigate multiple-thruster operation impact on thruster performance and life, thermal interactions, and alternative system modes and architectures. The ion beam characterization included measuring ion current density profiles and ion energy distribution with Faraday probes and retarding potential analyzers, respectively. This report focuses on the ion beam characterization during single thruster operation, multiple thruster operation, various neutralizer configurations, and thruster gimbal articulation. Comparison of beam profiles collected during single and multiple thruster operation demonstrated the utility of superimposing single engine beam profiles to predict multi-thruster beam profiles. High energy ions were detected in the region 45 off the thruster axis, independent of thruster power, number of operating thrusters, and facility background pressure, which indicated that the most probable ion energy was not effected by multiple-thruster operation. There were no significant changes to the beam profiles collected during alternate thruster-neutralizer configurations, therefore supporting the viability of alternative system configuration options. Articulation of one thruster shifted its beam profile, whereas the beam profile of a stationary thruster nearby did not change, indicating there were no beam interactions which was consistent with the behavior of a collisionless beam expansion.
Twelve- to 14-Month-Old Infants Can Predict Single-Event Probability with Large Set Sizes
ERIC Educational Resources Information Center
Denison, Stephanie; Xu, Fei
2010-01-01
Previous research has revealed that infants can reason correctly about single-event probabilities with small but not large set sizes (Bonatti, 2008; Teglas "et al.", 2007). The current study asks whether infants can make predictions regarding single-event probability with large set sizes using a novel procedure. Infants completed two trials: A…
Brown, Tyler N; O'Donovan, Meghan; Hasselquist, Leif; Corner, Brian; Schiffman, Jeffrey M
2014-11-07
This study quantified how body borne load impacts hip and knee biomechanics during anticipated and unanticipated single-leg cutting maneuvers. Fifteen male military personnel performed a series of single-leg cutting maneuvers with three different load configurations (light, ~6 kg, medium, ~20 kg, and heavy, ~40 kg). Subject-based means of the specific lower limb biomechanical variables were submitted to repeated measures ANOVA to test the main and interaction effects of body borne load and movement type. With body borne load, stance time (P<0.001) increased, while larger hip (P=0.027) and knee flexion (P=0.004), and hip adduction (P<0.001) moments, and decreased hip (P=0.002) and knee flexion (P<0.001), and hip adduction (P=0.003) postures were evident. Further, the hip (P<0.001) and ankle (P=0.024) increased energy absorption, while the knee (P=0.020) increased energy generation with body borne load. During the unanticipated maneuvers, the hip (P=0.009) and knee (P=0.032) increased energy generation, and peak hip flexion moment (P=0.002) increased relative to the anticipated movements. With the body borne load, participants adopted biomechanical patterns that decreased their locomotive ability including larger moments and reduced flexion postures of the lower limb. During the single-leg cut, participants used greater energy absorption from the large, proximal muscles of the hip and greater energy generation from the knee with the addition of load. Participant's performance when carrying a range of loads was not compromised by anticipation, as they did not exhibit the hip and knee kinetic and kinematic adaptations previously demonstrated when reacting to an unplanned stimulus. Published by Elsevier Ltd.
Molecular dynamics simulations of sputtering of Langmuir-Blodgett multilayers by keV C60 projectiles
Paruch, R.; Rzeznik, L.; Czerwinski, B.; Garrison, B. J.; Winograd, N.; Postawa, Z.
2009-01-01
Coarse-grained molecular dynamics computer simulations are applied to investigate fundamental processes induced by an impact of keV C60 projectile at an organic overlayer composed of long, well-organized linear molecules. The energy transfer pathways, sputtering yields, and the damage induced in the irradiated system, represented by a Langmuir-Blodgett (LB) multilayers composed from molecules of bariated arachidic acid, are investigated as a function of the kinetic energy and impact angle of the projectile and the thickness of the organic system. In particular, the unique challenges of depth profiling through a LB film vs. a more isotropic solid are discussed. The results indicate that the trajectories of projectile fragments and, consequently, the primary energy can be channeled by the geometrical structure of the overlayer. Although, a similar process is known from sputtering of single crystals by atomic projectiles, it has not been anticipated to occur during C60 bombardment due to the large size of the projectile. An open and ordered molecular structure of LB films is responsible for such behavior. Both the extent of damage and the efficiency of sputtering depend on the kinetic energy, the impact angle, and the layer thickness. The results indicate that the best depth profiling conditions can be achieved with low-energy cluster projectiles irradiating the organic overlayer at large off-normal angles. PMID:20174461
Zhao, Dan; Azimi, Parham; Stephens, Brent
2015-01-01
Much of human exposure to fine particulate matter (PM2.5) of outdoor origin occurs in residences. High-efficiency particle air filtration in central heating, ventilating, and air-conditioning (HVAC) systems is increasingly being used to reduce concentrations of particulate matter inside homes. However, questions remain about the effectiveness of filtration for reducing exposures to PM2.5 of outdoor origin and adverse health outcomes. Here we integrate epidemiology functions and mass balance modeling to estimate the long-term health and economic impacts of HVAC filtration for reducing premature mortality associated with indoor PM2.5 of outdoor origin in residences. We evaluate 11 classifications of filters (MERV 5 through HEPA) using six case studies of single-family home vintages and ventilation system combinations located in 22 U.S. cities. We estimate that widespread use of higher efficiency filters would reduce premature mortality by 0.002–2.5% and increase life expectancy by 0.02–1.6 months, yielding annual monetary benefits ranging from $1 to $1348 per person in the homes and locations modeled herein. Large differences in the magnitude of health and economic impacts are driven largely by differences in rated filter efficiency and building and ventilation system characteristics that govern particle infiltration and persistence, with smaller influences attributable to geographic location. PMID:26197328
Zhao, Dan; Azimi, Parham; Stephens, Brent
2015-07-21
Much of human exposure to fine particulate matter (PM2.5) of outdoor origin occurs in residences. High-efficiency particle air filtration in central heating, ventilating, and air-conditioning (HVAC) systems is increasingly being used to reduce concentrations of particulate matter inside homes. However, questions remain about the effectiveness of filtration for reducing exposures to PM2.5 of outdoor origin and adverse health outcomes. Here we integrate epidemiology functions and mass balance modeling to estimate the long-term health and economic impacts of HVAC filtration for reducing premature mortality associated with indoor PM2.5 of outdoor origin in residences. We evaluate 11 classifications of filters (MERV 5 through HEPA) using six case studies of single-family home vintages and ventilation system combinations located in 22 U.S. cities. We estimate that widespread use of higher efficiency filters would reduce premature mortality by 0.002-2.5% and increase life expectancy by 0.02-1.6 months, yielding annual monetary benefits ranging from $1 to $1348 per person in the homes and locations modeled herein. Large differences in the magnitude of health and economic impacts are driven largely by differences in rated filter efficiency and building and ventilation system characteristics that govern particle infiltration and persistence, with smaller influences attributable to geographic location.
Behavior of Windblown Sand on Mars: Results From Single-Particle Experiments
NASA Astrophysics Data System (ADS)
Marshall, J. R.; Borucki, J.; Sagan, C.
1996-03-01
Experiments are investigating the behavior of individual sand grains in the high-energy martian aeolian regime. Energy partitioning during impact of a saltating grain determines grain longevity, but it also influences the way in which the bed becomes mobilized by reptation. When single grains of sand are fired into loose beds, the bed can absorb up to 90% of the impact energy by momentum transfer to other grains; it has been discovered that the impacting grains cause circular craters even at low impact angles. Hundreds of grains can be splashed by a single high-velocity (100 m/s) impact causing more bed disturbance through reptation than previously thought. The research is supported by NASA's PG & G Program.
NASA Astrophysics Data System (ADS)
Rondeau-Genesse, G.; Braun, M.; Chaumont, D.
2017-12-01
The pace of climate change can have a direct impact on the efforts required to adapt. However, for relatively short time scales, this pace can be masked by natural variability (NV). In some cases, this variability might cause, for a few decades, climate change to exceed what would be expected from the greenhouse gas (GHG) emissions alone or, to the contrary, it might cause slowdowns or even hiatuses. This phenomenon is difficult to explore using ensembles such as CMIP5, which are composed of multiple climatological models and thus combine both NV and inter-model differences. This study analyses CanESM2-LE and CESM-LE, two state-of-the-art large ensembles (LE) comprised of multiple realizations from a single climatological model and a single GHG emission scenario. We explore the relationship between NV and climate change over the next few decades in Canada and the United States. Temperature indices, namely the mean annual temperature and the 3-day maximum and minimum temperatures are assessed. Results indicate that under the RCP8.5, temperatures within most of the individual large ensemble members will increase in a roughly linear manner between 2021 and 2060. Nevertheless, in some regions such as parts of Canada and Alaska, there is a 20 to 35% probability that the temperature increase will slow down between 2021 and 2040. Such a slowdown in warming temperatures would provide some leeway for adaptation projects, but this phenomenon is caused by NV alone and, as such, is only temporary. Indeed, members of the large ensembles where a slowdown of warming is found during the 2021-2040 period are two to five times more likely to experience a period of very fast warming in the following decades. The opposite scenario, where the changes expected by 2050 would occur early because of NV, remains fairly uncommon for the mean annual temperature. For the extreme temperature indices however, this early warming still occurs in 5 to 20% of the large ensemble members. As such, while our results indicate that the dominant pattern in Canada and the United States is a fairly linear warming, the chances for other patterns is non negligible for the upcoming decades. This reinforces the need for constant, uninterrupted efforts towards climate change adaptation.
Large-Scale Femtoliter Droplet Array for Single Cell Efflux Assay of Bacteria.
Iino, Ryota; Sakakihara, Shouichi; Matsumoto, Yoshimi; Nishino, Kunihiko
2018-01-01
Large-scale femtoliter droplet array as a platform for single cell efflux assay of bacteria is described. Device microfabrication, femtoliter droplet array formation and concomitant enclosure of single bacterial cells, fluorescence-based detection of efflux activity at the single cell level, and collection of single cells from droplet and subsequent gene analysis are described in detail.
Prager, Case M; Naeem, Shahid; Boelman, Natalie T; Eitel, Jan U H; Greaves, Heather E; Heskel, Mary A; Magney, Troy S; Menge, Duncan N L; Vierling, Lee A; Griffin, Kevin L
2017-04-01
Rapid environmental change at high latitudes is predicted to greatly alter the diversity, structure, and function of plant communities, resulting in changes in the pools and fluxes of nutrients. In Arctic tundra, increased nitrogen (N) and phosphorus (P) availability accompanying warming is known to impact plant diversity and ecosystem function; however, to date, most studies examining Arctic nutrient enrichment focus on the impact of relatively large (>25x estimated naturally occurring N enrichment) doses of nutrients on plant community composition and net primary productivity. To understand the impacts of Arctic nutrient enrichment, we examined plant community composition and the capacity for ecosystem function (net ecosystem exchange, ecosystem respiration, and gross primary production) across a gradient of experimental N and P addition expected to more closely approximate warming-induced fertilization. In addition, we compared our measured ecosystem CO 2 flux data to a widely used Arctic ecosystem exchange model to investigate the ability to predict the capacity for CO 2 exchange with nutrient addition. We observed declines in abundance-weighted plant diversity at low levels of nutrient enrichment, but species richness and the capacity for ecosystem carbon uptake did not change until the highest level of fertilization. When we compared our measured data to the model, we found that the model explained roughly 30%-50% of the variance in the observed data, depending on the flux variable, and the relationship weakened at high levels of enrichment. Our results suggest that while a relatively small amount of nutrient enrichment impacts plant diversity, only relatively large levels of fertilization-over an order of magnitude or more than warming-induced rates-significantly alter the capacity for tundra CO 2 exchange. Overall, our findings highlight the value of measuring and modeling the impacts of a nutrient enrichment gradient, as warming-related nutrient availability may impact ecosystems differently than single-level fertilization experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Michael K.; Davidson, Megan
As part of Sandia’s nuclear deterrence mission, the B61-12 Life Extension Program (LEP) aims to modernize the aging weapon system. Modernization requires requalification and Sandia is using high performance computing to perform advanced computational simulations to better understand, evaluate, and verify weapon system performance in conjunction with limited physical testing. The Nose Bomb Subassembly (NBSA) of the B61-12 is responsible for producing a fuzing signal upon ground impact. The fuzing signal is dependent upon electromechanical impact sensors producing valid electrical fuzing signals at impact. Computer generated models were used to assess the timing between the impact sensor’s response to themore » deceleration of impact and damage to major components and system subassemblies. The modeling and simulation team worked alongside the physical test team to design a large-scale reverse ballistic test to not only assess system performance, but to also validate their computational models. The reverse ballistic test conducted at Sandia’s sled test facility sent a rocket sled with a representative target into a stationary B61-12 (NBSA) to characterize the nose crush and functional response of NBSA components. Data obtained from data recorders and high-speed photometrics were integrated with previously generated computer models in order to refine and validate the model’s ability to reliably simulate real-world effects. Large-scale tests are impractical to conduct for every single impact scenario. By creating reliable computer models, we can perform simulations that identify trends and produce estimates of outcomes over the entire range of required impact conditions. Sandia’s HPCs enable geometric resolution that was unachievable before, allowing for more fidelity and detail, and creating simulations that can provide insight to support evaluation of requirements and performance margins. As computing resources continue to improve, researchers at Sandia are hoping to improve these simulations so they provide increasingly credible analysis of the system response and performance over the full range of conditions.« less
Drop impact into a deep pool: vortex shedding and jet formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agbaglah, G.; Thoraval, M. -J.; Thoroddsen, S. T.
2015-02-01
One of the simplest splashing scenarios results from the impact of a single drop on a deep pool. The traditional understanding of this process is that the impact generates an axisymmetric sheet-like jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are transitions in the multiplicity of jets as the experimental parameters are varied. Here, we use experiments and numerical simulations of a single drop impacting on a deep pool to examine themore » transition from impacts that produce a single jet to those that produce two jets. Using high-speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet. Using numerical simulations we develop a phase diagram for this transition and show that the capillary number is the most appropriate order parameter for the transition.« less
What precision-protein-tuning and nano-resolved single molecule sciences can do for each other.
Milles, Sigrid; Lemke, Edward A
2013-01-01
While innovations in modern microscopy, spectroscopy, and nanoscopy techniques have made single molecule observation a standard in many laboratories, the actual design of meaningful fluorescence reporter systems now hinders major scientific breakthroughs. Even though the field of chemical biology is supercharging the fluorescence toolbox, surprisingly few strategies exist that make the transition from model systems to biologically relevant applications. At the same time, the number of microscopy techniques is growing dramatically. We explain our view on how the impact of modern technologies is influenced not only by further hard- and software developments, but also by the availability and suitability of protein-engineering tools. We identify how the largely independent research fields of chemical biology and fluorescence nanoscopy can influence each other to synergistically drive future technology that can visualize the localization, structure, and dynamics of molecular function without constraints. Copyright © 2013 WILEY Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Huang, Xianbin; Liu, Chenyang; Chen, Chunyang; Wangren, Yahong; Xu, Jialin; Xian, Jin
2018-03-01
The group of pile foundation of no.5 pier in Shoujiang Bridge needs to overcome the big load of large span continuous steel structure. The length of single pile foundation is 77m and the diameter of single pile foundation is 250cm. It not only faces the flood in the upstream of Shoujiang river, the construction obstacles during summer rain period, but also the reservoir clearance activity of Zipingpu reservoir and the high water level in winter and other water level fluctuation that have huge impact on platform of pile foundation construction. This article introduces the preparation in aspect of personnel, material, equipment and so on of pile foundation construction, and also conduct intensive research on leveling the field, assaying pile location, the embedment of the steel casing, installing the drill, mixing mud, drilling, final hole inspection and clearance, steel cage construction, perfusing concrete under water.
Influence of single-neutron stripping on near-barrier 6He+208Pb and 8He+208Pb elastic scattering
NASA Astrophysics Data System (ADS)
Marquínez-Durán, G.; Keeley, N.; Kemper, K. W.; Mackintosh, R. S.; Martel, I.; Rusek, K.; Sánchez-Benítez, A. M.
2017-02-01
The influence of single-neutron stripping on the near-barrier elastic scattering angular distributions for the He,86+208Pb systems is investigated through coupled reaction channels (CRC) calculations fitting recently published data to explore the differences in the absorptive potential found in the scattering of these two neutron-rich nuclei. The inclusion of the coupling reduces the elastic cross section in the Coulomb-nuclear interference region for 8He scattering, whereas for 6He its major impact is on the large-angle elastic scattering. The real and imaginary dynamic polarization potentials are obtained by inverting the CRC elastic scattering S -matrix elements. These show that the main absorptive features occur between 11 and 12 fm for both projectiles, while the attractive features are separated by about 1 fm, with their main structures occurring at 10.5 fm for 6He and 11.5 fm for 8He.
Contamination of water resources by pathogenic bacteria
2014-01-01
Water-borne pathogen contamination in water resources and related diseases are a major water quality concern throughout the world. Increasing interest in controlling water-borne pathogens in water resources evidenced by a large number of recent publications clearly attests to the need for studies that synthesize knowledge from multiple fields covering comparative aspects of pathogen contamination, and unify them in a single place in order to present and address the problem as a whole. Providing a broader perceptive of pathogen contamination in freshwater (rivers, lakes, reservoirs, groundwater) and saline water (estuaries and coastal waters) resources, this review paper attempts to develop the first comprehensive single source of existing information on pathogen contamination in multiple types of water resources. In addition, a comprehensive discussion describes the challenges associated with using indicator organisms. Potential impacts of water resources development on pathogen contamination as well as challenges that lie ahead for addressing pathogen contamination are also discussed. PMID:25006540
Photonic quantum technologies (Presentation Recording)
NASA Astrophysics Data System (ADS)
O'Brien, Jeremy L.
2015-09-01
The impact of quantum technology will be profound and far-reaching: secure communication networks for consumers, corporations and government; precision sensors for biomedical technology and environmental monitoring; quantum simulators for the design of new materials, pharmaceuticals and clean energy devices; and ultra-powerful quantum computers for addressing otherwise impossibly large datasets for machine learning and artificial intelligence applications. However, engineering quantum systems and controlling them is an immense technological challenge: they are inherently fragile; and information extracted from a quantum system necessarily disturbs the system itself. Of the various approaches to quantum technologies, photons are particularly appealing for their low-noise properties and ease of manipulation at the single qubit level. We have developed an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability. We will described our latest progress in generating, manipulating and interacting single photons in waveguide circuits on silicon chips.
A global view of atmospheric ice particle complexity
NASA Astrophysics Data System (ADS)
Schmitt, Carl G.; Heymsfield, Andrew J.; Connolly, Paul; Järvinen, Emma; Schnaiter, Martin
2016-11-01
Atmospheric ice particles exist in a variety of shapes and sizes. Single hexagonal crystals like common hexagonal plates and columns are possible, but more frequently, atmospheric ice particles are much more complex. Ice particle shapes have a substantial impact on many atmospheric processes through fall speed, affecting cloud lifetime, to radiative properties, affecting energy balance to name a few. This publication builds on earlier work where a technique was demonstrated to separate single crystals and aggregates of crystals using particle imagery data from aircraft field campaigns. Here data from 10 field programs have been analyzed and ice particle complexity parameterized by cloud temperature for arctic, midlatitude (summer and frontal), and tropical cloud systems. Results show that the transition from simple to complex particles can be as small as 80 µm or as large as 400 µm depending on conditions. All regimes show trends of decreasing transition size with decreasing temperature.
MR-guided noninvasive thermal coagulation of in-vivo liver tissue using ultrasonic phased array
NASA Astrophysics Data System (ADS)
Daum, Douglas R.; Smith, Nadine; McDannold, Nathan; Hynynen, Kullervo H.
1999-05-01
Magnetic resonance (MR) imaging was used to guide and monitor the thermal tissue coagulation of in vivo porcine tissue using a 256 element ultrasonic phased array. The array could coagulate tissue volumes greater than 2 cm3 in liver and 0.5 cm3 in kidney using a single 20 second sonication. This sonication used multiple focus fields which were temporally cycled to heat large tissue volumes simultaneously. Estimates of the coagulated tissue using a thermal dose threshold compare well with T2-weighted images of post sonication lesions. The overlapping large focal volumes could aid in the treatment of large tumor volumes which require multiple overlapping sonications. The ability of MR to detect the presence and undesirable thermal increases at acoustic obstacle such as cartilaginous and bony ribs is demonstrated. This could have a significant impact on the ability to monitor thermal treatments of the liver and other organs which are acoustically blocked.
Trumbo, Michael C; Leiting, Kari A; McDaniel, Mark A; Hodge, Gordon K
2016-06-01
A robust finding within laboratory research is that structuring information as a test confers benefit on long-term retention-referred to as the testing effect. Although well characterized in laboratory environments, the testing effect has been explored infrequently within ecologically valid contexts. We conducted a series of 3 experiments within a very large introductory college-level course. Experiment 1 examined the impact of required versus optional frequent low-stakes testing (quizzes) on student grades, revealing students were much more likely to take advantage of quizzing if it was a required course component. Experiment 2 implemented a method of evaluating pedagogical intervention within a single course (thereby controlling for instructor bias and student self-selection), which revealed a testing effect. Experiment 3 ruled out additional exposure to information as an explanation for the findings of Experiment 2 and suggested that students at the college level, enrolled in very large sections, accept frequent quizzing well. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfrum, E.J.; Weaver, P.F.
Researchers at the National Renewable Energy Laboratory (NREL) have been investigating the use of model photosynthetic microorganisms that use sunlight and two-carbon organic substrates (e.g., ethanol, acetate) to produce biodegradable polyhydroxyalkanoate (PHA) copolymers as carbon storage compounds. Use of these biological PHAs in single-use plastics applications, followed by their post-consumer composting or anaerobic digestion, could impact petroleum consumption as well as the overloading of landfills. The large-scale production of PHA polymers by photosynthetic bacteria will require large-scale reactor systems utilizing either sunlight or artificial illumination. The first step in the scale-up process is to quantify the microbial growth rates andmore » the PHA production rates as a function of reaction conditions such as nutrient concentration, temperature, and light quality and intensity.« less
Method for the growth of large low-defect single crystals
NASA Technical Reports Server (NTRS)
Powell, J. Anthony (Inventor); Neudeck, Philip G. (Inventor); Trunek, Andrew J. (Inventor); Spry, David J. (Inventor)
2008-01-01
A method and the benefits resulting from the product thereof are disclosed for the growth of large, low-defect single-crystals of tetrahedrally-bonded crystal materials. The process utilizes a uniquely designed crystal shape whereby the direction of rapid growth is parallel to a preferred crystal direction. By establishing several regions of growth, a large single crystal that is largely defect-free can be grown at high growth rates. This process is particularly suitable for producing products for wide-bandgap semiconductors, such as SiC, GaN, AlN, and diamond. Large low-defect single crystals of these semiconductors enable greatly enhanced performance and reliability for applications involving high power, high voltage, and/or high temperature operating conditions.
NASA Astrophysics Data System (ADS)
Ghorbani, Omid; Ghanbari-Adivi, Ebrahim
2017-12-01
A full quantum mechanical version of the three-body distorted wave-eikonal initial state (3DW-EIS) theory is developed to study of the single ionization of the atomic targets by ion impact at different momentum transfers. The calculations are performed both with and without including the internuclear interaction in the transition amplitude. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s2 ) and 24 \\text{Mev} \\text{O}8+\\text{-Li}~(2s ) collisions, the emission of the active electron into the scattering plane is considered and the fully differential cross-sections (FDCSs) are calculated for a fixed value of the ejected electron energy and a variety of momentum transfers. For both the specified collision systems, the obtained results are compared with the experimental data and with the cross-sections obtained using the semi-classical continuum distorted wave-eikonal initial state (CDW-EIS) approach. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s^2) , we also compared the results with those of a four-body three-Coulomb-wave (3CW) model. In general, we find some large discrepancies between the results obtained by different theories. These discrepancies are much more significant at larger momentum transfers. Also, for some ranges of the electron emission angles the results are much more sensitive to the internuclear interaction to be either turned on or off.
Design and analysis of large-core single-mode windmill single crystal sapphire optical fiber
Cheng, Yujie; Hill, Cary; Liu, Bo; ...
2016-06-01
We present a large-core single-mode “windmill” single crystal sapphire optical fiber (SCSF) design, which exhibits single-mode operation by stripping off the higher-order modes (HOMs) while maintaining the fundamental mode. The “windmill” SCSF design was analyzed using the finite element analysis method, in which all the HOMs are leaky. The numerical simulation results show single-mode operation in the spectral range from 0.4 to 2 μm in the windmill SCSF, with an effective core diameter as large as 14 μm. Such fiber is expected to improve the performance of many of the current sapphire fiber optic sensor structures.
Heyvaert, M; Maes, B; Van den Noortgate, W; Kuppens, S; Onghena, P
2012-01-01
The effectiveness of different interventions for challenging behavior (CB) in persons with intellectual disabilities (ID) was reviewed by means of a two-phase study. First, a systematic review of 137 meta-analyses and reviews on group-study interventions for CB in persons with ID was conducted. Based on this review, hypotheses concerning the effectiveness of divergent interventions for CB and concerning the impact of variables moderating treatment effectiveness were systematically generated. Second, these hypotheses were tested by means of a multilevel meta-analysis of single-case and small-n research. Two hundred and eighty-five studies reporting on 598 individuals were examined. The average treatment effect was large and statistically significant. However, this effect varied significantly over the included studies and participants. Compared to the meta-analyses and reviews focusing on group-studies in this research domain, the results of the present multilevel meta-analysis of single-case and small-n intervention research provided more detailed knowledge on which specific CB and intervention components moderate the interventions' effectiveness. Copyright © 2011 Elsevier Ltd. All rights reserved.
An examination of silver nanoparticles in socks using screening-level life cycle assessment
NASA Astrophysics Data System (ADS)
Meyer, David E.; Curran, Mary Ann; Gonzalez, Michael A.
2011-01-01
Screening-level life cycle assessment (LCA) can provide a quick tool to identify the life cycle hot spots and focus research efforts to help to minimize the burdens of a technology while maximizing its benefits. The use of nanoscale silver in consumer products has exploded in popularity. Although its use is considered beneficial because of antimicrobial effects, some attention must be given to the potential environmental impacts it could impart on the life cycle of these nanoproducts as production demands escalate. This work examines the environmental impact of including silver nanoparticles in commercially available socks using screening-level LCA. Initial results suggest washing during the use phase contributes substantially more than the manufacturing phase to the product life cycle impacts. Comparison of nanoparticles prepared by either chemical reduction, liquid flame spray (LFS), or plasma arc demonstrate how the type of manufacturing process used for the nanoscale silver can change the resulting life cycle impact of the sock product. The magnitude of this impact will depend on the type of process used to manufacture the nanoscale silver, with LFS having the most impact because of the need for large quantities of hydrogen and oxygen. Although the increased impacts for a single nanoproduct may be relatively small, the added environmental load can actually be a significant quantity when considered at the regional or global production level.
ICF Implosions, Space-Charge Electric Fields, and Their Impact on Mix and Compression
NASA Astrophysics Data System (ADS)
Knoll, Dana; Chacon, Luis; Simakov, Andrei
2013-10-01
The single-fluid, quasi-neutral, radiation hydrodynamics codes, used to design the NIF targets, predict thermonuclear ignition for the conditions that have been achieved experimentally. A logical conclusion is that the physics model used in these codes is missing one, or more, key phenomena. Two key model-experiment inconsistencies on NIF are: 1) a lower implosion velocity than predicted by the design codes, and 2) transport of pusher material deep into the hot spot. We hypothesize that both of these model-experiment inconsistencies may be a result of a large, space-charge, electric field residing on the distinct interfaces in a NIF target. Large space-charge fields have been experimentally observed in Omega experiments. Given our hypothesis, this presentation will: 1) Develop a more complete physics picture of initiation, sustainment, and dissipation of a current-driven plasma sheath / double-layer at the Fuel-Pusher interface of an ablating plastic shell implosion on Omega, 2) Characterize the mix that can result from a double-layer field at the Fuel-Pusher interface, prior to the onset of fluid instabilities, and 3) Quantify the impact of the double-layer induced surface tension at the Fuel-Pusher interface on the peak observed implosion velocity in Omega.
The successful incorporation of Ag into single grain, Y-Ba-Cu-O bulk superconductors
NASA Astrophysics Data System (ADS)
Congreve, Jasmin V. J.; Shi, Yunhua; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.
2018-07-01
The use of RE-Ba-Cu-O [(RE)BCO] bulk superconductors, where RE = Y, Gd, Sm, in practical applications is, at least in part, limited by their mechanical properties and brittle nature, in particular. Alloying these materials with silver, however, produces a significant improvement in strength without any detrimental impact on their superconducting properties. Unfortunately, the top seeded melt growth technique, used routinely to process bulk (RE)BCO superconductors in the form of large, single grains required for practical applications, is complex and has a large number of inter-related variables, so the addition of silver increases the complexity of the growth process even further. This can make successful growth of this system extremely challenging. Here we report measurements of the growth rate of YBCO-Ag fabricated using a new growth technique consisting of continuous cooling and isothermal hold process. The resulting data form the basis of a model that has been used to derive suitable heating profiles for the successful single grain growth of YBCO-Ag bulk superconductors of up to 26 mm in diameter. The microstructure and distribution of silver within these samples have been studied in detail. The maximum trapped field at the top surface of the bulk YBCO-Ag samples has been found to be comparable to that of standard YBCO processed without Ag. The YBCO-Ag samples also exhibit a much more uniform trapped field profile compared to that of YBCO.
New Evidence from Silica Debris Exo-Systems for Planet Building Hypervelocity Impacts
NASA Astrophysics Data System (ADS)
Lisse, Carey
2010-05-01
There is abundant inferential evidence for massive collisions in the early solar system [1]: Mercury's high density; Venus' retrograde spin; Earth's Moon; Mars' North/South hemispherical cratering anisotropy; Vesta's igneous origin [2]; brecciation in meteorites [3]; and Uranus' spin axis located near the plane of the ecliptic. Recent work [4] analyzing Spitzer mid-IR spectra has demonstrated the presence of large amounts of amorphous silica and SiO gas produced by a recent (within 103 - 104 yrs) large (MExcess > MPluto) hypervelocity impact collision around the young (~12 Myr old) nearby star HD172555, at the right age to form rocky planets. Many questions still remain concerning the location, lifetime, and source of the detected silica/SiO gas, which should not be stable in orbit at the estimated 5.8 AU from the HD172555 A5V primary for more than a few decades, yet it is also highly unlikely that we are fortuitously observing these systems immediately after silica formation A tabulation of the amount counts in the fine silica dust is decidedly Fe and Mg-atom poor compared to solar [4]. Three possible origins for the observed silica/SiO gas seem currently plausible : (1) A single hyperevelocity impact (>10km/s in order to produce silica and vaporize SiO at impact) creating an optically thick circumplanetary debris ring which is overflowing or releasing silica-rich material from its Hill sphere. Like terrestrial tektites, the Fe/Mg poor amorphous silica rubble is formed from quick-quenched molten/vaporized rock created during the impact. The amount of dust detected in the HD172555 system is easily enough to fill and overflow the Hill sphere radius of 0.03 AU for a Pluto-sized body at 5.8 AU from an A5 star, unless it is optically thick (> 1 cm in physical depth). Such a disk would provide a substantial fraction of the observed IR flux, and will be dense enough to self-shield its SiO gas, greatly extending its photolytic lifetime. The lifetime for such a system versus re-condensation into a solid body like the Moon is short, though, ~ 103 to 104 yrs [5]. Credence is lent to this scenario by observations of the Jovian impact in July 2009 [6], where absorption features due to silica have been found superimposed on those of hot ammonia at the > 60 km/s impact site (Fig. 1). (2) Ongoing multiple small hypervelocity impacts continuously grinding down a distribution of large circumstellar particles above the blowout size limit (the 'rubble' identified in [4]) and releasing silica rich material and SiO gas. This model would require a massive (>1 MMoon) belt of 10 μm - 1 cm particles with inclinations spread out over at least ±45o [4] or dust on highly eccentric orbits [7]. The amount of material implied by the relative amplitude of the rubble spectral feature is consistent with the amount needed to collisionally produce the fine silica dust [4, 8]. A body rapidly re-accreting in a debris ring after collisional disruption (like the Moon) would have similar behavior (lots of impacts for some time, producing gas and little melt droplets). (3) A single impact onto a silica-rich object with already highly differentiated surface layers. For a very young system at 10 - 20 Myr when we expect planets to be rapidly accreting, a Mercury or larger-sized rocky body covered in an SiO rich magma ocean is very likely by the Jeans energy criterion [9], even without considering additional heating input by 26Al and other radioactives. For the lowest expected impact velocities,v MercuryEscape = 4 km/s, a pre-existing magma ocean in equilibrium with a surrounding SiO atmosphere would be required; at higher velocities the impacting body could be the formative mechanism for the magma ocean [10]. Further evidence for excess circumstellar emission due to silica dust have now been found. The youngest of these, HD154263, at ~20 Myr age shows evidence for SiO gas and amorphous + crystalline silica. The 2 older systems, HD23514 at ~100 Myr age, and HD15407 at ~2 Gyr, conspicuously do not show any evidence for SiO gas while exhibiting strong features mainly due to crystalline silica. HD23514 also shows evidence for large amounts of amorphous carbon, PAHs, and nanodiamonds, due to a strongly enhanced C-atom abundance in impactor or impactee. HD15407, the oldest system, also does not show any conclusive evidence for the presence of large dark particles ('rubble').
Large-scale culture of a megakaryocytic progenitor cell line with a single-use bioreactor system.
Nurhayati, Retno Wahyu; Ojima, Yoshihiro; Dohda, Takeaki; Kino-Oka, Masahiro
2018-03-01
The increasing application of regenerative medicine has generated a growing demand for stem cells and their derivatives. Single-use bioreactors offer an attractive platform for stem cell expansion owing to their scalability for large-scale production and feasibility of meeting clinical-grade standards. The current work evaluated the capacity of a single-use bioreactor system (1 L working volume) for expanding Meg01 cells, a megakaryocytic (MK) progenitor cell line. Oxygen supply was provided by surface aeration to minimize foaming and orbital shaking was used to promote oxygen transfer. Oxygen transfer rates (k L a) of shaking speeds 50, 100, and 125 rpm were estimated to be 0.39, 1.12, and 10.45 h -1 , respectively. Shaking speed was a critical factor for optimizing cell growth. At 50 rpm, Meg01 cells exhibited restricted growth due to insufficient mixing. A negative effect occurred when the shaking speed was increased to 125 rpm, likely caused by high hydrodynamic shear stress. The bioreactor culture achieved the highest growth profile when shaken at 100 rpm, achieving a total expansion rate up to 5.7-fold with a total cell number of 1.2 ± 0.2 × 10 9 cells L -1 . In addition, cells expanded using the bioreactor system could maintain their potency to differentiate following the MK lineage, as analyzed from specific surface protein and morphological similarity with the cells grown in the conventional culturing system. Our study reports the impact of operational variables such as shaking speed for growth profile and MK differentiation potential of a progenitor cell line in a single-use bioreactor. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:362-369, 2018. © 2017 American Institute of Chemical Engineers.
Population Structure Shapes Copy Number Variation in Malaria Parasites.
Cheeseman, Ian H; Miller, Becky; Tan, John C; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J; Nosten, François; Ferdig, Michael T; Anderson, Tim J C
2016-03-01
If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Impact of missing data on the efficiency of homogenisation: experiments with ACMANTv3
NASA Astrophysics Data System (ADS)
Domonkos, Peter; Coll, John
2018-04-01
The impact of missing data on the efficiency of homogenisation with ACMANTv3 is examined with simulated monthly surface air temperature test datasets. The homogeneous database is derived from an earlier benchmarking of daily temperature data in the USA, and then outliers and inhomogeneities (IHs) are randomly inserted into the time series. Three inhomogeneous datasets are generated and used, one with relatively few and small IHs, another one with IHs of medium frequency and size, and a third one with large and frequent IHs. All of the inserted IHs are changes to the means. Most of the IHs are single sudden shifts or pair of shifts resulting in platform-shaped biases. Each test dataset consists of 158 time series of 100 years length, and their mean spatial correlation is 0.68-0.88. For examining the impacts of missing data, seven experiments are performed, in which 18 series are left complete, while variable quantities (10-70%) of the data of the other 140 series are removed. The results show that data gaps have a greater impact on the monthly root mean squared error (RMSE) than the annual RMSE and trend bias. When data with a large ratio of gaps is homogenised, the reduction of the upper 5% of the monthly RMSE is the least successful, but even there, the efficiency remains positive. In terms of reducing the annual RMSE and trend bias, the efficiency is 54-91%. The inclusion of short and incomplete series with sufficient spatial correlation in all cases improves the efficiency of homogenisation with ACMANTv3.
Impact of Simulated 1/f Noise for HI Intensity Mapping Experiments
NASA Astrophysics Data System (ADS)
Harper, S.; Dickinson, C.; Battye, R. A.; Roychowdhury, S.; Browne, I. W. A.; Ma, Y.-Z.; Olivari, L. C.; Chen, T.
2018-05-01
Cosmology has entered an era where the experimental limitations are not due to instrumental sensitivity but instead due to inherent systematic uncertainties in the instrumentation and data analysis methods. The field of HI intensity mapping (IM) is still maturing, however early attempts are already systematics limited. One such systematic limitation is 1/f noise, which largely originates within the instrumentation and manifests as multiplicative gain fluctuations. To date there has been little discussion about the possible impact of 1/f noise on upcoming single-dish HI IM experiments such as BINGO, FAST or SKA. Presented in this work are Monte-Carlo end-to-end simulations of a 30 day HI IM survey using the SKA-MID array covering a bandwidth of 950 and 1410 MHz. These simulations extend 1/f noise models to include not just temporal fluctuations but also correlated gain fluctuations across the receiver bandpass. The power spectral density of the spectral gain fluctuations are modelled as a power-law, and characterised by a parameter β. It is found that the degree of 1/f noise frequency correlation will be critical to the success of HI IM experiments. Small values of β (β < 0.25) or high correlation is preferred as this is more easily removed using current component separation techniques. Spectral index of temporal fluctuations (α) is also found to have a large impact on signal-to-noise. Telescope slew speed has a smaller impact, and a scan speed of 1 deg s-1 should be sufficient for a HI IM survey with the SKA.
Unger, Scott R; Hottle, Troy A; Hobbs, Shakira R; Thiel, Cassandra L; Campion, Nicole; Bilec, Melissa M; Landis, Amy E
2017-01-01
Background While petroleum-based plastics are extensively used in health care, recent developments in biopolymer manufacturing have created new opportunities for increased integration of biopolymers into medical products, devices and services. This study compared the environmental impacts of single-use disposable devices with increased biopolymer content versus typically manufactured devices in hysterectomy. Methods A comparative life cycle assessment of single-use disposable medical products containing plastic(s) versus the same single-use medical devices with biopolymers substituted for plastic(s) at Magee-Women's Hospital (Magee) in Pittsburgh, PA and the products used in four types of hysterectomies that contained plastics potentially suitable for biopolymer substitution. Magee is a 360-bed teaching hospital, which performs approximately 1400 hysterectomies annually. Results There are life cycle environmental impact tradeoffs when substituting biopolymers for petroplastics in procedures such as hysterectomies. The substitution of biopolymers for petroleum-based plastics increased smog-related impacts by approximately 900% for laparoscopic and robotic hysterectomies, and increased ozone depletion-related impacts by approximately 125% for laparoscopic and robotic hysterectomies. Conversely, biopolymers reduced life cycle human health impacts, acidification and cumulative energy demand for the four hysterectomy procedures. The integration of biopolymers into medical products is correlated with reductions in carcinogenic impacts, non-carcinogenic impacts and respiratory effects. However, the significant agricultural inputs associated with manufacturing biopolymers exacerbate environmental impacts of products and devices made using biopolymers. Conclusions The integration of biopolymers into medical products is correlated with reductions in carcinogenic impacts, non-carcinogenic impacts and respiratory effects; however, the significant agricultural inputs associated with manufacturing biopolymers exacerbate environmental impacts.
Modeling the Economic Impacts of Large Deployments on Local Communities
2008-12-01
MODELING THE ECONOMIC IMPACTS OF LARGE DEPLOYMENTS ON LOCAL COMMUNITIES THESIS Aaron L... MODELING THE ECONOMIC IMPACTS OF LARGE DEPLOYMENTS ON LOCAL COMMUNITIES THESIS Presented to the Faculty Department of Systems Engineering and...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/GCA/ENV/08-D01 MODELING THE ECONOMIC IMPACTS OF LARGE DEPLOYMENTS ON LOCAL
Impact phenomena as factors in the evolution of the Earth
NASA Technical Reports Server (NTRS)
Grieve, R. A. F.; Parmentier, E. M.
1984-01-01
It is estimated that 30 to 200 large impact basins could have been formed on the early Earth. These large impacts may have resulted in extensive volcanism and enhanced endogenic geologic activity over large areas. Initial modelling of the thermal and subsidence history of large terrestrial basins indicates that they created geologic and thermal anomalies which lasted for geologically significant times. The role of large-scale impact in the biological evolution of the Earth has been highlighted by the discovery of siderophile anomalies at the Cretaceous-Tertiary boundary and associated with North American microtektites. Although in neither case has an associated crater been identified, the observations are consistent with the deposition of projectile-contaminated high-speed ejecta from major impact events. Consideration of impact processes reveals a number of mechanisms by which large-scale impact may induce extinctions.
Integrated sequencing of exome and mRNA of large-sized single cells.
Wang, Lily Yan; Guo, Jiajie; Cao, Wei; Zhang, Meng; He, Jiankui; Li, Zhoufang
2018-01-10
Current approaches of single cell DNA-RNA integrated sequencing are difficult to call SNPs, because a large amount of DNA and RNA is lost during DNA-RNA separation. Here, we performed simultaneous single-cell exome and transcriptome sequencing on individual mouse oocytes. Using microinjection, we kept the nuclei intact to avoid DNA loss, while retaining the cytoplasm inside the cell membrane, to maximize the amount of DNA and RNA captured from the single cell. We then conducted exome-sequencing on the isolated nuclei and mRNA-sequencing on the enucleated cytoplasm. For single oocytes, exome-seq can cover up to 92% of exome region with an average sequencing depth of 10+, while mRNA-sequencing reveals more than 10,000 expressed genes in enucleated cytoplasm, with similar performance for intact oocytes. This approach provides unprecedented opportunities to study DNA-RNA regulation, such as RNA editing at single nucleotide level in oocytes. In future, this method can also be applied to other large cells, including neurons, large dendritic cells and large tumour cells for integrated exome and transcriptome sequencing.
Hirasawa, Yosuke; Ohno, Yoshio; Nakashima, Jun; Shimodaira, Kenji; Hashimoto, Takeshi; Gondo, Tatsuo; Ohori, Makoto; Tachibana, Masaaki; Yoshioka, Kunihiko
2016-09-01
To assess the impact of preoperatively estimated prostate volume (PV) using transrectal ultrasonography (TRUS) on surgical and oncological outcomes in robot-assisted radical prostatectomy (RARP). We analyzed the experience of a single surgeon at our hospital who performed 436 RARPs without neoadjuvant hormone therapy between August 2006 and December 2013. Patients were divided into three groups according to their preoperative PV calculated using TRUS (PV ≤ 20 cm(3): group 1, n = 61; 20 < PV < 50 cm(3): group 2, n = 303; PV ≥ 50 cm(3): group 3, n = 72). Blood loss was significantly higher in group 3 than in group 1 and group 2. In stage pT2 patients, the rate of positive surgical margin (PSM) was significantly lower in group 3 than in group 1. In addition, perioperative complications significantly increased with increasing PV, while the extraprostatic extension (EPE) rate significantly decreased with increasing PV. The preoperative biopsy Gleason score, prostate-specific antigen (PSA) density, and clinical T2 stage were inversely correlated with increasing PV. Biochemical recurrence-free survival after RARP was significantly lower in group 1 than in groups 2 and 3. A large prostate size was significantly associated with increased blood loss and a higher rate of perioperative complications. A small prostate size was associated with a higher PSM rate, PSA density, Gleason score, EPE rate, and biochemical recurrence rate. These results suggest that RARP was technically challenging in patients with large prostates, whereas small prostates were associated with unfavorable oncological outcomes.
Performance analysis of high-concentrated multi-junction solar cells in hot climate
NASA Astrophysics Data System (ADS)
Ghoneim, Adel A.; Kandil, Kandil M.; Alzanki, Talal H.; Alenezi, Mohammad R.
2018-03-01
Multi-junction concentrator solar cells are a promising technology as they can fulfill the increasing energy demand with renewable sources. Focusing sunlight upon the aperture of multi-junction photovoltaic (PV) cells can generate much greater power densities than conventional PV cells. So, concentrated PV multi-junction solar cells offer a promising way towards achieving minimum cost per kilowatt-hour. However, these cells have many aspects that must be fixed to be feasible for large-scale energy generation. In this work, a model is developed to analyze the impact of various atmospheric factors on concentrator PV performance. A single-diode equivalent circuit model is developed to examine multi-junction cells performance in hot weather conditions, considering the impacts of both temperature and concentration ratio. The impacts of spectral variations of irradiance on annual performance of various high-concentrated photovoltaic (HCPV) panels are examined, adapting spectra simulations using the SMARTS model. Also, the diode shunt resistance neglected in the existing models is considered in the present model. The present results are efficiently validated against measurements from published data to within 2% accuracy. Present predictions show that the single-diode model considering the shunt resistance gives accurate and reliable results. Also, aerosol optical depth (AOD) and air mass are most important atmospheric parameters having a significant impact on HCPV cell performance. In addition, the electrical efficiency (η) is noticed to increase with concentration to a certain concentration degree after which it decreases. Finally, based on the model predictions, let us conclude that the present model could be adapted properly to examine HCPV cells' performance over a broad range of operating conditions.
NASA Astrophysics Data System (ADS)
Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan
2017-10-01
Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash-Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.
Hazell, Cassie M; Hayward, Mark; Cavanagh, Kate; Jones, Anna-Marie; Strauss, Clara
2018-05-01
Few patients have access to cognitive behaviour therapy for psychosis (CBTp) even though at least 16 sessions of CBTp is recommended in treatment guidelines. Briefer CBTp could improve access as the same number of therapists could see more patients. In addition, focusing on single psychotic symptoms, such as auditory hallucinations ('voices'), rather than on psychosis more broadly, may yield greater benefits. This pilot RCT recruited 28 participants (with a range of diagnoses) from NHS mental health services who were distressed by hearing voices. The study compared an 8-session guided self-help CBT intervention for distressing voices with a wait-list control. Data were collected at baseline and at 12weeks with post-therapy assessments conducted blind to allocation. Voice-impact was the pre-determined primary outcome. Secondary outcomes were depression, anxiety, wellbeing and recovery. Mechanism measures were self-esteem, beliefs about self, beliefs about voices and voice-relating. Recruitment and retention was feasible with low study (3.6%) and therapy (14.3%) dropout. There were large, statistically significant between-group effects on the primary outcome of voice-impact (d=1.78; 95% CIs: 0.86-2.70), which exceeded the minimum clinically important difference. Large, statistically significant effects were found on a number of secondary and mechanism measures. Large effects on the pre-determined primary outcome of voice-impact are encouraging, and criteria for progressing to a definitive trial are met. Significant between-group effects on measures of self-esteem, negative beliefs about self and beliefs about voice omnipotence are consistent with these being mechanisms of change and this requires testing in a future trial. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Uisung; Han, Jeongwoo; Urgun Demirtas, Meltem
Wastewater treatment plants (WWTPs) produce sludge as a byproduct when they treat wastewater. In the United States, over 8 million dry tons of sludge are produced annually just from publicly owned WWTPs. Sludge is commonly treated in anaerobic digesters, which generate biogas; the biogas is then largely flared to reduce emissions of methane, a potent greenhouse gas. Because sludge is quite homogeneous and has a high energy content, it is a good potential feedstock for other conversion processes that make biofuels, bioproducts, and power. For example, biogas from anaerobic digesters can be used to generate renewable natural gas (RNG), whichmore » can be further processed to produce compressed natural gas (CNG) and liquefied natural gas (LNG). Sludge can be directly converted into hydrocarbon liquid fuels via thermochemical processes such as hydrothermal liquefaction (HTL). Currently, the environmental impacts of converting sludge into energy are largely unknown, and only a few studies have focused on the environmental impacts of RNG produced from existing anaerobic digesters. As biofuels from sludge generate high interest, however, existing anaerobic digesters could be upgraded to technology with more economic potential and more environmental benefits. The environmental impacts of using a different anaerobic digestion (AD) technology to convert sludge into energy have yet to be analyzed. In addition, no studies are available about the direct conversion of sludge into liquid fuels. In order to estimate the energy consumption and greenhouse gas (GHG) emissions impacts of these alternative pathways (sludge-to-RNG and sludge-to-liquid), this study performed a lifecycle analysis (LCA) using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. The energy uses and GHG emissions associated with the RNG and hydrocarbon liquid are analyzed relative to the current typical sludge management case, which consists of a single-stage mesophilic digester with biogas flaring. Along with the alternative HTL process, four types of AD technologies with fuel production—single-stage mesophilic, mesophilic 2-stage, single-stage mesophilic with thermohydrolysis treatment, and mesophilicmesophilic acid/gas phase—are studied. Results show that the sludge-to-CNG pathway via AD and the sludge-to-liquid pathway via HTL reduce GHG emissions consumptions significantly. When we compare the GHG emissions of the alternative fuel production pathways to that of the counterfactual case in terms of the amount of sludge treated, reductions in GHG emissions are 39%–80% and 87% for alternative AD and HTL, respectively. Compared to petroleum gasoline and diesel GHG emission results in terms of MJ, the renewable CNG production pathway via AD and the renewable diesel production pathway via HTL reduce GHG emissions by 193% and 46%, respectively. These large reductions are mainly due to GHG credits from avoiding GHGs under the counterfactual scenario, and/or fertilizer displacement credits. Similarly, reductions in fossil fuel use for sludge-based fuels are huge. However, well-defined counterfactual scenarios are needed because the results of the study depend on the counterfactual scenario, which might vary over time.« less
NASA Astrophysics Data System (ADS)
Shields, Laura Grace
Composed of a mixture of chemical species and phases and existing in a variety of shapes and sizes, atmospheric aerosols are complex and can have serious influence on human health, the environment, and climate. In order to better understand the impact of aerosols on local to global scales, detailed measurements on the physical and chemical properties of ambient particles are essential. In addition, knowing the origin or the source of the aerosols is important for policymakers to implement targeted regulations and effective control strategies to reduce air pollution in their region. One of the most ground breaking techniques in aerosol instrumentation is single particle mass spectrometry (SPMS), which can provide online chemical composition and size information on the individual particle level. The primary focus of this work is to further improve the ability of one specific SPMS technique, aerosol time-of-flight mass spectrometry (ATOFMS), for the use of identifying the specific origin of ambient aerosols, which is known as source apportionment. The ATOFMS source apportionment method utilizes a library of distinct source mass spectral signatures to match the chemical information of the single ambient particles. The unique signatures are obtained in controlled source characterization studies, such as with the exhaust emissions of heavy duty diesel vehicles (HDDV) operating on a dynamometer. The apportionment of ambient aerosols is complicated by the chemical and physical processes an individual particle can undergo as it spends time in the atmosphere, which is referred to as "aging" of the aerosol. Therefore, the performance of the source signature library technique was investigated on the ambient dataset of the highly aged environment of Riverside, California. Additionally, two specific subsets of the Riverside dataset (ultrafine particles and particles containing trace metals), which are known to cause adverse health effects, were probed in greater detail. Finally, the impact of large wildfires on the ambient levels of particulate matter in Southern California is discussed. The results of this work provide insight into single particles impacting the Southern California region, the relative source contributions to this region, and finally an examination of how atmospheric aging influences the ability to perform source apportionment.
NASA Astrophysics Data System (ADS)
Malusa', Marco Giovanni; Wang, Jiangang; Garzanti, Eduardo; Villa, Igor M.; Wittman, Hella
2017-04-01
The detrital record provides an archive of mountain erosion that preserves key information for paleotectonic and paleoclimatic reconstructions. Detrital studies are often based on single-mineral analyses (e.g., geo/thermochronologic analyses on apatite and zircon). Their geologic interpretation can be challenging, because the impact of each eroding source on the detrital record is controlled by a range of factors including the rate of erosion and the fertility of chosen minerals in eroded bedrock. Here, we combine (i) a state-of-the art dataset of trace element and Nd isotope fingerprints of detrital apatite, (ii) a comprehensive dataset of apatite-fertility measurements (Malusà et al. 2016), (iii) fission-track data, and (iv) cosmogenic-derived erosion rates from the Po River catchment (Wittmann et al. 2016), to test the impact of mineral fertility and bedrock erosion on the single-mineral detrital signal preserved in the final sediment sink. Our results show that the information provided by accessory minerals, when complemented with accurate mineral fertility measurements, are fully consistent with information provided by the analysis of more abundant framework minerals. We found that trace element and Nd isotope analyses provide a reliable tool to disentangle the complex single-mineral record of orogenic erosion, and demonstrate that such a record is largely determined by high-fertility source rocks exposed within the drainage. Detrital thermochronology studies based on the lag-time approach should thus preferably include independent provenance discriminations and a full mineral fertility characterization of the potential source areas, in order to ensure a correct identification of the sediment sources and of the exogenic and endogenic processes monitored in the stratigraphic archive. Malusà M.G., Resentini A., Garzanti E., 2016. Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Res., 31, 1-19 Wittmann H., Malusà M.G., Resentini A., Garzanti E., Niedermann S., 2016. The cosmogenic record of mountain erosion transmitted across a foreland basin: Source-to-sink analysis of in situ 10Be, 26Al and 21Ne in sediment of the Po river catchment. Earth Planet. Sci. Lett. 452, 258-271
Impact of traffic intensity and pavement aggregate size on road dust particles loading
NASA Astrophysics Data System (ADS)
Amato, F.; Pandolfi, M.; Alastuey, A.; Lozano, A.; Contreras González, J.; Querol, X.
2013-10-01
Road dust emissions severely hamper PM10 urban air quality and their burden is expected to increase relatively to primary motor exhaust emissions. Beside the large influence of climate and meteorology, the emission potential varies widely also from one road to another due to numerous factors such as traffic conditions, pavement type and external sources. Nevertheless none of these factors is sufficiently known for a reliable description in emission modelling and for decision making in air quality management. In this study we carried out intensive road dust measurement campaigns in South Spain, with the aim of investigating the relationship between emission potential (i.e. road dust load) and traffic intensity, pavement aggregate size and distance from braking zones. Results indicate that, while no impact from braking activity can be drawn on the bulk road dust mass, an increase in traffic intensity or mean pavement aggregate size clearly reduce the single vehicle emission potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Evan; Jones, Richard B.
Large yet infrequent disruptions of electrical power can impact tens of millions of people in a single event, triggering significant economic damages, portions of which are insured. Small and frequent events are also significant in the aggregate. This article explores the role that insurance claims data can play in better defining the broader economic impacts of grid disruptions in the U.S. context. We developed four case studies, using previously unpublished data for specific actual grid disruptions. The cases include the 1977 New York City blackout, the 2003 Northeast blackout, multi-year national annual lightning-related electrical damage and multi-year national line-disturbance events.more » Insured losses represent between 3 and 64 per cent of total loss costs across the case studies. Here, the household sector emerges as a larger locus of costs than indicated in previous studies, and short-lived events emerge as important sources of loss costs.« less
Impacts of curricular change: Implications from 8 years of data in introductory physics
NASA Astrophysics Data System (ADS)
Pollock, Steven J.; Finkelstein, Noah
2013-01-01
Introductory calculus-based physics classes at the University of Colorado Boulder were significantly transformed beginning in 2004. They now regularly include: interactive engagement using clickers in large lecture settings, Tutorials in Introductory Physics with use of undergraduate Learning Assistants in recitation sections, and a staffed help-room setting where students work on personalized CAPA homework. We compile and summarize conceptual (FMCE and BEMA) pre- and post-data from over 9,000 unique students after 16 semesters of both Physics 1 and 2. Within a single institution with stable pre-test scores, we reproduce results of Hake's 1998 study that demonstrate the positive impacts of interactive engagement on student performance. We link the degree of faculty's use of interactive engagement techniques and their experience levels on student outcomes, and argue for the role of such systematic data collection in sustained course and institutional transformations.
An insurance perspective on U.S. electric grid disruption costs
Mills, Evan; Jones, Richard B.
2016-10-12
Large yet infrequent disruptions of electrical power can impact tens of millions of people in a single event, triggering significant economic damages, portions of which are insured. Small and frequent events are also significant in the aggregate. This article explores the role that insurance claims data can play in better defining the broader economic impacts of grid disruptions in the U.S. context. We developed four case studies, using previously unpublished data for specific actual grid disruptions. The cases include the 1977 New York City blackout, the 2003 Northeast blackout, multi-year national annual lightning-related electrical damage and multi-year national line-disturbance events.more » Insured losses represent between 3 and 64 per cent of total loss costs across the case studies. Here, the household sector emerges as a larger locus of costs than indicated in previous studies, and short-lived events emerge as important sources of loss costs.« less
NASA Technical Reports Server (NTRS)
Stagliano, T. R.; Spilker, R. L.; Witmer, E. A.
1976-01-01
A user-oriented computer program CIVM-JET 4B is described to predict the large-deflection elastic-plastic structural responses of fragment impacted single-layer: (a) partial-ring fragment containment or deflector structure or (b) complete-ring fragment containment structure. These two types of structures may be either free or supported in various ways. Supports accommodated include: (1) point supports such as pinned-fixed, ideally-clamped, or supported by a structural branch simulating mounting-bracket structure and (2) elastic foundation support distributed over selected regions of the structure. The initial geometry of each partial or complete ring may be circular or arbitrarily curved; uniform or variable thicknesses of the structure are accommodated. The structural material is assumed to be initially isotropic; strain hardening and strain rate effects are taken into account.
Esteve Agelet, Lidia; Armstrong, Paul R; Tallada, Jasper G; Hurburgh, Charles R
2013-12-01
Previous studies showed that Near Infrared Spectroscopy (NIRS) could distinguish between Roundup Ready® (RR) and conventional soybeans at the bulk and single seed sample level, but it was not clear which compounds drove the classification. In this research the varieties used did not show significant differences in major compounds between RR and conventional beans, but moisture content had a big impact on classification accuracies. Four of the five RR samples had slightly higher moistures and had a higher water uptake than their conventional counterparts. This could be linked with differences in their hulls, being either compositional or morphological. Because water absorption occurs in the same region as main compounds in hulls (mainly carbohydrates) and water causes physical changes from swelling, variations in moisture cause a complex interaction resulting in a large impact on discrimination accuracies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Harris, Stephen E; Xue, Alexander T; Alvarado-Serrano, Diego; Boehm, Joel T; Joseph, Tyler; Hickerson, Michael J; Munshi-South, Jason
2016-04-01
How urbanization shapes population genomic diversity and evolution of urban wildlife is largely unexplored. We investigated the impact of urbanization on white-footed mice,Peromyscus leucopus,in the New York City (NYC) metropolitan area using coalescent-based simulations to infer demographic history from the site-frequency spectrum. We assigned individuals to evolutionary clusters and then inferred recent divergence times, population size changes and migration using genome-wide single nucleotide polymorphisms genotyped in 23 populations sampled along an urban-to-rural gradient. Both prehistoric climatic events and recent urbanization impacted these populations. Our modelling indicates that post-glacial sea-level rise led to isolation of mainland and Long Island populations. These models also indicate that several urban parks represent recently isolated P. leucopus populations, and the estimated divergence times for these populations are consistent with the history of urbanization in NYC. © 2016 The Author(s).
Lightning damage to a general aviation aircraft: Description and analysis
NASA Technical Reports Server (NTRS)
Hacker, P. T.
1974-01-01
The damage sustained by a Beechcraft King Air Model B90 aircraft by a single lightning discharge is presented and analyzed. The incident occurred during landing approach at Jackson, Michigan, on Feb. 19, 1971. In addition to the usual melted-metal damage at the lightning attachment points, there was severe implosion-type damage over a large area on the lower right side of the aircraft and impact- and crushing-type damage on the upper and lower surfaces on the left wingtip near the trailing edge. Analyses indicate that the implosion-type damage was probably caused by lightning-generated shock waves, that the impact-and crushing-type damage was caused by magnetic forces, and that the lightning discharge was a multiple strike with at least 11 strokes separated in time by about 4.5 milliseconds. The evidence indicates that the lightning discharge was rather different from the average in character severity.
Large-scale fabrication of single crystalline tin nanowire arrays
NASA Astrophysics Data System (ADS)
Luo, Bin; Yang, Dachi; Liang, Minghui; Zhi, Linjie
2010-09-01
Large-scale single crystalline tin nanowire arrays with preferred lattice orientation along the [100] direction were fabricated in porous anodic aluminium oxide (AAO) membranes by the electrodeposition method using copper nanorod as a second electrode.Large-scale single crystalline tin nanowire arrays with preferred lattice orientation along the [100] direction were fabricated in porous anodic aluminium oxide (AAO) membranes by the electrodeposition method using copper nanorod as a second electrode. Electronic supplementary information (ESI) available: Experimental details and the information for single crystalline copper nanorods. See DOI: 10.1039/c0nr00206b
Khorramizadeh, Maryam; Saberi, Alihossein; Tahmasebi-Birgani, Mohammadjavad; Shokrani, Parvaneh; Amouhedari, Alireza
The existence of a hypersensitive radiation response to doses below 1 Gy is well established for many normal and tumor cell lines. The aim of this study was to ascertain the impact of temporal pattern modeling IMRT on survival, cell cycle and apoptosis of human RCC cell line ACHN, so as to provide radiobiological basis for optimizing IMRT plans for this disease. The ACHN renal cell carcinoma cell line was used in this study. Impact of the triangle, V, small-large or large-small temporal patterns in the presence and absence of threshold dose of hyper-radiosensitivity at the beginning of patterns were studied using soft agarclonogenic assays. Cell cycle and apoptosis analysis were performed after irradiation with the temporal patterns. For triangle and small-large dose sequences, survival fraction was significantly reduced after irradiation with or without threshold dose of hyper-radiosensitivity at the beginning of the patterns. In all of the dose patterns, cell cycle distributions and the percentage of apoptotic cells at 24 h after irradiation with or without priming dose of hyper-radiosensitivity showed no significant difference. However, apoptotic cells were increased when beams with the smallest dose applied at the beginning of dose pattern like triangle and small-large dose sequence. These data show that the biologic effects of single fraction may differ in clinical settings depending on the size and sequence of the partial fractions. Doses at the beginning but not at the end of sequences may change cytotoxicity effects of radiation.
Minimizing embedding impact in steganography using trellis-coded quantization
NASA Astrophysics Data System (ADS)
Filler, Tomáš; Judas, Jan; Fridrich, Jessica
2010-01-01
In this paper, we propose a practical approach to minimizing embedding impact in steganography based on syndrome coding and trellis-coded quantization and contrast its performance with bounds derived from appropriate rate-distortion bounds. We assume that each cover element can be assigned a positive scalar expressing the impact of making an embedding change at that element (single-letter distortion). The problem is to embed a given payload with minimal possible average embedding impact. This task, which can be viewed as a generalization of matrix embedding or writing on wet paper, has been approached using heuristic and suboptimal tools in the past. Here, we propose a fast and very versatile solution to this problem that can theoretically achieve performance arbitrarily close to the bound. It is based on syndrome coding using linear convolutional codes with the optimal binary quantizer implemented using the Viterbi algorithm run in the dual domain. The complexity and memory requirements of the embedding algorithm are linear w.r.t. the number of cover elements. For practitioners, we include detailed algorithms for finding good codes and their implementation. Finally, we report extensive experimental results for a large set of relative payloads and for different distortion profiles, including the wet paper channel.
Conducting an agricultural life cycle assessment: challenges and perspectives.
Caffrey, Kevin R; Veal, Matthew W
2013-12-10
Agriculture is a diverse field that produces a wide array of products vital to society. As global populations continue to grow the competition for natural resources will increase pressure on agricultural production of food, fiber, energy, and various high value by-products. With elevated concerns related to environmental impacts associated with the needs of a growing population, a life cycle assessment (LCA) framework can be used to determine areas of greatest impact and compare reduction strategies for agricultural production systems. The LCA methodology was originally developed for industrial operations but has been expanded to a wider range of fields including agriculture. There are various factors that increase the complexity of determining impacts associated with agricultural production including multiple products from a single system, regional and crop specific management techniques, temporal variations (seasonally and annually), spatial variations (multilocation production of end products), and the large quantity of nonpoint emission sources. The lack of consistent methodology of some impacts that are of major concern to agriculture (e.g., land use and water usage) increases the complexity of this analysis. This paper strives to review some of these issues and give perspective to the LCA practitioner in the field of agriculture.
Conducting an Agricultural Life Cycle Assessment: Challenges and Perspectives
Caffrey, Kevin R.; Veal, Matthew W.
2013-01-01
Agriculture is a diverse field that produces a wide array of products vital to society. As global populations continue to grow the competition for natural resources will increase pressure on agricultural production of food, fiber, energy, and various high value by-products. With elevated concerns related to environmental impacts associated with the needs of a growing population, a life cycle assessment (LCA) framework can be used to determine areas of greatest impact and compare reduction strategies for agricultural production systems. The LCA methodology was originally developed for industrial operations but has been expanded to a wider range of fields including agriculture. There are various factors that increase the complexity of determining impacts associated with agricultural production including multiple products from a single system, regional and crop specific management techniques, temporal variations (seasonally and annually), spatial variations (multilocation production of end products), and the large quantity of nonpoint emission sources. The lack of consistent methodology of some impacts that are of major concern to agriculture (e.g., land use and water usage) increases the complexity of this analysis. This paper strives to review some of these issues and give perspective to the LCA practitioner in the field of agriculture. PMID:24391463
Amiri, Esmaeil; Strand, Micheline K; Rueppell, Olav; Tarpy, David R
2017-05-08
Western honey bees, Apis mellifera , live in highly eusocial colonies that are each typically headed by a single queen. The queen is the sole reproductive female in a healthy colony, and because long-term colony survival depends on her ability to produce a large number of offspring, queen health is essential for colony success. Honey bees have recently been experiencing considerable declines in colony health. Among a number of biotic and abiotic factors known to impact colony health, disease and queen failure are repeatedly reported as important factors underlying colony losses. Surprisingly, there are relatively few studies on the relationship and interaction between honey bee diseases and queen quality. It is critical to understand the negative impacts of pests and pathogens on queen health, how queen problems might enable disease, and how both factors influence colony health. Here, we review the current literature on queen reproductive potential and the impacts of honey bee parasites and pathogens on queens. We conclude by highlighting gaps in our knowledge on the combination of disease and queen failure to provide a perspective and prioritize further research to mitigate disease, improve queen quality, and ensure colony health.
Young chondrules in CB chondrites from a giant impact in the early Solar System.
Krot, Alexander N; Amelin, Yuri; Cassen, Patrick; Meibom, Anders
2005-08-18
Chondrules, which are the major constituent of chondritic meteorites, are believed to have formed during brief, localized, repetitive melting of dust (probably caused by shock waves) in the protoplanetary disk around the early Sun. The ages of primitive chondrules in chondritic meteorites indicate that their formation started shortly after that of the calcium-aluminium-rich inclusions (4,567.2 +/- 0.7 Myr ago) and lasted for about 3 Myr, which is consistent with the dissipation timescale for protoplanetary disks around young solar-mass stars. Here we report the 207Pb-206Pb ages of chondrules in the metal-rich CB (Bencubbin-like) carbonaceous chondrites Gujba (4,562.7 +/- 0.5 Myr) and Hammadah al Hamra 237 (4,562.8 +/- 0.9 Myr), which formed during a single-stage, highly energetic event. Both the relatively young ages and the single-stage formation of the CB chondrules are inconsistent with formation during a nebular shock wave. We conclude that chondrules and metal grains in the CB chondrites formed from a vapour-melt plume produced by a giant impact between planetary embryos after dust in the protoplanetary disk had largely dissipated. These findings therefore provide evidence for planet-sized objects in the earliest asteroid belt, as required by current numerical simulations of planet formation in the inner Solar System.
Laible, Götz; Wei, Jingwei; Wagner, Stefan
2015-01-01
Humans have a long history in shaping the genetic makeup of livestock to optimize production and meet growing human demands for food and other animal products. Until recently, this has only been possible through traditional breeding and selection, which is a painstakingly slow process of accumulating incremental gains over a long period. The development of transgenic livestock technology offers a more direct approach with the possibility for making genetic improvements with greater impact and within a single generation. However, initially the technology was hampered by technical difficulties and limitations, which have now largely been overcome by progressive improvements over the past 30 years. Particularly, the advent of genome editing in combination with homologous recombination has added a new level of efficiency and precision that holds much promise for the genetic improvement of livestock using the increasing knowledge of the phenotypic impact of genetic sequence variants. So far not a single line of transgenic livestock has gained approval for commercialization. The step change to genome-edited livestock with precise sequence changes may accelerate the path to market, provided applications of this new technology for agriculture can deliver, in addition to economic incentives for producers, also compelling benefits for animals, consumers, and the environment. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Financial impact of surgical technique in the treatment of acute appendicitis in children.
Litz, Cristen; Danielson, Paul D; Gould, Jay; Chandler, Nicole M
2013-09-01
Appendicitis is the most common emergent problem encountered by pediatric surgeons. Driven by improved cosmetic outcomes, many surgeons are offering pediatric patients single-incision laparoscopic appendectomy. We sought to investigate the financial impact of different surgical approaches to appendectomy. A retrospective study of patients with acute appendicitis undergoing appendectomy from February 2010 to September 2011 was conducted. Based on surgeon preference, patients underwent open appendectomy (OA), laparoscopic appendectomy (LA), or single-incision laparoscopic appendectomy (SILA). Demographic information, surgical outcomes, surgical supply costs, and total direct costs were recorded. A total of 465 patients underwent appendectomy during the study. The mean age of all patients was 11.2 years (range, 1 to 18 years). There were no conversions in the LA or SILA groups. There was a significant difference among surgical technique in regard to surgical supply costs (OA $159 vs. LA $650 vs. SILA $814, P < 0.01) and total direct costs (OA $2129 vs. LA $2624 vs. SILA $2991, P < 0.01). In our institution, both multiport laparoscopic and SILA carry higher costs when compared with OA, largely as a result of the cost of disposable instrumentation. Cost efficiency should be considered by surgeons when undertaking a minimally invasive approach to appendectomy.
Lithium in tektites and impact glasses: Implications for sources, histories and large impacts
NASA Astrophysics Data System (ADS)
Magna, T.; Deutsch, A.; Mezger, K.; Skála, R.; Seitz, H.-M.; Mizera, J.; Řanda, Z.; Adolph, L.
2011-04-01
Lithium (Li) abundances and isotope compositions were determined in a representative suite of tektites (moldavites, Muong Nong-type tektites and an australite, Ivory Coast tektites and bediasites), impact-related glasses (Libyan Desert Glass, zhamanshinites and irghizites), a glass fragment embedded in the suevite from the Ries impact crater and sedimentary materials in order to test a possible susceptibility of Li to fractionation during hypervelocity impact events and to de-convolve links to their potential parental sources. The overall data show a large spread in Li abundance (4.7-58 ppm Li) and δ 7Li values (-3.2‰ to 26.0‰) but individual groups of tektites and impact glasses have distinctive Li compositions. Most importantly, any significant high-temperature Li isotope fractionation can be excluded by comparing sedimentary lithologies from central Europe with moldavites. Instead, we suggest that Li isotope compositions in tektites and impact-related glasses are probably diagnostic of the precursor materials and their pre-impact geological histories. The Muong Nong-type tektites and australite specimen are identical in terms of Li concentrations and δ 7Li and we tentatively endorse their common origin in a single impact event. Evidence for low-temperature Rayleigh fractionation, which must have operated prior to impact-induced melting and solidification, is provided for a subset of Muong Nong-type tektites. Although Li isotope variations in most tektites are broadly similar to those of the upper continental crust, Libyan Desert Glass carries high δ 7Li ⩾24.7‰, which appears to mirror the previous fluvial history of parental material that was perhaps deposited in lacustrine environment or coastal seawater. Lithium isotopes in impact-related glasses from the Zhamanshin crater define a group distinct from all other samples and point to melting of chemically less evolved mafic lithologies, which is also consistent with their major and trace element patterns. Extreme shock pressures and the related extreme post-shock temperatures alone appear not to have any effect on the Li isotope systematics; therefore, useful information on parental lithologies and magmatic processes may be retrieved from analyses of Martian and lunar meteorites. Moreover, lack of significant Li depletion in tektites provides further constraints on the loss of moderately volatile elements during the Moon-forming impact.
Impact of NICU design on environmental noise.
Szymczak, Stacy E; Shellhaas, Renée A
2014-04-01
For neonates requiring intensive care, the optimal sound environment is uncertain. Minimal disruptions from medical staff create quieter environments for sleep, but limit language exposure necessary for proper language development. There are two models of neonatal intensive care units (NICUs): open-bay, in which 6-to-10 infants are cared for in a single large room; and single-room, in which neonates are housed in private, individual hospital rooms. We compared the acoustic environments in the two NICU models. We extracted the audio tracks from video-electroencephalography (EEG) monitoring studies from neonates in an open-bay NICU and compared the acoustic environment to that recorded from neonates in a new single-room NICU. From each NICU, 18 term infants were studied (total N=36; mean gestational age 39.3±1.9 weeks). Neither z-scores of the sound level variance (0.088±0.03 vs. 0.083±0.03, p=0.7), nor percent time with peak sound variance (above 2 standard deviations; 3.6% vs. 3.8%, p=0.6) were different. However, time below 0.05 standard deviations was higher in the single-room NICU (76% vs. 70%, p=0.02). We provide objective evidence that single-room NICUs have equal sound peaks and overall noise level variability compared with open-bay units, but the former may offer significantly more time at lower noise levels.
Fixation Times in Deme Structured, Finite Populations with Rare Migration
NASA Astrophysics Data System (ADS)
Hauert, Christoph; Chen, Yu-Ting; Imhof, Lorens A.
2014-08-01
Population structure affects both the outcome and the speed of evolutionary dynamics. Here we consider a finite population that is divided into subpopulations called demes. The dynamics within the demes are stochastic and frequency-dependent. Individuals can adopt one of two strategic types, or . The fitness of each individual is determined by interactions with other individuals in the same deme. With small probability, proportional to fitness, individuals migrate to other demes. The outcome of these dynamics has been studied earlier by analyzing the fixation probability of a single mutant in an otherwise homogeneous population. These results give only a partial picture of the dynamics, because the time when fixation occurs can be exceedingly large. In this paper, we study the impact of deme structures on the speed of evolution. We derive analytical approximations of fixation times in the limit of rare migration and rare mutation. In this limit, the conditional fixation time of a single mutant in a population is the same as that of a single in an population. For the prisoner's dilemma game, simulation results fit very well with our analytical predictions and demonstrate that fixation takes place in a moderate amount of time as compared to the expected waiting time until a mutant successfully invades and fixates. The simulations also confirm that the conditional fixation time of a single cooperator is indeed the same as that of a single defector.
NASA Astrophysics Data System (ADS)
Ge, Sijie; Wang, Sujing; Xu, Qiang; Ho, Thomas
2018-03-01
Turnaround operations (start-up and shutdown) are critical operations in olefin plants, which emit large quantities of VOCs, NOx and CO. The emission has great potentials to impact the ozone level in ozone nonattainment areas. This study demonstrates a novel practice to minimize the ozone impact through coordinated scheduling of turnaround operations from multiple olefin plants located in Houston, Texas, an ozone nonattainment area. The study considered two olefin plants scheduled to conduct turnaround operations: one start-up and one shutdown, simultaneously on the same day within a five-hour window. Through dynamic simulations of the turnaround operations using ASPEN Plus Dynamics and air quality simulations using CAMx, the study predicts the ozone impact from the combined effect of the two turnaround operations under different starting-time scenarios. The simulations predict that the ozone impact from planned turnaround operations ranges from a maximum of 11.4 ppb to a minimum of 1.4 ppb. Hence, a reduction of up to 10.0 ppb can be achieved on a single day based on the selected two simulation days. This study demonstrates a cost-effective and environmentally benign ozone control practice for relevant stakeholders, including environmental agencies, regional plant operators, and local communities.
The impact of single and shared rooms on family-centred care in children's hospitals.
Curtis, Penny; Northcott, Andy
2017-06-01
To explore whether and how spatial aspects of children's hospital wards (single and shared rooms) impact upon family-centred care. Family-centred care has been widely adopted in paediatric hospitals internationally. Recent hospital building programmes in many countries have prioritised the provision of single rooms over shared rooms. Limited attention has, however, been paid to the potential impact of spatial aspects of paediatric wards on family-centred care. Qualitative, ethnographic. Phase 1; observation within four wards of a specialist children's hospital. Phase 2; interviews with 17 children aged 5-16 years and 60 parents/carers. Sixty nursing and support staff also took part in interviews and focus group discussions. All data were subjected to thematic analysis. Two themes emerged from the data analysis: 'role expectations' and 'family-nurse interactions'. The latter theme comprised three subthemes: 'family support needs', 'monitoring children's well-being' and 'survey-assess-interact within spatial contexts'. Spatial configurations within hospital wards significantly impacted upon the relationships and interactions between children, parents and nurses, which played out differently in single and shared rooms. Increasing the provision of single rooms within wards is therefore likely to directly affect how family-centred care manifests in practice. Nurses need to be sensitive to the impact of spatial characteristics, and particularly of single and shared rooms, on families' experiences of children's hospital wards. Nurses' contribution to and experience of family-centred care can be expected to change significantly when spatial characteristics of wards change and, as is currently the vogue, hospitals maximise the provision of single rather than shared rooms. © 2016 John Wiley & Sons Ltd.
Stress, Social Resources, and Depression among Never-Married and Divorced Rural Mothers
ERIC Educational Resources Information Center
Turner, Heather A.
2006-01-01
While the impact of single parenting on women and children has long been a concern, very little research has focused on single parents living in rural areas. Based on a probability sample of 508 single mothers aged 18-39 living in rural Northern New England, the present study: (1) examines the impact of several domains of stress on mothers'…
D'Amato, A.W.; Fraver, S.; Palik, B.J.; Bradford, J.B.; Patty, L.
2011-01-01
The role of disturbance in structuring vegetation is widely recognized; however, we are only beginning to understand the effects of multiple interacting disturbances on ecosystem recovery and development. Of particular interest is the impact of post-disturbance management interventions, particularly in light of the global controversy surrounding the effects of salvage logging on forest ecosystem recovery. Studies of salvage logging impacts have focused on the effects of post-disturbance salvage logging within the context of a single natural disturbance event. There have been no formal evaluations of how these effects may differ when followed in short sequence by a second, high severity natural disturbance. To evaluate the impact of this management practice within the context of multiple disturbances, we examined the structural and woody plant community responses of sub-boreal Pinus banksiana systems to a rapid sequence of disturbances. Specifically, we compared responses to Blowdown (B), Fire (F), Blowdown-Fire, and Blowdown-Salvage-Fire (BSF) and compared these to undisturbed control (C) stands. Comparisons between BF and BSF indicated that the primary effect of salvage logging was a decrease in the abundance of structural legacies, such as downed woody debris and snags. Both of these compound disturbance sequences (BF and BSF), resulted in similar woody plant communities, largely dominated by Populus tremuloides; however, there was greater homogeneity in community composition in salvage logged areas. Areas experiencing solely fire (F stands) were dominated by P. banksiana regeneration, and blowdown areas (B stands) were largely characterized by regeneration from shade tolerant conifer species. Our results suggest that salvage logging impacts on woody plant communities are diminished when followed by a second high severity disturbance; however, impacts on structural legacies persist. Provisions for the retention of snags, downed logs, and surviving trees as part of salvage logging operations will minimize these structural impacts and may allow for greater ecosystem recovery following these disturbance combinations. ?? 2011 Elsevier B.V.
Where's the Beaverhead beef?. [meteorite impact structure
NASA Technical Reports Server (NTRS)
Hargraves, R. B.
1992-01-01
Only rare quartz grains with single-set planar (1013) deformation features (PDF's) are present in breccia dikes found in association with uniformly oriented shatter cones that occur over an area 8 x 25 km. This suggests that the Beaverhead shocked rocks come from only the outer part of the central uplift of what must have been a large (greater than 100 km diameter) complex impact structure. An impact event of this magnitude on continental crust (thought to have occurred in late Precambrian or ealy Paleozoic time) could be expected to punctuate local geologic history. Furthermore, although it may now be covered, its scar should remain despite all the considerable subsequent erosion/deposition and tectonism since the impact. The following are three large-scale singularities or anomalies that may reflect the event and mark its source. (1) The Lemhi Arch is a major structural uplift that occurred in late Proterozoic-early Paleozoic time in East Central Idaho and caused the erosion of at least 4 km of sedimentary cover. This may be directly related to the impact. (2) Of the many thrust sheets comprising the Cordilleran belt, the Cabin plate that carries the shocked rocks is unique in that it alone intersected the crystalline basement. It also now marks the apex of the Southwest Montana Recess in the Sevier front. The basement uplift remaining from the impact may have constituted a mechanical obstacle to the advancing thrust sheets in Cretaceous time, causing the recess. (3) What could be interpreted as a roughly circular aeromagnetic anomaly approx. 70 km in diameter can be discerned in the state aeromagnetic map centered about 20 km southeast of Challis, Idaho, in the Lost River range. It is in approximately the right place, and ignoring the possibility that the anomalies have diverse causes and the circular pattern is coincidental, it may mark what remains of the buried central uplift structure.
Large-Scale Impact Cratering and Early Earth Evolution
NASA Technical Reports Server (NTRS)
Grieve, R. A. F.; Cintala, M. J.
1997-01-01
The surface of the Moon attests to the importance of large-scale impact in its early crustal evolution. Previous models of the effects of a massive bombardment on terrestrial crustal evolution have relied on analogies with the Moon, with allowances for the presence of water and a thinner lithosphere. It is now apparent that strict lunar-terrestrial analogies are incorrect because of the "differential scaling" of crater dimensions and melt volumes with event size and planetary gravity. Impact melt volumes and "ancient cavity dimensions for specific impacts were modeled according to previous procedures. In the terrestrial case, the melt volume (V(sub m)) exceeds that of the transient cavity (V(sub tc)) at diameters > or = 400 km. This condition is reached on the Moon only with transient cavity diameters > or = 3000 km, equivalent to whole Moon melting. The melt volumes in these large impact events are minimum estimates, since, at these sizes, the higher temperature of the target rocks at depth will increase melt production. Using the modification-scaling relation of Croft, a transient cavity diameter of about 400 km in the terrestrial environment corresponds to an expected final impact "basin" diameter of about 900 km. Such a "basin" would be comparable in dimensions to the lunar basin Orientale. This 900-km "basin" on the early Earth, however, would not have had the appearance of Orientale. It would have been essentially a melt pool, and, morphologically, would have had more in common with the palimpsests structures on Callisto and Ganymede. With the terrestrial equivalents to the large multiring basins of the Moon being manifested as muted palimpsest-like structures filled with impact melt, it is unlikely they played a role in establishing the freeboard on the early Earth. The composition of the massive impact melt sheets (> 10 (exp 7) cu km) produced in "basin-forming" events on the early Earth would have most likely ranged from basaltic to more mafic for the largest impacts, where the melt volume would have reached well into the mantle. Any contribution from adiabatic melting or shock heating of the asthenosphere would have had similar mafic compositions. The depth of the melt sheets is unknown but would have been in the multilkilometer range. Bodies of basaltic melt > or = 300 m thick differentiate in the terrestrial environment, with the degree of differentiation being a function of the thickness of the body. We therefore expect that these thick, closed-system melt pools would have differentiated into an ultramafic-mafic base and felsic top. If only 10% of the impact melt produced in a single event creating a 400-km diameter transient cavity evolved into felsic differentiates, they would be comparable in volume to the Columbia River basalts. It has been estimated that at least 200 impact events of this size or larger occurred on the early Earth during a period of heavy bombardment. We speculate that these massive differentiated melt sheets may have had a role in the formation of the initial felsic component of the Earth's crust. Additional information is contained in the original.
Impact of time delays on oscillatory dynamics of interlinked positive and negative feedback loops
NASA Astrophysics Data System (ADS)
Huang, Bo; Tian, Xinyu; Liu, Feng; Wang, Wei
2016-11-01
Interlinking a positive feedback loop (PFL) with a negative feedback loop (NFL) constitutes a typical motif in genetic networks, performing various functions in cell signaling. How time delay in feedback regulation affects the dynamics of such systems still remains unclear. Here, we investigate three systems of interlinked PFL and NFL with time delays: a synthetic genetic oscillator, a three-node circuit, and a simplified single-node model. The stability of steady states and the routes to oscillation in the single-node model are analyzed in detail. The amplitude and period of oscillations vary with a pointwise periodicity over a range of time delay. Larger-amplitude oscillations can be induced when the PFL has an appropriately long delay, in comparison with the PFL with no delay or short delay; this conclusion holds true for all the three systems. We unravel the underlying mechanism for the above effects via analytical derivation under a limiting condition. We also develop a stochastic algorithm for simulating a single reaction with two delays and show that robust oscillations can be maintained by the PFL with a properly long delay in the single-node system. This work presents an effective method for constructing robust large-amplitude oscillators and interprets why similar circuit architectures are engaged in timekeeping systems such as circadian clocks.
Welfare Reform and Labor Force Exit by Young, Low-Skilled Single Males.
Groves, Lincoln H
2016-04-01
While the labor market woes of low-skilled male workers in the United States over the past several decades have been well documented, the academic literature identifying causal factors leading to declines in labor force participation (LFP) by young, low-skilled males remains scant. To address this gap, I use the timing and characteristics of welfare-reform policies implemented during the 1990s and fixed-effects, instrumental variable regression modeling to show that policies seeking to increase LFP rates for low-skilled single mothers inadvertently led to labor force exit by young, low-skilled single males. Using data from the Current Population Survey and a bundle of work inducements enacted by states throughout the 1990s as exogenous variation in a quasi-experimental design, I find that the roughly 10 percentage point increase in LFP for low-skilled single mothers facilitated by welfare reform resulted in a statistically significant 2.8 percentage point decline in LFP for young, low-skilled single males. After conducting a series of robustness checks, I conclude that this result is driven entirely by white males, who responded to welfare-reform policies with a 3.7 percentage point decline in labor supply. Young black males, as well as other groups of potentially affected workers, appear to be uninfluenced by the labor supply response of less-educated single mothers to welfare reform. Impacts on young, single white males are large and economically significant, suggesting that nearly 150,000 males departed the formal labor market in response to directed welfare-reform policies.
Single quantum dot tracking reveals the impact of nanoparticle surface on intracellular state.
Zahid, Mohammad U; Ma, Liang; Lim, Sung Jun; Smith, Andrew M
2018-05-08
Inefficient delivery of macromolecules and nanoparticles to intracellular targets is a major bottleneck in drug delivery, genetic engineering, and molecular imaging. Here we apply live-cell single-quantum-dot imaging and tracking to analyze and classify nanoparticle states after intracellular delivery. By merging trajectory diffusion parameters with brightness measurements, multidimensional analysis reveals distinct and heterogeneous populations that are indistinguishable using single parameters alone. We derive new quantitative metrics of particle loading, cluster distribution, and vesicular release in single cells, and evaluate intracellular nanoparticles with diverse surfaces following osmotic delivery. Surface properties have a major impact on cell uptake, but little impact on the absolute cytoplasmic numbers. A key outcome is that stable zwitterionic surfaces yield uniform cytosolic behavior, ideal for imaging agents. We anticipate that this combination of quantum dots and single-particle tracking can be widely applied to design and optimize next-generation imaging probes, nanoparticle therapeutics, and biologics.
Ar-39-Ar-40 Ages of Euerites and the Thermal History of Asteroid 4-Vesta
NASA Technical Reports Server (NTRS)
Bogard, Donald D.; Garrison, Daniel H.
2002-01-01
Eucrite meteorites are igneous rocks that derive from a large asteroid, probably 4 Vesta. Prior studies have shown that after eucrites formed, most were subsequently metamorphosed to temperatures up to equal to or greater than 800 C, and much later many were brecciated and heated by large impacts into the parent body surface. The uncommon basaltic, unbrecciated eucrites also formed near the surface but presumably escaped later brecciation, whereas the cumulate eucrites formed at depth where metamorphism may have persisted for a considerable period. To further understand the complex HED parent body thermal history, we determined new Ar-39-Ar-40 ages for nine eucrites classified as basaltic but unbrecciated, six eucrites classified as cumulate, and several basaltic-brecciated eucrites. Relatively precise Ar-Ar ages of two cumulate eucrites (Moama and EET87520) and four unbrecciated eucrites give a tight cluster at 4.48 +/1 0.01 Gyr. Ar-Ar ages of six additional unbrecciated eucrites are consistent with this age, within their larger age uncertainties. In contrast, available literature data on Pb-Pb isochron ages of four cumulate eucrites and one unbrecciated eucrite vary over 4.4-4.515 Gyr, and Sm-147 - Nd-143 isochron ages of four cumulate and three unbrecciated eucrites vary over 4.41-4.55 Gyr. Similar Ar-Ar ages for cumulate and unbrecciated eucrites imply that cumulate eucrites do not have a younger formation age than basaltic eucrites, as previously proposed. Rather, we suggest that these cumulate and unbrecciated eucrites resided at depth where parent body temperatures were sufficiently high to cause the K-Ar and some other chronometers to remain open diffusion systems. From the strong clustering of Ar-Ar ages at approximately 4.48 Gyr, we propose that these meteorites were excavated from depth in a single large impact event approximately 4.48 Gyr ago, which quickly cooled the samples and started the K-Ar chronometer. A large (approximately 460 km) crater postulated to exist on Vesta may be the source of these eucrites and of many smaller asteroids thought to be spectrally or physically associated with Vesta. Some Pb-Pb and Sm-Nd ages of cumulate and unbrecciated eucrites are consistent with the 4.48 Gyr Ar-Ar age, and the few older Pb-Pb and Sm-Nd ages may reflect isotopic closure prior to the large cratering event. One cumulate eucrite gives an Ar-Ar age of 4.25 Gyr; three additional cumulate eucrites give Ar-Ar ages of 3.4-3.7 Gyr; and two unbrecciated eucrites give Ar-Ar ages of approximately 3.55 Gyr. We attribute these younger ages to later impact heating. In addition, we find Ar-Ar impact-reset ages of several brecciated eucrites and eucritic clasts in howardites to fall in the range of 3.5-4.1 Gyr. Among these, Piplia Kalan, the first eucrite to show evidence for extinct 26 Al, was strongly impact heated approximately3.5 Gyr ago. When these data are combined with eucrite Ar-Ar ages in the literature, they confirm the previous suggestion that several large impact heating events occurred on Vesta over the time period approximately 4.1-3.4 Gyr ago. The onset of major impact heating may have occurred at similar times for both Vesta and the Moon, but impact heating appears to have persisted to a somewhat later time on Vesta compared to the Moon.
Recent Advances in X-ray Cone-beam Computed Laminography.
O'Brien, Neil S; Boardman, Richard P; Sinclair, Ian; Blumensath, Thomas
2016-10-06
X-ray computed tomography is an established volume imaging technique used routinely in medical diagnosis, industrial non-destructive testing, and a wide range of scientific fields. Traditionally, computed tomography uses scanning geometries with a single axis of rotation together with reconstruction algorithms specifically designed for this setup. Recently there has however been increasing interest in more complex scanning geometries. These include so called X-ray computed laminography systems capable of imaging specimens with large lateral dimensions or large aspect ratios, neither of which are well suited to conventional CT scanning procedures. Developments throughout this field have thus been rapid, including the introduction of novel system trajectories, the application and refinement of various reconstruction methods, and the use of recently developed computational hardware and software techniques to accelerate reconstruction times. Here we examine the advances made in the last several years and consider their impact on the state of the art.
Dynamics of the Final Stages of Terrestrial Planet Growth and the Formation of the Earth-Moon System
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Rivera, Eugenio J.; DeVincenzi, Donald (Technical Monitor)
2000-01-01
An overview of current theories of star and planet formation, with emphasis on terrestrial planet accretion and the formation of the Earth-Moon system is presented. These models predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant impacts during the final stages of growth can produce large planetary satellites, such as Earth's Moon. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.
NASA Astrophysics Data System (ADS)
Forestieri, S.; Cappa, C. D.; Ruehl, C. R.; Bertram, T. H.; Staudt, S.; Kuborn, T.
2017-12-01
Aerosol impacts on cloud properties, also known as indirect effects, remain a major source of uncertainty in modeling global radiative forcing. Reducing this uncertainty necessitates better understanding of how aerosol chemical composition impacts the cloud-forming ability of aerosols. The presence of surfactants in aerosols can decrease the surface tension of activating droplets relative to water and lead to more efficient activation. The importance of this effect has been debated, but recent surface tension measurements of microscopic droplets indicate that surface tension is substantially depressed relative to water for lab-generated particles consisting of salt and a single organic species and for complex mixtures of organic matter. However, little work has been done on understanding how chemical complexity (i.e. interaction between different surfactant species) impacts surface tension for particles containing mixtures of surfactants. In this work, we quantified the surface tension of lab-generated aerosols containing surfactants that are commonly found in nascent sea spray aerosol (SSA) at humidities close to activation using a continuous flow stream-wise thermal gradient chamber (CFSTGC). Surface tension was quantified for particles containing single surfactant species and mixtures of these surfactants to investigate the role of chemical complexity on surface tension and molecular packing at the air-water interface. For all surfactants tested in this study, substantial surface tension depression (20-40 mN/m) relative to water was observed for particles containing large fractions of organic matter at humidities just below activation. However, the presence of these surfactants only weakly depressed surface tension at activation. Kinetic limitations were observed for particles coated with just palmitic acid, since palmitic acid molecules inhibit water uptake through their ability to pack tightly at the surface. However, these kinetic limitations disappeared when palmitic acid was mixed with oleic acid, indicating a disruption in packing. The impact of oxidation on droplet surface tension will also be discussed.
1983-10-01
exceed a 5-year period. Single-family and multifamily housing will experience both growth and decline cycle impact conditions . Single family housing will... growth and decline cycle impact conditions . A high and significant short-term impact is the result of a required supply of 42 units in 1989 ( growth ...over-design. The model corroborated, however, that expansion is necessary even for existing conditions , much less the 114-person growth expected during
Student perception of group dynamics predicts individual performance: Comfort and equity matter
Theobald, Elli J.; Eddy, Sarah L.; Grunspan, Daniel Z.; Wiggins, Benjamin L.
2017-01-01
Active learning in college classes and participation in the workforce frequently hinge on small group work. However, group dynamics vary, ranging from equitable collaboration to dysfunctional groups dominated by one individual. To explore how group dynamics impact student learning, we asked students in a large-enrollment university biology class to self-report their experience during in-class group work. Specifically, we asked students whether there was a friend in their group, whether they were comfortable in their group, and whether someone dominated their group. Surveys were administered after students participated in two different types of intentionally constructed group activities: 1) a loosely-structured activity wherein students worked together for an entire class period (termed the ‘single-group’ activity), or 2) a highly-structured ‘jigsaw’ activity wherein students first independently mastered different subtopics, then formed new groups to peer-teach their respective subtopics. We measured content mastery by the change in score on identical pre-/post-tests. We then investigated whether activity type or student demographics predicted the likelihood of reporting working with a dominator, being comfortable in their group, or working with a friend. We found that students who more strongly agreed that they worked with a dominator were 17.8% less likely to answer an additional question correct on the 8-question post-test. Similarly, when students were comfortable in their group, content mastery increased by 27.5%. Working with a friend was the single biggest predictor of student comfort, although working with a friend did not impact performance. Finally, we found that students were 67% less likely to agree that someone dominated their group during the jigsaw activities than during the single group activities. We conclude that group activities that rely on positive interdependence, and include turn-taking and have explicit prompts for students to explain their reasoning, such as our jigsaw, can help reduce the negative impact of inequitable groups. PMID:28727749
Schinegger, Rafaela; Palt, Martin; Segurado, Pedro; Schmutz, Stefan
2016-12-15
This work addresses human stressors and their impacts on fish assemblages at pan-European scale by analysing single and multiple stressors and their interactions. Based on an extensive dataset with 3105 fish sampling sites, patterns of stressors, their combination and nature of interactions, i.e. synergistic, antagonistic and additive were investigated. Geographical distribution and patterns of seven human stressor variables, belonging to four stressor groups (hydrological-, morphological-, water quality- and connectivity stressors), were examined, considering both single and multiple stressor combinations. To quantify the stressors' ecological impact, a set of 22 fish metrics for various fish assemblage types (headwaters, medium gradient rivers, lowland rivers and Mediterranean streams) was analysed by comparing their observed and expected response to different stressors, both acting individually and in combination. Overall, investigated fish sampling sites are affected by 15 different stressor combinations, including 4 stressors acting individually and 11 combinations of two or more stressors; up to 4 stressor groups per fish sampling site occur. Stressor-response analysis shows divergent results among different stressor categories, even though a general trend of decreasing ecological integrity with increasing stressor quantity can be observed. Fish metrics based on density of species 'intolerant to water quality degradation' and 'intolerant to oxygen depletion" responded best to single and multiple stressors and their interactions. Interactions of stressors were additive (40%), synergistic (30%) or antagonistic (30%), emphasizing the importance to consider interactions in multi-stressor analyses. While antagonistic effects are only observed in headwaters and medium-gradient rivers, synergistic effects increase from headwaters over medium gradient rivers and Mediterranean streams to large lowland rivers. The knowledge gained in this work provides a basis for advanced investigations in European river basins and helps prioritizing further restoration and management actions. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Aircraft Loss of Control Causal Factors and Mitigation Challenges
NASA Technical Reports Server (NTRS)
Jacobson, Steven R.
2010-01-01
Loss of control is the leading cause of jet fatalities worldwide. Aside from their frequency of occurrence, accidents resulting from loss of aircraft control seize the public s attention by yielding a large number of fatalities in a single event. In response to the rising threat to aviation safety, the NASA Aviation Safety Program has conducted a study of the loss of control problem. This study gathered four types of information pertaining to loss of control accidents: (1) statistical data; (2) individual accident reports that cite loss of control as a contributing factor; (3) previous meta-analyses of loss of control accidents; and (4) inputs solicited from aircraft manufacturers, air carriers, researchers, and other industry stakeholders. Using these information resources, the study team identified the causal factors that were cited in the greatest number of loss of control accidents, and which were emphasized most by industry stakeholders. This report describes the study approach, the key causal factors for aircraft loss of control, and recommended mitigation strategies to make near-term impacts, mid-term impacts, and Next Generation Air Transportation System impacts on the loss of control accident statistics
In silico prediction of splice-altering single nucleotide variants in the human genome.
Jian, Xueqiu; Boerwinkle, Eric; Liu, Xiaoming
2014-12-16
In silico tools have been developed to predict variants that may have an impact on pre-mRNA splicing. The major limitation of the application of these tools to basic research and clinical practice is the difficulty in interpreting the output. Most tools only predict potential splice sites given a DNA sequence without measuring splicing signal changes caused by a variant. Another limitation is the lack of large-scale evaluation studies of these tools. We compared eight in silico tools on 2959 single nucleotide variants within splicing consensus regions (scSNVs) using receiver operating characteristic analysis. The Position Weight Matrix model and MaxEntScan outperformed other methods. Two ensemble learning methods, adaptive boosting and random forests, were used to construct models that take advantage of individual methods. Both models further improved prediction, with outputs of directly interpretable prediction scores. We applied our ensemble scores to scSNVs from the Catalogue of Somatic Mutations in Cancer database. Analysis showed that predicted splice-altering scSNVs are enriched in recurrent scSNVs and known cancer genes. We pre-computed our ensemble scores for all potential scSNVs across the human genome, providing a whole genome level resource for identifying splice-altering scSNVs discovered from large-scale sequencing studies.
Genetic control of disease resistance and immunoresponsiveness.
Kelm, S C; Freeman, A E; Kehrli, M E
2001-11-01
A great deal of evidence points to substantial genetic control over at least some of the immune responses, although genetic parameters for clinical disease have been less favorable. The past two decades have illustrated that single genes with a large impact on food animal health do exist and can be used to improve the health of domestic populations. The current focus on molecular genetics within food animal species will likely unveil numerous other examples of single genes with large effects, although the use of animals possessing favorable genotypes for disease resistance may represent a compromise in selection for increased production of raw product. Moreover, it is also clear that genetic control over the immune system is not limited to a few genes but is more likely influenced by many genes, each with small effects. The use of this information in animal improvement programs is not straightforward because of factors complicating the identification of superior individuals within the population. The scarcity of information dealing with phenotypic and genetic relationships between measures of disease resistance and aspects of immune response complicates the situation even further. Despite these potential hurdles, the potential for permanent improvement of disease resistance within food animal species in the future is tantalizing and merits intensified future study.
SeReNA Project: studying aerosol interactions with cloud microphysics in the Amazon Basin
NASA Astrophysics Data System (ADS)
Correia, A. L.; Catandi, P. B.; Frigeri, F. F.; Ferreira, W. C.; Martins, J.; Artaxo, P.
2012-12-01
Cloud microphysics and its interaction with aerosols is a key atmospheric process for weather and climate. Interactions between clouds and aerosols can impact Earth's radiative balance, its hydrological and energetic cycles, and are responsible for a large fraction of the uncertainty in climatic models. On a planetary scale, the Amazon Basin is one of the most significant land sources of moisture and latent heat energy. Moreover, every year this region undergoes mearked seasonal shifts in its atmospheric state, transitioning from clean to heavily polluted conditions due to the occurrence of seasonal biomass burning fires, that emit large amounts of smoke to the atmosphere. These conditions make the Amazon Basin a special place to study aerosol-cloud interactions. The SeReNA Project ("Remote sensing of clouds and their interaction with aerosols", from the acronym in Portuguese, @SerenaProject on Twitter) is an ongoing effort to experimentally investigate the impact of aerosols upon cloud microphysics in Amazonia. Vertical profiles of droplet effective radius of water and ice particles, in single convective clouds, can be derived from measurements of the emerging radiation on cloud sides. Aerosol optical depth, cloud top properties, and meteorological parameters retrieved from satellites will be correlated with microphysical properties derived for single clouds. Maps of cloud brightness temperature will allow building temperature vs. effective radius profiles for hydrometeors in single clouds. Figure 1 shows an example extracted from Martins et al. (2011), illustrating a proof-of-concept for the kind of result expected within the framework for the SeReNA Project. The results to be obtained will help foster the quantitative knowledge about interactions between aerosols and clouds in a microphysical level. These interactions are a fundamental process in the context of global climatic changes, they are key to understanding basic processes within clouds and how aerosols can influence them. Reference: Martins et al. (2011) ACP, v.11, p.9485-9501. Available at: http://bit.ly/martinspaper Figure 1. Brightness temperature (left panel) and thermodynamic phase (right) of hydrometeors in the convective cloud shown in the middle panel. Extracted from Martins et al. (2011).
Grassberger, Clemens; Dowdell, Stephen; Lomax, Antony; Sharp, Greg; Shackleford, James; Choi, Noah; Willers, Henning; Paganetti, Harald
2013-01-01
Purpose Quantify the impact of respiratory motion on the treatment of lung tumors with spot scanning proton therapy. Methods and Materials 4D Monte Carlo simulations were used to assess the interplay effect, which results from relative motion of the tumor and the proton beam, on the dose distribution in the patient. Ten patients with varying tumor sizes (2.6-82.3cc) and motion amplitudes (3-30mm) were included in the study. We investigated the impact of the spot size, which varies between proton facilities, and studied single fractions and conventionally fractionated treatments. The following metrics were used in the analysis: minimum/maximum/mean dose, target dose homogeneity and 2-year local control rate (2y-LC). Results Respiratory motion reduces the target dose homogeneity, with the largest effects observed for the highest motion amplitudes. Smaller spot sizes (σ≈3mm) are inherently more sensitive to motion, decreasing target dose homogeneity on average by a factor ~2.8 compared to a larger spot size (σ≈13mm). Using a smaller spot size to treat a tumor with 30mm motion amplitude reduces the minimum dose to 44.7% of the prescribed dose, decreasing modeled 2y-LC from 87.0% to 2.7%, assuming a single fraction. Conventional fractionation partly mitigates this reduction, yielding a 2y-LC of 71.6%. For the large spot size, conventional fractionation increases target dose homogeneity and prevents a deterioration of 2y-LC for all patients. No correlation with tumor volume is observed. The effect on the normal lung dose distribution is minimal: observed changes in mean lung dose and lung V20 are <0.6Gy(RBE) and <1.7% respectively. Conclusions For the patients in this study, 2y-LC could be preserved in the presence of interplay using a large spot size and conventional fractionation. For treatments employing smaller spot sizes and/or in the delivery of single fractions, interplay effects can lead to significant deterioration of the dose distribution and lower 2y-LC. PMID:23462423
Normal impact of a low-velocity projectile against a taut string-like membrane
NASA Astrophysics Data System (ADS)
Zhao, Yifei; Sun, Zhili
2018-07-01
For the impact system in which a moving projectile transversely impacts against a taut fabric band, 1-D linearized model applies because of low-velocity, sufficient pretension, and the sizes of the objects. This projectile-to-band impact model can serve as the physical prototype of applications in engineering such as cable-membrane architectures and seat belts. In this fundamental work, the response properties under central and non-central impacts are investigated analytically from the viewpoint of wave propagations, while comparisons and verifications are made with finite element (FE) analysis. For a central impact after the first separation, band can catch up with the projectile such that a contact-impact state is re-established when m is in the small interval neighbouring m = 1. For a non-central impact, the projectile would be subjected to a combination of translation and rotation due to asymmetric wave propagations. From every certain instant, the projectile is subjected to an additional rotational acceleration (principal moment) with an abrupt or zero initial value in the anti-clockwise or clockwise direction. The swing amplitude of a small-j or a flat projectile is susceptible to significant fluctuations, and vice versa. The band with a rather large off-centre ratio for the impacted zone and a rather short length of the shorter segment would facilitate a larger accumulation of swing amplitude in a single direction soon after the impact. The linearized impact models proposed can be used to well describe the small-deflection responses for the system, based on 1-D wave propagations or the dependence of quasi-static band deflection on time if the impact duration is much longer than the double wave transit time for the band.
Hypervelocity impact survivability experiments for carbonaceous impactors
NASA Technical Reports Server (NTRS)
Bunch, T. E.; Becker, Luann; Bada, Jeffrey; Macklin, John; Radicatidibrozolo, Filippo; Fleming, R. H.; Erlichman, Jozef
1993-01-01
We performed a series of hypervelocity impact experiments using carbon-bearing impactors (diamond, graphite, fullerenes, phthalic acid crystals, and Murchison meteorite) into Al plate at velocities between 4.2 and 6.1 km/s. These tests were made to do the following: (1) determine the survivability of carbon forms and organize molecules in low hypervelocity impact; (2) characterize carbonaceous impactor residues; and (3) determine whether or not fullerenes could form from carbonaceous impactors, under our experimental conditions, or survive as impactors. An analytical protocol of field emission SEM imagery, SEM-EDX, laser Raman spectroscopy, single and 2-stage laser mass spectrometry, and laser induced fluorescence (LIF) found the following: (1) diamonds did not survive impact at 4.8 km/s, but were transformed into various forms of disordered graphite; (2) intact, well-ordered graphite impactors did survive impact at 5.9 km/sec, but were only found in the crater bottom centers; the degree of impact-induced disorder in the graphite increases outward (walls, rims, ejecta); (3) phthalic acid crystals were destroyed on impact (at 4.2 km/s, although a large proportion of phthalic acid molecules did survive impact); (4) fullerenes did not form as products of carbonaceous impactors (5.9 - 6.1 km/s, fullerene impactor molecules mostly survived impact at 5.9 km/s; and (5) two Murchison meteorite samples (launched at 4.8 and 5.9 km/s) show preservation of some higher mass polycyclic aromatic hydrocarbons (PAHs) compared with the non-impacted sample. Each impactor type shows unique impactor residue morphologies produced at a given impact velocity. An expanded methodology is presented to announce relatively new analytical techniques together with innovative modifications to other methods that can be used to characterize small impact residues in LDEF craters, in addition to other acquired extraterrestrial samples.
Probing Inflation Using Galaxy Clustering On Ultra-Large Scales
NASA Astrophysics Data System (ADS)
Dalal, Roohi; de Putter, Roland; Dore, Olivier
2018-01-01
A detailed understanding of curvature perturbations in the universe is necessary to constrain theories of inflation. In particular, measurements of the local non-gaussianity parameter, flocNL, enable us to distinguish between two broad classes of inflationary theories, single-field and multi-field inflation. While most single-field theories predict flocNL ≈ ‑5/12 (ns -1), in multi-field theories, flocNL is not constrained to this value and is allowed to be observably large. Achieving σ(flocNL) = 1 would give us discovery potential for detecting multi-field inflation, while finding flocNL=0 would rule out a good fraction of interesting multi-field models. We study the use of galaxy clustering on ultra-large scales to achieve this level of constraint on flocNL. Upcoming surveys such as Euclid and LSST will give us galaxy catalogs from which we can construct the galaxy power spectrum and hence infer a value of flocNL. We consider two possible methods of determining the galaxy power spectrum from a catalog of galaxy positions: the traditional Feldman Kaiser Peacock (FKP) Power Spectrum Estimator, and an Optimal Quadratic Estimator (OQE). We implemented and tested each method using mock galaxy catalogs, and compared the resulting constraints on flocNL. We find that the FKP estimator can measure flocNL in an unbiased way, but there remains room for improvement in its precision. We also find that the OQE is not computationally fast, but remains a promising option due to its ability to isolate the power spectrum at large scales. We plan to extend this research to study alternative methods, such as pixel-based likelihood functions. We also plan to study the impact of general relativistic effects at these scales on our ability to measure flocNL.
NASA Astrophysics Data System (ADS)
Nachit, Hassane; Abia, El Hassan; Bonadiman, Costanza; Di Martino, Mario; Vaccaro, Carmela
2017-10-01
Geological studies and tomographic profiles of a locality nearby the Agoudal village (Morocco) showed the presence of a single impact crater, 500-600 m diameter, largely hidden by a limestone block, 220 m long and 40 m deep. The site was interpreted as a landslide that followed the fall of a cosmic body. The Agoudal impact crater was not affected by intense erosion. The lack of an evident impact structure, as well as the sporadic distribution of impactites and their limited occurrence, can be explained by a complex geological framework and by recent tectonics. The latter is the result of the sliding of limestone block, which hides almost two-thirds of the crater's depression, and the oblique fall of the meteoroid on sloping ground. In addition, some impact breccia dikes sharply cut the host rock in the Agoudal impact structure. They do not show any genetic relationship with tectonics or hydrothermal activity, nor are they related to any karst or calcrete formations. Altogether, the overlapping of the meteorite strewn field (11 km long and 3 km wide) with the area of occurrence of shatter cones and impact breccias, together with the presence of meteorite fragments (shrapnel) ejected from the crater, the presence of shatter cones contaminated by products of iron meteorites and the presence of impact breccias that contain meteorite fragments of the same chemical composition of the Agoudal meteorite indicate that the fall of this meteorite can be responsible for the formation of the impact structure.
Climate change impact modelling needs to include cross-sectoral interactions
NASA Astrophysics Data System (ADS)
Harrison, Paula A.; Dunford, Robert W.; Holman, Ian P.; Rounsevell, Mark D. A.
2016-09-01
Climate change impact assessments often apply models of individual sectors such as agriculture, forestry and water use without considering interactions between these sectors. This is likely to lead to misrepresentation of impacts, and consequently to poor decisions about climate adaptation. However, no published research assesses the differences between impacts simulated by single-sector and integrated models. Here we compare 14 indicators derived from a set of impact models run within single-sector and integrated frameworks across a range of climate and socio-economic scenarios in Europe. We show that single-sector studies misrepresent the spatial pattern, direction and magnitude of most impacts because they omit the complex interdependencies within human and environmental systems. The discrepancies are particularly pronounced for indicators such as food production and water exploitation, which are highly influenced by other sectors through changes in demand, land suitability and resource competition. Furthermore, the discrepancies are greater under different socio-economic scenarios than different climate scenarios, and at the sub-regional rather than Europe-wide scale.
Single ionization and capture cross sections from biological molecules by bare projectile impact*
NASA Astrophysics Data System (ADS)
Quinto, Michele A.; Monti, Juan M.; Montenegro, Pablo D.; Fojón, Omar A.; Champion, Christophe; Rivarola, Roberto D.
2017-02-01
We report calculations on single differential and total cross sections for single ionization and single electron capture from biological targets, namely, vapor water and DNA nucleobasese molecules, by bare projectile impact: H+, He2+, and C6+. They are performed within the Continuum Distorted Wave - Eikonal Initial State approximation and compared to several existing experimental data. This study is oriented to the obtention of a reliable set of theoretical data to be used as input in a Monte Carlo code destined to micro- and nano- dosimetry.
Maben, Jill; Penfold, Clarissa; Simon, Michael; Anderson, Janet E; Robert, Glenn; Pizzo, Elena; Hughes, Jane; Murrells, Trevor; Barlow, James
2016-01-01
Background and objectives There is little strong evidence relating to the impact of single-room accommodation on healthcare quality and safety. We explore the impact of all single rooms on staff and patient experience; safety outcomes; and costs. Methods Mixed methods pre/post ‘move’ comparison within four nested case study wards in a single acute hospital with 100% single rooms; quasi-experimental before-and-after study with two control hospitals; analysis of capital and operational costs associated with single rooms. Results Two-thirds of patients expressed a preference for single rooms with comfort and control outweighing any disadvantages (sense of isolation) felt by some. Patients appreciated privacy, confidentiality and flexibility for visitors afforded by single rooms. Staff perceived improvements (patient comfort and confidentiality), but single rooms were worse for visibility, surveillance, teamwork, monitoring and keeping patients safe. Staff walking distances increased significantly post move. A temporary increase of falls and medication errors in one ward was likely to be associated with the need to adjust work patterns rather than associated with single rooms per se. We found no evidence that single rooms reduced infection rates. Building an all single-room hospital can cost 5% more with higher housekeeping and cleaning costs but the difference is marginal over time. Conclusions Staff needed to adapt their working practices significantly and felt unprepared for new ways of working with potentially significant implications for the nature of teamwork in the longer term. Staff preference remained for a mix of single rooms and bays. Patients preferred single rooms. PMID:26408568
Changing precipitation in western Europe, climate change or natural variability?
NASA Astrophysics Data System (ADS)
Aalbers, Emma; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart
2017-04-01
Multi-model RCM-GCM ensembles provide high resolution climate projections, valuable for among others climate impact assessment studies. While the application of multiple models (both GCMs and RCMs) provides a certain robustness with respect to model uncertainty, the interpretation of differences between ensemble members - the combined result of model uncertainty and natural variability of the climate system - is not straightforward. Natural variability is intrinsic to the climate system, and a potentially large source of uncertainty in climate change projections, especially for projections on the local to regional scale. To quantify the natural variability and get a robust estimate of the forced climate change response (given a certain model and forcing scenario), large ensembles of climate model simulations of the same model provide essential information. While for global climate models (GCMs) a number of such large single model ensembles exists and have been analyzed, for regional climate models (RCMs) the number and size of single model ensembles is limited, and the predictability of the forced climate response at the local to regional scale is still rather uncertain. We present a regional downscaling of a 16-member single model ensemble over western Europe and the Alps at a resolution of 0.11 degrees (˜12km), similar to the highest resolution EURO-CORDEX simulations. This 16-member ensemble was generated by the GCM EC-EARTH, which was downscaled with the RCM RACMO for the period 1951-2100. This single model ensemble has been investigated in terms of the ensemble mean response (our estimate of the forced climate response), as well as the difference between the ensemble members, which measures natural variability. We focus on the response in seasonal mean and extreme precipitation (seasonal maxima and extremes with a return period up to 20 years) for the near to far future. For most precipitation indices we can reliably determine the climate change signal, given the applied model chain and forcing scenario. However, the analysis also shows how limited the information in single ensemble members is on the local scale forced climate response, even for high levels of global warming when the forced response has emerged from natural variability. Analysis and application of multi-model ensembles like EURO-CORDEX should go hand-in-hand with single model ensembles, like the one presented here, to be able to correctly interpret the fine-scale information in terms of a forced signal and random noise due to natural variability.
Low-Temperature and Rapid Growth of Large Single-Crystalline Graphene with Ethane.
Sun, Xiao; Lin, Li; Sun, Luzhao; Zhang, Jincan; Rui, Dingran; Li, Jiayu; Wang, Mingzhan; Tan, Congwei; Kang, Ning; Wei, Di; Xu, H Q; Peng, Hailin; Liu, Zhongfan
2018-01-01
Future applications of graphene rely highly on the production of large-area high-quality graphene, especially large single-crystalline graphene, due to the reduction of defects caused by grain boundaries. However, current large single-crystalline graphene growing methodologies are suffering from low growth rate and as a result, industrial graphene production is always confronted by high energy consumption, which is primarily caused by high growth temperature and long growth time. Herein, a new growth condition achieved via ethane being the carbon feedstock to achieve low-temperature yet rapid growth of large single-crystalline graphene is reported. Ethane condition gives a growth rate about four times faster than methane, achieving about 420 µm min -1 for the growth of sub-centimeter graphene single crystals at temperature about 1000 °C. In addition, the temperature threshold to obtain graphene using ethane can be reduced to 750 °C, lower than the general growth temperature threshold (about 1000 °C) with methane on copper foil. Meanwhile ethane always keeps higher graphene growth rate than methane under the same growth temperature. This study demonstrates that ethane is indeed a potential carbon source for efficient growth of large single-crystalline graphene, thus paves the way for graphene in high-end electronical and optoelectronical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New instrument for tribocharge measurement due to single particle impacts.
Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Ding, Yu Long; Pitt, Kendal G
2007-02-01
During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10 fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as approximately 100 microm impacting on the target at different incident angles with a velocity up to about 80 m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.
New instrument for tribocharge measurement due to single particle impacts
NASA Astrophysics Data System (ADS)
Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Long Ding, Yu; Pitt, Kendal G.
2007-02-01
During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as ˜100μm impacting on the target at different incident angles with a velocity up to about 80m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.
A Matter of Time: Faster Percolator Analysis via Efficient SVM Learning for Large-Scale Proteomics.
Halloran, John T; Rocke, David M
2018-05-04
Percolator is an important tool for greatly improving the results of a database search and subsequent downstream analysis. Using support vector machines (SVMs), Percolator recalibrates peptide-spectrum matches based on the learned decision boundary between targets and decoys. To improve analysis time for large-scale data sets, we update Percolator's SVM learning engine through software and algorithmic optimizations rather than heuristic approaches that necessitate the careful study of their impact on learned parameters across different search settings and data sets. We show that by optimizing Percolator's original learning algorithm, l 2 -SVM-MFN, large-scale SVM learning requires nearly only a third of the original runtime. Furthermore, we show that by employing the widely used Trust Region Newton (TRON) algorithm instead of l 2 -SVM-MFN, large-scale Percolator SVM learning is reduced to nearly only a fifth of the original runtime. Importantly, these speedups only affect the speed at which Percolator converges to a global solution and do not alter recalibration performance. The upgraded versions of both l 2 -SVM-MFN and TRON are optimized within the Percolator codebase for multithreaded and single-thread use and are available under Apache license at bitbucket.org/jthalloran/percolator_upgrade .
Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory.
Tilman, David; Reich, Peter B; Isbell, Forest
2012-06-26
Although the impacts of the loss of biodiversity on ecosystem functioning are well established, the importance of the loss of biodiversity relative to other human-caused drivers of environmental change remains uncertain. Results of 11 experiments show that ecologically relevant decreases in grassland plant diversity influenced productivity at least as much as ecologically relevant changes in nitrogen, water, CO(2), herbivores, drought, or fire. Moreover, biodiversity became an increasingly dominant driver of ecosystem productivity through time, whereas effects of other factors either declined (nitrogen addition) or remained unchanged (all others). In particular, a change in plant diversity from four to 16 species caused as large an increase in productivity as addition of 54 kg · ha(-1) · y(-1) of fertilizer N, and was as influential as removing a dominant herbivore, a major natural drought, water addition, and fire suppression. A change in diversity from one to 16 species caused a greater biomass increase than 95 kg · ha(-1) · y(-1) of N or any other treatment. Our conclusions are based on >7,000 productivity measurements from 11 long-term experiments (mean length, ~ 13 y) conducted at a single site with species from a single regional species pool, thus controlling for many potentially confounding factors. Our results suggest that the loss of biodiversity may have at least as great an impact on ecosystem functioning as other anthropogenic drivers of environmental change, and that use of diverse mixtures of species may be as effective in increasing productivity of some biomass crops as fertilization and may better provide ecosystem services.
Waste prevention in liquid detergent distribution: a comparison based on life cycle assessment.
Nessi, Simone; Rigamonti, Lucia; Grosso, Mario
2014-11-15
The distribution of liquid detergents through self-dispensing systems has been adopted in some Italian retail stores over the last few years. By enabling the consumer to refill several times the same container, it is proposed as a less waste-generating and more environmentally friendly alternative to the traditional distribution with single-use plastic containers. For this reason, its implementation is encouraged by the national waste prevention programme recently adopted in Italy. In order to assess such claims, a life cycle assessment was carried out to evaluate whether detergent distribution through self-dispensing systems actually allows to achieve the expected reduction in waste generation and environmental impacts. The focus was on the distribution within the large-scale retail trade and on the categories of laundry detergents, fabric softeners and hand dishwashing detergents. For each of them, a set of baseline single-use scenarios were compared with two alternative waste prevention scenarios, where the detergent is distributed through self-dispensing systems. Beyond waste generation, also the Cumulative Energy Demand and thirteen midpoint-level potential impact indicators were calculated for the comparison. Results showed that a reduction in waste generation up to 98% can be achieved, depending on the category of detergent, on the baseline scenario of comparison and on the number of times the refillable container is used. A progressive reduction in the energy demand and in most of the potential impacts was also observed, starting from a minimum number of uses of the refillable container. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Loeffler, M. J.; Rahman, Z.; Dukes, C.; IMPACT Team
2017-01-01
The space weathering of regoliths on airless bodies and the formation of their exospheres is driven to a large extent by hypervelocity impacts from the high relative flux of micron to sub-micron meteoroids that comprise approximately 90 percent of the solar system meteoroid population. Laboratory hypervelocity impact experiments are crucial for quantifying how these small impact events drive space weathering through target shock, melting and vaporization. Simulating these small scale impacts experimentally is challenging because the natural impactors are both very small and many have velocities above the approximately 8 kilometers-per-second limit attainable by conventional chemical/light gas accelerator technology. Electrostatic "dust" accelerators, such as the one recently developed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS), allow the experimental velocity regime to be extended up to tens of kilometers-per-second. Even at these velocities the region of latent target damage created by each impact, in the form of microcraters or pits, is still only about 0.1 to 10 micrometers in size. Both field-emission analytical scanning electron microscopy (FE-SEM) and advanced field-emission scanning transmission electron microscopy (FE-STEM) are uniquely suited for characterizing the individual dust impact sites in these experiments. In this study, we have used both techniques, along with focused ion beam (FIB) sample preparation, to characterize the micrometer to nanometer scale effects created by accelerated dust impacts into olivine single crystals. To our knowledge this work presents the first TEM-scale characterization of dust impacts into a key solar system silicate mineral using the CCLDAS facility. Our overarching goal for this work is to establish a basis to compare with our previous results on natural dust-impacted lunar olivine and laser-irradiated olivine.
Sutherland, Ben J.G.; Rico, Ciro; Audet, Céline; Bernatchez, Louis
2017-01-01
Whole-genome duplication (WGD) can have large impacts on genome evolution, and much remains unknown about these impacts. This includes the mechanisms of coping with a duplicated sex determination system and whether this has an impact on increasing the diversity of sex determination mechanisms. Other impacts include sexual conflict, where alleles having different optimums in each sex can result in sequestration of genes into nonrecombining sex chromosomes. Sex chromosome development itself may involve sex-specific recombination rate (i.e., heterochiasmy), which is also poorly understood. The family Salmonidae is a model system for these phenomena, having undergone autotetraploidization and subsequent rediploidization in most of the genome at the base of the lineage. The salmonid master sex determining gene is known, and many species have nonhomologous sex chromosomes, putatively due to transposition of this gene. In this study, we identify the sex chromosome of Brook Charr Salvelinus fontinalis and compare sex chromosome identities across the lineage (eight species and four genera). Although nonhomology is frequent, homologous sex chromosomes and other consistencies are present in distantly related species, indicating probable convergence on specific sex and neo-sex chromosomes. We also characterize strong heterochiasmy with 2.7-fold more crossovers in maternal than paternal haplotypes with paternal crossovers biased to chromosome ends. When considering only rediploidized chromosomes, the overall heterochiasmy trend remains, although with only 1.9-fold more recombination in the female than the male. Y chromosome crossovers are restricted to a single end of the chromosome, and this chromosome contains a large interspecific inversion, although its status between males and females remains unknown. Finally, we identify quantitative trait loci (QTL) for 21 unique growth, reproductive, and stress-related phenotypes to improve knowledge of the genetic architecture of these traits important to aquaculture and evolution. PMID:28626004
Malucelli, Emil; Procopio, Alessandra; Fratini, Michela; Gianoncelli, Alessandra; Notargiacomo, Andrea; Merolle, Lucia; Sargenti, Azzurra; Castiglioni, Sara; Cappadone, Concettina; Farruggia, Giovanna; Lombardo, Marco; Lagomarsino, Stefano; Maier, Jeanette A; Iotti, Stefano
2018-01-01
The quantification of elemental concentration in cells is usually performed by analytical assays on large populations missing peculiar but important rare cells. The present article aims at comparing the elemental quantification in single cells and cell population in three different cell types using a new approach for single cells elemental analysis performed at sub-micrometer scale combining X-ray fluorescence microscopy and atomic force microscopy. The attention is focused on the light element Mg, exploiting the opportunity to compare the single cell quantification to the cell population analysis carried out by a highly Mg-selective fluorescent chemosensor. The results show that the single cell analysis reveals the same Mg differences found in large population of the different cell strains studied. However, in one of the cell strains, single cell analysis reveals two cells with an exceptionally high intracellular Mg content compared with the other cells of the same strain. The single cell analysis allows mapping Mg and other light elements in whole cells at sub-micrometer scale. A detailed intensity correlation analysis on the two cells with the highest Mg content reveals that Mg subcellular localization correlates with oxygen in a different fashion with respect the other sister cells of the same strain. Graphical abstract Single cells or large population analysis this is the question!
Effects of Acute and Chronic Flunitrazepam on Delay Discounting in Pigeons
Eppolito, Amy K; France, Charles P; Gerak, Lisa R
2011-01-01
Delay to delivery of a reinforcer can decrease responding for that reinforcer and increase responding for smaller reinforcers that are available concurrently and delivered without delay; acute administration of drugs can alter responding for large, delayed reinforcers, although the impact of chronic treatment on delay discounting is not well understood. In this experiment, the effects of repeated administration of the benzodiazepine flunitrazepam were studied in 6 pigeons responding on one key to receive food that was delivered immediately and on a second key to receive a larger amount of food that was delivered following delays which increased across a single session. Pigeons responded predominantly for the large reinforcer when there were no delays and when delays were short; however, as delays increased, responding for the large reinforcer decreased. Acutely, flunitrazepam (0.32, 1.0 and 3.2 mg/kg) dose-dependently increased responding for the large reinforcer, shifting the discounting curve rightward and upward. Repeated administration of flunitrazepam (0.32, 1.0 and 3.2 mg/kg, each for six sessions, separated by one session during which vehicle was administered) did not markedly alter its effects on responding for the large reinforcer, indicating that the development of tolerance to this effect of flunitrazepam is modest under these conditions. PMID:21541119
NASA Astrophysics Data System (ADS)
Semedo, Alvaro; Lemos, Gil; Dobrynin, Mikhail; Behrens, Arno; Staneva, Joanna; Miranda, Pedro
2017-04-01
The knowledge of ocean surface wave energy fluxes (or wave power) is of outmost relevance since wave power has a direct impact in coastal erosion, but also in sediment transport and beach nourishment, and ship, as well as in coastal and offshore infrastructures design. Changes in the global wave energy flux pattern can alter significantly the impact of waves in continental shelf and coastal areas. Up until recently the impact of climate change in future global wave climate had received very little attention. Some single model single scenario global wave climate projections, based on CMIP3 scenarios, were pursuit under the auspices of the COWCLIP (coordinated ocean wave climate projections) project, and received some attention in the IPCC (Intergovernmental Panel for Climate Change) AR5 (fifth assessment report). In the present study the impact of a warmer climate in the near future global wave energy flux climate is investigated through a 4-member "coherent" ensemble of wave climate projections: single-model, single-forcing, and single-scenario. In this methodology model variability is reduced, leaving only room for the climate change signal. The four ensemble members were produced with the wave model WAM, forced with wind speed and ice coverage from EC-Earth projections, following the representative concentration pathway with a high emissions scenario 8.5 (RCP8.5). The ensemble present climate reference period (the control run) has been set for 1976 to 2005. The projected changes in the global wave energy flux climate are analyzed for the 2031-2060 period.
Scouts: Using Numbers to Explore Mars In Situ
NASA Technical Reports Server (NTRS)
Blaney, D. L.; Wilson, G. R.
2000-01-01
Mars is a planet with a complex geologic history involving fluvial, volcanic, aeolian, atmospheric, and impact processes. Many critical questions about Mars are still heatedly debated within the scientific community and we still have much to discover. The current Mars exploration philosophy involves remote observation of the planet from orbit and intensive in situ study of a few sites on the surface. Orbital data provides a global picture while in situ investigations provide detailed knowledge at a single location. Mars Scouts are proposed to provide access to multiple locations on Mars. They address the emerging program needs of exploring the diversity of the planet globally in ways that cannot be achieved from orbit. The goal of the Scout is to find a way to investigate many locations on the surface of Mars in an affordable and efficient manner. We have only visited three locations on the surface of Mars, which have very similar characteristics. Increased numbers allows more types of locations to be investigated. The hallmarks of Scouts are numbers and access. Thus the capability of a single Scout will be limited. The science return from a single Scout will be significantly less than from a large science lander or an orbiting spacecraft. Scouts rely on their numbers to collectively provide a substantial increase in our knowledge of Mars. Scouts potentially serve two purposes in the Mars exploration architecture. First, Scouts are a science exploration tool. They provide access to places on Mars we currently can't explore because program focus, surface roughness, elevation, or latitude that we know are scientifically interesting. Scouts can react to new discoveries and evolving ideas about Mars. They can be used to test theories which until proven would not warrant the investment of a large lander. Second, Scouts enable better large scale missions by providing ground truth of remote sensing data and allowing us to "know" sites in advance before sending large landers and sample return missions. This increases the probability of success for these expensive missions both from safety and science return stand-points.
Ultrafast dynamic response of single crystal β-HMX
NASA Astrophysics Data System (ADS)
Zaug, Joseph M.; Armstrong, Michael R.; Crowhurst, Jonathan C.; Radousky, Harry B.; Ferranti, Louis; Swan, Raymond; Gross, Rick; Teslich, Nick E.; Wall, Mark A.; Austin, Ryan A.; Fried, Laurence E.
2017-01-01
We report results from ultrafast compression experiments conducted on β-HMX single crystals. Results consist of nominally 12 picosecond time-resolved wave profile data, (ultrafast time domain interferometry -TDI measurements), that were analyzed to determine high-velocity wave speeds as a function of piston velocity. TDI results are used to validate calculations of anisotropic stress-strain behavior of shocked loaded energetic materials. Our previous results derived using a 350 ps duration compression drive revealed anisotropic elastic wave response in single crystal β-HMX from (110) and (010) impact planes. Here we present results using a 1.05 ns duration compression drive with a 950 ps interferometry window to extend knowledge of the anisotropic dynamic response of β-HMX within eight microns of the initial impact plane. We observe two distinct wave profiles from (010) and three wave profiles from (010) impact planes. The (110) impact plane wave speeds typically exceed (010) impact plane wave speeds at the same piston velocities. The development of multiple hydrodynamic wave profiles begins at 20 GPa for the (110) impact plane and 28 GPa for the (10) impact plane. We compare our ultrafast TDI results with previous gun and plate impact results on β-HMX and PBX9501.
Impact gages for detecting meteoroid and other orbital debris impacts on space vehicles.
NASA Technical Reports Server (NTRS)
Mastandrea, J. R.; Scherb, M. V.
1973-01-01
Impacts on space vehicles have been simulated using the McDonnell Douglas Aerophysics Laboratory (MDAL) Light-Gas Guns to launch particles at hypervelocity speeds into scaled space structures. Using impact gages and a triangulation technique, these impacts have been detected and accurately located. This paper describes in detail the various types of impact gages (piezoelectric PZT-5A, quartz, electret, and off-the-shelf plastics) used. This description includes gage design and experimental results for gages installed on single-walled scaled payload carriers, multiple-walled satellites and space stations, and single-walled full-scale Delta tank structures. A brief description of the triangulation technique, the impact simulation, and the data acquisition system are also included.
Large Colloids in Cholesteric Liquid Crystals
NASA Astrophysics Data System (ADS)
Stratford, K.; Gray, A.; Lintuvuori, J. S.
2015-12-01
We describe a coarse-grained Landau-de Gennes model of liquid crystals (LCs) including hydrodynamics based on the Beris-Edwards equations. The model is employed to study the impact of large colloids on the long range LC defect structure in the cholesteric LC blue phases. `Large' here means that the particle size is comparable to the cholesteric pitch, the length scale on which the LC order undergoes a helical twist. We investigate the case of a single particle, with either normal or degenerate planar anchoring, placed initially in an equilibrium blue phase LC. It is found that in some cases, well defined steady disclination structure emerges at the particle surface, while in other cases no clear steady state is reached in the simulations, and disclination reorganisation appears to proliferate through the bulk LC. These systems are of potential interest in the context of using LCs to template self-assembly of colloid structure, e.g., for opto-electronic devices. Computationally, we demonstrate a parallel approach using mixed message-passing and threaded model on graphical processing units allows effective and efficient progress for this problem.
Cenozoic magmatism throughout east Africa resulting from impact of a single plume
NASA Astrophysics Data System (ADS)
Ebinger, C. J.; Sleep, N. H.
1998-10-01
The geology of northern and central Africa is characterized by broad plateaux, narrower swells and volcanism occurring from ~45Myr ago to the present. The greatest magma volumes occur on the >1,000-km-wide Ethiopian and east African plateaux, which are transected by the Red Sea, Gulf of Aden and east African rift systems, active since the late Oligocene epoch. Evidence for one or more mantle plumes having impinged beneath the plateaux comes from the dynamic compensation inferred from gravity studies, the generally small degrees of extension observed and the geochemistry of voluminous eruptive products. Here we present a model of a single large plume impinging beneath the Ethiopian plateau that takes into account lateral flow and ponding of plume material in pre-existing zones of lithospheric thinning. We show that this single plume can explain the distribution and timing of magmatism and uplift throughout east Africa. The thin lithosphere beneath the Mesozoic-Palaeogene rifts and passive margins of Africa and Arabia guides the lateral flow of plume material west to the Cameroon volcanic line and south to the Comoros Islands. Our results demonstrate the strong control that the lithosphere exerts on the spatial distribution of plume-related melting and magmatism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salinas, R.; Pajkos, M. A.; Strader, J.
Intermediate-age star clusters in the Large Magellanic Cloud show extended main sequence turnoffs (MSTOs) that are not consistent with a canonical single stellar population. These broad turnoffs have been interpreted as evidence for extended star formation and/or stellar rotation. Since most of these studies use single frames per filter to do the photometry, the presence of variable stars near the MSTO in these clusters has remained unnoticed and their impact has been totally ignored. We model the influence of Delta Scuti using synthetic CMDs, adding variable stars following different levels of incidence and amplitude distributions. We show that Delta Scutimore » observed at a single phase will produce a broadening of the MSTO without affecting other areas of a CMD such as the upper MS or the red clump; furthermore, the amount of spread introduced correlates with cluster age, as observed. This broadening is constrained to ages ∼1–3 Gyr when the MSTO area crosses the instability strip, which is also consistent with observations. Variable stars cannot explain bifurcarted MSTOs or the extended MSTOs seen in some young clusters, but they can make an important contribution to the extended MSTOs in intermediate-age clusters.« less
Kollander, Barbro; Widemo, Fredrik; Ågren, Erik; Larsen, Erik H; Loeschner, Katrin
2017-03-01
This study investigated whether game meat may contain nanoparticles of lead from ammunition. Lead nanoparticles in the range 40 to 750 nm were detected by ICP-MS in single particle mode in game shot with lead-containing bullets. The median diameter of the detected nanoparticles was around 60 nm. The particle mass concentration ranged from 290 to 340 ng/g meat and the particle number concentrations from 27 to 50 million particles/g meat. The size limit of detection strongly depended on the level of dissolved lead and was in the range of 40 to 80 nm. In game meat sampled more than 10 cm away from the wound channel, no lead particles with a diameter larger than 40 nm were detected. In addition to dissolved lead in meat that originated from particulates, the presence of lead nano particles in game meat represents a hitherto unattended source of lead with a largely unknown toxicological impact to humans. Graphical Abstract Detection of lead nanoparticles in game meat by single particle ICP-MS following use of leadcontaining bullets.
Advances in NO2 sensing with individual single-walled carbon nanotube transistors.
Chikkadi, Kiran; Muoth, Matthias; Roman, Cosmin; Haluska, Miroslav; Hierold, Christofer
2014-01-01
The charge carrier transport in carbon nanotubes is highly sensitive to certain molecules attached to their surface. This property has generated interest for their application in sensing gases, chemicals and biomolecules. With over a decade of research, a clearer picture of the interactions between the carbon nanotube and its surroundings has been achieved. In this review, we intend to summarize the current knowledge on this topic, focusing not only on the effect of adsorbates but also the effect of dielectric charge traps on the electrical transport in single-walled carbon nanotube transistors that are to be used in sensing applications. Recently, contact-passivated, open-channel individual single-walled carbon nanotube field-effect transistors have been shown to be operational at room temperature with ultra-low power consumption. Sensor recovery within minutes through UV illumination or self-heating has been shown. Improvements in fabrication processes aimed at reducing the impact of charge traps have reduced the hysteresis, drift and low-frequency noise in carbon nanotube transistors. While open challenges such as large-scale fabrication, selectivity tuning and noise reduction still remain, these results demonstrate considerable progress in transforming the promise of carbon nanotube properties into functional ultra-low power, highly sensitive gas sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, N.; Takahashi, M.; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577
The double processes of He in electron-impact ionization, single ionization with simultaneous excitation and double ionization, have been studied at large momentum transfer using an energy- and momentum-dispersive binary (e,2e) spectrometer. The experiment has been performed at an impact energy of 2080 eV in the symmetric noncoplanar geometry. In this way we have achieved a large momentum transfer of 9 a.u., a value that has never been realized so far for the study on double ionization. The measured (e,2e) and (e,3-1e) cross sections for transitions to the n=2 excited state of He{sup +} and to doubly ionized He{sup 2+} aremore » presented as normalized intensities relative to that to the n=1 ground state of He{sup +}. The results are compared with first-order plane-wave impulse approximation (PWIA) calculations using various He ground-state wave functions. It is shown that shapes of the momentum-dependent (e,2e) and (e,3-1e) cross sections are well reproduced by the PWIA calculations only when highly correlated wave functions are employed. However, noticeable discrepancies between experiment and theory remain in magnitude for both the double processes, suggesting the importance of higher-order effects under the experimental conditions examined as well as of acquiring more complete knowledge of electron correlation in the target.« less
Cosmic Ray Exposure Ages, Ar-Ar Ages, and the Origin and History of Eucrites
NASA Technical Reports Server (NTRS)
Wakefield, Kelli; Bogard, Donald; Garrison, Daniel
2004-01-01
HED meteorites likely formed at different depths on the large asteroid 4-Vesta, but passed through Vesta-derived, km-sized intermediary bodies (Vestoids), before arriving at Earth. Most eucrites and diogenites (and all howardites) are brecciated, and impact heating disturbed or reset the K-Ar ages (and some Rb-Sr ages) of most eucrites in the time period of approx. 3.4 - 4.1 Gyr ago. Some basaltic eucrites and most cumulate eucrites, however, are not brecciated. We recently showed that the Ar-39 - Ar-40 ages for several of these eucrites tightly cluster about a value of 4.48 +/- 0.02 Gyr, and we argue that this time likely represents a single large impact event on Vesta, which ejected these objects from depth and quenched their temperatures. A different parent body has been suggested for cumulate eucrites, although the Ar-Ar ages argue for a common parent. Similarities in the cosmic-ray (space) exposure ages for basaltic eucrites and diogenites also have been used to infer a common parent body for some HEDs. Here we present CRE ages of several cumulate and unbrecciated basaltic (UB) eucrites and compare these with CRE ages of other HEDs. This comparison also has some interesting implications for the relative locations of various HED types on Vesta and/or the Vestoids.
Environmental microbiology to the rescue of planet earth.
de Lorenzo, Víctor
2018-03-24
Environmental Microbiology has undergone a dramatic transition from being a somewhat marginal branch of Life Sciences to becoming one of the most vibrant and visible areas of contemporary research. The homonymous journal has not only borne witness of the growing interest in environmental microbes that bloomed since the mid-1980s but it has helped also to give visibility to the field and nucleate an active and influential community of authors and readers. During the past 20 years the focus has shifted from individual isolates to communities and microbiomes, from single genomes to metagenomes and from small/medium-scale experimental systems to large/very large scenarios. New challenges that were somewhat marginal when the journal was founded have acquired an unanticipated relevance owing to their impact on the global Earth's homeostasis. They include the unacceptably high atmospheric levels of greenhouse gases, the worrying pollution of the oceans with very recalcitrant plastics and microplastics and the noxious effects of micropollutants on many ecosystems. Global problems ask for global solutions and the environmental microbiome - because of its dimension and its amazing activities - may end up being out best instrument to both counter the impact of industrial development and enable a new, sustainable partnership with Nature. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
From drop impact physics to spray cooling models: a critical review
NASA Astrophysics Data System (ADS)
Breitenbach, Jan; Roisman, Ilia V.; Tropea, Cameron
2018-03-01
Spray-wall interaction is an important process encountered in a large number of existing and emerging technologies and is the underlying phenomenon associated with spray cooling. Spray cooling is a very efficient technology, surpassing all other conventional cooling methods, especially those not involving phase change and not exploiting the latent heat of vaporization. However, the effectiveness of spray cooling is dependent on a large number of parameters, including spray characteristics like drop size, velocity and number density, the surface morphology, but also on the temperature range and thermal properties of the materials involved. Indeed, the temperature of the substrate can have significant influence on the hydrodynamics of drop and spray impact, an aspect which is seldom considered in model formulation. This process is extremely complex, thus most design rules to date are highly empirical in nature. On the other hand, significant theoretical progress has been made in recent years about the interaction of single drops with heated walls and improvements to the fundamentals of spray cooling can now be anticipated. The present review has the objective of summarizing some of these recent advances and to establish a framework for future development of more reliable and universal physics-based correlations to describe quantities involved in spray cooling.
NASA Astrophysics Data System (ADS)
Wang, Jun; Feng, Jinming; Yan, Zhongwei
2018-04-01
In this study, we conducted nested high-resolution simulations using the Weather Research and Forecasting model coupled with a single-layer urban canopy model to investigate the impact of extensive urbanization on regional precipitation over the Beijing-Tianjin-Hebei region in China. The results showed that extensive urbanization decreased precipitation considerably over and downwind of Beijing city. The prevalence of impermeable urban land inhibits local evaporation that feeds moisture into the overlying atmosphere, decreasing relative humidity and atmospheric instability. The dynamic precipitation recycling model was employed to estimate the precipitation that originates from local surface evaporation and large-scale advection of moisture. Results showed that about 11% of the urbanization-induced decrease in total precipitation over the Greater Beijing Region and its surroundings was contributed by the decrease in local recycled precipitation, while the other part (89%) was due to decreasing large-scale advected precipitation. Results suggest that the low evaporation from urban land surfaces not only reduces the supply of water vapor for local recycled precipitation directly but also decreases the convective available potential energy and hence the conversion efficiency of atmospheric moisture into rainfall. The urbanization-induced variations in local recycled precipitation were found to be correlated with the net atmospheric moisture flux on a monthly time scale.
Petit, Sandrine
2009-07-01
Rural landscapes are highly dynamic and their change impacts on a number of ecological processes such as the dynamics of biodiversity. Although a substantial amount of research has focused on quantifying these changes and their impact on biodiversity, most studies have focused on single dimensions of land use change. This lack of integration in land use change studies can be explained by the fact that data on the spatial, temporal, and ecological dimensions of land use are seldom available for the same geographical location. In this paper, the benefits of taking into account these three dimensions are illustrated with results derived from the Great Britain Countryside Surveys (CS), a large-scale monitoring programme designed to assess change in the extent and ecological condition of British habitats. The overview of CS results presented in this paper shows that (1) changes in land use composition will translate into a variety of spatial patterns; (2) the temporal stability of land use is often lower than can be expected; and (3) there can be large-scale shifts in the ecological condition of the land use types that form our rural landscapes. The benefits of integrated rural landscape studies are discussed in the context of other national monitoring programmes.
Unexpectedly large impact of forest management and grazing on global vegetation biomass
Erb, K.-H.; Bais, A.L.S.; Carvalhais, N.; Fetzel, T.; Gingrich, S.; Haberl, H.; Lauk, C.; Niedertscheider, M.; Pongratz, J.; Thurner, M.; Luyssaert, S.
2017-01-01
Carbon stocks in vegetation play a key role in the climate system1–4, but their magnitude and patterns, their uncertainties, and the impact of land use on them remain poorly quantified. Based on a consistent integration of state-of-the art datasets, we show that vegetation currently stores ~450 PgC. In the hypothetical absence of land use, potential vegetation would store ~916 PgC, under current climate. This difference singles out the massive effect land use has on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects, i.e. land-use induced biomass stock changes within the same land cover, contribute 42-47% but are underappreciated in the current literature. Avoiding deforestation hence is necessary but not sufficient for climate-change mitigation. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for climate change mitigation. Efforts to raise biomass stocks are currently only verifiable in temperate forests, where potentials are limited. In contrast, large uncertainties hamper verification in the tropical forest where the largest potentials are located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement. PMID:29258288
Magma ocean formation due to giant impacts
NASA Technical Reports Server (NTRS)
Tonks, W. B.; Melosh, H. J.
1992-01-01
The effect of giant impacts on the initial chemical and thermal states of the terrestrial planets is just now being explored. A large high speed impact creates an approximately hemispherical melt region with a radius that depends on the projectile's radius and impact speed. It is shown that giant impacts on large planets can create large, intact melt regions containing melt volumes up to a few times the volume of the projectile. These large melt regions are not created on asteroid sized bodies. If extruded to the surface, these regions contain enough melt to create a magma ocean of considerable depth, depending on the impact speed, projectile radius, and gravity of the target planet.
Non-Geiger-Mode Single-Photon Avalanche Detector with Low Excess Noise
NASA Technical Reports Server (NTRS)
Zhao, Kai; Lo, YuHwa; Farr, William
2010-01-01
This design constitutes a self-resetting (gain quenching), room-temperature operational semiconductor single-photon-sensitive detector that is sensitive to telecommunications optical wavelengths and is scalable to large areas (millimeter diameter) with high bandwidth and efficiencies. The device can detect single photons at a 1,550-nm wavelength at a gain of 1 x 10(exp 6). Unlike conventional single photon avalanche detectors (SPADs), where gain is an extremely sensitive function to the bias voltage, the multiplication gain of this device is stable at 1 x 10(exp 6) over a wide range of bias from 30.2 to 30.9 V. Here, the multiplication gain is defined as the total number of charge carriers contained in one output pulse that is triggered by the absorption of a single photon. The statistics of magnitude of output signals also shows that the device has a very narrow pulse height distribution, which demonstrates a greatly suppressed gain fluctuation. From the histograms of both pulse height and pulse charge, the equivalent gain variance (excess noise) is between 1.001 and 1.007 at a gain of 1 x 10(exp 6). With these advantages, the device holds promise to function as a PMT-like photon counter at a 1,550- nm wavelength. The epitaxial layer structure of the device allows photons to be absorbed in the InGaAs layer, generating electron/hole (e-h) pairs. Driven by an electrical field in InGaAs, electrons are collected at the anode while holes reach the multiplication region (InAlAs p-i-n structure) and trigger the avalanche process. As a result, a large number of e-h pairs are created, and the holes move toward the cathode. Holes created by the avalanche process gain large kinetic energy through the electric field, and are considered hot. These hot holes are cooled as they travel across a p -InAlAs low field region, and are eventually blocked by energy barriers formed by the InGaAsP/ InAlAs heterojunctions. The composition of the InGaAsP alloy was chosen to have an 80 meV valance band offset with InAlAs, which is high enough to hinder the transport of the already cooled holes. Being stopped by the energy barrier, holes are accumulated at the junctions to shield the electric field, resulting in a decrease of the electric field in the multiplication region. Because the impact ionization rate is extremely sensitive to the magnitude of the electric field, the field-screening effect drastically reduces the impact ionization rate and quenches the output signals. After the avalanche pulse signal is self-quenched, the accumulated holes at the InGaAsP/ InAlAs interface escape the energy barrier through thermal excitation and tunneling and finally leave the device. The device is thus reset and ready for subsequent photon detection. This recovery time is controlled by the height of the energy barrier and the hole-cooling rate.
The effect of motorcycle helmet fit on estimating head impact kinematics from residual liner crush.
Bonin, Stephanie J; Gardiner, John C; Onar-Thomas, Arzu; Asfour, Shihab S; Siegmund, Gunter P
2017-09-01
Proper helmet fit is important for optimizing head protection during an impact, yet many motorcyclists wear helmets that do not properly fit their heads. The goals of this study are i) to quantify how a mismatch in headform size and motorcycle helmet size affects headform peak acceleration and head injury criteria (HIC), and ii) to determine if peak acceleration, HIC, and impact speed can be estimated from the foam liner's maximum residual crush depth or residual crush volume. Shorty-style helmets (4 sizes of a single model) were tested on instrumented headforms (4 sizes) during linear impacts between 2.0 and 10.5m/s to the forehead region. Helmets were CT scanned to quantify residual crush depth and volume. Separate linear regression models were used to quantify how the response variables (peak acceleration (g), HIC, and impact speed (m/s)) were related to the predictor variables (maximum crush depth (mm), crush volume (cm 3 ), and the difference in circumference between the helmet and headform (cm)). Overall, we found that increasingly oversized helmets reduced peak headform acceleration and HIC for a given impact speed for maximum residual crush depths less than 7.9mm and residual crush volume less than 40cm 3 . Below these levels of residual crush, we found that peak headform acceleration, HIC, and impact speed can be estimated from a helmet's residual crush. Above these crush thresholds, large variations in headform kinematics are present, possibly related to densification of the foam liner during the impact. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stratigraphy of the Caloris Basin, Mercury: Implications for Volcanic History and Basin Impact Melt
NASA Technical Reports Server (NTRS)
Ernst, Carolyn M.; Denevi, Brett W.; Barnouin, Olivier S.; Klimczak, Christian; Chabot, Nancy L.; Head, James W.; Murchie, Scott L.; Neumann, Gregory A.; Prockter, Louis M.; Robinson, Mark S.;
2015-01-01
Caloris basin, Mercury's youngest large impact basin, is filled by volcanic plains that are spectrally distinct from surrounding material. Post-plains impact craters of a variety of sizes populate the basin interior, and the spectra of the material they have excavated enable the thickness of the volcanic fill to be estimated and reveal the nature of the subsurface. The thickness of the interior volcanic plains is consistently at least 2.5 km, reaching 3.5 km in places, with thinner fill toward the edge of the basin. No systematic variations in fill thickness are observed with long-wavelength topography or azimuth. The lack of correlation between plains thickness and variations in elevation at large horizontal scales within the basin indicates that plains emplacement must have predated most, if not all, of the changes in long-wavelength topography that affected the basin. There are no embayed or unambiguously buried (ghost) craters with diameters greater than 10 km in the Caloris interior plains. The absence of such ghost craters indicates that one or more of the following scenarios must hold: the plains are sufficiently thick to have buried all evidence of craters that formed between the Caloris impact event and the emplacement of the plains; the plains were emplaced soon after basin formation; or the complex tectonic deformation of the basin interior has disguised wrinkle-ridge rings localized by buried craters. That low-reflectance material (LRM) was exposed by every impact that penetrated through the surface volcanic plains provides a means to explore near-surface stratigraphy. If all occurrences of LRM are derived from a single layer, the subsurface LRM deposit is at least 7.5-8.5 km thick and its top likely once made up the Caloris basin floor. The Caloris-forming impact would have generated a layer of impact melt 3-15 km thick; such a layer could account for the entire thickness of LRM. This material would have been derived from a combination of lower crust and upper mantle.
Nasari, Masoud M; Szyszkowicz, Mieczysław; Chen, Hong; Crouse, Daniel; Turner, Michelle C; Jerrett, Michael; Pope, C Arden; Hubbell, Bryan; Fann, Neal; Cohen, Aaron; Gapstur, Susan M; Diver, W Ryan; Stieb, David; Forouzanfar, Mohammad H; Kim, Sun-Young; Olives, Casey; Krewski, Daniel; Burnett, Richard T
2016-01-01
The effectiveness of regulatory actions designed to improve air quality is often assessed by predicting changes in public health resulting from their implementation. Risk of premature mortality from long-term exposure to ambient air pollution is the single most important contributor to such assessments and is estimated from observational studies generally assuming a log-linear, no-threshold association between ambient concentrations and death. There has been only limited assessment of this assumption in part because of a lack of methods to estimate the shape of the exposure-response function in very large study populations. In this paper, we propose a new class of variable coefficient risk functions capable of capturing a variety of potentially non-linear associations which are suitable for health impact assessment. We construct the class by defining transformations of concentration as the product of either a linear or log-linear function of concentration multiplied by a logistic weighting function. These risk functions can be estimated using hazard regression survival models with currently available computer software and can accommodate large population-based cohorts which are increasingly being used for this purpose. We illustrate our modeling approach with two large cohort studies of long-term concentrations of ambient air pollution and mortality: the American Cancer Society Cancer Prevention Study II (CPS II) cohort and the Canadian Census Health and Environment Cohort (CanCHEC). We then estimate the number of deaths attributable to changes in fine particulate matter concentrations over the 2000 to 2010 time period in both Canada and the USA using both linear and non-linear hazard function models.
Simulating Biomass Fast Pyrolysis at the Single Particle Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciesielski, Peter; Wiggins, Gavin; Daw, C Stuart
2017-07-01
Simulating fast pyrolysis at the scale of single particles allows for the investigation of the impacts of feedstock-specific parameters such as particle size, shape, and species of origin. For this reason particle-scale modeling has emerged as an important tool for understanding how variations in feedstock properties affect the outcomes of pyrolysis processes. The origins of feedstock properties are largely dictated by the composition and hierarchical structure of biomass, from the microstructural porosity to the external morphology of milled particles. These properties may be accounted for in simulations of fast pyrolysis by several different computational approaches depending on the level ofmore » structural and chemical complexity included in the model. The predictive utility of particle-scale simulations of fast pyrolysis can still be enhanced substantially by advancements in several areas. Most notably, considerable progress would be facilitated by the development of pyrolysis kinetic schemes that are decoupled from transport phenomena, predict product evolution from whole-biomass with increased chemical speciation, and are still tractable with present-day computational resources.« less
Hook, Paul W; McClymont, Sarah A; Cannon, Gabrielle H; Law, William D; Morton, A Jennifer; Goff, Loyal A; McCallion, Andrew S
2018-03-01
Genetic variation modulating risk of sporadic Parkinson disease (PD) has been primarily explored through genome-wide association studies (GWASs). However, like many other common genetic diseases, the impacted genes remain largely unknown. Here, we used single-cell RNA-seq to characterize dopaminergic (DA) neuron populations in the mouse brain at embryonic and early postnatal time points. These data facilitated unbiased identification of DA neuron subpopulations through their unique transcriptional profiles, including a postnatal neuroblast population and substantia nigra (SN) DA neurons. We use these population-specific data to develop a scoring system to prioritize candidate genes in all 49 GWAS intervals implicated in PD risk, including genes with known PD associations and many with extensive supporting literature. As proof of principle, we confirm that the nigrostriatal pathway is compromised in Cplx1-null mice. Ultimately, this systematic approach establishes biologically pertinent candidates and testable hypotheses for sporadic PD, informing a new era of PD genetic research. Copyright © 2018 American Society of Human Genetics. All rights reserved.
Detecting single-electron events in TEM using low-cost electronics and a silicon strip sensor.
Gontard, Lionel C; Moldovan, Grigore; Carmona-Galán, Ricardo; Lin, Chao; Kirkland, Angus I
2014-04-01
There is great interest in developing novel position-sensitive direct detectors for transmission electron microscopy (TEM) that do not rely in the conversion of electrons into photons. Direct imaging improves contrast and efficiency and allows the operation of the microscope at lower energies and at lower doses without loss in resolution, which is especially important for studying soft materials and biological samples. We investigate the feasibility of employing a silicon strip detector as an imaging detector for TEM. This device, routinely used in high-energy particle physics, can detect small variations in electric current associated with the impact of a single charged particle. The main advantages of using this type of sensor for direct imaging in TEM are its intrinsic radiation hardness and large detection area. Here, we detail design, simulation, fabrication and tests in a TEM of the front-end electronics developed using low-cost discrete components and discuss the limitations and applications of this technology for TEM.
Mass mortality events and the role of necrophagous invertebrates.
Tomberlin, Jeffery K; Barton, Brandon T; Lashley, Marcus A; Jordan, Heather R
2017-10-01
Scale is important in understanding and applying concepts in ecology. Historically, the mechanisms regulating necrophagous arthropod community structure have been well explored on a single vertebrate carcass. However, practically nothing is known of whether such findings can be extrapolated to cases where large numbers of carcasses have been introduced into an ecosystem at a single time point. With the increasing incidences of mass mortality events (MMEs), understanding how scale effects community assembly of necrophagous insects and the resulting bottom-up or top-down effects on the impacted ecosystem are of utmost importance. Unfortunately, MMEs are unpredictable, making their study nearly impossible within a robust experimental framework. The objectives of this paper are to provide a brief overview of what is known with regards to ecological responses to carrion, opine on the ramifications of MMEs on local communities, and provide a brief overview of knowledge gaps, avenues for future research, and a potential study systems for rigorous MME experiments. Copyright © 2017 Elsevier Inc. All rights reserved.
Single-Site Laparoscopic Management of a Large Adnexal Mass
Scribner, Dennis R.; Weiss, Patrice M.
2013-01-01
Introduction: Single-site laparoscopy is gaining acceptance in many surgical fields including gynecology. The purpose of this report is to demonstrate the technique and outcome for removing a large adnexal mass through a single site. Case Description: A 41-y-old female was referred to gynecology oncology for increased abdominal girth for 3 mo. An ultrasound confirmed a benign-appearing, 37-cm left adnexal mass. The mass was removed through a single-site laparoscopic incision with the aid of drainage and a morcellator. The operating time was 84 min. The patient was discharged 2 h and 35 min later with full return to normal activity in 5 d. Conclusion: Large, benign-appearing adnexal masses can be managed safely with superior cosmetic results using single-site laparoscopy. PMID:23925036
Simultaneous impact and lunar craters
NASA Technical Reports Server (NTRS)
Oberbeck, V. R.
1972-01-01
The existence of large terrestrial impact crater doublets and crater doublets that have been inferred to be impact craters on Mars suggests that simultaneous impact of two or more bodies can occur at nearly the same point on planetary surfaces. An experimental study of simultaneous impact of two projectiles near one another shows that doublet craters with ridges perpendicular to the bilateral axis of symmetry result when separation between impact points relative to individual crater diameter is large. When separation is progressively less, elliptical craters with central ridges and peaks, and circular craters with deep round bottoms are produced. These craters are similar in structure to many of the large lunar craters. Results suggest that the simultaneous impact of meteoroids near one another may be an important mechanism for the production of central peaks in large lunar craters.
Comet Tempel 1 Went Back to Sleep
NASA Astrophysics Data System (ADS)
2005-07-01
Astronomers Having Used ESO Telescopes Start Analysing Unique Dataset on the Comet Following the Deep Impact Mission Ten days after part of the Deep Impact spacecraft plunged onto Comet Tempel 1 with the aim to create a crater and expose pristine material from beneath the surface, astronomers are back in the ESO Offices in Santiago, after more than a week of observing at the ESO La Silla Paranal Observatory. In this unprecedented observing campaign - among the most ambitious ever conducted by a single observatory - the astronomers have collected a large amount of invaluable data on this comet. The astronomers have now started the lengthy process of data reduction and analysis. Being all together in a single place, and in close contacts with the space mission' scientific team, they will try to assemble a clear picture of the comet and of the impact. The ESO observations were part of a worldwide campaign to observe this unique experiment. During the campaign, ESO was connected by phone, email, and videoconference with colleagues in all major observatories worldwide, and data were freely exchanged between the different groups. This unique collaborative spirit provides astronomers with data taken almost around the clock during several days and this, with the largest variety of instruments, making the Deep Impact observing campaign one of the most successful of its kind, and thereby, ensuring the greatest scientific outcome. From the current analysis, it appears most likely that the impactor did not create a large new zone of activity and may have failed to liberate a large quantity of pristine material from beneath the surface. ESO PR Photo 22/05 ESO PR Photo 22/05 Evolution of Comet Tempel 1 (FORS2/VLT) [Preview - JPEG: 400 x 701 pix - 128k] [Normal - JPEG: 800 x 1401 pix - 357k] ESO PR Photo 22/05 Animated Gif Caption: ESO PR Photo 22/05 shows the evolution of Comet Tempel 1 as observed with the FORS2 instrument on Antu (VLT). The images obtained at the VLT show that after the impact, the morphology of Comet Tempel 1 had changed, with the appearance of a new plume-like structure, produced by matter being ejected with a speed of about 700 to 1000 km/h (see ESO PR Photo 23/05). This structure, however, diffused away in the following days, being more and more diluted and less visible, the comet taking again the appearance it had before the impact. Further images obtained with, among others, the adaptive optics NACO instrument on the Very Large Telescope, showed the same jets that were visible prior to impact, demonstrating that the comet activity survived widely unaffected by the spacecraft crash. The study of the gas in Comet Tempel 1 (see "Looking for Molecules"), made with UVES on Kueyen (UT2 of the VLT), reveals a small flux increase the first night following the impact. At that time, more than 17 hours after the impact, the ejected matter was fading away but still measurable thanks to the large light collecting power of the VLT. The data accumulated during 10 nights around the impact have provided the astronomers with the best ever time series of optical spectra of a Jupiter Family comet, with a total of more than 40 hours of exposure time. This unique data set has already allowed the astronomers to characterize the normal gas activity of the comet and also to detect, to their own surprise, an active region. This active region is not related to the impact as it was also detected in data collected in June. It shows up about every 41 hours, the rotation period of the comet nucleus determined by the Deep Impact spacecraft. Exciting measurements of the detailed chemical composition (such as the isotopic ratios) of the material released by the impact as well as the one coming from that source will be performed by the astronomers in the next weeks and months. Further spectropolarimetric observations with FORS1 have confirmed the surface of the comet to be rather evolved - as expected - but more importantly, that the dust is not coming from beneath the surface. These data constitute another unique high-quality data set on comets. Comet Tempel 1 may thus be back to sleep but work only starts for the astronomers. More information On July 4, 2005, the NASA Deep Impact spacecraft launched a 360 kg impactor onto Comet 9P/Tempel 1. This experiment is seen by many as the first opportunity to study the crust and the interior of a comet, revealing new information on the early phases of the Solar System. ESO actively participated in pre- and post-impact observations. Apart from a long-term monitoring of the comet, for two days before and six days after, all major ESO telescopes - i.e. the four Unit Telescopes of the Very Large Telescope Array at Paranal, as well as the 3.6m, 3.5m NTT and the 2.2m ESO/MPG telescopes at La Silla - have been observing Comet 9P/Tempel 1, in a coordinated fashion and in very close collaboration with the space mission' scientific team. The simultaneous use of all ESO telescopes with all together 10 instruments has an enormous potential, since it allows for observation of the comet at different wavelengths in the visible and infrared by imaging, spectroscopy and polarimetry. Such multiplexing capabilities of the instrumentation do not exist at any other observatory in the world. More information is available at the dedicated Deep Impact at ESO web site.
The Journal Impact Factor: Moving Toward an Alternative and Combined Scientometric Approach
Nurmashev, Bekaidar
2017-01-01
The Journal Impact Factor (JIF) is a single citation metric, which is widely employed for ranking journals and choosing target journals, but is also misused as the proxy of the quality of individual articles and academic achievements of authors. This article analyzes Scopus-based publication activity on the JIF and overviews some of the numerous misuses of the JIF, global initiatives to overcome the ‘obsession’ with impact factors, and emerging strategies to revise the concept of the scholarly impact. The growing number of articles on the JIF, most of which are in English, reflects interest of experts in journal editing and scientometrics toward its uses, misuses, and options to overcome related problems. Solely displaying values of the JIFs on the journal websites is criticized by experts as these average metrics do not reflect skewness of citation distribution of individual articles. Emerging strategies suggest to complement the JIFs with citation plots and alternative metrics, reflecting uses of individual articles in terms of downloads and distribution of related information through social media and networking platforms. It is also proposed to revise the original formula of the JIF calculation and embrace the concept of the impact and importance of individual articles. The latter is largely dependent on ethical soundness of the journal instructions, proper editing and structuring of articles, efforts to promote related information through social media, and endorsements of professional societies. PMID:28049225
The Journal Impact Factor: Moving Toward an Alternative and Combined Scientometric Approach.
Gasparyan, Armen Yuri; Nurmashev, Bekaidar; Yessirkepov, Marlen; Udovik, Elena E; Baryshnikov, Aleksandr A; Kitas, George D
2017-02-01
The Journal Impact Factor (JIF) is a single citation metric, which is widely employed for ranking journals and choosing target journals, but is also misused as the proxy of the quality of individual articles and academic achievements of authors. This article analyzes Scopus-based publication activity on the JIF and overviews some of the numerous misuses of the JIF, global initiatives to overcome the 'obsession' with impact factors, and emerging strategies to revise the concept of the scholarly impact. The growing number of articles on the JIF, most of which are in English, reflects interest of experts in journal editing and scientometrics toward its uses, misuses, and options to overcome related problems. Solely displaying values of the JIFs on the journal websites is criticized by experts as these average metrics do not reflect skewness of citation distribution of individual articles. Emerging strategies suggest to complement the JIFs with citation plots and alternative metrics, reflecting uses of individual articles in terms of downloads and distribution of related information through social media and networking platforms. It is also proposed to revise the original formula of the JIF calculation and embrace the concept of the impact and importance of individual articles. The latter is largely dependent on ethical soundness of the journal instructions, proper editing and structuring of articles, efforts to promote related information through social media, and endorsements of professional societies.
Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Authors, Various
1980-01-01
The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distancesmore » necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.« less
NASA Astrophysics Data System (ADS)
Lynch, Sharon A.; Darmody, Grainne; O'Dwyer, Katie; Gallagher, Mary Catherine; Nolan, Sinead; McAllen, Rob; Culloty, Sarah C.
2016-11-01
The European sea squirt Ascidiella aspersa is a solitary tunicate native to the northeastern Atlantic, commonly found in shallow and sheltered marine ecosystems where it is capable of forming large clumps and outcompeting other invertebrate fauna at settlement. To date, there have been relatively few studies looking at the reproductive biology and health status of this invasive species. Between 2006 and 2010 sampling of a native population took place to investigate gametogenesis and reproductive cycle and to determine the impact of settlement depth on reproduction. In addition, parasite diversity and impact was assessed. A staging system to assess reproductive development was determined. The study highlighted that from year to year the tunicate could change its reproductive strategy from single sex to hermaphrodite, with spawning possible throughout the year. Depth did not impact on sex determination, however, gonad maturation and spawning occurred earlier in individuals in deeper waters compared to shallow depth and it also occurred later in A. aspersa at sites further away from the open sea. Four significant parasite groups including eugregarines, ciliates, trematodes and turbellarians were detected and prevalence of parasite infections increased in A. aspersa at sites with a reduced water flow rate. This study demonstrates the high biotic potential of this ascidian bioinvader to have a negative impact on native fauna in an introduced ecosystem, due to its highly efficient reproductive and resource allocation strategies. Artificial structures such as mooring lines can harbour large aggregations of A. aspersa, however, these manmade habitats may facilitate the colonisation and establishment of this invasive species in the benthos. Additionally, the parasite communities that A. aspersa harbour may also exacerbate its negative impact, both ecologically and economically, in an introduced area by possibly leading to the emergence of new disease in native species i.e. pathogen spillover.
NASA Astrophysics Data System (ADS)
Hargraves, R. B.
Only rare quartz grains with single-set planar (1013) deformation features (PDF's) are present in breccia dikes found in association with uniformly oriented shatter cones that occur over an area 8 x 25 km. This suggests that the Beaverhead shocked rocks come from only the outer part of the central uplift of what must have been a large (greater than 100 km diameter) complex impact structure. An impact event of this magnitude on continental crust (thought to have occurred in late Precambrian or ealy Paleozoic time) could be expected to punctuate local geologic history. Furthermore, although it may now be covered, its scar should remain despite all the considerable subsequent erosion/deposition and tectonism since the impact. The following are three large-scale singularities or anomalies that may reflect the event and mark its source. (1) The Lemhi Arch is a major structural uplift that occurred in late Proterozoic-early Paleozoic time in East Central Idaho and caused the erosion of at least 4 km of sedimentary cover. This may be directly related to the impact. (2) Of the many thrust sheets comprising the Cordilleran belt, the Cabin plate that carries the shocked rocks is unique in that it alone intersected the crystalline basement. It also now marks the apex of the Southwest Montana Recess in the Sevier front. The basement uplift remaining from the impact may have constituted a mechanical obstacle to the advancing thrust sheets in Cretaceous time, causing the recess. (3) What could be interpreted as a roughly circular aeromagnetic anomaly approx. 70 km in diameter can be discerned in the state aeromagnetic map centered about 20 km southeast of Challis, Idaho, in the Lost River range. It is in approximately the right place, and ignoring the possibility that the anomalies have diverse causes and the circular pattern is coincidental, it may mark what remains of the buried central uplift structure.
NASA Technical Reports Server (NTRS)
Krogh, T. E.; Kamo, S. L.; Bohor, B. F.
1993-01-01
U-Pb isotopic dating of single 1 - 3 micrograms zircons from K/T distal ejecta from a site in the Raton Basin, Colorado provides a powerful new tool with which to determine both the time of the impact event and the age of the basement at the impact site. Data for the least shocked zircons are slightly displaced from the 544 +/- 5 Ma primary age for a component of the target site, while those for highly shocked and granular grains are strongly displaced towards the time of impact at 65.5 +/- 3.0 Ma. Such shocked and granular zircons have never been reported from any source, including explosive volcanic rocks. Zircon is refractory and has one of the highest thermal blocking temperatures; hence, it can record both shock features and primary and secondary ages without modification by post-crystallization processes. Unlike shocked quartz, which can come from almost anywhere on the Earth's crust, shocked zircons can be shown to come from a specific site because basement ages vary on the scale of meters to kilometers. With U-Pb zircon dating, it is now possible to correlate ejecta layers derived from the same target site, test the single versus multiple impact hypothesis, and identify the target source of impact ejecta. The ages obtained in this study indicate that the Manson impact site, Iowa, which has basement rocks that are mid-Proterozoic in age, cannot be the source of K/T distal ejecta. The K/T distal ejecta probably originated from a single impact site because most grains have the same primary age.
Metrology requirements for the serial production of ELT primary mirror segments
NASA Astrophysics Data System (ADS)
Rees, Paul C. T.; Gray, Caroline
2015-08-01
The manufacture of the next generation of large astronomical telescopes, the extremely large telescopes (ELT), requires the rapid manufacture of greater than 500 1.44m hexagonal segments for the primary mirror of each telescope. Both leading projects, the Thirty Meter Telescope (TMT) and the European Extremely Large Telescope (E-ELT), have set highly demanding technical requirements for each fabricated segment. These technical requirements, when combined with the anticipated construction schedule for each telescope, suggest that more than one optical fabricator will be involved in the delivery of the primary mirror segments in order to meet the project schedule. For one supplier, the technical specification is challenging and requires highly consistent control of metrology in close coordination with the polishing technologies used in order to optimize production rates. For production using multiple suppliers, however the supply chain is structured, consistent control of metrology along the supply chain will be required. This requires a broader pattern of independent verification than is the case of a single supplier. This paper outlines the metrology requirements for a single supplier throughout all stages of the fabrication process. We identify and outline those areas where metrology accuracy and duration have a significant impact on production efficiency. We use the challenging ESO E-ELT technical specification as an example of our treatment, including actual process data. We further develop this model for the case of a supply chain consisting of multiple suppliers. Here, we emphasize the need to control metrology throughout the supply chain in order to optimize net production efficiency.
Pulmonary function in microgravity
NASA Technical Reports Server (NTRS)
Guy, H. J.; Prisk, G. K.; West, J. B.
1992-01-01
We report the successful collection of a large quantity of human resting pulmonary function data on the SLS-1 mission. Preliminary analysis suggests that cardiac stroke volumes are high on orbit, and that an adaptive reduction takes at least several days, and in fact may still be in progress after 9 days on orbit. It also suggests that pulmonary capillary blood volumes are high, and remain high on orbit, but that the pulmonary interstitium is not significantly impacted. The data further suggest that the known large gravitational gradients of lung function have only a modest influence on single breath tests such as the SBN washout. They account for only approximately 25% of the phase III slope of nitrogen, on vital capacity SBN washouts. These gradients are only a moderate source of the cardiogenic oscillations seen in argon (bolus gas) and nitrogen (resident gas), on such tests. They may have a greater role in generating the normal CO2 oscillations, as here the phase relationship to argon and nitrogen reverses in microgravity, at least at mid exhalation in those subjects studied to date. Microgravity may become a useful tool in establishing the nature of the non-gravitational mechanisms that can now be seen to play such a large part in the generation of intra-breath gradients and oscillations of expired gas concentration. Analysis of microgravity multibreath nitrogen washouts, single breath washouts from more physiological pre-inspiratory volumes, both using our existing SLS-1 data, and data from the upcoming D-2 and SLS-2 missions, should be very fruitful in this regard.(ABSTRACT TRUNCATED AT 250 WORDS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, Pauline; Hoffmann, Xenia-Katharina; Ebeling, Britta
2013-05-24
Highlights: •We investigate reprogramming of gene expression in multinucleate single cells. •Cells of two differentiation control mutants are fused. •Fused cells proceed to alternative gene expression patterns. •The population of nuclei damps stochastic fluctuations in gene expression. •Dynamic processes of cellular reprogramming can be observed by repeated sampling of a cell. -- Abstract: Nonlinear dynamic processes involving the differential regulation of transcription factors are considered to impact the reprogramming of stem cells, germ cells, and somatic cells. Here, we fused two multinucleate plasmodial cells of Physarum polycephalum mutants defective in different sporulation control genes while being in different physiological states.more » The resulting heterokaryons established one of two significantly different expression patterns of marker genes while the plasmodial halves that were fused to each other synchronized spontaneously. Spontaneous synchronization suggests that switch-like control mechanisms spread over and finally control the entire plasmodium as a result of cytoplasmic mixing. Regulatory molecules due to the large volume of the vigorously streaming cytoplasm will define concentrations in acting on the population of nuclei and in the global setting of switches. Mixing of a large cytoplasmic volume is expected to damp stochasticity when individual nuclei deliver certain RNAs at low copy number into the cytoplasm. We conclude that spontaneous synchronization, the damping of molecular noise in gene expression by the large cytoplasmic volume, and the option to take multiple macroscopic samples from the same plasmodium provide unique options for studying the dynamics of cellular reprogramming at the single cell level.« less
Amiri, Esmaeil; Strand, Micheline K.; Rueppell, Olav; Tarpy, David R.
2017-01-01
Western honey bees, Apis mellifera, live in highly eusocial colonies that are each typically headed by a single queen. The queen is the sole reproductive female in a healthy colony, and because long-term colony survival depends on her ability to produce a large number of offspring, queen health is essential for colony success. Honey bees have recently been experiencing considerable declines in colony health. Among a number of biotic and abiotic factors known to impact colony health, disease and queen failure are repeatedly reported as important factors underlying colony losses. Surprisingly, there are relatively few studies on the relationship and interaction between honey bee diseases and queen quality. It is critical to understand the negative impacts of pests and pathogens on queen health, how queen problems might enable disease, and how both factors influence colony health. Here, we review the current literature on queen reproductive potential and the impacts of honey bee parasites and pathogens on queens. We conclude by highlighting gaps in our knowledge on the combination of disease and queen failure to provide a perspective and prioritize further research to mitigate disease, improve queen quality, and ensure colony health. PMID:28481294
OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sands, M. D.
1980-01-01
This programmatic environmental analysis is an initial assessment of OTEC technology considering development, demonstration and commercialization; it is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adversemore » environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties.« less
In vitro dosimetry of agglomerates
NASA Astrophysics Data System (ADS)
Hirsch, V.; Kinnear, C.; Rodriguez-Lorenzo, L.; Monnier, C. A.; Rothen-Rutishauser, B.; Balog, S.; Petri-Fink, A.
2014-06-01
Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction.Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction. Electronic supplementary information (ESI) available: ITC data for tiopronin/Au-NP interactions, agglomeration kinetics at different pHs for tiopronin-coated Au-NPs, UV-Vis spectra in water, PBS and DMEM and temporal correlation functions for single Au-NPs and corresponding agglomerates, calculation of diffusion and sedimentation parameters, modelling of relative cell uptake based on the ISDD model and cytotoxicity of single Au-NPs and their agglomerates, and synthesis and cell uptake of large spherical Au-NPs. See DOI: 10.1039/c4nr00460d
NASA Technical Reports Server (NTRS)
Rampino, M. R.
1994-01-01
The theory that large-body impacts are the primary cause of mass extinctions of life on the Earth now has a sound theoretical and observational foundation. A convergence of evidence suggests that the biosphere may be a sensitive detector of large impact events, which result in the recorded global mass extinction pulses. The astronomically observed flux of asteroids and comets in the neighborhood of the Earth, and the threshold impact size calculated to produce a global environment catastrophe, can be used to predict a time history of large impact events and related mass extinctions of life that agrees well with the record of approx. 24 extinction events in the last 540 m.y.
Impact of long term cryopreservation on single umbilical cord blood transplant outcomes
Mitchell, R.; Wagner, J.E.; Brunstein, C.G.; Cao, Q.; McKenna, D.H.; Lund, T.C.; Verneris, M.R.
2015-01-01
Umbilical cord blood (UCB) has the advantage of being collected and cryopreserved for years prior to use. In vitro or in murine models suggest that the duration of storage does not affect UCB progenitor cell performance, however the impact of UCB age on clinical outcomes has not been definitely defined. This study sought to determine the effect of UCB unit cryopreservation time on hematopoietic potency. We analyzed 288 single UCB units used for transplantation from 1992–2013, with unit cryopreservation time ranging from 0.08 to 11.07 years. UCB unit post thaw characteristics were examined, including percent recovery of total nucleated cells (TNC). The number of years the UCB unit spent in cryopreservation had no impact on TNC recovery nor UCB unit post-thaw viability. Duration of cryopreservation also had no impact on neutrophil or platelet engraftment in single UCB transplants. These results show that UCB units can undergo cryopreservation for at least 10 years with no impact on clinical outcomes. PMID:25262882
ON A GIANT IMPACT ORIGIN OF CHARON, NIX, AND HYDRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canup, Robin M., E-mail: robin@boulder.swri.edu
It is generally believed that Charon was formed as a result of a large, grazing collision with Pluto that supplied the Pluto-Charon system with its high angular momentum. It has also been proposed that Pluto's small outer moons, Nix and Hydra, formed from debris from the Charon-forming impact, although the viability of this scenario remains unclear. Here I use smooth particle hydrodynamics impact simulations to show that it is possible to simultaneously form an intact Charon and an accompanying debris disk from a single impact. The successful cases involve colliding objects that are partially differentiated prior to impact, having thinmore » outer ice mantles overlying a uniform composition rock-ice core. The composition of the resulting debris disks varies from a mixture of rock and ice (similar to the bulk composition of Pluto and Charon) to a pure ice disk. If Nix and Hydra were formed from such an impact-generated disk, their densities should be less than or similar to that of Charon and Pluto, and the small moons could be composed entirely of ice. If they were instead formed from captured material, a mixed rock-ice composition and densities similar to that of Charon and Pluto would be expected. Improved constraints on the properties of Nix and Hydra through occultations and/or the New Horizons encounter may thus help to distinguish between these two modes of origin, particularly if the small moons are found to have ice-like densities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lerer, L.B.; Scudder, T.
1999-03-01
Large dams have been criticized because of their negative environmental and social impacts. Public health interest largely has focused on vector-borne diseases, such as schistosomiasis, associated with reservoirs and irrigation projects. Large dams also influence health through changes in water and food security, increases in communicable diseases, and the social disruption caused by construction and involuntary resettlement. Communities living in close proximity to large dams often do not benefit from water transfer and electricity generation revenues. A comprehensive health component is required in environmental and social impact assessments for large dam projects.
Workers on the margin: who drops health coverage when prices rise?
Okeke, Edward N; Hirth, Richard A; Grazier, Kyle
2010-01-01
We revisit the question of price elasticity of employer-sponsored insurance (ESI) take-up by directly examining changes in the take-up of ESI at a large firm in response to exogenous changes in employee premium contributions. We find that, on average, a 10% increase in the employee's out-of-pocket premium increases the probability of dropping coverage by approximately 1%. More importantly, we find heterogeneous impacts: married workers are much more price-sensitive than single employees, and lower-paid workers are disproportionately more likely to drop coverage than higher-paid workers. Elasticity estimates for employees below the 25th percentile of salary distribution in our sample are nearly twice the average.
Cost, performance, and esthetic impacts of an experimental forest road in Montana
Rulon B. Gardner
1978-01-01
An experimental logging road designed to minimize environmental and esthetic impact was constructed in northwest Montana. The road was single-lane (14-foot finished surface, 3-foot ditch), constructed along the contour. Esthetically, the single-lane experimental road was judged far superior to existing roads on the forest.
NASA Astrophysics Data System (ADS)
Lesnikova, Yu I.; Smetannikov, O. Yu; Trufanov, A. N.; Trufanov, N. A.
2017-02-01
The impact of contact transverse forces on the birefringence of the single-mode polarization-maintaining Panda-type fiber is numerically modeled. It has been established that with a single-row power winding on a cylindrical mandrel, the fiber tension at winding is the principal factor that influences birefringence. When coiling the fiber based on the local defect microbending, the birefringence at the microbending point differs from that of the free fiber by 1.3%.
NASA Astrophysics Data System (ADS)
Zhou, Yongbo; Sun, Xuejin; Mielonen, Tero; Li, Haoran; Zhang, Riwei; Li, Yan; Zhang, Chuanliang
2018-01-01
For inhomogeneous cirrus clouds, cloud optical thickness (COT) and effective diameter (De) provided by the Moderate Resolution Imaging Spectrometer (MODIS) Collection 6 cloud products are associated with errors due to the single habit assumption (SHA), independent pixel assumption (IPA), photon absorption effect (PAE), and plane-parallel assumption (PPA). SHA means that every cirrus cloud is assumed to have the same shape habit of ice crystals. IPA errors are caused by three-dimensional (3D) radiative effects. PPA and PAE errors are caused by cloud inhomogeneity. We proposed a method to single out these different errors. These errors were examined using the Spherical Harmonics Discrete Ordinate Method simulations done for the MODIS 0.86 μm and 2.13 μm bands. Four midlatitude and tropical cirrus cases were studied. For the COT retrieval, the impacts of SHA and IPA were especially large for optically thick cirrus cases. SHA errors in COT varied distinctly with scattering angles. For the De retrieval, SHA decreased De under most circumstances. PAE decreased De for optically thick cirrus cases. For the COT and De retrievals, the dominant error source was SHA for overhead sun whereas for oblique sun, it could be any of SHA, IPA, and PAE, varying with cirrus cases and sun-satellite viewing geometries. On the domain average, the SHA errors in COT (De) were within -16.1%-42.6% (-38.7%-2.0%), whereas the 3-D radiative effects- and cloud inhomogeneity-induced errors in COT (De) were within -5.6%-19.6% (-2.9%-8.0%) and -2.6%-0% (-3.7%-9.8%), respectively.
Bingham, N. S.; Lampen, P.; Phan, M. H.; ...
2012-08-16
Bulk manganites of the form La 5/8–yPr yCa 3/8MnO₃ (LPCMO) exhibit a complex phase diagram due to coexisting charge-ordered antiferromagnetic (CO/AFM), charge-disordered paramagnetic (PM), and ferromagnetic (FM) phases. Because phase separation in LPCMO occurs on the microscale, reducing particle size to below this characteristic length is expected to have a strong impact on the magnetic properties of the system. Through a comparative study of the magnetic and magnetocaloric properties of single-crystalline (bulk) and nanocrystalline LPCMO (y=3/8) we show that the AFM, CO, and FM transitions seen in the single crystal can also be observed in the large particle sizes (400more » and 150 nm), while only a single PM to FM transition is found for the small particles (55 nm). Magnetic and magnetocaloric measurements reveal that decreasing particle size affects the balance of competing phases in LPCMO and narrows the range of fields over which PM, FM, and CO phases coexist. The FM volume fraction increases with size reduction, until CO is suppressed below some critical size, ~100 nm. With size reduction, the saturation magnetization and field sensitivity first increase as long-range CO is inhibited, then decrease as surface effects become increasingly important. The trend that the FM phase is stabilized on the nanoscale is contrasted with the stabilization of the charge-disordered PM phase occurring on the microscale, demonstrating that in terms of the characteristic phase separation length, a few microns and several hundred nanometers represent very different regimes in LPCMO.« less
Single Motherhood, Living Arrangements, and Time With Children in Japan.
Raymo, James M; Park, Hyunjoon; Iwasawa, Miho; Zhou, Yanfei
2014-08-01
The authors examined relationships between single parenthood and mothers' time with children in Japan. Using data from the 2011 National Survey of Households with Children (N = 1,926), they first demonstrate that time spent with children and the frequency of shared dinners are significantly lower for single mothers than for their married counterparts. For single mothers living alone, less time with children reflects long work hours and work-related stress. Single mothers coresiding with parents spend less time with children and eat dinner together less frequently than either married mothers or their unmarried counterparts not living with parents, net of (grand)parental support, work hours, income, and stress. The findings suggest that rising divorce rates and associated growth in single-mother families may have a detrimental impact on parents' time with children in Japan and that the relatively high prevalence of intergenerational coresidence among single mothers may do little to temper this impact.
On Kill Curves and Sampling Protocols: Studying the Relationships between Impact and Extinction
NASA Astrophysics Data System (ADS)
Ward, Peter D.
1997-05-01
The pioneering efforts of Raup (1990) have suggested that a relationship exists between crater diameter and percentage of organisms killed as a result of meteor or comet impact with the Earth. The new data (coming from study of the Manson and Chicxulub craters) suggest that the nature of target rock may be a factor nearly as important as impacter size, and that other aspects of the target, including its latitude, the atmospheric and climate conditions characterizing the Earth, as well as the stage of biological evolution and community development at the time of impact are factors which all must be factored into any new kill curve. It may be that no single 'curve' is appropriate, but that a family of curves may be necessary to model the biological effects of large impacts. We propose that a new protocol be developed to better constrain and understand the relationship between impact and extinction. Rather than searching known mass extinction boundaries for evidence of impact (an exercise which up to now has demonstrated that only the Chicxulub crater can be unambiguously related to a mass extinction of planetary scale), we propose that four known craters be investigated to see if they are temporally correlated with extinction at any detectable level. We suggest that Kara, Popigai, Manson, and Manicouagan Craters be investigated in the following way. First, what is their age? The Manson lesson is that the first step in understanding the relationship between impact and extinction is through reliable age dating. Second, can distal components of the impact ejecta (spherules, shocked quartz, and mineral signatures) be located from sedimentary record? Third, once identified, do these signatures coincide with paleontological or geochemical markers of extinction in either the synoptic literature, or from actual outcrops (or deep sea cores).
Gumma, Murali Krishna; Thenkabail, Prasad S.; Muralikrishna, I.V.; Velpuri, Naga Manohar; Gangadhararao, P.T.; Dheeravath, V.; Biradar, C.M.; Nalan, S.A.; Gaur, A.
2011-01-01
The objective of this study was to investigate the changes in cropland areas as a result of water availability using Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m time-series data and spectral matching techniques (SMTs). The study was conducted in the Krishna River basin in India, a very large river basin with an area of 265 752 km2 (26 575 200 ha), comparing a water-surplus year (2000–2001) and a water-deficit year (2002–2003). The MODIS 250 m time-series data and SMTs were found ideal for agricultural cropland change detection over large areas and provided fuzzy classification accuracies of 61–100% for various land‐use classes and 61–81% for the rain-fed and irrigated classes. The most mixing change occurred between rain-fed cropland areas and informally irrigated (e.g. groundwater and small reservoir) areas. Hence separation of these two classes was the most difficult. The MODIS 250 m-derived irrigated cropland areas for the districts were highly correlated with the Indian Bureau of Statistics data, with R 2-values between 0.82 and 0.86.The change in the net area irrigated was modest, with an irrigated area of 8 669 881 ha during the water-surplus year, as compared with 7 718 900 ha during the water-deficit year. However, this is quite misleading as most of the major changes occurred in cropping intensity, such as changing from higher intensity to lower intensity (e.g. from double crop to single crop). The changes in cropping intensity of the agricultural cropland areas that took place in the water-deficit year (2002–2003) when compared with the water-surplus year (2000–2001) in the Krishna basin were: (a) 1 078 564 ha changed from double crop to single crop, (b) 1 461 177 ha changed from continuous crop to single crop, (c) 704 172 ha changed from irrigated single crop to fallow and (d) 1 314 522 ha changed from minor irrigation (e.g. tanks, small reservoirs) to rain-fed. These are highly significant changes that will have strong impact on food security. Such changes may be expected all over the world in a changing climate.
The use of impact force as a scale parameter for the impact response of composite laminates
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; Poe, C. C., Jr.
1992-01-01
The building block approach is currently used to design composite structures. With this approach, the data from coupon tests is scaled up to determine the design of a structure. Current standard impact tests and methods of relating test data to other structures are not generally understood and are often used improperly. A methodology is outlined for using impact force as a scale parameter for delamination damage for impacts of simple plates. Dynamic analyses were used to define ranges of plate parameters and impact parameters where quasi-static analyses are valid. These ranges include most low velocity impacts where the mass of the impacter is large and the size of the specimen is small. For large mass impacts of moderately thick (0.35 to 0.70 cm) laminates, the maximum extent of delamination damage increased with increasing impact force and decreasing specimen thickness. For large mass impact tests at a given kinetic energy, impact force and hence delamination size depends on specimen size, specimen thickness, boundary conditions, and indenter size and shape. If damage is reported in terms of impact force instead of kinetic energy, large mass test results can be applied directly to other plates of the same size.
The use of impact force as a scale parameter for the impact response of composite laminates
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; Poe, C. C., Jr.
1992-01-01
The building block approach is currently used to design composite structures. With this approach, the data from coupon tests are scaled up to determine the design of a structure. Current standard impact tests and methods of relating test data to other structures are not generally understood and are often used improperly. A methodology is outlined for using impact force as a scale parameter for delamination damage for impacts of simple plates. Dynamic analyses were used to define ranges of plate parameters and impact parameters where quasi-static analyses are valid. These ranges include most low-velocity impacts where the mass of the impacter is large, and the size of the specimen is small. For large-mass impacts of moderately thick (0.35-0.70 cm) laminates, the maximum extent of delamination damage increased with increasing impact force and decreasing specimen thickness. For large-mass impact tests at a given kinetic energy, impact force and hence delamination size depends on specimen size, specimen thickness, boundary conditions, and indenter size and shape. If damage is reported in terms of impact force instead of kinetic energy, large-mass test results can be applied directly to other plates of the same thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning, E-mail: coolboy006@sohu.com; Zhang, Yingying; Xie, Jun
2014-10-13
We present a method to investigate large object by digital holography with effective spectrum multiplexing under single-exposure approach. This method splits the original reference beam and redirects one of its branches as a second object beam. Through the modified Mach-Zehnder interferometer, the two object beams can illuminate different parts of the large object and create a spectrum multiplexed hologram onto the focal plane array of the charge-coupled device/complementary metal oxide semiconductor camera. After correct spectrum extraction and image reconstruction, the large object can be fully observed within only one single snap-shot. The flexibility and great performance make our method amore » very attractive and promising technique for large object investigation under common 632.8 nm illumination.« less
NASA Astrophysics Data System (ADS)
Li, Xingxing
2014-05-01
Earthquake monitoring and early warning system for hazard assessment and mitigation has traditional been based on seismic instruments. However, for large seismic events, it is difficult for traditional seismic instruments to produce accurate and reliable displacements because of the saturation of broadband seismometers and problematic integration of strong-motion data. Compared with the traditional seismic instruments, GPS can measure arbitrarily large dynamic displacements without saturation, making them particularly valuable in case of large earthquakes and tsunamis. GPS relative positioning approach is usually adopted to estimate seismic displacements since centimeter-level accuracy can be achieved in real-time by processing double-differenced carrier-phase observables. However, relative positioning method requires a local reference station, which might itself be displaced during a large seismic event, resulting in misleading GPS analysis results. Meanwhile, the relative/network approach is time-consuming, particularly difficult for the simultaneous and real-time analysis of GPS data from hundreds or thousands of ground stations. In recent years, several single-receiver approaches for real-time GPS seismology, which can overcome the reference station problem of the relative positioning approach, have been successfully developed and applied to GPS seismology. One available method is real-time precise point positioning (PPP) relied on precise satellite orbit and clock products. However, real-time PPP needs a long (re)convergence period, of about thirty minutes, to resolve integer phase ambiguities and achieve centimeter-level accuracy. In comparison with PPP, Colosimo et al. (2011) proposed a variometric approach to determine the change of position between two adjacent epochs, and then displacements are obtained by a single integration of the delta positions. This approach does not suffer from convergence process, but the single integration from delta positions to displacements is accompanied by a drift due to the potential uncompensated errors. Li et al. (2013) presented a temporal point positioning (TPP) method to quickly capture coseismic displacements with a single GPS receiver in real-time. The TPP approach can overcome the convergence problem of precise point positioning (PPP), and also avoids the integration and de-trending process of the variometric approach. The performance of TPP is demonstrated to be at few centimeters level of displacement accuracy for even twenty minutes interval with real-time precise orbit and clock products. In this study, we firstly present and compare the observation models and processing strategies of the current existing single-receiver methods for real-time GPS seismology. Furthermore, we propose several refinements to the variometric approach in order to eliminate the drift trend in the integrated coseismic displacements. The mathematical relationship between these methods is discussed in detail and their equivalence is also proved. The impact of error components such as satellite ephemeris, ionospheric delay, tropospheric delay, and geometry change on the retrieved displacements are carefully analyzed and investigated. Finally, the performance of these single-receiver approaches for real-time GPS seismology is validated using 1 Hz GPS data collected during the Tohoku-Oki earthquake (Mw 9.0, March 11, 2011) in Japan. It is shown that few centimeters accuracy of coseismic displacements is achievable. Keywords: High-rate GPS; real-time GPS seismology; a single receiver; PPP; variometric approach; temporal point positioning; error analysis; coseismic displacement; fault slip inversion;
Large Deletions of TSPAN12 Cause Familial Exudative Vitreoretinopathy (FEVR).
Seo, Soo Hyun; Kim, Man Jin; Park, Sung Wook; Kim, Jeong Hun; Yu, Young Suk; Song, Ji Yun; Cho, Sung Im; Ahn, Joo Hyun; Oh, Yeon Hee; Lee, Jee-Soo; Lee, Seungjun; Seong, Moon-Woo; Park, Sung Sup; Kim, Ji Yeon
2016-12-01
Familial exudative vitreoretinopathy (FEVR) is a rare, hereditary visual disorder. The gene TSPAN12 is associated with autosomal dominant inheritance of FEVR. The prevalence and impact of large deletions/duplications of TSPAN12 on FEVR patients is unknown. To glean better insight of TSPAN12 on FEVR pathology, herein, we describe three FEVR patients with TSPAN12 deletions. Thirty-three Korean FEVR patients, who previously screened negative for TSPAN12 mutations, mutations in other FEVR-associated genes such as NDP, FZD4, LRP5, and large deletions and duplications of NDP, FZD4, and LRP5, were selected for TSPAN12 large deletion and duplication analyses. Semiquantitative multiplex PCR for TSPAN12 gene dosage analyses were performed, followed by droplet digital PCR (ddPCR) for validation. Among the 33 patients, three patients were confirmed to carry large TSPAN12 deletions. Two of them had whole-gene deletions of TSPAN12, and the other patient possessed a deletion of TSPAN12 in exon 4. FEVR severity detected in these patients was not more severe than in a patient with TSPAN12 point mutation. Regarding previously reported proportions of FEVR-associated genes contributing to the disorder's autosomal dominant inheritance pattern in Korea, we determined that patients with TSPAN12 large deletions were more common than patients with single nucleotide variants in TSPAN12. Evaluating TSPAN12 large deletions and duplications should be considered in FEVR screening and diagnosis as well as in routine genetic workups for FEVR patients.
Football Players' Head-Impact Exposure After Limiting of Full-Contact Practices.
Broglio, Steven P; Williams, Richelle M; O'Connor, Kathryn L; Goldstick, Jason
2016-07-01
Sporting organizations limit full-contact football practices to reduce concussion risk and based on speculation that repeated head impacts may result in long-term neurodegeneration. To directly compare head-impact exposure in high school football players before and after a statewide restriction on full-contact practices. Cross-sectional study. High school football field. Participants were varsity football athletes from a single high school. Before the rule change, 26 athletes (age = 16.2 ± 0.8 years, height = 179.6 ± 6.4 cm, weight = 81.9 ± 13.1 kg) participated. After the rule change, 24 athletes (age = 15.9 ± 0.8 years, height = 178.3 ± 6.5 cm, weight = 76.2 ± 11.6 kg) participated. Nine athletes participated in both years of the investigation. Head-impact exposure was monitored using the Head Impact Telemetry System while the athletes participated in football games and practices in the seasons before and after the rule change. Head-impact frequency, location, and magnitude (ie, linear acceleration, rotational acceleration, and Head Impact Telemetry severity profile [HITsp], respectively) were measured. A total of 15 398 impacts (592 impacts per player per season) were captured before the rule change and 8269 impacts (345 impacts per player per season) after the change. An average 42% decline in impact exposure occurred across all players, with practice-exposure declines occurring among linemen (46% decline); receivers, cornerbacks, and safeties (41% decline); and tight ends, running backs (including fullbacks), and linebackers (39% decline). Impact magnitudes remained largely unchanged between the years. A rule change limiting full-contact high school football practices appears to have been effective in reducing head-impact exposure across all players, with the largest reduction occurring among linemen. This finding is likely associated with the rule modification, particularly because the coaching staff and offensive scheme remained consistent, yet how this reduction influences concussion risk and long-term cognitive health remains unknown.
Large-scale fabrication of single crystalline tin nanowire arrays.
Luo, Bin; Yang, Dachi; Liang, Minghui; Zhi, Linjie
2010-09-01
Large-scale single crystalline tin nanowire arrays with preferred lattice orientation along the [100] direction were fabricated in porous anodic aluminium oxide (AAO) membranes by the electrodeposition method using copper nanorod as a second electrode.
NASA Astrophysics Data System (ADS)
Lopez, Ana; Fung, Fai; New, Mark; Watts, Glenn; Weston, Alan; Wilby, Robert L.
2009-08-01
The majority of climate change impacts and adaptation studies so far have been based on at most a few deterministic realizations of future climate, usually representing different emissions scenarios. Large ensembles of climate models are increasingly available either as ensembles of opportunity or perturbed physics ensembles, providing a wealth of additional data that is potentially useful for improving adaptation strategies to climate change. Because of the novelty of this ensemble information, there is little previous experience of practical applications or of the added value of this information for impacts and adaptation decision making. This paper evaluates the value of perturbed physics ensembles of climate models for understanding and planning public water supply under climate change. We deliberately select water resource models that are already used by water supply companies and regulators on the assumption that uptake of information from large ensembles of climate models will be more likely if it does not involve significant investment in new modeling tools and methods. We illustrate the methods with a case study on the Wimbleball water resource zone in the southwest of England. This zone is sufficiently simple to demonstrate the utility of the approach but with enough complexity to allow a variety of different decisions to be made. Our research shows that the additional information contained in the climate model ensemble provides a better understanding of the possible ranges of future conditions, compared to the use of single-model scenarios. Furthermore, with careful presentation, decision makers will find the results from large ensembles of models more accessible and be able to more easily compare the merits of different management options and the timing of different adaptation. The overhead in additional time and expertise for carrying out the impacts analysis will be justified by the increased quality of the decision-making process. We remark that even though we have focused our study on a water resource system in the United Kingdom, our conclusions about the added value of climate model ensembles in guiding adaptation decisions can be generalized to other sectors and geographical regions.
Kuan, Renee; Holt, Robert J; Johnson, Kenneth E; Kent, Jeffrey D; Peura, David A; Malone, Dan
2013-03-01
Single-tablet ibuprofen/famotidine is approved by the US Food and Drug Administration for the relief of signs and symptoms of rheumatoid arthritis and osteoarthritis and to decrease the risk of developing upper gastrointestinal (GI) ulcers in patients taking ibuprofen for those indications. Currently, little is known about the cost impact of gastroprotective therapies, and an estimate of the financial consequences of adopting these therapies will be helpful to decision makers. The goal of this study was to review a model that evaluates the expected financial impact to US health care plans from the introduction of single-tablet ibuprofen/famotidine into the chronic NSAID user population. A budget impact model, considering a typical health plan of 1 million enrollees, was used to compare patients receiving: (1) single-tablet ibuprofen/famotidine; (2) chronic NSAID treatment plus any GI-protective agent; and (3) chronic NSAID treatment without a GI-protective agent. The expected medication cost for single-tablet ibuprofen/famotidine was $734,192 ($81,577 in year 1, $244,731 in year 2, and $407,884 in year 3), corresponding to a total per-member per-month cost of $0.020 ($0.007 in year 1, $0.020 in year 2, and $0.034 in year 3). Considering anticipated decreases in the use of other NSAIDs, the use of GI-protective agents, and GI complications, the total expected 3-year drug cost for single-tablet ibuprofen/famotidine was offset by 50%, representing an estimated total budget impact of $364,396 or $0.010 per member per month. Sensitivity analyses of cost and market share variables and clinical and drug characteristics identified the most influential variables to be the cost of the drug and persistence to the ibuprofen/famotidine formulation, respectively. The expected decrease in treatment costs for less serious GI-related complications illustrates the benefits of single-tablet ibuprofen/famotidine as a gastroprotective therapy in patients receiving chronic NSAID treatment, with a modest financial impact on total health care costs. Copyright © 2013 Elsevier HS Journals, Inc. All rights reserved.
All fiber passively Q-switched laser
Soh, Daniel B. S.; Bisson, Scott E
2015-05-12
Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.
A singly charged ion source for radioactive {sup 11}C ion acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katagiri, K.; Noda, A.; Nagatsu, K.
2016-02-15
A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive {sup 11}C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source wasmore » found to have favorable performance as a singly charged ion source.« less
Strength and deformation of shocked diamond single crystals: Orientation dependence
Lang, John Michael Jr.; Winey, J. M.; Gupta, Y. M.
2018-03-01
Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100]more » direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}<110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.« less
Strength and deformation of shocked diamond single crystals: Orientation dependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, John Michael Jr.; Winey, J. M.; Gupta, Y. M.
Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100]more » direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}<110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.« less
Strength and deformation of shocked diamond single crystals: Orientation dependence
NASA Astrophysics Data System (ADS)
Lang, J. M.; Winey, J. M.; Gupta, Y. M.
2018-03-01
Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ˜120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100] direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}⟨110⟩ slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (˜33 GPa) are 25%-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (˜23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.
Sekine, Masashi; Kita, Kahori; Yu, Wenwei
2015-01-01
Unlike forearm amputees, transhumeral amputees have residual stumps that are too small to provide a sufficient range of operation for their prosthetic parts to perform usual activities of daily living. Furthermore, it is difficult for small residual stumps to provide sufficient impact absorption for safe manipulation in daily living, as intact arms do. Therefore, substitution of upper limb function in transhumeral amputees requires a sufficient range of motion and sufficient viscoelasticity for shoulder prostheses under critical weight and dimension constraints. We propose the use of two different types of actuators, ie, pneumatic elastic actuators (PEAs) and servo motors. PEAs offer high power-to-weight performance and have intrinsic viscoelasticity in comparison with motors or standard industrial pneumatic cylinder actuators. However, the usefulness of PEAs in large working spaces is limited because of their short strokes. Servo motors, in contrast, can be used to achieve large ranges of motion. In this study, the relationship between the force and stroke of PEAs was investigated. The impact absorption of both types of actuators was measured using a single degree-of-freedom prototype to evaluate actuator compliance for safety purposes. Based on the fundamental properties of the actuators identified, a four degree-of-freedom robotic arm is proposed for prosthetic use. The configuration of the actuators and functional parts was designed to achieve a specified range of motion and torque calculated from the results of a simulation of typical movements performed in usual activities of daily living. Our experimental results showed that the requirements for the shoulder prostheses could be satisfied.
Intrepid: Exploring the NEA population with a Fleet of Highly Autonomous SmallSat explorers
NASA Astrophysics Data System (ADS)
Blacksberg, Jordana; Chesley, Steven R.; Ehlmann, Bethany; Raymond, Carol Anne
2017-10-01
The Intrepid mission concept calls for phased deployment of a fleet of small highly autonomous rendezvous spacecraft designed to characterize the evolution, structure and composition of dozens of Near-Earth Asteroids (NEAs). Intrepid represents a marked departure from conventional solar system exploration projects, where a single unique and complex spacecraft is typically directed to explore a single target body. In contrast, Intrepid relies on the deployment of a large number of autonomous spacecraft to provide redundancy and ensure that the project goals are achieved at a small fraction of the cost of typical missions.The Intrepid science goals are threefold: (1) to understand the evolutionary processes that govern asteroid physical, chemical and dynamical histories and relate these results to solar system origins and evolution; (2) to facilitate impactor deflection scenarios for planetary defense by statistically characterizing relevant asteroid physical properties; (3) to quantify the presence and extractability of potentially useful resources on a large sample of asteroids. To achieve these goals, the baseline architecture includes multiple modular instruments including cameras, spectrometers, radar sounders, and projectiles that could interact with the target asteroid. Key questions to be addressed are: what is the total quantity of water in each object? How is the water incorporated? Are organics present? What is the asteroid physical structure? How would the object respond to impact/deflection?We have begun development of a miniature infrared point spectrometer, a cornerstone of the Intrepid payload, covering both shortwave infrared (SWIR) and mid-infrared (MIR) spectral bands. The spectrometer is designed with a compact 2U form-factor, making it both relevant to Intrepid and implementable on a CubeSat. The combination of SWIR and MIR in a single integrated instrument would enable robust compositional interpretations from a single dataset combining both solar reflectance and thermal emission spectroscopy. These measurements would be crucial to determining the quantity and nature of water present.
Hadjichristov, Georgi B; Marinov, Yordan G; Petrov, Alexander G
2011-06-01
The light modulating ability of gradient polymer-disposed liquid crystal (PDLC) single layer of large droplets formed by nematic E7 in UV-cured polymer NOA65 is studied. Operating at relatively low voltages, such PDLC film with a of thickness 10-25 μm and droplet size up to 50 μm exhibits a good contrast ratio and is capable of producing a large phase shift for the propagating coherent light. For a linearly polarized He-Ne laser (λ=633 nm), an electrically commanded phase shift as large as π/2 can be obtained by the large-droplet region of the film. The electrically produced phase shift and its spatial profile controlled by the thickness of the gradient PDLC single layers of large nematic droplets can be useful for tunable spatial light modulators and other devices for active control of laser light.
Impact and recovery process of mini flash crashes: An empirical study.
Braun, Tobias; Fiegen, Jonas A; Wagner, Daniel C; Krause, Sebastian M; Guhr, Thomas
2018-01-01
In an Ultrafast Extreme Event (or Mini Flash Crash), the price of a traded stock increases or decreases strongly within milliseconds. We present a detailed study of Ultrafast Extreme Events in stock market data. In contrast to popular belief, our analysis suggests that most of the Ultrafast Extreme Events are not necessarily due to feedbacks in High Frequency Trading: In at least 60 percent of the observed Ultrafast Extreme Events, the largest fraction of the price change is due to a single market order. In times of financial crisis, large market orders are more likely which leads to a significant increase of Ultrafast Extreme Events occurrences. Furthermore, we analyze the 100 trades following each Ultrafast Extreme Events. While we observe a tendency of the prices to partially recover, less than 40 percent recover completely. On the other hand we find 25 percent of the Ultrafast Extreme Events to be almost recovered after only one trade which differs from the usually found price impact of market orders.
Impact and recovery process of mini flash crashes: An empirical study
Wagner, Daniel C.; Krause, Sebastian M.; Guhr, Thomas
2018-01-01
In an Ultrafast Extreme Event (or Mini Flash Crash), the price of a traded stock increases or decreases strongly within milliseconds. We present a detailed study of Ultrafast Extreme Events in stock market data. In contrast to popular belief, our analysis suggests that most of the Ultrafast Extreme Events are not necessarily due to feedbacks in High Frequency Trading: In at least 60 percent of the observed Ultrafast Extreme Events, the largest fraction of the price change is due to a single market order. In times of financial crisis, large market orders are more likely which leads to a significant increase of Ultrafast Extreme Events occurrences. Furthermore, we analyze the 100 trades following each Ultrafast Extreme Events. While we observe a tendency of the prices to partially recover, less than 40 percent recover completely. On the other hand we find 25 percent of the Ultrafast Extreme Events to be almost recovered after only one trade which differs from the usually found price impact of market orders. PMID:29782503
Aclidinium bromide plus formoterol for the treatment of chronic obstructive pulmonary disease.
Lal, Chitra; Strange, Charlie
2015-02-01
Drugs that target dynamic hyperinflation such as long-acting β-2 agonists and long-acting antimuscarinic antagonists form a cornerstone of chronic obstructive pulmonary disease (COPD) management. The idea of combining these two medications in a single formulation, which may potentially improve patient compliance, is novel and attractive. The pharmacologic profiles of aclidinium bromide and formoterol fumarate are discussed. However, studies to define drug interactions and alterations in the pharmacodynamics and pharmacokinetics of the fixed dose combination (FDC) of aclidinium bromide/formoterol fumarate in large populations remain unpublished. Results of Phase II and two Phase III pivotal trials, ACLIFORM/COPD and AUGMENT COPD, evaluating the FDC are discussed. Initial data for the aclidinium/formoterol inhaler appears to be promising for impacting the lung function. To define if this benefit translates into improved long-term outcomes of decreased exacerbation frequency, improved quality of life and decreased disease-specific mortality are important. The introduction of this combination will likely have a significant impact on the prescribing habits of physicians across the world.
Direct observation of interfacial Au atoms on TiO₂ in three dimensions.
Gao, Wenpei; Sivaramakrishnan, Shankar; Wen, Jianguo; Zuo, Jian-Min
2015-04-08
Interfacial atoms, which result from interactions between the metal nanoparticles and support, have a large impact on the physical and chemical properties of nanoparticles. However, they are difficult to observe; the lack of knowledge has been a major obstacle toward unraveling their role in chemical transformations. Here we report conclusive evidence of interfacial Au atoms formed on the rutile (TiO2) (110) surfaces by activation using high-temperature (∼500 °C) annealing in air. Three-dimensional imaging was performed using depth-sectioning enabled by aberration-corrected scanning transmission electron microscopy. Results show that the interface between Au nanocrystals and TiO2 (110) surfaces consists of a single atomic layer with Au atoms embedded inside Ti-O. The number of interfacial Au atoms is estimated from ∼1-8 in an interfacial atomic column. Direct impact of interfacial Au atoms is observed on an enhanced Au-TiO2 interaction and the reduction of surface TiO2; both are critical to Au catalysis.
Extreme multi-basin flooding linked with extra-tropical cyclones
NASA Astrophysics Data System (ADS)
De Luca, Paolo; Hillier, John K.; Wilby, Robert L.; Quinn, Nevil W.; Harrigan, Shaun
2017-11-01
Fluvial floods are typically investigated as ‘events’ at the single basin-scale, hence flood management authorities may underestimate the threat of flooding across multiple basins driven by large-scale and nearly concurrent atmospheric event(s). We pilot a national-scale statistical analysis of the spatio-temporal characteristics of extreme multi-basin flooding (MBF) episodes, using peak river flow data for 260 basins in Great Britain (1975-2014), a sentinel region for storms impacting northwest and central Europe. During the most widespread MBF episode, 108 basins (~46% of the study area) recorded annual maximum (AMAX) discharge within a 16 day window. Such episodes are associated with persistent cyclonic and westerly atmospheric circulations, atmospheric rivers, and precipitation falling onto previously saturated ground, leading to hydrological response times <40 h and documented flood impacts. Furthermore, peak flows tend to occur after 0-13 days of very severe gales causing combined and spatially-distributed, yet differentially time-lagged, wind and flood damages. These findings have implications for emergency responders, insurers and contingency planners worldwide.
The impact of free-ranging domestic cats on wildlife of the United States.
Loss, Scott R; Will, Tom; Marra, Peter P
2013-01-01
Anthropogenic threats, such as collisions with man-made structures, vehicles, poisoning and predation by domestic pets, combine to kill billions of wildlife annually. Free-ranging domestic cats have been introduced globally and have contributed to multiple wildlife extinctions on islands. The magnitude of mortality they cause in mainland areas remains speculative, with large-scale estimates based on non-systematic analyses and little consideration of scientific data. Here we conduct a systematic review and quantitatively estimate mortality caused by cats in the United States. We estimate that free-ranging domestic cats kill 1.4-3.7 billion birds and 6.9-20.7 billion mammals annually. Un-owned cats, as opposed to owned pets, cause the majority of this mortality. Our findings suggest that free-ranging cats cause substantially greater wildlife mortality than previously thought and are likely the single greatest source of anthropogenic mortality for US birds and mammals. Scientifically sound conservation and policy intervention is needed to reduce this impact.
On the impact of forced roll convection on vertical turbulent transport in cold air outbreaks
NASA Astrophysics Data System (ADS)
Gryschka, Micha; Fricke, Jens; Raasch, Siegfried
2014-11-01
We investigated the impact of roll convection on the convective boundary layer and vertical transports in different cold air outbreak (CAO) scenarios using large eddy simulations (LES). The organization of convection into rolls was triggered by upstream heterogeneities in the surface temperature, representing ice and water. By changing the sea ice distribution in our LES, we were able to simulate a roll and a nonroll case for each scenario. Furthermore, the roll wavelength was varied by changing the scale of the heterogeneity. The characteristics of the simulated rolls and cloud streets, such as aspect ratios, orientation of the roll axes, and downstream extensions of single rolls agreed closely with observations in CAO situations. The vertical turbulent fluxes, calculated for each simulation, were decomposed into contributions from rolls and from unorganized turbulence. Even though our results confirmed that rolls triggered by upstream heterogeneities can substantially contribute to vertical turbulent fluxes, the total fluxes were not affected by the rolls.
A collisional family of icy objects in the Kuiper belt.
Brown, Michael E; Barkume, Kristina M; Ragozzine, Darin; Schaller, Emily L
2007-03-15
The small bodies in the Solar System are thought to have been highly affected by collisions and erosion. In the asteroid belt, direct evidence of the effects of large collisions can be seen in the existence of separate families of asteroids--a family consists of many asteroids with similar orbits and, frequently, similar surface properties, with each family being the remnant of a single catastrophic impact. In the region beyond Neptune, in contrast, no collisionally created families have hitherto been found. The third largest known Kuiper belt object, 2003 EL61, however, is thought to have experienced a giant impact that created its multiple satellite system, stripped away much of an overlying ice mantle, and left it with a rapid rotation. Here we report the discovery of a family of Kuiper belt objects with surface properties and orbits that are nearly identical to those of 2003 EL61. This family appears to be fragments of the ejected ice mantle of 2003 EL61.
Xu, Lingyang; Hou, Yali; Bickhart, Derek M; Song, Jiuzhou; Liu, George E
2013-06-25
Copy number variations (CNVs) are gains and losses of genomic sequence between two individuals of a species when compared to a reference genome. The data from single nucleotide polymorphism (SNP) microarrays are now routinely used for genotyping, but they also can be utilized for copy number detection. Substantial progress has been made in array design and CNV calling algorithms and at least 10 comparison studies in humans have been published to assess them. In this review, we first survey the literature on existing microarray platforms and CNV calling algorithms. We then examine a number of CNV calling tools to evaluate their impacts using bovine high-density SNP data. Large incongruities in the results from different CNV calling tools highlight the need for standardizing array data collection, quality assessment and experimental validation. Only after careful experimental design and rigorous data filtering can the impacts of CNVs on both normal phenotypic variability and disease susceptibility be fully revealed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pardon, D.V.; Faeth, M.T.; Curth, O.
1981-01-01
At International Marine Terminals' Plaquemines Parish Terminal, design optimization was accomplished by optimizing the dock pile bent spacing and designing the superstructure to distribute berthing impact forces and bollard pulls over a large number of pile bents. Also, by resisting all longitudinal forces acting on the dock at a single location near the center of the structure, the number of longitudinal batter piles was minimized and the need for costly expansion joints was eliminated. Computer techniques were utilized to analyze and optimize the design of the new dock. Pile driving procedures were evaluated utilizing a wave equation technique. Tripod dolphinsmore » with a resilient fender system were provided. The resilent fender system, a combination of rubber shear type and wing type fenders, adds only a small percentage to the total cost of the dolphins but greatly increases their energy absorption capability.« less
Interactions between pesticides and pathogen susceptibility in honey bees.
O'Neal, Scott T; Anderson, Troy D; Wu-Smart, Judy Y
2018-04-01
There exist a variety of factors that negatively impact the health and survival of managed honey bee colonies, including the spread of parasites and pathogens, loss of habitat, reduced availability or quality of food resources, climate change, poor queen quality, changing cultural and commercial beekeeping practices, as well as exposure to agricultural and apicultural pesticides both in the field and in the hive. These factors are often closely intertwined, and it is unlikely that a single stressor is driving colony losses. There is a growing consensus, however, that increasing prevalence of parasites and pathogens are among the most significant threats to managed bee colonies. Unfortunately, improper management of hives by beekeepers may exacerbate parasite populations and disease transmission. Furthermore, research continues to accumulate that describes the complex and largely harmful interactions that exist between pesticide exposure and bee immunity. This brief review summarizes our progress in understanding the impact of pesticide exposure on bees at the individual, colony, and community level. Copyright © 2018 Elsevier Inc. All rights reserved.
Craters on Earth, Moon, and Mars: Multivariate classification and mode of origin
Pike, R.J.
1974-01-01
Testing extraterrestrial craters and candidate terrestrial analogs for morphologic similitude is treated as a problem in numerical taxonomy. According to a principal-components solution and a cluster analysis, 402 representative craters on the Earth, the Moon, and Mars divide into two major classes of contrasting shapes and modes of origin. Craters of net accumulation of material (cratered lunar domes, Martian "calderas," and all terrestrial volcanoes except maars and tuff rings) group apart from craters of excavation (terrestrial meteorite impact and experimental explosion craters, typical Martian craters, and all other lunar craters). Maars and tuff rings belong to neither group but are transitional. The classification criteria are four independent attributes of topographic geometry derived from seven descriptive variables by the principal-components transformation. Morphometric differences between crater bowl and raised rim constitute the strongest of the four components. Although single topographic variables cannot confidently predict the genesis of individual extraterrestrial craters, multivariate statistical models constructed from several variables can distinguish consistently between large impact craters and volcanoes. ?? 1974.
Limitations and perspectives of sublacustrine paleoseismology: a Swiss example
NASA Astrophysics Data System (ADS)
Kremer, Katrina; Wirth, Stefanie B.; Reusch, Anna; Fäh, Donat; Bellwald, Benjamin; Anselmetti, Flavio S.; Girardclos, Stéphanie; Strasser, Michael
2017-04-01
In regions with moderate seismicity and large intervals between strong earthquakes, paleoseismological archives that exceed the historical and instrumental timescale are required to establish reliable estimates of earthquake recurrence for long return periods. In several regions, studies have shown that lake sediments are very suitable for paleoseismological studies by causally linking characteristic sedimentological features to historic earthquakes. Studies on single sites, however, do neither allow determining the paleoepicentre nor the paleomagnitude for the potential paleoearthquakes. Here we compile the sedimentary paleoseismic record of 11 lakes from Switzerland over the last 10000 years using shaking-induced mass movements and microdeformations. The large dating uncertainty attributed to such deposits does not allow a unique interpretation between single vs. multiple-clustered earthquakes in this multi-lake dataset. However, we propose a new approach that assesses the frequency and allows determining periods of enhanced mass-movement occurrence likely related to earthquakes. In a second part of this study, the area of epicentres and ranges of magnitudes of the historical Unterwalden 1601 AD earthquake could be reconstructed with a model using the geographical distribution of the recorded earthquake-related sedimentary impacts. This method allows us to propose scenarios for possible paleoearthquakes with areas for epicentre locations and ranges of magnitudes based on the lacustrine dataset. Although this study deals with lake sediments, we believe that the outcomes are also interesting for the marine community.
STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cziczo, D.
2016-03-01
The relationship between aerosol particles and the formation of clouds is among the most uncertain aspects in our current understanding of climate change. Warm clouds have been the most extensively studied, in large part because they are normally close to the Earth’s surface and only contain large concentrations of liquid droplets. Ice and mixed-phase clouds have been less studied even though they have extensive global coverage and dominate precipitation formation. Because they require low temperatures to form, both cloud types are infrequently found at ground level, resulting in more difficult field studies. Complex mixtures of liquid and ice elements, normallymore » at much lower concentrations than found in warm clouds, require precise separation techniques and accurate identification of phase. Because they have proved so difficult to study, the climatic impact of ice-containing clouds remains unresolved. In this study, cloud condensation nuclei (CCN) concentrations and associated single particles’ composition and size were measured at a high-elevation research site—Storm Peak Lab, east of Steamboat Springs, Colorado, operated by the Desert Research Institute. Detailed composition analyses were presented to compare CCN activation with single-particle composition. In collaboration with the scientists of the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), our goal was to relate these findings to the cloud characteristics and the effect of anthropogenic activities.« less
Availability of Heat to Drive Hydrothermal Systems in Large Martian Impact Craters
NASA Technical Reports Server (NTRS)
Thorsos, I. E.; Newsom, H. E.; Davies, A. G.
2001-01-01
The central uplift in large craters on Mars can provide a substantial source of heat, equivalent to heat produced by the impact melt sheet. The heat generated in large impacts could play a significant role in hydrothermal systems on Mars. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Quattrochi, D.
2012-12-01
The built environment consists of components that have been made by humans at a range of scales from small (e.g., houses, shopping malls) to large (e.g., transportation networks) to highly modified landscapes such as cities. The impacts of climate change on the built environment, therefore, may have a multitude of effects on humans and the land. The impact of climate change may be exacerbated by the interaction of different events that singly may be minor, but together may have a synergistic set of impacts that are significant. Also, there may be feedback mechanisms wherein the built environment, particularly in the form of cities, may affect weather and the climate on local and regional scales. Besides having a host of such interactions, the impacts of climate change on urban areas will likely have thresholds, below which effects are incidental or of mild consequence, but beyond which the effects quickly become major. Hence, a city may be able to cope with prolonged heat waves, but if this is combined with severe drought, the overall result could be significant or even catastrophic, as accelerating demand for energy to cooling taxes water supplies needed both for energy supply and municipal water needs. Moreover, urban areas may be affected by changes in daily and seasonal high or low temperatures or precipitation, which may have a much more prolonged impact than the direct effect of these events. Thus, the cumulative impacts of multiple events may be more severe than those of any single event. Primary hazards include sea level rise and coastal storms, heat waves, intense precipitation, drought, extreme wind events, urban heat islands, and secondary air pollutants, and cold air events including frozen precipitation. Indicators need to be developed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities. Overall, indicators of climate change on the built environment should: 1) provide meaningful, authoritative climate-relevant measures about the status, rates, and trends of key physical, ecological, and societal variables and values to inform decisions on management, research, and education at regional to national scales; 2) identify climate-related conditions and impacts to help develop effective mitigation and adaptation measures and reduce costs of management; and 3) document and communicate the climate-driven dynamic nature and condition of Earth's systems and societies, and provide a coordinated. This presentation will provide an overview of possible climate impacts on the built environment. Also, given that spatial analysis and remote sensing techniques will be of paramount importance in assessing these impacts and in preparing adaptation strategies, the presentation will provide examples of how these techniques can be used to identify potential impacts of climate change on the built environment.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-10
... System AGENCY: Centers for Medicare & Medicaid Services (CMS), HHS. ACTION: Notice of Single Source Award... care system through a single source award. The Indian Health Service (IHS), Tribes and Tribal... adoption and impact of these new authorities on the Indian health care system. Amount of the Award The...
The Impact of Psychotherapeutic Reiki on Anxiety and Mindfulness: A Single-Case Design
ERIC Educational Resources Information Center
Webster, Lindsay C.
2016-01-01
Reiki healing is one of several complementary and integrative therapies becoming increasingly prevalent in mental health counseling. It has been identified in the medical field for its usefulness in treating anxiety, depression, distress, and pain but has rarely been studied for its counseling impact on client wellness. I conducted single-case…
Exploring efficacy of residential energy efficiency programs in Florida
NASA Astrophysics Data System (ADS)
Taylor, Nicholas Wade
Electric utilities, government agencies, and private interests in the U.S. have committed and continue to invest substantial resources in the pursuit of energy efficiency and conservation through demand-side management (DSM) programs. Program investments, and the demand for impact evaluations that accompany them, are projected to grow in coming years due to increased pressure from state-level energy regulation, costs and challenges of building additional production capacity, fuel costs and potential carbon or renewable energy regulation. This dissertation provides detailed analyses of ex-post energy savings from energy efficiency programs in three key sectors of residential buildings: new, single-family, detached homes; retrofits to existing single-family, detached homes; and retrofits to existing multifamily housing units. Each of the energy efficiency programs analyzed resulted in statistically significant energy savings at the full program group level, yet savings for individual participants and participant subgroups were highly variable. Even though savings estimates were statistically greater than zero, those energy savings did not always meet expectations. Results also show that high variability in energy savings among participant groups or subgroups can negatively impact overall program performance and can undermine marketing efforts for future participation. Design, implementation, and continued support of conservation programs based solely on deemed or projected savings is inherently counter to the pursuit of meaningful energy conservation and reductions in greenhouse gas emissions. To fully understand and optimize program impacts, consistent and robust measurement and verification protocols must be instituted in the design phase and maintained over time. Furthermore, marketing for program participation must target those who have the greatest opportunity for savings. In most utility territories it is not possible to gain access to the type of large scale datasets that would facilitate robust program analysis. Along with measuring and optimizing energy conservation programs, utilities should provide public access to historical consumption data. Open access to data, program optimization, consistent measurement and verification and transparency in reported savings are essential to reducing energy use and its associated environmental impacts.
Warren, Rachel
2011-01-13
The papers in this volume discuss projections of climate change impacts upon humans and ecosystems under a global mean temperature rise of 4°C above preindustrial levels. Like most studies, they are mainly single-sector or single-region-based assessments. Even the multi-sector or multi-region approaches generally consider impacts in sectors and regions independently, ignoring interactions. Extreme weather and adaptation processes are often poorly represented and losses of ecosystem services induced by climate change or human adaptation are generally omitted. This paper addresses this gap by reviewing some potential interactions in a 4°C world, and also makes a comparison with a 2°C world. In a 4°C world, major shifts in agricultural land use and increased drought are projected, and an increased human population might increasingly be concentrated in areas remaining wet enough for economic prosperity. Ecosystem services that enable prosperity would be declining, with carbon cycle feedbacks and fire causing forest losses. There is an urgent need for integrated assessments considering the synergy of impacts and limits to adaptation in multiple sectors and regions in a 4°C world. By contrast, a 2°C world is projected to experience about one-half of the climate change impacts, with concomitantly smaller challenges for adaptation. Ecosystem services, including the carbon sink provided by the Earth's forests, would be expected to be largely preserved, with much less potential for interaction processes to increase challenges to adaptation. However, demands for land and water for biofuel cropping could reduce the availability of these resources for agricultural and natural systems. Hence, a whole system approach to mitigation and adaptation, considering interactions, potential human and species migration, allocation of land and water resources and ecosystem services, will be important in either a 2°C or a 4°C world.
Design of an electron projection system with slider lenses and multiple beams
NASA Astrophysics Data System (ADS)
Moonen, Daniel; Leunissen, Peter L. H. A.; de Jager, Patrick W.; Kruit, Pieter; Bleeker, Arno J.; Van der Mast, Karel D.
2002-07-01
The commercial applicability of electron beam projection lithography systems may be limited at high resolution because of low throughput. The main limitations to the throughput are: (i) Beam current. The Coulomb interaction between electrons result in an image blue. Therefore less beam current can be allowed at higher resolution, impacting the illuminate time of the wafer. (ii) Exposure field size. Early attempts to improve throughput with 'full chip' electron beam projection systems failed, because the system suffered from large off-axis aberrations of the electron optics, which severely restricted the useful field size. This has impact on the overhead time. A new type of projection optics will be proposed in this paper to overcome both limits. A slider lens is proposed that allows an effective field that is much larger than schemes proposed by SCALPEL and PREVAIL. The full width of the die can be exposed without mechanical scanning by sliding the beam through the slit-like bore of the lens. Locally, at the beam position, a 'round'-lens field is created with a combination of a rectangular magnetic field and quadruples that are positioned inside the lens. A die can now be exposed during a single mechanical scan as in state-of-the-art light optical tools. The total beam current can be improved without impact on the Coulomb interaction blur by combining several beams in a single lithography system if these beams do not interfere with each other. Several optical layouts have been proposed that combined up to 5 beams in a projection system consisting of a doublet of slider lenses. This type of projection optics has a potential throughput of 50 WPH at 45 nm with a resist sensitivity of 6 (mu) C/cm2.
Sutherland, Tori; Beloff, Jennifer; Lightowler, Marie; Liu, Xiaoxia; Nascimben, Luigino; Urman, Richard D
2014-01-01
The Surgical Care Improvement Project (SCIP) was launched in 2005. The core prophylactic perioperative antibiotic guidelines were created because of recognition of the impact of proper perioperative prophylaxis on an estimated annual 1 million inpatient days and $1.6 billion in excess health care costs that are secondary to preventable surgical site infections. There is a need to create low-cost, standardized processes on an institutional level to improve compliance with prophylactic antibiotic administration. The impact of interventions on provider compliance with SCIP inpatient antibiotic guidelines and net financial gain or loss to a large tertiary center were assessed. A single hospital was able to significantly improve their SCIP compliance and emphasis on patient safety within a year of intervention implementation. The hospital earned an additional $290,612 in 2011 and $209,096 in 2012 for reinvestment in patient safety initiatives. Low-cost interventions aimed at educating providers that utilize existing infrastructure result in improved SCIP compliance and patient safety. As a secondary gain, there were hundreds of thousands of dollars in annual cost savings. The impact of compliance on infection rates is inferred but requires further study.
Li, Yunze; Ji, Deyang; Liu, Jie; Yao, Yifan; Fu, Xiaolong; Zhu, Weigang; Xu, Chunhui; Dong, Huanli; Li, Jingze; Hu, Wenping
2015-01-01
In this paper, we developed a new method to produce large-area single crystal arrays by using the organic semiconductor 9, 10-bis (phenylethynyl) anthracene (BPEA). This method involves an easy operation, is efficient, meets the demands of being low-cost and is independent of the substrate for large-area arrays fabrication. Based on these single crystal arrays, the organic field effect transistors exhibit the superior performance with the average mobility extracting from the saturation region of 0.2 cm2 V−1s−1 (the highest 0.47 cm2 V−1s−1) and on/off ratio exceeding 105. In addition, our single crystal arrays also show a very high photoswitch performance with an on/off current ratio up to 4.1 × 105, which is one of the highest values reported for organic materials. It is believed that this method provides a new way to fabricate single crystal arrays and has the potential for application to large area organic electronics. PMID:26282460
The impact of galaxy formation on satellite kinematics and redshift-space distortions
NASA Astrophysics Data System (ADS)
Orsi, Álvaro A.; Angulo, Raúl E.
2018-04-01
Galaxy surveys aim to map the large-scale structure of the Universe and use redshift-space distortions to constrain deviations from general relativity and probe the existence of massive neutrinos. However, the amount of information that can be extracted is limited by the accuracy of theoretical models used to analyse the data. Here, by using the L-Galaxies semi-analytical model run over the Millennium-XXL N-body simulation, we assess the impact of galaxy formation on satellite kinematics and the theoretical modelling of redshift-space distortions. We show that different galaxy selection criteria lead to noticeable differences in the radial distributions and velocity structure of satellite galaxies. Specifically, whereas samples of stellar mass selected galaxies feature satellites that roughly follow the dark matter, emission line satellite galaxies are located preferentially in the outskirts of haloes and display net infall velocities. We demonstrate that capturing these differences is crucial for modelling the multipoles of the correlation function in redshift space, even on large scales. In particular, we show how modelling small-scale velocities with a single Gaussian distribution leads to a poor description of the measured clustering. In contrast, we propose a parametrization that is flexible enough to model the satellite kinematics and that leads to an accurate description of the correlation function down to sub-Mpc scales. We anticipate that our model will be a necessary ingredient in improved theoretical descriptions of redshift-space distortions, which together could result in significantly tighter cosmological constraints and a more optimal exploitation of future large data sets.
Long-term Ozone Changes and Associated Climate Impacts in CMIP5 Simulations
NASA Technical Reports Server (NTRS)
Eyring, V.; Arblaster, J. M.; Cionni, I.; Sedlacek, J.; Perlwitz, J.; Young, P. J.; Bekki, S.; Bergmann, D.; Cameron-Smith, P.; Collins, W. J.;
2013-01-01
Ozone changes and associated climate impacts in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations are analyzed over the historical (1960-2005) and future (2006-2100) period under four Representative Concentration Pathways (RCP). In contrast to CMIP3, where half of the models prescribed constant stratospheric ozone, CMIP5 models all consider past ozone depletion and future ozone recovery. Multimodel mean climatologies and long-term changes in total and tropospheric column ozone calculated from CMIP5 models with either interactive or prescribed ozone are in reasonable agreement with observations. However, some large deviations from observations exist for individual models with interactive chemistry, and these models are excluded in the projections. Stratospheric ozone projections forced with a single halogen, but four greenhouse gas (GHG) scenarios show largest differences in the northern midlatitudes and in the Arctic in spring (approximately 20 and 40 Dobson units (DU) by 2100, respectively). By 2050, these differences are much smaller and negligible over Antarctica in austral spring. Differences in future tropospheric column ozone are mainly caused by differences in methane concentrations and stratospheric input, leading to approximately 10DU increases compared to 2000 in RCP 8.5. Large variations in stratospheric ozone particularly in CMIP5 models with interactive chemistry drive correspondingly large variations in lower stratospheric temperature trends. The results also illustrate that future Southern Hemisphere summertime circulation changes are controlled by both the ozone recovery rate and the rate of GHG increases, emphasizing the importance of simulating and taking into account ozone forcings when examining future climate projections.
Aggregation of carbon dioxide sequestration storage assessment units
Blondes, Madalyn S.; Schuenemeyer, John H.; Olea, Ricardo A.; Drew, Lawrence J.
2013-01-01
The U.S. Geological Survey is currently conducting a national assessment of carbon dioxide (CO2) storage resources, mandated by the Energy Independence and Security Act of 2007. Pre-emission capture and storage of CO2 in subsurface saline formations is one potential method to reduce greenhouse gas emissions and the negative impact of global climate change. Like many large-scale resource assessments, the area under investigation is split into smaller, more manageable storage assessment units (SAUs), which must be aggregated with correctly propagated uncertainty to the basin, regional, and national scales. The aggregation methodology requires two types of data: marginal probability distributions of storage resource for each SAU, and a correlation matrix obtained by expert elicitation describing interdependencies between pairs of SAUs. Dependencies arise because geologic analogs, assessment methods, and assessors often overlap. The correlation matrix is used to induce rank correlation, using a Cholesky decomposition, among the empirical marginal distributions representing individually assessed SAUs. This manuscript presents a probabilistic aggregation method tailored to the correlations and dependencies inherent to a CO2 storage assessment. Aggregation results must be presented at the basin, regional, and national scales. A single stage approach, in which one large correlation matrix is defined and subsets are used for different scales, is compared to a multiple stage approach, in which new correlation matrices are created to aggregate intermediate results. Although the single-stage approach requires determination of significantly more correlation coefficients, it captures geologic dependencies among similar units in different basins and it is less sensitive to fluctuations in low correlation coefficients than the multiple stage approach. Thus, subsets of one single-stage correlation matrix are used to aggregate to basin, regional, and national scales.
Negussie, E; de Haas, Y; Dehareng, F; Dewhurst, R J; Dijkstra, J; Gengler, N; Morgavi, D P; Soyeurt, H; van Gastelen, S; Yan, T; Biscarini, F
2017-04-01
Efforts to reduce the carbon footprint of milk production through selection and management of low-emitting cows require accurate and large-scale measurements of methane (CH 4 ) emissions from individual cows. Several techniques have been developed to measure CH 4 in a research setting but most are not suitable for large-scale recording on farm. Several groups have explored proxies (i.e., indicators or indirect traits) for CH 4 ; ideally these should be accurate, inexpensive, and amenable to being recorded individually on a large scale. This review (1) systematically describes the biological basis of current potential CH 4 proxies for dairy cattle; (2) assesses the accuracy and predictive power of single proxies and determines the added value of combining proxies; (3) provides a critical evaluation of the relative merit of the main proxies in terms of their simplicity, cost, accuracy, invasiveness, and throughput; and (4) discusses their suitability as selection traits. The proxies range from simple and low-cost measurements such as body weight and high-throughput milk mid-infrared spectroscopy (MIR) to more challenging measures such as rumen morphology, rumen metabolites, or microbiome profiling. Proxies based on rumen samples are generally poor to moderately accurate predictors of CH 4 , and are costly and difficult to measure routinely on-farm. Proxies related to body weight or milk yield and composition, on the other hand, are relatively simple, inexpensive, and high throughput, and are easier to implement in practice. In particular, milk MIR, along with covariates such as lactation stage, are a promising option for prediction of CH 4 emission in dairy cows. No single proxy was found to accurately predict CH 4 , and combinations of 2 or more proxies are likely to be a better solution. Combining proxies can increase the accuracy of predictions by 15 to 35%, mainly because different proxies describe independent sources of variation in CH 4 and one proxy can correct for shortcomings in the other(s). The most important applications of CH 4 proxies are in dairy cattle management and breeding for lower environmental impact. When breeding for traits of lower environmental impact, single or multiple proxies can be used as indirect criteria for the breeding objective, but care should be taken to avoid unfavorable correlated responses. Finally, although combinations of proxies appear to provide the most accurate estimates of CH 4 , the greatest limitation today is the lack of robustness in their general applicability. Future efforts should therefore be directed toward developing combinations of proxies that are robust and applicable across diverse production systems and environments. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Using the Image Analysis Method for Describing Soil Detachment by a Single Water Drop Impact
Ryżak, Magdalena; Bieganowski, Andrzej
2012-01-01
The aim of the present work was to develop a method based on image analysis for describing soil detachment caused by the impact of a single water drop. The method consisted of recording tracks made by splashed particles on blotting paper under an optical microscope. The analysis facilitated division of the recorded particle tracks on the paper into drops, “comets” and single particles. Additionally, the following relationships were determined: (i) the distances of splash; (ii) the surface areas of splash tracks into relation to distance; (iii) the surface areas of the solid phase transported over a given distance; and (iv) the ratio of the solid phase to the splash track area in relation to distance. Furthermore, the proposed method allowed estimation of the weight of soil transported by a single water drop splash in relation to the distance of the water drop impact. It was concluded that the method of image analysis of splashed particles facilitated analysing the results at very low water drop energy and generated by single water drops.
Single parents of children with chronic illness: an understudied phenomenon.
Brown, Ronald T; Wiener, Lori; Kupst, Mary Jo; Brennan, Tara; Behrman, Richard; Compas, Bruce E; David Elkin, T; Fairclough, Diane L; Friebert, Sarah; Katz, Ernest; Kazak, Anne E; Madan-Swain, Avi; Mansfield, Nancy; Mullins, Larry L; Noll, Robert; Patenaude, Andrea Farkas; Phipps, Sean; Sahler, O J; Sourkes, Barbara; Zeltzer, Lonnie
2008-05-01
To examine the chronic illness literature and evaluate the impact on single parenting and children and adolescents with chronic illness. We conducted literature reviews of relevant research pertaining to single-parent families on PubMed, Medline, and PsychINFO and also surveyed pertinent book chapters and all of the articles from the Journal of Pediatric Psychology since 1987 for articles, specifically examining the potential associations of single (lone) parenting versus two-parent households on children's psychosocial functioning and the impact of the child's illness on caregiver functioning. While the literature has examined and discussed the stressors associated with parenting a child with an illness, including the impact of illness on finances, family roles, and caregiver burden, few studies have examined single parents of children and adolescents with chronic illnesses and related stressors stemming from being a lone caregiver. There is a dearth of studies examining the association between lone parenting and psychosocial functioning among children and adolescents with chronic illnesses. Specific questions necessitating future investigation are summarized and recommendations are made for future research in this important area of inquiry.
NASA Technical Reports Server (NTRS)
Kletetschka, G.; Freund, F.; Wasilewski, P. J.; Mikula, V.; Kohout, Tomas
2005-01-01
Large impacts on the Moon generate large pressure pulses that penetrate the whole body. Several of these large impacts may have generated antipodal structure with anomalous magnetic intensity.These regions can be more than a thousand km across, with fields of the order of tens to hundreds of nT. This is the case of Orientale, Imbrium, Serenitatis, Crisium, and Nectaris impact basins. The production of large-scale magnetic fields and associated crustal magnetization due to lunar basin-forming impacts was hypothesized to have an origin in fields external to the impact plasma cloud that are produced by the magnetohydrodynamic interaction of the cloud with ambient magnetic fields and plasmas. During the period of compressed antipodal field amplification, seismic compressional waves from the impact converge at the antipode resulting in transient shock pressures that reach 2 GPa (20 kbar). This can produce conditions for shock magnetic acquisition of the crust antipodal to impact basins.
NASA Astrophysics Data System (ADS)
van der Bogert, C. H.; Hiesinger, H.; Dundas, C. M.; Krüger, T.; McEwen, A. S.; Zanetti, M.; Robinson, M. S.
2017-12-01
Recent work on dating Copernican-aged craters, using Lunar Reconnaissance Orbiter (LRO) Camera data, re-encountered a curious discrepancy in crater size-frequency distribution (CSFD) measurements that was observed, but not understood, during the Apollo era. For example, at Tycho, Copernicus, and Aristarchus craters, CSFDs of impact melt deposits give significantly younger relative and absolute model ages (AMAs) than impact ejecta blankets, although these two units formed during one impact event, and would ideally yield coeval ages at the resolution of the CSFD technique. We investigated the effects of contrasting target properties on CSFDs and their resultant relative and absolute model ages for coeval lunar impact melt and ejecta units. We counted craters with diameters through the transition from strength- to gravity-scaling on two large impact melt deposits at Tycho and King craters, and we used pi-group scaling calculations to model the effects of differing target properties on final crater diameters for five different theoretical lunar targets. The new CSFD for the large King Crater melt pond bridges the gap between the discrepant CSFDs within a single geologic unit. Thus, the observed trends in the impact melt CSFDs support the occurrence of target property effects, rather than self-secondary and/or field secondary contamination. The CSFDs generated from the pi-group scaling calculations show that targets with higher density and effective strength yield smaller crater diameters than weaker targets, such that the relative ages of the former are lower relative to the latter. Consequently, coeval impact melt and ejecta units will have discrepant apparent ages. Target property differences also affect the resulting slope of the CSFD, with stronger targets exhibiting shallower slopes, so that the final crater diameters may differ more greatly at smaller diameters. Besides their application to age dating, the CSFDs may provide additional information about the characteristics of the target. For example, the transition diameter from strength- to gravity-scaling could provide a tool for investigating the relative strengths of different geologic units. The magnitude of the offset between the impact melt and ejecta isochrons may also provide information about the relative target properties and/or exposure/degradation ages of the two units. Robotic or human sampling of coeval units on the Moon could provide a direct test of the importance and magnitude of target property effects on CSFDs.
Van der Bogert, Carolyn H.; Hiesinger, Harald; Dundas, Colin M.; Kruger, T.; McEwen, Alfred S.; Zanetti, Michael; Robinson, Mark S.
2017-01-01
Recent work on dating Copernican-aged craters, using Lunar Reconnaissance Orbiter (LRO) Camera data, re-encountered a curious discrepancy in crater size-frequency distribution (CSFD) measurements that was observed, but not understood, during the Apollo era. For example, at Tycho, Copernicus, and Aristarchus craters, CSFDs of impact melt deposits give significantly younger relative and absolute model ages (AMAs) than impact ejecta blankets, although these two units formed during one impact event, and would ideally yield coeval ages at the resolution of the CSFD technique. We investigated the effects of contrasting target properties on CSFDs and their resultant relative and absolute model ages for coeval lunar impact melt and ejecta units. We counted craters with diameters through the transition from strength- to gravity-scaling on two large impact melt deposits at Tycho and King craters, and we used pi-group scaling calculations to model the effects of differing target properties on final crater diameters for five different theoretical lunar targets. The new CSFD for the large King Crater melt pond bridges the gap between the discrepant CSFDs within a single geologic unit. Thus, the observed trends in the impact melt CSFDs support the occurrence of target property effects, rather than self-secondary and/or field secondary contamination. The CSFDs generated from the pi-group scaling calculations show that targets with higher density and effective strength yield smaller crater diameters than weaker targets, such that the relative ages of the former are lower relative to the latter. Consequently, coeval impact melt and ejecta units will have discrepant apparent ages. Target property differences also affect the resulting slope of the CSFD, with stronger targets exhibiting shallower slopes, so that the final crater diameters may differ more greatly at smaller diameters. Besides their application to age dating, the CSFDs may provide additional information about the characteristics of the target. For example, the transition diameter from strength- to gravity-scaling could provide a tool for investigating the relative strengths of different geologic units. The magnitude of the offset between the impact melt and ejecta isochrons may also provide information about the relative target properties and/or exposure/degradation ages of the two units. Robotic or human sampling of coeval units on the Moon could provide a direct test of the importance and magnitude of target property effects on CSFDs.
Intrinsic Neuronal Properties Switch the Mode of Information Transmission in Networks
Gjorgjieva, Julijana; Mease, Rebecca A.; Moody, William J.; Fairhall, Adrienne L.
2014-01-01
Diverse ion channels and their dynamics endow single neurons with complex biophysical properties. These properties determine the heterogeneity of cell types that make up the brain, as constituents of neural circuits tuned to perform highly specific computations. How do biophysical properties of single neurons impact network function? We study a set of biophysical properties that emerge in cortical neurons during the first week of development, eventually allowing these neurons to adaptively scale the gain of their response to the amplitude of the fluctuations they encounter. During the same time period, these same neurons participate in large-scale waves of spontaneously generated electrical activity. We investigate the potential role of experimentally observed changes in intrinsic neuronal properties in determining the ability of cortical networks to propagate waves of activity. We show that such changes can strongly affect the ability of multi-layered feedforward networks to represent and transmit information on multiple timescales. With properties modeled on those observed at early stages of development, neurons are relatively insensitive to rapid fluctuations and tend to fire synchronously in response to wave-like events of large amplitude. Following developmental changes in voltage-dependent conductances, these same neurons become efficient encoders of fast input fluctuations over few layers, but lose the ability to transmit slower, population-wide input variations across many layers. Depending on the neurons' intrinsic properties, noise plays different roles in modulating neuronal input-output curves, which can dramatically impact network transmission. The developmental change in intrinsic properties supports a transformation of a networks function from the propagation of network-wide information to one in which computations are scaled to local activity. This work underscores the significance of simple changes in conductance parameters in governing how neurons represent and propagate information, and suggests a role for background synaptic noise in switching the mode of information transmission. PMID:25474701
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaoma; Zhou, Yuyu; Asrar, Ghassem R.
Abstract: Urban heat island (UHI), a major concern worldwide, affects human health and energy use. With current and anticipated rapid urbanization, improved understanding of the response of UHI to urbanization is important for impact analysis and developing effective adaptation measures and mitigation strategies. Current studies mainly focus on a single or a few big cities and knowledge on the response of UHI to urbanization for large areas is very limited. Modelling UHI caused by urbanization for large areas that encompass multiple metropolitans remains a major scientific challenge/opportunity. As a major indicator of urbanization, urban area size lends itself well formore » representation in prognostic models to investigate the impacts of urbanization on UHI and the related socioeconomic and environmental effects. However, we have little knowledge on how UHI responds to the increase of urban area size, namely urban expansion, and its spatial and temporal variation over large areas. In this study, we investigated the relationship between surface UHI (SUHI) and urban area size in the climate and ecological context, and its spatial and temporal variations, based on a panel analysis of about 5000 urban areas of 10 km2 or larger, in the conterminous U.S. We found statistically significant positive relationship between SUHI and urban area size, and doubling the urban area size led to a SUHI increase of higher than 0.7 °C. The response of SUHI to the increase of urban area size shows spatial and temporal variations, with stronger SUHI increase in the Northern region of U.S., and during daytime and summer. Urban area size alone can explain as much as 87% of the variance of SUHI among cities studied, but with large spatial and temporal variations. Urban area size shows higher association with SUHI in regions where the thermal characteristics of land cover surrounding the urban are more homogeneous, such as in Eastern U.S., and in the summer months. This study provides a practical approach for large-scale assessment and modeling of the impact of urbanization on SUHI, both spatially and temporally, for developing mitigation/adaptation measures, especially in anticipated warmer climate conditions for the rest of this century.« less
NASA Astrophysics Data System (ADS)
Johnson, H. L.
The question of the relative efficiencies of telescope arrays versus an equivalent mirror-area very large telescope is re-examined and summarized. Four separate investigations by Bowen, Johnson and Richards, Code, and Disney all came to the same conclusion: that an array of telescopes is superior, both scientifically and economically, to a single very large telescope. The costs of recently completed telescopes are compared. The costs of arrays of telescopes are shown to be significantly lower than that of a single, very large telescope, with the further advantage that because existing, proven, designs can be used, no engineering 'break-throughs' are needed.
Role of optometry school in single day large scale school vision testing
Anuradha, N; Ramani, Krishnakumar
2015-01-01
Background: School vision testing aims at identification and management of refractive errors. Large-scale school vision testing using conventional methods is time-consuming and demands a lot of chair time from the eye care professionals. A new strategy involving a school of optometry in single day large scale school vision testing is discussed. Aim: The aim was to describe a new approach of performing vision testing of school children on a large scale in a single day. Materials and Methods: A single day vision testing strategy was implemented wherein 123 members (20 teams comprising optometry students and headed by optometrists) conducted vision testing for children in 51 schools. School vision testing included basic vision screening, refraction, frame measurements, frame choice and referrals for other ocular problems. Results: A total of 12448 children were screened, among whom 420 (3.37%) were identified to have refractive errors. 28 (1.26%) children belonged to the primary, 163 to middle (9.80%), 129 (4.67%) to secondary and 100 (1.73%) to the higher secondary levels of education respectively. 265 (2.12%) children were referred for further evaluation. Conclusion: Single day large scale school vision testing can be adopted by schools of optometry to reach a higher number of children within a short span. PMID:25709271
Boonen, Lieke H H M; Donkers, Bas; Schut, Frederik T
2011-01-01
Context To effectively bargain about the price and quality of health services, health insurers need to successfully channel their enrollees. Little is known about consumer sensitivity to different channeling incentives. In particular, the impact of status quo bias, which is expected to differ between different provider types, can play a large role in insurers' channeling ability. Objective To examine consumer sensitivity to channeling strategies and to analyze the impact of status quo bias for different provider types. Data Sources/Study Design With a large-scale discrete choice experiment, we investigate the impact of channeling incentives on choices for pharmacies and general practitioners (GPs). Survey data were obtained among a representative Dutch household panel (n=2,500). Principal Findings Negative financial incentives have a two to three times larger impact on provider choice than positive ones. Positive financial incentives have a relatively small impact on GP choice, while the impact of qualitative incentives is relatively large. Status quo bias has a large impact on provider choice, which is more prominent in the case of GPs than in the case of pharmacies. Conclusion The large impact of the status quo bias makes channeling consumers away from their current providers a daunting task, particularly in the case of GPs. PMID:21029092
Boonen, Lieke H H M; Donkers, Bas; Schut, Frederik T
2011-04-01
To effectively bargain about the price and quality of health services, health insurers need to successfully channel their enrollees. Little is known about consumer sensitivity to different channeling incentives. In particular, the impact of status quo bias, which is expected to differ between different provider types, can play a large role in insurers' channeling ability. To examine consumer sensitivity to channeling strategies and to analyze the impact of status quo bias for different provider types. With a large-scale discrete choice experiment, we investigate the impact of channeling incentives on choices for pharmacies and general practitioners (GPs). Survey data were obtained among a representative Dutch household panel (n = 2,500). Negative financial incentives have a two to three times larger impact on provider choice than positive ones. Positive financial incentives have a relatively small impact on GP choice, while the impact of qualitative incentives is relatively large. Status quo bias has a large impact on provider choice, which is more prominent in the case of GPs than in the case of pharmacies. The large impact of the status quo bias makes channeling consumers away from their current providers a daunting task, particularly in the case of GPs. © Health Research and Educational Trust.
Characteristics of Tornado-Like Vortices Simulated in a Large-Scale Ward-Type Simulator
NASA Astrophysics Data System (ADS)
Tang, Zhuo; Feng, Changda; Wu, Liang; Zuo, Delong; James, Darryl L.
2018-02-01
Tornado-like vortices are simulated in a large-scale Ward-type simulator to further advance the understanding of such flows, and to facilitate future studies of tornado wind loading on structures. Measurements of the velocity fields near the simulator floor and the resulting floor surface pressures are interpreted to reveal the mean and fluctuating characteristics of the flow as well as the characteristics of the static-pressure deficit. We focus on the manner in which the swirl ratio and the radial Reynolds number affect these characteristics. The transition of the tornado-like flow from a single-celled vortex to a dual-celled vortex with increasing swirl ratio and the impact of this transition on the flow field and the surface-pressure deficit are closely examined. The mean characteristics of the surface-pressure deficit caused by tornado-like vortices simulated at a number of swirl ratios compare well with the corresponding characteristics recorded during full-scale tornadoes.
Decorrelated jet substructure tagging using adversarial neural networks
NASA Astrophysics Data System (ADS)
Shimmin, Chase; Sadowski, Peter; Baldi, Pierre; Weik, Edison; Whiteson, Daniel; Goul, Edward; Søgaard, Andreas
2017-10-01
We describe a strategy for constructing a neural network jet substructure tagger which powerfully discriminates boosted decay signals while remaining largely uncorrelated with the jet mass. This reduces the impact of systematic uncertainties in background modeling while enhancing signal purity, resulting in improved discovery significance relative to existing taggers. The network is trained using an adversarial strategy, resulting in a tagger that learns to balance classification accuracy with decorrelation. As a benchmark scenario, we consider the case where large-radius jets originating from a boosted resonance decay are discriminated from a background of nonresonant quark and gluon jets. We show that in the presence of systematic uncertainties on the background rate, our adversarially trained, decorrelated tagger considerably outperforms a conventionally trained neural network, despite having a slightly worse signal-background separation power. We generalize the adversarial training technique to include a parametric dependence on the signal hypothesis, training a single network that provides optimized, interpolatable decorrelated jet tagging across a continuous range of hypothetical resonance masses, after training on discrete choices of the signal mass.
Measures against mechanical noise from large wind turbines: A design guide
NASA Astrophysics Data System (ADS)
Ljunggren, Sten; Johansson, Melker
1991-06-01
The noise generated by the machinery of the two Swedish prototypes contains pure tones which are very important with respect to the environmental impact. A discussion of the results of noise measurements carried out at these turbines, that are meant to be used as a guide as to how to predict and control the noise around a large wind turbine during the design stage, is presented. The design targets are discussed, stressing the importance of the audibility of pure tones and not only the annoyance; a simple criterion is cited. The main noise source is the gearbox and a simple empirical expression for the sound power level is shown to give good agreement with the measurement results. The influence of the noise of the gearbox design is discussed in some detail. Formulas for the prediction of the airborne sound transmission to the ground outside the nacelle are presented, together with a number of empirical data on the sound reduction indices for single and double constructions. The structure-borne noise transmission is discussed.
NASA Technical Reports Server (NTRS)
Baker, David M. H.; Head, James W.; Prockter, Louise M.; Fassett, Caleb I.; Neumann, Gregory A.; Smith, David E.; Solomon, Sean C.; Zuber, Maria T.; Oberst, Juergen; Preusker, Frank;
2012-01-01
Peak-ring basins (large impact craters exhibiting a single interior ring) are important to understanding the processes controlling the morphological transition from craters to large basins on planetary bodies. New image and topography data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Lunar Reconnaissance Orbiter (LRO) spacecraft have helped to update the catalogs of peak-ring basins on Mercury and the Moon [1,2] and are enabling improved calculations of the morphometric properties of these basins. We use current orbital altimeter measurements from the Mercury Laser Altimeter (MLA) [3] and the Lunar Orbiter Laser Altimeter (LOLA) [4], as well as stereo-derived topography [5], to calculate the floor depths and peak-ring heights of peak-ring basins on Mercury and the Moon. We present trends in these parameters as functions of rim-crest diameter, which are likely to be related to processes controlling the onset of peak rings in these basins.
Social networks and environmental outcomes.
Barnes, Michele L; Lynham, John; Kalberg, Kolter; Leung, PingSun
2016-06-07
Social networks can profoundly affect human behavior, which is the primary force driving environmental change. However, empirical evidence linking microlevel social interactions to large-scale environmental outcomes has remained scarce. Here, we leverage comprehensive data on information-sharing networks among large-scale commercial tuna fishers to examine how social networks relate to shark bycatch, a global environmental issue. We demonstrate that the tendency for fishers to primarily share information within their ethnic group creates segregated networks that are strongly correlated with shark bycatch. However, some fishers share information across ethnic lines, and examinations of their bycatch rates show that network contacts are more strongly related to fishing behaviors than ethnicity. Our findings indicate that social networks are tied to actions that can directly impact marine ecosystems, and that biases toward within-group ties may impede the diffusion of sustainable behaviors. Importantly, our analysis suggests that enhanced communication channels across segregated fisher groups could have prevented the incidental catch of over 46,000 sharks between 2008 and 2012 in a single commercial fishery.
The Formation of the Earth-Moon System and the Planets
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Young, Richard E. (Technical Monitor)
1998-01-01
An overview of current theories of star and planet formation, with emphasis on terrestrial planet accretion and the formation of the Earth-Moon system is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant impacts during the final stages of growth can produce large planetary satellites, such as Earth's Moon. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.
Origin of the Martian global dichotomy by crustal thinning in the late Noachian or early Hesperian
NASA Technical Reports Server (NTRS)
Mcgill, George E.; Dimitriou, Andrew M.
1990-01-01
The marked dichotomy in topography, surface age, and crustal thickness between the northern lowland (NL) and southern upland of Mars has been explained as due to an initially inhomogeneous crust, a single megaimpact event, several overlapping large basin impacts, and first-order convective overtum of the Martian mantle. All of these hypotheses propose that the dichotomy was formed before the end of the primordial heavy bombardment. Geological data indicate episodes of fracturing and faulting in the late Noachian and the early Hesperian, within the NL and along the lowland/highland boundary. Igneous activity also peaked in the late Noachian and early Hesperian. These data suggest a tectonic event near the Noachian/Hesperian boundary characterized by enhanced heat loss and extensive fracturing, including formation of the faults that define much of the highland/lowland boundary. It is argued that the major result of this tectonic event was formation of the dichotomy by thinning of the crust above a large convection cell or plume.
Multinode acoustic focusing for parallel flow cytometry
Piyasena, Menake E.; Suthanthiraraj, Pearlson P. Austin; Applegate, Robert W.; Goumas, Andrew M.; Woods, Travis A.; López, Gabriel P.; Graves, Steven W.
2012-01-01
Flow cytometry can simultaneously measure and analyze multiple properties of single cells or particles with high sensitivity and precision. Yet, conventional flow cytometers have fundamental limitations with regards to analyzing particles larger than about 70 microns, analyzing at flow rates greater than a few hundred microliters per minute, and providing analysis rates greater than 50,000 per second. To overcome these limits, we have developed multi-node acoustic focusing flow cells that can position particles (as small as a red blood cell and as large as 107 microns in diameter) into as many as 37 parallel flow streams. We demonstrate the potential of such flow cells for the development of high throughput, parallel flow cytometers by precision focusing of flow cytometry alignment microspheres, red blood cells, and the analysis of CD4+ cellular immunophenotyping assay. This approach will have significant impact towards the creation of high throughput flow cytometers for rare cell detection applications (e.g. circulating tumor cells), applications requiring large particle analysis, and high volume flow cytometry. PMID:22239072
Physiochemical characterisation of biomass burning plumes in Brazil during SAMBBA
NASA Astrophysics Data System (ADS)
Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh
2013-04-01
Biomass burning represents one of the largest sources of particulate matter to the atmosphere, which results in a significant perturbation to the Earth's radiative balance coupled with serious negative impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect of 0.03 Wm-2, however the uncertainty is 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months (usually from August-October). Furthermore, a growing number of people live within the Amazon region, which means that they are subject to the deleterious effects on their health from exposure to substantial volumes of polluted air. Results are presented here from the South American Biomass Burning Analysis (SAMBBA), which took place during September and October 2012 over Brazil. A suite of instrumentation was flown on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft. Measurements from the Aerodyne Aerosol Mass Spectrometer (AMS) and Single Particle Soot Photometer (SP2) form the major part of the analysis presented here. The aircraft sampled several fires in close proximity (approximately 150m above the most intense fires) in different areas of Brazil. This included two extensive areas of burning, which occurred in the states of Rondonia and Tocantins. The Rondonia fire was largely dominated by smouldering combustion of a huge single area of rainforest with a visible plume of smoke extending approximately 80km downwind. The Tocantins example contrasted with this as it was a collection of a large number of smaller fires, with flaming combustion being more prevalent. Furthermore, the burned area was largely made up of agricultural land in a cerrado (savannah-like) region of Brazil. Initial results suggest that the chemical nature of these fires differed markedly, with BC concentrations being an order of magnitude greater in the Tocantins case (up to 50 μg m-3 of BC) compared with the Rondonia case (up to 5 μg m-3 of BC). Organic matter (OM) concentrations were similar in both cases, with maximum concentrations peaking between 4-5 mg m-3. Such concentrations are approximately more than 100 times greater than those sampled in the "background" regional haze. This variation of BC to OM ratio has potentially large implications for the radiative balance in the respective regions, as BC represents the major absorbing component of biomass burning aerosol. Further analysis will compare the aerosol mass concentrations with gas phase species, as well as probing the chemical and physical evolution of the aerosol as it advects downwind and is diluted with regional air. In particular, such analyses will focus upon the aging of the organic aerosol component as well as examining how the mixing state of the BC particles evolves. Such properties have important implications for the life cycle and formation of particulate material, which governs its subsequent impacts.
NASA Technical Reports Server (NTRS)
Hirsch, David B.
2011-01-01
The scope of this International Technical Specification is to provide a method to determine the ignition susceptibility of materials and components to particle impact. The method can be used to determine the conditions at which ignition and consumption of a specimen material occurs when impacted by single or multiple particles entrained in a flow of gaseous oxygen (GOX). Alternatively, the method can be used to determine if a specific material or component is subject to ignition and sustained combustion in a given flow environment when impacted by single or multiple particles entrained in a flow of GOX.
Servel, A-C; Rideau Batista Novais, A
2016-09-01
The quality of the environment is an essential point in the care of preterm newborns. The design of neonatal intensive care units (NICUs) (open-bay, single-patient room, single-family room) directly affects both the preterm newborns and their caregivers (parents, healthcare staff). The aim of this systematic review was to evaluate the impact of single-family rooms on the preterm newborn, its parents, and the staff. Single-family rooms improve outcome for the preterm newborn, with increasing parental involvement and better control of the environment (fewer inappropriate stimulations such as high levels of noise and illumination). This kind of NICU design also improves parental and staff satisfaction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
The origin of the moon and the single-impact hypothesis. I
NASA Technical Reports Server (NTRS)
Benz, W.; Slattery, W. L.; Cameron, A. G. W.
1986-01-01
One of the newer ideas regarding the origin of the moon is concerned with a single-impact hypothesis. It is pointed out that this theory has the advantage of overcoming most of the difficulties with the classical theories. The angular momentum of the earth-moon system can easily be obtained by varying the initial conditions of the impact. A series of three-dimensional numerical simulations of the collision between the earth and an object of about 1/10 its mass is presented. Different impact velocities, impact parameters, and initial internal energies are considered. Attention is given to assumptions, the equation of state, numerical techniques utilizing the momentum equation and the energy conservation equation, tests, and initial conditions and units.
Advances in Large Grain/Single Crystal SC Resonators at DESY
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. Singer; A. Brinkmann; A. Ermakov
The main aim of the DESY large grain R&D program is to check whether this option is reasonable to apply for fabrication of ca. 1'000 XFEL cavities. Two aspects are being pursued. On one hand the basic material investigation, on the other hand the material availability, fabrication and preparation procedure. Several single cell large grain cavities of TESLA shape have been fabricated and tested. The best accelerating gradients of 41 MV/m was measured on electropolished cavity. First large grain nine-cell cavities worldwide have been produced under contract of DESY with ACCEL Instruments Co. All three cavities fulfil the XFEL specificationmore » already in first RF test after only BCP (Buffered Chemical Polishing) treatment and 800 degrees C annealing. Accelerating gradient of 27 - 29 MV/m was reached. A fabrication method of single crystal cavity of ILC like shape was proposed. A single cell single crystal cavity was build at the company ACCEL. Accelerating gradient of 37.5 MV/m reached after only 112 microns BCP and in situ baking 120 degrees C for 6 hrs with the quality factor higher as 2x1010. The developed method can be extended on fabrication of multi cell single crystal cavities.« less
NASA Technical Reports Server (NTRS)
Brophy, John R. (Inventor)
1993-01-01
Apparatus and methods for large-area, high-power ion engines comprise dividing a single engine into a combination of smaller discharge chambers (or segments) configured to operate as a single large-area engine. This segmented ion thruster (SIT) approach enables the development of 100-kW class argon ion engines for operation at a specific impulse of 10,000 s. A combination of six 30-cm diameter ion chambers operating as a single engine can process over 100 kW. Such a segmented ion engine can be operated from a single power processor unit.
The Creation of Haumea's Collisional Family
NASA Astrophysics Data System (ADS)
Schlichting, Hilke E.; Sari, Re'em
2009-08-01
Recently, the first collisional family was discovered in the Kuiper Belt. The parent body of this family, Haumea, is one of the largest objects in the Kuiper Belt and is orbited by two satellites. It has been proposed that the Haumea family was created from dispersed fragments that resulted from a giant impact. This proposed origin of the Haumea family is however in conflict with the observed velocity dispersion between the family members (~ 140 m s-1) which is significantly less than the escape velocity from Haumea's surface (~ 900 m s-1). In this paper we propose a different formation scenario for Haumea's collisional family. In our scenario the family members are ejected while in orbit around Haumea. This scenario, therefore, naturally gives rise to a lower velocity dispersion among the family members than expected from direct ejection from Haumea's surface. In our scenario Haumea's giant impact forms a single moon that tidally evolves outward until it suffers a destructive collision from which the family is created. We show that this formation scenario yields a velocity dispersion of ~ 190 m s-1 among the family members which is in good agreement with the observations. We discuss an alternative scenario that consists of the formation and tidal evolution of several satellites that are ejected by collisions with unbound Kuiper Belt objects. However, the formation of the Haumea family in this latter way is difficult to reconcile with the large abundance of Kuiper Belt binaries. We, therefore, favor forming the family by a destructive collision of a single moon of Haumea. The probability for Haumea's initial giant impact in today's Kuiper Belt is less than 10-3. In our scenario, however, Haumea's giant impact can occur before the excitation of the Kuiper Belt and the ejection of the family members afterward. This has the advantage that one can preserve the dynamical coherence of the family and explain Haumea's original giant impact, which is several orders of magnitude more likely to have occurred in the primordial dynamically cold Kuiper Belt compared to the dynamically excited Kuiper Belt today.
The Non-Impact of Scientific Reviews of Oil Sands Environmental Impact Assessments
NASA Astrophysics Data System (ADS)
Kienzle, S. W.; Byrne, J.
2008-12-01
Schindler (Science, Vol. 192: 509; 1976) stated that Environmental Impact Assessments authors "conduct the studies regardless of how quickly results are demanded, write large, diffuse reports containing reams of uninterpreted and incomplete descriptive data, and in some cases, construct "predictive" models, irrespective of the quality of the data base." Schindler offered a solution: "If we are to protect both our resources and scientific integrity, environmental scientists must seek to put their studies on a scientifically credible basis-to see that problems, terms of reference, funding, time constraints, reports, and conclusions are all within a bona fide scientific framework." When the first scientific panel was formed in 2003 by the Mikisew Cree First Nations (MCFN), Alberta, to objectively review EIAs of proposed oil sands mining projects, the scientific panel uncovered many severe omissions, errors, and a significant lack of substance that could not withstand scientific scrutiny. Neither the Terms of Reference for two major oilsands projects, estimated to be worth approximately CND 15 billion, nor the EIAs (one single EIA was over 11,000 pages long) contained the terms "climate change", "trend analysis", or "risk analysis", and nearly all environmental impacts were described by the proponents as "negligible". The Hydrology Section (over 950 pages in length) of one EIA did not contain a single peer-reviewed scientific publication. In summary, nothing had changed since Schindler's observations 27 years earlier. Since 2003, the authors have reviewed more than a dozen EIAs of proposed oilsands projects in northern Alberta. The "non-impact" of scientific reviews on the quality of EIAs and the insincerity of the stewards of the land are very sobering: apart from cosmetic improvements in the requirements of the Terms of Reference and the writing of the EIAs, no meaningful improvement of scientific content has been made. Key environmental concerns around water resource utilization and contamination, massive boreal forest ecosystem disruption and destruction, insignificant reclamation, and dramatic increases in emission of acidic pollutants and GHGs have never been adequately addressed. Spills of contaminated tailings fluids into the Athabasca River have occurred in the past, and Mikisew Cree Elders have both anecdotal and physical evidence of contamination of downstream areas through to Lake Athabasca. As the Alberta government has declared a sell-out of very large areas of boreal forest for fast profit, the scientific reviews have been ignored. With the exception of a few cosmetic improvements to the EIAs (e.g. climate change is now discussed, however, with incomplete data and incorrect interpretations), the scientific quality of EIAs has not improved. In fact, the Terms of Reference differ in content requirements with each oilsands project, which means that there is inconsistency between EIAs, prohibiting the evaluation of the evolution of the Terms of Reference. The consequences of the disregard of scientific standards are enormous environmental impacts in terms of carbon dioxide output, acid rain, severe health risks of the local population, water quality, and negligible reclamation efforts.
Impact of long-term cryopreservation on single umbilical cord blood transplantation outcomes.
Mitchell, Richard; Wagner, John E; Brunstein, Claudio G; Cao, Qing; McKenna, David H; Lund, Troy C; Verneris, Michael R
2015-01-01
Umbilical cord blood (UCB) may be collected and cryopreserved for years before use. In vitro and murine models suggest that the duration of storage does not affect UCB progenitor cell performance; however, the impact of UCB age on clinical outcomes has not been definitely defined. This study sought to determine the effect of UCB unit cryopreservation time on hematopoietic potency. We analyzed 288 single UCB units used for transplantation from 1992 to 2013, with unit cryopreservation time ranging from .08 to 11.07 years. UCB unit post-thaw characteristics were examined, including percent recovery of total nucleated cells (TNC). The number of years the UCB unit spent in cryopreservation had no impact on TNC recovery nor UCB unit post-thaw viability. Duration of cryopreservation also had no impact on neutrophil or platelet engraftment in single UCB transplantations. These results show that UCB units can undergo cryopreservation for at least 10 years with no impact on clinical outcomes. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
McEwen, Alex; Knipe, Damian; Gallagher, Tony
1997-01-01
Examines the impact of government science education policy through the uptake of science A level subjects and patterns of attainment among boys and girls. Whereas recent evidence from Britain has been popularly interpreted as showing the educational advantage of single-sex schooling, the evidence of this study suggests that pupils are more likely…
The Impact of Single-Gender Scheduling on Students in a Title I School
ERIC Educational Resources Information Center
Moss, Janet L.
2011-01-01
This dissertation was designed to examine the impact that single-gender scheduling would have on students who attend a struggling Title I middle school. The importance of the middle level cannot be denied. Strong research points to this time in a student's life as the pivotal crux on which success and failure are balanced. Middle level educators…
Detritus in K/T boundary clays of western North America - Evidence against a single oceanic impact
NASA Technical Reports Server (NTRS)
Sharpton, V. L.; Schuraytz, B. C.; Burke, K.; Murali, A. V.; Ryder, G.
1990-01-01
Understanding the crustal signature of impact ejecta contained in the Cretaceous/Tertiary (K/T) boundary layer is crucial to constraining the possible site(s) of the postulated K/T impact event. The relatively unaltered clastic constituents of the boundary layer at widely separated outcrops within the western interior of North America are not compatible with a single oceanic impact but require instead an impact site on a continent or continental margin. On the other hand, chemical compositions of highly altered K/T boundary layer components in some marine sections have suggested to others an impact into oceanic crust. We suspect that post-depositional alteration within the marine setting accounts for this apparent oceanic affinity. If, however, this is not the case, multiple simultaneous impacts, striking continent as well as ocean floor, would seem to be required.
Yen, Hung -Ju; Liang, Po -Wei; Chueh, Chu -Chen; ...
2016-05-25
In this study, we demonstrate the large grained perovskite solar cells prepared from precursor solution comprising single-crystal perovskite powders for the first time. Here, the resultant large grained perovskite thin film possesses negligible physical (structural) gap between each large grain and are highly crystalline as evidenced by its fan-shaped birefringence observed under polarized light, which is very different to the thin film prepared from the typical precursor route (MAI + PbI 2).
Orth, James D; Kohler, Rainer H; Foijer, Floris; Sorger, Peter K; Weissleder, Ralph; Mitchison, Timothy J
2011-07-01
Cancer relies upon frequent or abnormal cell division, but how the tumor microenvironment affects mitotic processes in vivo remains unclear, largely due to the technical challenges of optical access, spatial resolution, and motion. We developed high-resolution in vivo microscopy methods to visualize mitosis in a murine xenograft model of human cancer. Using these methods, we determined whether the single-cell response to the antimitotic drug paclitaxel (Ptx) was the same in tumors as in cell culture, observed the impact of Ptx on the tumor response as a whole, and evaluated the single-cell pharmacodynamics (PD) of Ptx (by in vivo PD microscopy). Mitotic initiation was generally less frequent in tumors than in cell culture, but subsequently it proceeded normally. Ptx treatment caused spindle assembly defects and mitotic arrest, followed by slippage from mitotic arrest, multinucleation, and apoptosis. Compared with cell culture, the peak mitotic index in tumors exposed to Ptx was lower and the tumor cells survived longer after mitotic arrest, becoming multinucleated rather than dying directly from mitotic arrest. Thus, the tumor microenvironment was much less proapoptotic than cell culture. The morphologies associated with mitotic arrest were dose and time dependent, thereby providing a semiquantitative, single-cell measure of PD. Although many tumor cells did not progress through Ptx-induced mitotic arrest, tumor significantly regressed in the model. Our findings show that in vivo microscopy offers a useful tool to visualize mitosis during tumor progression, drug responses, and cell fate at the single-cell level. ©2011 AACR.
NASA Astrophysics Data System (ADS)
Siebenmorgen, R.; Voshchinnikov, N. V.; Bagnulo, S.; Cox, N. L. J.; Cami, J.; Peest, C.
2018-03-01
It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (≥6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm.
The impact of retail practices on violence: the case of single serve alcohol beverage containers.
Parker, Robert Nash; McCaffree, Kevin J; Skiles, Daniel
2011-09-01
This paper examines the role that sales of single serve alcoholic beverages plays in violent crime in surrounding areas. Increasingly a target of regulatory measures, this is the first study to systematically assess the impact of single serve containers on neighbourhood violence. The relative proportion of shelf space in each liquor establishment in San Bernardino, CA devoted to single serve alcohol containers was surveyed. Assuming that this is a rough indicator of the amount of sales derived from single serve containers, we use this indicator as a measure of the impact of specific retail practice on violence around the outlet. Results show that the average proportion of shelf space devoted to single serve containers in the unit of analysis, the US Census Bureau block group, was positively related to violent crime, net of overall retail availability of alcohol and relevant social and economic indicators often used to predict violent crime rates in such units. These findings suggest that if the city were to make the voluntary ban on single serve container sales mandatory, violence in the surrounding areas would decline, all other things being equal. This study provides a much more grounded and specific justification for enacting such policy changes and once again shows the utility of alcohol policy for the reduction of crime and violence. © 2011 Australasian Professional Society on Alcohol and other Drugs.
Buck, D; Jacoby, A; Baker, G A; Ley, H; Steen, N
1999-12-01
To examine between-country differences in health-related quality of life (HRQOL) of adults with epilepsy across a large number of European countries. Self-completion postal questionnaire sent to large sample of adults with epilepsy, recruited from epilepsy support groups or epilepsy outpatient clinics. The questionnaire was developed in English and translated. Back-translations from each language were checked for accuracy. The questionnaire sought information on clinical and socio-demographic details, and contained a number of previously validated scales of psychosocial well-being (the SF-36, the perceived impact of epilepsy scale, and a feelings of stigma scale). Controlling for socio-demographic and clinical characteristics, significant between-country differences were found in scores on the perceived impact of epilepsy scale, on seven of the eight SF-36 domains, and on the feelings of stigma scale. Respondents in Spain and the Netherlands fared consistently better, whilst those in France fared poorest, compared to those in other countries in terms of the various HRQOL measures used. Several possible reasons for the cross-cultural differences in HRQOL are proposed. Clearly, there is no single explanation and there may also be reasons which we have overlooked. This study emphasises the need for further comprehensive research in order that the position of people with epilepsy in different countries be more thoroughly understood in the social context.
Shock and Microstructural Characterization of the α-ω Phase Transition in Titanium Crystals
NASA Astrophysics Data System (ADS)
Morrow, Benjamin M.; Rigg, Paulo A.; Jones, David R.; Addessio, Francis L.; Trujillo, Carl P.; Saavedra, Ramon A.; Martinez, Daniel T.; Cerreta, Ellen K.
2017-12-01
A multicrystal comprised of a small number of large crystals of high-purity titanium and a [0001] oriented high-purity single crystal titanium sample were shock loaded using gas gun plate impact experiments. Tests were performed at stresses above the α {-}ω phase transition stress (for high-purity polycrystalline specimens) to observe the behavior of oriented crystals under similar conditions. Post-mortem characterization of the shocked microstructure was conducted on the single crystal sample to measure textures, and quantify phases and twinning. The apparent activation of plastic and transformation mechanisms was dependent upon crystal orientation. Specifically, the [0001] crystal showed a higher Hugoniot elastic limit than the [10\\bar{1}0] or [3\\bar{1}\\bar{4}4] orientations. The slope of velocity as a function of time was lower in the [0001] orientation than the other orientations during plastic deformation, indicating sluggish transformation kinetics for the α to ω phase transition for the [0001] oriented crystal. Microtexture measurements of a recovered [0001] oriented single crystal revealed the presence of retained ω phase after unloading, with orientations of the constituent phase fractions indicative of the forward α → ω transition, rather than the reverse ω → α transition, suggesting that the material never achieved a state of 100% ω phase.
Single-Layer, All-Metal Patch Antenna Element with Wide Bandwidth
NASA Technical Reports Server (NTRS)
Chamberlain, Neil F.; Hodges, Richard E.; Zawardzki, Mark S.
2012-01-01
It is known that the impedance at the center of a patch antenna element is a short circuit, implying that a wire or post can be connected from the patch to the groundplane at this point without impacting radiation performance. In principle, this central post can be used to support the patch element, thus eliminating the need for dielectric. In spaceborne applications, this approach is problematic because a patch element supported by a single, thin post is highly susceptible to acoustic loads during launch. The technology reported here uses a large-diameter center post as its supporting structure. The supporting structure allows for the fabrication of a sufficiently rigid antenna element that can survive launch loads. The post may be either hollow or solid, depending on fabrication approach and/or mass constraints. The patch antenna element and support post are envisioned as being fabricated (milled) from a single piece of aluminum or other metal. Alternately, the patch plate and support column can be fabricated separately and then joined using fasteners, adhesive, or welding. Casting and electroforming are also viable techniques for manufacturing the metal patch part(s). The patch structure is then either bonded or fastened to the supporting groundplane. Arrays of patch elements can be fabricated by attaching several structures to a common groundplane/support structure.
Gautrot, Julien E.; Trappmann, Britta; Oceguera-Yanez, Fabian; Connelly, John; He, Ximin; Watt, Fiona M.; Huck, Wilhelm T.S.
2010-01-01
The control of the cell microenvironment on model patterned substrates allows the systematic study of cell biology in well defined conditions, potentially using automated systems. The extreme protein resistance of poly(oligo(ethylene glycol methacrylate)) (POEGMA) brushes is exploited to achieve high fidelity patterning of single cells. These coatings can be patterned by soft lithography on large areas (a microscope slide) and scale (substrates were typically prepared in batches of 200). The present protocol relies on the adsorption of extra-cellular matrix (ECM) proteins on unprotected areas using simple incubation and washing steps. The stability of POEGMA brushes, as examined via ellipsometry and SPR, is found to be excellent, both during storage and cell culture. The impact of substrate treatment, brush thickness and incubation protocol on ECM deposition, both for ultra-thin gold and glass substrates, is investigated via fluorescence microscopy and AFM. Optimised conditions result in high quality ECM patterns at the micron scale, even on glass substrates, that are suitable for controlling cell spreading and polarisation. These patterns are compatible with state-of-the-art technologies (fluorescence microscopy, FRET) used for live cell imaging. This technology, combined with single cell analysis methods, provides a platform for exploring the mechanisms that regulate cell behaviour. PMID:20347135
Advances in NO2 sensing with individual single-walled carbon nanotube transistors
Muoth, Matthias; Roman, Cosmin; Haluska, Miroslav; Hierold, Christofer
2014-01-01
Summary The charge carrier transport in carbon nanotubes is highly sensitive to certain molecules attached to their surface. This property has generated interest for their application in sensing gases, chemicals and biomolecules. With over a decade of research, a clearer picture of the interactions between the carbon nanotube and its surroundings has been achieved. In this review, we intend to summarize the current knowledge on this topic, focusing not only on the effect of adsorbates but also the effect of dielectric charge traps on the electrical transport in single-walled carbon nanotube transistors that are to be used in sensing applications. Recently, contact-passivated, open-channel individual single-walled carbon nanotube field-effect transistors have been shown to be operational at room temperature with ultra-low power consumption. Sensor recovery within minutes through UV illumination or self-heating has been shown. Improvements in fabrication processes aimed at reducing the impact of charge traps have reduced the hysteresis, drift and low-frequency noise in carbon nanotube transistors. While open challenges such as large-scale fabrication, selectivity tuning and noise reduction still remain, these results demonstrate considerable progress in transforming the promise of carbon nanotube properties into functional ultra-low power, highly sensitive gas sensors. PMID:25551046