NASA Astrophysics Data System (ADS)
Kanagawa, Kazunari; Teki, Yoshio; Shikoh, Eiji
2018-05-01
The inverse spin-Hall effect (ISHE) is produced even in a "single-layer" ferromagnetic material film. Previously, the self-induced ISHE in a Ni80Fe20 film under the ferromagnetic resonance (FMR) was discovered. In this study, we observed an electromotive force (EMF) in an iron (Fe) and a cobalt (Co) single-layer films themselves under the FMR. As origins of the EMFs in the films themselves, the ISHE was main for Fe and dominant for Co, respectively 2 and 18 times larger than the anomalous Hall effect. Thus, we demonstrated the self-induced ISHE in an Fe and a Co single-layer films themselves under the FMR.
Method of fabricating low-dislocation-density epitaxially-grown films with textured surfaces
Li, Qiming; Wang, George T
2015-01-13
A method for forming a surface-textured single-crystal film layer by growing the film atop a layer of microparticles on a substrate and subsequently selectively etching away the microparticles to release the surface-textured single-crystal film layer from the substrate. This method is applicable to a very wide variety of substrates and films. In some embodiments, the film is an epitaxial film that has been grown in crystallographic alignment with respect to a crystalline substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papernov, Semyon; Kozlov, Alexei A.; Oliver, James B.
Here, the role of thin-film interfaces in the near-ultraviolet (near-UV) absorption and pulsed laser-induced damage was studied for ion-beam-sputtered and electron-beam-evaporated coatings comprised from HfO 2 and SiO 2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO 2 single-layer film and for a film containing seven narrow HfO 2 layers separated by SiO 2 layers. The seven-layer film was designed to have a total optical thickness of HfO 2 layers, equal to one wave at 355 nm and anmore » E-field peak and average intensity similar to a single-layer HfO 2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces as compared to HfO 2 film material. The relevance of obtained absorption data to coating near-UV, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO 2 film in both sputtered and evaporated coatings. The results are explained through the similarity of interfacial film structure with structure formed during the codeposition of HfO 2 and SiO 2 materials.« less
Role of HfO 2/SiO 2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage
Papernov, Semyon; Kozlov, Alexei A.; Oliver, James B.; ...
2016-07-15
Here, the role of thin-film interfaces in the near-ultraviolet (near-UV) absorption and pulsed laser-induced damage was studied for ion-beam-sputtered and electron-beam-evaporated coatings comprised from HfO 2 and SiO 2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO 2 single-layer film and for a film containing seven narrow HfO 2 layers separated by SiO 2 layers. The seven-layer film was designed to have a total optical thickness of HfO 2 layers, equal to one wave at 355 nm and anmore » E-field peak and average intensity similar to a single-layer HfO 2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces as compared to HfO 2 film material. The relevance of obtained absorption data to coating near-UV, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO 2 film in both sputtered and evaporated coatings. The results are explained through the similarity of interfacial film structure with structure formed during the codeposition of HfO 2 and SiO 2 materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinhyun; Yim, Sanggyu, E-mail: sgyim@kookmin.ac.kr
2012-10-15
Variations in the electronic absorption (EA) and surface morphology of three types of phthalocyanine (Pc) thin film systems, i.e. copper phthalocyanine (CuPc) single layer, zinc phthalocyanine (ZnPc) single layer, and ZnPc on CuPc (CuPc/ZnPc) double layer film, treated with saturated acetone vapor were investigated. For the treated CuPc single layer film, the surface roughness slightly increased and bundles of nanorods were formed, while the EA varied little. In contrast, for the ZnPc single layer film, the relatively high solubility of ZnPc led to a considerable shift in the absorption bands as well as a large increase in the surface roughnessmore » and formation of long and wide nano-beams, indicating a part of the ZnPc molecules dissolved in acetone, which altered their molecular stacking. For the CuPc/ZnPc film, the saturated acetone vapor treatment resulted in morphological changes in mainly the upper ZnPc layer due to the significantly low solubility of the underlying CuPc layer. The treatment also broadened the EA band, which involved a combination of unchanged CuPc and changed ZnPc absorption.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ristau, Detlev; Papernov, S.; Kozlov, A. A.
2015-11-23
The role of thin-film interfaces in the near-ultraviolet absorption and pulsed-laser–induced damage was studied for ion-beam–sputtered and electron-beam–evaporated coatings comprised from HfO 2 and SiO 2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage-threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO 2 single-layer film and for a film containing seven narrow HfO 2 layers separated by SiO 2 layers. The seven-layer film was designed to have a total optical thickness of HfO 2 layers, equal to one wave at 355 nm and an E-field peak and averagemore » intensity similar to a single-layer HfO 2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces, as compared to HfO 2 film material. The relevance of obtained absorption data to coating near-ultraviolet, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO 2 film in both sputtered and evaporated coatings. Here, the results are explained through the similarity of interfacial film structure with structure formed during the co-deposition of HfO 2 and SiO 2 materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zayarnyi, D A; Ionin, A A; Kudryashov, S I
Specific features of ablation of a thin silver film with a 1-μm-thick layer of a highly transparent photoresist and the same film without a photoresist layer under single tightly focused femtosecond laser pulses in the visible range (515 nm) are experimentally investigated. Interference effects of internal modification of the photoresist layer, its spallation ablation from the film surface and formation of through hollow submicron channels in the resist without its spallation but with ablation of the silver film lying under the resist are found and discussed. (extreme light fields and their applications)
NASA Astrophysics Data System (ADS)
Fajar, M. N.; Hidayat, R.; Triwikantoro; Endarko
2018-04-01
The TiO2-SnO2 thin film with single and double-layer structure has successfully synthesized on FTO (Fluorine-doped Tin Oxide) substrate using the screen printing technique. The structural, optical, and morphological properties of the film were investigated by XRD, UV-Vis, and SEM, respectively. The results showed that the single and double-layer structure of TiO2-SnO2 thin film has mixed phase with a strong formation of casseritte phase. The acid treatment effect on TiO2-SnO2 thin film decreases the peak intensity of anatase phase formation and thin film’s absorbance values. The morphological study is also revealed that the single layer TiO2-SnO2 thin film had a more porous nature and decreased particle size distribution after acid treatment, while the double-layer TiO2-SnO2 thin film Eroded due to acid treatment.
Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia
2016-12-21
A two-dimensional (2D) bi-layered composite nanofibrous film assembled by one-dimensional (1D) nanofibers with trifunctionality of electrical conduction, magnetism and photoluminescence has been successfully fabricated by layer-by-layer electrospinning. The composite film consists of a polyaniline (PANI)/Fe 3 O 4 nanoparticle (NP)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional layer on one side and a Tb(TTA) 3 (TPPO) 2 /polyvinylpyrrolidone (PVP) photoluminescent layer on the other side, and the two layers are tightly combined face-to-face together into the novel bi-layered composite film of trifunctionality. The brand-new film has totally different characteristics at the double layers. The electrical conductivity and magnetism of the electrical-magnetic bifunctional layer can be, respectively, tunable via modulating the PANI and Fe 3 O 4 NP contents, and the highest electrical conductivity can reach up to the order of 10 -2 S cm -1 , and predominant intense green emission at 545 nm is obviously observed in the photoluminescent layer under the excitation of 357 nm single-wavelength ultraviolet light. More importantly, the luminescence intensity of the photoluminescent layer remains almost unaffected by the electrical-magnetic bifunctional layer because the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe 3 O 4 NPs. By comparing with the counterpart single-layered composite nanofibrous film, it is found that the bi-layered composite nanofibrous film has better performance. The novel bi-layered composite nanofibrous film with trifunctionality has potential in the fields of nanodevices, molecular electronics and biomedicine. Furthermore, the design conception and fabrication technique for the bi-layered multifunctional film provide a new and facile strategy towards other films of multifunctionality.
NASA Astrophysics Data System (ADS)
Romashevskiy, S. A.; Tsygankov, P. A.; Ashitkov, S. I.; Agranat, M. B.
2018-05-01
The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film-film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.
Ablation of film stacks in solar cell fabrication processes
Harley, Gabriel; Kim, Taeseok; Cousins, Peter John
2013-04-02
A dielectric film stack of a solar cell is ablated using a laser. The dielectric film stack includes a layer that is absorptive in a wavelength of operation of the laser source. The laser source, which fires laser pulses at a pulse repetition rate, is configured to ablate the film stack to expose an underlying layer of material. The laser source may be configured to fire a burst of two laser pulses or a single temporally asymmetric laser pulse within a single pulse repetition to achieve complete ablation in a single step.
Interfacial thin films rupture and self-similarity
NASA Astrophysics Data System (ADS)
Ward, Margaret H.
2011-06-01
Two superposed thin layers of fluids are prone to interfacial instabilities due to London-van der Waals forces. Evolution equations for the film thicknesses are derived using lubrication theory. Using the intrinsic scales, for a single layer, results in a system with parametric dependence of four ratios of the two layers: surface tension, Hamaker constant, viscosity, and film thickness. In contrast to the single layer case, the bilayer system has two unstable eigenmodes: squeezing and bending. For some particular parameter regimes, the system exhibits the avoided crossing behavior, where the two eigenmodes are interchanged. Based on numerical analysis, the system evolves into four different rupture states: basal layer rupture, upper layer rupture, double layer rupture, and mixed layer rupture. The ratio of Hamaker constants and the relative film thickness of the two layers control the system dynamics. Remarkably, the line of avoided crossing demarks the transition region of mode mixing and energy transfer, affecting the scaling of the dynamical regime map consequentially. Asymptotic and numerical analyses are used to examine the self-similar ruptures and to extract the power law scalings for both the basal layer rupture and the upper layer rupture. The scaling laws for the basal layer rupture are the same as those of the single layer on top of a substrate. The scaling laws for the upper layer rupture are different: the lateral length scale decreases according to (tr-t)1/3 and the film thickness decreases according to (tr-t)1/6.
Manganese oxide nanowires, films, and membranes and methods of making
Suib, Steven Lawrence [Storrs, CT; Yuan, Jikang [Storrs, CT
2008-10-21
Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves, and methods of making, are disclosed. A single crystal ultra-long nanowire includes an ordered porous manganese oxide-based octahedral molecular sieve, and has an average length greater than about 10 micrometers and an average diameter of about 5 nanometers to about 100 nanometers. A film comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is stacked on a surface of a substrate, wherein the nanowires of each layer are substantially axially aligned. A free standing membrane comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is aggregately stacked, and wherein the nanowires of each layer are substantially axially aligned.
McKee, Rodney A.; Walker, Frederick J.
2003-11-25
A crystalline oxide-on-semiconductor structure and a process for constructing the structure involves a substrate of silicon, germanium or a silicon-germanium alloy and an epitaxial thin film overlying the surface of the substrate wherein the thin film consists of a first epitaxial stratum of single atomic plane layers of an alkaline earth oxide designated generally as (AO).sub.n and a second stratum of single unit cell layers of an oxide material designated as (A'BO.sub.3).sub.m so that the multilayer film arranged upon the substrate surface is designated (AO).sub.n (A'BO.sub.3).sub.m wherein n is an integer repeat of single atomic plane layers of the alkaline earth oxide AO and m is an integer repeat of single unit cell layers of the A'BO.sub.3 oxide material. Within the multilayer film, the values of n and m have been selected to provide the structure with a desired electrical structure at the substrate/thin film interface that can be optimized to control band offset and alignment.
van der Waals epitaxy of SnS film on single crystal graphene buffer layer on amorphous SiO2/Si
NASA Astrophysics Data System (ADS)
Xiang, Yu; Yang, Yunbo; Guo, Fawen; Sun, Xin; Lu, Zonghuan; Mohanty, Dibyajyoti; Bhat, Ishwara; Washington, Morris; Lu, Toh-Ming; Wang, Gwo-Ching
2018-03-01
Conventional hetero-epitaxial films are typically grown on lattice and symmetry matched single crystal substrates. We demonstrated the epitaxial growth of orthorhombic SnS film (∼500 nm thick) on single crystal, monolayer graphene that was transferred on the amorphous SiO2/Si substrate. Using X-ray pole figure analysis we examined the structure, quality and epitaxy relationship of the SnS film grown on the single crystal graphene and compared it with the SnS film grown on commercial polycrystalline graphene. We showed that the SnS films grown on both single crystal and polycrystalline graphene have two sets of orientation domains. However, the crystallinity and grain size of the SnS film improve when grown on the single crystal graphene. Reflection high-energy electron diffraction measurements show that the near surface texture has more phases as compared with that of the entire film. The surface texture of a film will influence the growth and quality of film grown on top of it as well as the interface formed. Our result offers an alternative approach to grow a hetero-epitaxial film on an amorphous substrate through a single crystal graphene buffer layer. This strategy of growing high quality epitaxial thin film has potential applications in optoelectronics.
Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X J
2016-02-08
The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, A.; Bhattacharyya, D.
A home-made Ion Beam Sputtering (IBS) system has been developed in our laboratory. Using the IBS system single layer W and single layer C film has been deposited at 1000eV Ar ion energy and 10mA ion current. The W-film has been characterized by grazing Incidence X-ray reflectrometry (GIXR) technique and Atomic Force Microscope technique. The single layer C-film has been characterized by Spectroscopic Ellipsometric technique. At the same deposition condition 25-layer W/C multilayer film has been deposited which has been designed for using as mirror at 30 Degree-Sign grazing incidence angle around 50A wavelength. The multilayer sample has been characterizedmore » by measuring reflectivity of CuK{alpha} radiation and soft x-ray radiation around 50A wavelength.« less
NASA Astrophysics Data System (ADS)
D'Arcy, Julio M.; Tran, Henry D.; Stieg, Adam Z.; Gimzewski, James K.; Kaner, Richard B.
2012-05-01
A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated. Electronic supplementary information (ESI) available: Droplet coalescence, catenoid formation, mechanism of film growth, scanning electron micrographs showing carbon nanotube alignment, flexible transparent films of SWCNTs, AFM images of a chemically converted graphene film, and SEM images of SWCNT free-standing thin films. See DOI: 10.1039/c2nr00010e
NASA Astrophysics Data System (ADS)
Lee, Sung-Yun; Kim, Hui Eun; Jo, William; Kim, Young-Hwan; Yoo, Sang-Im
2015-11-01
We report the greatly improved dielectric properties of CaCu3Ti4O12 (CCTO) films with a 60 nm-thick CaTiO3 (CTO) interlayer on Pt/TiO2/SiO2/Si substrates. Both CCTO films and CTO interlayers were prepared by pulsed laser deposition (PLD). With increasing the thickness of CCTO from 200 nm to 1.3 μm, the dielectric constants ( ɛ r ) at 10 kHz in both CCTO single-layered and CCTO/CTO double-layered films increased from ˜260 to ˜6000 and from ˜630 to ˜3700, respectively. Compared with CCTO single-layered films, CCTO/CTO double-layered films irrespective of CCTO film thickness exhibited a remarkable decrease in their dielectric losses ( tanδ) (<0.1 at the frequency region of 1 - 100 kHz) and highly reduced leakage current density at room temperature. The reduced leakage currents in CCTO/CTO double-layered films are attributable to relatively higher trap ionization energies in the Poole-Frenkel conduction model. [Figure not available: see fulltext.
Co-extruded mechanically tunable multilayer elastomer laser
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Mao, Guilin; Andrews, James; Singer, Kenneth; Baer, Eric; Hiltner, Anne; Song, Hyunmin; Shakya, Bijayandra
2011-04-01
We have fabricated and studied mechanically tunable elastomer dye lasers constructed in large area sheets by a single-step layer-multiplying co-extrusion process. The laser films consist of a central dye-doped (Rhodamine-6G) elastomer layer between two 128-layer distributed Bragg reflector (DBR) films comprised of alternating elastomer layers with different refractive indices. The central gain layer is formed by folding the coextruded DBR film to enclose a dye-doped skin layer. By mechanically stretching the elastomer laser film from 0% to 19%, a tunable miniature laser source was obtained with ˜50 nm continuous tunability from red to green.
Enhanced electrical properties in bilayered ferroelectric thin films
NASA Astrophysics Data System (ADS)
Zhang, Hao; Long, WeiJie; Chen, YaQing; Guo, DongJie
2013-03-01
Sr2Bi4Ti5O18 (SBTi) single layered and Sr2Bi4Ti5O18/Pb(Zr0.53Ti0.47)O3 (SBTi/PZT) bilayered thin films have been prepared on Pt/TiO2/SiO2/Si substrates by pulsed-laser deposition (PLD). The related structural characterizations and electrical properties have been comparatively investigated. X-ray diffraction reveals that both films have crystallized into perovskite phases and scanning electron microscopy shows the sharp interfaces. Both films show well-saturated ferroelectric hysteresis loops, however, compared with the single layered SBTi films, the SBTi/PZT bilayered films have significantly increased remnant polarization ( P r) and decreased coercive field ( E c), with the applied field of 260 kV/cm. The measured P r and E c of SBTi and SBTi/PZT films were 7.9 μC/cm2, 88.1 kV/cm and 13.0 μC/cm2, 51.2 kV/cm, respectively. In addition, both films showed good fatigue-free characteristics, the switchable polarization decreased by 9% and 11% of the initial values after 2.2×109 switching cycles for the SBTi single layered films and the SBTi/PZT bilayered films, respectively. Our results may provide some guidelines for further optimization of multilayered ferroelectric thin films.
Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X. J.
2016-01-01
The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors. PMID:26853801
Improved Electrochemical Cycling Durability in a Nickel Oxide Double-Layered Film.
Hou, Shuai; Zhang, Xiang; Tian, Yanlong; Zhao, Jiupeng; Geng, Hongbin; Qu, Huiying; Zhang, Hangchuan; Zhang, Kun; Wang, Binsheng; Gavrilyuk, Alexander; Li, Yao
2017-11-16
For the first time, a crystalline-amorphous double-layered NiO x film has been prepared by reactive radio frequency magnetron sputtering. This film has exhibited improved electrochemical cycling durability, whereas other electrochromic parameters have been maintained at the required level, namely, a short coloration/bleaching time (0.8 s/1.1 s) and an enhanced transmittance modulation range (62.2 %) at λ=550 nm. Additionally, the double-layered film has shown better reversibility than that of amorphous and crystalline single-layered films. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoping, E-mail: wxpchina64@aliyun.com, E-mail: wxpchina@sohu.com; Shanghai Key Laboratory of Modern Optical System, Shanghai 200093; Wang, Jinye
A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibitsmore » the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm{sup 2} at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.« less
Ameen, Sadia; Akhtar, M Shaheer; Kimi, Young Soon; Yang, O-Bong; Shin, Hyung-Shik
2011-04-01
A heterostructure was fabricated using p-type plasma polymerized polyaniline (PANI) and n-type (single and bilayer) titanium dioxide (TiO2) thin film on FTO glass. The deposition of single and bilayer TiO2 thin film on FTO substrate was achieved through doctor blade followed by dip coating technique before subjected to plasma enhanced polymerization. To fabricate p-n heterostructure, a plasma polymerization of aniline was conducted using RF plasma at 13.5 MHz and at the power of 120 W on the single and bilayer TiO2 thin film electrodes. The morphological, optical and the structural characterizations revealed the formation of p-n heterostructures between PANI and TiO2 thin film. The PANI/bilayer TiO2 heterostructure showed the improved current-voltage (I-V) characteristics due to the substantial deposition of PANI molecules into the bilayer TiO2 thin film which provided good conducting pathway and reduced the degree of excitons recombination. The change of linear I-V behavior of PANI/TiO2 heterostructure to non linear behavior with top Pt contact layer confirmed the formation of Schottky contact at the interfaces of Pt layer and PANI/TiO2 thin film layers.
Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buršík, J., E-mail: bursik@iic.cas.cz; Kužel, R.; Knížek, K.
2013-07-15
Thin films of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO{sub 3}(1 1 1) (ST) single crystal substrates using epitaxial SrFe{sub 12}O{sub 19} (M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. The vital parameters of the seed layer, i.e. thickness, substrate coverage, crystallization conditions and temperature rampmore » were optimized with the aim to obtain epitaxially crystallized Y phase. X-ray diffraction Pole figure measurements and Φ scans reveal perfect parallel in-plane alignment of SrTiO{sub 3} substrate and both hexaferrite phases. - Graphical abstract: XRD pole figure and AFM patterns of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} thin film epitaxially grown on SrTiO{sub 3}(1 1 1) single crystal using seeding layer templating. - Highlights: • Single phase Y-type hexagonal ferrite thin films were prepared by CSD method. • Seed M layer breaks into isolated single crystal islands and serves as a template. • Large seed grains grow by consuming the grains within the bulk of recoated film. • We explained the observed orientation relation of epitaxial domains. • Epitaxial growth on SrTiO{sub 3}(1 1 1) with relation (0 0 1){sub M,Y}//(1 1 1){sub ST}+[1 0 0]{sub M,Y}//[2 −1 −1]{sub ST}.« less
NASA Astrophysics Data System (ADS)
Chen, G. S.; Chen, S. T.
2000-06-01
Tantalum-related thin films containing different amounts of nitrogen are sputter deposited at different argon-to-nitrogen flow rate ratios on (100) silicon substrates. Using x-ray diffractometry, transmission electron microscopy, composition and resistivity analyses, and bending-beam stress measurement technique, this work examines the impact of varying the nitrogen flow rate, particularly on the crystal structure, composition, resistivity, and residual intrinsic stress of the deposited Ta2N thin films. With an adequate amount of controlled, reactive nitrogen in the sputtering gas, thin films of the tantalum nitride of nominal formula Ta2N are predominantly amorphous and can exist over a range of nitrogen concentrations slightly deviated from stoichiometry. The single-layered quasi-amorphous Ta2N (a-Ta2N) thin films yield intrinsic compressive stresses in the range 3-5 GPa. In addition, the use of the 40-nm-thick a-Ta2N thin films with different nitrogen atomic concentrations (33% and 36%) and layering designs as diffusion barriers between silicon and copper are also evaluated. When subjected to high-temperature annealing, the single-layered a-Ta2N barrier layers degrade primarily by an amorphous-to-crystalline transition of the barrier layers. Crystallization of the single-layered stoichiometric a-Ta2N (Ta67N33) diffusion barriers occurs at temperatures as low as 450 °C. Doing so allows copper to preferentially penetrate through the grain boundaries or thermal-induced microcracks of the crystallized barriers and react with silicon, sequentially forming {111}-facetted pyramidal Cu3Si precipitates and TaSi2 Overdoping nitrogen into the amorphous matrix can dramatically increase the crystallization temperature to 600 °C. This temperature increase slows down the inward diffusion of copper and delays the formation of both silicides. The nitrogen overdoped Ta2N (Ta64N36) diffusion barriers can thus be significantly enhanced so as to yield a failure temperature 100 °C greater than that of the Ta67N33 diffusion barriers. Moreover, multilayered films, formed by alternately stacking the Ta67N33 and Ta64N36 layers with an optimized bilayer thickness (λ) of 10 nm, can dramatically reduce the intrinsic compressive stress to only 0.7 GPa and undergo high-temperature annealing without crystallization. Therefore, the Ta67N33/Ta64N36 multilayered films exhibit a much better barrier performance than the highly crystallization-resistant Ta64N36 single-layered films.
Magnetic properties of sputtered Permalloy/molybdenum multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romera, M.; Ciudad, D.; Maicas, M.
2011-10-15
In this work, we report the magnetic properties of sputtered Permalloy (Py: Ni{sub 80}Fe{sub 20})/molybdenum (Mo) multilayer thin films. We show that it is possible to maintain a low coercivity and a high permeability in thick sputtered Py films when reducing the out-of-plane component of the anisotropy by inserting thin film spacers of a non-magnetic material like Mo. For these kind of multilayers, we have found coercivities which are close to those for single layer films with no out-of-plane anisotropy. The coercivity is also dependent on the number of layers exhibiting a minimum value when each single Py layer hasmore » a thickness close to the transition thickness between Neel and Bloch domain walls.« less
Positron annihilation on the surfaces of SiO 2 films thermally grown on single crystal of Cz-Si
NASA Astrophysics Data System (ADS)
Deng, Wen; Yue, Li; Zhang, Wei; Cheng, Xu-xin; Zhu, Yan-yan; Huang, Yu-yang
2009-09-01
Two-detector coincidence system and mono-energetic slow positron beam has been applied to measure the Doppler broadening spectra for single crystals of SiO2, SiO2 films with different thickness thermally grown on single crystal of Cz-Si, and single crystal of Si without oxide film. Oxygen is recognized as a peak at about 11.85 × 10-3m0c on the ratio curves. The S parameters decrease with the increase of positron implantation energy for the single crystal of SiO2 and Si without oxide film. However, for the thermally grown SiO2-Si sample, the S parameters in near surface of the sample increase with positron implantation energy. It is due to the formation of silicon oxide at the surface, which lead to lower S value. S and W parameters vary with positron implantation depth indicate that the SiO2-Si system consist of a surface layer, a SiO2 layer, a SiO2-Si interface layer and a semi-infinite Si substrate.
Uptake of Light Elements in Thin Metallic Films
NASA Astrophysics Data System (ADS)
Markwitz, Andreas; Waldschmidt, Mathias
Ion beam analysis was used to investigate the influence of substrate temperature on the inclusion of impurities during the deposition process of thin metallic single and double layers. Thin layers of gold and aluminium were deposited at different temperatures onto thin copper layers evaporated on silicon wafer substrates. The uptake of oxygen in the layers was measured using the highly sensitive non-resonant reaction 16O(d,p)170O at 920 keV. Nuclear reaction analysis was also used to probe for carbon and nitrogen with a limit of detection better than 20 ppm. Hydrogen depth profiles were measured using elastic recoil detection on the nanometer scale. Rutherford backscattering spectroscopy was used to determine the depth profiles of the metallic layers and to study diffusion processes. The combined ion beam analyses revealed an uptake of oxygen in the layers depending on the different metallic cap layers and the deposition temperature. Lowest oxygen values were measured for the Au/Cu layers, whereas the highest amount of oxygen was measured in Al/Cu layers deposited at 300°C. It was also found that with single copper layers produced at various temperatures, oxygen contamination occurred during the evaporation process and not afterwards, for example, as a consequence of the storage of the films under normal conditions for several days. Hydrogen, carbon, and nitrogen were found as impurities in the single and double layered metallic films, a finding that is in agreement with the measured oxidation behaviour of the metallic films.
NASA Astrophysics Data System (ADS)
Shandilya, Swati; Tomar, Monika; Sreenivas, K.; Gupta, Vinay
2009-05-01
Highly c-axis oriented LiNbO3 films are deposited using pulsed laser deposition on a silicon substrate using a transparent conducting Al doped ZnO layer. X-ray diffraction and Raman spectroscopic analysis show the fabrication of single phase and oriented LiNbO3 films under the optimized deposition condition. An extra peak at 905 cm-1 was observed in the Raman spectra of LiNbO3 film deposited at higher substrate temperature and higher oxygen pressure, and attributed to the presence of niobium antisite defects in the lattice. Dielectric constant and ac conductivity of oriented LiNbO3 films deposited under the static and rotating substrate modes have been studied. Films deposited under the rotating substrate mode exhibit dielectric properties close to the LiNbO3 single crystal. The cause of deviation in the dielectric properties of the film deposited under the static substrate mode, in comparison with the bulk, are discussed in the light of the possible formation of an interdiffusion layer at the interface of the LiNbO3 film and the Al : ZnO layer.
Wang, Min; Jang, Sung Kyu; Jang, Won-Jun; Kim, Minwoo; Park, Seong-Yong; Kim, Sang-Woo; Kahng, Se-Jong; Choi, Jae-Young; Ruoff, Rodney S; Song, Young Jae; Lee, Sungjoo
2013-05-21
Direct chemical vapor deposition (CVD) growth of single-layer graphene on CVD-grown hexagonal boron nitride (h-BN) film can suggest a large-scale and high-quality graphene/h-BN film hybrid structure with a defect-free interface. This sequentially grown graphene/h-BN film shows better electronic properties than that of graphene/SiO2 or graphene transferred on h-BN film, and suggests a new promising template for graphene device fabrication. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Zhaorong; Zhang, Qi; Corkovic, Silvana; Dorey, Robert; Whatmore, Roger W
2006-12-01
Chemical solution deposition (CSD) techniques were used to prepare lead zirconate (Zr) titanate (Ti) (PZT) thin films with Zr/Ti ratios of 30/70 and 52/48. Usually CSD processing is restricted to making crack-free, single-layer films of 70-nm thick, but modifications to the sol-gel process have permitted the fabrication of dense, crack-free, single layers up to 200 to 300 nm thick, which can be built-up into layers up to 3-microm thick. Thicker PZT films (> 2-microm single layer) can be produced by using a composite sol-gel/ceramic process. Knowledge of the electroactive properties of these materials is essential for modeling and design of novel micro-electromechanical systems (MEMS) devices, but accurate measurement of these properties is by no means straightforward. A novel, double-beam, common-path laser interferometer has been developed to measure the longitudinal (d33) piezoelectric coefficient in films; the results were compared with the values obtained by Berlin-court and laser scanning vibrometer methods. It was found that, for thin-film samples, the d(33,f) values obtained from the Berlincourt method are usually larger: than those obtained from the interferometer and the vibrometer methods; the reasons for this are discussed.
Deposition of single and layered amorphous fluorocarbon films by C8F18 PECVD
NASA Astrophysics Data System (ADS)
Yamauchi, Tatsuya; Mizuno, Kouichiro; Sugawara, Hirotake
2008-10-01
Amorphous fluorocarbon films were deposited by plasma-enhanced chemical vapor deposition (PECVD) using C8F18 in closed system at C8F18 pressures 0.1--0.3 Torr, deposition times 1--30 min and plasma powers 20--200 W@. The layered films were composed by repeated PECVD processes. We compared `two-layered' and `intermittently deposited' films, which were made by the PECVD, respectively, with and without renewal of the gas after the deposition of the first layer. The interlayer boundary was observed in the layered films, and that of the intermittently deposited films showed a tendency to be clearer when the deposition time until the interruption of the PECVD was shorter. The film thickness increased linearly in the beginning of the PECVD and it turned down after 10--15 min, that was similar between the single and intermittently deposited films. It was considered that large precursors made at a low decomposition degree of C8F18 contributed to the film deposition in the early phase and that the downturn was due to the development of the C8F18 decomposition. This explanation on the deposition mechanism agrees qualitatively with our experimental data of pressure change and optical emission spectra during the deposition. This work is supported by Grant-in-Aid from Japan Society for the Promotion of Science.
Liao, Yu-Kuang; Liu, Yung-Tsung; Hsieh, Dan-Hua; Shen, Tien-Lin; Hsieh, Ming-Yang; Tzou, An-Jye; Chen, Shih-Chen; Tsai, Yu-Lin; Lin, Wei-Sheng; Chan, Sheng-Wen; Shen, Yen-Ping; Cheng, Shun-Jen; Chen, Chyong-Hua; Wu, Kaung-Hsiung; Chen, Hao-Ming; Kuo, Shou-Yi; Charlton, Martin D. B.; Hsieh, Tung-Po; Kuo, Hao-Chung
2017-01-01
Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs) with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD) and chemical bath deposition (CBD) as used by the Cu(In,Ga)Se2 (CIGS) thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase. PMID:28383488
Variable temperature semiconductor film deposition
Li, X.; Sheldon, P.
1998-01-27
A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.
Variable temperature semiconductor film deposition
Li, Xiaonan; Sheldon, Peter
1998-01-01
A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.
Khan, Javid; Gu, Jiuwang; He, Shiman; Li, Xiaohui; Ahmed, Gulzar; Liu, Zhongwu; Akhtar, Muhammad Nadeem; Mai, Wenjie; Wu, Mingmei
2017-07-20
A tri-layered photoelectrode for dye-sensitized solar cells (DSSCs) is assembled using single crystal hollow TiO 2 nanoparticles (HTNPs), sub-micro hollow TiO 2 mesospheres (SHTMSs) and hierarchical TiO 2 microspheres (HTMSs). The bottom layer composed of single crystal hollow TiO 2 nanoparticles serves to absorb dye molecules, harvest light due to its hollow structure and keep a better mechanical contact with FTO conducting glass; the middle layer consisting of sub-micro hollow mesospheres works as a multifunctional layer due to its high dye adsorption ability, strong light trapping and scattering ability and slow recombination rates; and the top layer consisting of hierarchical microspheres enhances light scattering. The DSSCs made of photoanodes with a tripartite-layer structure (Film 4) show a superior photoconversion efficiency (PCE) of 9.24%, which is 7.4% higher than a single layered photoanode composed of HTNPs (Film 1: 8.90%), 4.6% higher than a double layer-based electrode consisting of HTNPs and SHTMSs (Film 2: 9.03%) and 2.6% higher than a double layer-based electrode made of HTNPs and HTMSs (Film 3: 9.11%). The significant improvements in the PCE for tri-layered TiO 2 photoanodes are mainly because of the combined effects of their higher light scattering ability, long electron lifetime, fast electron transport rate, efficient charge collection and a considerable surface area with high dye-loading capability. This study confirms that the facile tri-layered photoanode is an interesting structure for high-efficiency DSSCs.
Large-Area WS2 Film with Big Single Domains Grown by Chemical Vapor Deposition
NASA Astrophysics Data System (ADS)
Liu, Pengyu; Luo, Tao; Xing, Jie; Xu, Hong; Hao, Huiying; Liu, Hao; Dong, Jingjing
2017-10-01
High-quality WS2 film with the single domain size up to 400 μm was grown on Si/SiO2 wafer by atmospheric pressure chemical vapor deposition. The effects of some important fabrication parameters on the controlled growth of WS2 film have been investigated in detail, including the choice of precursors, tube pressure, growing temperature, holding time, the amount of sulfur powder, and gas flow rate. By optimizing the growth conditions at one atmospheric pressure, we obtained tungsten disulfide single domains with an average size over 100 μm. Raman spectra, atomic force microscopy, and transmission electron microscopy provided direct evidence that the WS2 film had an atomic layer thickness and a single-domain hexagonal structure with a high crystal quality. And the photoluminescence spectra indicated that the tungsten disulfide films showed an evident layer-number-dependent fluorescence efficiency, depending on their energy band structure. Our study provides an important experimental basis for large-area, controllable preparation of atom-thick tungsten disulfide thin film and can also expedite the development of scalable high-performance optoelectronic devices based on WS2 film.
Direct-Write Laser Grayscale Lithography for Multilayer Lead Zirconate Titanate Thin Films.
Benoit, Robert R; Jordan, Delaney M; Smith, Gabriel L; Polcawich, Ronald G; Bedair, Sarah S; Potrepka, Daniel M
2018-05-01
Direct-write laser grayscale lithography has been used to facilitate a single-step patterning technique for multilayer lead zirconate titanate (PZT) thin films. A 2.55- -thick photoresist was patterned with a direct-write laser. The intensity of the laser was varied to create both tiered and sloped structures that are subsequently transferred into multilayer PZT(52/48) stacks using a single Ar ion-mill etch. Traditional processing requires a separate photolithography step and an ion mill etch for each layer of the substrate, which can be costly and time consuming. The novel process allows access to buried electrode layers in the multilayer stack in a single photolithography step. The grayscale process was demonstrated on three 150-mm diameter Si substrates configured with a 0.5- -thick SiO 2 elastic layer, a base electrode of Pt/TiO 2 , and a stack of four PZT(52/48) thin films of either 0.25- thickness per layer or 0.50- thickness per layer, and using either Pt or IrO 2 electrodes above and below each layer. Stacked capacitor structures were patterned and results will be reported on the ferroelectric and electromechanical properties using various wiring configurations and compared to comparable single layer PZT configurations.
2013-01-01
Anode aluminum oxide-supported thin-film fuel cells having a sub-500-nm-thick bilayered electrolyte comprising a gadolinium-doped ceria (GDC) layer and an yttria-stabilized zirconia (YSZ) layer were fabricated and electrochemically characterized in order to investigate the effect of the YSZ protective layer. The highly dense and thin YSZ layer acted as a blockage against electron and oxygen permeation between the anode and GDC electrolyte. Dense GDC and YSZ thin films were fabricated using radio frequency sputtering and atomic layer deposition techniques, respectively. The resulting bilayered thin-film fuel cell generated a significantly higher open circuit voltage of approximately 1.07 V compared with a thin-film fuel cell with a single-layered GDC electrolyte (approximately 0.3 V). PMID:23342963
Electron mobility enhancement in epitaxial multilayer Si-Si/1-x/Ge/x/ alloy films on /100/Si
NASA Technical Reports Server (NTRS)
Manasevit, H. M.; Gergis, I. S.; Jones, A. B.
1982-01-01
Enhanced Hall-effect mobilities have been measured in epitaxial (100)-oriented multilayer n-type Si/Si(1-x)Ge(x) films grown on single-crystal Si substrates by chemical vapor deposition. Mobilities from 20 to 40% higher than that of epitaxial Si layers and about 100% higher than that of epitaxial SiGe layers on Si were measured for the doping range 8 x 10 to the 15th to 10 to the 17th/cu cm. No mobility enhancement was observed in multilayer p-type (100) films and n-type (111)-oriented films. Experimental studies included the effects upon film properties of layer composition, total film thickness, doping concentrations, layer thickness, and growth temperature.
Atomically Defined Templates for Epitaxial Growth of Complex Oxide Thin Films
Dral, A. Petra; Dubbink, David; Nijland, Maarten; ten Elshof, Johan E.; Rijnders, Guus; Koster, Gertjan
2014-01-01
Atomically defined substrate surfaces are prerequisite for the epitaxial growth of complex oxide thin films. In this protocol, two approaches to obtain such surfaces are described. The first approach is the preparation of single terminated perovskite SrTiO3 (001) and DyScO3 (110) substrates. Wet etching was used to selectively remove one of the two possible surface terminations, while an annealing step was used to increase the smoothness of the surface. The resulting single terminated surfaces allow for the heteroepitaxial growth of perovskite oxide thin films with high crystalline quality and well-defined interfaces between substrate and film. In the second approach, seed layers for epitaxial film growth on arbitrary substrates were created by Langmuir-Blodgett (LB) deposition of nanosheets. As model system Ca2Nb3O10- nanosheets were used, prepared by delamination of their layered parent compound HCa2Nb3O10. A key advantage of creating seed layers with nanosheets is that relatively expensive and size-limited single crystalline substrates can be replaced by virtually any substrate material. PMID:25549000
In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P; Noy, Aleksandr; Fornasiero, Francesco
2018-06-07
We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.
NASA Astrophysics Data System (ADS)
In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P.; Noy, Aleksandr; Fornasiero, Francesco
2018-06-01
We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.
Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition
NASA Astrophysics Data System (ADS)
Khan, M. A.; Skogman, R. A.; van Hove, J. M.; Olson, D. T.; Kuznia, J. N.
1992-03-01
In this letter the first switched atomic layer epitaxy (SALE) of single crystal GaN over basal plane sapphire substrates is reported. A low pressure metalorganic chemical vapor deposition (LPMOCVD) system was used for the epilayer depositions. In contrast to conventional LPMOCVD requiring temperatures higher than 700 C, the SALE process resulted in single crystal insulating GaN layers at growth temperatures ranging from 900 to 450 C. The band-edge transmission and the photoluminescence of the films from the SALE process were comparable to the best LPMOCVD films. As best as is known this is the first report of insulating GaN films which show excellent band-edge photoluminescence.
Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition
NASA Astrophysics Data System (ADS)
Asif Khan, M.; Skogman, R. A.; Van Hove, J. M.; Olson, D. T.; Kuznia, J. N.
1992-03-01
In this letter we report the first switched atomic layer epitaxy (SALE) of single crystal GaN over basal plane sapphire substrates. A low pressure metalorganic chemical vapor deposition (LPMOCVD) system was used for the epilayer depositions. In contrast to conventional LPMOCVD requiring temperatures higher than 700 °C, the SALE process resulted in single crystal insulating GaN layers at growth temperatures ranging from 900 to 450 °C. The band-edge transmission and the photoluminescence of the films from the SALE process were comparable to the best LPMOCVD films. To the best of our knowledge this is the first report of insulating GaN films which show excellent band-edge photoluminescence.
ZnSe Window Layers for GaAs and GaInP2 Solar Cells
NASA Technical Reports Server (NTRS)
Olsen, Larry C.
1997-01-01
This report concerns studies of the use of n-type ZnSe as a window layer for n/p GaAs and GaInP2 solar cells. Emphasis was placed in this phase of the project on characterizing the interface between n-type ZnSe films grown on epi-GaAs films grown onto single crystal GaAs. Epi-GaAs and heteroepitaxial ZnSe films were grown by MOCVD with a Spire 50OXT Reactor. After growing epitaxial GaAs films on single crystal GaAs wafers, well-oriented crystalline ZnSe films were grown by MOCVD. ZnSe films were grown with substrate temperatures ranging from 250 C to 450 C. Photoluminescence studies carried out by researchers at NASA Lewis determined that the surface recombination velocity at a GaAs surface was significantly reduced after the deposition of a heteroepitaxial layer of ZnSe. The optimum temperature for ZnSe deposition appears to be on the order of 350 C.
Nanostructure Neutron Converter Layer Development
NASA Technical Reports Server (NTRS)
Park, Cheol (Inventor); Lowther, Sharon E. (Inventor); Kang, Jin Ho (Inventor); Thibeault, Sheila A. (Inventor); Sauti, Godfrey (Inventor); Bryant, Robert G. (Inventor)
2016-01-01
Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.
NASA Astrophysics Data System (ADS)
Balakrishnan, G.; Sastikumar, D.; Kuppusami, P.; Babu, R. Venkatesh; Song, Jung Il
2018-02-01
Single layer aluminium oxide (Al2O3), zirconium oxide (ZrO2) and Al2O3/ZrO2 nano multilayer films were deposited on Si (100) substrates at room temperature by pulsed laser deposition. The development of Al2O3/ZrO2 nanolayered structure is an important method used to stabilize the high temperature phase (tetragonal and cubic) of ZrO2 at room temperature. In the Al2O3/ZrO2 multilayer structure, the Al2O3 layer was kept constant at 5 nm, while the ZrO2 layer thickness varied from 5 to 20 nm (5/5, 5/10, 5/15 and 5/20 nm) with a total of 40 bilayers. The X-ray diffraction studies of single layer Al2O3 indicated the γ-Al2O3 of cubic structure, while the single layer ZrO2 indicated both monoclinic and tetragonal phases. The 5/5 and 5/10 nm multilayer films showed the nanocrystalline nature of ZrO2 with tetragonal phase. The high resolution transmission electron microscopy studies indicated the formation of well-defined Al2O3 and ZrO2 layers and that they are of uniform thickness. The atomic force microscopy studies revealed the uniform and dense distribution of nanocrystallites. The nanoindentation studies indicated the hardness of 20.8 ± 1.10 and 10 ± 0.60 GPa, for single layer Al2O3 and ZrO2, respectively, and the hardness of multilayer films varied with bilayer thickness.
Partial ablation of Ti/Al nano-layer thin film by single femtosecond laser pulse
NASA Astrophysics Data System (ADS)
Gaković, B.; Tsibidis, G. D.; Skoulas, E.; Petrović, S. M.; Vasić, B.; Stratakis, E.
2017-12-01
The interaction of ultra-short laser pulses with Titanium/Aluminium (Ti/Al) nano-layered thin film was investigated. The sample composed of alternating Ti and Al layers of a few nanometres thick was deposited by ion-sputtering. A single pulse irradiation experiment was conducted in an ambient air environment using focused and linearly polarized femtosecond laser pulses for the investigation of the ablation effects. The laser induced morphological changes and the composition were characterized using several microscopy techniques and energy dispersive X-ray spectroscopy. The following results were obtained: (i) at low values of pulse energy/fluence, ablation of the upper Ti layer only was observed; (ii) at higher laser fluence, a two-step ablation of Ti and Al layers takes place, followed by partial removal of the nano-layered film. The experimental observations were supported by a theoretical model accounting for the thermal response of the multiple layered structure upon irradiation with ultra-short laser pulses.
Ultrahard carbon film from epitaxial two-layer graphene
NASA Astrophysics Data System (ADS)
Gao, Yang; Cao, Tengfei; Cellini, Filippo; Berger, Claire; de Heer, Walter A.; Tosatti, Erio; Riedo, Elisa; Bongiorno, Angelo
2018-02-01
Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. So far, there has been no practical demonstration of the transformation of multilayer graphene into diamond-like ultrahard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, is resistant to perforation with a diamond indenter and shows a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that, upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and sp2 to sp3 chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than three to five layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation.
Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang
2017-01-03
Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.
Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang
2017-01-01
Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future. PMID:28045075
"Silicon millefeuille": From a silicon wafer to multiple thin crystalline films in a single step
NASA Astrophysics Data System (ADS)
Hernández, David; Trifonov, Trifon; Garín, Moisés; Alcubilla, Ramon
2013-04-01
During the last years, many techniques have been developed to obtain thin crystalline films from commercial silicon ingots. Large market applications are foreseen in the photovoltaic field, where important cost reductions are predicted, and also in advanced microelectronics technologies as three-dimensional integration, system on foil, or silicon interposers [Dross et al., Prog. Photovoltaics 20, 770-784 (2012); R. Brendel, Thin Film Crystalline Silicon Solar Cells (Wiley-VCH, Weinheim, Germany 2003); J. N. Burghartz, Ultra-Thin Chip Technology and Applications (Springer Science + Business Media, NY, USA, 2010)]. Existing methods produce "one at a time" silicon layers, once one thin film is obtained, the complete process is repeated to obtain the next layer. Here, we describe a technology that, from a single crystalline silicon wafer, produces a large number of crystalline films with controlled thickness in a single technological step.
Fabrication and analysis of single-crystal KTiOPO₄ films with thicknesses in the micrometer range.
Ma, Changdong; Lu, Fei; Xu, Bo; Fan, Ranran
2016-02-01
Single-crystal potassium titanyl phosphate (KTiOPO4, KTP) films with thicknesses less than 5 μm are obtained by using helium (He) implantation combined with ion-beam-enhanced etching. A heavily damaged layer created by a 4×10(16) cm(-2) fluence of 2 MeV He implantation is removed by means of wet chemical etching in hydrofluoric acid (HF). Thus, free-standing films of KTP with thicknesses in the range of 3-5 μm are obtained. The etching rate can be adjusted over a wide range by choosing temperature and HF concentration, as well as annealing conditions. Sharp etching edges and the smooth surface of the film indicate that a high selective-etching rate is achieved in the damaged layer, and the remaining part of the crystal is undamaged. X-ray and Raman-scattering results prove that KTP films have good single-crystal properties.
Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films
NASA Astrophysics Data System (ADS)
Pu, Yunti; Ma, Ping; Chen, Songlin; Zhu, Jiliang; Wang, Gang; Pan, Feng; Sun, Ping; Zhu, Xiaohong; Zhu, Jianguo; Xiao, Dingquan
2012-07-01
We show in this paper single-shot and multi-shot laser-induced damage thresholds (LIDTs) of HfO2/SiO2 high reflective films (the reflectance = 99.9%) are affected by the presence of a water layer absorbed on the surface of the porous films. When the water layer was removed with the process of pumping, the single-shot LIDT measured in vacuum dropped to ˜48% of that measured in air, while the multi-shot LIDT in vacuum dropped to ˜47% of its atmospheric value for the high reflective films. Typical damage micrographs of the films in air and in vacuum were obtained, showing distinct damage morphologies. Such atmosphere dependence of the laser damage morphology was found to originate from that formation of a water layer on the surface of porous films could cause an increase of horizontal thermal conductivity and a reduction of vertical thermal conductivity. Moreover, laser-induced periodic ripple damages in air were found in the SiO2 layer from the micrographs. A model of deformation kinematics was used to illustrate the occurrence of the periodic ripple damage, showing that it could be attributed to a contraction of the HfO2 layer under irradiation by the 5-ns laser pulses in air.
Temperature dependence of LRE-HRE-TM thin films
NASA Astrophysics Data System (ADS)
Li, Zuoyi; Cheng, Xiaomin; Lin, Gengqi; Li, Zhen; Huang, Zhixin; Jin, Fang; Wang, Xianran; Yang, Xiaofei
2003-04-01
Temperature dependence of the properties of RE-TM thin films is very important for MO recording. In this paper, we studied the temperature dependence of the magnetic and magneto-optical properties of the amorphous LRE-HRE-TM single layer thin films and LRE-HRE-TM/HRE-TM couple-bilayered thin films. For LRE-HRE-TM single layer thin films, the temperature dependence of the magnetization was investigated by using the mean field theory. The experimental and theoretical results matched very well. With the LRE substitution in HRE-TM thin film, the compensation temperature Tcomp decreased and the curie temperature Tc remained unchanged. Kerr rotation angle became larger and the saturation magnetization Ms at room temperature increased. For LRE-HRE-TM/HRE-TM couple-bilayered thin films, comparisons of the temperature dependences of the coercivities and Kerr rotation angles were made between isolated sublayers and couple-bilayered thin film.
NASA Astrophysics Data System (ADS)
Schwarz, Casey M.; Grabill, Chris N.; Richardson, Gerald D.; Labh, Shreya; Lewis, Anna M.; Vyas, Aadit; Gleason, Benn; Rivero-Baleine, Clara; Richardson, Kathleen A.; Pogrebnyakov, Alexej; Mayer, Theresa S.; Kuebler, Stephen M.
2017-04-01
A detailed study of multiphoton lithography (MPL) in arsenic trisulfide (As2S3) films and the effects on nanoscale morphology, chemical networking, and the appearance of the resulting features by the chemical composition, deposition rate, etch processing, and inclusion of an antireflection (AR) layer of As2Se3 between the substrate and the As2S3 layer is reported. MPL was used to photo-pattern nanostructured arrays in single- and multilayer films. The variation in chemical composition for laser-exposed, UV-exposed, and unexposed films is correlated with the etch response, nanostructure formation, and deposition conditions. Reflection of the focused beam at the substrate back into the film produces standing wave interference that modulates the exposure with distance from the substrate and produces nanobead structures. The interference and the modulation can be controlled by the addition of an AR layer of As2Se3 deposited between the substrate and the As2S3 film. Relative to structures produced in a single-layer As2S3 film having no AR layer, photo-patterning in the multilayer As2S3-on-As2Se3 film yields pillar-shaped structures that are closer to the targeted shape and are narrower (120 versus 320 nm), more uniform, and better adhering to the substrate. Processing methods are demonstrated for fabricating large-area arrays with diffractive optical function.
High density nonmagnetic cobalt in thin films
NASA Astrophysics Data System (ADS)
Banu, Nasrin; Singh, Surendra; Basu, Saibal; Roy, Anupam; Movva, Hema C. P.; Lauter, V.; Satpati, B.; Dev, B. N.
2018-05-01
Recently high density (HD) nonmagnetic cobalt has been discovered in a nanoscale cobalt thin film, grown on Si(111) single crystal. This form of cobalt is not only nonmagnetic but also superconducting. These promising results have encouraged further investigations of the growth of the nonmagnetic (NM) phase of cobalt. In the original investigation, the cobalt film had a natural cobalt oxide at the top. We have investigated whether the growth of HD NM cobalt layers in the thin film depends on (i) a capping layer on the cobalt film, (ii) the thickness of the cobalt film and (iii) the nature of the substrate on which the cobalt film is grown. The results of such investigations indicate that for cobalt films capped with a thin gold layer, and for various film thicknesses, HD NM cobalt layers are formed. However, instead of a Si substrate, when the cobalt films are grown on oxide substrates, such as silicon oxide or cobalt oxide, HD NM cobalt layers are not formed. The difference is attributed to the nature—crystalline or amorphous—of the substrate.
Synthesis of millimeter-scale transition metal dichalcogenides single crystals
Gong, Yongji; Ye, Gonglan; Lei, Sidong; ...
2016-02-10
The emergence of semiconducting transition metal dichalcogenide (TMD) atomic layers has opened up unprecedented opportunities in atomically thin electronics. Yet the scalable growth of TMD layers with large grain sizes and uniformity has remained very challenging. Here is reported a simple, scalable chemical vapor deposition approach for the growth of MoSe2 layers is reported, in which the nucleation density can be reduced from 105 to 25 nuclei cm -2, leading to millimeter-scale MoSe 2 single crystals as well as continuous macrocrystalline films with millimeter size grains. The selective growth of monolayers and multilayered MoSe2 films with well-defined stacking orientation canmore » also be controlled via tuning the growth temperature. In addition, periodic defects, such as nanoscale triangular holes, can be engineered into these layers by controlling the growth conditions. The low density of grain boundaries in the films results in high average mobilities, around ≈42 cm 2 V -1 s -1, for back-gated MoSe 2 transistors. This generic synthesis approach is also demonstrated for other TMD layers such as millimeter-scale WSe 2 single crystals.« less
Kim, Eun Sung; Hwang, Jae-Yeol; Lee, Kyu Hyoung; Ohta, Hiromichi; Lee, Young Hee; Kim, Sung Wng
2017-02-01
Graphene as a substrate for the van der Waals epitaxy of 2D layered materials is utilized for the epitaxial growth of a layer-structured thermoelectric film. Van der Waals epitaxial Bi 0.5 Sb 1.5 Te 3 film on graphene synthesized via a simple and scalable fabrication method exhibits good crystallinity and high thermoelectric transport properties comparable to single crystals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adsorption studies of simple gases on As-produced single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Talapatra, Saikat
Adsorption isotherms measurements were used to study films of Xenon (Xe), Argon (Ar), Methane (CH4), Hydrogen (H2) and Neon (Ne) adsorbed on bundles of as-produced Single Walled Carbon Nanotubes (SWNT). A comparison of the specific surface areas of the SWNT samples measured with these various gases, as well as a comparison of the binding energies measured for each of them on the SWNT bundles; allows us to infer which of the possible groups of adsorption sites on the SWNT bundles are actually occupied by the adsorbed gases. The presence of substeps in the first layer isotherm data establishes the existence of different phases within the first layer film. A detailed comparison of our experimental results to recent computer simulations for these systems is done. This allows us to determine the nature of the phases present in the first layer. Evidence of the formation of a one-dimensional phase in the second layer film (i.e. the film that forms after the entire surface of the bundles is covered by one layer of gas) is observed in these studies. The sharpness of this second layer feature varies as a function of the molecular diameter of the adsorbate.
NASA Astrophysics Data System (ADS)
Florido, E. A.; Dagaas, N. A. C.
2017-05-01
This study was aimed to determine the carbon monoxide (CO) gas sensing capability of zinc oxide (ZnO) film fabricated by successive ionic layer adsorption and reaction (SILAR) on glass substrate. Films consisting of a mixture of flower-like clusters of ZnO nanorods and nanowires were observed using scanning electron microscopy (SEM). Current-voltage characterization of the samples showed an average resistivity of 13.0 Ω-m. Carbon monoxide gas was synthesized by mixing the required amount of formic acid and excess sulfuric acid to produce CO gas concentrations of 100, 200, 300, 400, and 500 parts per million (ppm) v/v with five trials for each concentration. Two sets of data were obtained. One set consisted of the voltage response of the single film sensor while the other set were obtained from the double film sensor. The voltage response for the single film sensor and the double film sensor showed an average sensitivity of 0.0038 volts per ppm and 0.0024 volts per ppm, respectively. The concentration the single film can detect with a 2V output is 526 ppm while the double film sensor can detect up to 833 ppm with a 2V output. This shows that using the double film sensor is advantageous compared to single film sensor, because of its higher concentration range due to the larger surface area for the gas to interact. Moreover, the measured average resistance for the single film sensor was 10 MΩ while for the double film sensor the average resistance was 5 MΩ.
NASA Astrophysics Data System (ADS)
Kim, Min-Sung; Lee, Byung-Teak
2013-02-01
Single crystalline Zn0.8-xMg0.2AlxO thin films were grown on a GaN/Al2O3 template. As the Al content is increased from 0 to 0.06, the optical band gap increased from 3.6 eV to 4.0 eV, growth rate decreased from 6 nm/min to 3 nm/min, and the surface roughness decreased from 17 nm to 0.8 nm. It was observed that interfacial layers were formed between the thin films and the substrates, identified as cubic MgAl2O4 in the case of ZnMgAlO/GaN and cubic MgO in the case of ZnMgO/GaN. It was proposed that the MgAl2O4 layer, with low lattice mismatch of ˜7% against the GaN substrate, acted as the buffer layer to correlate the film and the substrate, resulting in growth of the single crystalline thin films in the case of the ZnMgAlO/GaN system.
19.5%-Efficient CuIn1-xGaxSe2 Photovoltaic Cells Using A Cd-Zn-S Buffer Layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya. R. N.
2008-01-01
CuIn1-xGaxSe2 (CIGS) solar cell junctions prepared by chemical-bath-deposited (CBD) Zn1-xCdxS (CdZnS), ZnS, and CdS buffer layers are discussed. A 19.52%-efficient, CIGS-based, thin-film photovoltaic device has been fabricated using a single-layer CBD CdZnS buffer layer. The mechanism that creates extensive hydroxide and oxide impurities in CBD-ZnS and CBD-CdZnS thin films (compared to CBD-CdS thin film) is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drogowska, K.; Institute of Materials Science, Technische Universitaet Darmstadt, Petersenstrasse 23, 64287 Darmstadt; Tarnawski, Z., E-mail: tarnawsk@agh.edu.pl
2012-02-15
Highlights: Black-Right-Pointing-Pointer The single-, bi- and tri-layered films of Ti-TiO{sub 2} deposited onto Si(1 1 1) substrates. Black-Right-Pointing-Pointer Three methods RBS, XRR, optical reflectometer were used. Black-Right-Pointing-Pointer The real thickness of each layer was smaller than 50 nm. Black-Right-Pointing-Pointer Ti and TiO{sub 2} film-densities were slightly lower than the corresponding bulk values. -- Abstract: Single-, bi- and tri-layered films of Ti-TiO{sub 2} system were deposited by d.c. pulsed magnetron sputtering from metallic Ti target in an inert Ar or reactive Ar + O{sub 2} atmosphere. The nominal thickness of each layer was 50 nm. The chemical composition and its depthmore » profile were determined by Rutherford backscattering spectroscopy (RBS). Crystallographic structure was analysed by means of X-ray diffraction (XRD) at glancing incidence. X-ray reflectometry (XRR) was used as a complementary method for the film thickness and density evaluation. Modelling of the optical reflectivity spectra of Ti-TiO{sub 2} thin films deposited onto Si(1 1 1) substrates provided an independent estimate of the layer thickness. The combined analysis of RBS, XRR and reflectivity spectra indicated the real thickness of each layer less than 50 nm with TiO{sub 2} film density slightly lower than the corresponding bulk value. Scanning Electron Microscopy (SEM) cross-sectional images revealed the columnar growth of TiO{sub 2} layers. Thickness estimated directly from SEM studies was found to be in a good agreement with the results of RBS, XRR and reflectivity spectra.« less
Surface topography and electrical properties in Sr2FeMoO6 films studied at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Angervo, I.; Saloaro, M.; Mäkelä, J.; Lehtiö, J.-P.; Huhtinen, H.; Paturi, P.
2018-03-01
Pulsed laser deposited Sr2FeMoO6 thin films were investigated for the first time with scanning tunneling microscopy and spectroscopy. The results confirm atomic scale layer growth, with step-terrace structure corresponding to a single lattice cell scale. The spectroscopy research reveals a distribution of local electrical properties linked to structural deformation in the initial thin film layers at the film substrate interface. Significant hole structure giving rise to electrically distinctive regions in thinner film also seems to set a thickness limit for the thinnest films to be used in applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, S.; Ma, B.; Narayanan, M.
2012-01-01
Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (BST) films were deposited by pulsed laser deposition on copper foils with low-temperature self-buffered layers. The deposition conditions included a low oxygen partial pressure and a temperature of 700 C to crystallize the films without the formation of secondary phases and substrate oxidation. The results from x-ray diffraction and scanning electron microscopy indicated that the microstructure of the BST films strongly depended on the growth temperature. The use of the self-buffered layer improved the dielectric properties of the deposited BST films. The leakage current density of the BST films on the copper foil was 4.4 xmore » 10{sup -9} A cm{sup -2} and 3.3 x 10{sup -6} A cm{sup -2} with and without the self-buffered layer, respectively. The ferroelectric hysteresis loop for the BST thin film with buffer layer was slim, in contrast to the distorted loop observed for the film without the buffer layer. The permittivity (7 0 0) and dielectric loss tangent (0.013) of the BST film on the copper foil with self-buffered layer at room temperature were comparable to those of the film on metal and single-crystal substrates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Di; Baek, David J.; Hong, Seung Sae
2016-08-22
The ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality and emergent phenomena, as seen in perovskite heterostructures. However, separation of these layers from the growth substrate has proven challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general method to create freestanding perovskite membranes. The key is the epitaxial growth of water-solublemore » Sr 3Al 2O 6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr 3Al 2O 6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds.« less
Surface modifications of crystal-ion-sliced LiNbO3 thin films by low energy ion irradiations
NASA Astrophysics Data System (ADS)
Bai, Xiaoyuan; Shuai, Yao; Gong, Chaoguan; Wu, Chuangui; Luo, Wenbo; Böttger, Roman; Zhou, Shengqiang; Zhang, Wanli
2018-03-01
Single crystalline 128°Y-cut LiNbO3 thin films with a thickness of 670 nm are fabricated onto Si substrates by means of crystal ion slicing (CIS) technique, adhesive wafer bonding using BCB as the medium layer to alleviate the large thermal coefficient mismatch between LiNbO3 and Si, and the X-ray diffraction pattern indicates the exfoliated thin films have good crystalline quality. The LiNbO3 thin films are modified by low energy Ar+ irradiation, and the surface roughness of the films is decreased from 8.7 nm to 3.4 nm. The sputtering of the Ar+ irradiation is studied by scanning electron microscope, atomic force microscope and X-ray photoelectron spectroscopy, and the results show that an amorphous layer exists at the surface of the exfoliated film, which can be quickly removed by Ar+ irradiation. A two-stage etching mechanism by Ar+ irradiation is demonstrated, which not only establishes a new non-contact surface polishing method for the CIS-fabricated single crystalline thin films, but also is potentially useful to remove the residue damage layer produced during the CIS process.
Ma, Quan; Isarraraz, Miguel; Wang, Chen S; Preciado, Edwin; Klee, Velveth; Bobek, Sarah; Yamaguchi, Koichi; Li, Emily; Odenthal, Patrick Michael; Nguyen, Ariana; Barroso, David; Sun, Dezheng; von Son Palacio, Gretel; Gomez, Michael; Nguyen, Andrew; Le, Duy; Pawin, Greg; Mann, John; Heinz, Tony F; Rahman, Talat Shahnaz; Bartels, Ludwig
2014-05-27
We demonstrate bandgap tuning of a single-layer MoS2 film on SiO2/Si via substitution of its sulfur atoms by selenium through a process of gentle sputtering, exposure to a selenium precursor, and annealing. We characterize the substitution process both for S/S and S/Se replacement. Photoluminescence and, in the latter case, X-ray photoelectron spectroscopy provide direct evidence of optical band gap shift and selenium incorporation, respectively. We discuss our experimental observations, including the limit of the achievable bandgap shift, in terms of the role of stress in the film as elucidated by computational studies, based on density functional theory. The resultant films are stable in vacuum, but deteriorate under optical excitation in air.
Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy.
Ji, Jie; Luo, Chunya; Rao, Yunkun; Ling, Furi; Yao, Jianquan
2016-07-11
The dielectric spectra of single-layer PbTiO3 (PT), single-layer PbZrxTi1-xO3 (PZT) and multilayer PZT/PT thin films under an external optical field were investigated at room temperature by time-domain terahertz (THz) spectroscopy. Results showed that the real part of permittivity increased upon application of an external optical field, which could be interpreted as hardening of the soft mode and increasing of the damping coefficient and oscillator strength. Furthermore, the central mode was observed in the three films. Among the dielectric property of the three thin films studied, the tunability of the PZT/PT superlattice was the largest.
Synthesis and magnetic properties of the thin film exchange spring system of MnBi/FeCo
NASA Astrophysics Data System (ADS)
Sabet, S.; Hildebrandt, E.; Alff, L.
2017-10-01
Manganese bismuth thin films with a nominal thickness of ∼40 nm were grown at room temperature onto quartz glass substrate in a DC magnetron sputtering unit. In contrast to the usual multilayer approach, the MnBi films were deposited using a single sputtering target with a stoichiometry of Mn55Bi45 (at. %). A subsequent in-situ annealing step was performed in vacuum in order to form the ferromagnetic LTP of MnBi. X-ray diffraction confirmed the formation of a textured LTP MnBi hard phase after annealing at 330 °C. This film shows a maximum saturation magnetization of 530 emu/cm3, high out-of-plane coercivity of 15 kOe induced by unreacted bismuth. The exchange coupling effect was investigated by deposition of a second layer of FeCo with 1 nm and 2 nm thickness onto the LTP MnBi films. The MnBi/FeCo double layer showed as expected higher saturation magnetization with increasing thickness of the FeCo layer while the coercive field remained constant. The fabrication of the MnBi/FeCo double layer for an exchange spring magnet was facilitated by deposition from a single stoichiometric target.
NASA Astrophysics Data System (ADS)
Zhu, Jun; Zhang, Haosu; Zhu, Zhendong; Li, Qunqing; Jin, Guofan
2017-02-01
This article proposes a surface-plasmon-enhanced GaN-LED based on the multilayered rectangular nano-grating. This structure contains a SiO2 film, an Ag film and a HfO2 film sequentially coated on the rectangularly-patterned p-GaN layer. The Ag film is used to enhance the internal quantum efficiency. The HfO2 cover-layer symmetrizes the distribution of refractive index besides the Ag film to improve the light extraction efficiency and surface-plasmon (SP) extraction efficiency. The inserted SiO2 layer is utilized to further improve the SP extraction efficiency. The properties of SP modes and Purcell effect in this structure are investigated. The photoluminescence experiments demonstrate that its peak intensity of top-emission is about 2.5 times greater than that from the reference structure covered by a single-layer Ag film on the rectangularly-patterned p-GaN layer.
Effect of size and moisture on the mechanical behavior of SU-8 thin films
NASA Astrophysics Data System (ADS)
Robin, C. J.; Jonnalagadda, K. N.
2016-02-01
The mechanical properties of SU-8 were investigated in conjunction with size effect, mechanical anisotropy and moisture absorption. Uniaxial tensile experiments were conducted on SU-8 films of 500 nm and 2 μm thickness. A spin coating process was used to fabricate the films with one set from a single coat (single layer) and the others containing multiple coats (multilayer) with pre-baking in between. The stress versus strain response was obtained from in situ optical experiments and a digital image correlation method. Compared to single layer films, the multilayer films showed a significant increase in mechanical properties as well as in-plane anisotropy. This anisotropy was confirmed using Fourier transform infrared spectroscopy and attributed to the spin coating process, which resulted in higher crosslinking density in the film, and molecular orientation in the radial direction. Moisture absorption studies revealed that the mechanical properties were affected by water, which exists in both the free and bonded form in the polymer and acts as a plasticizer. The effect of moisture was similar in both the single and multilayer films, but was higher for the latter due to multiple processing steps as well as the existence of higher percentage of epoxy polar groups.
Enhanced stability of thin film transistors with double-stacked amorphous IWO/IWO:N channel layer
NASA Astrophysics Data System (ADS)
Lin, Dong; Pi, Shubin; Yang, Jianwen; Tiwari, Nidhi; Ren, Jinhua; Zhang, Qun; Liu, Po-Tsun; Shieh, Han-Ping
2018-06-01
In this work, bottom-gate top-contact thin film transistors with double-stacked amorphous IWO/IWO:N channel layer were fabricated. Herein, amorphous IWO and N-doped IWO were deposited as front and back channel layers, respectively, by radio-frequency magnetron sputtering. The electrical characteristics of the bi-layer-channel thin film transistors (TFTs) were examined and compared with those of single-layer-channel (i.e., amorphous IWO or IWO:N) TFTs. It was demonstrated to exhibit a high mobility of 27.2 cm2 V‑1 s‑1 and an on/off current ratio of 107. Compared to the single peers, bi-layer a-IWO/IWO:N TFTs showed smaller hysteresis and higher stability under negative bias stress and negative bias temperature stress. The enhanced performance could be attributed to its unique double-stacked channel configuration, which successfully combined the merits of the TFTs with IWO and IWO:N channels. The underlying IWO thin film provided percolation paths for electron transport, meanwhile, the top IWO:N layer reduced the bulk trap densities. In addition, the IWO channel/gate insulator interface had reduced defects, and IWO:N back channel surface was insensitive to the ambient atmosphere. Overall, the proposed bi-layer a-IWO/IWO:N TFTs show potential for practical applications due to its possibly long-term serviceability.
Naturally formed ultrathin V2O5 heteroepitaxial layer on VO2/sapphire(001) film
NASA Astrophysics Data System (ADS)
Littlejohn, Aaron J.; Yang, Yunbo; Lu, Zonghuan; Shin, Eunsung; Pan, KuanChang; Subramanyam, Guru; Vasilyev, Vladimir; Leedy, Kevin; Quach, Tony; Lu, Toh-Ming; Wang, Gwo-Ching
2017-10-01
Vanadium dioxide (VO2) and vanadium pentoxide (V2O5) thin films change their properties in response to external stimuli such as photons, temperature, electric field and magnetic field and have applications in electronics, optical devices, and sensors. Due to the multiple valence states of V and non-stoichiometry in thin films, it is challenging to grow epitaxial, single-phase V-oxide on a substrate, or a heterostructure of two epitaxial V-oxides. We report the formation of a heterostructure consisting of a few nm thick ultrathin V2O5 epitaxial layer on pulsed laser deposited tens of nm thick epitaxial VO2 thin films grown on single crystal Al2O3(001) substrates without post annealing of the VO2 film. The simultaneous observation of the ultrathin epitaxial V2O5 layer and VO2 epitaxial film is only possible by our unique reflection high energy electron diffraction pole figure analysis. The out-of-plane and in-plane epitaxial relationships are V2O5[100]||VO2[010]||Al2O3[001] and V2O5[03 2 bar ]||VO2[100]||Al2O3[1 1 bar 0], respectively. The existence of the V2O5 layer on the surface of the VO2 film is also supported by X-ray photoelectron spectroscopy and Raman spectroscopy.
2014-01-01
Indium gallium nitride (InGaN) samples with single heterojunction (SH) and double heterojunction (DH) were prepared using metal-organic chemical vapor deposition. SH has a layer of InGaN thin film (thicknesses, 25, 50, 100, and 200 nm) grown on an uGaN film (thickness, 2 μm). The DH samples are distinguished by DH uGaN film (thickness, 120 nm) grown on the InGaN layer. Reciprocal space mapping measurements reveal that the DH samples are fully strained with different thicknesses, whereas the strain in the SH samples are significantly relaxed with the increasing thickness of the InGaN film. Scanning electron microscopy results show that the surface roughness of the sample increases when the sample is relaxed. High-resolution transmission electron microscopy images of the structure of indium droplets in the DH sample indicate that the thickness of the InGaN layer decreases with the density of indium droplets. The formation of these droplets is attributed to the insufficient kinetic energy of indium atom to react with the elements of group V, resulting to aggregation. The gallium atoms in the GaN thin film will not be uniformly replaced by indium atoms; the InGaN thin film has an uneven distribution of indium atoms and the quality of the epitaxial layer is degraded. PMID:25024692
NASA Astrophysics Data System (ADS)
Pechen, E. V.; Schoenberger, R.; Brunner, B.; Ritzinger, S.; Renk, K. F.; Sidorov, M. V.; Oktyabrsky, S. R.
1993-09-01
A study of epitaxial growth of YBa2Cu3O7-δ films on oxidized Si with yttria- and zirconia-based buffer layers is reported. Using substrates with either SiO2 free or naturally oxidized (100) surfaces of Si it was found that a thin SiO2 layer on top of the Si favors high-quality superconducting film formation. Compared to yttria-stabilized ZrO2 (YSZ) single layers, YSZY2O3 double and YSZ/Y2O3YSZ triple layers allows the deposition of thin YBa2Cu3O7-δ films with improved properties including reduced aging effects. In epitaxial YBa2Cu3O7-δ films grown on the double buffer layers a critical temperature Tc(R=0)=89.5 K and critical current densities of 3.5×106 A/cm2 at 77 K and 1×107 A/cm2 at 66 K were reached.
Theoretical study of magnetic layers of nickel on copper; dead or alive?
NASA Astrophysics Data System (ADS)
Ernst, A.; Lueders, M.; Temmerman, W. M.; Szotek, Z.; van der Laan, G.
2000-07-01
We studied the persistence of magnetism in ultrathin nickel films on copper. Layer-dependent magnetic moments in Ni films on the (001), (110) and (111) surfaces of Cu have been calculated using the Korringa-Kohn-Rostoker Green's function method. The results show that, at temperature T = 0, a single nickel monolayer is ferromagnetic on Cu(001) and Cu(110) but magnetically `dead' on the more closely packed Cu(111) surface. Films of two and more layers of Ni are always ferromagnetic, with the magnetic moment enhanced in the surface layer but strongly reduced in the interface layer. Due to the short screening length, both the effect of the interface and that of the surface are confined to only a few atomic layers.
NASA Astrophysics Data System (ADS)
Harshavardhan, K. S.; Rajeswari, M.; Hwang, D. M.; Chen, C. Y.; Sands, T.; Venkatesan, T.; Tkaczyk, J. E.; Lay, K. W.; Safari, A.
1992-04-01
Critical-current densities have been measured in YBa2Cu3O7-x films deposited on (100) yttria stabilized zirconia (YSZ) and polycrystalline YSZ substrates as a function of temperature (4.5-88 K), magnetic field (0-1 T) and orientation relative to the applied field. The results indicate that in films on polycrystalline substrates, surface and interface pinning play a dominant role at high temperatures. In films on (100) YSZ, pinning is mainly due to intrinsic layer pinning as well as extrinsic pinning associated with the interaction of the fluxoids with point defects and low energy planar (2D) boundaries. The differences are attributed to the intrinsic rigidity of single fluxoids which is reduced in films on polycrystalline substrates thereby weakening the intrinsic layer pinning.
Estimation of structural film viscosity based on the bubble rise method in a nanofluid.
Cho, Heon Ki; Nikolov, Alex D; Wasan, Darsh T
2018-04-15
When a single bubble moves at a very low capillary number (10 -7 ) through a liquid with dispersed nanoparticles (nanofluid) inside a vertical tube/capillary, a film is formed between the bubble surface and the tube wall and the nanoparticles self-layer inside the confined film. We measured the film thickness using reflected light interferometry. We calculated the film structural energy isotherm vs. the film thickness from the film-meniscus contact angle measurements using the reflected light interferometric method. Based on the experimental measurement of the film thickness and the calculated values of the film structural energy barrier, we estimated the structural film viscosity vs. the film thickness using the Frenkel approach. Because of the nanoparticle film self-layering phenomenon, we observed a gradual increase in the film viscosity with the decreasing film thickness. However, we observed a significant increase in the film viscosity accompanied by a step-wise decrease in the bubble velocity when the film thickness decreased from 3 to 2 particle layers due to the structural transition in the film. Copyright © 2018 Elsevier Inc. All rights reserved.
Process for ion-assisted laser deposition of biaxially textured layer on substrate
Russo, R.E.; Reade, R.P.; Garrison, S.M.; Berdahl, P.
1995-07-11
A process for depositing a biaxially aligned intermediate layer over a non-single crystal substrate is disclosed which permits the subsequent deposition thereon of a biaxially oriented superconducting film. The process comprises depositing on a substrate by laser ablation a material capable of being biaxially oriented and also capable of inhibiting the migration of substrate materials through the intermediate layer into such a superconducting film, while simultaneously bombarding the substrate with an ion beam. In a preferred embodiment, the deposition is carried out in the same chamber used to subsequently deposit a superconducting film over the intermediate layer. In a further aspect of the invention, the deposition of the superconducting layer over the biaxially oriented intermediate layer is also carried out by laser ablation with optional additional bombardment of the coated substrate with an ion beam during the deposition of the superconducting film. 8 figs.
Process for ion-assisted laser deposition of biaxially textured layer on substrate
Russo, Richard E.; Reade, Ronald P.; Garrison, Stephen M.; Berdahl, Paul
1995-01-01
A process for depositing a biaxially aligned intermediate layer over a non-single crystal substrate is disclosed which permits the subsequent deposition thereon of a biaxially oriented superconducting film. The process comprises depositing on a substrate by laser ablation a material capable of being biaxially oriented and also capable of inhibiting the migration of substrate materials through the intermediate layer into such a superconducting film, while simultaneously bombarding the substrate with an ion beam. In a preferred embodiment, the deposition is carried out in the same chamber used to subsequently deposit a superconducting film over the intermediate layer. In a further aspect of the invention, the deposition of the superconducting layer over the biaxially oriented intermediate layer is also carried out by laser ablation with optional additional bombardment of the coated substrate with an ion beam during the deposition of the superconducting film.
Self-assembly of dodecaphenyl POSS thin films
NASA Astrophysics Data System (ADS)
Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor
2017-12-01
The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.
Effect of a CoFeB layer on the anisotropic magnetoresistance of Ta/CoFeB/MgO/NiFe/MgO/CoFeB/Ta films
NASA Astrophysics Data System (ADS)
Li, Minghua; Shi, Hui; Dong, Yuegang; Ding, Lei; Han, Gang; Zhang, Yao; Liu, Ye; Yu, Guanghua
2017-10-01
The anisotropic magnetoresistance (AMR) and magnetic properties of NiFe films can be remarkably enhanced via CoFeB layer. In the case of an ultrathin NiFe film having a Ta/CoFeB/MgO/NiFe/MgO/CoFeB/Ta structure, the CoFeB/MgO layers suppressed the formation of magnetic dead layers and the interdiffusions and interface reactions between the NiFe and Ta layers. The AMR reached a maximum value of 3.56% at 450 °C. More importantly, a single NiFe (1 1 1) peak can be formed resulting in higher AMR values for films having CoFeB layer. This enhanced AMR also originated from the significant specular reflection of electrons owing to the crystalline MgO layer, together with the sharp interfaces with the NiFe layer. These factors together resulted in higher AMR and improved magnetic properties.
Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer
NASA Astrophysics Data System (ADS)
Cabrero-Vilatela, A.; Alexander-Webber, J. A.; Sagade, A. A.; Aria, A. I.; Braeuninger-Weimer, P.; Martin, M.-B.; Weatherup, R. S.; Hofmann, S.
2017-12-01
The transfer of chemical vapour deposited graphene from its parent growth catalyst has become a bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically deposited onto graphene for mechanical support during transfer are challenging to remove completely and hence leave graphene and subsequent device interfaces contaminated. Here, we report on the use of atomic layer deposited (ALD) oxide films as protective interface and support layers during graphene transfer. The method avoids any direct contact of the graphene with polymers and through the use of thicker ALD layers (≥100 nm), polymers can be eliminated from the transfer-process altogether. The ALD film can be kept as a functional device layer, facilitating integrated device manufacturing. We demonstrate back-gated field effect devices based on single-layer graphene transferred with a protective Al2O3 film onto SiO2 that show significantly reduced charge trap and residual carrier densities. We critically discuss the advantages and challenges of processing graphene/ALD bilayer structures.
MCP performance improvement using alumina thin film
NASA Astrophysics Data System (ADS)
Yang, Yuzhen; Yan, Baojun; Liu, Shulin; Zhao, Tianchi; Yu, Yang; Wen, Kaile; Li, Yumei; Qi, Ming
2017-10-01
The performance improvement using alumina thin film on a dual microchannel plate (MCP) detector for single electron counting was investigated. The alumina thin film was coated on all surfaces of the MCPs by atomic layer deposition method. It was found that the gain, the single electron resolution and the peak-to-valley ratio of the dual MCP detector were significantly enhanced by coating the alumina thin film. The optimum operating conditions of the new dual MCP detector have been studied.
Dependence of magnetic properties on different buffer layers of Mn3.5Ga thin films
NASA Astrophysics Data System (ADS)
Takahashi, Y.; Sato, K.; Shima, T.; Doi, M.
2018-05-01
D022-Mn3.5Ga thin films were prepared on MgO (100) single crystalline substrates with different buffer layer (Cr, Fe, Cr/Pt and Cr/Au) using an ultra-high-vacuum electron beam vapor deposition system. From XRD patterns, a fundamental (004) peak has clearly observed for all samples. The relatively low saturation magnetization (Ms) of 178 emu/cm3, high magnetic anisotropy (Ku) of 9.1 Merg/cm3 and low surface roughness (Ra) of 0.30 nm were obtained by D022-Mn3.5Ga film (20 nm) on Cr/Pt buffer layer at Ts = 300 °C, Ta = 400 °C (3h). These findings suggest that MnGa film on Cr/Pt buffer layer is a promising PMA layer for future spin electronics devices.
Wu, Xuanzhi; Sheldon, Peter
2000-01-01
A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.
NASA Astrophysics Data System (ADS)
Majee, Subimal; Fátima Cerqueira, Maria; Tondelier, Denis; Geffroy, Bernard; Bonnassieux, Yvan; Alpuim, Pedro; Bourée, Jean Eric
2014-01-01
The reliability and stability are key issues for the commercial utilization of organic photovoltaic devices based on flexible polymer substrates. To increase the shelf-lifetime of these devices, transparent moisture barriers of silicon nitride (SiNx) films are deposited at low temperature by hot wire CVD (HW-CVD) process. Instead of the conventional route based on organic/inorganic hybrid structures, this work defines a new route consisting in depositing multilayer stacks of SiNx thin films, each single layer being treated by argon plasma. The plasma treatment allows creating smoother surface and surface atom rearrangement. We define a critical thickness of the single layer film and focus our attention on the effect of increasing the number of SiNx single-layers on the barrier properties. A water vapor transmission rate (WVTR) of 2 × 10-4 g/(m2·day) is reported for SiNx multilayer stack and a physical interpretation of the plasma treatment effect is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Jun; Niu, Hai-jun; Wen, Hai-lin
2013-03-15
Graphical abstract: The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. Highlights: ► MWCNT/PPy composite film prepared by electrodeposition layer by layer was used as counter electrode in DSSC. ► The overall energy conversion efficiency of the DSSC was 3.78% by employing the composite film. ► The energy conversion efficiency increased by 41.04% compared with efficiency of 2.68% by using the single MWCNT film. ► We analyzed the mechanism and influence factor ofmore » electron transfer in the composite electrode by EIS. - Abstract: For the purpose of replacing the precious Pt counter electrode in dye-sensitized solar cells (DSSCs) with higher energy conversion efficiency, multi-wall carbon nanotube (MWCNT)/polypyrrole (PPy) double layers film counter electrode (CE) was fabricated by electrophoresis and cyclic voltammetry (CV) layer by layer. Atom force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscope (TEM) demonstrated the morphologies of the composite electrode and Raman spectroscopy verified the PPy had come into being. The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. The result of impedance showed that the charge transfer resistance R{sub ct} of the MWCNT/PPy CE had the lowest value compared to that of MWCNT or PPy electrode. These results indicate that the composite film with high conductivity, high active surface area, and good catalytic properties for I{sub 3}{sup −} reduction can potentially be used as the CE in a high-performance DSSC.« less
Method of producing solution-derived metal oxide thin films
Boyle, Timothy J.; Ingersoll, David
2000-01-01
A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.
NASA Astrophysics Data System (ADS)
Broadway, David M.; Ramsey, Brian D.; O'Dell, Stephen L.; Gurgew, Danielle
2017-09-01
We present in-situ stress measurement results for single and multilayer thin-films deposited by magnetron sputtering. In particular, we report on the influence of the material interfaces on the ensuing stress in both the transient and steady-state regimes of film growth. This behavior is used to determine the appropriate thicknesses of the constituent layers that will result in a net tensile stress in multilayers composed of various material combinations. These multilayers can then be used to compensate the compressive integrated stress in single and multilayer EUV and x-ray optical coatings. The use of multilayers to compensate the integrated stress might be advantageous because, unlike single layers of chromium, the roughness is not expected to increase with the total thickness of the multilayer. In this paper, we demonstrate the technique for W/Si and Mo/Si multilayers and discuss its application to other material combinations.
Structure of Protein Layers in Polyelectrolyte Matrices Studied by Neutron Reflectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlovskaya, Veronika; Ankner, John Francis; O'Neill, Hugh Michael
2011-01-01
Polyelectrolyte multilayer films obtained by localized incorporation of Green Fluorescent Protein (GFP) within electrostatically assembled matrices of poly(styrene sulfonate)/poly(allylamine hydrochloride) (PSS/PAH) via spin-assisted layer-by-layer growth were discovered to be highly structured, with closely packed monomolecular layers of the protein within the bio-hybrid films. The structure of the films was evaluated in both vertical and lateral directions with neutron reflectometry, using deuterated GFP as a marker for neutron scattering contrast. Importantly, the GFP preserves its structural stability upon assembly as confirmed by circular dichroism (CD) and in situ attenuated total reflection Fourier Transform Infrared spectroscopy (ATR-FTIR). Atomic force microscopy was complimentedmore » with X-ray reflectometry to characterize the external roughness of the biohybrid films. Remarkably, films assembled with a single GFP layer confined at various distances from the substrate exhibit a strong localization of the GFP layer without intermixing into the LbL matrix. However, partial intermixing of the GFP layers with polymeric material is evidenced in multiple-GFP layer films with alternating protein-rich and protein-deficient regions. We hypothesize that the polymer-protein exchange observed in the multiple-GFP layer films suggests the existence of a critical protein concentration which can be accommodated by the multilayer matrix. Our results yield new insights into the mechanism of GFP interaction with a polyelectrolyte matrix and open opportunities for fabrication of bio-hybrid films with well-organized structure and controllable function, a crucial requirement for advanced sensing applications.« less
Single Source Precursors for Thin Film Solar Cells
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K.; Hollingsworth, Jennifer A.; Harris, Jerry D.; Cowen, Jonathan; Buhro, William E.; Hepp, Aloysius F.
2002-01-01
The development of thin film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. At NASA GRC we have focused on the development of new single source precursors (SSP) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD (chemical vapor deposition) process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV (photovoltaic) devices.
Zeng, Fangxinyu; Chen, Jinyao; Yang, Feng; Kang, Jian; Cao, Ya; Xiang, Ming
2018-01-16
In this study, polyamide-aluminum foil-polypropylene (PA-Al-PP) composite films with different orientation status of the PP layer were prepared, and their morphology, tensile, peeling and heat seal behavior were studied. The comparative study of tensile and fracture behaviors of single-layer film of PA, Al and PP, as well as the composite films of PA-Al, PP-Al and PA-Al-PP revealed that in PA-Al-PP composite film, the PA layer with the highest tensile strength can share the tensile stress from the Al layer during stretching, while the PP layer with the lowest tensile strength can prevent further development of the small cracks on boundary of the Al layer during stretching. Moreover, the study of heat seal behavior suggested that both the orientation status and the heat seal conditions were important factors in determining the heat seal strength ( HSS ) and failure behavior of the sample. Four failure types were observed, and a clear correspondence between HSS and failure types was found. The results also elucidated that for the composite film, only in the cases where the tensile stress was efficiently released by each layer during HSS measurement could the composite film exhibit desired high HSS that was even higher than its tensile strength.
Choi, Yu Jin; Lim, Hajin; Lee, Suhyeong; Suh, Sungin; Kim, Joon Rae; Jung, Hyung-Suk; Park, Sanghyun; Lee, Jong Ho; Kim, Seong Gyeong; Hwang, Cheol Seong; Kim, HyeongJoon
2014-05-28
The electrical properties of La-silicate films grown by atomic layer deposition (ALD) on Ge substrates with different film configurations, such as various Si concentrations, Al2O3 interfacial passivation layers, and SiO2 capping layers, were examined. La-silicate thin films were deposited using alternating injections of the La[N{Si(CH3)3}2]3 precursor with O3 as the La and O precursors, respectively, at a substrate temperature of 310 °C. The Si concentration in the La-silicate films was further controlled by adding ALD cycles of SiO2. For comparison, La2O3 films were also grown using [La((i)PrCp)3] and O3 as the La precursor and oxygen source, respectively, at the identical substrate temperature. The capacitance-voltage (C-V) hysteresis decreased with an increasing Si concentration in the La-silicate films, although the films showed a slight increase in the capacitance equivalent oxide thickness. The adoption of Al2O3 at the interface as a passivation layer resulted in lower C-V hysteresis and a low leakage current density. The C-V hysteresis voltages of the La-silicate films with Al2O3 passivation and SiO2 capping layers was significantly decreased to ∼0.1 V, whereas the single layer La-silicate film showed a hysteresis voltage as large as ∼1.0 V.
Magnetic properties and crystal texture of Co alloy thin films prepared on double bias Cr
NASA Astrophysics Data System (ADS)
Deng, Y.; Lambeth, D. N.; Lee, L.-L.; Laughlin, D. E.
1993-05-01
A double layer Cr film structure has been prepared by sputter depositing Cr on single crystal Si substrates first without substrate bias and then with various substrate bias voltages. Without substrate bias, Cr{200} texture grows on Si at room temperature; thus the first Cr layer acts like a seed Cr layer with the {200} texture, and the second Cr layer, prepared with substrate bias, tends to replicate the {200} texture epitaxially. CoCrTa and CoNiCr films prepared on these double Cr underlayers, therefore, tend to have a {112¯0} texture with their c-axes oriented in the plane of the film. At the same time, the bias sputtering of the second Cr layer increases the coercivity of the subsequently deposited magnetic films significantly. Comparison studies of δM curves show that the use of the double Cr underlayers reduces the intergranular exchange interactions. The films prepared on the Si substrates have been compared with the films prepared on canasite and glass substrates. It has also been found that the magnetic properties are similar for films on canasite and on glass.
Sanehira, Yoshitaka; Numata, Youhei; Ikegami, Masashi; Miyasaka, Tsutomu
2018-05-23
Highly crystalline TiO 2 nanostructured films were synthesized by a simple steam treatment of a TiCl 4 precursor film under a saturated water vapor atmosphere at 125 °C, here referred to as the steam-annealing method. In a single TiO 2 film preparation step, a bilayer structure comprising a compact bottom layer and a mesoporous surface layer was formed. The mesoporous layer was occupied by bipyramidal nanoparticles, with a composite phase of anatase and brookite crystals. Despite the low-temperature treatment process, the crystallinity of the TiO 2 film was high, comparable with that of the TiO 2 film sintered at 500 °C. The compact double-layered TiO 2 film was applied to perovskite solar cells (PSCs) as an electron-collecting layer. The PSC exhibited a maximum power conversion efficiency (PCE) of 18.9% with an open-circuit voltage ( V OC ) of 1.15 V. The PCE and V OC were higher than those of PSCs using a TiO 2 film formed by 500 °C sintering.
Yoon, Ye-Eun; Im, Byung Gee; Kim, Jung-Suk; Jang, Jae-Hyung
2017-01-09
Tissue adhesives, which inherently serve as wound sealants or as hemostatic agents, can be further augmented to acquire crucial functions as scaffolds, thereby accelerating wound healing or elevating the efficacy of tissue regeneration. Herein, multifunctional adherent fibrous matrices, acting as self-adhesive scaffolds capable of cell/gene delivery, were devised by coaxially electrospinning poly(caprolactone) (PCL) and poly(vinylpyrrolidone) (PVP). Wrapping the building block PCL fibers with the adherent PVP layers formed film-like fibrous matrices that could rapidly adhere to wet biological surfaces, referred to as fibrous layered matrix (FiLM) adhesives. The inclusion of ionic salts (i.e., dopamine hydrochloride) in the sheath layers generated spontaneously multilayered fibrous adhesives, whose partial layers could be manually peeled off, termed derivative FiLM (d-FiLM). In the context of scaffolds/tissue adhesives, both FiLM and d-FiLM demonstrated almost identical characteristics (i.e., sticky, mechanical, and performances as cell/gene carriers). Importantly, the single FiLM-process can yield multiple sets of d-FiLM by investing the same processing time, materials, and labor required to form a single conventional adhesive fibrous mat, thereby highlighting the economic aspects of the process. The FiLM/d-FiLM offer highly impacting contributions to many biomedical applications, especially in fields that require urgent aids (e.g., endoscopic surgeries, implantation in wet environments, severe wounds).
NASA Astrophysics Data System (ADS)
Rella, Roberto; Capone, Simona; Siciliano, Pietro; Spadavecchia, J.; Ciccarella, G.
2004-06-01
Spin-coated layers of ZnPc and CuP have been used as chemically interacting materials for the detection of alcohols, amines, ketones, alkanes and pyridine for applications in food quality control. The UV-VIS variations obtained by the exposure of the sensing layers to the mentioned analytes in controlled atmosphere have been analyzed and compared with those deriving by a single thin film obtained by mixing the two metal complexes in an appropriate ratio. A multichannel monitoring of the main bands of the sensing layer due to the interaction with the analyte vapors became the basis to construct a set of independent sensors located on a single sensing element. The effects in the variation of the absorption bands of the blend system are compared with the variations in absorbance observed with the two sensing layers fabricated separately with each single compound. The interaction between the VOCs species and the heterogeneous sensing layer shows a different behavior in the responses respect to the results obtained with each single compound.
A theoretical investigation of single-molecule fluorescence detection on thin metallic layers.
Enderlein, J
2000-04-01
In the present paper, the excitation and detection of single-molecule fluorescence over thin metallic films is studied theoretically within the framework of classical electrodynamics. The model takes into account the specific conditions of surface plasmon-assisted optical excitation, fluorescence quenching by the metal film, and detection geometry. Extensive numerical results are presented for gold, silver, and aluminum films, showing the detectable fluorescence intensities and their dependence on film thickness and the fluorescent molecule's position under optimal excitation conditions.
Localized entrapment of green fluorescent protein within nanostructured polymer films
NASA Astrophysics Data System (ADS)
Ankner, John; Kozlovskaya, Veronika; O'Neill, Hugh; Zhang, Qiu; Kharlampieva, Eugenia
2012-02-01
Protein entrapment within ultrathin polymer films is of interest for applications in biosensing, drug delivery, and bioconversion, but controlling protein distribution within the films is difficult. We report on nanostructured protein/polyelectrolyte (PE) materials obtained through incorporation of green fluorescent protein (GFP) within poly(styrene sulfonate)/poly(allylamine hydrochloride) multilayer films assembled via the spin-assisted layer-by-layer method. By using deuterated GFP as a marker for neutron scattering contrast we have inferred the architecture of the films in both normal and lateral directions. We find that films assembled with a single GFP layer exhibit a strong localization of the GFP without intermixing into the PE matrix. The GFP volume fraction approaches the monolayer density of close-packed randomly oriented GFP molecules. However, intermixing of the GFP with the PE matrix occurs in multiple-GFP layer films. Our results yield new insight into the organization of immobilized proteins within polyelectrolyte matrices and open opportunities for fabrication of protein-containing films with well-organized structure and controllable function, a crucial requirement for advanced sensing applications.
Gallium arsenide single crystal solar cell structure and method of making
NASA Technical Reports Server (NTRS)
Stirn, Richard J. (Inventor)
1983-01-01
A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.
Nanosphere lithography applied to magnetic thin films
NASA Astrophysics Data System (ADS)
Gleason, Russell
Magnetic nanostructures have widespread applications in many areas of physics and engineering, and nanosphere lithography has recently emerged as promising tool for the fabrication of such nanostructures. The goal of this research is to explore the magnetic properties of a thin film of ferromagnetic material deposited onto a hexagonally close-packed monolayer array of polystyrene nanospheres, and how they differ from the magnetic properties of a typical flat thin film. The first portion of this research focuses on determining the optimum conditions for depositing a monolayer of nanospheres onto chemically pretreated silicon substrates (via drop-coating) and the subsequent characterization of the deposited nanosphere layer with scanning electron microscopy. Single layers of permalloy (Ni80Fe20) are then deposited on top of the nanosphere array via DC magnetron sputtering, resulting in a thin film array of magnetic nanocaps. The coercivities of the thin films are measured using a home-built magneto-optical Kerr effect (MOKE) system in longitudinal arrangement. MOKE measurements show that for a single layer of permalloy (Py), the coercivity of a thin film deposited onto an array of nanospheres increases compared to that of a flat thin film. In addition, the coercivity increases as the nanosphere size decreases for the same deposited layer. It is postulated that magnetic exchange decoupling between neighboring nanocaps suppresses the propagation of magnetic domain walls, and this pinning of the domain walls is thought to be the primary source of the increase in coercivity.
Zhu, Yuzhang; Xie, Wei; Gao, Shoujian; Zhang, Feng; Zhang, Wenbin; Liu, Zhaoyang; Jin, Jian
2016-09-01
Fabricating nanofiltration (NF) membranes with high permeating flux and simultaneous high rejection rate for desalination is rather significant and highly desired. A new avenue is reported in this work to design NF membrane by using polydopamine wrapped single-walled carbon nanotube (PD/SWCNTs) ultrathin film as support layer instead of the use of traditional polymer-based underlying layers. Thanks to the high porosity, smooth surface, and more importantly optimal hydrophilic surface of PD/SWCNTs film, a defect-free polyamide selective layer for NF membrane with thickness of as thin as 12 nm is achieved. The obtained NF membrane exhibits an extremely high performance with a permeating flux of 32 L m -2 h -1 bar -1 and a rejection rate of 95.9% to divalent ions. This value is two to five times higher than the traditional NF membranes with similar rejection rate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Holt film wall shear instrumentation for boundary layer transition research
NASA Technical Reports Server (NTRS)
Schneider, Steven P.
1994-01-01
Measurements of the performance of hot-film wall-shear sensors were performed to aid development of improved sensors. The effect of film size and substrate properties on the sensor performance was quantified through parametric studies carried out both electronically and in a shock tube. The results show that sensor frequency response increases with decreasing sensor size, while at the same time sensitivity decreases. Substrate effects were also studied, through parametric variation of thermal conductivity and heat capacity. Early studies used complex dual-layer substrates, while later studies were designed for both single-layer and dual-layer substrates. Sensor failures and funding limitations have precluded completion of the substrate thermal-property tests.
NASA Astrophysics Data System (ADS)
Sakaike, Kohei; Akazawa, Muneki; Nakagawa, Akitoshi; Higashi, Seiichiro
2015-04-01
A novel low-temperature technique for transferring a silicon-on-insulator (SOI) layer with a midair cavity (supported by narrow SiO2 columns) by meniscus force has been proposed, and a single-crystalline Si (c-Si) film with a midair cavity formed in dog-bone shape was successfully transferred to a poly(ethylene terephthalate) (PET) substrate at its heatproof temperature or lower. By applying this proposed transfer technique, high-performance c-Si-based complementary metal-oxide-semiconductor (CMOS) transistors were successfully fabricated on the PET substrate. The key processes are the thermal oxidation and subsequent hydrogen annealing of the SOI layer on the midair cavity. These processes ensure a good MOS interface, and the SiO2 layer works as a “blocking” layer that blocks contamination from PET. The fabricated n- and p-channel c-Si thin-film transistors (TFTs) on the PET substrate showed field-effect mobilities of 568 and 103 cm2 V-1 s-1, respectively.
Lu, Di; Baek, David J.; Hong, Seung Sae; ...
2016-09-12
Here, the ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals 1, 2, 3, 4, 5, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality 6, 7, 8, 9 and emergent phenomena, as seen in perovskite heterostructures 10, 11, 12. However, separation of these layers from the growth substrate has proved challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general methodmore » to create freestanding perovskite membranes. The key is the epitaxial growth of water-soluble Sr 3Al 2O 6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr 3Al 2O 6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds 13, 14.« less
NASA Astrophysics Data System (ADS)
Park, Young-Bae; Ruglovsky, Jennifer L.; Atwater, Harry A.
2004-07-01
Single crystal BaTiO3 thin films have been transferred onto Pt-coated and Si3N4-coated substrates by the ion implantation-induced layer transfer method using H + and He+ ion coimplantation and subsequent annealing. The transferred BaTiO3 films are single crystalline with root mean square roughness of 17nm. Polarized optical and piezoresponse force microscopy (PFM) indicate that the BaTiO3 film domain structure closely resembles that of bulk tetragonal BaTiO3 and atomic force microscopy shows a 90° a -c domain structure with a tetragonal angle of 0.5°-0.6°. Micro-Raman spectroscopy indicates that the local mode intensity is degraded in implanted BaTiO3 but recovers during anneals above the Curie temperature. The piezoelectric coefficient, d33, is estimated from PFM to be 80-100pm/V and the coercive electric field (Ec) is 12-20kV/cm, comparable to those in single crystal BaTiO3.
Optical and structural properties of cobalt-permalloy slanted columnar heterostructure thin films
NASA Astrophysics Data System (ADS)
Sekora, Derek; Briley, Chad; Schubert, Mathias; Schubert, Eva
2017-11-01
Optical and structural properties of sequential Co-column-NiFe-column slanted columnar heterostructure thin films with an Al2O3 passivation coating are reported. Electron-beam evaporated glancing angle deposition is utilized to deposit the sequential multiple-material slanted columnar heterostructure thin films. Mueller matrix generalized spectroscopic ellipsometry data is analyzed with a best-match model approach employing the anisotropic Bruggeman effective medium approximation formalism to determine bulk-like and anisotropic optical and structural properties of the individual Co and NiFe slanted columnar material sub-layers. Scanning electron microscopy is applied to image the Co-NiFe sequential growth properties and to verify the results of the ellipsometric analysis. Comparisons to single-material slanted columnar thin films and optically bulk solid thin films are presented and discussed. We find that the optical and structural properties of each material sub-layer of the sequential slanted columnar heterostructure film are distinct from each other and resemble those of their respective single-material counterparts.
Vijayaraghavan, Rajani K; Gaman, Cezar; Jose, Bincy; McCoy, Anthony P; Cafolla, Tony; McNally, Patrick J; Daniels, Stephen
2016-02-01
We demonstrate the growth of multilayer and single-layer graphene on copper foil using bipolar pulsed direct current (DC) magnetron sputtering of a graphite target in pure argon atmosphere. Single-layer graphene (SG) and few-layer graphene (FLG) films are deposited at temperatures ranging from 700 °C to 920 °C within <30 min. We find that the deposition and post-deposition annealing temperatures influence the layer thickness and quality of the graphene films formed. The films were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and optical transmission spectroscopy techniques. Based on the above studies, a diffusion-controlled mechanism was proposed for the graphene growth. A single-step whole blood assay was used to investigate the anticoagulant activity of graphene surfaces. Platelet adhesion, activation, and morphological changes on the graphene/glass surfaces, compared to bare glass, were analyzed using fluorescence microscopy and SEM techniques. We have found significant suppression of the platelet adhesion, activation, and aggregation on the graphene-covered surfaces, compared to the bare glass, indicating the anticoagulant activity of the deposited graphene films. Our production technique represents an industrially relevant method for the growth of SG and FLG for various applications including the biomedical field.
Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Pei; Zaslavsky, Alexander; Longo, Paolo
2016-01-07
Accurate optical methods are required to determine the energy bandgap of amorphous semiconductors and elucidate the role of quantum confinement in nanometer-scale, ultra-thin absorbing layers. Here, we provide a critical comparison between well-established methods that are generally employed to determine the optical bandgap of thin-film amorphous semiconductors, starting from normal-incidence reflectance and transmittance measurements. First, we demonstrate that a more accurate estimate of the optical bandgap can be achieved by using a multiple-reflection interference model. We show that this model generates more reliable results compared to the widely accepted single-pass absorption method. Second, we compare two most representative methods (Taucmore » and Cody plots) that are extensively used to determine the optical bandgap of thin-film amorphous semiconductors starting from the extracted absorption coefficient. Analysis of the experimental absorption data acquired for ultra-thin amorphous germanium (a-Ge) layers demonstrates that the Cody model is able to provide a less ambiguous energy bandgap value. Finally, we apply our proposed method to experimentally determine the optical bandgap of a-Ge/SiO{sub 2} superlattices with single and multiple a-Ge layers down to 2 nm thickness.« less
Epitaxial layers of 2122 BCSCO superconductor thin films having single crystalline structure
NASA Technical Reports Server (NTRS)
Pandey, Raghvendra K. (Inventor); Raina, Kanwal K. (Inventor); Solayappan, Narayanan (Inventor)
1995-01-01
A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jihwey; Soh, Yeong-Ah; Aeppli, Gabriel
2015-06-30
Thin films of topological insulators are often capped with an insulating layer since topological insulators are known to be fragile to degradation. However, capping can hinder the observation of novel transport properties of the surface states. To understand the influence of capping on the surface states, it is crucial to understand the crystal structure and the atomic arrangement at the interfaces. Here, we use x-ray diffraction to establish the crystal structure of magnetic topological insulator Cr-doped (Bi,Sb) 2Te 3 (CBST) films grown on SrTiO 3 (1 1 1) substrates with and without a Te capping layer. We find that bothmore » the film and capping layer are single crystal and that the crystal quality of the film is independent of the presence of the capping layer, but that x-rays cause sublimation of the CBST film, which is prevented by the capping layer. Our findings show that the different transport properties of capped films cannot be attributed to a lower crystal quality but to a more subtle effect such as a different electronic structure at the interface with the capping layer. Our results on the crystal structure and atomic arrangements of the topological heterostructure will enable modelling the electronic structure and design of topological heterostructures.« less
Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wang, Zhenwei; Hedhili, M. N.; Wang, Q. X.; Alshareef, H. N.
2014-01-01
We report, for the first time, the use of a single step deposition of semiconductor channel layer to simultaneously achieve both n- and p-type transport in transparent oxide thin film transistors (TFTs). This effect is achieved by controlling the concentration of hydroxyl groups (OH-groups) in the underlying gate dielectrics. The semiconducting tin oxide layer was deposited at room temperature, and the maximum device fabrication temperature was 350°C. Both n and p-type TFTs showed fairly comparable performance. A functional CMOS inverter was fabricated using this novel scheme, indicating the potential use of our approach for various practical applications. PMID:24728223
Wang, Bin; Zhang, Hongchao; Qin, Yuan; Wang, Xi; Ni, Xiaowu; Shen, Zhonghua; Lu, Jian
2011-07-10
To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO(2) film components with platinum high-absorptance inclusions was established. The temperature rises of TiO(2) films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations. © 2011 Optical Society of America
2014-02-14
properties of VO2 films and membranes and compare the results with annealing VO2 films and membranes in hydrogen to provide insight into the doping...2-dimensional free standing membrane with correlated oxides may also lead to new insights into mesoscopic electronic phenomena. Vanadium oxide ( VO2 ...well as for potential applications in switching devices. While studies have been conducted on thin films, hybrid layers of VO2 supported on other
F-16XL ship #1 - CAWAP boundary layer hot film, left wing
NASA Technical Reports Server (NTRS)
1996-01-01
This photo shows the boundary layer hot film on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. Hot film is used to measure temperature changes on a surface. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.
NASA Astrophysics Data System (ADS)
Sritharathikhun, Jaran; Inthisang, Sorapong; Krajangsang, Taweewat; Krudtad, Patipan; Jaroensathainchok, Suttinan; Hongsingtong, Aswin; Limmanee, Amornrat; Sriprapha, Kobsak
2016-12-01
Hydrogenated amorphous silicon oxide (a-Si1-xOx:H) film was used as a buffer layer at the p-layer (μc-Si1-xOx:H)/i-layer (a-Si1-xGex:H) interface for a narrow band gap hydrogenated amorphous silicon germanium (a-Si1-xGex:H) single-junction solar cell. The a-Si1-xOx:H film was deposited by plasma enhanced chemical vapor deposition (PECVD) at 40 MHz in a same processing chamber as depositing the p-type layer. An optimization of the thickness of the a-Si1-xOx:H buffer layer and the CO2/SiH4 ratio was performed in the fabrication of the a-Si1-xGex:H single junction solar cells. By using the wide band gap a-Si1-xOx:H buffer layer with optimum thickness and CO2/SiH4 ratio, the solar cells showed an improvement in the open-circuit voltage (Voc), fill factor (FF), and short circuit current density (Jsc), compared with the solar cells fabricated using the conventional a-Si:H buffer layer. The experimental results indicated the excellent potential of the wide-gap a-Si1-xOx:H buffer layers for narrow band gap a-Si1-xGex:H single junction solar cells.
NASA Astrophysics Data System (ADS)
Yin, H.; Ziemann, P.
2014-06-01
Phase pure cubic boron nitride (c-BN) films have been epitaxially grown on (001) diamond substrates at 900 °C. The n-type doping of c-BN epitaxial films relies on the sequential growth of nominally undoped (p-) and Si doped (n-) layers with well-controlled thickness (down to several nanometer range) in the concept of multiple delta doping. The existence of nominally undoped c-BN overgrowth separates the Si doped layers, preventing Si dopant segregation that was observed for continuously doped epitaxial c-BN films. This strategy allows doping of c-BN films can be scaled up to multiple numbers of doped layers through atomic level control of the interface in the future electronic devices. Enhanced electronic transport properties with higher hall mobility (102 cm2/V s) have been demonstrated at room temperature as compared to the normally continuously Si doped c-BN films.
Magnetic properties of epitaxial bismuth ferrite-garnet mono- and bilayers
NASA Astrophysics Data System (ADS)
Semuk, E. Yu.; Berzhansky, V. N.; Prokopov, A. R.; Shaposhnikov, A. N.; Karavainikov, A. V.; Salyuk, O. Yu.; Golub, V. O.
2015-11-01
Magnetic properties of Bi1.5Gd1.5Fe4.5Al0.5O12 (84 nm) and Bi2.8Y0.2Fe5O12 (180 nm) films epitaxially grown on gallium-gadolinium garnet (GGG) single crystal (111) substrate as well as Bi1.5Gd1.5Fe4.5Al0.5O12/Bi2.8Y0.2Fe5O12 bilayer were investigated using ferromagnetic resonance technique. The mismatch of the lattice parameters of substrate and magnetic layers leads to formation of adaptive layers which affect on the high order anisotropy constant of the films but practically do not affect on uniaxial perpendicular magnetic anisotropy The magnetic properties of the bilayer film were explained in supposition of strong exchange coupling between magnetic layers taking into account film-film and film-substrate elastic interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ziwei; Xiao, Lei; Liang, Renrong, E-mail: wang-j@tsinghua.edu.cn, E-mail: liangrr@tsinghua.edu.cn
2016-06-15
Single-crystal-like rare earth oxide thin films on silicon (Si) substrates were fabricated by magnetron sputtering and high-temperature annealing processes. A 30-nm-thick high-quality GdNdO{sub x} (GNO) film was deposited using a high-temperature sputtering process at 500°C. A Gd{sub 2}O{sub 3} and Nd{sub 2}O{sub 3} mixture was used as the sputtering target, in which the proportions of Gd{sub 2}O{sub 3} and Nd{sub 2}O{sub 3} were controlled to make the GNO’s lattice parameter match that of the Si substrate. To further improve the quality of the GNO film, a post-deposition annealing process was performed at a temperature of 1000°C. The GNO films exhibitedmore » a strong preferred orientation on the Si substrate. In addition, an Al/GNO/Si capacitor was fabricated to evaluate the dielectric constant and leakage current of the GNO films. It was determined that the single-crystal-like GNO films on the Si substrates have potential for use as an insulator layer for semiconductor-on-insulator and semiconductor/insulator multilayer applications.« less
Chen, Jinyao; Yang, Feng; Kang, Jian; Cao, Ya; Xiang, Ming
2018-01-01
In this study, polyamide-aluminum foil-polypropylene (PA-Al-PP) composite films with different orientation status of the PP layer were prepared, and their morphology, tensile, peeling and heat seal behavior were studied. The comparative study of tensile and fracture behaviors of single-layer film of PA, Al and PP, as well as the composite films of PA-Al, PP-Al and PA-Al-PP revealed that in PA-Al-PP composite film, the PA layer with the highest tensile strength can share the tensile stress from the Al layer during stretching, while the PP layer with the lowest tensile strength can prevent further development of the small cracks on boundary of the Al layer during stretching. Moreover, the study of heat seal behavior suggested that both the orientation status and the heat seal conditions were important factors in determining the heat seal strength (HSS) and failure behavior of the sample. Four failure types were observed, and a clear correspondence between HSS and failure types was found. The results also elucidated that for the composite film, only in the cases where the tensile stress was efficiently released by each layer during HSS measurement could the composite film exhibit desired high HSS that was even higher than its tensile strength. PMID:29337881
F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing
NASA Technical Reports Server (NTRS)
1996-01-01
This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.
Radio frequency surface resistance of Tl-Ba-Ca-Cu-O films on metal and single-crystal substrates
NASA Astrophysics Data System (ADS)
Arendt, P. N.; Reeves, G. A.; Elliott, N. E.; Cooke, D. W.; Gray, E. R.; Houlton, R. J.; Brown, D. R.
1990-01-01
Films of Tl-Ba-Ca-Cu were dc magnetron sputtered from a single multielement target. The films were deposited onto substrates of: (1) magnesium oxide, (2) a silver based alloy (Consil 995), (3) a nickel based alloy (Haynes 230), and (4) buffer layers of barium fluoride or copper oxide on Consil. To form superconducting phases, post-deposition anneals were made on these films using an alumina crucible with an over pressure of thallium and flowing oxygen. After annealing, the film phases were determined using x-ray diffraction. The film surface resistances (Rs) were measured at 22 GHz in a TE011 cavity.
Modeling of single film bubble and numerical study of the plateau structure in foam system
NASA Astrophysics Data System (ADS)
Sun, Zhong-guo; Ni, Ni; Sun, Yi-jie; Xi, Guang
2018-02-01
The single-film bubble has a special geometry with a certain amount of gas shrouded by a thin layer of liquid film under the surface tension force both on the inside and outside surfaces of the bubble. Based on the mesh-less moving particle semi-implicit (MPS) method, a single-film double-gas-liquid-interface surface tension (SDST) model is established for the single-film bubble, which characteristically has totally two gas-liquid interfaces on both sides of the film. Within this framework, the conventional surface free energy surface tension model is improved by using a higher order potential energy equation between particles, and the modification results in higher accuracy and better symmetry properties. The complex interface movement in the oscillation process of the single-film bubble is numerically captured, as well as typical flow phenomena and deformation characteristics of the liquid film. In addition, the basic behaviors of the coalescence and connection process between two and even three single-film bubbles are studied, and the cases with bubbles of different sizes are also included. Furthermore, the classic plateau structure in the foam system is reproduced and numerically proved to be in the steady state for multi-bubble connections.
Single-step colloidal quantum dot films for infrared solar harvesting
NASA Astrophysics Data System (ADS)
Kiani, Amirreza; Sutherland, Brandon R.; Kim, Younghoon; Ouellette, Olivier; Levina, Larissa; Walters, Grant; Dinh, Cao-Thang; Liu, Mengxia; Voznyy, Oleksandr; Lan, Xinzheng; Labelle, Andre J.; Ip, Alexander H.; Proppe, Andrew; Ahmed, Ghada H.; Mohammed, Omar F.; Hoogland, Sjoerd; Sargent, Edward H.
2016-10-01
Semiconductors with bandgaps in the near- to mid-infrared can harvest solar light that is otherwise wasted by conventional single-junction solar cell architectures. In particular, colloidal quantum dots (CQDs) are promising materials since they are cost-effective, processed from solution, and have a bandgap that can be tuned into the infrared (IR) via the quantum size effect. These characteristics enable them to harvest the infrared portion of the solar spectrum to which silicon is transparent. To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ˜1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal iodide-capped CQDs, we deposited active layers greater than 200 nm in thickness having a mean roughness less than 1 nm. We integrated these films into infrared solar cells that are stable in air and exhibit power conversion efficiencies of 3.5% under illumination by the full solar spectrum, and 0.4% through a simulated silicon solar cell filter.
NASA Astrophysics Data System (ADS)
Santos-Filho, J. B.; Plascak, J. A.
2017-09-01
The X Y vectorial generalization of the Blume-Emery-Griffiths (X Y -VBEG) model, which is suitable to be applied to the study of 3He-4He mixtures, is treated on thin films structure and its thermodynamical properties are analyzed as a function of the film thickness. We employ extensive and up-to-date Monte Carlo simulations consisting of hybrid algorithms combining lattice-gas moves, Metropolis, Wolff, and super-relaxation procedures to overcome the critical slowing down and correlations among different spin configurations of the system. We also make use of single histogram techniques to get the behavior of the thermodynamical quantities close to the corresponding transition temperatures. Thin films of the X Y -VBEG model present a quite rich phase diagram with Berezinskii-Kosterlitz-Thouless (BKT) transitions, BKT endpoints, and isolated critical points. As one varies the impurity concentrations along the layers, and in the limit of infinite film thickness, there is a coalescence of the BKT transition endpoint and the isolated critical point into a single, unique tricritical point. In addition, when mimicking the behavior of thin films of 3He-4He mixtures, one obtains that the concentration of 3He atoms decreases from the outer layers to the inner layers of the film, meaning that the superfluid particles tend to locate in the bulk of the system.
NASA Astrophysics Data System (ADS)
Buckley, Darragh; McCormack, Robert; O'Dwyer, Colm
2017-04-01
The angle-resolved reflectance of high crystalline quality, c-axis oriented ZnO and AZO single and periodic quasi-superlattice (QSL) spin-coated TFT channels materials are presented. The data is analysed using an adapted model to accurately determine the spectral region for optical thickness and corresponding reflectance. The optical thickness agrees very well with measured thickness of 1-20 layered QSL thin films determined by transmission electron microscopy if the reflectance from lowest interference order is used. Directional reflectance for single layers or homogeneous QSLs of ZnO and AZO channel materials exhibit a consistent degree of anti-reflection characteristics from 30 to 60° (~10-12% reflection) for thickness ranging from ~40 nm to 500 nm. The reflectance of AZO single layer thin films is <10% from 30 to 75° at 514.5 nm, and <6% at 632.8 nm from 30-60°. The data show that ZnO and AZO with granular or periodic substructure behave optically as dispersive, continuous thin films of similar thickness, and angle-resolved spectral mapping provides a design rule for transparency or refractive index determination as a function of film thickness, substructure (dispersion) and viewing angle.
Wang, Youdan; Joshi, Pratixa P; Hobbs, Kevin L; Johnson, Matthew B; Schmidtke, David W
2006-11-07
In this study, we describe the construction of glucose biosensors based on an electrostatic layer-by-layer (LBL) technique. Gold electrodes were initially functionalized with negatively charged 11-mercaptoundecanoic acid followed by alternate immersion in solutions of a positively charged redox polymer, poly[(vinylpyridine)Os(bipyridyl)2Cl(2+/3+)], and a negatively charged enzyme, glucose oxidase (GOX), or a GOX solution containing single-walled carbon nanotubes (SWNTs). The LBL assembly of the multilayer films were characterized by UV-vis spectroscopy, ellipsometry, and cyclic voltammetry, while characterization of the single-walled nanotubes was performed with transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. When the GOX solution contained single-walled carbon nanotubes (GOX-SWNTs), the oxidation peak currents during cyclic voltammetry increased 1.4-4.0 times, as compared to films without SWNTs. Similarly the glucose electro-oxidation current also increased (6-17 times) when SWNTs were present. By varying the number of multilayers, the sensitivity of the sensors could be controlled.
Multiresonant layered plasmonic films
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVetter, Brent M.; Bernacki, Bruce E.; Bennett, Wendy D.
Multi-resonant nanoplasmonic films have numerous applications in areas such as nonlinear optics, sensing, and tamper indication. While techniques such as focused ion beam milling and electron beam lithography can produce high-quality multi-resonant films, these techniques are expensive, serial processes that are difficult to scale at the manufacturing level. Here, we present the fabrication of multi-resonant nanoplasmonic films using a layered stacking technique. Periodically-spaced gold nanocup substrates were fabricated using self-assembled polystyrene nanospheres followed by oxygen plasma etching and metal deposition via magnetron sputter coating. By adjusting etch parameters and initial nanosphere size, it was possible to achieve an optical responsemore » ranging from the visible to the near-infrared. Singly resonant, flexible films were first made by performing peel-off using an adhesive-coated polyolefin film. Through stacking layers of the nanofilm, we demonstrate fabrication of multi-resonant films at a fraction of the cost and effort as compared to top-down lithographic techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uribe, Fernando; Vianco, Paul Thomas; Zender, Gary L.
A study was performed that examined the microstructure and mechanical properties of 63Sn-37Pb (wt.%, Sn-Pb) solder joints made to thick film layers on low-temperature co-fired (LTCC) substrates. The thick film layers were combinations of the Dupont{trademark} 4596 (Au-Pt-Pd) conductor and Dupont{trademark} 5742 (Au) conductor, the latter having been deposited between the 4596 layer and LTCC substrate. Single (1x) and triple (3x) thicknesses of the 4596 layer were evaluated. Three footprint sizes were evaluated of the 5742 thick film. The solder joints exhibited excellent solderability of both the copper (Cu) lead and thick film surface. In all test sample configurations, themore » 5742 thick film prevented side wall cracking of the vias. The pull strengths were in the range of 3.4-4.0 lbs, which were only slightly lower than historical values for alumina (Al{sub 2}O{sub 3}) substrates. General (qualitative) observations: (a) The pull strength was maximized when the total number of thick film layers was between two and three. Fewer that two layers did not develop as strong of a bond at the thick film/LTCC interface; more than three layers and of increased footprint area, developed higher residual stresses at the thick film/LTCC interface and in the underlying LTCC material that weakened the joint. (b) Minimizing the area of the weaker 4596/LTCC interface (e.g., larger 5742 area) improved pull strength. Specific observations: (a) In the presence of vias and the need for the 3x 4596 thick film, the preferred 4596:5742 ratio was 1.0:0.5. (b) For those LTCC components that require the 3x 4596 layer, but do not have vias, it is preferred to refrain from using the 5742 layer. (c) In the absence of vias, the highest strength was realized with a 1x thick 5742 layer, a 1x thick 4596 layer, and a footprint ratio of 1.0:1.0.« less
A. T. Bollinger; Bozovic, I.
2016-08-12
Various electronic phases displayed by cuprates that exhibit high temperature superconductivity continue to attract much interest. We provide a short review of several experiments that we have performed aimed at investigating the superconducting state in these compounds. Measurements on single-phase films, bilayers, and superlattices all point to the conclusion that the high-temperature superconductivity in these materials is an essentially quasi-two dimensional phenomenon. With proper control over the film growth, high-temperature superconductivity can exist in a single copper oxide plane with the critical temperatures as high as that achieved in the bulk samples.
Rajanna, Pramod Mulbagal; Gilshteyn, Evgenia; Yagafarov, Timur; Alekseeva, Alena; Anisimov, Anton; Sergeev, Oleg; Neumueller, Alex; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert
2018-01-09
We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and a thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high quality SWCNTs with an enhanced conductivity by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with different SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit Jsc, open-circuit Voc, and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and efficiency of 3.4% under simulated one-sun AM 1.5G direct illumination. © 2018 IOP Publishing Ltd.
Rajanna, Pramod M; Gilshteyn, Evgenia P; Yagafarov, Timur; Aleekseeva, Alena K; Anisimov, Anton S; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G
2018-01-31
We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.
NASA Astrophysics Data System (ADS)
Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.
2018-03-01
We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.
Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu
2016-02-25
In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al₂O₃ and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value.
Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu
2016-01-01
In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al2O3 and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value. PMID:28344296
Investigation of Electrical and Optical Properties of Highly Transparent TCO/Ag/TCO Multilayer.
Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Ahn, Shihyun; Hussain, Shahzada Qamar; Park, Jinjoo; Jung, Junhee; Lee, Chan; Song, Bong-Shik; Choi, Byoungdeog; Lee, Youn-Jung; Iftiquar, S M; Yi, Junsin
2015-03-01
Transparent conductive oxides (TCOs) have been widely used as transparent electrodes for opto-electronic devices, such as solar cells, flat-panel displays, and light-emitting diodes, because of their unique characteristics of high optical transmittance and low electrical resistivity. Among various TCO materials, zinc oxide based films have recently received much attention because they have advantages over commonly used indium and tin-based oxide films. Most TCO films, however, exhibit valleys of transmittance in the wavelength range of 550-700 nm, lowering the average transmittance in the visible region and decreasing short-circuit current (Isc) of solar cells. A TCO/Ag/TCO multi-layer structure has emerged as an attractive alternative because it provides optical characteristics without the valley of transmittance compared with a 100-nm-thick single-layer TCO. In this article, we report the electrical, optical and surface properties of TCO/Ag/TCO. These multi-layers were deposited at room temperature with various Ag film thicknesses from 5 to 15 nm while the thickness of TCO thin film was fixed at 40 nm. The TCO/Ag/TCO multi-layer with a 10-nm-thick Ag film showed optimum transmittance in the visible (400-800 nm) wavelength region. These multi-layer structures have advantages over TCO layers of the same thickness.
NASA Astrophysics Data System (ADS)
Tan, Qiuhong; Wang, Qianjin; Liu, Yingkai; Yan, Hailong; Cai, Wude; Yang, Zhikun
2018-04-01
Ferroelectric field-effect transistors (FeFETs) with single-walled carbon nanotube (SWCNT) dominated micron-wide stripe patterned as channel, (Bi,Nd)4Ti3O12 films as insulator, and HfO2 films as defect control layer were developed and fabricated. The prepared SWCNT-FeFETs possess excellent properties such as large channel conductance, high on/off current ratio, high channel carrier mobility, great fatigue endurance performance, and data retention. Despite its thin capacitance equivalent thickness, the gate insulator with HfO2 defect control layer shows a low leakage current density of 3.1 × 10-9 A/cm2 at a gate voltage of - 3 V.
Tan, Qiuhong; Wang, Qianjin; Liu, Yingkai; Yan, Hailong; Cai, Wude; Yang, Zhikun
2018-04-27
Ferroelectric field-effect transistors (FeFETs) with single-walled carbon nanotube (SWCNT) dominated micron-wide stripe patterned as channel, (Bi,Nd) 4 Ti 3 O 12 films as insulator, and HfO 2 films as defect control layer were developed and fabricated. The prepared SWCNT-FeFETs possess excellent properties such as large channel conductance, high on/off current ratio, high channel carrier mobility, great fatigue endurance performance, and data retention. Despite its thin capacitance equivalent thickness, the gate insulator with HfO 2 defect control layer shows a low leakage current density of 3.1 × 10 -9 A/cm 2 at a gate voltage of - 3 V.
GaAs shallow-homojunction solar cells
NASA Technical Reports Server (NTRS)
Fan, J. C. C.
1981-01-01
The feasibility of fabricating space resistant, high efficiency, light weight, low cost GaAs shallow homojunction solar cells for space application is investigated. The material preparation of ultrathin GaAs single crystal layers, and the fabrication of efficient GaAs solar cells on bulk GaAs substrates are discussed. Considerable progress was made in both areas, and conversion efficiency about 16% AMO was obtained using anodic oxide as a single layer antireflection coating. A computer design shows that even better cells can be obtained with double layer antireflection coating. Ultrathin, high efficiency solar cells were obtained from GaAs films prepared by the CLEFT process, with conversion efficiency as high as 17% at AMI from a 10 micrometers thick GaAs film. A organometallic CVD was designed and constructed.
Tensile strength of aluminium nitride films
NASA Astrophysics Data System (ADS)
Zong, Deng Gang; Ong, Chung Wo; Aravind, Manju; Tsang, Mei Po; Loong Choy, Chung; Lu, Deren; Ma, Dejun
2004-11-01
Two-layered aluminium nitride (AlN)/silicon nitride microbridges were fabricated for microbridge tests to evaluate the elastic modulus, residual stress and tensile strength of the AlN films. The silicon nitride layer was added to increase the robustness of the structure. In a microbridge test, load was applied to the centre of a microbridge and was gradually increased by a nano-indenter equipped with a wedge tip until the sample was broken, while displacement was recorded coherently. Measurements were performed on single-layered silicon nitride microbridges and two-layered AlN/silicon nitride microbridges respectively. The data were fitted to a theory to derive the elastic modulus, residual stress and tensile strength of the silicon nitride films and AlN films. For the AlN films, the three parameters were determined to be 200, 0.06 and 0.3 GPa, respectively. The values of elastic modulus obtained were consistent with those measured by conventional nano-indentation method. The tensile strength value can be used as a reference to reflect the maximum tolerable tensile stress of AlN films when they are used in micro-electromechanical devices.
One-stage pulsed laser deposition of conductive zinc oxysulfide layers
NASA Astrophysics Data System (ADS)
Bereznev, Sergei; Kocharyan, Hrachya; Maticiuc, Natalia; Naidu, Revathi; Volobujeva, Olga; Tverjanovich, Andrey; Kois, Julia
2017-12-01
Zinc oxysulfide - Zn(O,S) is one of the prospective materials for substitution of conventional CdS buffer layer in complete optoelectronic devices due to its optimal bandgap and low toxicity. In this work Zn(O,S) thin films have been prepared by one-step pulsed laser deposition technique. The films with a thickness of 650 nm were deposited onto the FTO/glass substrates at different substrate temperatures from room temperature to 400 °C. Zn(O,S) layers were characterized by means of scanning electron microscopy, energy dispersive spectroscopy, Raman, X-ray diffraction, UV-vis spectroscopy and Van der Pauw technique. It was found, that obtained Zn(O,S) layers are mainly polycrystalline, highly uniform, transparent, electrically conductive and demonstrate good adhesion to the FTO/glass substrates. In addition, we show that elemental composition of PLD Zn(O,S) films depends on the substrate temperature. For the first time high quality single phase conductive Zn(O,S) layers were prepared by one stage PLD in high vacuum at relatively low temperature 200 °C without any post treatment. The properties of prepared Zn(O,S) films suggest that these films can be applied as buffer layer in optoelectronic devices.
Jiang, Bo; Li, Cuiling; Qian, Huayu; Hossain, Md Shahriar A; Malgras, Victor; Yamauchi, Yusuke
2017-06-26
Although multilayer films have been extensively reported, most compositions have been limited to non-catalytically active materials (e.g. polymers, proteins, lipids, or nucleic acids). Herein, we report the preparation of binder-free multilayer metallic mesoporous films with sufficient accessibility for high electrocatalytic activity by using a programmed electrochemical strategy. By precisely tuning the deposition potential and duration, multilayer mesoporous architectures consisting of alternating mesoporous Pd layers and mesoporous PdPt layers with controlled layer thicknesses can be synthesized within a single electrolyte, containing polymeric micelles as soft templates. This novel architecture, combining the advantages of bimetallic alloys, multilayer architectures, and mesoporous structures, exhibits high electrocatalytic activity for both the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cold cathode emission studies on topographically modified few layer and single layer MoS2 films
NASA Astrophysics Data System (ADS)
Gaur, Anand P. S.; Sahoo, Satyaprakash; Mendoza, Frank; Rivera, Adriana M.; Kumar, Mohit; Dash, Saroj P.; Morell, Gerardo; Katiyar, Ram S.
2016-01-01
Nanostructured materials, such as carbon nanotubes, are excellent cold cathode emitters. Here, we report comparative field emission (FE) studies on topographically tailored few layer MoS2 films consisting of ⟨0001⟩ plane perpendicular (⊥) to c-axis (i.e., edge terminated vertically aligned) along with planar few layer and monolayer (1L) MoS2 films. FE measurements exhibited lower turn-on field Eto (defined as required applied electric field to emit current density of 10 μA/cm2) ˜4.5 V/μm and higher current density ˜1 mA/cm2, for edge terminated vertically aligned (ETVA) MoS2 films. However, Eto magnitude for planar few layer and 1L MoS2 films increased further to 5.7 and 11 V/μm, respectively, with one order decrease in emission current density. The observed differences in emission behavior, particularly for ETVA MoS2 is attributed to the high value of geometrical field enhancement factor (β), found to be ˜1064, resulting from the large confinement of localized electric field at edge exposed nanograins. Emission behavior of planar few layers and 1L MoS2 films are explained under a two step emission mechanism. Our studies suggest that with further tailoring the microstructure of ultra thin ETVA MoS2 films would result in elegant FE properties.
Deposition and properties of cobalt- and ruthenium-based ultra-thin films
NASA Astrophysics Data System (ADS)
Henderson, Lucas Benjamin
Future copper interconnect systems will require replacement of the materials that currently comprise both the liner layer(s) and the capping layer. Ruthenium has previously been considered as a material that could function as a single material liner, however its poor ability to prevent copper diffusion makes it incompatible with liner requirements. A recently described chemical vapor deposition route to amorphous ruthenium-phosphorus alloy films could correct this problem by eliminating the grain boundaries found in pure ruthenium films. Bias-temperature stressing of capacitor structures using 5 nm ruthenium-phosphorus film as a barrier to copper diffusion and analysis of the times-to-failure at accelerated temperature and field conditions implies that ruthenium-phosphorus performs acceptably as a diffusion barrier for temperatures above 165°C. The future problems associated with the copper capping layer are primarily due to the poor adhesion between copper and the current Si-based capping layers. Cobalt, which adheres well to copper, has been widely proposed to replace the Si-based materials, but its ability to prevent copper diffusion must be improved if it is to be successfully implemented in the interconnect. Using a dual-source chemistry of dicobaltoctacarbonyl and trimethylphosphine at temperatures from 250-350°C, amorphous cobalt-phosphorus can be deposited by chemical vapor deposition. The films contain elemental cobalt and phosphorus, plus some carbon impurity, which is incorporated in the film as both graphitic and carbidic (bonded to cobalt) carbon. When deposited on copper, the adhesion between the two materials remains strong despite the presence of phosphorus and carbon at the interface, but the selectivity for growth on copper compared to silicon dioxide is poor and must be improved prior to consideration for application in interconnect systems. A single molecule precursor containing both cobalt and phosphorus atoms, tetrakis(trimethylphosphine)cobalt(0), yields cobalt-phosphorus films without any co-reactant. However, the molecule does not contain sufficient amounts of amorphizing agents to fully eliminate grain boundaries, and the resulting film is nanocrystalline.
NASA Astrophysics Data System (ADS)
Park, Noh-Hwal; Lee, Seung-Hoon; Jeong, Seung-Hyeon; Khim, Dongyoon; Kim, Yun Ho; Yoo, Sungmi; Noh, Yong-Young; Kim, Jang-Joo
2018-03-01
In this paper, we report a simple and effective method to simultaneously achieve a high charge-carrier mobility and low off current in conjugated polymer-wrapped semiconducting single-walled carbon nanotube (s-SWNT) transistors by applying a SWNT bilayer. To achieve the high mobility and low off current, highly purified and less purified s-SWNTs are successively coated to form the semiconducting layer consisting of poly (3-dodecylthiophene-2,5-diyl) (P3DDT)-wrapped high-pressure carbon mono oxide (HiPCO) SWNT (P3DDT-HiPCO) and poly (9, 9-di-n-dodecylfluorene) (PFDD)-wrapped plasma discharge (PD) SWNT (PFDD-PD). The SWNT transistors with bilayer SWNT networked film showed highly improved hole field-effect mobility (6.18 ± 0.85 cm2V-1s-1 average), on/off current ratio (107), and off current (˜1 pA). Thus, the combination of less purified PFDD-PD (98%-99%) charge-injection layer and highly purified s-P3DDT-HiPCO (>99%) charge-transport layer as the bi-layered semiconducting film achieved high mobility and low off current simultaneously.
NASA Technical Reports Server (NTRS)
Nevin, J. H.
1983-01-01
Construction, capacitance and dissipation factor, and electrode materials for single layer capacitors are discussed. Basic construction, phosphosilicate glass, ten layer capacitors, twenty layer capacitors, stress measurements, buffered oxide layers, and 30 layer capacitors are also discussed. Spin-on phosphosilicate glass is addressed. Polymers as dielectric materials are also considered.
Polymer based organic solar cells using ink-jet printed active layers
NASA Astrophysics Data System (ADS)
Aernouts, T.; Aleksandrov, T.; Girotto, C.; Genoe, J.; Poortmans, J.
2008-01-01
Ink-jet printing is used to deposit polymer:fullerene blends suitable as active layer for organic solar cells. We show that merging of separately deposited ink droplets into a continuous, pinhole-free organic thin film results from a balance between ink viscosity and surface wetting, whereas for certain of the studied solutions clear coffee drop effect occurs for single droplets; this can be minimized for larger printed areas, yielding smooth layers with minimal surface roughness. Resulting organic films are used as active layer for solar cells with power conversion efficiency of 1.4% under simulated AM1.5 solar illumination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Y. C.; Duh, J. G., E-mail: pmami.hsiao@gmail.com, E-mail: lin.yg@nsrrc.org.tw, E-mail: jgd@mx.nthu.edu.tw; Hsiao, S. N., E-mail: pmami.hsiao@gmail.com, E-mail: lin.yg@nsrrc.org.tw, E-mail: jgd@mx.nthu.edu.tw
2015-05-07
Two series of samples of single-layer IrMn and IrMn/FePd bilayer films, deposited on a single-crystal MgO substrate at different IrMn deposition temperatures (T{sub s} = 300–700 °C), were investigated using magnetron sputtering. L1{sub 2} ordering was revealed for the 30 nm-thick IrMn epitaxial (001) films with T{sub s} ≥ 400 °C, determined by synchrotron radiation x-ray diffractometry (XRD). XRD results also provide evidence of the epitaxial growth of the IrMn films on MgO substrate. Increasing T{sub s} from 400 to 700 °C monotonically increases the ordering parameter of L1{sub 2} phases from 0.17 to 0.81. An in-plane exchange bias field (H{sub eb}) of 22 Oe is obtained in amore » 10 nm-thick FePd film that is deposited on the disordered IrMn films. As the L1{sub 2} ordering of the IrMn layers increases, the H{sub eb} gradually decreases to 0 Oe, meaning that the exchange bias behavior vanishes. The increased surface roughness, revealed by atomic force microscopy, of the epitaxial IrMn layers with increasing T{sub s} cannot be the main cause of the decrease in H{sub eb} due to the compensated surface spins regardless of the disordered and ordered (001) IrMn layers. The change of antiferromagnetic structure from the A1 to the L1{sub 2} phase was correlated with the evolution of H{sub eb}.« less
Graphene-silicon layered structures on single-crystalline Ir(111) thin films
Que, Yande D.; Tao, Jing; Zhang, Yong; ...
2015-01-20
Epitaxial growth of graphene on transition metal crystals, such as Ru,⁽¹⁻³⁾ Ir,⁽⁴⁻⁶⁾ and Ni,⁽⁷⁾ provides large-area, uniform graphene layers with controllable defect density, which is crucial for practical applications in future devices. To decrease the high cost of single-crystalline metal bulks, single-crystalline metal films are strongly suggested as the substrates for epitaxial growth large-scale high-quality graphene.⁽⁸⁻¹⁰⁾ Moreover, in order to weaken the interactions of graphene with its metal host, which may result in a suppression of the intrinsic properties of graphene,⁽¹¹ ¹²⁾ the method of element intercalation of semiconductors at the interface between an epitaxial graphene layer and a transitionmore » metal substrate has been successfully realized.⁽¹³⁻¹⁶⁾« less
Hadjichristov, Georgi B; Marinov, Yordan G; Petrov, Alexander G
2011-06-01
The light modulating ability of gradient polymer-disposed liquid crystal (PDLC) single layer of large droplets formed by nematic E7 in UV-cured polymer NOA65 is studied. Operating at relatively low voltages, such PDLC film with a of thickness 10-25 μm and droplet size up to 50 μm exhibits a good contrast ratio and is capable of producing a large phase shift for the propagating coherent light. For a linearly polarized He-Ne laser (λ=633 nm), an electrically commanded phase shift as large as π/2 can be obtained by the large-droplet region of the film. The electrically produced phase shift and its spatial profile controlled by the thickness of the gradient PDLC single layers of large nematic droplets can be useful for tunable spatial light modulators and other devices for active control of laser light.
Synthesis of Multifunctional Materials
2006-09-01
temperatures of 600’C and higher, whereas layers grown at lower temperature contained PbO inclusions. Growth of Pb(ZrxTi1 ..)0 3 ( PZT ) films by molecular...beam epitaxy was demonstrated for the first time. Single-crystal, single-phase PZT films were grown on (001) SrTiO3 substrates at a growth temperature...compounds of the PZT system, PbTiO 3 and PbZrO 3, and three-dimensional growth mode for PZT films of intermediate compositions. Epitaxial growth of PbO
NASA Astrophysics Data System (ADS)
Wang, Zhijuan; Wu, Shixin; Zhang, Juan; Chen, Peng; Yang, Guocheng; Zhou, Xiaozhu; Zhang, Qichun; Yan, Qingyu; Zhang, Hua
2012-02-01
The comparison between two kinds of single-layer reduced graphene oxide (rGO) sheets, obtained by reduction of graphene oxide (GO) with the electrochemical method and hydrazine vapor reduction, referred to as E-rGO and C-rGO, respectively, is systematically studied. Although there is no morphology difference between the E-rGO and C-rGO films adsorbed on solid substrates observed by AFM, the reduction process to obtain the E-rGO and C-rGO films is quite different. In the hydrazine vapor reduction, the nitrogen element is incorporated into the obtained C-rGO film, while no additional element is introduced to the E-rGO film during the electrochemical reduction. Moreover, Raman spectra show that the electrochemical method is more effective than the hydrazine vapor reduction method to reduce the GO films. In addition, E-rGO shows better electrocatalysis towards dopamine than does C-rGO. This study is helpful for researchers to understand these two different reduction methods and choose a suitable one to reduce GO based on their experimental requirements.
Polypeptide multilayer films on colloidal particles: an in situ electro-optical study.
Radeva, Tsetska; Kamburova, Kamelia
2007-04-15
The buildup of poly(L-glutamic acid) (PGA) and poly(L-lysine) (PLL) multilayers on beta-FeOOH colloidal particles was investigated by means of electro-optics and electrophoresis. The films were built at different (acidic) pH in the absence of salt. We found that the thickness of the film grows linearly when the fully charged PLL (at pH 5.5) is combined with almost fully charged PGA (at pH 6.5), with a thickness of about 2 nm per single layer. When the fully charged PLL is combined with weakly charged PGA (at pH 4.5), the film thickness increases exponentially with the number of deposited layers. The thickness of the exponentially growing film increases to 300 nm after deposition of 16 layers. The exponential film growth is attributed to the ability of the PLL to diffuse "in" and "out" of the film bulk at each deposition step. The variation in the electrical polarizability of the film-coated particles was also monitored as a function of the number of adsorbed layers. The result reveals that the PLL chains, which can diffuse into the film bulk, have no measurable contribution to the electro-optical effect of the films terminated with PLL. It is only due to the polarization of counterions of the PLL adsorbed on the film surface.
Low Temperature Graphene Synthesis from Poly(methyl methacrylate) Using Microwave Plasma Treatment
NASA Astrophysics Data System (ADS)
Yamada, Takatoshi; Ishihara, Masatou; Hasegawa, Masataka
2013-11-01
A graphene film having low sheet resistance (600 Ω/sq.) was synthesized at low temperatures of 280 °C. Utilizing microwave plasma treatment, graphene films were synthesized from a solid phase on a copper surface. The full width at half maximum of the 2D-band in the Raman spectrum indicated that a high quality graphene film was formed. Cross-sectional transmission electron microscopy observation revealed that the deposited graphene films consisted of single- or double-layer graphene flakes of nanometer order on the Cu surface, which agrees with the estimated number of layers from an average optical transmittance of 96%.
Structure, Hydrodynamics, and Phase Transition of Freely Suspended Liquid Crystals
NASA Technical Reports Server (NTRS)
Clark, Noel A.
2000-01-01
Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enable the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable condensed phase fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new liquid crystal physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and Kosterlitz Thouless phase transition has been observed and 2D XY quasi long range order verified. Smectic films have enabled the precise determination of smectic layer electron density and positional fluctuation profile and have been used to show that the interlayer interactions in anti-ferroelectric tilted smectics do not extend significantly beyond nearest neighbors. The interactions which are operative in liquid crystals are generally weak in comparison to those in crystalline phases, leading to the facile manipulation of the order in liquid crystals by external agents such as applied fields and surfaces. Effects arising from weak ordering are significantly enhanced in ultrathin free films and filaments wherein the intermolecular coupling is effectively reduced by loss of neighbors. Over the past four years this research, which we now detail, has produced a host of exciting new discoveries and unexpected results, maintaining the position of the study of freely suspended liquid crystal structures as one of most exciting and fruitful areas of complex fluid physics. In addition, several potentially interesting microgravity free film experiments have been identified.
Boehler, Christian; Güder, Firat; Kücükbayrak, Umut M.; Zacharias, Margit; Asplund, Maria
2016-01-01
On-demand release of bioactive substances with high spatial and temporal control offers ground-breaking possibilities in the field of life sciences. However, available strategies for developing such release systems lack the possibility of combining efficient control over release with adequate storage capability in a reasonably compact system. In this study we present a new approach to target this deficiency by the introduction of a hybrid material. This organic-inorganic material was fabricated by atomic layer deposition of ZnO into thin films of polyethylene glycol, forming the carrier matrix for the substance to be released. Sub-surface growth mechanisms during this process converted the liquid polymer into a solid, yet water-soluble, phase. This layer permits extended storage for various substances within a single film of only a few micrometers in thickness, and hence demands minimal space and complexity. Improved control over release of the model substance Fluorescein was achieved by coating the hybrid material with a conducting polymer film. Single dosage and repetitive dispensing from this system was demonstrated. Release was controlled by applying a bias potential of ±0.5 V to the polymer film enabling or respectively suppressing the expulsion of the model drug. In vitro tests showed excellent biocompatibility of the presented system. PMID:26791399
NASA Astrophysics Data System (ADS)
Liu, Yu-Rong; Zhao, Gao-Wei; Lai, Pai-To; Yao, Ruo-He
2016-08-01
Si-doped zinc oxide (SZO) thin films are deposited by using a co-sputtering method, and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures. The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated. Moreover, the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure. The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm, and the optical band gap of the SZO film gradually increases with increasing Si content. The Si-doping can effectively suppress the grain growth of ZnO, revealed by atomic force microscope analysis. Compared with that of the undoped ZnO TFT, the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10-12 A, and thus the on/off current ratio is increased by more than two orders of magnitude. In summary, the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 106 and superior stability under gate-bias and drain-bias stress. Projected supported by the National Natural Science Foundation of China (Grant Nos. 61076113 and 61274085), the Natural Science Foundation of Guangdong Province (Grant No. 2016A030313474), and the University Development Fund (Nanotechnology Research Institute, Grant No. 00600009) of the University of Hong Kong, China.
ERIC Educational Resources Information Center
Ngo, Duc Minh
2009-01-01
Current methodologies used for the inference of thin film stresses through curvatures are strictly restricted to stress and curvature states which are assumed to remain uniform over the entire film/substrate system. In this dissertation, we extend these methodologies to non-uniform stress and curvature states for the single layer of thin film or…
Synthesis, Properties, and Applications Of Boron Nitride
NASA Technical Reports Server (NTRS)
Pouch, John J.; Alterovitz, Samuel A.
1993-01-01
Report describes synthesis, properties, and applications of boron nitride. Especially in thin-film form. Boron nitride films useful as masks in x-ray lithography; as layers for passivation of high-speed microelectronic circuits; insulating films; hard, wear-resistant, protective films for optical components; lubricants; and radiation detectors. Present status of single-crystal growth of boron nitride indicates promising candidate for use in high-temperature semiconductor electronics.
NASA Technical Reports Server (NTRS)
Kang, Jin Ho (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor)
2017-01-01
Disclosed is a single wall carbon nanotube (SWCNT) film electrode (FE), all-organic electroactive device systems fabricated with the SWNT-FE, and methods for making same. The SWCNT can be replaced by other types of nanotubes. The SWCNT film can be obtained by filtering SWCNT solution onto the surface of an anodized alumina membrane. A freestanding flexible SWCNT film can be collected by breaking up this brittle membrane. The conductivity of this SWCNT film can advantageously be higher than 280 S/cm. An electroactive polymer (EAP) actuator layered with the SWNT-FE shows a higher electric field-induced strain than an EAP layered with metal electrodes because the flexible SWNT-FE relieves the restraint of the displacement of the polymeric active layer as compared to the metal electrode. In addition, if thin enough, the SWNT-FE is transparent in the visible light range, thus making it suitable for use in actuators used in optical devices.
F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing
NASA Technical Reports Server (NTRS)
1996-01-01
This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.
NASA Astrophysics Data System (ADS)
Aziz, Gaelle; Asadian, Mahtab; Declercq, Heidi; Morent, Rino; De Geyter, Nathalie
2018-06-01
In this work, a dielectric barrier discharge (DBD) has been used for the deposition of bipolar films containing alternating nano-layers of plasma polymerized allylamine (PPAam) and acrylic acid (PPAac). Various films were obtained by varying the single-layer thickness of each plasma polymer while maintaining a constant total film thickness and two kinds of films were fabricated via different depositing sequences (PPAam/Aac and PPAac/Aam). Films properties, ageing in air and stability in water over a 7 days period were investigated. Results showed that, COO- and NH3+ polar entities, generated from the interaction of PPAam and PPAac, are present in the bipolar films. Concerning the films stability, the different reaction mechanisms involved in the formation of each kind of films resulted in a higher amount of polar groups in the PPAam/Aac films; this conferred these films a higher stability than PPAac/Aam. Concerning the films ageing behavior, all prepared samples underwent some kind of ageing which was found to be dependent on the deposition sequence. Results also showed that bipolar coatings exhibited better cell-material interactions compared to PPAam and PPAac films; with a better cell viability observed on PPAam/Aac coatings after 1 and 7 days culture.
Investigation on single walled carbon nanotube thin films deposited by Langmuir Blodgett method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vishalli,, E-mail: vishalli-2008@yahoo.com; Dharamvir, Keya; Kaur, Ramneek
2015-05-15
Langmuir Blodgett is a technique to deposit a homogeneous film with a fine control over thickness and molecular organization. Thin films of functionalized SWCNTs have been prepared by Langmuir Blodgett method. The good surface spreading properties of SWCNTs at air/water interface are indicated by surface pressure-area isotherm and the monolayer formed on water surface is transferred onto the quartz substrate by vertical dipping. A multilayer film is thus obtained in a layer by layer manner. The film is characterized by Atomic Force Microscope (AFM), UV-Vis-NIR spectroscopy and FTIR.AFM shows the surface morphology of the deposited film. UV-Vis-NIR spectroscopy shows themore » characteristic peaks of semiconducting SWCNTs. The uniformity of LB film can be used further in understanding the optical and electrical behavior of these materials.« less
Alzahly, Shaykha; Yu, LePing; Shearer, Cameron J; Gibson, Christopher T; Shapter, Joseph G
2018-04-21
Molybdenum disulphide (MoS₂) is one of the most studied and widely applied nanomaterials from the layered transition-metal dichalcogenides (TMDs) semiconductor family. MoS₂ has a large carrier diffusion length and a high carrier mobility. Combining a layered structure of single-wall carbon nanotube (SWCNT) and MoS₂ with n-type silicon (n-Si) provided novel SWCNT/n-Si photovoltaic devices. The solar cell has a layered structure with Si covered first by a thin layer of MoS₂ flakes and then a SWCNT film. The films were examined using scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The MoS₂ flake thickness ranged from 5 to 90 nm while the nanosheet’s lateral dimensions size ranged up to 1 μm². This insertion of MoS₂ improved the photoconversion efficiency (PCE) of the SWCNT/n-Si solar cells by approximately a factor of 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaike, Kohei; Akazawa, Muneki; Nakamura, Shogo
2013-12-02
A low-temperature local-layer technique for transferring a single-crystalline silicon (c-Si) film by using a meniscus force was proposed, and an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) was fabricated on polyethylene terephthalate (PET) substrate. It was demonstrated that it is possible to transfer and form c-Si films in the required shape at the required position on PET substrates at extremely low temperatures by utilizing a meniscus force. The proposed technique for layer transfer was applied for fabricating high-performance c-Si MOSFETs on a PET substrate. The fabricated MOSFET showed a high on/off ratio of more than 10{sup 8} and a high field-effect mobilitymore » of 609 cm{sup 2} V{sup −1} s{sup −1}.« less
NASA Astrophysics Data System (ADS)
Saha, Shibu; Mehan, Navina; Sreenivas, K.; Gupta, Vinay
2009-08-01
Temperature dependent optical properties of c-axis oriented ZnO thin film were investigated using surface plasmon resonance (SPR) technique. SPR data for double layer (prism-Au-ZnO-air) and single layer (prism-Au-air) systems were taken over a temperature range (300-525 K). Dielectric constant at optical frequency and real part of refractive index of the ZnO film shows an increase with temperature. The bandgap of the oriented ZnO film was found to decrease with rise in temperature. The work indicates a promising application of the system as a temperature sensor and highlights an efficient scientific tool to study optical properties of thin film under varying ambient conditions.
Superconducting structure with layers of niobium nitride and aluminum nitride
Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.
1989-01-01
A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.
Superconducting structure with layers of niobium nitride and aluminum nitride
Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.
1989-07-04
A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.
NASA Astrophysics Data System (ADS)
Mirzadeh Vaghefi, P.; Baghizadeh, A.; Willinger, M.; Lourenço, A. A. C. S.; Amaral, V. S.
2017-12-01
Oxide multiferroic thin films and heterostructures offer a wide range of properties originated from intrinsic coupling between lattice strain and nanoscale magnetic/electronic ordering. La0.9Ba0.1MnO3 (LBM) thin-films and LBM/BaTiO3/LBM (LBMBT) heterostructures were grown on single crystalline [100] silicon and [0001] Al2O3 using RF magnetron sputtering to study the effect of crystallinity and induced lattice mismatch in the film on magnetic properties of deposited films and heterostructures. The thicknesses of the films on Al2O3 and Si are 70 and 145 nm, respectively, and for heterostructures are 40/30/40 nm on both substrates. The microstructure of the films, state of strain and growth orientations was studied by XRD and microscopy techniques. Interplay of microstructure, strain and magnetic properties is further investigated. It is known that the crystal structure of substrates and imposed tensile strain affect the physical properties; i.e. magnetic behavior of the film. The thin layer grown on Al2O3 substrate shows out-of-plane compressive strain, while Si substrate induces tensile strain on the deposited film. The magnetic transition temperatures (Tc) of the LBM film on the Si and Al2O3 substrates are found to be 195 K and 203 K, respectively, slightly higher than the bulk form, 185 K. The LBMBT heterostructure on Si substrate shows drastic decrease in magnetization due to produced defects created by diffusion of Ti ions into magnetic layer. Meanwhile, the Tc in LBMBTs increases in respect to other studied single layers and heterostructure, because of higher tensile strain induced at the interfaces.
Self-assembly of a thin highly reduced graphene oxide film and its high electrocatalytic activity
NASA Astrophysics Data System (ADS)
Bai, Yan-Feng; Zhang, Yong-Fang; Zhou, An-Wei; Li, Hai-Wai; Zhang, Yu; Luong, John H. T.; Cui, Hui-Fang
2014-10-01
A thin highly reduced graphene oxide (rGO) film was self-assembled at the dimethyl formamide (DMF)-air interface through evaporation-induced water-assisted thin film formation at the pentane-DMF interface, followed by complete evaporation of pentane. The thin film was transferred onto various solid substrates for film characterization and electrochemical sensing. UV-visible spectrometry, scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemistry techniques were used to characterize the film. An rGO film showing 82.8% of the transmittance at 550 nm corresponds to a few layers of rGO nanosheets. The rGO nanosheets cross-stack with each other, lying approximately in the plane of the film. An rGO film collected on a glassy carbon (GC) electrode exhibited improved electrical conductivity compared to GC, with the electrode charge-transfer resistance (Rct) reduced from 31 Ω to 22 Ω. The as-formed rGO/GC electrode was mechanically very stable, exhibiting significantly enhanced electrocatalytic activity to H2O2 and dopamine. Multiple layers of the rGO films on the GC electrode showed even stronger electrocatalytic activity to dopamine than that of the single rGO film layer. The controllable formation of a stable rGO film on various solid substrates has potential applications for nanoelectronics and sensors/biosensors.
NASA Astrophysics Data System (ADS)
Yurjev, G. S.; Fainer, N. I.; Maximovskiy, E. A.; Kosinova, M. L.; Sheromov, M. A.; Rumyantsev, Yu. M.
1998-02-01
The structure of semiconductor and dielectric thin (100-300 nm) films was studied by diffraction of synchrotron radiation. The diffraction experiments were performed at both the station "Anomalous scattering" of the storage ring synchrotron facility VEPP-3 and DRON-4 diffractometer. The structure of CdS thin films grown on fused silica, single Si(100) and InP(100) substrates was investigated. The structure of Cu 2S thin films grown on fused silica, single Si(100) substrates and CdS/Si(100)-heterostructure was studied. The structure study was performed on Si 3N 4 films grown on GaAs(100) substrates. The structure of thin BN layers grown on single Si(100) substrates was studied. It was established that structural parameters of above-mentioned thin films coincide on the parameters of JCPDS International Centre for Diffraction Data.
Effect of heat treatment on interface driven magnetic properties of CoFe films
NASA Astrophysics Data System (ADS)
Singh, Akhilesh Kr.; Hsu, Jen-Hwa
2017-06-01
We report systematic studies on non-magnetic Ta underlayer and cap layer driven microstructural and magnetic properties at a wide temperature range for CoFe films. All the films were grown at room temperature and post annealed at different annealing temperatures (TA = 200 °C, 250 °C, 300 °C, 350 °C, 400 °C and 450 °C). The in-plane magnetic hysteresis (M-H) loops of 10 nm thick CoFe single layer films, grown directly on thermally oxidized Si substrate, exhibit anisotropic nature for TA above 250 °C. However, the CoFe (10 nm) films grown on the 5 nm thick Ta underlayer show reduced anisotropy. Moreover, with underlayer and cap layers (2 nm) the anisotropy is disappeared. The in-plane coercivity (HC) shows a strong variation with TA, underlayer and cap layers. HC increases significantly with Ta underlayer and cap layers. The out of plane M-H loops exhibit increase in the remanence magnetization and squareness with both Ta underlayer and cap layers due to transition of in-plane magnetization component to the out of plane direction. The atomic force microscopic observations revealed that grain/particle size and shape depend strongly on TA and Ta layers. Moreover, a large reduction in the surface roughness is observed with the Ta cap layer. The magnetic domain patterns depend on the TA, and Ta layers. However, for Ta/CoFe/Ta films no clear domains were observed for all the TA. Hence, the Ta cap layers not only protect the CoFe magnetic layer against the heat treatment, but also show a smooth surface at a wide temperature range. These results could be discussed on the basis of random anisotropy model, TA, underlayer and cap layers driven microstructure and magnetization orientation of the CoFe films.
MultiLayer solid electrolyte for lithium thin film batteries
Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping
2015-07-28
A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.
Flexible storage medium for write-once optical tape
NASA Technical Reports Server (NTRS)
Strandjord, Andrew J. G.; Webb, Steven P.; Perettie, Donald J.; Cipriano, Robert A.
1993-01-01
A write-once data storage media was developed which is suitable for optical tape applications. The media is manufactured using a continuous film process to deposit a ternary alloy of tin, bismuth, and copper. This laser sensitive layer is sputter deposited onto commercial plastic web as a single-layer thin film. A second layer is sequentially deposited on top of the alloy to enhance the media performance and act as an abrasion resistant hard overcoat. The media was observed to have laser write sensitivities of less than 2.0 njoules/bit, carrier-to-noise levels of greater than 50dB's, modulation depths of approximately 100 percent, read-margins of greater than 35, uniform grain sizes of less than 200 Angstroms, and a media lifetime that exceeds 10 years. Prototype tape media was produced for use in the CREO drive system. The active and overcoat materials are first sputter deposited onto three mil PET film in a single pass through the vacuum coating system, and then converted down into multiple reels of 35mm x 880m tape. One mil PET film was also coated in this manner and then slit and packaged into 3480 tape cartridges.
Thickness-dependent electron mobility of single and few-layer MoS{sub 2} thin-film transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji Heon; Kim, Tae Ho; Lee, Hyunjea
We investigated the dependence of electron mobility on the thickness of MoS{sub 2} nanosheets by fabricating bottom-gate single and few-layer MoS{sub 2} thin-film transistors with SiO{sub 2} gate dielectrics and Au electrodes. All the fabricated MoS{sub 2} transistors showed on/off-current ratio of ∼10{sup 7} and saturated output characteristics without high-k capping layers. As the MoS{sub 2} thickness increased from 1 to 6 layers, the field-effect mobility of the fabricated MoS{sub 2} transistors increased from ∼10 to ∼18 cm{sup 2}V{sup −1}s{sup −1}. The increased subthreshold swing of the fabricated transistors with MoS{sub 2} thickness suggests that the increase of MoS{sub 2}more » mobility with thickness may be related to the dependence of the contact resistance and the dielectric constant of MoS{sub 2} layer on its thickness.« less
NASA Astrophysics Data System (ADS)
Jeon, Jun-Young; Ha, Tae-Jun
2017-08-01
In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.
Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes.
Zhang, Sen; Ji, Chunyan; Bian, Zhuqiang; Liu, Runhua; Xia, Xinyuan; Yun, Daqin; Zhang, Luhui; Huang, Chunhui; Cao, Anyuan
2011-08-10
Conventional fiber-shaped polymeric or dye-sensitized solar cells (DSSCs) are usually made into a double-wire structure, in which a secondary electrode wire (e.g., Pt) was twisted along the primary core wire consisting of active layers. Here, we report highly flexible DSSCs based on a single wire, by wrapping a carbon nanotube film around Ti wire-supported TiO(2) tube arrays as the transparent electrode. Unlike a twisted Pt electrode, the CNT film ensures full contact with the underlying active layer, as well as uniform illumination along circumference through the entire DSSC. The single-wire DSSC shows a power conversion efficiency of 1.6% under standard illumination (AM 1.5, 100 mW/cm(2)), which is further improved to more than 2.6% assisted by a second conventional metal wire (Ag or Cu). Our DSSC wires are stable and can be bent to large angles up to 90° reversibly without performance degradation.
Ullom, Joel N.
2003-06-24
A normal-insulator-superconductor (NIS) microrefrigerator in which a superconducting single crystal is both the substrate and the superconducting electrode of the NIS junction. The refrigerator consists of a large ultra-pure superconducting single crystal and a normal metal layer on top of the superconducting crystal, separated by a thin insulating layer. The superconducting crystal can be either cut from bulk material or grown as a thick epitaxial film. The large single superconducting crystal allows quasiparticles created in the superconducting crystal to easily diffuse away from the NIS junction through the lattice structure of the crystal to normal metal traps to prevent the quasiparticles from returning across the NIS junction. In comparison to thin film NIS refrigerators, the invention provides orders of magnitude larger cooling power than thin film microrefrigerators. The superconducting crystal can serve as the superconducting electrode for multiple NIS junctions to provide an array of microrefrigerators. The normal electrode can be extended and supported by microsupports to provide support and cooling of sensors or arrays of sensors.
Ma, Meng; He, Zhoukun; Yang, Jinghui; Chen, Feng; Wang, Ke; Zhang, Qin; Deng, Hua; Fu, Qiang
2011-11-01
In this Article, the morphological evolution in the blend thin film of polystyrene (PS)/poly(ε-caprolactone) (PCL) was investigated via mainly AFM. It was found that an enriched two-layer structure with PS at the upper layer and PCL at the bottom layer was formed during spinning coating. By changing the solution concentration, different kinds of crystal morphologies, such as finger-like, dendritic, and spherulitic-like, could be obtained at the bottom PCL layer. These different initial states led to the morphological evolution processes to be quite different from each other, so the phase separation, dewetting, and crystalline morphology of PS/PCL blend films as a function of time were studied. It was interesting to find that the morphological evolution of PS at the upper layer was largely dependent on the film thickness. For the ultrathin (15 nm) blend film, a liquid-solid/liquid-liquid dewetting-wetting process was observed, forming ribbons that rupture into discrete circular PS islands on voronoi finger-like PCL crystal. For the thick (30 nm) blend film, the liquid-liquid dewetting of the upper PS layer from the underlying adsorbed PCL layer was found, forming interconnected rim structures that rupture into discrete circular PS islands embedded in the single lamellar PCL dendritic crystal due to Rayleigh instability. For the thicker (60 nm) blend film, a two-step liquid-liquid dewetting process with regular holes decorated with dendritic PCL crystal at early annealing stage and small holes decorated with spherulite-like PCL crystal among the early dewetting holes at later annealing stage was observed. The mechanism of this unusual morphological evolution process was discussed on the basis of the entropy effect and annealing-induced phase separation.
NASA Astrophysics Data System (ADS)
Higashi, H.; Kudo, K.; Yamamoto, K.; Yamada, S.; Kanashima, T.; Tsunoda, I.; Nakashima, H.; Hamaya, K.
2018-06-01
We study the electrical properties of pseudo-single-crystalline Ge (PSC-Ge) films grown by a Au-induced layer exchange crystallization method at 250 °C. By inserting the SiNx layer between PSC-Ge and SiO2, we initiatively suppress the influence of the Ge/SiO2 interfacial defective layers, which have been reported in our previous works, on the electrical properties of the PSC-Ge layers. As a result, we can detect the influence of the ionized Au+ donors on the temperature-dependent hole concentration and Hall mobility. To further examine their electrical properties in detail, we also fabricate p-thin-film transistors (TFTs) with the PSC-Ge layer. Although the off-state leakage currents are suppressed by inserting the SiNx layer, the value of on/off ratio remains poor (<102). Even after the post-annealing at 400 °C for the TFTs, the on/off ratio is still poor (˜102) because of the gate-induced drain leakage current although a nominal field effect mobility is enhanced up to ˜25 cm2/V s. Considering these features, we conclude that the Au contaminations into the PSC-Ge layer can affect the electrical properties and device performances despite a low-growth temperature of 250 °C. To achieve further high-performance p-TFTs, we have to suppress the Au contaminations into PSC-Ge during the Au-induced crystallization growth.
NASA Astrophysics Data System (ADS)
Vegesna, Sahitya V.; Bürger, Danilo; Patra, Rajkumar; Abendroth, Barbara; Skorupa, Ilona; Schmidt, Oliver G.; Schmidt, Heidemarie
2017-06-01
Isothermal magnetoresistance (MR) of n-type conducting Zn1-xMnxO thin films on a sapphire substrate with a Mn content of 5 at. % has been studied in in-plane and out-of-plane magnetic fields up to 6 T in the temperature range of 5 K to 300 K. During pulsed laser deposition of the ZnMnO thin films, we controlled the thickness and roughness of a highly conductive ZnMnO surface layer. The measured MR has been modeled with constant s-d exchange (0.2 eV in ZnMnO) and electron spin (S = 5/2 for Mn2+) for samples with a single two dimensional (2D) ZnMnO layer, a single three dimensional (3D) ZnMnO layer, or a 2D and 3D (2D + 3D) ZnMnO layer in parallel. The temperature dependence of modeled Thouless length LTh (LTh ˜ T-0.5) is in good agreement with the theory [Andrearczyk et al., Phys. Rev. B 72, 121309(R) (2005)]. The superimposed positive and negative MR model for ZnCoO thin films [Xu et al., Phys. Rev. B 76, 134417 (2007)] has been extended in order to account for the increase in the density of states close to the Fermi level of n-ZnMnO due to substitutional Mn2+ ions and their effect on the negative MR in ZnMnO.
Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods
NASA Astrophysics Data System (ADS)
Xi, J.-Q.; Kim, Jong Kyu; Schubert, E. F.; Ye, Dexian; Lu, T.-M.; Lin, Shawn-Yu; Juneja, Jasbir S.
2006-03-01
The refractive-index contrast in dielectric multilayer structures, optical resonators, and photonic crystals is an important figure of merit that creates a strong demand for high-quality thin films with a low refractive index. A SiO2 nanorod layer with low refractive index of n=1.08, to our knowledge the lowest ever reported in thin-film materials, is grown by oblique-angle electron-beam deposition of SiO2. A single-pair distributed Bragg reflector employing a SiO2 nanorod layer is demonstrated to have enhanced reflectivity, showing the great potential of low-refractive-index films for applications in photonic structures and devices.
UV-photodetector based on NiO/diamond film
NASA Astrophysics Data System (ADS)
Chang, Xiaohui; Wang, Yan-Feng; Zhang, Xiaofan; Liu, Zhangcheng; Fu, Jiao; Fan, Shuwei; Bu, Renan; Zhang, Jingwen; Wang, Wei; Wang, Hong-Xing; Wang, Jingjing
2018-01-01
In this study, a NiO/diamond UV-photodetector has been fabricated and investigated. A single crystal diamond (SCD) layer was grown on a high-pressure-high-temperature Ib-type diamond substrate by using a microwave plasma chemical vapor deposition system. NiO films were deposited directly by the reactive magnetron sputtering technique in a mixture gas of oxygen and argon onto the SCD layer. Gold films were patterned on NiO films as electrodes to form the metal-semiconductor-metal UV-photodetector which shows good repeatability and a 2 orders of magnitude UV/visible rejection ratio. Also, the NiO/diamond photodetector has a higher responsivity and a wider response range in contrast to a diamond photodetector.
Highly stable thin film transistors using multilayer channel structure
NASA Astrophysics Data System (ADS)
Nayak, Pradipta K.; Wang, Zhenwei; Anjum, D. H.; Hedhili, M. N.; Alshareef, H. N.
2015-03-01
We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60 °C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.
The new oxide paradigm for solid state ultraviolet photodetectors
NASA Astrophysics Data System (ADS)
Rogers, D. J.; Bove, P.; Arrateig, X.; Sandana, V. E.; Teherani, F. H.; Razeghi, M.; McClintock, R.; Frisch, E.; Harel, S.
2018-03-01
The bandgap of wurzite ZnO layers grown on 2 inch diameter c-Al2O3 substrates by pulsed laser deposition was engineered from 3.7 to 4.8 eV by alloying with Mg. Above this Mg content the layers transformed from single phase hcp to mixed hcp/fcc phase before becoming single phase fcc above a bandgap of about 5.5 eV. Metal-Semiconductor-Metal (MSM) photodetectors based on gold Inter-Digitated-Transducer structures were fabricated from the single phase hcp layers by single step negative photolithography and then packaged in TO5 cans. The devices gave over 6 orders of magnitude of separation between dark and light signal with solar rejection ratios (I270 : I350) of over 3 × 105 and dark signals of 300 pA (at a bias of -5V). Spectral responsivities were engineered to fit the "Deutscher Verein des Gas- und Wasserfaches" industry standard form and gave over two decade higher responsivities (14 A/W, peaked at 270 nm) than commercial SiC based devices. Homogeneous Ga2O3 layers were also grown on 2 inch diameter c-Al2O3 substrates by PLD. Optical transmission spectra were coherent with a bandgap that increased from 4.9 to 5.4 eV when film thickness was decreased from 825 to 145 nm. X-ray diffraction revealed that the films were of the β-Ga2O3 (monoclinic) polytype with strong (-201) orientation. β-Ga2O3 MSM photodetectors gave over 4 orders of magnitude of separation between dark and light signal (at -5V bias) with dark currents of 250 pA and spectral responsivities of up to 40 A/W (at -0.75V bias). It was found that the spectral responsivity peak position could be decreased from 250 to 230 nm by reducing film thickness from 825 to 145 nm. This shift in peak responsivity wavelength with film thickness (a) was coherent with the apparent bandgap shift that was observed in transmission spectroscopy for the same layers and (b) conveniently provides a coverage of the spectral region in which MgZnO layers show fcc/hcp phase mixing.
Preventing Thin Film Dewetting via Graphene Capping.
Cao, Peigen; Bai, Peter; Omrani, Arash A; Xiao, Yihan; Meaker, Kacey L; Tsai, Hsin-Zon; Yan, Aiming; Jung, Han Sae; Khajeh, Ramin; Rodgers, Griffin F; Kim, Youngkyou; Aikawa, Andrew S; Kolaczkowski, Mattew A; Liu, Yi; Zettl, Alex; Xu, Ke; Crommie, Michael F; Xu, Ting
2017-09-01
A monolayer 2D capping layer with high Young's modulus is shown to be able to effectively suppress the dewetting of underlying thin films of small organic semiconductor molecule, polymer, and polycrystalline metal, respectively. To verify the universality of this capping layer approach, the dewetting experiments are performed for single-layer graphene transferred onto polystyrene (PS), semiconducting thienoazacoronene (EH-TAC), gold, and also MoS 2 on PS. Thermodynamic modeling indicates that the exceptionally high Young's modulus and surface conformity of 2D capping layers such as graphene and MoS 2 substantially suppress surface fluctuations and thus dewetting. As long as the uncovered area is smaller than the fluctuation wavelength of the thin film in a dewetting process via spinodal decomposition, the dewetting should be suppressed. The 2D monolayer-capping approach opens up exciting new possibilities to enhance the thermal stability and expands the processing parameters for thin film materials without significantly altering their physical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Grebenyuk, G. S.; Gomoyunova, M. V.; Pronin, I. I.; Vyalikh, D. V.; Molodtsov, S. L.
2016-03-01
Ultrathin (∼2 nm) films of Co2FeSi ferromagnetic alloy were formed on silicon by solid-phase epitaxy and studied in situ. Experiments were carried out in an ultrahigh vacuum (UHV) using substrates of Si(1 1 1) single crystals covered with a 5 nm thick CaF2 barrier layer. The elemental and phase composition as well as the magnetic properties of the synthesized films were analyzed by photoelectron spectroscopy using synchrotron radiation and by magnetic linear dichroism in photoemission of Fe 3p and Co 3p electrons. The study shows that the synthesis of the Co2FeSi ferromagnetic alloy occurs in the temperature range of 200-400 °C. At higher temperatures, the films become island-like and lose their ferromagnetic properties, as the CaF2 barrier layer is unable to prevent a mass transfer between the film and the Si substrate, which violates the stoichiometry of the alloy.
NASA Astrophysics Data System (ADS)
Nakasu, Taizo; Sun, W.; Kobayashi, M.; Asahi, T.
2017-06-01
Zinc telluride layers were grown on highly-lattice-mismatched sapphire substrates by molecular beam epitaxy, and their crystallographic properties were studied by means of X-ray diffraction pole figures. The crystal quality of the ZnTe thin film was further studied by scanning electron microscopy, X-ray rocking curves and low-temperature photoluminescence measurements. These methods show that high-crystallinity (111)-oriented single domain ZnTe layers with the flat surface and good optical properties are realized when the beam intensity ratio of Zn and Te beams is adjusted. The migration of Zn and Te was inhibited by excess surface material and cracks were appeared. In particular, excess Te inhibited the formation of a high-crystallinity ZnTe film. The optical properties of the ZnTe layer revealed that the exciton-related features were dominant, and therefore the film quality was reasonably high even though the lattice constants and the crystal structures were severely mismatched.
Seo, Jin-Suk; Bae, Byeong-Soo
2014-09-10
We fabricated active single- and bilayer structure thin film transistors (TFTs) with aluminum or gallium doped (IZO:Al or IZO:Ga) and undoped indium zinc oxide (IZO) thin film layers using an aqueous solution process. The electrical performance and bias stability of these active single- and bilayer structure TFTs were investigated and compared to reveal the effects of Al/Gal doping and bilayer structure. The single-layer structure IZO TFT shows a high mobility of 19 cm(2)/V · s with a poor positive bias stability (PBS) of ΔVT + 3.4 V. However, Al/Ga doped in IZO TFT reduced mobility to 8.5-9.9 cm(2)/V · s but improved PBS to ΔVT + 1.6-1.7 V due to the reduction of oxygen vacancy. Thus, it is found the bilayer structure TFTs with a combination of bottom- and top-layer compositions modify both the mobility and bias stability of the TFTs to be optimized. The bilayer structure TFT with an IZO:X bottom layer possess high mobility and an IZO bottom layer improves the PBS.
Magnetization pinning in conducting films demonstrated using broadband ferromagnetic resonance
NASA Astrophysics Data System (ADS)
Kostylev, M.; Stashkevich, A. A.; Adeyeye, A. O.; Shakespeare, C.; Kostylev, N.; Ross, N.; Kennewell, K.; Magaraggia, R.; Roussigné, Y.; Stamps, R. L.
2010-11-01
The broadband microstrip ferromagnetic resonance (FMR), cavity FMR, and Brillouin light scattering spectroscopy techniques have been applied for detection and characterization of a magnetic inhomogeneity in a film sample. In the case of a 100 nm thick permalloy film, an additional magnetically depleted top sublayer has been detected due to pinning effect it produces on the magnetization in the bulk of the film. The pinning results in appearance of an exchange standing spin wave mode in the broadband FMR absorption spectrum, whose amplitudes are different depending on whether the film or the film substrate faces the microstrip transducer. Comparison of the experimental amplitudes for this mode with results of our theory for both film placements revealed that the depleted layer is located at the film surface facing away from the film substrate. Subsequent broadband FMR characterization of a large number of other presumably single-layer films with thicknesses in the range 30-100 nm showed the same result.
Yu, Xinge; Zhou, Nanjia; Smith, Jeremy; Lin, Hui; Stallings, Katie; Yu, Junsheng; Marks, Tobin J; Facchetti, Antonio
2013-08-28
We report here a bilayer metal oxide thin film transistor concept (bMO TFT) where the channel has the structure: dielectric/semiconducting indium oxide (In2O3) layer/semiconducting indium gallium oxide (IGO) layer. Both semiconducting layers are grown from solution via a low-temperature combustion process. The TFT mobilities of bottom-gate/top-contact bMO TFTs processed at T = 250 °C are ~5tmex larger (~2.6 cm(2)/(V s)) than those of single-layer IGO TFTs (~0.5 cm(2)/(V s)), reaching values comparable to single-layer combustion-processed In2O3 TFTs (~3.2 cm(2)/(V s)). More importantly, and unlike single-layer In2O3 TFTs, the threshold voltage of the bMO TFTs is ~0.0 V, and the current on/off ratio is significantly enhanced to ~1 × 10(8) (vs ~1 × 10(4) for In2O3). The microstructure and morphology of the In2O3/IGO bilayers are analyzed by X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, revealing the polycrystalline nature of the In2O3 layer and the amorphous nature of the IGO layer. This work demonstrates that solution-processed metal oxides can be implemented in bilayer TFT architectures with significantly enhanced performance.
Towards ALD thin film stabilized single-atom Pd 1 catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piernavieja-Hermida, Mar; Lu, Zheng; White, Anderson
Supported precious metal single-atom catalysts have shown interesting activity and selectivity in recent studies. However, agglomeration of these highly mobile mononuclear surface species can eliminate their unique catalytic properties. In this paper, we study a strategy for synthesizing thin film stabilized single-atom Pd 1 catalysts using atomic layer deposition (ALD). The thermal stability of the Pd 1 catalysts is significantly enhanced by creating a nanocavity thin film structure. In situ infrared spectroscopy and Pd K-edge X-ray absorption spectroscopy (XAS) revealed that the Pd 1 was anchored on the surface through chlorine sites. The thin film stabilized Pd 1 catalysts weremore » thermally stable under both oxidation and reduction conditions. The catalytic performance in the methanol decomposition reaction is found to depend on the thickness of protecting layers. While Pd 1 catalysts showed promising activity at low temperature in a methanol decomposition reaction, 14 cycle TiO 2 protected Pd 1 was less active at high temperature. Pd L 3 edge XAS indicated that the low reactivity compared with Pd nanoparticles is due to the strong adsorption of carbon monoxide even at 250 °C. Lastly, these results clearly show that the ALD nanocavities provide a basis for future design of single-atom catalysts that are highly efficient and stable.« less
Towards ALD thin film stabilized single-atom Pd 1 catalysts
Piernavieja-Hermida, Mar; Lu, Zheng; White, Anderson; ...
2016-07-27
Supported precious metal single-atom catalysts have shown interesting activity and selectivity in recent studies. However, agglomeration of these highly mobile mononuclear surface species can eliminate their unique catalytic properties. In this paper, we study a strategy for synthesizing thin film stabilized single-atom Pd 1 catalysts using atomic layer deposition (ALD). The thermal stability of the Pd 1 catalysts is significantly enhanced by creating a nanocavity thin film structure. In situ infrared spectroscopy and Pd K-edge X-ray absorption spectroscopy (XAS) revealed that the Pd 1 was anchored on the surface through chlorine sites. The thin film stabilized Pd 1 catalysts weremore » thermally stable under both oxidation and reduction conditions. The catalytic performance in the methanol decomposition reaction is found to depend on the thickness of protecting layers. While Pd 1 catalysts showed promising activity at low temperature in a methanol decomposition reaction, 14 cycle TiO 2 protected Pd 1 was less active at high temperature. Pd L 3 edge XAS indicated that the low reactivity compared with Pd nanoparticles is due to the strong adsorption of carbon monoxide even at 250 °C. Lastly, these results clearly show that the ALD nanocavities provide a basis for future design of single-atom catalysts that are highly efficient and stable.« less
NASA Astrophysics Data System (ADS)
Perret, E.; Sen, K.; Khmaladze, J.; Mallett, B. P. P.; Yazdi-Rizi, M.; Marsik, P.; Das, S.; Marozau, I.; Uribe-Laverde, M. A.; de Andrés Prada, R.; Strempfer, J.; Döbeli, M.; Biškup, N.; Varela, M.; Mathis, Y.-L.; Bernhard, C.
2017-12-01
We studied the structural, magnetic and electronic properties of SrFeO3-δ (SFO) thin films and SrFeO3-δ /La2/3 Ca1/3 MnO3 (LCMO) superlattices that have been grown with pulsed laser deposition (PLD) on La0.3 Sr0.7 Al0.65 Ta0.35 O3 (LSAT) substrates. X-ray reflectometry and scanning transmission electron microscopy (STEM) confirm the high structural quality of the films and flat and atomically sharp interfaces of the superlattices. The STEM data also reveal a difference in the interfacial layer stacking with a SrO layer at the LCMO/SFO and a LaO layer at the SFO/LCMO interfaces along the PLD growth direction. The x-ray diffraction (XRD) data suggest that the as grown SFO films and SFO/LCMO superlattices have an oxygen-deficient SrFeO3-δ structure with I4/ mmm space group symmetry (δ≤slant 0.2 ). Subsequent ozone annealed SFO films are consistent with an almost oxygen stoichiometric structure (δ ≈ 0 ). The electronic and magnetic properties of these SFO films are similar to the ones of corresponding single crystals. In particular, the as grown SrFeO3-δ films are insulating whereas the ozone annealed films are metallic. The magneto-resistance effects of the as grown SFO films have a similar magnitude as in the single crystals, but extend over a much wider temperature range. Last but not least, for the SFO/LCMO superlattices we observe a rather large exchange bias effect that varies as a function of the cooling field.
NASA Astrophysics Data System (ADS)
Kulesh, N. A.; Vázquez, M.; Lepalovskij, V. N.; Vas'kovskiy, V. O.
2018-02-01
Hysteresis properties and magnetization reversal in TbCo(30 nm) and FeNi(10 nm)/TbCo(30 nm) films with nanoscale antidot lattices are investigated to test the effect of nanoholes on the perpendicular anisotropy in the TbCo layer and the induced exchange bias in the FeNi layer. The antidots are introduced by depositing the films on top of hexagonally ordered porous anodic alumina substrates with pore diameter and interpore distance fixed to 75 nm and 105 nm, respectively. The analysis of combined vibrating sample magnetometry, Kerr microscopy and magnetic force microscopy imaging measurements has allowed us to link macroscopic and local magnetization reversal processes. For magnetically hard TbCo films, we demonstrate the tunability of magnetic anisotropy and coercive field (i.e., it increases from 0.2 T for the continuous film to 0.5 T for the antidot film). For the antidot FeNi/TbCo film, magnetization of FeNi is confirmed to be in plane. Although an exchange bias has been locally detected in the FeNi layer, the integrated hysteresis loop has increased coercivity and zero shift along the field axis due to the significantly decreased magnetic anisotropy of TbCo layer.
Phase transition in lead titanate thin films: a Brillouin study
NASA Astrophysics Data System (ADS)
Kuzel, P.; Dugautier, C.; Moch, P.; LeMarrec, F.; Karkut, M. G.
2002-12-01
The elastic properties of both polycrystalline and epitaxial PbTiO3 (PTO) thin films are studied using Brillouin scattering spectroscopy. The epitaxial PTO films were prepared by pulsed laser ablation on (1) a [0 0 1] single crystal of SrTiO3 (STO) doped with Nb and (2) a [0 0 1] STO buffered with a layer of YBa2Cu3O7. The polycrystalline PTO films were prepared by sol-gel on a Si substrate buffered with TiO2 and Pt layers. The data analysis takes into account the ripple and the elasto-optic contributions. The latter significantly affects the measured spectra since it gives rise to a Love mode in the p-s scattering geometry. At room temperature, the spectra of the epitaxially grown samples are interpreted using previously published elastic constants of PTO single crystals. Sol-gel samples exhibit appreciable softening of the effective elastic properties compared to PTO single crystals: this result is explained by taking into account the random orientation of the microscopic PTO grains. For both the polycrystalline and the epitaxial films we have determined that the piezoelectric terms do not contribute to the spectra. The temperature dependence of the spectra shows strong anomalies of the elastic properties near the ferroelectric phase transition. Compared to the bulk, TC is higher in the sol-gel films, while in the epitaxial films the sign of the TC shift depends on the underlying material.
Antioxidant migration resistance of SiOx layer in SiOx/PLA coated film.
Huang, Chongxing; Zhao, Yuan; Su, Hongxia; Bei, Ronghua
2018-02-01
As novel materials for food contact packaging, inorganic silicon oxide (SiO x ) films are high barrier property materials that have been developed rapidly and have attracted the attention of many manufacturers. For the safe use of SiO x films for food packaging it is vital to study the interaction between SiO x layers and food contaminants, as well as the function of a SiO x barrier layer in antioxidant migration resistance. In this study, we deposited a SiO x layer on polylactic acid (PLA)-based films to prepare SiO x /PLA coated films by plasma-enhanced chemical vapour deposition. Additionally, we compared PLA-based films and SiO x /PLA coated films in terms of the migration of different antioxidants (e.g. t-butylhydroquinone [TBHQ], butylated hydroxyanisole [BHA], and butylated hydroxytoluene [BHT]) via specific migration experiments and then investigated the effects of a SiO x layer on antioxidant migration under different conditions. The results indicate that antioxidant migration from SiO x /PLA coated films is similar to that for PLA-based films: with increase of temperature, decrease of food simulant polarity, and increase of single-sided contact time, the antioxidant migration rate and amount in SiO x /PLA coated films increase. The SiO x barrier layer significantly reduced the amount of migration of antioxidants with small and similar molecular weights and similar physical and chemical properties, while the degree of migration blocking was not significantly different among the studied antioxidants. However, the migration was affected by temperature and food simulant. Depending on the food simulants considered, the migration amount in SiO x /PLA coated films was reduced compared with that in PLA-based films by 42-46%, 44-47%, and 44-46% for TBHQ, BHA, and BHT, respectively.
Said, Fairus Atida; Menon, Pulliyaseri Susthitha; Rajendran, Venkatachalam; Shaari, Sahbudin; Majlis, Burhanuddin Y
2017-12-01
In this study, the authors investigated the effects of a single layer graphene as a coating layer on top of metal thin films such as silver, gold, aluminum and copper using finite-difference time domain method. To enhance the resolution of surface plasmon resonance (SPR) sensor, it is necessary to increase the SPR reflectivity and decrease the full-width-half maximum (FWHM) of the SPR curve so that there is minimum uncertainty in the determination of the resonance dip. Numerical data was verified with analytical and experimental data where all the data were in good agreement with resonance angle differing in <10% due to noise present in components such as humidity and temperature. In further analysis, reflectivity and FWHM were compared among four types of metal with various thin film thicknesses where graphene was applied on top of the metal layers, and data was compared against pure conventional metal thin films. A 60 nm-thick Au thin film results in higher performance with reflectivity of 92.4% and FWHM of 0.88° whereas single layer graphene-on-60 nm-thick Au gave reflectivity of 91.7% and FWHM of 1.32°. However, a graphene-on-40 nm-thick Ag also gave good performance with narrower FWHM of 0.88° and reflection spectra of 89.2%.
Kinetic model for thin film stress including the effect of grain growth
NASA Astrophysics Data System (ADS)
Chason, Eric; Engwall, A. M.; Rao, Z.; Nishimura, T.
2018-05-01
Residual stress during thin film deposition is affected by the evolution of the microstructure. This can occur because subsurface grain growth directly induces stress in the film and because changing the grain size at the surface affects the stress in new layers as they are deposited. We describe a new model for stress evolution that includes both of these effects. It is used to explain stress in films that grow with extensive grain growth (referred to as zone II) so that the grain size changes throughout the thickness of the layer as the film grows. Equations are derived for different cases of high or low atomic mobility where different assumptions are used to describe the diffusion of atoms that are incorporated into the grain boundary. The model is applied to measurements of stress and grain growth in evaporated Ni films. A single set of model parameters is able to explain stress evolution in films grown at multiple temperatures and growth rates. The model explains why the slope of the curvature measurements changes continuously with thickness and attributes it to the effect of grain size on new layers deposited on the film.
Using atomistic simulations to model cadmium telluride thin film growth
NASA Astrophysics Data System (ADS)
Yu, Miao; Kenny, Steven D.
2016-03-01
Cadmium telluride (CdTe) is an excellent material for low-cost, high efficiency thin film solar cells. It is important to conduct research on how defects are formed during the growth process, since defects lower the efficiency of solar cells. In this work we use computer simulation to predict the growth of a sputter deposited CdTe thin film. On-the-fly kinetic Monte Carlo technique is used to simulate the CdTe thin film growth on the (1 1 1) surfaces. The results show that on the (1 1 1) surfaces the growth mechanisms on surfaces which are terminated by Cd or Te are quite different, regardless of the deposition energy (0.1∼ 10 eV). On the Te-terminated (1 1 1) surface the deposited clusters first form a single mixed species layer, then the Te atoms in the mixed layer moved up to form a new layer. Whilst on the Cd-terminated (1 1 1) surface the new Cd and Te layers are formed at the same time. Such differences are probably caused by stronger bonding between ad-atoms and surface atoms on the Te layer than on the Cd layer.
Stress-induced magnetization for epitaxial spinel ferrite films through interface engineering
NASA Astrophysics Data System (ADS)
Wakiya, Naoki; Shinozaki, Kazuo; Mizutani, Nobuyasu
2004-08-01
This study found "stress-induced magnetization" for epitaxial ferrite films with spinel structure. We grew (111)- and (001)-epitaxial Ni0.17Zn0.23Fe2.60O4(NZF) films on CeO2/Y0.15Zr0.85O1.93(YSZ )/Si(001) and oxide single-crystal substrates, respectively. There is a window of lattice mismatch (between 0 and 6.5%) to achieve bulk saturation magnetization (Ms). An NZF film grown on CeO2/YSZ //Si(001) showed tensile stress, but that stress was relaxed by introducing a ZnCo2O4(ZC ) buffer layer. NZF films grown on SrTiO3(ST )(001) and (La,Sr)(Al,Ta)O3(LSAT)(001) had compressive stress, which was enhanced by introducing a ZC buffer layer. In both cases, bulk Ms was achieved by introducing the ZC buffer layer. This similarity suggests that magnetization can be controlled by the stress.
Structure and Dynamics of Freely Suspended Liquid Crystals
NASA Technical Reports Server (NTRS)
Clark, Noel A.
2004-01-01
Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1 D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline or quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enables the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new LC physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and Kosterlitz Thouless phase transition has been observed and 2D XY quasi long range order verified. Smectic films have enabled the precise determination of smectic layer electron density and positional fluctuation profiles and have been used to show that the interlayer interactions in antiferroelectric tilted smectics do not extend significantly beyond nearest neighbors. Freely suspended films played a pivotal role in the recent discovery of macroscopic chiral-polar ordering in fluids of achiral molecules. The interactions which are operative in liquid crystals are generally weak in comparison to those in crystalline phases, leading to the facile manipulation of the order in liquid crystals by external agents such as applied fields and surfaces. Effects arising from weak ordering are significantly enhanced in ultrathin free films and filaments, in which the intermolecular coupling is effectively further reduced by loss of neighbors. Over the past four years this research, which we now detail, has produced a host of exciting new discoveries and unexpected results, maintaining the study of freely suspended liquid crystal structures as one of most exciting and fruitful areas of complex fluid physics. In addition, a class of experiments on the behavior of 1D interfaces in 2D films have been pursued with results that point to potentially quite interesting effects in microgravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauss, A.R.; Lin, Y.; Auciello, O.
1994-07-01
Low-energy (5--15 keV) pulsed ion beam surface analysis comprises several different surface spectroscopies which possess the ability to provide a remarkably wide range of information directly relevant to the growth of single and multicomponent semiconductor, metal and metal-oxide thin films and layered structures. Ion beam methods have not however, been widely used as an [ital in] [ital situ] monitor of thin film growth because existing commercial instrumentation causes excessive film damage, physically conflicts with the deposition equipment, and requires a chamber pressure [similar to]10[sup [minus]7]--10[sup [minus]8] Torr, i.e., much lower than that associated with most deposition processes ([ge]10[sup [minus]4] Torr).more » We have developed time-of-flight ion scattering and recoil spectroscopy (TOF-SARS) as a nondestructive, [ital in] [ital situ], real-time probe of thin film composition and structure which does not physically interfere with the deposition process. Several TOF-SARS implementations are exceptionally surface specific, yet in a properly designed system can yield high-resolution data at ambient pressures well in excess of 10 mTorr (4--6 orders of magnitude higher than conventional surface analytic methods). Because of the exceptional surface specificity of these methods, TOF-SARS is ideally suited as a means of studying ultrathin layers and atomically abrupt interfaces. TOF-SARS instrumentation designed specifically for use as an [ital in] [ital situ], real-time monitor of growth processes for single and multicomponent thin films and layered structures is described here. Representative data are shown for [ital in] [ital situ] analysis of Pb and Zr layers at room temperature and high vacuum, as well as under conditions appropriate to the growth of Pb(Zr[sub [ital x
Fox, Robert V.; Zhang, Fengyan; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin
2016-06-21
Single source precursors or pre-copolymers of single source precursors are subjected to microwave radiation to form particles of a I-III-VI.sub.2 material. Such particles may be formed in a wurtzite phase and may be converted to a chalcopyrite phase by, for example, exposure to heat. The particles in the wurtzite phase may have a substantially hexagonal shape that enables stacking into ordered layers. The particles in the wurtzite phase may be mixed with particles in the chalcopyrite phase (i.e., chalcopyrite nanoparticles) that may fill voids within the ordered layers of the particles in the wurtzite phase thus produce films with good coverage. In some embodiments, the methods are used to form layers of semiconductor materials comprising a I-III-VI.sub.2 material. Devices such as, for example, thin-film solar cells may be fabricated using such methods.
Enhanced ZnO Thin-Film Transistor Performance Using Bilayer Gate Dielectrics.
Alshammari, Fwzah H; Nayak, Pradipta K; Wang, Zhenwei; Alshareef, Husam N
2016-09-07
We report ZnO TFTs using Al2O3/Ta2O5 bilayer gate dielectrics grown by atomic layer deposition. The saturation mobility of single layer Ta2O5 dielectric TFT was 0.1 cm(2) V(-1) s(-1), but increased to 13.3 cm(2) V(-1) s(-1) using Al2O3/Ta2O5 bilayer dielectric with significantly lower leakage current and hysteresis. We show that point defects present in ZnO film, particularly VZn, are the main reason for the poor TFT performance with single layer dielectric, although interfacial roughness scattering effects cannot be ruled out. Our approach combines the high dielectric constant of Ta2O5 and the excellent Al2O3/ZnO interface quality, resulting in improved device performance.
Nonhomogeneous morphology and the elastic modulus of aligned carbon nanotube films
NASA Astrophysics Data System (ADS)
Won, Yoonjin; Gao, Yuan; Guzman de Villoria, Roberto; Wardle, Brian L.; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W.; Goodson, Kenneth E.
2015-11-01
Carbon nanotube (CNT) arrays offer the potential to develop nanostructured materials that leverage their outstanding physical properties. Vertically aligned carbon nanotubes (VACNTs), also named CNT forests, CNT arrays, or CNT turfs, can provide high heat conductivity and sufficient mechanical compliance to accommodate thermal expansion mismatch for use as thermal interface materials (TIMs). This paper reports measurements of the in-plane moduli of vertically aligned, single-walled CNT (SWCNT) and multi-walled CNT (MWCNT) films. The mechanical response of these films is related to the nonhomogeneous morphology of the grown nanotubes, such as entangled nanotubes of a top crust layer, aligned CNTs in the middle region, and CNTs in the bottom layer. To investigate how the entanglements govern the overall mechanical moduli of CNT films, we remove the crust layer consisting of CNT entanglements by etching the CNT films from the top. A microfabricated cantilever technique shows that crust removal reduces the resulting moduli of the etched SWCNT films by as much as 40%, whereas the moduli of the etched MWCNT films do not change significantly, suggesting a minimal crust effect on the film modulus for thick MWCNT films (>90 μm). This improved understanding will allow us to engineer the mechanical moduli of CNT films for TIMs or packaging applications.
Nanomembrane structures having mixed crystalline orientations and compositions
Lagally, Max G.; Scott, Shelley A.; Savage, Donald E.
2014-08-12
The present nanomembrane structures include a multilayer film comprising a single-crystalline layer of semiconductor material disposed between two other single-crystalline layers of semiconductor material. A plurality of holes extending through the nanomembrane are at least partially, and preferably entirely, filled with a filler material which is also a semiconductor, but which differs from the nanomembrane semiconductor materials in composition, crystal orientation, or both.
NASA Astrophysics Data System (ADS)
Yoo, Young‑Zo; Song, Jeong‑Hwan; Konishi, Yoshinori; Kawasaki, Masashi; Koinuma, Hideomi; Chikyow, Toyohiro
2006-03-01
Epitaxial SrTiO3 (STO) thin films with high electrical properties were grown on Si using ZnS single- and SrS/MnS hetero-buffer layers. STO films on both ZnS-buffered and SrS/MnS-buffered Si showed two growth orientations, (100) and (110). The temperature dependence of the growth orientation for STO films was different for the ZnS single-buffer layer in comparison with the SrS/MnS heterobuffer layers. (100) growth of STO films on SrS/MnS-buffered Si became dominant at high temperatures about 700 °C, while (100) growth of STO films on ZnS-buffered Si became dominant at a relatively low growth temperature of 550 °C. STO(100) films on ZnS-buffered and SrS/MnS-buffered Si showed lattice and domain matches for epitaxial relationships with [001]ZnS\\parallel[011]STO and SrS[001]\\parallel[011]STO, respectively via 45° in-plane rotation of STO films relative to both ZnS and SrS layers. The ZnS buffer layer contained many stacking faults because of the mismatch between ZnS and Si, however, those defects were terminated at the ZnS/STO interface. In contrast, the MnS buffer was very stable against stacking defect formation. Transmission electron microscopy measurements revealed the presence of a disordered region at the ZnS/Si and MnS/Si interfaces. Auger electron spectroscopy and transmission electron microscopy results showed that a good MnS/Si interface at the initial growth stage degraded to a SiS2-x-rich phase during MnS deposition and again into a SiO2-x-rich phase during STO deposition at the high growth temperature of 700 °C. It was also observed that STO on SrS/MnS-buffered Si showed a markedly high dielectric constant compared with that of STO on ZnS-buffered Si.
High Power Attenuator and Termination.
sections are configured from a single thin film series resistor comprised of gold and a plurality of shunt resistors formed from a layer of cermet which...underlies the gold film resistor. The cermet shunt resistors extend away from the series resistor to the side edge of the substrate where they
NASA Astrophysics Data System (ADS)
Obitayo, Waris
The individual carbon nanotube (CNT) based strain sensors have been found to have excellent piezoresistive properties with a reported gauge factor (GF) of up to 3000. This GF on the other hand, has been shown to be structurally dependent on the nanotubes. In contrast, to individual CNT based strain sensors, the ensemble CNT based strain sensors have very low GFs e.g. for a single walled carbon nanotube (SWCNT) thin film strain sensor, GF is ~1. As a result, studies which are mostly numerical/analytical have revealed the dependence of piezoresistivity on key parameters like concentration, orientation, length and diameter, aspect ratio, energy barrier height and Poisson ratio of polymer matrix. The fundamental understanding of the piezoresistive mechanism in an ensemble CNT based strain sensor still remains unclear, largely due to discrepancies in the outcomes of these numerical studies. Besides, there have been little or no experimental confirmation of these studies. The goal of my PhD is to study the mechanism and the optimizing principle of a SWCNT thin film strain sensor and provide experimental validation of the numerical/analytical investigations. The dependence of the piezoresistivity on key parameters like orientation, network density, bundle diameter (effective tunneling area), and length is studied, and how one can effectively optimize the piezoresistive behavior of a SWCNT thin film strain sensors. To reach this goal, my first research accomplishment involves the study of orientation of SWCNTs and its effect on the piezoresistivity of mechanically drawn SWCNT thin film based piezoresistive sensors. Using polarized Raman spectroscopy analysis and coupled electrical-mechanical test, a quantitative relationship between the strain sensitivity and SWCNT alignment order parameter was established. As compared to randomly oriented SWCNT thin films, the one with draw ratio of 3.2 exhibited ~6x increase on the GF. My second accomplishment involves studying the influence of the network density on the piezoresistivity of mechanically drawn SWCNT thin films. Mechanically drawn SWCNT thin films with different layer (or thickness) e.g. 1-layer, 3-layer, 10-layer and 20-layer SWCNT thin films were prepared to understand the variation of SWCNT network density as well as the alignment of SWCNTs on the strain sensitivity. The less entangled SWCNT bundles observed in the sparse network density (1- layer and 3-layer SWCNT thin films) allows for easy alignment and the best gauge factors. As compared to the randomly oriented SWCNT thin films, the one with draw ratio of 3.2 exhibited ~8x increase on the GF for the 1-layer SWCNT thin films while the 20-layer SWCNT thin films exhibited ~3x increase in the GF. My third accomplishment examines the effect of SWCNT bundles with different diameters on the piezoresistive behavior of mechanically drawn SWCNT thin films. SWCNT thin film network of sparse morphology (1-layer) with different bundle sizes were prepared by varying the sonication duration e.g. S0.5hr, S4hr, S10hr and S20hr and using spraying coating. The GF increased by a factor of ~10 when the randomly oriented SWCNT thin film was stretched to a draw ratio of 3.2 for the S0.5hr SWCNT thin films and by a factor of ~2 for the S20hr SWCNT thin films. Three main mechanisms were attributed to this behavior e.g. effect of concentration of exfoliated nanotubes, bundle reduction due to mechanical stretching, and influence of bundle length on the alignment of SWCNTs. Furthermore, information about the average length and length distribution is very essential when investigating the influence of individual nanotube length on the strain sensitivity. With that in mind, we would use our previously developed preparative ultracentrifuge method (PUM), and our newly developed gel electrophoresis and simultaneous Raman and photoluminescence spectroscopy (GEP-SRSPL) to characterize the average length and length distribution of individual SWCNTs respectively.
NASA Astrophysics Data System (ADS)
Zheng, Yanqiong; Wang, Chao; Yu, Junle; Yang, Fang; Zhang, Jing; Wei, Bin; Li, Weishi
2017-11-01
To find the ideal acceptors for perovskite solar cells (PSCs) and get insight into the dielectric property at the interface between perovskite and acceptor, series of small molecular fullerene and non-fullerene acceptors were comparatively investigated. Fullerene acceptors based PSCs show higher performance than non-fullerene acceptors based PSCs. However, the perylene tetracarboxylic diimide based PSC has achieved a η PCE of 4.70%, implying that it is a promising acceptor candidate for PSCs because of its suitable energy level, high electron mobility, and smooth surface. By employing double acceptors of (6,6)-phenyl-C61-butyric acid methyl ester (PCBM)/C60 or PCBM/3,4,9,10-perylenetetracarboxylic bisbenzimidazole, the PSC stability is greatly improved even without performance enhancement. The perovskite (Pero)/PCBM film shows smooth surface, suggesting that PCBM penetrates into the Pero layer. The hydrophobicity trend of Pero/acceptor composite films is same as the device performance by judging from the water contact angle, and Pero/PCBM as well as Pero/C60 show higher hydrophobicity than other Pero/small-molecular-acceptor composite films. Capacitance-voltage characteristics of the series of single and double acceptor based PSCs were measured. The double acceptor based PSCs show larger depletion layer width (W d) than single acceptor based PSCs. Meanwhile, the defect density (N A) in Pero layer for single acceptor based PSCs is larger than that for double acceptor based PSCs, implying better n-doping of Pero layer by using a single acceptor.
In-situ crystallization of GeTe\\GaSb phase change memory stacked films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velea, A., E-mail: alin.velea@psi.ch; National Institute of Materials Physics, RO-077125 Magurele, Ilfov; Borca, C. N.
2014-12-21
Single and double layer phase change memory structures based on GeTe and GaSb thin films were deposited by pulsed laser deposition (PLD). Their crystallization behavior was studied using in-situ synchrotron techniques. Electrical resistance vs. temperature investigations, using the four points probe method, showed transition temperatures of 138 °C and 198 °C for GeTe and GaSb single films, respectively. It was found that after GeTe crystallization in the stacked films, Ga atoms from the GaSb layer diffused in the vacancies of the GeTe crystalline structure. Therefore, the crystallization temperature of the Sb-rich GaSb layer is decreased by more than 30 °C. Furthermore, at 210 °C,more » the antimony excess from GaSb films crystallizes as a secondary phase. At higher annealing temperatures, the crystalline Sb phase increased on the expense of GaSb crystalline phase which was reduced. Extended X-ray absorption fine structure (EXAFS) measurements at the Ga and Ge K-edges revealed changes in their local atomic environments as a function of the annealing temperature. Simulations unveil a tetrahedral configuration in the amorphous state and octahedral configuration in the crystalline state for Ge atoms, while Ga is four-fold coordinated in both as-deposited and annealed samples.« less
Innovation in Layer-by-Layer Assembly.
Richardson, Joseph J; Cui, Jiwei; Björnmalm, Mattias; Braunger, Julia A; Ejima, Hirotaka; Caruso, Frank
2016-12-14
Methods for depositing thin films are important in generating functional materials for diverse applications in a wide variety of fields. Over the last half-century, the layer-by-layer assembly of nanoscale films has received intense and growing interest. This has been fueled by innovation in the available materials and assembly technologies, as well as the film-characterization techniques. In this Review, we explore, discuss, and detail innovation in layer-by-layer assembly in terms of past and present developments, and we highlight how these might guide future advances. A particular focus is on conventional and early developments that have only recently regained interest in the layer-by-layer assembly field. We then review unconventional assemblies and approaches that have been gaining popularity, which include inorganic/organic hybrid materials, cells and tissues, and the use of stereocomplexation, patterning, and dip-pen lithography, to name a few. A relatively recent development is the use of layer-by-layer assembly materials and techniques to assemble films in a single continuous step. We name this "quasi"-layer-by-layer assembly and discuss the impacts and innovations surrounding this approach. Finally, the application of characterization methods to monitor and evaluate layer-by-layer assembly is discussed, as innovation in this area is often overlooked but is essential for development of the field. While we intend for this Review to be easily accessible and act as a guide to researchers new to layer-by-layer assembly, we also believe it will provide insight to current researchers in the field and help guide future developments and innovation.
Topological characters in Fe (Te1 -xSex ) thin films
NASA Astrophysics Data System (ADS)
Wu, Xianxin; Qin, Shengshan; Liang, Yi; Fan, Heng; Hu, Jiangping
2016-03-01
We investigate topological properties in the Fe(Te,Se) thin films. We find that the single layer FeTe1 -xSex has nontrivial Z2 topological invariance which originates from the parity exchange at the Γ point of the Brillouin zone. The nontrivial topology is mainly controlled by the Te(Se) height. Adjusting the anion height, which can be realized as the function of lattice constants and x in FeTe1 -xSex , can drive a topological phase transition. In a bulk material, the two-dimensional Z2 topology invariance is extended to a strong three-dimensional one. In a thin film, we predict that the topological invariance oscillates with the number of layers. The results can also be applied to iron pnictides. Our research establishes FeTe1 -xSex as a unique system to integrate high-Tc superconductivity and topological properties in a single electronic structure.
NASA Astrophysics Data System (ADS)
Wang, Chun; Laughlin, David E.; Kryder, Mark H.
2007-04-01
Epitaxial lead zirconium titanate (PZT) (001) thin films with a Pt bottom electrode were deposited by rf sputtering onto Si(001) single crystal substrates with a Ag buffer layer. Both PZT(20/80) and PZT(53/47) samples were shown to consist of a single perovskite phase and to have the (001) orientation. The orientation relationship was determined to be PZT(001)[110]‖Pt(001)[110]‖Ag(001)[110]‖Si(001)[110]. The microstructure of the multilayer was studied using transmission electron microscopy (TEM). The electron diffraction pattern confirmed the epitaxial relationship between each layer. The measured remanent polarization Pr and coercive field Ec of the PZT(20/80) thin film were 26μC /cm2 and 110kV/cm, respectively. For PZT(53/47), Pr was 10μC /cm2 and Ec was 80kV/cm.
NASA Astrophysics Data System (ADS)
Jilavi, M. H.; Mousavi, S. H.; Müller, T. S.; de Oliveira, P. W.
2018-05-01
Anti-reflection and photocatalytic properties are desirable for improving the optical properties of electronic devices. We describe a method of fabrication a single-layer, anti-reflective (AR) thin film with an additional photocatalytic property. The layer is deposited on glass substrates by means of a low-cost dip-coating method using a SiO2-TiO2 solution. A comparative study was undertaken to investigate the effects of TiO2 concentrations on the photocatalytic properties of the film and to determine the optimal balance between transmittance and photocatalysis. The average transmittance increases from T = 90.51% to T = 95.46 ± 0.07% for the wavelengths between 380 and 1200 nm. The structural characterization indicated the formation of thin, porous SiO2-TiO2 films with a roughness of less than 7.5 nm. The quality of the samples was evaluated by a complete test program of the mechanical, chemical and accelerated weathering stability. This results open up new possibilities for cost-effective AR coatings for the glass and solar cell industries.
Single-crystalline aluminum film for ultraviolet plasmonic nanolasers
Chou, Bo-Tsun; Chou, Yu-Hsun; Wu, Yen-Mo; Chung, Yi-Cheng; Hsueh, Wei-Jen; Lin, Shih-Wei; Lu, Tien-Chang; Lin, Tzy-Rong; Lin, Sheng-Di
2016-01-01
Significant advances have been made in the development of plasmonic devices in the past decade. Plasmonic nanolasers, which display interesting properties, have come to play an important role in biomedicine, chemical sensors, information technology, and optical integrated circuits. However, nanoscale plasmonic devices, particularly those operating in the ultraviolet regime, are extremely sensitive to the metal and interface quality. Thus, these factors have a significant bearing on the development of ultraviolet plasmonic devices. Here, by addressing these material-related issues, we demonstrate a low-threshold, high-characteristic-temperature metal-oxide-semiconductor ZnO nanolaser that operates at room temperature. The template for the ZnO nanowires consists of a flat single-crystalline Al film grown by molecular beam epitaxy and an ultrasmooth Al2O3 spacer layer synthesized by atomic layer deposition. By effectively reducing the surface plasmon scattering and metal intrinsic absorption losses, the high-quality metal film and the sharp interfaces formed between the layers boost the device performance. This work should pave the way for the use of ultraviolet plasmonic nanolasers and related devices in a wider range of applications. PMID:26814581
Nano-size defects in arsenic-implanted HgCdTe films: a HRTEM study
NASA Astrophysics Data System (ADS)
Bonchyk, O. Yu.; Savytskyy, H. V.; Swiatek, Z.; Morgiel, Y.; Izhnin, I. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Fitsych, O. I.; Varavin, V. S.; Dvoretsky, S. A.; Marin, D. V.; Yakushev, M. V.
2018-02-01
Radiation damage and its transformation under annealing were studied with bright-field and high-resolution transmission electron microscopy for arsenic-implanted HgCdTe films with graded-gap surface layers. In addition to typical highly defective layers in as-implanted material, a 50 nm-thick sub-surface layer with very low defect density was observed. The main defects in other layers after implantation were dislocation loops, yet after arsenic activation annealing, the dominating defects were single dislocations. Transport (from depth to surface), transformation and annihilation of radiation-induced defects were observed as a result of annealing, with the depth with the maximum defect density decreasing from 110 to 40 nm.
ZnO buffer layer for metal films on silicon substrates
Ihlefeld, Jon
2014-09-16
Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.
Implanted Silicon Resistor Layers for Efficient Terahertz Absorption
NASA Technical Reports Server (NTRS)
Chervenak, J. A.; Abrahams, J.; Allen, C. A.; Benford, D. J.; Henry, R.; Stevenson, T.; Wollack, E.; Moseley, S. H.
2005-01-01
Broadband absorption structures are an essential component of large format bolometer arrays for imaging GHz and THz radiation. We have measured electrical and optical properties of implanted silicon resistor layers designed to be suitable for these absorbers. Implanted resistors offer a low-film-stress, buried absorber that is robust to longterm aging, temperature, and subsequent metals processing. Such an absorber layer is readily integrated with superconducting integrated circuits and standard micromachining as demonstrated by the SCUBA II array built by ROE/NIST (1). We present a complete characterization of these layers, demonstrating frequency regimes in which different recipes will be suitable for absorbers. Single layer thin film coatings have been demonstrated as effective absorbers at certain wavelengths including semimetal (2,3), thin metal (4), and patterned metal films (5,6). Astronomical instrument examples include the SHARC II instrument is imaging the submillimeter band using passivated Bi semimetal films and the HAWC instrument for SOFIA, which employs ultrathin metal films to span 1-3 THz. Patterned metal films on spiderweb bolometers have also been proposed for broadband detection. In each case, the absorber structure matches the impedance of free space for optimal absorption in the detector configuration (typically 157 Ohms per square for high absorption with a single or 377 Ohms per square in a resonant cavity or quarter wave backshort). Resonant structures with -20% bandwidth coupled to bolometers are also under development; stacks of such structures may take advantage of instruments imaging over a wide band. Each technique may enable effective absorbers in imagers. However, thin films tend to age, degrade or change during further processing, can be difficult to reproduce, and often exhibit an intrinsic granularity that creates complicated frequency dependence at THz frequencies. Thick metal films are more robust but the requirement for patterning can limit their absorption at THz frequencies and their heat capacity can be high. patterned absorber structures that offer low heat capacity, absence of aging, and uniform, predictable behavior at THz frequencies. We have correlated DC electrical and THz optical measurements of a series of implanted layers and studied their frequency dependence of optical absorption from .3 to 10 THz at cryogenic temperatures. We have modeled the optical response to determine the suitability of the implanted silicon resistor as a function of resistance in the range 10 Ohms/sq to 300 Ohms/sq.
Grosse, Corinna; Alemayehu, Matti B; Falmbigl, Matthias; Mogilatenko, Anna; Chiatti, Olivio; Johnson, David C; Fischer, Saskia F
2016-09-16
Hybrid electronic heterostructure films of semi- and superconducting layers possess very different properties from their bulk counterparts. Here, we demonstrate superconductivity in ferecrystals: turbostratically disordered atomic-scale layered structures of single-, bi- and trilayers of NbSe2 separated by PbSe layers. The turbostratic (orientation) disorder between individual layers does not destroy superconductivity. Our method of fabricating artificial sequences of atomic-scale 2D layers, structurally independent of their neighbours in the growth direction, opens up new possibilities of stacking arbitrary numbers of hybrid layers which are not available otherwise, because epitaxial strain is avoided. The observation of superconductivity and systematic Tc changes with nanostructure make this synthesis approach of particular interest for realizing hybrid systems in the search of 2D superconductivity and the design of novel electronic heterostructures.
NASA Technical Reports Server (NTRS)
1980-01-01
Since the early 1960's, virtually all NASA spacecraft have used metallized films for a variety of purposes, principally thermal radiation insulation. King Seeley manufactures a broad line of industrial and consumer oriented metallized film, fabric, paper and foam in single layer sheets and multi-layer laminates. A few examples, commercialized by MPI Outdoor Safety Products, are the three ounce Thermos Emergency Blanket which reflects and retains up to 80 percent of the user's body heat helping prevent post accident shock or keeping a person warm for hours under emergency cold weather conditions.
Atomic and molecular layer deposition for surface modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi; Sievänen, Jenni; Salo, Erkki
2014-06-01
Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjetmore » printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herz, A., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Franz, A.; Theska, F.
2016-03-15
Self-assembly of ultrathin Au, W, and Au-W bilayer thin films is investigated using a rapid thermal annealing technique in an inert ambient. The solid-state dewetting of Au films is briefly revisited in order to emphasize the role of initial film thickness. W films deposited onto SiO{sub 2} evolve into needle-like nanocrystals rather than forming particle-like agglomerates upon annealing at elevated temperatures. Transmission electron microscopy reveals that such nanocrystals actually consist of tungsten (VI) oxide (WO{sub 3}) which is related to an anisotropic oxide crystal growth out of the thin film. The evolution of W films is highly sensitive to themore » presence of any residual oxygen. Combination of both the dewetting of Au and the oxide crystal growth of WO{sub 3} is realized by using various bilayer film configurations of the immiscible Au and W. At low temperature, Au dewetting is initiated while oxide crystal growth is still suppressed. Depending on the stacking sequence of the Au-W bilayer thin film, W acts either as a substrate or as a passivation layer for the dewetting of Au. Being the ground layer, W changes the wettability of Au which clearly modifies its initial state for the dewetting. Being the top layer, W prevents Au from dewetting regardless of Au film thickness. Moreover, regular pattern formation of Au-WO{sub 3} nanoparticles is observed at high temperature demonstrating how bilayer thin film dewetting can create unique nanostructure arrangements.« less
Stacking Nematic Elastomers for Artificial Muscle Applications
2006-04-01
nematic to isotropic phase transition. In this eport, a new approach is introduced by layering liquid crystal elastomer films to create thermally...actuated stacks. A heating element and thermally onductive grease embedded between elastomer films provide a means for rapid internal heat application...voltage application, stacks composed f two 100 m-thick films and a single heating element produce 18% strain between contracted and relaxed states. In
Jeong, Jong Seob; Shung, K. Kirk
2013-01-01
We present an improved fabrication technique for the focused single element poly (vinylidene fluoride–trifluoroethylene) P(VDF–TrFE) transducer. In this work, a conductive epoxy for a backing layer was directly bonded to the 25 μm thick P(VDF–TrFE) film and thus made it easy to conform the aperture of the P(VDF–TrFE) transducer. Two prototype focused P(VDF–TrFE) transducers with disk- and ring-type aperture were fabricated and their performance was evaluated using the UBM (Ultrasound Biomicroscopy) system with a wire phantom. All transducers had a spherically focused aperture with a low f-number (focal depth/aperture size = 1). The center frequency of the disk-type P(VDF–TrFE) transducer was 23 MHz and −6 dB bandwidth was 102%. The ring-type P(VDF–TrFE) transducer had 20 MHz center frequency and −6 dB bandwidth of 103%. The measured pulse echo signal had reduced reverberation due to no additional adhesive layer between the P(VDF–TrFE) film and the backing layer. Hence, the proposed method is promising to fabricate a single element transducer using P(VDF–TrFE) film for high frequency applications. PMID:23021238
NASA Astrophysics Data System (ADS)
Garcia-Garcia, F. J.; Beltrán, A. M.; Yubero, F.; González-Elipe, A. R.; Lambert, R. M.
2017-09-01
Magnetron sputtering under oblique angle deposition was used to produce Ni-containing ultra thin film anodes comprising alternating layers of gadolinium doped ceria (GDC) and yttria stabilized zirconia (YSZ) of either 200 nm or 1000 nm thickness. The evolution of film structure from initial deposition, through calcination and final reduction was examined by XRD, SEM, TEM and TOF-SIMS. After subsequent fuel cell usage, the porous columnar architecture of the two-component layered thin film anodes was maintained and their resistance to delamination from the underlying YSZ electrolyte was superior to that of corresponding single component Ni-YSZ and Ni-GDC thin films. Moreover, the fuel cell performance of the 200 nm layered anodes compared favorably with conventional commercially available thick anodes. The observed dependence of fuel cell performance on individual layer thicknesses prompted study of equivalent but more easily fabricated hybrid anodes consisting of simultaneously deposited Ni-GDC and Ni-YSZ, which procedure resulted in exceptionally intimate mixing and interaction of the components. The hybrids exhibited very unusual and favorable Isbnd V characteristics, along with exceptionally high power densities at high currents. Their discovery is the principal contribution of the present work.
NASA Astrophysics Data System (ADS)
Mohanty, Bhaskar Chandra; Bector, Keerti; Laha, Ranjit
2018-03-01
Doping driven remarkable microstructural evolution of PbS thin films grown by a single-step chemical bath deposition process at 60 °C is reported. The undoped films were discontinuous with octahedral-shaped crystallites after 30 min of deposition, whereas Cu doping led to a distinctly different surface microstructure characterized by densely packed elongated crystallites. A mechanism, based on the time sequence study of microstructural evolution of the films, and detailed XRD and Raman measurements, has been proposed to explain the contrasting microstructure of the doped films. The incorporation of Cu forms an interface layer, which is devoid of Pb. The excess Cu ions in this interface layer at the initial stages of film growth strongly interact and selectively stabilize the charged {111} faces containing either Pb or S compared to the uncharged {100} faces that contain both Pb and S. This interaction interferes with the natural growth habit resulting in the observed surface features of the doped films. Concurrently, the Cu-doping potentially changed the optical properties of the films: A significant widening of the bandgap from 1.52 eV to 1.74 eV for increase in Cu concentration from 0 to 20% was observed, making it a highly potential absorber layer in thin film solar cells.
Wei, Yaowei; Pan, Feng; Zhang, Qinghua; Ma, Ping
2015-01-01
Previous research on the laser damage resistance of thin films deposited by atomic layer deposition (ALD) is rare. In this work, the ALD process for thin film generation was investigated using different process parameters such as various precursor types and pulse duration. The laser-induced damage threshold (LIDT) was measured as a key property for thin films used as laser system components. Reasons for film damaged were also investigated. The LIDTs for thin films deposited by improved process parameters reached a higher level than previously measured. Specifically, the LIDT of the Al2O3 thin film reached 40 J/cm(2). The LIDT of the HfO2/Al2O3 anti-reflector film reached 18 J/cm(2), the highest value reported for ALD single and anti-reflect films. In addition, it was shown that the LIDT could be improved by further altering the process parameters. All results show that ALD is an effective film deposition technique for fabrication of thin film components for high-power laser systems.
Dimensional Effects on the Charge Density Waves in Ultrathin Films of TiSe 2
Chen, P.; Chan, Y. -H.; Wong, M. -H.; ...
2016-09-20
Charge density wave (CDW) formation in solids is a critical phenomenon involving the collective reorganization of the electrons and atoms in the system into a wave structure, and it is expected to be sensitive to the geometric constraint of the system at the nanoscale. Here, we study the CDW transition in TiSe 2, a quasi-two-dimensional layered material, to determine the effects of quantum confinement and changing dimensions in films ranging from a single layer to multilayers. Of key interest is the characteristic length scale for the transformation from a two-dimensional case to the three-dimensional limit. Angle-resolved photoemission (ARPES) measurements ofmore » films with thicknesses up to six layers reveal substantial variations in the energy structure of discrete quantum well states; however, the temperature-dependent band-gap renormalization converges at just three layers. The results indicate a layer-dependent mixture of two transition temperatures and a very-short-range CDW interaction within a three-dimensional framework.« less
Stress Compensating Multilayers
NASA Technical Reports Server (NTRS)
Broadway, David M.; Ramsey, Brian D.; O'dell, Stephen; Gurgew, Danielle
2017-01-01
We present in-situ stress measurement results for single and multilayer thin-films deposited by magnetron sputtering. In particular, we report on the influence of the material interfaces on the ensuing stress in both the transient and steady-state regimes of film growth. This behavior is used to determine the appropriate thicknesses of the constituent layers that will result in a net tensile stress in multilayers composed of various material combinations. These multilayers can then be used to compensate the compressive integrated stress in single and multilayer EUV and x-ray optical coatings. The use of multilayers to compensate the integrated stress might be advantageous because, unlike single layers of chromium, the roughness is not expected to increase with the total thickness of the multilayer. In this paper, we demonstrate the technique for W/Si and Mo/Si multilayers and discuss its application to other material combinations.
Camphor-Enabled Transfer and Mechanical Testing of Centimeter-Scale Ultrathin Films.
Wang, Bin; Luo, Da; Li, Zhancheng; Kwon, Youngwoo; Wang, Meihui; Goo, Min; Jin, Sunghwan; Huang, Ming; Shen, Yongtao; Shi, Haofei; Ding, Feng; Ruoff, Rodney S
2018-05-21
Camphor is used to transfer centimeter-scale ultrathin films onto custom-designed substrates for mechanical (tensile) testing. Compared to traditional transfer methods using dissolving/peeling to remove the support-layers, camphor is sublimed away in air at low temperature, thereby avoiding additional stress on the as-transferred films. Large-area ultrathin films can be transferred onto hollow substrates without damage by this method. Tensile measurements are made on centimeter-scale 300 nm-thick graphene oxide film specimens, much thinner than the ≈2 μm minimum thickness of macroscale graphene-oxide films previously reported. Tensile tests were also done on two different types of large-area samples of adlayer free CVD-grown single-layer graphene supported by a ≈100 nm thick polycarbonate film; graphene stiffens this sample significantly, thus the intrinsic mechanical response of the graphene can be extracted. This is the first tensile measurement of centimeter-scale monolayer graphene films. The Young's modulus of polycrystalline graphene ranges from 637 to 793 GPa, while for near single-crystal graphene, it ranges from 728 to 908 GPa (folds parallel to the tensile loading direction) and from 683 to 775 GPa (folds orthogonal to the tensile loading direction), demonstrating the mechanical performance of large-area graphene in a size scale relevant to many applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gotanda, T; Katsuda, T; Gotanda, R; Tabuchi, A; Yamamoto, K; Kuwano, T; Yatake, H; Takeda, Y
2009-03-01
The effective energy of diagnostic X-rays is important for quality assurance (QA) and quality control (QC). However, the half-value layer (HVL), which is necessary to evaluate the effective energy, is not ubiquitously monitored because ionization-chamber dosimetry is time-consuming and complicated. To verify the applicability of GAFCHROMIC XR type R (GAF-R) film for HVL measurement as an alternative to monitoring with an ionization chamber, a single-strip method for measuring the HVL has been evaluated. Calibration curves of absorbed dose versus film density were generated using this single-strip method with GAF-R film, and the coefficient of determination (r2) of the straight-line approximation was evaluated. The HVLs (effective energies) estimated using the GAF-R film and an ionization chamber were compared. The coefficient of determination (r2) of the straight-line approximation obtained with the GAF-R film was more than 0.99. The effective energies (HVLs) evaluated using the GAF-R film and the ionization chamber were 43.25 keV (5.10 mm) and 39.86 keV (4.45 mm), respectively. The difference in the effective energies determined by the two methods was thus 8.5%. These results suggest that GAF-R might be used to evaluate the effective energy from the film-density growth without the need for ionization-chamber measurements.
NASA Astrophysics Data System (ADS)
Kanninen, Petri; Dang Luong, Nguyen; Hoang Sinh, Le; Anoshkin, Ilya V.; Tsapenko, Alexey; Seppälä, Jukka; Nasibulin, Albert G.; Kallio, Tanja
2016-06-01
Transparent and flexible energy storage devices have garnered great interest due to their suitability for display, sensor and photovoltaic applications. In this paper, we report the application of aerosol synthesized and dry deposited single-walled carbon nanotube (SWCNT) thin films as electrodes for an electrochemical double-layer capacitor (EDLC). SWCNT films exhibit extremely large specific capacitance (178 F g-1 or 552 μF cm-2), high optical transparency (92%) and stability for 10 000 charge/discharge cycles. A transparent and flexible EDLC prototype is constructed with a polyethylene casing and a gel electrolyte.
Alzahly, Shaykha; Yu, LePing; Gibson, Christopher T.
2018-01-01
Molybdenum disulphide (MoS2) is one of the most studied and widely applied nanomaterials from the layered transition-metal dichalcogenides (TMDs) semiconductor family. MoS2 has a large carrier diffusion length and a high carrier mobility. Combining a layered structure of single-wall carbon nanotube (SWCNT) and MoS2 with n-type silicon (n-Si) provided novel SWCNT/n-Si photovoltaic devices. The solar cell has a layered structure with Si covered first by a thin layer of MoS2 flakes and then a SWCNT film. The films were examined using scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The MoS2 flake thickness ranged from 5 to 90 nm while the nanosheet’s lateral dimensions size ranged up to 1 μm2. This insertion of MoS2 improved the photoconversion efficiency (PCE) of the SWCNT/n-Si solar cells by approximately a factor of 2. PMID:29690503
Effect of nickel seed layer on growth of α-V2O5 nanostructured thin films
NASA Astrophysics Data System (ADS)
Sharma, Rabindar Kumar; Kant, Chandra; Kumar, Prabhat; Singh, Megha; Reddy, G. B.
2015-08-01
In this communication, we reported the role of Ni seed layer on the growth of vanadium pentoxide (α-V2O5) nanostructured thin films (NSTs) using plasma assisted sublimation process (PASP). Two different substrates, simple glass substrate and the Ni coated glass substrate (Ni thickness ˜ 100 nm) are employing in the present work. The influence of seed layer on structural, morphological, and vibrational properties have been studied systematically. The structural analysis divulged that both films deposited on simple glass as well as on Ni coated glass shown purely orthorhombic phase, no other phases are detected. The morphological studies of V2O5 film deposited on both substrates are carried out by SEM, revealed that features of V2O5 NSTs is completely modified in presence of Ni seed layer and the film possessing the excellent growth of nanorods (NRs) on Ni coated glass rather than simple glass. The HRTEM analysis of NRs is performed at very high magnification, shows very fine fringe pattern, which confirmed the single crystalline nature of nanorods. The vibrational study of NRs is performed using micro-Raman spectroscopy, which strongly support the XRD observations.
Switzer, Jay A.; Hill, James C.; Mahenderkar, Naveen K.; ...
2016-05-27
Here, single-crystal Au is an excellent substrate for electrochemical epitaxial growth due to its chemical inertness, but the high cost of bulk Au single crystals prohibits their use in practical applications. Here, we show that ultrathin epitaxial films of Au electrodeposited onto Si(111), Si(100), and Si(110) wafers can serve as an inexpensive proxy for bulk single-crystal Au for the deposition of epitaxial films of cuprous oxide (Cu 2O). The Au films range in thickness from 7.7 nm for a film deposited for 5 min to 28.3 nm for a film deposited for 30 min. The film thicknesses are measured bymore » low-angle X-ray reflectivity and X-ray Laue oscillations. High-resolution TEM shows that there is not an interfacial SiO x layer between the Si and Au. The Au films deposited on the Si(111) substrates are smoother and have lower mosaic spread than those deposited onto Si(100) and Si(110). The mosaic spread of the Au(111) layer on Si(111) is only 0.15° for a 28.3 nm thick film. Au films deposited onto degenerate Si(111) exhibit ohmic behavior, whereas Au films deposited onto n-type Si(111) with a resistivity of 1.15 Ω·cm are rectifying with a barrier height of 0.85 eV. The Au and the Cu 2O follow the out-of-plane and in-plane orientations of the Si substrates, as determined by X-ray pole figures. The Au and Cu 2O films deposited on Si(100) and Si(110) are both twinned. The films grown on Si(100) have twins with a [221] orientation, and the films grown on Si(110) have twins with a [411] orientation. An interface model is proposed for all Si orientations, in which the –24.9% mismatch for the Au/Si system is reduced to only +0.13% by a coincident site lattice in which 4 unit meshes of Au coincide with 3 unit meshes of Si. Although this study only considers the deposition of epitaxial Cu 2O films on electrodeposited Au/Si, the thin Au films should serve as high-quality substrates for the deposition of a wide variety of epitaxial materials.« less
Single domain YBa2Cu3Oy thick films on metallic substrates
NASA Astrophysics Data System (ADS)
Reddy, E. S.; Noudem, J. G.; Goodilin, E. A.; Tarka, M.; Schmitz, G. J.
2003-03-01
The fabrication of single domain YBa2Cu3Oy (123) thick films (10-100 mum) on metallic substrates is reported. The process involves the formation of the 123 phase by a peritectic reaction between an air-brushed dense Y2BaCuO5 (211) layer on a Ag12Pd substrate and infiltrated liquid phases containing barium cuprates and copper oxides. Single domain growth is achieved by seeding the green films with a c-axis oriented NdBa2Cu3Oy crystal prior to processing. The maximum processing temperatures are lowered to 970 °C by modifying the characteristics of the liquid phases meant for infiltration by addition of Ag powder. The fabrication technique, processing conditions for single domain growth and the resulting microstructures are discussed.
NASA Astrophysics Data System (ADS)
Ozkan, Cengiz Sinan
Strained layer semiconductor structures provide possibilities for novel electronic devices. When a semiconductor layer is deposited epitaxially onto a single crystal substrate with the same structure but a slightly different lattice parameter, the semiconductor layer grows commensurately with a misfit strain that can be accommodated elastically below a critical thickness. When the critical thickness is exceeded, the elastic strain energy builds up to a point where it becomes energetically favorable to form misfit dislocations. In addition, in the absence of a capping layer, Sisb{1-x}Gesb{x} films exhibit surface roughening via surface diffusion under the effect of a compressive stress which is caused by a lattice mismatch. Surface roughening takes place in the form of ridges aligned along {<}100{>} or {<}110{>} directions depending on the film thickness and the rate of strain relief. Recent work has shown that surface roughening makes a very significant contribution to strain relaxation in heteroepitaxial thin films. At sharp valley regions on the surface, amplified local stresses can cause further defect nucleation and propagation, such as stacking faults and 90sp° dislocations. In addition, capping layers with suitable thickness will surpress surface roughening and keep most of the strain in the film. We study surface roughening and defect formation by conducting controlled annealing experiments on initially flat and defect free films grown by LPCVD in a hydrogen ambient. We study films with both subcritical and supercritical thicknesses. In addition, we compare the relaxation behaviour of capped and uncapped films where surface roughening was inhibited in films with a capping layer. TEM and AFM studies were conducted to study the morphology and microstructure of these films. X-ray diffraction measurements were made to determine the amount of strain relaxation in these films. Further studies of surface roughening on heteroepitaxial films under a positive biaxial stress have shown that, morphological evolution occurs regardless of the sign of stress in the film. Finally, we have studied surface roughening processes in real time by conducting in-situ TEM experiments. We have observed that the kinetics of roughening depend strongly on the annealing ambient.
Zong, Chuanyong; Zhao, Yan; Ji, Haipeng; Xie, Jixun; Han, Xue; Wang, Juanjuan; Cao, Yanping; Lu, Conghua; Li, Hongfei; Jiang, Shichun
2016-08-01
Here, a simple combined strategy of surface wrinkling with visible light irradiation to fabricate well tunable hierarchical surface patterns on azo-containing multilayer films is reported. The key to tailor surface patterns is to introduce a photosensitive poly(disperse orange 3) intermediate layer into the film/substrate wrinkling system, in which the modulus decrease is induced by the reversible photoisomerization. The existence of a photoinert top layer prevents the photoisomerization-induced stress release in the intermediate layer to some extent. Consequently, the as-formed wrinkling patterns can be modulated over a large area by light irradiation. Interestingly, in the case of selective exposure, the wrinkle wavelength in the exposed region decreases, while the wrinkles in the unexposed region are evolved into highly oriented wrinkles with the orientation perpendicular to the exposed/unexposed boundary. Compared with traditional single layer-based film/substrate systems, the multilayer system consisting of the photosensitive intermediate layer offers unprecedented advantages in the patterning controllability/universality. As demonstrated here, this simple and versatile strategy can be conveniently extended to functional multilayer systems for the creation of prescribed hierarchical surface patterns with optically tailored microstructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnetic spin structure and magnetoelectric coupling in BiFeO{sub 3}-BaTiO{sub 3} multilayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazenka, Vera, E-mail: Vera.Lazenka@fys.kuleuven.be; Modarresi, Hiwa; Bisht, Manisha
2015-02-23
Magnetic spin structures in epitaxial BiFeO{sub 3} single layer and an epitaxial BaTiO{sub 3}/BiFeO{sub 3} multilayer thin film have been studied by means of nuclear resonant scattering of synchrotron radiation. We demonstrate a spin reorientation in the 15 × [BaTiO{sub 3}/BiFeO{sub 3}] multilayer compared to the single BiFeO{sub 3} thin film. Whereas in the BiFeO{sub 3} film, the net magnetic moment m{sup →} lies in the (1–10) plane, identical to the bulk, m{sup →} in the multilayer points to different polar and azimuthal directions. This spin reorientation indicates that strain and interfaces play a significant role in tuning the magnetic spin order.more » Furthermore, large difference in the magnetic field dependence of the magnetoelectric coefficient observed between the BiFeO{sub 3} single layer and multilayer can be associated with this magnetic spin reorientation.« less
Magneto-optical properties of CoFeB ultrathin films: Effect of Ta buffer and capping layer
NASA Astrophysics Data System (ADS)
Husain, Sajid; Gupta, Nanhe Kumar; Barwal, Vineet; Chaudhary, Sujeet
2018-05-01
The effect of adding Ta as a capping and buffer layer on ultrathin CFB(Co60Fe20B20) thin films has been investigated by magneto-optical Kerr effect. A large difference in the coercivity and saturation field is observed between the single layer CFB(2nm) and Ta(5nm)/CFB(2nm)/Ta(2nm) trilayer structure. In particular, the in-plane anisotropy energy is found to be 90kJ/m3 on CFB(2nm) and 2.22kJ/m3 for Ta(5nm)/CFB(2nm)/Ta(2nm) thin films. Anisotropy energy further reduced to 0.93kJ/m3 on increasing the CFB thinness in trilayer structure i.e., Ta(5nm)/CFB(4nm)/Ta(2nm). Using VSM measurement, the saturation magnetization is found to be 1230±50 kA/m. Low coercivity and anisotropy energy in capped and buffer layer thin films envisage the potential of employing CFB for low field switching applications of the spintronic devices.
Controllable Curved Mirrors Made from Single-Layer EAP Films
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart
2004-01-01
A document proposes that lightweight, deployable, large-aperture, controllable curved mirrors made of reflectively coated thin electroactive-polymer (EAP) films be developed for use in spaceborne microwave and optical systems. In these mirrors, the EAP films would serve as both structures and actuators. EAPs that are potentially suitable for such use include piezoelectric, electrostrictive, ferroelectric, and dielectric polymers. These materials exhibit strains proportional to the squares of applied electric fields. Utilizing this phenomenon, a curved mirror according to the proposal could be made from a flat film, upon which a nonuniform electrostatic potential (decreasing from the center toward the edge) would be imposed to obtain a required curvature. The effect would be analogous to that of an old-fashioned metalworking practice in which a flat metal sheet is made into a bowl by hammering it repeatedly, the frequency of hammer blows decreasing with distance from the center. In operation, the nonuniform electrostatic potential could be imposed by use of an electron gun. Calculations have shown that by use of a single- layer film made of a currently available EAP, it would be possible to control the focal length of a 2-m-diameter mirror from infinity to 1.25 m.
Bao, Shanyong; Ma, Chunrui; Chen, Garry; Xu, Xing; Enriquez, Erik; Chen, Chonglin; Zhang, Yamei; Bettis, Jerry L; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qingyu
2014-04-22
Surface exchange and oxygen vacancy diffusion dynamics were studied in double-perovskites LnBaCo2O5.5+δ (LnBCO) single-crystalline thin films (Ln = Er, Pr; -0.5 < δ < 0.5) by carefully monitoring the resistance changes under a switching flow of oxidizing gas (O2) and reducing gas (H2) in the temperature range of 250 ~ 800 °C. A giant resistance change ΔR by three to four orders of magnitude in less than 0.1 s was found with a fast oscillation behavior in the resistance change rates in the ΔR vs. t plots, suggesting that the oxygen vacancy exchange diffusion with oxygen/hydrogen atoms in the LnBCO thin films is taking the layer by layer oxygen-vacancy-exchange mechanism. The first principles density functional theory calculations indicate that hydrogen atoms are present in LnBCO as bound to oxygen forming O-H bonds. This unprecedented oscillation phenomenon provides the first direct experimental evidence of the layer by layer oxygen vacancy exchange diffusion mechanism.
Oxygen Displacement in Cuprates under Ionic Liquid Field-Effect Gating
Dubuis, Guy; Yacoby, Yizhak; Zhou, Hua; He, Xi; Bollinger, Anthony T.; Pavuna, Davor; Pindak, Ron; Božović, Ivan
2016-01-01
We studied structural changes in a 5 unit cell thick La1.96Sr0.04CuO4 film, epitaxially grown on a LaSrAlO4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film (ground) and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were: (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and equatorial oxygen atoms were displaced towards the surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of equatorial oxygen atoms. PMID:27578237
NASA Astrophysics Data System (ADS)
Wu, Po-Feng; Shi, Jen-Bin; Cheng, Bo-Ci; Wu, Cheng-Han; Lee, Hsuan-Wei; Lin, Hsien-Sheng; Cheng, Fu-Chou; Chen, Kuan-Ping
2018-05-01
This work investigates a simple and non-toxic method to transform pre-deposited amorphous Co film into CoSe2 films at a fixed, low temperature of 300 °C. Single CoSe2-phase films having good crystallinity were obtained at a selenisation time ≧ 24 hours. A nanostructure CoSe2 having two different nano-morphological layers was observed. The CoSe2 films (72 hours) observed a large absorption and a direct band gap.
Chen, Po-Chiang; Shen, Guozhen; Shi, Yi; Chen, Haitian; Zhou, Chongwu
2010-08-24
In the work described in this paper, we have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on transition-metal-oxide nanowire/single-walled carbon nanotube (SWNT) hybrid thin-film electrodes. These hybrid nanostructured films, with advantages of mechanical flexibility, uniform layered structures, and mesoporous surface morphology, were produced by using a filtration method. Here, manganese dioxide nanowire/SWNT hybrid films worked as the positive electrode, and indium oxide nanowire/SWNT hybrid films served as the negative electrode in a designed ASC. In our design, charges can be stored not only via electrochemical double-layer capacitance from SWNT films but also through a reversible faradic process from transition-metal-oxide nanowires. In addition, to obtain stable electrochemical behavior during charging/discharging cycles in a 2 V potential window, the mass balance between two electrodes has been optimized. Our optimized hybrid nanostructured ASCs exhibited a superior device performance with specific capacitance of 184 F/g, energy density of 25.5 Wh/kg, and columbic efficiency of approximately 90%. In addition, our ASCs exhibited a power density of 50.3 kW/kg, which is 10-fold higher than obtained in early reported ASC work. The high-performance hybrid nanostructured ASCs can find applications in conformal electrics, portable electronics, and electrical vehicles.
Woo, Seouk-Hoon; Hwangbo, Chang Kwon
2006-03-01
Effects of thermal annealing at 400 degrees C on the optical, structural, and chemical properties of TiO2 single-layer, MgF2 single-layer, and TiO2/MgF2 narrow-bandpass filters deposited by conventional electron-beam evaporation (CE) and plasma ion-assisted deposition (PIAD) were investigated. In the case of TiO2 films, the results show that the annealing of both CE and PIAD TiO2 films increases the refractive index slightly and the extinction coefficient and surface roughness greatly. Annealing decreases the thickness of CE TiO2 films drastically, whereas it does not vary that of PIAD TiO2 films. For PIAD MgF2 films, annealing increases the refractive index and decreases the extinction coefficient drastically. An x-ray photoelectron spectroscopy analysis suggests that an increase in the refractive index and a decrease in the extinction coefficient for PIAD MgF2 films after annealing may be related to the enhanced concentration of MgO in the annealed PIAD MgF2 films and the changes in the chemical bonding states of Mg 2p, F 1s, and O is. It is found that (TiO2/MgF2) multilayer filters, consisting of PIAD TiO2 and CE MgF2 films, are as deposited without microcracks and are also thermally stable after annealing.
The low coherence Fabry-Pérot interferometer with diamond and ZnO layers
NASA Astrophysics Data System (ADS)
Majchrowicz, D.; Den, W.; Hirsch, M.
2016-09-01
The authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave Plasma Enhanced Chemical Vapor Deposition (μPE CVD) system. Different thickness of layers was examined. The measurements were performed for the fiber-optic Fabry-Pérot interferometer working in the reflective mode. Spectra were registered for various thicknesses of ZnO layer and various length of the air cavity. As a light source, two superluminescent diodes (SLD) with central wavelength of 1300 nm and 1550 nm were used in measurement set-up.
2012-01-01
The impact of various substrates and zinc oxide (ZnO) ultra thin seed layers prepared by atomic layer deposition on the geometric morphology of subsequent ZnO nanowire arrays (NWs) fabricated by the hydrothermal method was investigated. The investigated substrates included B-doped ZnO films, indium tin oxide films, single crystal silicon (111), and glass sheets. Scanning electron microscopy and X-ray diffraction measurements revealed that the geometry and aligment of the NWs were controlled by surface topography of the substrates and thickness of the ZnO seed layers, respectively. According to atomic force microscopy data, we suggest that the substrate, fluctuate amplitude and fluctuate frequency of roughness on ZnO seed layers have a great impact on the alignment of the resulting NWs, whereas the influence of the seed layers' texture was negligible. PMID:22759838
NASA Astrophysics Data System (ADS)
Cho, Sung Woon; Yun, Myeong Gu; Ahn, Cheol Hyoun; Kim, So Hee; Cho, Hyung Koun
2015-03-01
Zinc oxide (ZnO)-based bi-layers, consisting of ZnO and Al-doped ZnO (AZO) layers grown by atomic layer deposition, were utilized as the channels of oxide thin-film transistors (TFTs). Thin AZO layers (5 nm) with different Al compositions (5 and 14 at. %) were deposited on top of and beneath the ZnO layers in a bi-layer channel structure. All of the bi-layer channel TFTs that included the AZO layers showed enhanced stability (Δ V Th ≤ 3.2 V) under a positive bias stress compared to the ZnO single-layer channel TFT (Δ V Th = 4.0 V). However, the AZO/ZnO bi-layer channel TFTs with an AZO interlayer between the gate dielectric and the ZnO showed a degraded field effect mobility (0.3 cm2/V·s for 5 at. % and 1.8 cm2/V·s for 14 at. %) compared to the ZnO single-layer channel TFT (5.5 cm2/V·s) due to increased scattering caused by Al-related impurities near the gate dielectric/channel interface. In contrast, the ZnO/AZO bi-layer channel TFTs with an AZO layer on top of the ZnO layer exhibited an improved field effect mobility (7.8 cm2/V·s for 14 at. %) and better stability. [Figure not available: see fulltext.
Delaminated Transfer of CVD Graphene
NASA Astrophysics Data System (ADS)
Clavijo, Alexis; Mao, Jinhai; Tilak, Nikhil; Altvater, Michael; Andrei, Eva
Single layer graphene is commonly synthesized by dissociation of a carbonaceous gas at high temperatures in the presence of a metallic catalyst in a process known as Chemical Vapor Deposition or CVD. Although it is possible to achieve high quality graphene by CVD, the standard transfer technique of etching away the metallic catalyst is wasteful and jeopardizes the quality of the graphene film by contamination from etchants. Thus, development of a clean transfer technique and preservation of the parent substrate remain prominent hurdles to overcome. In this study, we employ a copper pretreatment technique and optimized parameters for growth of high quality single layer graphene at atmospheric pressure. We address the transfer challenge by utilizing the adhesive properties between a polymer film and graphene to achieve etchant-free transfer of graphene films from a copper substrate. Based on this concept we developed a technique for dry delamination and transferring of graphene to hexagonal boron nitride substrates, which produced high quality graphene films while at the same time preserving the integrity of the copper catalyst for reuse. DOE-FG02-99ER45742, Ronald E. McNair Postbaccalaureate Achievement Program.
Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; ...
2016-04-27
Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.
A boron and gallium co-doped ZnO intermediate layer for ZnO/Si heterojunction diodes
NASA Astrophysics Data System (ADS)
Lu, Yuanxi; Huang, Jian; Li, Bing; Tang, Ke; Ma, Yuncheng; Cao, Meng; Wang, Lin; Wang, Linjun
2018-01-01
ZnO (Zinc oxide)/Si (Silicon) heterojunctions were prepared by depositing n-type ZnO films on p-type single crystal Si substrates using magnetron sputtering. A boron and gallium co-doped ZnO (BGZO) high conductivity intermediate layer was deposited between aurum (Au) electrodes and ZnO films. The influence of the BGZO layer on the properties of Au/ZnO contacts and the performance of ZnO/Si heterojunctions was investigated. The results show an improvement in contact resistance by introducing the BGZO layer. Compared with the ZnO/Si heterojunction, the BGZO/ZnO/Si heterojunction exhibits a larger forward current, a smaller turn-on voltage and higher ratio of ultraviolet (UV) photo current/dark current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke
Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.
NASA Astrophysics Data System (ADS)
Grotepaß, T.; Förster-Zügel, F.; Mößinger, H.; Schlaak, H. F.
2015-04-01
Multilayer dielectric elastomer stack transducers (DESTs) are a promising new transducer technology with many applications in different industry sectors, like medical devices, human-machine-interaction, etc. Stacked dielectric elastomer transducers show larger thickness contraction driven by lower voltages than transducers made from a single dielectric layer. Traditionally multilayered DESTs are produced by repeatedly cross-linking a liquid elastomeric pre-polymer into the required shape. Our recent research focusses on a novel fabrication method for large scale stack transducers with a surface area over 200 x 300 mm by processing pre-fabricated elastomeric thin films of less than 50 μm thicknesses. The thin films are provided as two- or three-layer composites, where the elastomer is sandwiched between one or two sacrificial liners. Separating the elastomeric film from the residual layers and assembling them into dielectric elastomer stack transducers poses many challenges concerning adhesion, since the dielectric film merely separates from the liner if the adhesive forces between them are overcome. Conversely, during the assembly of a dielectric elastomer stack transducer, adhesive forces have to be established between two elastomeric layers or between the dielectric and the electrode layer. The very low Young's modulus of at least one adhesion partner requires suitable means of increasing the adhesive forces between the different adhesive layers of a dielectric elastomer stack transducer to prevent a delamination of the transducer during its lifetime. This work evaluates different surface activation treatments - corona, low-pressure plasma and UV-light - and their applicability in the production of large scale DESTs made from pre-fabricated elastomeric films.
Hoogeboom-Pot, Kathleen M; Turgut, Emrah; Hernandez-Charpak, Jorge N; Shaw, Justin M; Kapteyn, Henry C; Murnane, Margaret M; Nardi, Damiano
2016-08-10
We use short wavelength extreme ultraviolet light to independently measure the mechanical properties of disparate layers within a bilayer film for the first time, with single-monolayer sensitivity. We show that in Ni/Ta nanostructured systems, while their density ratio is not meaningfully changed from that expected in bulk, their elastic properties are significantly modified, where nickel softens while tantalum stiffens, relative to their bulk counterparts. In particular, the presence or absence of the Ta capping layer influences the mechanical properties of the Ni film. This nondestructive nanomechanical measurement technique represents the first approach to date able to distinguish the properties of composite materials well below 100 nm in thickness. This capability is critical for understanding and optimizing the strength, flexibility and reliability of materials in a host of nanostructured electronic, photovoltaic, and thermoelectric devices.
Interaction of metal layers with polycrystalline Si
NASA Technical Reports Server (NTRS)
Nakamura, K.; Olowolafe, J. O.; Lau, S. S.; Nicolet, M.-A.; Mayer, J. W.; Shima, R.
1976-01-01
Solid-phase reactions of metal films deposited on 0.5-micron-thick polycrystalline layers of Si grown by chemical vapor deposition at 640 C were investigated by MeV He-4 backscattering spectrometry, glancing angle X-ray diffraction, and SEM observations. For the metals Al, Ag, and Au, which form simple eutectics, heat treatment at temperatures below the eutectic results in erosion of the poly-Si layer and growth of Si crystallites in the metal film. Crystallite formation is observed at temperatures exceeding 550 C for Ag, at those exceeding 400 C for Al, and at those exceeding 200 C for Au films. For Pd, Ni, and Cr, heat treatment results in silicide formation. The same initial silicides (Pd2Si, Ni2Si, and CrSi2), are formed at similar temperatures on single-crystal substrates.
Capelli, R; Mahne, N; Koshmak, K; Giglia, A; Doyle, B P; Mukherjee, S; Nannarone, S; Pasquali, L
2016-07-14
Resonant soft X-ray reflectivity at the carbon K edge, with linearly polarized light, was used to derive quantitative information of film morphology, molecular arrangement, and electronic orbital anisotropies of an ultrathin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) film on Au(111). The experimental spectra were simulated by computing the propagation of the electromagnetic field in a trilayer system (vacuum/PTCDA/Au), where the organic film was treated as an anisotropic medium. Optical constants were derived from the calculated (through density functional theory) absorption cross sections of the single molecule along the three principal molecular axes. These were used to construct the dielectric tensor of the film, assuming the molecules to be lying flat with respect to the substrate and with a herringbone arrangement parallel to the substrate plane. Resonant soft X-ray reflectivity proved to be extremely sensitive to film thickness, down to the single molecular layer. The best agreement between simulation and experiment was found for a film of 1.6 nm, with flat laying configuration of the molecules. The high sensitivity to experimental geometries in terms of beam incidence and light polarization was also clarified through simulations. The optical anisotropies of the organic film were experimentally determined and through the comparison with calculations, it was possible to relate them to the orbital symmetry of the empty electronic states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capelli, R.; Koshmak, K.; Giglia, A.
Resonant soft X-ray reflectivity at the carbon K edge, with linearly polarized light, was used to derive quantitative information of film morphology, molecular arrangement, and electronic orbital anisotropies of an ultrathin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) film on Au(111). The experimental spectra were simulated by computing the propagation of the electromagnetic field in a trilayer system (vacuum/PTCDA/Au), where the organic film was treated as an anisotropic medium. Optical constants were derived from the calculated (through density functional theory) absorption cross sections of the single molecule along the three principal molecular axes. These were used to construct the dielectric tensor of themore » film, assuming the molecules to be lying flat with respect to the substrate and with a herringbone arrangement parallel to the substrate plane. Resonant soft X-ray reflectivity proved to be extremely sensitive to film thickness, down to the single molecular layer. The best agreement between simulation and experiment was found for a film of 1.6 nm, with flat laying configuration of the molecules. The high sensitivity to experimental geometries in terms of beam incidence and light polarization was also clarified through simulations. The optical anisotropies of the organic film were experimentally determined and through the comparison with calculations, it was possible to relate them to the orbital symmetry of the empty electronic states.« less
Hussain, Sajjad; Singh, Jai; Vikraman, Dhanasekaran; Singh, Arun Kumar; Iqbal, Muhammad Zahir; Khan, Muhammad Farooq; Kumar, Pushpendra; Choi, Dong-Chul; Song, Wooseok; An, Ki-Seok; Eom, Jonghwa; Lee, Wan-Gyu; Jung, Jongwan
2016-01-01
We report a simple and mass-scalable approach for thin MoS2 films via RF sputtering combined with the post-deposition annealing process. We have prepared as-sputtered film using a MoS2 target in the sputtering system. The as-sputtered film was subjected to post-deposition annealing to improve crystalline quality at 700 °C in a sulfur and argon environment. The analysis confirmed the growth of continuous bilayer to few-layer MoS2 film. The mobility value of ~29 cm2/Vs and current on/off ratio on the order of ~104 were obtained for bilayer MoS2. The mobility increased up to ~173–181 cm2/Vs, respectively, for few-layer MoS2. The mobility of our bilayer MoS2 FETs is larger than any previously reported values of single to bilayer MoS2 grown on SiO2/Si substrate with a SiO2 gate oxide. Moreover, our few-layer MoS2 FETs exhibited the highest mobility value ever reported for any MoS2 FETs with a SiO2 gate oxide. It is presumed that the high mobility behavior of our film could be attributed to low charged impurities of our film and dielectric screening effect by an interfacial MoOxSiy layer. The combined preparation route of RF sputtering and post-deposition annealing process opens up the novel possibility of mass and batch production of MoS2 film. PMID:27492282
Sputter deposition for multi-component thin films
Krauss, A.R.; Auciello, O.
1990-05-08
Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.
Sputter deposition for multi-component thin films
Krauss, Alan R.; Auciello, Orlando
1990-01-01
Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.
Xu, Zhongguang; Tian, Hao; Khanaki, Alireza; Zheng, Renjing; Suja, Mohammad; Liu, Jianlin
2017-01-01
Two-dimensional (2D) hexagonal boron nitride (h-BN), which has a similar honeycomb lattice structure to graphene, is promising as a dielectric material for a wide variety of potential applications based on 2D materials. Synthesis of high-quality, large-size and single-crystalline h-BN domains is of vital importance for fundamental research as well as practical applications. In this work, we report the growth of h-BN films on mechanically polished cobalt (Co) foils using plasma-assisted molecular beam epitaxy. Under appropriate growth conditions, the coverage of h-BN layers can be readily controlled by growth time. A large-area, multi-layer h-BN film with a thickness of 5~6 nm is confirmed by Raman spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. In addition, the size of h-BN single domains is 20~100 μm. Dielectric property of as-grown h-BN film is evaluated by characterization of Co(foil)/h-BN/Co(contact) capacitor devices. Breakdown electric field is in the range of 3.0~3.3 MV/cm, which indicates that the epitaxial h-BN film has good insulating characteristics. In addition, the effect of substrate morphology on h-BN growth is discussed regarding different domain density, lateral size, and thickness of the h-BN films grown on unpolished and polished Co foils. PMID:28230178
Chemical routes to nanocrystalline and thin-film III-VI and I-III-VI semiconductors
NASA Astrophysics Data System (ADS)
Hollingsworth, Jennifer Ann
1999-11-01
The work encompasses: (1) catalyzed low-temperature, solution-based routes to nano- and microcrystalline III-VI semiconductor powders and (2) spray chemical vapor deposition (spray CVD) of I-III-VI semiconductor thin films. Prior to this work, few, if any, examples existed of chemical catalysis applied to the synthesis of nonmolecular, covalent solids. New crystallization strategies employing catalysts were developed for the regioselective syntheses of orthorhombic InS (beta-InS), the thermodynamic phase, and rhombohedral InS (R-InS), a new, metastable structural isomer. Growth of beta-InS was facilitated by a solvent-suspended, molten-metal flux in a process similar to the SolutionLiquid-Solid (SLS) growth of InP and GaAs fibers and single-crystal whiskers. In contrast, metastable R-InS, having a pseudo-graphitic layered structure, was prepared selectively when the molecular catalyst, benzenethiol, was present in solution and the inorganic "catalyst" (metal flux) was not present. In the absence of any crystal-growth facilitator, metal flux or benzenethiol, amorphous product was obtained under the mild reaction conditions employed (T ≤ 203°C). The inorganic and organic catalysts permitted the regio-selective syntheses of InS and were also successfully applied to the growth of network and layered InxSey compounds, respectively, as well as nanocrystalline In2S3. Extensive microstructural characterization demonstrated that the layered compounds grew as fullerene-like nanostructures and large, colloidal single crystals. Films of the I-III-VI compounds, CuInS2, CuGaS2, and Cu(In,Ga)S 2, were deposited by spray CVD using the known single-source metalorganic precursor, (Ph3P)2CuIn(SEt)4, a new precursor, (Ph3P)2CuGa(SEt)3, and a mixture of the two precursors, respectively. The CulnS2 films exhibited a variety of microstructures from dense and faceted or platelet-like to porous and dendritic. Crystallographic orientations ranged from strongly [112] to strongly [220] oriented. Microstructure, orientation, and growth kinetics were controlled by changing processing parameters: carrier-gas flow rate, substrate temperature, and precursor-solution concentration. Low resistivities (<50 O cm) were associated with [220]-oriented films. All CuInS2 films were approximately stoichiometric and had the desired bandgap (Eg ≅ 1.4 eV) for application as the absorber layer in thin-film photovoltaic devices.
Tricriticality of the Blume-Emery-Griffiths model in thin films of stacked triangular lattices
NASA Astrophysics Data System (ADS)
El Hog, Sahbi; Diep, H. T.
2016-03-01
We study in this paper the Blume-Emery-Griffiths model in a thin film of stacked triangular lattices. The model is described by three parameters: bilinear exchange interaction between spins J, quadratic exchange interaction K and single-ion anisotropy D. The spin Si at the lattice site i takes three values (-1, 0, +1). This model can describe the mixing phase of He-4 (Si = +1,-1) and He-3 (Si = 0) at low temperatures. Using Monte Carlo simulations, we show that there exists a critical value of D below (above) which the transition is of second-(first-)order. In general, the temperature dependence of the concentrations of He-3 is different from layer by layer. At a finite temperature in the superfluid phase, the film surface shows a deficit of He-4 with respect to interior layers. However, effects of surface interaction parameters can reverse this situation. Effects of the film thickness on physical properties will be also shown as functions of temperature.
NASA Astrophysics Data System (ADS)
Wang, F.; Dong, B. J.; Zhang, Y. Q.; Liu, W.; Zhang, H. R.; Bai, Y.; Li, S. K.; Yang, T.; Sun, J. R.; Wang, Z. J.; Zhang, Z. D.
2017-09-01
The detailed crystal structure and antiferromagnetic properties of a 42 nm thick CaMnO3 film grown on a LaAlO3 substrate with a 9 nm La0.67Ca0.33MnO3 buffer layer have been investigated. Compared with a CaMnO3 film directly grown on a LaAlO3 substrate, only one kind of orthorhombic b axis orientation along the [100] axis of the substrate is observed in the CaMnO3 film with a La0.67Ca0.33MnO3 buffer layer. To determine the antiferromagnetic ordering type of our CaMnO3 film with a buffer layer, the first-principles calculations were carried out with the results, indicating that the CaMnO3 film, even under a tensile strain of 1.9%, is still a compensated G-type antiferromagnetic order, the same as the bulk. Moreover, the exchange bias effect is observed at the interface of the CaMnO3/La0.67Ca0.33MnO3 film, further confirming the antiferromagnetic ordering of the CaMnO3 film with a buffer layer. In addition, it is concluded that the exchange bias effect originates from the spin glass state at the La0.67Ca0.33MnO3/CaMnO3 interface, which arises from a competition between the double-exchange ferromagnetic La0.67Ca0.33MnO3 and super-exchange antiferromagnetic CaMnO3 below the spin glass freezing temperature.
Laser damage threshold measurements of microstructure-based high reflectors
NASA Astrophysics Data System (ADS)
Hobbs, Douglas S.
2008-10-01
In 2007, the pulsed laser induced damage threshold (LIDT) of anti-reflecting (AR) microstructures built in fused silica and glass was shown to be up to three times greater than the LIDT of single-layer thin-film AR coatings, and at least five times greater than multiple-layer thin-film AR coatings. This result suggested that microstructure-based wavelength selective mirrors might also exhibit high LIDT. Efficient light reflection over a narrow spectral range can be produced by an array of sub-wavelength sized surface relief microstructures built in a waveguide configuration. Such surface structure resonant (SSR) filters typically achieve a reflectivity exceeding 99% over a 1-10nm range about the filter center wavelength, making SSR filters useful as laser high reflectors (HR). SSR laser mirrors consist of microstructures that are first etched in the surface of fused silica and borosilicate glass windows and subsequently coated with a thin layer of a non-absorbing high refractive index dielectric material such as tantalum pent-oxide or zinc sulfide. Results of an initial investigation into the LIDT of single layer SSR laser mirrors operating at 532nm, 1064nm and 1573nm are described along with data from SEM analysis of the microstructures, and spectral reflection measurements. None of the twelve samples tested exhibited damage thresholds above 3 J/cm2 when illuminated at the resonant wavelength, indicating that the simple single layer, first order design will need further development to be suitable for high power laser applications. Samples of SSR high reflectors entered in the Thin Film Damage Competition also exhibited low damage thresholds of less than 1 J/cm2 for the ZnS coated SSR, and just over 4 J/cm2 for the Ta2O5 coated SSR.
Chemical Vapor Deposition for Ultra-lightweight Thin-film Solar Arrays for Space
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Jin, Michael H.; Lau, Janice E.; Harris, Jerry D.; Cowen, Jonathan E.; Duraj, Stan A.
2002-01-01
The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. A key technical issues outlined in the 2001 U.S. Photovoltaic Roadmap, is the need to develop low cost, high throughput manufacturing for high-efficiency thin film solar cells. At NASA GRC we have focused on the development of new single-source-precursors (SSPs) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV devices.
Magnetic properties of ultrathin tetragonal Heusler D022-Mn3Ge perpendicular-magnetized films
NASA Astrophysics Data System (ADS)
Sugihara, A.; Suzuki, K. Z.; Miyazaki, T.; Mizukami, S.
2015-05-01
We investigated the crystal structure and magnetic properties of Manganese-germanium (Mn3Ge) films having the tetragonal D022 structure, with varied thicknesses (5-130 nm) prepared on chromium (Cr)-buffered single crystal MgO(001) substrates. A crystal lattice elongation in the in-plane direction, induced by the lattice mismatch between the D022-Mn3Ge and the Cr buffer layer, increased with decreasing thickness of the D022-Mn3Ge layer. The films exhibited clear magnetic hysteresis loops with a squareness ratio close to unity, and a step-like magnetization reversal even at a 5-nm thickness under an external field perpendicular to the film's plane. The uniaxial magnetic anisotropy constant of the films showed a reduction to less than 10 Merg/cm3 in the small thickness range (≤20 nm), likely due to the crystal lattice elongation in the in-plane direction.
Insulator at the ultrathin limit: MgO on Ag(001).
Schintke, S; Messerli, S; Pivetta, M; Patthey, F; Libioulle, L; Stengel, M; De Vita, A; Schneider, W D
2001-12-31
The electronic structure and morphology of ultrathin MgO films epitaxially grown on Ag(001) were investigated using low-temperature scanning tunneling spectroscopy and scanning tunneling microscopy. Layer-resolved differential conductance (dI/dU) measurements reveal that, even at a film thickness of three monolayers, a band gap of about 6 eV is formed corresponding to that of the MgO(001) single-crystal surface. This finding is confirmed by layer-resolved calculations of the local density of states based on density functional theory.
NASA Astrophysics Data System (ADS)
Aichner, Bernd; Jausner, Florian; Zechner, Georg; Mühlgassner, Rita; Lang, Wolfgang; Klimov, Andrii; Puźniak, Roman; Słysz, Wojciech; Guziewicz, Marek; Kruszka, Renata; Wegrzecki, Maciej; Sobolewski, Roman
2017-05-01
Thermodynamic fluctuations of the superconducting order parameter in NbN/NiCu and NbTiN/NiCu superconductor/ferromagnet (S/F) thin bilayers patterned to microbridges are investigated. Plain NbN and NbTiN films served as reference materials for the analyses. The samples were grown using dc-magnetron sputtering on chemically cleaned sapphire single-crystal substrates. After rapid thermal annealing at high temperatures, the superconducting films were coated with NiCu overlays, using co-sputtering. The positive magnetoresistance of the superconducting single layers is very small in the normal state but with a sharp upturn close to the superconducting transition, a familiar signature of superconducting fluctuations. The fluctuation-enhanced conductivity (paraconductivity) of the NbN and NbTiN single layer films is slightly larger than the prediction of the parameter-free Aslamazov-Larkin theory for order-parameter fluctuations in two-dimensional superconductors. The addition of a ferromagnetic top layer, however, changes the magnetotransport properties significantly. The S/F bilayers show a negative magnetoresistance up to almost room temperature, while the signature of fluctuations is similar to that in the plain films, demonstrating the relevance of both ferromagnetic and superconducting effects in the S/F bilayers. The paraconductivity is reduced below theoretical predictions, in particular in the NbTiN/NiCu bilayers. Such suppression of the fluctuation amplitude in S/F bilayers could be favorable to reduce dark counts in superconducting photon detectors and lead the way to enhance their performance.
NASA Astrophysics Data System (ADS)
Gui, Y.; Meng, X. B.; Zheng, Z. J.; Gao, Y.
2017-10-01
The structural evolution of the oxide films at 25-450 °C on nanocrystalline (NC) and coarse crystalline (CC) 304 stainless steels (SS) was investigated. The structure of the oxide film on both NC and CC SSs was observed to undergo transient processes from a bi-layer to a single-layer and then back to a bi-layer when the temperature changed from the low range (25-150 °C) to the medium range (150-300 °C) and subsequently to the high range (300-450 °C), respectively. These formation mechanisms of the oxide films on SS were attributed to the different diffusion properties of Cr and Fe in the three temperature ranges. The thickness of the oxide films was similar between the NC and CC SSs below 300 °C due to their similar Crox/Feox concentration ratios in their oxide films at this temperature. Above 300 °C, Cr diffusion enhancement in the NC matrix led to a higher Crox/Feox ratio and better compactness of the oxide film, which resulted in a slower atomic diffusion rate in the oxide film and a thinner oxide film. Therefore, the temperature of 300 °C was concluded to be the critical temperature of the detectable Cr diffusion enhancement in the NC SS compared to the CC SS.
Kim, Yong-Kwan; Kim, Dae-Il; Park, Jaehyun; Shin, Gunchul; Kim, Gyu Tae; Ha, Jeong Sook
2008-12-16
We report on the facile patterning of poly(methyl methacrylate) (PMMA) layers onto SiO2 substrates via microcontact printing combined with the simplified Langmuir-Schaefer (LS) technique. Langmuir film of PMMA was formed just by dropping a dilute PMMA solution onto the air/water surface in a glass Petri dish via self-assembly, and it was used as an ink for the patterned poly(dimethylsilioxane) (PDMS) stamp. The transferred film properties were systematically investigated with variation of postannealing temperature, molecular weight of PMMA, and the inking number. The patterned PMMA film surface was smooth with no vacancy defect in a few micrometers scale AFM images over the whole film area after post-annealing process. The thickness of the PMMA patterns was controlled on the nanometer scale by the number of inkings of the LS layer of PMMA on the PDMS stamp. By using the PMMA patterns as a barrier and a sacrificial layer against the chemical etching and metal deposition, SiO2 and metal patterns were fabricated, respectively. The PMMA layers also worked as a passivation layer against the patterning of V2O5 nanowires and the selective adsorption of single-walled carbon nanotubes (SWCNTs). We also fabricated thin film transistors using patterned SWCNTs with different percolation states and investigated the electrical properties.
Thermoelectric properties of Bi 2Sr 2Co 2O y thin films and single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diao, Zhenyu; Lee, Ho Nyung; Chisholm, Matthew F.
Bi 2Sr 2Co 2O 9 exhibits a misfit-layered structure with good thermoelectric properties. We have investigated the thermoelectric properties of Bi 2Sr 2Co 2O y in both thin-film and single-crystal forms. Among thin films grown at different temperatures, we find that both the in-plane thermoelectric power (Sab) and electrical resistivity (ρab) vary in an opposite trend, i.e., Sab is high when ρab is small. This results in large power factor (S ab 2/ρab~5.5 μW/K 2 cm for the film grown at 700 °C), comparable to that for whiskers. For single crystals, the electrical resistivity shows metallic behavior in a largemore » temperature range, but has higher magnitude than that of films grown at 675 °C and 700 °C. The annealing of single crystals under Ar atmosphere leads to even higher resistivity while S ab is improved. Lastly, we discuss the thermoelectric performance of this material considering both oxygen concentration and phase purity.« less
Thermoelectric properties of Bi 2Sr 2Co 2O y thin films and single crystals
Diao, Zhenyu; Lee, Ho Nyung; Chisholm, Matthew F.; ...
2017-02-02
Bi 2Sr 2Co 2O 9 exhibits a misfit-layered structure with good thermoelectric properties. We have investigated the thermoelectric properties of Bi 2Sr 2Co 2O y in both thin-film and single-crystal forms. Among thin films grown at different temperatures, we find that both the in-plane thermoelectric power (Sab) and electrical resistivity (ρab) vary in an opposite trend, i.e., Sab is high when ρab is small. This results in large power factor (S ab 2/ρab~5.5 μW/K 2 cm for the film grown at 700 °C), comparable to that for whiskers. For single crystals, the electrical resistivity shows metallic behavior in a largemore » temperature range, but has higher magnitude than that of films grown at 675 °C and 700 °C. The annealing of single crystals under Ar atmosphere leads to even higher resistivity while S ab is improved. Lastly, we discuss the thermoelectric performance of this material considering both oxygen concentration and phase purity.« less
Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells.
Hengst, Claudia; Menzel, Siegfried B; Rane, Gayatri K; Smirnov, Vladimir; Wilken, Karen; Leszczynska, Barbara; Fischer, Dustin; Prager, Nicole
2017-03-01
The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Young's modulus, and crack onset strain (COS) were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET) substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO) conductive coatings were prepared. Whereas a characteristic grain-subgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells) during fabrication in a roll-to-roll process or under service.
Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells
Hengst, Claudia; Menzel, Siegfried B; Rane, Gayatri K; Smirnov, Vladimir; Wilken, Karen; Leszczynska, Barbara; Fischer, Dustin; Prager, Nicole
2017-01-01
The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Young’s modulus, and crack onset strain (COS) were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET) substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO) conductive coatings were prepared. Whereas a characteristic grain–subgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells) during fabrication in a roll-to-roll process or under service. PMID:28772609
Magnetic phase transition in Heisenberg antiferromagnetic films with easy-axis single-ion anisotropy
NASA Astrophysics Data System (ADS)
Pan, Kok-Kwei
2012-03-01
The staggered susceptibility of spin-1 and spin-3/2 Heisenberg antiferromagnet with easy-axis single-ion anisotropy on the cubic lattice films consisting of n=2, 3, 4, 5 and 6 interacting square lattice layers is studied by high-temperature series expansions. Sixth order series in J/kBT have been obtained for free-surface boundary conditions. The dependence of the Néel temperature on film thickness n and easy-axis anisotropy D has been investigated. The shifts of the Néel temperature from the bulk value can be described by a power law n with a shift exponent λ, where λ is the inverse of the bulk correlation length exponent. The effect of easy-axis single-ion anisotropy on shift exponent of antiferromagnetic films has been studied. A comparison is made with related works. The results obtained are qualitatively consistent with the predictions of finite-size scaling theory.
Seo, Dong Han; Pineda, Shafique; Fang, Jinghua; Gozukara, Yesim; Yick, Samuel; Bendavid, Avi; Lam, Simon Kwai Hung; Murdock, Adrian T; Murphy, Anthony B; Han, Zhao Jun; Ostrikov, Kostya Ken
2017-01-30
Thermal chemical vapour deposition techniques for graphene fabrication, while promising, are thus far limited by resource-consuming and energy-intensive principles. In particular, purified gases and extensive vacuum processing are necessary for creating a highly controlled environment, isolated from ambient air, to enable the growth of graphene films. Here we exploit the ambient-air environment to enable the growth of graphene films, without the need for compressed gases. A renewable natural precursor, soybean oil, is transformed into continuous graphene films, composed of single-to-few layers, in a single step. The enabling parameters for controlled synthesis and tailored properties of the graphene film are discussed, and a mechanism for the ambient-air growth is proposed. Furthermore, the functionality of the graphene is demonstrated through direct utilization as an electrode to realize an effective electrochemical genosensor. Our method is applicable to other types of renewable precursors and may open a new avenue for low-cost synthesis of graphene films.
NASA Astrophysics Data System (ADS)
Seo, Dong Han; Pineda, Shafique; Fang, Jinghua; Gozukara, Yesim; Yick, Samuel; Bendavid, Avi; Lam, Simon Kwai Hung; Murdock, Adrian T.; Murphy, Anthony B.; Han, Zhao Jun; Ostrikov, Kostya (Ken)
2017-01-01
Thermal chemical vapour deposition techniques for graphene fabrication, while promising, are thus far limited by resource-consuming and energy-intensive principles. In particular, purified gases and extensive vacuum processing are necessary for creating a highly controlled environment, isolated from ambient air, to enable the growth of graphene films. Here we exploit the ambient-air environment to enable the growth of graphene films, without the need for compressed gases. A renewable natural precursor, soybean oil, is transformed into continuous graphene films, composed of single-to-few layers, in a single step. The enabling parameters for controlled synthesis and tailored properties of the graphene film are discussed, and a mechanism for the ambient-air growth is proposed. Furthermore, the functionality of the graphene is demonstrated through direct utilization as an electrode to realize an effective electrochemical genosensor. Our method is applicable to other types of renewable precursors and may open a new avenue for low-cost synthesis of graphene films.
Theory of multiple quantum dot formation in strained-layer heteroepitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu
2016-07-11
We develop a theory for the experimentally observed formation of multiple quantum dots (QDs) in strained-layer heteroepitaxy based on surface morphological stability analysis of a coherently strained epitaxial thin film on a crystalline substrate. Using a fully nonlinear model of surface morphological evolution that accounts for a wetting potential contribution to the epitaxial film's free energy as well as surface diffusional anisotropy, we demonstrate the formation of multiple QD patterns in self-consistent dynamical simulations of the evolution of the epitaxial film surface perturbed from its planar state. The simulation predictions are supported by weakly nonlinear analysis of the epitaxial filmmore » surface morphological stability. We find that, in addition to the Stranski-Krastanow instability, long-wavelength perturbations from the planar film surface morphology can trigger a nonlinear instability, resulting in the splitting of a single QD into multiple QDs of smaller sizes, and predict the critical wavelength of the film surface perturbation for the onset of the nonlinear tip-splitting instability. The theory provides a fundamental interpretation for the observations of “QD pairs” or “double QDs” and other multiple QDs reported in experimental studies of epitaxial growth of semiconductor strained layers and sets the stage for precise engineering of tunable-size nanoscale surface features in strained-layer heteroepitaxy by exploiting film surface nonlinear, pattern forming phenomena.« less
NASA Astrophysics Data System (ADS)
Kukushkin, S. A.; Nussupov, K. Kh.; Osipov, A. V.; Beisenkhanov, N. B.; Bakranova, D. I.
2017-05-01
The structure and composition of SiC nanolayers are comprehensively studied by X-ray reflectometry, IR-spectroscopy, and atomic-force microscopy (AFM) methods for the first time. SiC films were synthesized by the new method of topochemical substitution of substrate atoms at various temperatures and pressure of CO active gas on the surface of high-resistivity low-dislocation single-crystal n-type silicon (111). Based on an analysis and generalization of experimental data obtained using X-ray reflectometry, IR spectroscopy, and AFM methods, a structural model of SiC films on Si was proposed. According to this model, silicon carbide film consists of a number of layers parallel to the substrate, reminiscent of a layer cake. The composition and thickness of each layer entering the film structure is experimentally determined. It was found that all samples contain superstoichiometric carbon; however, its structure is significantly different for the samples synthesized at temperatures of 1250 and 1330°C, respectively. In the former case, the film surface is saturated with silicon vacancies and carbon in the structurally loose form reminiscent of HOPG carbon. In the films grown at 1330°C, carbon is in a dense structure with a close-to-diamond density.
Slow-muon study of quaternary solar-cell materials: Single layers and p -n junctions
NASA Astrophysics Data System (ADS)
Alberto, H. V.; Vilão, R. C.; Vieira, R. B. L.; Gil, J. M.; Weidinger, A.; Sousa, M. G.; Teixeira, J. P.; da Cunha, A. F.; Leitão, J. P.; Salomé, P. M. P.; Fernandes, P. A.; Törndahl, T.; Prokscha, T.; Suter, A.; Salman, Z.
2018-02-01
Thin films and p -n junctions for solar cells based on the absorber materials Cu (In ,G a ) Se2 and Cu2ZnSnS4 were investigated as a function of depth using implanted low energy muons. The most significant result is a clear decrease of the formation probability of the Mu+ state at the heterojunction interface as well as at the surface of the Cu (In ,G a ) Se2 film. This reduction is attributed to a reduced bonding reaction of the muon in the absorber defect layer at its surface. In addition, the activation energies for the conversion from a muon in an atomiclike configuration to a anion-bound position are determined from temperature-dependence measurements. It is concluded that the muon probe provides a measurement of the effective surface defect layer width, both at the heterojunctions and at the films. The CIGS surface defect layer is crucial for solar-cell electrical performance and additional information can be used for further optimizations of the surface.
Effect of nickel seed layer on growth of α-V{sub 2}O{sub 5} nanostructured thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Rabindar Kumar; Kant, Chandra; Kumar, Prabhat
In this communication, we reported the role of Ni seed layer on the growth of vanadium pentoxide (α-V{sub 2}O{sub 5}) nanostructured thin films (NSTs) using plasma assisted sublimation process (PASP). Two different substrates, simple glass substrate and the Ni coated glass substrate (Ni thickness ∼ 100 nm) are employing in the present work. The influence of seed layer on structural, morphological, and vibrational properties have been studied systematically. The structural analysis divulged that both films deposited on simple glass as well as on Ni coated glass shown purely orthorhombic phase, no other phases are detected. The morphological studies of V{sub 2}O{submore » 5} film deposited on both substrates are carried out by SEM, revealed that features of V{sub 2}O{sub 5} NSTs is completely modified in presence of Ni seed layer and the film possessing the excellent growth of nanorods (NRs) on Ni coated glass rather than simple glass. The HRTEM analysis of NRs is performed at very high magnification, shows very fine fringe pattern, which confirmed the single crystalline nature of nanorods. The vibrational study of NRs is performed using micro-Raman spectroscopy, which strongly support the XRD observations.« less
Prediction of the rate of the rise of an air bubble in nanofluids in a vertical tube.
Cho, Heon Ki; Nikolov, Alex D; Wasan, Darsh T
2018-04-19
Our recent experiments have demonstrated that when a bubble rises through a nanofluid (a liquid containing dispersed nanoparticles) in a vertical tube, a nanofluidic film with several particle layers is formed between the gas bubble and the glass tube wall, which significantly changes the bubble velocity due to the nanoparticle layering phenomenon in the film. We calculated the structural nanofilm viscosity as a function of the number of particle layers confined in it and found that the film viscosity increases rather steeply when the film contains only one or two particle layers. The nanofilm viscosity was found to be several times higher than the bulk viscosity of the fluid. Consequently, the Bretherton equation cannot accurately predict the rate of the rise of a slow-moving long bubble in a vertical tube in a nanofluid because it is valid only for very thick films and uses the bulk viscosity of the fluid. However, in this brief note, we demonstrate that the Bretherton equation can indeed be used for predicting the rate of the rise of a long single bubble through a vertical tube filled with a nanofluid by simply replacing the bulk viscosity with the proper structural nanofilm viscosity of the fluid. Copyright © 2018. Published by Elsevier Inc.
Cadmium stannate selective optical films for solar energy applications
NASA Technical Reports Server (NTRS)
Haacke, G.
1975-01-01
Efforts concentrated on reducing the electrical sheet resistance of sputtered cadmium stannate films, installing and testing equipment for spray coating experiments, and sputter deposition of thin cadmium sulfide layers onto cadmium stannate electrodes. In addition, single crystal silicon wafers were coated with cadmium stannate. Work also continued on the development of the backwall CdS solar cell.
NASA Astrophysics Data System (ADS)
Chubarov, Mikhail; Choudhury, Tanushree H.; Zhang, Xiaotian; Redwing, Joan M.
2018-02-01
There is significant interest in the growth of single crystal monolayer and few-layer films of transition metal dichalcogenides (TMD) and other 2D materials for scientific exploration and potential applications in optics, electronics, sensing, catalysis and others. The characterization of these materials is crucial in determining the properties and hence the applications. The ultra-thin nature of 2D layers presents a challenge to the use of x-ray diffraction (XRD) analysis with conventional Bragg-Brentano geometry in analyzing the crystallinity and epitaxial orientation of 2D films. To circumvent this problem, we demonstrate the use of in-plane XRD employing lab scale equipment which uses a standard Cu x-ray tube for the analysis of the crystallinity of TMD monolayer and few-layer films. The applicability of this technique is demonstrated in several examples for WSe2 and WS2 films grown by chemical vapor deposition on single crystal substrates. In-plane XRD was used to determine the epitaxial relation of WSe2 grown on c-plane sapphire and on SiC with an epitaxial graphene interlayer. The evolution of the crystal structure orientation of WS2 films on sapphire as a function of growth temperature was also examined. Finally, the epitaxial relation of a WS2/WSe2 vertical heterostructure deposited on sapphire substrate was determined. We observed that WSe2 grows epitaxially on both substrates employed in this work under all conditions studied while WS2 exhibits various preferred orientations on sapphire substrate which are temperature dependent. In contrast to the sapphire substrate, WS2 deposited on WSe2 exhibits only one preferred orientation which may provide a route to better control the orientation and crystal quality of WS2. In the case of epitaxial graphene on SiC, no graphene-related peaks were observed in in-plane XRD while its presence was confirmed using Raman spectroscopy. This demonstrates the limitation of the in-plane XRD technique for characterizing low electron density materials.
Nanometer-Thick Yttrium Iron Garnet Film Development and Spintronics-Related Study
NASA Astrophysics Data System (ADS)
Chang, Houchen
In the last decade, there has been a considerable interest in using yttrium iron garnet (Y3Fe5O12, YIG) materials for magnetic insulator-based spintronics studies. This interest derives from the fact that YIG materials have very low intrinsic damping. The development of YIG-based spintronics demands YIG films that have a thickness in the nanometer (nm) range and at the same time exhibit low damping similar to single-crystal YIG bulk materials. This dissertation reports comprehensive experimental studies on nm-thick YIG films by magnetron sputtering techniques. Optimization of sputtering control parameters and post-deposition annealing processes are discussed in detail. The feasibility of low-damping YIG nm-thick film growth via sputtering is demonstrated. A 22.3-nm-thick YIG film, for example, shows a Gilbert damping constant of less than 1.0 x 10-4. The demonstration is of great technological significance because sputtering is a thin film growth technique most widely used in industry. The spin Seebeck effect (SSE) refers to the generation of spin voltage in a ferromagnet (FM) due to a temperature gradient. The spin voltage can produce a pure spin current into a normal metal (NM) that is in contact with the FM. Various theoretical models have been proposed to interpret the SSE, although a complete understanding of the effect has not been realized yet. In this dissertation the study of the role of damping on the SSE in YIG thin films is conducted for the first time. With the thin film development method mentioned in the last paragraph, a series of YIG thin films showing very similar structural and static magnetic properties but rather different Gilbert damping values were prepared. A Pt capping layer was grown on each YIG film to probe the strength of the SSE. The experimental data show that the YIG films with a smaller intrinsic Gilbert damping shows a stronger SSE. The majority of the previous studies on YIG spintronics utilized YIG films that were grown on single-crystal Gd3Ga5O 12 (GGG) substrates first and then capped with either a thin NM layer or a thin topological insulator (TI) layer. The use of the GGG substrates is crucial in terms of realizing high-quality YIG films, because GGG not only has a crystalline structure almost perfectly matching that of YIG but is also extremely stable at high temperature in oxygen that is the condition needed for YIG crystallization. The feasibility of growing high-quality YIG thin films on Pt thin films is explored in this dissertation. This work is of great significance because it enables the fabrication of sandwich-like NM/YIG/NM or NM/YIG/TI structures. Such tri-layered structures will facilitate various interesting fundamental studies as well as device developments. The demonstration of a magnon-mediated electric current drag phenomenon is presented as an example for such tri-layered structures.
Photodiode Based on CdO Thin Films as Electron Transport Layer
NASA Astrophysics Data System (ADS)
Soylu, M.; Kader, H. S.
2016-11-01
Cadmium oxide (CdO) thin films were synthesized by the sol-gel method. The films were analyzed by means of XRD, AFM, and UV/Vis spectrophotometry. X-ray diffraction patterns confirm that the films are formed from CdO with cubic crystal structure and consist of nano-particles. The energy gap of the prepared film was found to be 2.29 eV. The current-voltage ( I- V) characteristics of the CdO/ p-Si heterojunction were examined in the dark and under different illumination intensities. The heterojunction showed high rectifying behavior and a strong photoresponse. Main electrical parameters of the photodiode such as series and shunt resistances ( R s and R sh), saturation current I 0, and photocurrent I ph, were extracted considering a single diode equivalent circuit of a photovoltaic cell. Results indicate that the application of CdO thin films as an electron transport layer on p-Si acts as a photodetector in the field of the UV/visible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hyunsoo; Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741; Jeon, Heeyoung
2014-02-21
Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition have been used for thin film encapsulation of organic light emitting diode. In this study, a multi-density layer structure consisting of two Al{sub 2}O{sub 3} layers with different densities are deposited with different deposition conditions of O{sub 2} plasma reactant time. This structure improves moisture permeation barrier characteristics, as confirmed by a water vapor transmission rate (WVTR) test. The lowest WVTR of the multi-density layer structure was 4.7 × 10{sup −5} gm{sup −2} day{sup −1}, which is one order of magnitude less than WVTR for the reference single-density Al{submore » 2}O{sub 3} layer. This improvement is attributed to the location mismatch of paths for atmospheric gases, such as O{sub 2} and H{sub 2}O, in the film due to different densities in the layers. This mechanism is analyzed by high resolution transmission electron microscopy, elastic recoil detection, and angle resolved X-ray photoelectron spectroscopy. These results confirmed that the multi-density layer structure exhibits very good characteristics as an encapsulation layer via location mismatch of paths for H{sub 2}O and O{sub 2} between the two layers.« less
Moisture barrier properties of single-layer graphene deposited on Cu films for Cu metallization
NASA Astrophysics Data System (ADS)
Gomasang, Ploybussara; Abe, Takumi; Kawahara, Kenji; Wasai, Yoko; Nabatova-Gabain, Nataliya; Thanh Cuong, Nguyen; Ago, Hiroki; Okada, Susumu; Ueno, Kazuyoshi
2018-04-01
The moisture barrier properties of large-grain single-layer graphene (SLG) deposited on a Cu(111)/sapphire substrate are demonstrated by comparing with the bare Cu(111) surface under an accelerated degradation test (ADT) at 85 °C and 85% relative humidity (RH) for various durations. The change in surface color and the formation of Cu oxide are investigated by optical microscopy (OM) and X-ray photoelectron spectroscopy (XPS), respectively. First-principle simulation is performed to understand the mechanisms underlying the barrier properties of SLG against O diffusion. The correlation between Cu oxide thickness and SLG quality are also analyzed by spectroscopic ellipsometry (SE) measured on a non-uniform SLG film. SLG with large grains shows high performance in preventing the Cu oxidation due to moisture during ADT.
Fabrication of raised and inverted SU8 polymer waveguides
NASA Astrophysics Data System (ADS)
Holland, Anthony S.; Mitchell, Arnan; Balkunje, Vishal S.; Austin, Mike W.; Raghunathan, Mukund K.
2005-01-01
Polymer films with high optical transmission have been investigated for making optical devices for several years. SU8 photoresist and optical adhesives have been investigated for use as thin films for optical devices, not what they were originally designed for. Optical adhesives are typically a one component thermoset polymer and are convenient to use for making thin film optical devices such as waveguides. They are prepared in minutes as thin films unlike SU8, which has to be carefully thermally cured over several hours for optimum results. However SU8 can be accurately patterned to form the geometry of structures required for single mode optical waveguides. SU8 in combination with the lower refractive index optical adhesive films such as UV15 from Master Bond are used to form single and multi mode waveguides. SU8 is photopatternable but we have also used dry etching of the SU8 layer or the other polymer layers e.g. UV15 to form the ribs, ridges or trenches required to guide single modes of light. Optical waveguides were also fabricated using only optical adhesives of different refractive indices. The resolution obtainable is poorer than with SU8 and hence multi mode waveguides are obtained. Loss measurements have been obtained for waveguides of different geometries and material combinations. The process for making polymer waveguides is demonstrated for making large multi mode waveguides and microfluidic channels by scaling the process up in size.
Chitosan-caseinate bilayer coatings for paper packaging materials.
Khwaldia, Khaoula; Basta, Altaf H; Aloui, Hajer; El-Saied, Houssni
2014-01-01
Papers coated with caseinate and caseinate/chitosan bilayer films were developed. Caseinate, chitosan and caseinate/chitosan films were preliminary characterized by FTIR spectroscopy and thermal stability analyses. The effects of coating weight, caseinate concentration (7%, 10%, and 12%, w/w), and coating application methods (single layer and bilayer) on the physical and mechanical properties of coated papers were studied. Increasing the concentration of caseinate led to a decrease in water vapor permeability (WVP) of the resulting coated paper sheets. Chitosan significantly (p<0.05) increased the elongation at break (%E) of coated paper. However, the application of chitosan as a second layer on wet or dry caseinate films did not significantly affect (p>0.05) the tensile strength (TS) of coated paper. The greatest reduction in paper WVP is achieved by addition of a chitosan layer to the dried preformed caseinate-coated paper. Copyright © 2013 Elsevier Ltd. All rights reserved.
Thin transparent conducting films of cadmium stannate
Wu, Xuanzhi; Coutts, Timothy J.
2001-01-01
A process for preparing thin Cd.sub.2 SnO.sub.4 films. The process comprises the steps of RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a first substrate; coating a second substrate with a CdS layer; contacting the Cd.sub.2 SnO.sub.4 layer with the CdS layer in a water- and oxygen-free environment and heating the first and second substrates and the Cd.sub.2 SnO.sub.4 and CdS layers to a temperature sufficient to induce crystallization of the Cd.sub.2 SnO.sub.4 layer into a uniform single-phase spinel-type structure, for a time sufficient to allow full crystallization of the Cd.sub.2 SnO.sub.4 layer at that temperature; cooling the first and second substrates to room temperature; and separating the first and second substrates and layers from each other. The process can be conducted at temperatures less than 600.degree. C., allowing the use of inexpensive soda lime glass substrates.
Study of electrical and magnetic properties of RE doped layered cobaltite thin films
NASA Astrophysics Data System (ADS)
Bapna, K.; Choudhary, R. J.; Phase, D. M.; Rawat, R.; Ahuja, B. L.
2018-05-01
Thin films of layered perovskites Sr1.5RE0.5CoO4 (RE = La, Gd) were grown on MgO (0 0 1) substrate using pulsed laser ablation method. Structural, electrical and magnetic properties of single phase oriented films were studied. Films reveal semiconducting behavior in the entire measured temperature range. The films show thermally activated behavior at high temperature regime, with a higher value of activation energy for SGCO than that for SLCO. The low temperature behavior is well fitted with 3D-variable range hopping mechanism. Both films showed negative magneto-resistance measured in temperature range of 10-200 K. The value of MR is large for SGCO film as compared to its bulk counterpart as well as SLCO film, suggesting its high potential in the spintronics applications. A pinch-shaped M-H behaviour as observed in both the films, suggests the presence of two-magnetic phases. Occurrence of pinch-shape behaviour is although in line with that of SLCO bulk counterpart, interestingly, it was absent in SGCO polycrystalline powder. It suggests major role of film growth kinetics in modifying the magnetic properties in cobaltites.
An Introduction to Atomic Layer Deposition
NASA Technical Reports Server (NTRS)
Dwivedi, Vivek H.
2017-01-01
Atomic Layer Deposition has been instrumental in providing a deposition method for multiple space flight applications. It is well known that ALD is a cost effective nanoadditive-manufacturing technique that allows for the conformal coating of substrates with atomic control in a benign temperature and pressure environment. Through the introduction of paired precursor gases, thin films can be deposited on a myriad of substrates from flat surfaces to those with significant topography. By providing atomic layer control, where single layers of atoms can be deposited, the fabrication of metal transparent films, precise nano-laminates, and coatings of nano-channels, pores and particles is achievable. The feasibility of this technology for NASA line of business applications range from thermal systems, optics, sensors, to environmental protection. An overview of this technology will be presented.
Atwater, Jr., Harry A.; Zahler, James M.
2006-11-28
Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.
Oxygen Displacement in Cuprates under IonicLiquid Field-Effect Gating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubuis, Guy; Yacoby, Yizhak; Zhou, Hua
We studied structural changes in a 5 unit cell thick La 1.96Sr 0.04CuO 4 film, epitaxially grown on a LaSrAlO 4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were:more » (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and planar oxygen atoms were displaced towards the sample surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of planar oxygen atoms.« less
Oxygen Displacement in Cuprates under IonicLiquid Field-Effect Gating
Dubuis, Guy; Yacoby, Yizhak; Zhou, Hua; ...
2016-08-15
We studied structural changes in a 5 unit cell thick La 1.96Sr 0.04CuO 4 film, epitaxially grown on a LaSrAlO 4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were:more » (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and planar oxygen atoms were displaced towards the sample surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of planar oxygen atoms.« less
Yanagitani, Takahiko; Mishima, Natsuki; Matsukawa, Mami; Watanabe, Yoshiaki
2007-04-01
The (1120) textured polycrystalline ZnO films with a high shear mode electromechanical coupling coefficient k15 are obtained by sputter deposition. An over-moded resonator, a layered structure of metal electrode film/(1120) textured ZnO piezoelectric film/metal electrode film/silica glass substrate was used to characterize k15 by a resonant spectrum method. The (1120) textured ZnO piezoelectric films with excellent crystallite c-axis alignment showed an electromechanical coupling coefficient k15 of 0.24. This value was 92% of k15 value in single-crystal (k15 = 0.26).
Wang, Chun; Zhuang, Hao; Huang, Nan; Heuser, Steffen; Schlemper, Christoph; Zhai, Zhaofeng; Liu, Baodan; Staedler, Thorsten; Jiang, Xin
2016-06-14
As a potential material for biosensing applications, gallium nitride (GaN) films have attracted remarkable attention. In order to construct GaN biosensors, a corresponding immobilization of biolinkers is of great importance in order to render a surface bioactive. In this work, two kinds of n-alkenes with different carbon chain lengths, namely allylamine protected with trifluoroacetamide (TFAAA) and 10-aminodec-1-ene protected with trifluoroacetamide (TFAAD), were used to photochemically functionalize single crystalline GaN films. The successful linkage of both TFAAA and TFAAD to the GaN films is confirmed by time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurement. With increased UV illumination time, the intensity of the secondary ions corresponding to the linker molecules initially increases and subsequently decreases in both cases. Based on the SIMS measurements, the maximum coverage of TFAAA is achieved after 14 h of UV illumination, while only 2 h is required in the case of TFAAD to reach the situation of a fully covered GaN surface. This finding leads to the conclusion that the reaction rate of TFAAD is significantly higher compared to TFAAA. Measurements by atomic force microscopy (AFM) indicate that the coverage of GaN films by a TFAAA layer leads to an increased surface roughness. The atomic terraces, which are clearly observable for the pristine GaN films, disappear once the surface is fully covered by a TFAAA layer. Such TFAAA layers will feature a homogeneous surface topography even for reaction times of 24 h. In contrast to this, TFAAD shows strong cross-polymerization on the surface, this is confirmed by optical microscopy. These results demonstrate that TFAAA is a more suitable candidate as biolinker in context of the GaN surfaces due to its improved controllability.
Laser-assisted fabrication of single-layer flexible touch sensor
Son, Seokwoo; Park, Jong Eun; Lee, Joohyung; Yang, Minyang; Kang, Bongchul
2016-01-01
Single-layer flexible touch sensor that is designed for the indium-tin-oxide (ITO)-free, bendable, durable, multi-sensible, and single layer transparent touch sensor was developed via a low-cost and one-step laser-induced fabrication technology. To this end, an entirely novel approach involving material, device structure, and even fabrication method was adopted. Conventional metal oxides based multilayer touch structure was substituted by the single layer structure composed of integrated silver wire networks of sensors and bezel interconnections. This structure is concurrently fabricated on a glass substitutive plastic film via the laser-induced fabrication method using the low-cost organometallic/nanoparticle hybrid complex. In addition, this study addresses practical solutions to heterochromia and interference problem with a color display unit. As a result, a practical touch sensor is successfully demonstrated through resolving the heterochromia and interference problems with color display unit. This study could provide the breakthrough for early realization of wearable device. PMID:27703204
Electrical level of defects in single-layer two-dimensional TiO2
NASA Astrophysics Data System (ADS)
Song, X. F.; Hu, L. F.; Li, D. H.; Chen, L.; Sun, Q. Q.; Zhou, P.; Zhang, D. W.
2015-11-01
The remarkable properties of graphene and transition metal dichalcogenides (TMDCs) have attracted increasing attention on two-dimensional materials, but the gate oxide, one of the key components of two-dimensional electronic devices, has rarely reported. We found the single-layer oxide can be used as the two dimensional gate oxide in 2D electronic structure, such as TiO2. However, the electrical performance is seriously influenced by the defects existing in the single-layer oxide. In this paper, a nondestructive and noncontact solution based on spectroscopic ellipsometry has been used to detect the defect states and energy level of single-layer TiO2 films. By fitting the Lorentz oscillator model, the results indicate the exact position of defect energy levels depends on the estimated band gap and the charge state of the point defects of TiO2.
Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert
2014-06-01
A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.
Improved Single-Source Precursors for Solar-Cell Absorbers
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K.; Harris, Jerry; Hepp, Aloysius
2007-01-01
Improved single-source precursor compounds have been invented for use in spray chemical vapor deposition (spray CVD) of chalcopyrite semiconductor absorber layers of thin-film cells. A "single-source precursor compound" is a single molecular compound that contains all the required elements, which when used under the spray CVD conditions, thermally decomposes to form CuIn(x)Ga(1-x)S(y)Se(2-y).
NASA Astrophysics Data System (ADS)
Iijima, Yushi; Harigai, Toru; Isono, Ryo; Degai, Satoshi; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi; Yasui, Haruyuki; Kaneko, Satoru; Kunitsugu, Shinsuke; Kamiya, Masao; Taki, Makoto
2018-01-01
Conductive hard-coating films have potential application as protective films for contact pins used in the electrical inspection process for integrated circuit chips. In this study, multi-layer diamond-like carbon (DLC) films were prepared as conductive hard-coating films. The multi-layer DLC films consisting of DLC and nitrogen-containing DLC (N-DLC) film were prepared using a T-shape filtered arc deposition method. Periodic DLC/N-DLC four-layer and eight-layer films had the same film thickness by changing the thickness of each layer. In the ball-on-disk test, the N-DLC mono-layer film showed the highest wear resistance; however, in the spherical polishing method, the eight-layer film showed the highest polishing resistance. The wear and polishing resistance and the aggressiveness against an opponent material of the multi-layer DLC films improved by reducing the thickness of a layer. In multi-layer films, the soft N-DLC layer between hard DLC layers is believed to function as a cushion. Thus, the tribological properties of the DLC films were improved by a multi-layered structure. The electrical resistivity of multi-layer DLC films was approximately half that of the DLC mono-layer film. Therefore, the periodic DLC/N-DLC eight-layer film is a good conductive hard-coating film.
Electron microscopy of iron chalcogenide FeTe(Se) films
NASA Astrophysics Data System (ADS)
Shchichko, I. O.; Presnyakov, M. Yu.; Stepantsov, E. A.; Kazakov, S. M.; Antipov, E. V.; Makarova, I. P.; Vasil'ev, A. L.
2015-05-01
The structure of Fe1 + δTe1 - x Se x films ( x = 0; 0.05) grown on single-crystal MgO and LaAlO3 substrates has been investigated by transmission and scanning transmission electron microscopy. The study of Fe1.11Te/MgO structures has revealed two crystallographic orientation relationships between the film and substrate. It is shown that the lattice mismatch between the film and substrate is compensated for by the formation of misfit dislocations. The Burgers vector projection is determined. The stresses in the film can partially be compensated for due to the formation of an intermediate disordered layer. It is shown that a FeTe0.5Se0.5 film grown on a LaAlO3 substrate is single-crystal and that the FeTe0.5Se0.5/LaAlO3 interface in a selected region is coherent. The orientation relationships between the film and substrate are also determined for this case.
Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H; Watkins, Scott E; Kim, Dong-Yu; Vak, Doojin
2016-02-08
We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%.
Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H.; Watkins, Scott E.; Kim, Dong-Yu; Vak, Doojin
2016-01-01
We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%. PMID:26853266
Process for growing a film epitaxially upon a MgO surface
McKee, Rodney Allen; Walker, Frederick Joseph
1997-01-01
A process and structure wherein optical quality perovskites, such as BaTiO.sub.3 or SrTiO.sub.3, are grown upon a single crystal MgO substrate involves the epitaxial build up of alternating planes of TiO.sub.2 and metal oxide wherein the first plane grown upon the MgO substrate is a plane of TiO.sub.2. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.
Decontamination of chemical tracers in droplets by a submerging thin film flow
NASA Astrophysics Data System (ADS)
Landel, Julien R.; McEvoy, Harry; Dalziel, Stuart B.
2016-11-01
We investigate the decontamination of chemical tracers contained in small viscous drops by a submerging falling film. This problem has applications in the decontamination of hazardous chemicals, following accidental releases or terrorist attacks. Toxic droplets lying on surfaces are cleaned by spraying a liquid decontaminant over the surface. The decontaminant film submerges the droplets, without detaching them, in order to neutralize toxic chemicals in the droplets. The decontamination process is controlled by advection, diffusion and reaction processes near the drop-film interface. Chemical tracers dissolve into the film flow forming a thin diffusive boundary layer at the interface. The chemical tracers are then neutralized through a reaction with a chemical decontaminant transported in the film. We assume in this work that the decontamination process occurs mainly in the film phase owing to low solubility of the decontaminant in the drop phase. We analyze the impact of the reaction time scale, assuming first-order reaction, in relation with the characteristic advection and diffusion time scales in the case of a single droplet. Using theoretical, numerical and experimental means, we find that the reaction time scale need to be significantly smaller than the characteristic time scale in the diffusive boundary layer in order to enhance noticeably the decontamination of a single toxic droplet. We discuss these results in the more general case of the decontamination of a large number of droplets. This material is based upon work supported by the Defense Threat Reduction Agency under Contract No. HDTRA1-12-D-0003-0001.
NASA Astrophysics Data System (ADS)
Shimazaki, Kazunori; Kawakita, Shirou; Imaizumi, Mitsuru; Kuwajima, Saburou; Sakurai, Keiichiro; Matsubara, Koji; Niki, Sigeru
2005-05-01
Optical coating on Cu(In, Ga)Se2 thin film solar cells, which have high radiation tolerance, is investigated in order to improve their radiative properties for thermal balance in space. Due to low thermal emissivity, the temperature of the CIGS solar cell is expected to exceed the allowable limit if no coating is applied. Evaporated single-layer coating of silicon dioxide and additional over-layer coatings on the CIGS solar cells increase the emissivity from 0.18 to 0.75. The coating with the over-layer coatings realizes higher emissivity with less thickness than that of the single SiO2 coating. In addition, optical coatings reflecting UV rays and infrared radiation are designed and evaporated on the cells to control solar input. The developed optical coatings could give the CIGS solar cells appropriate thermal radiative properties for space applications without any degradations of the cell performance.
Microstructure et proprietes electriques de l'oxyde de vanadium pour les microbolometres
NASA Astrophysics Data System (ADS)
Cadieux, Catherine
Recent technological breakthroughs in the fabrication of microsystems will soon allow the mass production of infrared cameras. Subsequent price cut will open many new sectors of application. Because of its electrical properties, sputtered vanadium oxide has already been identified as the leading candidate for the active material of microbolometers. However, the large number of different crystallographic phases, as well as the instable nature of reactive sputtering, haveled to numerous contradictions in the existing literature. With the objective of understanding the impact of the deposition parameters on the microstructure, and of the microstructure on the electrical properties, vanadium oxide thin films have been deposited and characterised. In order to study their impact on the microstructure, oxidation state and pulse at the target, substrate bias and temperature, power, and film thickness were varied independently. The resulting thin films have been characterised by X-ray diffraction, Rutherford backscattering spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, spectral reflectometry, optical interferometry as well as four-point probe and Van Der Pauw electrical measurements. Because of the instability of the poisoning regime, the actual system configuration forbids the deposition of phases with composition between V 3O7 and V7O3. Films deposited under a strong bias in the poisoned regime having the best properties, their growth mechanism has been thoroughly investigated. Under those conditions, the bombarding ions are energetic enough to modify the structure of the underlying thin film without resputtering it. A complex relation linking temperature, thickness and microstructure is observed. As the thickness is increased, the structure changes from amorphous, to almost monocristalline V2O5 (001) oriented, to polycristalline. For higher deposition power, the polycristalline section contains V3O7 in addition to the multiple orientations of V2O5. Those germinations which have already been observed but not explained in literature can be attributed to the accumulation of germination centers, a stress buildup for the crystalline sections, and a substrate heating caused by the ions bombardment. This last effect is also suggested to be the cause of the amorphous phase crystallisation for the films with longer deposition times. Films deposited at different temperatures show the same microstructure transitions. Two different behavior regimes can be proposed as function of the adatoms' energy. For low temperature, increasing the adatom energy increases the diffusion which promotes the formation of the lowest surface energy stoichiometry and orientation, V2O 5(001). At higher temperature, energy is sufficient to form more energetically expensive orientation and phases. Resistivity is strongly dependant on grain boundaries density as seen by its relationship with lateral grain size. The thin film resistivity is also increased with the number of different crystallographic orientation present in it. To circumvent the high sheet resistance of the deposited single layer films, a multilayer stacking of alternating oxides and metal layers has been deposited. This approach has permitted this project's industrial collaborator to obtain a sheet resistance of 250 kO/□and a TCR of -1.59 %/K. The microstructure of the multilayer is however very heterogeneous. Not only can the metal layers be identified, it is also possible to observe the amorphous to polycrystalline transition described higher for every oxide layer. This multilayer, as well as the best single layer film produced have been annealed for 2 hours at 400°C in high vacuum. The annealed multilayer doesn't show any diffraction peaks, has very low resistance, and an almost null TCR generally attributed to metallic compounds We suggest that the diffusion of the vanadium layers into the stack created a polycrystalline structure with grains that are too small to be seen by XRD. The single layer underwent thermal reduction to form the VO2(B)phase and also became very conductive. Its TCR was afterward measured at the interesting value of -1.74 %/K. Is it suggested that the low resistivity is caused by the presence of small grains of the metallic phase of VO2, which happens to be the next step in the reduction process. Single layer annealing seems to be a promising avenue for the development of films adequate for microbolometer integration with the present deposition system. It is nonetheless recommended to pursue this avenue using films that are homogenous on their thickness in order to decouple the thickness dependence of deposition and thermal reduction. Multilayers using already homogenous amorphous oxides can also be a solution. Finally, non-reactive deposition of tungsten doped thin films followed by an oxidizing anneal may be an option that would bypass the uniformity and stability problems of the present project.
NASA Astrophysics Data System (ADS)
Talantsev, E. F.; Crump, W. P.; Tallon, J. L.
2018-01-01
Proximity-induced superconductivity in single-layer graphene (SLG) and in topological insulators represent almost ideal examples of superconductivity in two dimensions. Fundamental mechanisms governing superconductivity in the 2D limit are of central interest for modern condensed-matter physics. To deduce fundamental parameters of superconductor/graphene/superconductor and superconductor/bismuth selenide/superconductor junctions we investigate the self-field critical currents in these devices using the formalism of the Ambegaokar-Baratoff model. Our central finding is that the induced superconducting state in SLG and bismuth selenide each exhibits gapping on two superconducting bands. Based on recent results obtained on ultra-thin films of natural superconductors, including single-atomic layer of iron selenide, double and triple atomic layers of gallium, and several atomic layer tantalum disulphide, we conclude that a two-band induced superconducting state in SLG and bismuth selenide is part of a wider, more general multiple-band phenomenology of currently unknown origin.
NASA Astrophysics Data System (ADS)
Khan, M. Z.; Zhao, Y.; Wu, X.; Malmivirta, M.; Huhtinen, H.; Paturi, P.
2018-02-01
The growth mechanism is studied from the flux pinning point of view in small-scale YBa2Cu3O6+x (YBCO) thin films deposited on a polycrystalline hastelloy with advanced IBAD-MgO based buffer layer architecture. When compared the situation with YBCO films grown on single crystal substrates, the most critical issues that affect the suitable defect formation and thus the optimal vortex pinning landscape, have been studied as a function of the growth temperature and the film thickness evolution. We can conclude that the best critical current property in a wide applied magnetic field range is observed in films grown at relatively low temperature and having intermediate thickness. These phenomena are linked to the combination of the improved interface growth, to the film thickness related crystalline relaxation and to the formation of linear array of edge dislocations that forms the low-angle grain boundaries through the entire film thickness and thus improve the vortex pinning properties. Hence, the optimized buffer layer structure proved to be particularly suitable for new coated conductor solutions.
NASA Astrophysics Data System (ADS)
Liu, H. L.; Wang, S. S.; Zhou, Yan; Lam, Yee Loy; Chan, Yuen Chuen; Kam, Chan Hin
1997-08-01
In this paper, we report the preparation of crack-free relatively thick SiO2-TiO2 thin films on silicon substrates using the sol-gel spin-coating method. The influence of the process parameters on the quality of the film, such as the solution condition, the spin-coating speed, the heat treatment temperature and time, have been studied. We found that the cracking of the film could be avoided by selecting the right sol composition ratios, adding PVA to the sold and properly controlling the heat treatment. Most importantly, we discovered that by polishing the edges of the film after the deposition of each single layer, the number of such layers that deposited without crack formation could be substantially increased. The refractive index profile and thickness of the film have been determined using prism coupling technique and the inverse WKB method. The refractive index was found to depend on the content of TiO2 as well as the heat treatment condition. Using an AFM, the surface morphology of the film was found to be good.
Wrinkling and folding of nanotube-polymer bilayers
NASA Astrophysics Data System (ADS)
Semler, Matthew R.; Harris, John M.; Hobbie, Erik K.
2014-07-01
The influence of a polymer capping layer on the deformation of purified single-wall carbon nanotube (SWCNT) networks is analyzed through the wrinkling of compressed SWCNT-polymer bilayers on polydimethylsiloxane. The films exhibit both wrinkling and folding under compression and we extract the elastoplastic response using conventional two-plate buckling schemes. The formation of a diffuse interpenetrating nanotube-polymer interface has a dramatic effect on the nanotube layer modulus for both metallic and semiconducting species. In contrast to the usual percolation exhibited by the pure SWCNT films, the capped films show a crossover from "composite" behavior (the modulus of the SWCNT film is enhanced by the polymer) to "plasticized" behavior (the modulus of the SWCNT film is reduced by the polymer) as the SWCNT film thickness increases. For almost all thicknesses, however, the polymer enhances the yield strain of the nanotube network. Conductivity measurements on identical films suggest that the polymer has a modest effect on charge transport, which we interpret as a strain-induced polymer penetration of interfacial nanotube contacts. We use scaling, Flory-Huggins theory, and independently determined nanotube-nanotube and nanotube-polymer Hamaker constants to model the response.
Charge density wave transition in single-layer titanium diselenide
Chen, P.; Chan, Y. -H.; Fang, X. -Y.; ...
2015-11-16
A single molecular layer of titanium diselenide (TiSe 2) is a promising material for advanced electronics beyond graphene--a strong focus of current research. Such molecular layers are at the quantum limit of device miniaturization and can show enhanced electronic effects not realizable in thick films. We show that single-layer TiSe 2 exhibits a charge density wave (CDW) transition at critical temperature T C=232±5 K, which is higher than the bulk T C=200±5 K. Angle-resolved photoemission spectroscopy measurements reveal a small absolute bandgap at room temperature, which grows wider with decreasing temperature T below T C in conjunction with the emergencemore » of (2 × 2) ordering. The results are rationalized in terms of first-principles calculations, symmetry breaking and phonon entropy effects. The behavior of the Bardeen-Cooper-Schrieffer (BCS) gap implies a mean-field CDW order in the single layer and an anisotropic CDW order in the bulk.« less
Thin Film Synthesis of New Complex Titanates.
NASA Astrophysics Data System (ADS)
Salvador, Paul
2008-03-01
Thin film deposition methods allow for one to synthesize rationally specific compositions in targeted crystal structures. Because most of the thermodynamic and kinetic variables that control the range of materials that can be synthesized are unknown for specific compounds/processes, epitaxial stabilization and design of artificially layered crystals are driven through empirical investigations. Using examples taken primarily from the family of complex titanates, which exhibit a range of interesting physicochemical behaviors, the thermodynamic and kinetic factors that control materials design using thin film deposition are discussed. The phase competition between the pyrochlore and the (110) layered perovskite structure in the RE2Ti2O7 family (RE = rare-earth, Bi) will be explored, using pulsed laser deposition as a synthesis method. For RE = Gd, Sm, Nd, and La, the phase stability over a wide range of conditions is dictated entirely by substrate choice, indicating that the free energies of the phases are similar enough such that by controlling nucleation one controls the phase formation. In a related fashion, the growth of AETi2O5 films (AE = Ba or Sr) will be discussed with respect to the formation of single-phase films or films that phase separate into AETiO3 and TiO2. The entire Ba1-xSrxTi2O5 series was grown and will be discussed with respect to growth technique (using MBE and PLD) and/or substrate choice. In this case, rock-salt substrates, which are not expected to interact strongly with any phase in the system, allow for the formation of single-phase films. Finally, several examples will be discussed with respect to the (SrO)m(TiO2)n system, which includes the perovskite SrTiO3 and the Ruddlesden-Popper phase Sr2TiO4, grown using layer-by-layer molecular beam epitaxy. The solid phase epitaxial formation of the perovskite SrTiO3 from superlattices of rock-salt SrO and anatase TiO2 is discussed from both a kinetic and thermodynamic perspective by exploring the growth of a range of m and n values. Using similar arguments for stability, new layered intergrowths in the SrmTiO2+m family are presented and their structures are discussed.
Zhang, Xiaozhi; Meng, Siqin; Song, Dongsheng; Zhang, Yao; Yue, Zhenxing; Harris, Vincent G.
2017-01-01
Barium hexaferrite (BaM) films with in-plane c-axis orientation are promising and technically important materials for self-biased magnetic microwave devices. In this work, highly oriented BaM films with different thickness and an in-plane easy axis (c-axis) of magnetization were grown on a-plane single-crystal sapphire substrates by direct current magnetron sputtering. A procedure involving seed layers, layer-by-layer annealing was adopted to reduce the substrate-induced strains and allow for the growth of thick (~3.44 μm) films. The epitaxial growth of the BaM film on sapphire was revealed by high-resolution transmission electron microscopy with dislocations being observed at the film-substrate interface. The orientation was also verified by X-ray diffraction and more notably, polarized Raman scattering. The magnetic properties and ferromagnetic resonant frequencies were experimentally characterized by a vibrating sample magnetometry and a frequency-swept ferromagnetic resonant flip-chip technique, respectively. The micron-thick BaM films exhibited a large remanence ratio of 0.92 along in-plane easy axis and a small one of 0.09 for the in-plane hard axis loop measurement. The FMR frequency was 50.3 GHz at zero field and reached 57.9 GHz under a magnetic field of 3 kOe, indicating that the epitaxial BaM films with strong self-biased behaviors have good electromagnetic properties in millimeter-wave range. PMID:28276492
Zhang, Xiaozhi; Meng, Siqin; Song, Dongsheng; Zhang, Yao; Yue, Zhenxing; Harris, Vincent G
2017-03-09
Barium hexaferrite (BaM) films with in-plane c-axis orientation are promising and technically important materials for self-biased magnetic microwave devices. In this work, highly oriented BaM films with different thickness and an in-plane easy axis (c-axis) of magnetization were grown on a-plane single-crystal sapphire substrates by direct current magnetron sputtering. A procedure involving seed layers, layer-by-layer annealing was adopted to reduce the substrate-induced strains and allow for the growth of thick (~3.44 μm) films. The epitaxial growth of the BaM film on sapphire was revealed by high-resolution transmission electron microscopy with dislocations being observed at the film-substrate interface. The orientation was also verified by X-ray diffraction and more notably, polarized Raman scattering. The magnetic properties and ferromagnetic resonant frequencies were experimentally characterized by a vibrating sample magnetometry and a frequency-swept ferromagnetic resonant flip-chip technique, respectively. The micron-thick BaM films exhibited a large remanence ratio of 0.92 along in-plane easy axis and a small one of 0.09 for the in-plane hard axis loop measurement. The FMR frequency was 50.3 GHz at zero field and reached 57.9 GHz under a magnetic field of 3 kOe, indicating that the epitaxial BaM films with strong self-biased behaviors have good electromagnetic properties in millimeter-wave range.
The effect of viscoelasticity on the stability of a pulmonary airway liquid layer
NASA Astrophysics Data System (ADS)
Halpern, David; Fujioka, Hideki; Grotberg, James B.
2010-01-01
The lungs consist of a network of bifurcating airways that are lined with a thin liquid film. This film is a bilayer consisting of a mucus layer on top of a periciliary fluid layer. Mucus is a non-Newtonian fluid possessing viscoelastic characteristics. Surface tension induces flows within the layer, which may cause the lung's airways to close due to liquid plug formation if the liquid film is sufficiently thick. The stability of the liquid layer is also influenced by the viscoelastic nature of the liquid, which is modeled using the Oldroyd-B constitutive equation or as a Jeffreys fluid. To examine the role of mucus alone, a single layer of a viscoelastic fluid is considered. A system of nonlinear evolution equations is derived using lubrication theory for the film thickness and the film flow rate. A uniform film is initially perturbed and a normal mode analysis is carried out that shows that the growth rate g for a viscoelastic layer is larger than for a Newtonian fluid with the same viscosity. Closure occurs if the minimum core radius, Rmin(t), reaches zero within one breath. Solutions of the nonlinear evolution equations reveal that Rmin normally decreases to zero faster with increasing relaxation time parameter, the Weissenberg number We. For small values of the dimensionless film thickness parameter ɛ, the closure time, tc, increases slightly with We, while for moderate values of ɛ, ranging from 14% to 18% of the tube radius, tc decreases rapidly with We provided the solvent viscosity is sufficiently small. Viscoelasticity was found to have little effect for ɛ >0.18, indicating the strong influence of surface tension. The film thickness parameter ɛ and the Weissenberg number We also have a significant effect on the maximum shear stress on tube wall, max(τw), and thus, potentially, an impact on cell damage. Max(τw) increases with ɛ for fixed We, and it decreases with increasing We for small We provided the solvent viscosity parameter is sufficiently small. For large ɛ ≈0.2, there is no significant difference between the Newtonian flow case and the large We cases.
1989-06-01
coefficients vortex circulation, symbols used in vorticity plots representing circulation values derived from different vortex core models injection...derived from different vortex core models dimensionless core size parameter: t wice the a verage core radius divided by t h e i n jection hole...Wall Heating, xjd=109.2, m=0.5, Single Injection Hole Vortex w, Temp. Difference Range (.5- 2.5) degree s 91. Local Temperature Distribution
Design and optimization of the plasmonic graphene/InP thin-film solar-cell structure
NASA Astrophysics Data System (ADS)
Nematpour, Abedin; Nikoufard, Mahmoud; Mehragha, Rouholla
2018-06-01
In this paper, a graphene/InP thin-film Schottky-junction solar cell with a periodic array of plasmonic back-reflector is proposed. In this structure, a single-layer graphene sheet is deposited on the surface of the InP to form a Schottky junction. Then, the layer stack of the proposed solar-cell is optimized to have a maximum optical absorption of 〈A W〉 = 0.985 (98.5%) and short-circuit current density of J sc = 33.01 mA cm‑2.
Initial Steps of Rubicene Film Growth on Silicon Dioxide.
Scherwitzl, Boris; Lukesch, Walter; Hirzer, Andreas; Albering, Jörg; Leising, Günther; Resel, Roland; Winkler, Adolf
2013-02-28
The film growth of the conjugated organic molecule rubicene on silicon dioxide was studied in detail. Since no structural data of the condensed material were available, we first produced high quality single crystals from solution and determined the crystal structure. This high purity material was used to prepare ultrathin films under ultrahigh vacuum conditions, by physical vapor deposition. Thermal desorption spectroscopy (TDS) was applied to delineate the adsorption and desorption kinetics. It could be shown that the initial sticking coefficient is only 0.2 ± 0.05, but the sticking coefficient increases with increasing coverage. TDS further revealed that first a closed, weakly bound bilayer develops (wetting layer), which dewets after further deposition of rubicene, leading to an island-like layer. These islands are crystalline and exhibit the same structure as the solution grown crystals. The orientation of the crystallites is with the (001) plane parallel to the substrate. A dewetting of the closed bilayer was also observed when the film was exposed to air. Furthermore, Ostwald ripening of the island-like film takes place under ambient conditions, leading to films composed of few, large crystallites. From TDS, we determined the heat of evaporation from the multilayer islands to be 1.47 eV, whereas the desorption energy from the first layer is only 1.25 eV.
Initial Steps of Rubicene Film Growth on Silicon Dioxide
2013-01-01
The film growth of the conjugated organic molecule rubicene on silicon dioxide was studied in detail. Since no structural data of the condensed material were available, we first produced high quality single crystals from solution and determined the crystal structure. This high purity material was used to prepare ultrathin films under ultrahigh vacuum conditions, by physical vapor deposition. Thermal desorption spectroscopy (TDS) was applied to delineate the adsorption and desorption kinetics. It could be shown that the initial sticking coefficient is only 0.2 ± 0.05, but the sticking coefficient increases with increasing coverage. TDS further revealed that first a closed, weakly bound bilayer develops (wetting layer), which dewets after further deposition of rubicene, leading to an island-like layer. These islands are crystalline and exhibit the same structure as the solution grown crystals. The orientation of the crystallites is with the (001) plane parallel to the substrate. A dewetting of the closed bilayer was also observed when the film was exposed to air. Furthermore, Ostwald ripening of the island-like film takes place under ambient conditions, leading to films composed of few, large crystallites. From TDS, we determined the heat of evaporation from the multilayer islands to be 1.47 eV, whereas the desorption energy from the first layer is only 1.25 eV. PMID:23476720
CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranthaman, Mariappan Parans
We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCOmore » wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maindron, Tony, E-mail: tony.maindron@cea.fr; Jullien, Tony; André, Agathe
2016-05-15
Al{sub 2}O{sub 3} [20 nm, atomic layer deposition (ALD)] and SiO films' [25 nm, physical vacuum deposition (PVD)] single barriers as well as hybrid barriers of the Al{sub 2}O{sub 3}/SiO or SiO/Al{sub 2}O{sub 3} have been deposited onto single 100 nm thick tris-(8-hydroxyquinoline) aluminum (AlQ{sub 3}) organic films made onto silicon wafers. The defects in the different barrier layers could be easily observed as nonfluorescent AlQ{sub 3} black spots, under ultraviolet light on the different systems stored into accelerated aging conditions (85 °C/85% RH, ∼2000 h). It has been observed that all devices containing an Al{sub 2}O{sub 3} layer present a lag time τ frommore » which defect densities of the different systems start to increase significantly. This is coherent with the supposed pinhole-free nature of fresh, ALD-deposited, Al{sub 2}O{sub 3} films. For t > τ, the number of defect grows linearly with storage time. For devices with the single Al{sub 2}O{sub 3} barrier layer, τ has been estimated to be 64 h. For t > τ, the defect occurrence rate has been calculated to be 0.268/cm{sup 2}/h. Then, a total failure of fluorescence of the AlQ{sub 3} film appears between 520 and 670 h, indicating that the Al{sub 2}O{sub 3} barrier has been totally degraded by the hot moisture. Interestingly, the device with the hybrid barrier SiO/Al{sub 2}O{sub 3} shows the same characteristics as the device with the single Al{sub 2}O{sub 3} barrier (τ = 59 h; 0.246/cm{sup 2}/h for t > τ), indicating that Al{sub 2}O{sub 3} ALD is the factor that limits the performance of the barrier system when it is directly exposed to moisture condensation. At the end of the storage period (1410 h), the defect density for the system with the hybrid SiO/Al{sub 2}O{sub 3} barrier is 120/cm{sup 2}. The best sequence has been obtained when Al{sub 2}O{sub 3} is passivated by the SiO layer (Al{sub 2}O{sub 3}/SiO). In that case, a large lag time of 795 h and a very low defect growth rate of 0.032/cm{sup 2}/h (t > τ) have been measured. At the end of the storage test (2003 h), the defect density remains very low, i.e., only 50/cm{sup 2}. On the other hand, the device with the single PVD-deposited SiO barrier layer shows no significant lag time (τ ∼ 0), and the number of defects grows linearly from initial time with a high occurrence rate of 0.517/cm{sup 2}/h. This is coherent with the pinhole-full nature of fresh, PVD-deposited, SiO films. At intermediate times, a second regime shows a lower defect occurrence rate of 0.062/cm{sup 2}/h. At a longer time span (t > 1200 h), the SiO barrier begins to degrade, and a localized crystallization onto the oxide surface, giving rise to new defects (occurrence rate 0.461/cm{sup 2}/h), could be observed. At the end of the test (2003 h), single SiO films show a very high defect density of 600/cm{sup 2}. Interestingly, the SiO surface in the Al{sub 2}O{sub 3}/SiO device does not appeared crystallized at a high time span, suggesting that the crystallization observed on the SiO surface in the AlQ{sub 3}/SiO device rather originates into the AlQ{sub 3} layer, due to high humidity ingress on the organic layer through SiO pinholes. This has been confirmed by atomic force microscopy surface imaging of the AlQ{sub 3}/SiO surface showing a central hole in the crystallization zone with a 60 nm depth, deeper than SiO thickness (25 nm). Using the organic AlQ{sub 3} sensor, the different observations made in this work give a quantitative comparison of defects' occurrence and growth in ALD-deposited versus PVD-deposited oxide films, as well as in their combination PVD/ALD and ALD/PVD.« less
Piezoelectric films for acoustoelectronic devices - Production, properties, and applications
NASA Astrophysics Data System (ADS)
Anisimkin, V. I.; Kotelianskii, I. M.
1990-06-01
Various aspects of the production of ZnO, AlN, and Ta2O5 piezoelectric films are briefly reviewed. The mininum possible absorption coefficient of surface acoustic waves in textured films is estimated theoretically with allowance for different absorption mechanisms. The results obtained are compared with those for single crystals of the same materials. Methods for calculating the absorption coefficient and temperature delay coefficient for Rayleigh and Sezawa surface acoustic waves in layered structures are proposed and verified experimentally.
NASA Astrophysics Data System (ADS)
Ko, Rong-Ming; Wang, Shui-Jinn; Chen, Ching-Yi; Wu, Cheng-Han; Lin, Yan-Ru; Lo, Hsin-Ming
2017-04-01
The hydrothermal growth (HTG) of crystalline n-ZnO films on both the nonpatterned and patterned p-GaN epilayers with a honeycomb array of etched holes is demonstrated, and its application in n-ZnO/p-GaN heterojunction light-emitting diodes (HJ-LEDs) is reported. The results reveal that an HTG n-ZnO film on a patterned p-GaN layer exhibits a high-quality single crystal with FWHMs of 0.463 and 0.983° obtained from a ω-rocking curve and a ϕ-scan pattern, respectively, which are much better than those obtained on a nonpatterned p-GaN layer. In addition, the n-ZnO/patterned p-GaN HJ-LED exhibited a much better rectifying diode behavior owing to having a higher n-ZnO film crystallinity quality and an improved interface with the p-GaN layer. Strong violet and violet-blue lights emitted from the n-ZnO/patterned p-GaN HJ-LED at around 405, 412, and 430 nm were analyzed.
NASA Astrophysics Data System (ADS)
Wang, C. R.; Papell, S. S.; Graham, R. W.
Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30 degree inclination angle.
NASA Technical Reports Server (NTRS)
Wang, C. R.; Papell, S. S.; Graham, R. W.
1981-01-01
Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30 degree inclination angle.
NASA Astrophysics Data System (ADS)
Wang, C. R.; Papell, S. S.; Graham, R. W.
1981-03-01
Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center-line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30-deg inclination angle.
NASA Technical Reports Server (NTRS)
Wang, C. R.; Papell, S. S.; Graham, R. W.
1981-01-01
Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center-line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30-deg inclination angle.
Gao, Ying; Asadirad, Mojtaba; Yao, Yao; Dutta, Pavel; Galstyan, Eduard; Shervin, Shahab; Lee, Keon-Hwa; Pouladi, Sara; Sun, Sicong; Li, Yongkuan; Rathi, Monika; Ryou, Jae-Hyun; Selvamanickam, Venkat
2016-11-02
Single-crystal-like silicon (Si) thin films on bendable and scalable substrates via direct deposition are a promising material platform for high-performance and cost-effective devices of flexible electronics. However, due to the thick and unintentionally highly doped semiconductor layer, the operation of transistors has been hampered. We report the first demonstration of high-performance flexible thin-film transistors (TFTs) using single-crystal-like Si thin films with a field-effect mobility of ∼200 cm 2 /V·s and saturation current, I/l W > 50 μA/μm, which are orders-of-magnitude higher than the device characteristics of conventional flexible TFTs. The Si thin films with a (001) plane grown on a metal tape by a "seed and epitaxy" technique show nearly single-crystalline properties characterized by X-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction, and transmission electron microscopy. The realization of flexible and high-performance Si TFTs can establish a new pathway for extended applications of flexible electronics such as amplification and digital circuits, more than currently dominant display switches.
Jones, Andrew O F; Geerts, Yves H; Karpinska, Jolanta; Kennedy, Alan R; Resel, Roland; Röthel, Christian; Ruzié, Christian; Werzer, Oliver; Sferrazza, Michele
2015-01-28
Substrate-induced phases (SIPs) are polymorphic phases that are found in thin films of a material and are different from the single crystal or "bulk" structure of a material. In this work, we investigate the presence of a SIP in the family of [1]benzothieno[3,2-b]benzothiophene (BTBT) organic semiconductors and the effect of aging and solvent vapor annealing on the film structure. Through extensive X-ray structural investigations of spin coated films, we find a SIP with a significantly different structure to that found in single crystals of the same material forms; the SIP has a herringbone motif while single crystals display layered π-π stacking. Over time, the structure of the film is found to slowly convert to the single crystal structure. Solvent vapor annealing initiates the same structural evolution process but at a greatly increased rate, and near complete conversion can be achieved in a short period of time. As properties such as charge transport capability are determined by the molecular structure, this work highlights the importance of understanding and controlling the structure of organic semiconductor films and presents a simple method to control the film structure by solvent vapor annealing.
Epitaxial growth of thermally stable cobalt films on Au(111)
NASA Astrophysics Data System (ADS)
Haag, N.; Laux, M.; Stöckl, J.; Kollamana, J.; Seidel, J.; Großmann, N.; Fetzer, R.; Kelly, L. L.; Wei, Z.; Stadtmüller, B.; Cinchetti, M.; Aeschlimann, M.
2016-10-01
Ferromagnetic thin films play a fundamental role in spintronic applications as a source for spin polarized carriers and in fundamental studies as ferromagnetic substrates. However, it is challenging to produce such metallic films with high structural quality and chemical purity on single crystalline substrates since the diffusion barrier across the metal-metal interface is usually smaller than the thermal activation energy necessary for smooth surface morphologies. Here, we introduce epitaxial thin Co films grown on an Au(111) single crystal surface as a thermally stable ferromagnetic thin film. Our structural investigations reveal an identical growth of thin Co/Au(111) films compared to Co bulk single crystals with large monoatomic Co terraces with an average width of 500 Å, formed after thermal annealing at 575 K. Combining our results from photoemission and Auger electron spectroscopy, we provide evidence that no significant diffusion of Au into the near surface region of the Co film takes place for this temperature and that no Au capping layer is formed on top of Co films. Furthermore, we show that the electronic valence band is dominated by a strong spectral contribution from a Co 3d band and a Co derived surface resonance in the minority band. Both states lead to an overall negative spin polarization at the Fermi energy.
Tunneling interferometry and measurement of the thickness of ultrathin metallic Pb(111) films
NASA Astrophysics Data System (ADS)
Ustavshchikov, S. S.; Putilov, A. V.; Aladyshkin, A. Yu.
2017-10-01
Spectra of the differential tunneling conductivity for ultrathin lead films grown on Si(111) 7 × 7 single crystals with a thickness of 9 to 50 ML have been studied by low-temperature scanning tunneling microscopy and spectroscopy. The presence of local maxima of the tunneling conductivity is characteristic of such systems. The energies of maxima of the differential conductivity are determined by the spectrum of quantum-confined states of electrons in a metallic layer and, consequently, the local thickness of the layer. It has been shown that features of the microstructure of substrates, such as steps of monatomic height, structural defects, and inclusions of other materials covered with a lead layer, can be visualized by bias-modulation scanning tunneling spectroscopy.
Numerical modeling of electroactive polymer mirrors for space applications
NASA Technical Reports Server (NTRS)
Bao, X.; Bar-Cohen, Y.; Chang, Z.; Sherrit, S.
2003-01-01
A controllable mirror made of single-layer EAP mirror is proposed in this paper. An analytical solution of required voltage distribution for forming a parabolic mirror from a planar film is presented.
Structure and transport in organic semiconductor thin films
NASA Astrophysics Data System (ADS)
Vos, Sandra Elizabeth Fritz
Organic Semiconductors represent an exciting area of research due to their potential application in cheap and flexible electronics. In spite of the abundant interest in organic electronics the electronic transport mechanism remains poorly understood. Understanding the connection between molecular structure, crystal packing, intermolecular interactions and electronic delocalization is an important aspect of improving the transport properties of organics in thin film transistors (TFTs). In an organic thin film transistor, charge carrier transport is believed to occur within the first few monolayers of the organic material adjacent to the dielectric. It is therefore critical to understand the initial stages of film growth and molecular structure in these first few layers and relate this structure to electronic transport properties. The structure of organic films at the interface with an amorphous silicon dioxide ( a-SiO2) dielectric and how structure relates to transport in a TFT is the focus of this thesis. Pentacene films on a-SiO2 were extensively characterized with specular and in-plane X-ray diffraction, and CuKalpha1, and synchrotron radiation. The first layer of pentacene molecules adjacent to the a-SiO2 crystallized in a rectangular unit cell with the long axis of the molecules perpendicular to the substrate surface. Subsequent layers of pentacene crystallized in a slightly oblique in-plane unit cell that evolved as thickness was increased. The rectangular monolayer phase of pentacene did not persist when subsequent layers were deposited. Specular diffraction with Synchrotron radiation of a 160 A pentacene film (˜ 10 layers) revealed growth initiation of a bulk-like phase and persistence of the thin-film phase. Pentacene molecules were more tilted in the bulk-like phase and the in-plane unit cell was slightly more oblique. Pentacene grains began to grow randomly oriented with respect to the substrate surface (out-of-plane) in films near 650 A in thickness. The single crystal bulk phase of pentacene was observed from specular diffraction (CuKalpha1) of a 2.5 mum film. These results suggest that the thickness of pentacene films on a-SiO2 is an important aspect in the comparison of crystal structure and electronic transport.
Convective response of a wall-mounted hot-film sensor in a shock tube
NASA Technical Reports Server (NTRS)
Roberts, A. Sidney, Jr.; Ortgies, Kelly R.; Gartenberg, Ehud; Carraway, Debra L.
1991-01-01
Shock tube experiments were performed in order to determine the response of a single hot-film element of a sensor array to transiently induced flow behind weak normal shock waves. The experiments attempt to isolate the response due only to the change in convective heat transfer at the hot-film surface mounted on the wall of the shock tube. The experiments are described, the results being correlated with transient boundary layer theory and compared with an independent set of experimental results. One of the findings indicates that the change in the air properties (temperature and pressure) precedes the air mass transport, causing an ambiguity in the sensor response to the development of the velocity boundary layer. Also, a transient, local heat transfer coefficient is formulated to be used as a forcing function in an hot-film instrument model and simulation which remains under investigation.
Fatigue in artificially layered Pb(Zr,Ti)O3 ferroelectric films
NASA Astrophysics Data System (ADS)
Jiang, A. Q.; Scott, J. F.; Dawber, M.; Wang, C.
2002-12-01
We have performed fatigue tests on lead zirconate titanate (PZT) multilayers having stacks of Pb(Zr0.8Ti0.2)O3/Pb(Zr0.2Ti0.8)O3 with repeated distances of 12 formula groups. The results are compared with single-layer n-type (0.5 at. % Ta-doped) PZT films. We conclude that fatigue is dominated by space-charge layers in each case, but that in the multilayer such space charge accumulates at the layer interfaces, rather than at the electrode-dielectric interface. The model, which includes both drift and diffusion, is quantitative and yields a rate-limiting mobility of 6.9±0.9×10-12 cm2/V s, in excellent agreement with the oxygen vacancy mobility for perovskite oxides obtained from Zafar et al.
NASA Astrophysics Data System (ADS)
Yoshikawa, Akira; Nagatomi, Takaharu; Morishita, Tomohiro; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu
2017-10-01
We developed a method for fabricating high-crystal-quality AlN films by combining a randomly distributed nanosized concavo-convex sapphire substrate (NCC-SS) and a three-step growth method optimized for NCC-SS, i.e., a 3-nm-thick nucleation layer (870 °C), a 150-nm-thick high-temperature layer (1250 °C), and a 3.2-μm-thick medium-temperature layer (1110 °C). The NCC-SS is easily fabricated using a conventional metalorganic vapor phase epitaxy reactor equipped with a showerhead plate. The resultant AlN film has a crack-free and single-step surface with a root-mean-square roughness of 0.5 nm. The full-widths at half-maxima of the X-ray rocking curve were 50/250 arcsec for the (0002)/(10-12) planes, revealing that the NCC surface is critical for achieving such a high-quality film. Hexagonal-pyramid-shaped voids at the AlN/NCC-SS interface and confinement of dislocations within the 150-nm-thick high-temperature layer were confirmed. The NCC surface feature and resultant faceted voids play an important role in the growth of high-crystal-quality AlN films, likely via localized and/or disordered growth of AlN at the initial stage, contributing to the alignment of high-crystal-quality nuclei and dislocations.
Microcrystalline silicon growth for heterojunction solar cells
NASA Technical Reports Server (NTRS)
Leung, D. C.; Iles, P. A.; Fang, P. H.
1984-01-01
Microcrystalline Si (m-Si) films with a 1.7eV energy bandgap and crystal size of several hundred A were e-beam evaporated on single crystalline Si (c-Si) to form a heterojunction with the substrate, or a window layer to a single crystalline p-n junction (heteroface structure). The goal was to enhance Voc by such uses of the larger bandgap m-Si, with the intriguing prospect of forming heterostructures with exact lattice match on each layer. The heterojunction structure was affected by interface and shunting problems and the best Voc achieved was only 482mV, well below that of single crystal Si homojunctions. The heteroface structure showed promise for some of the samples with p m-Si/p-n structure (the complementary structure did not show any improvement). Although several runs with different deposition conditions were run, the results were inconsistent. Any Voc enhancement obtained was too small to compensate for the current loss due to the extra absorption and poor carrier transport properties of the m-Si film.
Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth
Tang, Y. -H.; Golding, B.
2016-02-02
Here, we describe a method for lateral overgrowth of low-stress single crystal diamond by chemical vapor deposition (CVD). The process is initiated by deposition of a thin (550 nm) (001) diamond layer on Ir-buffered a-plane sapphire. The diamond is partially masked by periodic thermally evaporated Au stripes using photolithography. Lateral overgrowth of the Au occurs with extremely effective filtering of threading dislocations. Thermal stress resulting from mismatch of the low thermal expansion diamond and the sapphire substrate is largely accommodated by the ductile Au layer. The stress state of the diamond is investigated by Raman spectroscopy for two thicknesses: atmore » 10 μm where the film has just overgrown the Au mask and at 180 μm where the film thickness greatly exceeds the scale of the masking. For the 10-μm film, the Raman linewidth shows spatial oscillations with the period of the Au stripes with a factor of 2 to 3 reduction relative to the unmasked region. In a 180-μm thick diamond film, the overall surface stress was extremely low, 0.00 ± 0.16 GPa, obtained from the Raman shift averaged over the 7.5mm diameter of the crystal at its surface. We conclude that the metal mask protects the overgrown diamond layer from substrate-induced thermal stress and cracking. Lastly, it is also responsible for low internal stress by reducing dislocation density by several orders of magnitude.« less
Ablation of aluminum nitride films by nanosecond and femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly; Tzou, Robert; Salakhutdinov, Ildar; Danylyuk, Yuriy; McCullen, Erik; Auner, Gregory
2009-02-01
We present results of comparative study of laser-induced ablation of AlN films with variable content of oxygen as a surface-doping element. The films deposited on sapphire substrate were ablated by a single nanosecond pulse at wavelength 248 nm, and by a single femtosecond pulse at wavelength 775 nm in air at normal pressure. Ablation craters were inspected by AFM and Nomarski high-resolution microscope. Irradiation by nanosecond pulses leads to a significant removal of material accompanied by extensive thermal effects, chemical modification of the films around the ablation craters and formation of specific defect structures next to the craters. Remarkable feature of the nanosecond experiments was total absence of thermo-mechanical fracturing near the edges of ablation craters. The femtosecond pulses produced very gentle ablation removing sub-micrometer layers of the films. No remarkable signs of thermal, thermo-mechanical or chemical effects were found on the films after the femtosecond ablation. We discuss mechanisms responsible for the specific ablation effects and morphology of the ablation craters.
V. A. Gasparov; Bozovic, I.; He, Xi; ...
2015-09-01
In this study, we used atomic-layer molecular beam epitaxy (ALL-MBE) to synthesize bilayer films of a cuprate metal (La 1.65Sr 0.45CuO 4) and a cuprate insulator (La 2CuO 4), in which interface superconductivity occurs in a layer that is just one-half unit cell thick. We have studied the magnetic field and temperature dependence of the complex sheet conductance, σ(ω), of these films, and compared them to κκ-(BEDT-TTF) 2Cu[N(CN) 2]Br single crystals. The magnetic field H was applied both parallel and perpendicular to the 2D conducting layers. Experiments have been carried out at frequencies between 23 kHz and 50 MHz usingmore » either two-coil mutual inductance technique, or the LC resonators with spiral or rectangular coils. The real and the imaginary parts of the mutual-inductance M(T,ω) between the coil and the sample were measured and converted to complex conductivity. For H perpendicular to the conducting layers, we observed almost identical behavior in both films and κ-Br single crystals: (i) the transition onset in the inductive response, L k –1(T) occurs at a temperature lower by 2 K than in Re σ(T), (ii) this shift is almost constant with magnetic field up to 8 T; (iii) the vortex diffusion constant D(T) is exponential due to pinning of vortex cores. These results can be described by the extended dynamic theory of the Berezinski–Kosterlitz–Thouless (BKT) transition and dynamics of bound vortex–antivortex pairs with short separation lengths.« less
Bi/In thermal resist for both Si anisotropic wet etching and Si/SiO2 plasma etching
NASA Astrophysics Data System (ADS)
Chapman, Glenn H.; Tu, Yuqiang; Peng, Jun
2004-01-01
Bi/In thermal resist is a bilayer structure of Bi over In films which can be exposed by laser with a wide range of wavelengths and can be developed by diluted RCA2 solutions. Current research shows bimetallic resist can work as etch masking layer for both dry plasma etching and wet anisotropic etching. It can act as both patterning and masking layers for Si and SiO2 with plasma "dry" etch using CF4/CHF3. The etching condition is CF4 flow rate 50 sccm, pressure 150 mTorr, and RF power 100 - 600W. The profile of etched structures can be tuned by adding CHF3 and other gases such as Ar, and by changing the CF4/CHF3 ratio. Depending on the fluorocarbon plasma etching recipe the etch rate of laser exposed Bi/In can be as low as 0.1 nm/min, 500 times lower than organic photoresists. O2 plasma ashing has little etching effect on exposed Bi/In. Bi/In also creates etch masking layers for alkaline-based (KOH, TMAH and EDP) "wet" anisotropic bulk Si etch without the need of SiO2 masking steps. The laser exposed Bi/In etches two times more slowly than SiO2. Experiment result shows that single metal Indium film exhibits thermal resist characteristics but at twice the exposure levels. It can be developed in diluted RCA2 solution and used as an etch mask layer for Si anisotropic etch. X-ray diffraction analysis shows that laser exposure causes both Bi and In single film to oxidize. In film may become amorphous when exposed to high laser power.
Self-focused ZnO transducers for ultrasonic biomicroscopy
NASA Astrophysics Data System (ADS)
Cannata, J. M.; Williams, J. A.; Zhou, Q. F.; Sun, L.; Shung, K. K.; Yu, H.; Kim, E. S.
2008-04-01
A simple fabrication technique was developed to produce high frequency (100MHz) self-focused single element transducers with sputtered zinc oxide (ZnO) crystal films. This technique requires the sputtering of a ZnO film directly onto a curved backing substrate. Transducers were fabricated by sputtering an 18μm thick ZnO layer on 2mm diameter aluminum rods with ends shaped and polished to produce a 2mm focus or f-number equal to one. The aluminum rod served a dual purpose as the backing layer and positive electrode for the resultant transducers. A 4μm Parylene matching layer was deposited on the transducers after housing and interconnect. This matching layer was used to protect the substrate and condition the transfer of acoustic energy between the ZnO film and the load medium. The pulse-echo response for a representative transducer was centered at 101MHz with a -6dB bandwidth of 49%. The measured two way insertion loss was 44dB. A tungsten wire phantom and an adult zebrafish eye were imaged to show the capability of these transducers.
Detection of water in jet fuel using layer-by-layer thin film coated long period grating sensor.
Puckett, Sean D; Pacey, Gilbert E
2009-04-15
The quantitative measurement of jet fuel additives in the field is of interest to the Air Force. The "smart nozzle" project was designed as a state-of-the-art diagnostics package attached to a single-point refueling nozzle for assessing key fuel properties as the fuel is dispensed. The objective of the work was to show proof of concept that a layer-by-layer thin film and long period grating fibers could be used to detect the presence of water in jet fuel. The data for the nafion/PDMA film and a long period grating fiber is a combination capable of quantitative measurement of water in kerosene. The average response (spectral loss wavelength shift) to the kerosene sample ranged from -6.0 for 15 ppm to -126.5 for 60 ppm water. The average calculated value for the check standard was 21.71 and ranged from 21.25 to 22.00 with a true value of 22.5 ppm water. Potential interferences were observed and are judged to be insignificant in real samples.
Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films
Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.
2015-01-01
Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185
NASA Astrophysics Data System (ADS)
Sainju, Deepak
Many modern optical and electronic devices, including photovoltaic devices, consist of multilayered thin film structures. Spectroscopic ellipsometry (SE) is a critically important characterization technique for such multilayers. SE can be applied to measure key parameters related to the structural, optical, and electrical properties of the components of multilayers with high accuracy and precision. One of the key advantages of this non-destructive technique is its capability of monitoring the growth dynamics of thin films in-situ and in real time with monolayer level precision. In this dissertation, the techniques of SE have been applied to study the component layer materials and structures used as back-reflectors and as the transparent contact layers in thin film photovoltaic technologies, including hydrogenated silicon (Si:H), copper indium-gallium diselenide (CIGS), and cadmium telluride (CdTe). The component layer materials, including silver and both intrinsic and doped zinc oxide, are fabricated on crystalline silicon and glass substrates using magnetron sputtering techniques. These thin films are measured in-situ and in real time as well as ex-situ by spectroscopic ellipsometry in order to extract parameters related to the structural properties, such as bulk layer thickness and surface roughness layer thickness and their time evolution, the latter information specific to real time measurements. The index of refraction and extinction coefficient or complex dielectric function of a single unknown layer can also be obtained from the measurement versus photon energy. Applying analytical expressions for these optical properties versus photon energy, parameters that describe electronic transport, such as electrical resistivity and electron scattering time, can be extracted. The SE technique is also performed as the sample is heated in order to derive the effects of annealing on the optical properties and derived electrical transport parameters, as well as the intrinsic temperature dependence of these properties and parameters. One of the major achievements of this dissertation research is the characterization of the thickness and optical properties of the interface layer formed between the silver and zinc oxide layers in a back-reflector structure used in thin film photovoltaics. An understanding of the impact of these thin film material properties on solar cell device performance has been complemented by applying reflectance and transmittance spectroscopy as well as simulations of cell performance.
Vacuum-bag-only processing of composites
NASA Astrophysics Data System (ADS)
Thomas, Shad
Ultrasonic imaging in the C-scan mode in conjunction with the amplitude of the reflected signal was used to measure flow rates of an epoxy resin film penetrating through the thickness of single layers of woven carbon fabric. Assemblies, comprised of a single layer of fabric and film, were vacuum-bagged and ultrasonically scanned in a water tank during impregnation at 50°C, 60°C, 70°C, and 80°C. Measured flow rates were plotted versus inverse viscosity to determine the permeability in the thin film, non-saturated system. The results demonstrated that ultrasonic imaging in the C-scan mode is an effective method of measuring z-direction resin flow through a single layer of fabric. The permeability values determined in this work were consistent with permeability values reported in the literature. Capillary flow was not observed at the temperatures and times required for pressurized flow to occur. The flow rate at 65°C was predicted from the linear plot of flow rate versus inverse viscosity. The effects of fabric architecture on through-thickness flow rates during impregnation of an epoxy resin film were measured by ultrasonic imaging. Multilayered laminates comprised of woven carbon fabrics and epoxy films (prepregs) were fabricated by vacuum-bagging. Ultrasonic imaging was performed in a heated water tank (65°C) during impregnation. Impregnation rates showed a strong dependence on fabric architecture, despite similar areal densities. Impregnation rates are directly affected by inter-tow spacing and tow nesting, which depend on fabric architecture, and are indirectly affected by areal densities. A new method of predicting resin infusion rates in prepreg and resin film infusion processes was proposed. The Stokes equation was used to derive an equation to predict the impregnation rate of laminates as a function of fabric architecture. Flow rate data previously measured by ultrasound was analyzed with the new equation and the Kozeny-Carman equation. A fiber interaction parameter was determined as a function of fabric architecture. The derived equation is straight-forward to use, unlike the Kozeny-Carman equation. The results demonstrated that the newly derived equation can be used to predict the resin infusion rate of multilayer laminates.
ZnO nanostructures as electron extraction layers for hybrid perovskite thin films
NASA Astrophysics Data System (ADS)
Nikolaidou, Katerina; Sarang, Som; Tung, Vincent; Lu, Jennifer; Ghosh, Sayantani
Optimum interaction between light harvesting media and electron transport layers is critical for the efficient operation of photovoltaic devices. In this work, ZnO layers of different morphologies are implemented as electron extraction and transport layers for hybrid perovskite CH3NH3PbI3 thin films. These include nanowires, nanoparticles, and single crystalline film. Charge transfer at the ZnO/perovskite interface is investigated and compared through ultra-fast characterization techniques, including temperature and power dependent spectroscopy, and time-resolved photoluminescence. The nanowires cause an enhancement in perovskite emission, which may be attributed to increased scattering and grain boundary formation. However, the ZnO layers with decreasing surface roughness exhibit better electron extraction, as inferred from photoluminescence quenching, reduction in the number of bound excitons, and reduced exciton lifetime in CH3NH3PbI3 samples. This systematic study is expected to provide an understanding of the fundamental processes occurring at the ZnO-CH3NH3PbI3 interface and ultimately, provide guidelines for the ideal configuration of ZnO-based hybrid Perovskite devices. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.
Synthesis and characterisation of co-evaporated tin sulphide thin films
NASA Astrophysics Data System (ADS)
Koteeswara Reddy, N.; Ramesh, K.; Ganesan, R.; Ramakrishna Reddy, K. T.; Gunasekhar, K. R.; Gopal, E. S. R.
2006-04-01
Tin sulphide films were grown at different substrate temperatures by a thermal co-evaporation technique. The crystallinity of the films was evaluated from X-ray diffraction studies. Single-phase SnS films showed a strong (040) orientation with an orthorhombic crystal structure and a grain size of 0.12 μm. The films showed an electrical resistivity of 6.1 Ω cm with an activation energy of 0.26 eV. These films exhibited an optical band gap of 1.37 eV and had a high optical absorption coefficient (>104 cm-1) above the band-gap energy. The results obtained were analysed to evaluate the potentiality of the co-evaporated SnS films as an absorber layer in solar photovoltaic devices.
Surface patterning by pulsed-laser-induced transfer of metals and compounds
NASA Astrophysics Data System (ADS)
Toth, Zsolt; Mogyorosi, Peter; Szoerenyi, Tamas
1990-08-01
Besults of a systematic study on Q-switched nthy laser induced rrrn2 area transfer of supported titanium and chranium thin films and Ge/Se multilayer structures are reported. The appearance of the prints is governed by film-support adhesion and source-target spacing. Best quality prints are produced by ablating well adhering ntal films in close proximity ( spacing < 15 pm) to the target to be patterned. Transfer fran stacked elenntaxy layers as a source offers a unique possibility of depositing acinpound films by mixing the constituents and transferring the material onto the target substrate in a single step.
Lai, Fang-I; Yang, Jui-Fu; Chen, Wei-Chun; Kuo, Shou-Yi
2017-11-22
In this study, we proposed a new method for the synthesis of the target material used in a two stage process for preparation of a high quality CZTSe thin film. The target material consisting of a mixture of Cu x Se and Zn x Sn 1-x alloy was synthesized, providing a quality CZTSe precursor layer for highly efficient CZTSe thin film solar cells. The CZTSe thin film can be obtained by annealing the precursor layers through a 30 min selenization process under a selenium atmosphere at 550 °C. The CZTSe thin films prepared by using the new precursor thin film were investigated and characterized using X-ray diffraction, Raman scattering, and photoluminescence spectroscopy. It was found that diffusion of Sn occurred and formed the CTSe phase and Cu x Se phase in the resultant CZTSe thin film. By selective area electron diffraction transmission electron microscopy images, the crystallinity of the CZTSe thin film was verified to be single crystal. By secondary ion mass spectroscopy measurements, it was confirmed that a double-gradient band gap profile across the CZTSe absorber layer was successfully achieved. The CZTSe solar cell with the CZTSe absorber layer consisting of the precursor stack exhibited a high efficiency of 5.46%, high short circuit current (J SC ) of 37.47 mA/cm 2 , open circuit voltage (V OC ) of 0.31 V, and fill factor (F.F.) of 47%, at a device area of 0.28 cm 2 . No crossover of the light and dark current-voltage (I-V) curves of the CZTSe solar cell was observed, and also, no red kink was observed under red light illumination, indicating a low defect concentration in the CZTSe absorber layer. Shunt leakage current with a characteristic metal/CZTSe/metal leakage current model was observed by temperature-dependent I-V curves, which led to the discovery of metal incursion through the CdS buffer layer on the CZTSe absorber layer. This leakage current, also known as space charge-limited current, grew larger as the measurement temperature increased and completely overwhelmed the diode current at a measurement temperature of 200 °C. This is due to interlayer diffusion of metal that increases the shunt leakage current and decreases the efficiency of the CZTSe thin film solar cells.
The Preparation and Microstructure of Nanocrystal 3C-SiC/ZrO2 Bilayer Films
Ye, Chao; Ran, Guang; Zhou, Wei; Qu, Yazhou; Yan, Xin; Cheng, Qijin; Li, Ning
2017-01-01
The nanocrystal 3C-SiC/ZrO2 bilayer films that could be used as the protective coatings of zirconium alloy fuel cladding were prepared on a single-crystal Si substrate. The corresponding nanocrystal 3C-SiC film and nanocrystal ZrO2 film were also dividedly synthesized. The microstructure of nanocrystal films was analyzed by grazing incidence X-ray diffraction (GIXRD) and cross-sectional transmission electron microscopy (TEM). The 3C-SiC film with less than 30 nm crystal size was synthesized by Plasma Enhanced Chemical Vapor Deposition (PECVD) and annealing. The corresponding formation mechanism of some impurities in SiC film was analyzed and discussed. An amorphous Zr layer about 600 nm in width was first deposited by magnetron sputtering and then oxidized to form a nanocrystal ZrO2 layer during the annealing process. The interface characteristics of 3C-SiC/ZrO2 bilayer films prepared by two different processes were obviously different. SiZr and SiO2 compounds were formed at the interface of 3C-SiC/ZrO2 bilayer films. A corrosion test of 3C-SiC/ZrO2 bilayer films was conducted to qualitatively analyze the surface corrosion resistance and the binding force of the interface. PMID:29168782
ITO/Au/ITO sandwich structure for near-infrared plasmonics.
Fang, Xu; Mak, Chee Leung; Dai, Jiyan; Li, Kan; Ye, Hui; Leung, Chi Wah
2014-09-24
ITO/Au/ITO trilayers with varying gold spacer layer thicknesses were deposited on glass substrates by pulsed laser deposition. Transmission electron microscopy measurements demonstrated the continuous nature of the Au layer down to 2.4 nm. XRD patterns clearly showed an enhanced crystallinity of the ITO films promoted by the insertion of the gold layer. Compared with a single layer of ITO with a carrier concentration of 7.12 × 10(20) cm(-3), the ITO/Au/ITO structure achieved an effective carrier concentration as high as 3.26 × 10(22) cm(-3). Transmittance and ellipsometry measurements showed that the optical properties of ITO/Au/ITO films were greatly influenced by the thickness of the inserted gold layer. The cross-point wavelength of the trilayer samples was reduced with increasing gold layer thickness. Importantly, the trilayer structure exhibited a reduced loss (compared with plain Au) in the near-infrared region, suggesting its potential for plasmonic applications in the near-infrared range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohite, Aditya; Blancon, Jean-Christophe
In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are gaining an extra degree of freedom in designing and fabricating efficient optoelectronic devices based on 2D layered hybrid perovskites. Industrial applications could include low cost solar cells, LEDs, laser diodes, detectors, and other nano-optoelectronic devices. The 2D, near-single-crystalline “Ruddlesden-Popper” thin films have an out-of-plane orientation so that uninhibited charge transport occurs through the perovskite layers in planar devices. The new research finds the existence of “layer-edge-states” at the edges of the perovskite layers which are key to bothmore » high efficiency of solar cells (greater than 12 percent) and high fluorescence efficiency (a few tens of percent) for LEDs. The spontaneous conversion of excitons (bound electron-hole pairs) to free carriers via these layer-edge states appears to be the key to the improvement of the photovoltaic and light-emitting thin film layered materials.« less
Process for growing a film epitaxially upon a MGO surface and structures formed with the process
McKee, Rodney Allen; Walker, Frederick Joseph
1998-01-01
A process and structure wherein optical quality perovskites, such as BaTiO.sub.3 or SrTiO.sub.3, are grown upon a single crystal MgO substrate involves the epitaxial build up of alternating planes of TiO.sub.2 and metal oxide wherein the first plane grown upon the MgO substrate is a plane of TiO.sub.2. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.
Yu, H; Zhang, L; Li, X H; Xu, H Y; Liu, Y C
2016-04-01
The amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) were demonstrated based on a double-layer channel structure, where the channel is composed of an ultrathin nitro-genated a-IGZO (a-IGZO:N) layer and an undoped a-IGZO layer. The double-layer channel device showed higher saturation mobility and lower threshold-voltage shift (5.74 cm2/Vs, 2.6 V) compared to its single-layer counterpart (0.17 cm2/Vs, 7.23 V). The improvement can be attributed to three aspects: (1) improved carrier transport properties of the channel by the a-IGZO:N layer with high carrier mobility and the a-IGZO layer with high carrier concentration, (2) reduced interfacial trap density between the active channel and the gate insulator, and (3) higher surface flatness of the double-layer channel. Our study reveals key insights into double-layer channel, involving selecting more suitable electrical property for back-channel layer and more suitable interface modification for active layer. Meanwhile, room temperature fabrication amorphous TFTs offer certain advantages on better flexibility and higher uniformity over a large area.
High efficiency copper indium gallium diselenide (CIGS) thin film solar cells
NASA Astrophysics Data System (ADS)
Rajanikant, Ray Jayminkumar
The generation of electrical current from the solar radiation is known as the photovoltaic effect. Solar cell, also known as photovoltaic (PV) cell, is a device that works on the principle of photovoltaic effect, and is widely used for the generation of electricity. Thin film polycrystalline solar cells based on copper indium gallium diselenide (CIGS) are admirable candidates for clean energy production with competitive prices in the near future. CIGS based polycrystalline thin film solar cells with efficiencies of 20.3 % and excellent temperature stability have already been reported at the laboratory level. The present study discusses about the fabrication of CIGS solar cell. Before the fabrication part of CIGS solar cell, a numerical simulation is carried out using One-Dimensional Analysis of Microelectronic and Photonic Structures (AMPS-ID) for understanding the physics of a solar cell device, so that an optimal structure is analyzed. In the fabrication part of CIGS solar cell, Molybdenum (Mo) thin film, which acts as a 'low' resistance metallic back contact, is deposited by RF magnetron sputtering on organically cleaned soda lime glass substrate. The major advantages for using Mo are high temperature, (greater than 600 °C), stability and inertness to CIGS layer (i.e., no diffusion of CIGS into Mo). Mo thin film is deposited at room temperature (RT) by varying the RF power and the working pressure. The Mo thin films deposited with 100 W RF power and 1 mTorr working pressure show a reflectivity of above average 50 % and the low sheet resistance of about 1 O/□. The p-type CIGS layer is deposited on Mo. Before making thin films of CIGS, a powder of CIGS material is synthesized using melt-quenching method. Thin films of CIGS are prepared by a single-stage flash evaporation process on glass substrates, initially, for optimization of deposition parameters and than on Mo coated glass substrates for device fabrication. CIGS thin film is deposited at 250 °C at a pressure of 10-5 mbar. The thickness of the film was kept 1 mum for the solar cell device preparation. Rapid Thermal Annealing (RTA) is carried out of CIGS thin film at 500 °C for 2 minutes in the argon atmosphere. Annealing process mainly improves the grain growth of the CIGS and, hence the surface roughness, which is essential for a multilayered semiconductor structure. Thin layer of n-type highly resistive cadmium sulphide (CdS), generally known as a "buffer" layer, is deposited on CIGS layer by thermal and flash evaporation method at the substrate temperature of 100 °C. The CdS thin film plays a crucial role in the formation of the p-n junction and thus the solar cell device performance. The effect of CdS film substrate temperature ranging from 50 °C to 200 °C is observed. At the 100 °C substrate temperature, CdS thin film shows the near to 85 % of transmission in the visible region and resistivity of the order of greater then 20 x 109 Ocm, which are the essential characteristics of buffer layer. The bi-layer structure of ZnO, containing 70 nm i-ZnO and 500 nm aluminum (Al) doped ZnO, act as a transparent front-contact for CIGS thin film solar cell. These layers were deposited using RF magnetron sputtering. i-ZnO thin film acts as an insulating layer, which prevents the recombination of the photo-generated carries and also minimizes the lattice miss match defects between CdS and Al-ZnO. The resistivity of iZnO and Al-ZnO is of the order of 1012 Ocm and 10-4 Ocm, respectively. Al-ZnO thin films act as transparent conducting top electrode having transparency of about 85 % in the visible region. On Al-ZnO layer the finger-type grid pattern of silver (Ag), 200 nm thick, is deposited for the collection of photo-generated carriers. The thin film based multilayered structure Mo / CIGS / CdS / i-ZnO / Al-ZnO / Ag grid of CIGS solar cell is grown one by one on a single glass substrate. As-prepared CIGS solar cell device shows a minute photovoltaic effect. For the further improvement of the cell we have varied the thickness of the buffer layer i.e. CdS. In addition, the deposition of CdS is carried out using flash evaporation method to improve the CIGS/CdS junction. Heat soak pulses of about 200 °C are also applied for 20 sec for the further upgrading the junction. To protect the CIGS/CdS junction from the high-energy sputtered particles of ZnO, a fine mesh of stainless steel is placed just before the sample holder to enhance the performance of the solar cell. The influence of the thickness of iZnO and CdS has been checked. The maximum V oe and Jsc of about 138 mV and 1.3 mA/cm2 , respectively, are achieved using flash evaporated CIGS layer and flash evaporated CdS thin film. Further improvement of current performance can be done either by adopting some other fabrication method to obtain a denser CIGS absorber layer or replacing the CdS layer with some other efficient buffer layer.
NASA Astrophysics Data System (ADS)
Zhu, Minmin; Du, Zehui; Li, Hongling; Chen, Bensong; Jing, Lin; Tay, Roland Ying Jie; Lin, Jinjun; Tsang, Siu Hon; Teo, Edwin Hang Tong
2017-12-01
A series of Pb(Zr1-xTix)O3 multilayer films alternatively stacked by Pb(Zr0.52Ti0.48)O3 and Pb(Zr0.35Ti0.65)O3 layers have been deposited on corning glass by magnetron sputtering. The films demonstrate pure perovskite structure and good crystallinity. A large tetragonality (c/a) of ∼1.061 and a shift of ∼0.08 eV for optical bandgap were investigated at layer engineered films. In addition, these samples exhibited a wild tunable electro-optic behavior from tens to ∼250.2 pm/V, as well as fast switching time of down to a few microseconds. The giant EO coefficient was attribute the strain-polarization coupling effect and also comparable to that of epitaxial (001) single crystal PZT thin films. The combination of high transparency, large EO effect, fast switching time, and huge phase transition temperature in PZT-based thin films show the potential on electro-optics from laser to information telecommunication.
Impedance of Barrier-Type Oxide Layer on Aluminum
NASA Astrophysics Data System (ADS)
Oh, Han-Jun; Kim, Jung-Gu; Jeong, Yong-Soo; Chi, Choong-Soo
2000-12-01
The impedance characteristics of barrier-type oxide layers on aluminum was studied using impedance spectroscopy. Since anodic films on Al have a variable stoichiometry with a gradual reduction of oxygen deficiency towards the oxide-electrolyte interface, the interpretation of impedance spectra for oxide layers is complex and the impedance of surface layers differs from those of ideal capacitors. This frequency response of the layer with conductance gradients cannot be described by a single resistance-capacitance (RC) element. The oxide layers of Al are properly described by the Young model of dielectric constant with a vertical decay of conductivity.
Solid oxide fuel cell cathode with oxygen-reducing layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surdoval, Wayne A.; Berry, David A.; Shultz, Travis
The disclosure provides a SOFC comprised of an electrolyte, anode, and cathode, where the cathode comprises an MIEC and an oxygen-reducing layer. The oxygen-reducing layer is in contact with the MIEC, and the MIEC is generally between and separating the oxygen-reducing layer and the electrolyte. The oxygen-reducing layer is comprised of single element oxides, single element carbonates, or mixtures thereof, and has a thickness of less than about 30 nm. In a particular embodiment, the thickness is less than 5 nm. In another embodiment, the thickness is about 3 monolayers or less. The oxygen-reducing layer may be a continuous filmmore » or a discontinuous film with various coverage ratios. The oxygen-reducing layer at the thicknesses described may be generated on the MIEC surface using means known in the art such as, for example, ALD processes.« less
NASA Astrophysics Data System (ADS)
Baby, Benjamin Hudson; Bharathi Mohan, D.
2017-11-01
Single phase of SnS thin film was fabricated from S/Sn/S/Sn/S multilayer prepared by using atmospheric pressure and vacuum thermal evaporation methods Glancing angle high vacuum thermal evaporation technique was employed to grow Sn nanorods which facilitated the sulphur diffusion in a faster manner to prepare SnS nanoparticles. The sulphur deposition temperature, sulphur deposition time and tin deposition time were successfully tailored in the synthesis process and stabilized α-phase SnS by probing through confocal micro-Raman spectrometer. X-ray diffraction confirms the formation of SnS crystal structure at sulphur deposition temperature 200 °C. The mechanism of formation of highly porous SnS phase with flower like morphology is explained from the morphological analysis of post deposition annealed film. The complete absence of any oxidation state as evident from Raman as well as EDAX analysis confirms that the proposed sulphurization method could be a suitable, simple and cheap technique for the successful sulphurization of metal films. Band gap calculation from Tauc plot showed a direct band gap value of 1.5 eV for films with single phase of SnS which can be used as a p-type absorber layer in thin film solar cells. Emission studies showed the energy transitions attributed to band edge transition and due to the presence of intrinsic defects.
Dynamic mask for producing uniform or graded-thickness thin films
Folta, James A [Livermore, CA
2006-06-13
A method for producing single layer or multilayer films with high thickness uniformity or thickness gradients. The method utilizes a moving mask which blocks some of the flux from a sputter target or evaporation source before it deposits on a substrate. The velocity and position of the mask is computer controlled to precisely tailor the film thickness distribution. The method is applicable to any type of vapor deposition system, but is particularly useful for ion beam sputter deposition and evaporation deposition; and enables a high degree of uniformity for ion beam deposition, even for near-normal incidence of deposition species, which may be critical for producing low-defect multilayer coatings, such as required for masks for extreme ultraviolet lithography (EUVL). The mask can have a variety of shapes, from a simple solid paddle shape to a larger mask with a shaped hole through which the flux passes. The motion of the mask can be linear or rotational, and the mask can be moved to make single or multiple passes in front of the substrate per layer, and can pass completely or partially across the substrate.
Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution.
Faber, Hendrik; Das, Satyajit; Lin, Yen-Hung; Pliatsikas, Nikos; Zhao, Kui; Kehagias, Thomas; Dimitrakopulos, George; Amassian, Aram; Patsalas, Panos A; Anthopoulos, Thomas D
2017-03-01
Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In 2 O 3 /ZnO heterojunction. We find that In 2 O 3 /ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In 2 O 3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In 2 O 3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications.
Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution
Faber, Hendrik; Das, Satyajit; Lin, Yen-Hung; Pliatsikas, Nikos; Zhao, Kui; Kehagias, Thomas; Dimitrakopulos, George; Amassian, Aram; Patsalas, Panos A.; Anthopoulos, Thomas D.
2017-01-01
Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In2O3/ZnO heterojunction. We find that In2O3/ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In2O3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In2O3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications. PMID:28435867
NASA Astrophysics Data System (ADS)
Han, Ki-Lim; Ok, Kyung-Chul; Cho, Hyeon-Su; Oh, Saeroonter; Park, Jin-Seong
2017-08-01
We investigate the influence of the multi-layered buffer consisting of SiO2/SiNx/SiO2 on amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs). The multi-layered buffer inhibits permeation of water from flexible plastic substrates and prevents degradation of overlying organic layers. The a-IGZO TFTs with a multi-layered buffer suffer less positive bias temperature stress instability compared to the device with a single SiO2 buffer layer after annealing at 250 °C. Hydrogen from the SiNx layer diffuses into the active layer and reduces electron trapping at loosely bound oxygen defects near the SiO2/a-IGZO interface. Quantitative analysis shows that a hydrogen density of 1.85 × 1021 cm-3 is beneficial to reliability. However, the multi-layered buffer device annealed at 350 °C resulted in conductive characteristics due to the excess carrier concentration from the higher hydrogen density of 2.12 × 1021 cm-3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramírez, J. M., E-mail: joan-manel.ramirez@u-psud.fr; Ruiz-Caridad, A.; Estradé, S.
2016-03-21
In this work, the role of the nitrogen content, the annealing temperature, and the sample morphology on the luminescence properties of Ce{sup 3+} and Tb{sup 3+} co-doped SiO{sub x}N{sub y} thin films has been investigated. An increasing nitrogen atomic percentage has been incorporated in the host matrix by gradually replacing oxygen with nitrogen during fabrication while maintaining the Si content unaltered, obtaining a sequential variation in the film composition from nearly stoichiometric SiO{sub 2} to SiO{sub x}N{sub y}. The study of rare earth doped single layers has allowed us to identify the parameters that yield an optimum optical performance frommore » Ce{sup 3+} and Tb{sup 3+} ions. Ce{sup 3+} ions proved to be highly sensitive to the annealing temperature and the nitrogen content, showing strong PL emission for relatively low nitrogen contents (from 0 to 20%) and moderate annealing temperatures (800–1000 °C) or under high temperature annealing (1180 °C). Tb{sup 3+} ions, on the other hand, displayed a mild dependence on those film parameters. Rare earth co-doping has also been investigated by comparing the luminescence properties of three different approaches: (i) a Ce{sup 3+} and Tb{sup 3+} co-doped SiO{sub x}N{sub y} single layer, (ii) a bilayer composed of two SiO{sub x}N{sub y} single layers doped with either Ce{sup 3+} or Tb{sup 3+} ions, and (iii) a multilayer composed of a series of either Tb{sup 3+} or Ce{sup 3+}-doped SiO{sub x}N{sub y} thin films with interleaved SiO{sub 2} spacers. Bright green emission and efficient energy transfer from either Ce{sup 3+} ions or Ce silicates to Tb{sup 3+} ions has been observed in the co-doped single layer as a consequence of the strong ion-ion interaction. On the other hand, independent luminescence from Ce{sup 3+} and Tb{sup 3+} ions has been observed in the Ce{sup 3+} and Tb{sup 3+} co-doped bilayer and multilayer, providing a good scenario to develop light emitting devices with wide color tunability by varying the number of deposited films that contain each rare earth dopant. Moreover, the optoelectronic properties of Ce{sup 3+}- and/or Tb{sup 3+}-doped thin films have been studied by depositing transparent conductive electrodes over selected samples. An electroluminescence signal according to the rare earth transitions is obtained in all cases, validating the excitation of Ce{sup 3+} and Tb{sup 3+} ions upon electron injection. Also, the main charge transport of injected electrons has been evaluated and correlated with the layer stoichiometry. Finally, a simple reliability test has allowed disclosing the origin of the early breakdown of test devices, attributed to the excessive joule heating at filament currents that occur around a region close to the polarization point.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Hongyu; Sannomiya, Takumi; Muraishi, Shinji
2015-03-15
To obtain strong perpendicular magnetic anisotropy (PMA) based on L1{sub 0} structure for magnetic storage devices, costly single crystalline substrates are generally required to achieve (001) texture. Recently, various studies also have focused on depositing different kinds of seed layers on glass or other amorphous substrates to promote (001) preferred orientation of L1{sub 0} CoPt and FePt. TiN is a very promising seed layer material because of its cubic crystalline structure (similar to MgO) and excellent diffusion barring property even at high temperatures. In the present work, highly (001) oriented L1{sub 0}-CoPt/TiN multilayer films have been successfully deposited on glassmore » substrates. After annealing at 700 °C, the film exhibits PMA, and a strong (001) peak is detected from the x-ray diffraction profiles, indicating the ordering transformation of CoPt layers from fcc (A1) to L1{sub 0} structure. It also is found that alternate deposition of cubic TiN and CoPt effectively improves the crystallinity and (001) preferred orientation of CoPt layers. This effect is verified by the substantial enhancement of (001) reflection and PMA with increasing the period number of the multilayer films.« less
NASA Astrophysics Data System (ADS)
Haseman, Micah; Saadatkia, P.; Winarski, D. J.; Selim, F. A.; Leedy, K. D.; Tetlak, S.; Look, D. C.; Anwand, W.; Wagner, A.
2016-12-01
Aluminum-doped zinc oxide (ZnO:Al) thin films were synthesized by atomic layer deposition on silicon, quartz and sapphire substrates and characterized by x-ray diffraction (XRD), high-resolution scanning electron microscopy, optical spectroscopy, conductivity mapping, Hall effect measurements and positron annihilation spectroscopy. XRD showed that the as-grown films are of single-phase ZnO wurtzite structure and do not contain any secondary or impurity phases. The type of substrate was found to affect the orientation and degree of crystallinity of the films but had no effect on the defect structure or the transport properties of the films. High conductivity of 10-3 Ω cm, electron mobility of 20 cm2/Vs and carrier density of 1020 cm-3 were measured in most films. Thermal treatments in various atmospheres induced a large effect on the thickness, structure and electrical properties of the films. Annealing in a Zn and nitrogen environment at 400°C for 1 h led to a 16% increase in the thickness of the film; this indicates that Zn extracts oxygen atoms from the matrix and forms new layers of ZnO. On the other hand, annealing in a hydrogen atmosphere led to the emergence of an Al2O3 peak in the XRD pattern, which implies that hydrogen and Al atoms compete to occupy Zn sites in the ZnO lattice. Only ambient air annealing had an effect on film defect density and electrical properties, generating reductions in conductivity and electron mobility. Depth-resolved measurements of positron annihilation spectroscopy revealed short positron diffusion lengths and high concentrations of defects in all as-grown films. However, these defects did not diminish the electrical conductivity in the films.
Computer analysis of microcrystalline silicon hetero-junction solar cell with lumerical FDTD/DEVICE
NASA Astrophysics Data System (ADS)
Riaz, Muhammad; Earles, S. K.; Kadhim, Ahmed; Azzahrani, Ahmad
The computer analysis of tandem solar cell, c-Si/a-Si:H/μc-SiGe, is studied within Lumerical FDTD/Device 4.6. The optical characterization is performed in FDTD and then total generation rate is transported into DEVICE for electrical characterization. The electrical characterization of the solar cell is carried out in DEVICE. The design is implemented by staking three sub cells with band gap of 1.12eV, 1.50eV and 1.70eV, respectively. First, single junction solar cell with both a-Si and μc-SiGe absorbing layers are designed and compared. The thickness for both layers are kept the same. In a single junction, solar cell with a-Si absorbing layer, the fill factor and the efficiency are noticed as FF = 78.98%, and η = 6.03%. For μc-SiGe absorbing layer, the efficiency and fill factor are increased as η = 7.06% and FF = 84.27%, respectively. Second, for tandem thin film solar cell c-Si/a-Si:H/μc-SiGe, the fill factor FF = 81.91% and efficiency η = 9.84% have been noticed. The maximum efficiency for both single junction thin film solar cell c-Si/μc-SiGe and tandem solar cell c-Si/a-Si:H/μc-SiGe are improved with check board surface design for light trapping.
Zhang, Jian; Lakowicz, Joseph R.
2013-01-01
It has been suggested that narrow gaps between metallic nanostructures can be practical for producing large field enhancement. We design a hybrid silver nanostructure geometry in which fluorescent emitters are sandwiched between silver nanoparticles and silver island film (SIF). A desired number of polyelectrolyte layers are deposited on the SIF surface before the self-assembly of a second silver nanoparticle layer. Layer-by-layer configuration provides a well-defined dye position. It allows us to study the photophyical behaviors of fluorophores in the resulting gap at the single molecule level. The enhancement factor of a fluorophore located in the gap is much higher than those on silver surfaces alone and on glass. These effects may be used for increased detectability of single molecules bound to surfaces which contain metallic structures for either biophysical studies or high sensitivity assays. PMID:23373787
Boron Nitride Nanoporous Membranes with High Surface Charge by Atomic Layer Deposition.
Weber, Matthieu; Koonkaew, Boonprakrong; Balme, Sebastien; Utke, Ivo; Picaud, Fabien; Iatsunskyi, Igor; Coy, Emerson; Miele, Philippe; Bechelany, Mikhael
2017-05-17
In this work, we report the design and the fine-tuning of boron nitride single nanopore and nanoporous membranes by atomic layer deposition (ALD). First, we developed an ALD process based on the use of BBr 3 and NH 3 as precursors in order to synthesize BN thin films. The deposited films were characterized in terms of thickness, composition, and microstructure. Next, we used the newly developed process to grow BN films on anodic aluminum oxide nanoporous templates, demonstrating the conformality benefit of BN prepared by ALD, and its scalability for the manufacturing of membranes. For the first time, the ALD process was then used to tune the diameter of fabricated single transmembrane nanopores by adjusting the BN thickness and to enable studies of the fundamental aspects of ionic transport on a single nanopore. At pH = 7, we estimated a surface charge density of 0.16 C·m -2 without slip and 0.07 C·m -2 considering a reasonable slip length of 3 nm. Molecular dynamics simulations performed with experimental conditions confirmed the conductivities and the sign of surface charges measured. The high ion transport results obtained and the ability to fine-tune nanoporous membranes by such a scalable method pave the way toward applications such as ionic separation, energy harvesting, and ultrafiltration devices.
Epitaxial ZnO/LiNbO{sub 3}/ZnO stacked layer waveguide for application to thin-film Pockels sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp; Fukuda, Hiroshi
We produced slab waveguides consisting of a LiNbO{sub 3} (LN) core layer that was sandwiched with Al-doped ZnO cladding layers. The ZnO/LN/ZnO stacked layers were grown on sapphire C-planes by electron cyclotron resonance (ECR) plasma sputtering and were subjected to structural, electrical, and optical characterizations. X-ray diffraction confirmed that the ZnO and LN layers were epitaxial without containing misoriented crystallites. The presence of 60°-rotational variants of ZnO and LN crystalline domains were identified from X-ray pole figures. Cross-sectional transmission electron microscopy images revealed a c-axis orientated columnar texture for LN crystals, which ensured operation as electro-optic sensors based on opticalmore » anisotropy along longitudinal and transversal directions. The interfacial roughness between the LN core and ZnO bottom layers as well as that between the ZnO top and the LN core layers was less than 20 nm, which agreed with surface images observed with atomic force microscopy. Outgrowth of triangular LN crystalline domains produced large roughness at the LN film surface. The RMS roughness of the LN film surface was twice that of the same structure grown on sapphire A-planes. Vertical optical transmittance of the stacked films was higher than 85% within the visible and infrared wavelength range. Following the approach adopted by Teng and Man [Appl. Phys. Lett. 56, 1734 (1990)], ac Pockels coefficients of r{sub 33} = 24-28 pm/V were derived for c-axis oriented LN films grown on low-resistive Si substrates. Light propagation within a ZnO/LN/ZnO slab waveguide as well as within a ZnO single layer waveguide was confirmed. The birefringence of these waveguides was 0.11 for the former and 0.05 for the latter.« less
NASA Astrophysics Data System (ADS)
da Silva, D. S.; Côrtes, A. D. S.; Oliveira, M. H.; Motta, E. F.; Viana, G. A.; Mei, P. R.; Marques, F. C.
2011-08-01
We report on the investigation of the potential application of different forms of amorphous carbon (a-C and a-C:H) as an antireflective coating for crystalline silicon solar cells. Polymeric-like carbon (PLC) and hydrogenated diamond-like carbon films were deposited by plasma enhanced chemical vapor deposition. Tetrahedral amorphous carbon (ta-C) was deposited by the filtered cathodic vacuum arc technique. Those three different amorphous carbon structures were individually applied as single antireflective coatings on conventional (polished and texturized) p-n junction crystalline silicon solar cells. Due to their optical properties, good results were also obtained for double-layer antireflective coatings based on PLC or ta-C films combined with different materials. The results are compared with a conventional tin dioxide (SnO2) single-layer antireflective coating and zinc sulfide/magnesium fluoride (ZnS/MgF2) double-layer antireflective coatings. An increase of 23.7% in the short-circuit current density, Jsc, was obtained using PLC as an antireflective coating and 31.7% was achieved using a double-layer of PLC with a layer of magnesium fluoride (MgF2). An additional increase of 10.8% was obtained in texturized silicon, representing a total increase (texturization + double-layer) of about 40% in the short-circuit current density. The potential use of these materials are critically addressed considering their refractive index, optical bandgap, absorption coefficient, hardness, chemical inertness, and mechanical stability.
Growth, structure, and magnetic properties of γ-Fe2O3 epitaxial films on MgO
NASA Astrophysics Data System (ADS)
Gao, Y.; Kim, Y. J.; Thevuthasan, S.; Chambers, S. A.; Lubitz, P.
1997-04-01
Single-crystal epitaxial thin films of γ-Fe2O3(001) have been grown on MgO(001) using oxygen-plasma-assisted molecular beam epitaxy. The structure and magnetic properties of these films have been characterized by a variety of techniques, including reflection high-energy electron diffraction (RHEED), low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy and x-ray photoelectron/Auger electron diffraction (XPD/AED), vibrating sample magnetometry, and ferromagnetic resonance. Real-time RHEED reveals that the film growth occurs in a layer-by-layer fashion. The γ-Fe2O3(001) film surface exhibits a (1×1) LEED pattern. The growth of γ-Fe2Ooverflow="scroll">3 films at 450 °C is accompanied by significant Mg outdiffusion. AED of Mg KLL Auger emission reveals that Mg substitutionally incorporates in the γ-Fe2O3 lattice, occupying the octahedral sites. Magnetic moments are ˜2300 G and ˜4500 G for γ-Fe2O3 films grown at 250 °C and 450 °C, respectively. The high magnetic moment for the films grown at 450 °C could be attributed to the high degree of structural order of the films and Mg substitution at octahedral sites.
Polypeptide multilayer film co-delivers oppositely-charged drug molecules in sustained manners.
Jiang, Bingbing; Defusco, Elizabeth; Li, Bingyun
2010-12-13
The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intended for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO(3)) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO(3) templates. Two oppositely charged drugs were loaded into capsules within polypeptide multilayer films postpreparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g., opposite charges) any time postpreparation (e.g., minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved.
Polypeptide Multilayer Film Co-Delivers Oppositely-Charged Drug Molecules in Sustained Manners
Jiang, Bingbing; DeFusco, Elizabeth; Li, Bingyun
2010-01-01
The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intending for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely-charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO3) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO3 templates. Two oppositely-charged drugs were loaded into capsules within polypeptide multilayer films post-preparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g. opposite charges) any time post-preparation (e.g. minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely-charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved. PMID:21058719
Thin Film Solar Cells: Organic, Inorganic and Hybrid
NASA Technical Reports Server (NTRS)
Dankovich, John
2004-01-01
Thin film solar cells are an important developing resource for hundreds of applications including space travel. In addition to being more cost effective than traditional single crystal silicon cells, thin film multi-crystaline cells are plastic and light weight. The plasticity of the cells allows for whole solar panels to be rolled out from reams. Organic layers are being investigated in order to increase the efficiency of the cells to create an organic / inorganic hybrid cell. The main focus of the group is a thin film inorganic cell made with the absorber CuInS2. So far the group has been successful in creating the layer from a single-source precursor. They also use a unique method of film deposition called chemical vapor deposition for this. The general makeup of the cell is a molybdenum back contact with the CuInS2 layer, then CdS, ZnO and aluminum top contacts. While working cells have been produced, the efficiency so far has been low. Along with quantum dot fabrication the side project of this that is currently being studied is adding a polymer layer to increase efficiency. The polymer that we are using is P3OT (Poly(3-octylthiopene-2,5-diyll), retroregular). Before (and if) it is added to the cell, it must be understood in itself. To do this simple diodes are being constructed to begin to look at its behavior. The P3OT is spin coated onto indium tin oxide and silver or aluminum contacts are added. This method is being studied in order to find the optimal thickness of the layer as well as other important considerations that may later affect the composition of the finished solar cell. Because the sun is the most abundant renewable, energy source that we have, it is important to learn how to harness that energy and begin to move away from our other depleted non-renewable energy sources. While traditional silicon cells currently create electricity at relatively high efficiencies, they have drawbacks such as weight and rigidness that make them unattractive especially for space applications. Thin film photovoltaics have the potential to alleviate these problems and create a cheap and efficient way to harness the power of the sun.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Han Joon; Park, Min Hyuk; Kim, Yu Jin
2014-11-10
The degradation of ferroelectric (FE) properties of atomic layer deposited Hf{sub 0.5}Zr{sub 0.5}O{sub 2} films with increasing thickness was mitigated by inserting 1 nm-thick Al{sub 2}O{sub 3} interlayer at middle position of the thickness of the FE film. The large P{sub r} of 10 μC/cm{sup 2}, which is 11 times larger than that of single layer Hf{sub 0.5}Zr{sub 0.5}O{sub 2} film with equivalent thickness, was achieved from the films as thick as 40 nm. The Al{sub 2}O{sub 3} interlayer could interrupt the continual growth of Hf{sub 0.5}Zr{sub 0.5}O{sub 2} films, and the resulting decrease of grain size prevented the formation of non-ferroelectricmore » monoclinic phase. The Al{sub 2}O{sub 3} interlayer also largely decreased the leakage current of the Hf{sub 0.5}Zr{sub 0.5}O{sub 2} films.« less
Flight-measured laminar boundary-layer transition phenomena including stability theory analysis
NASA Technical Reports Server (NTRS)
Obara, C. J.; Holmes, B. J.
1985-01-01
Flight experiments were conducted on a single-engine turboprop aircraft fitted with a 92-in-chord, 3-ft-span natural laminar flow glove at glove section lift coefficients from 0.15 to 1.10. The boundary-layer transition measurement methods used included sublimating chemicals and surface hot-film sensors. Transition occurred downstream of the minimum pressure point. Hot-film sensors provided a well-defined indication of laminar, laminar-separation, transitional, and turbulent boundary layers. Theoretical calculations of the boundary-layer parameters provided close agreement between the predicted laminar-separation point and the measured transition location. Tollmien-Schlichting (T-S) wave growth n-factors between 15 and 17 were calculated at the predicted point of laminar separation. These results suggest that for many practical airplane cruise conditions, laminar separation (as opposed to T-S instability) is the major cause of transition in predominantly two-dimensional flows.
Single ether group in a glycol-based ultra-thin layer prevents surface fouling from undiluted serum.
Sheikh, Sonia; Yang, David Yi; Blaszykowski, Christophe; Thompson, Michael
2012-01-30
Through systematic structural modification, it is shown that the internal, single oxygen atom of simple monoethylene glycol-based organic films is essential for radically altering the fouling behaviour of quartz against undiluted serum, as characterized by the electromagnetic piezoelectric acoustic sensor. The synergy is strongest with distal hydroxyls.
Itoh, Eiji; Goto, Yoshinori; Saka, Yusuke; Fukuda, Katsutoshi
2016-04-01
We have investigated the photovoltaic properties of an inverted bulk heterojunction (BHJ) cell in a device with an indium-tin-oxide (ITO)/electron selective layer (ESL)/P3HT:PCBM active layer/MoOx/Ag multilayered structure. The insertion of only single layer of poly(diallyl-dimethyl-ammonium chloride) (PDDA) cationic polymer film (or poly(ethyleneimine) (PEI) polymeric interfacial dipole layer) and titanium oxide nanosheet (TN) films as an ESL effectively improved cell performance. Abnormal S-shaped curves were observed in the inverted BHJ cells owing to the contact resistance across the ITO/active layer interface and the ITO/PDDA/TN/active layer interface. The series resistance across the ITO/ESL interface in the inverted BHJ cell was successfully reduced using an interfacial layer with a positively charged surface potential with respect to ITO base electrode. The positive dipole in PEI and the electronic charge phenomena at the electrophoretic deposited TN (ED-TN) films on ITO contributed to the reduction of the contact resistance at the electrode interface. The surface potential measurement revealed that the energy alignment by the transfer of electronic charges from the ED-TN to the base electrodes. The insertion of the ESL with a large positive surface potential reduced the potential barrier for the electron injection at ITO/TN interface and it improved the photovoltaic properties of the inverted cell with an ITO/TN/active layer/MoOx/Ag structure.
NASA Astrophysics Data System (ADS)
Leonard, J. T.; Cohen, D. A.; Yonkee, B. P.; Farrell, R. M.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.
2015-10-01
We carried out a series of simulations analyzing the dependence of mirror reflectance, threshold current density, and differential efficiency on the scattering loss caused by the roughness of tin-doped indium oxide (ITO) intracavity contacts for 405 nm flip-chip III-nitride vertical-cavity surface-emitting lasers (VCSELs). From these results, we determined that the ITO root-mean-square (RMS) roughness should be <1 nm to minimize scattering losses in VCSELs. Motivated by this requirement, we investigated the surface morphology and optoelectronic properties of electron-beam (e-beam) evaporated ITO films, as a function of substrate temperature and oxygen flow and pressure. The transparency and conductivity were seen to increase with increasing temperature. Decreasing the oxygen flow and pressure resulted in an increase in the transparency and resistivity. Neither the temperature, nor oxygen flow and pressure series on single-layer ITO films resulted in highly transparent and conductive films with <1 nm RMS roughness. To achieve <1 nm RMS roughness with good optoelectronic properties, a multi-layer ITO film was developed, utilizing a two-step temperature scheme. The optimized multi-layer ITO films had an RMS roughness of <1 nm, along with a high transparency (˜90% at 405 nm) and low resistivity (˜2 × 10-4 Ω-cm). This multi-layer ITO e-beam deposition technique is expected to prevent p-GaN plasma damage, typically observed in sputtered ITO films on p-GaN, while simultaneously reducing the threshold current density and increasing the differential efficiency of III-nitride VCSELs.
NASA Astrophysics Data System (ADS)
Paik, Taejong; Hong, Sung-Hoon; Gordon, Thomas; Gaulding, Ashley; Kagan, Cherie; Murray, Christopher
2013-03-01
We report the fabrication of thermochromic VO2-based metamaterials using solution-processable colloidal nanocrystals. Vanadium-based nanoparticles are prepared through a non-hydrolytic reaction, resulting in stable colloidal dispersions in solution. Thermochromic nanocrystalline VO2 thin-films are prepared via rapid thermal annealing of colloidal nanoparticles coated on a variety of substrates. Nanostructured VO2 can be patterned over large areas by nanoimprint lithography. Precise control of tungsten (W) doping concentration in colloidal nanoparticles enables tuning of the phase transition temperature of the nanocrystalline VO2 thin-films. W-doped VO2 films display a sharp temperature dependent phase transition, similar to the undoped VO2 film, but at lower temperatures tunable with the doping level. By sequential coating of doped VO2 with different doping concentrations, we fabricate ?smart? multi-layered VO2 films displaying multiple phase transition temperatures within a single structure, allowing for dynamic modulation of the metal-dielectric layered structure. The optical properties programmed into the layered structure are switchable with temperature, which provides additional degrees of freedom to design tunable optical metamaterials. This work is supported by the US Office of Naval Research Multidisciplinary University Research Initiative (MURI) program grant number ONR-N00014-10-1-0942.
NASA Astrophysics Data System (ADS)
Moufarej, Elias; Maurin, Isabelle; Zabkov, Ilya; Laliotis, Athanasios; Ballin, Philippe; Klimov, Vasily; Bloch, Daniel
2014-10-01
Artificial thin glass opals can be infiltrated with a resonant alkali-metal vapour, providing novel types of hybrid systems. The reflection at the interface between the substrate and the opal yields a resonant signal, which exhibits sub-Doppler structures in linear spectroscopy for a range of oblique incidences. This result is suspected to originate in an effect of the three-dimensional confinement of the vapour in the opal interstices. It is here extended to a situation where the opal is limited to a few- or even a single-layer opal film, which is a kind of bidimensional grating. We have developed a flexible one-dimensional layered optical model, well suited for a Langmuir-Blodgett opal. Once extended to the case of a resonant infiltration, the model reproduces quick variations of the lineshape with incidence angle or polarization. Alternately, for an opal limited to a single layer of identical spheres, a three-dimensional numerical calculation was developed. It predicts crystalline anisotropy, which is demonstrated through diffraction on an empty opal made of a single layer of polystyrene spheres.
Nonvolatile ferroelectric memory based on PbTiO3 gated single-layer MoS2 field-effect transistor
NASA Astrophysics Data System (ADS)
Shin, Hyun Wook; Son, Jong Yeog
2018-01-01
We fabricated ferroelectric non-volatile random access memory (FeRAM) based on a field effect transistor (FET) consisting of a monolayer MoS2 channel and a ferroelectric PbTiO3 (PTO) thin film of gate insulator. An epitaxial PTO thin film was deposited on a Nb-doped SrTiO3 (Nb:STO) substrate via pulsed laser deposition. A monolayer MoS2 sheet was exfoliated from a bulk crystal and transferred to the surface of the PTO/Nb:STO. Structural and surface properties of the PTO thin film were characterized by X-ray diffraction and atomic force microscopy, respectively. Raman spectroscopy analysis was performed to identify the single-layer MoS2 sheet on the PTO/Nb:STO. We obtained mobility value (327 cm2/V·s) of the MoS2 channel at room temperature. The MoS2-PTO FeRAM FET showed a wide memory window with 17 kΩ of resistance variation which was attributed to high remnant polarization of the epitaxially grown PTO thin film. According to the fatigue resistance test for the FeRAM FET, however, the resistance states gradually varied during the switching cycles of 109. [Figure not available: see fulltext.
Hydrodynamics of soap films probed by two-particle microrheology
NASA Astrophysics Data System (ADS)
Prasad, Vikram; Weeks, Eric R.
2007-11-01
A soap film consists of a thin water layer that is separated from two bulk air phases above and below it by surfactant monolayers. The flow fields in the soap film created in response to a perturbation depend on coupling between these different phases, the exact nature of which is unknown. In order to determine this coupling, we use polystyrene spheres as tracer particles and track their diffusive motions in the soap film. The correlated Brownian motion of pairs of particles (two-particle microrheology) maps out the flow field, and provides a measure of the surface viscosity of the soap film as well. This measured surface viscosity agrees well with the value obtained from self diffusion of single particles (one-particle microrheology) in the film.
NASA Astrophysics Data System (ADS)
Yao, Hongjun
High temperature superconducting (HTS) materials such as YBCO (Yttrium-Barium-Copper-Oxide) are very attractive in microwave applications because of their extremely low surface resistance. In the proposed all-HTS tunable filter, a layer of HTS thin film on a very thin substrate (100 mum) is needed to act as the toractor that can be rotated to tune the frequency. In order to provide more substrate candidates that meet both electrical and mechanical requirements for this special application, surface resistance of YBCO thin films on various substrates was measured using microstrip ring resonator method. For alumina polycrystalline substrate, a layer of YSZ (Yttrium stabilized Zirconia) was deposited using IBAD (ion beam assisted deposition) method prior to YBCO deposition. The surface resistance of the YBCO thin film on alumina was found to be 22 mO due to high-angle grain boundary problem caused by the mixed in-plane orientations and large FWHM (full width at half maximum) of the thin film. For YBCO thin films on a YSZ single crystal substrate, the surface resistance showed even higher value of 30 mO because of the mixed in-plane orientation problem. However, by annealing the substrate in 200 Torr oxygen at 730°C prior to deposition, the in-plane orientation of YBCO thin films can be greatly improved. Therefore, the surface resistance decreased to 1.4 mO, which is still more than an order higher than the reported best value. The YBCO thin films grown on LaAlO3 single crystal substrate showed perfect in-plane orientation with FWHM less 1°. The surface resistance was as low as 0.032 mO. A tunable spiral resonator made of YBCO thin film on LaAlO3 single crystal substrate demonstrated that the resonant frequency can be tuned in a rang as large as 500 MHz by changing the gap between toractor and substrate. The Q-factor was more than 12,000, which ensured the extraordinarily high sensitivity for the proposed all-HTS tunable filter.
Effect of SiC buffer layer on GaN growth on Si via PA-MBE
NASA Astrophysics Data System (ADS)
Kukushkin, S. A.; Mizerov, A. M.; Osipov, A. V.; Redkov, A. V.; Telyatnik, R. S.; Timoshnev, S. N.
2017-11-01
The study is devoted to comparison of GaN thin films grown on SiC/Si substrates made by the method of atoms substitution with the films grown directly on Si substrates. The growth was performed in a single process via plasma assisted molecular beam epitaxy. The samples were studied via optical microscopy, Raman spectroscopy, ellipsometry, and a comparison of their characteristics was made. Using chemical etching in KOH, the polarity of GaN films grown on SiC/Si and Si substrates was determined.
Driscoll, Judith L; Lee, ShinBuhm; Jia, Quanxi
2015-05-12
Films having a comb-like structure of nanocolumns of Sm.sub.2O.sub.3 embedded in a SrTiO.sub.3 formed spontaneously on a substrate surface by pulsed laser deposition. In an embodiment, the nanocolumns had a width of about 20 nm with spaces between nanocolumns of about 10 nm. The films exhibited memristive behavior, and were extremely uniform and tunable. Oxygen deficiencies were located at vertical interfaces between the nanocolumns and the matrix. The substrates may be single-layered or multilayered.
NASA Astrophysics Data System (ADS)
Chang, Y. H.; Wang, C. Y.; Qi, L. Q.; Liu, H.
2017-08-01
In order to optimize the performance of fluoride thin films in wavelength of Deep Ultraviolet (DUV), GdF3 single layers are prepared by thermal evaporation at different deposition temperatures on Fused Silica. Optical and structure properties of each sample are characterized. The results that the refrac-tive index increased gradually and the crystallization status becomes stronger with the temperature rising, the inhomogeneous of the thin films present linearity. The decrease total optical loss with deposited temper-ature is attributed to the higher packing density and lower optical absorption.
Effect of lipid-based dry eye supplements on the tear film in wearers of eye cosmetics.
Wang, Michael T M; Cho, Irene Sung Hee; Jung, Soo Hee; Craig, Jennifer P
2017-08-01
To compare the effects on tear film parameters and contamination in cosmetic eyeliner wearers, after single application of two lipid-based dry eye treatments: a lipid-containing lubricant eye drop and a phospholipid liposomal spray. Fifty participants were enrolled in a prospective, randomised, paired-eye, investigator-masked trial. Pencil eyeliner (Body Shop ® Crayon Eye Definer) was applied to the upper eyelid periocular skin of both eyes, anterior to the lash line. Baseline tear film quality was assessed fifteen minutes after eyeliner application. A lubricant drop (Systane ® Balance) was then applied to one eye (randomised), and liposomal spray (Tears Again ® ) to the contralateral eye. Tear film contamination, lipid layer grade, non-invasive tear film break-up time and tear evaporation rate were evaluated fifteen minutes post-treatment and compared to pre-treatment values. Pre-treatment measurements did not differ between eyes assigned to lubricant drop and liposomal spray. Tear film contamination was observed in a greater proportion of eyes following both treatments (both p<0.05), with no significant difference between treatments (p=0.41). Both treatments improved lipid layer thickness (both p≤0.01), but effected no significant change in non-invasive tear film break-up time or tear evaporation rate (all p>0.05). Changes in tear film parameters did not differ between treatments (all p>0.05). Both the lipid-containing lubricant eye drop and phospholipid liposomal spray result in clinically apparent tear film contamination in eyeliner cosmetic wearers. Although both treatments effected an increase in lipid layer thickness, neither displayed clinical efficacy in improving tear film stability. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy
Lee, J. H.; Luo, G.; Tung, I. C.; ...
2014-08-03
The A n+1B nO 3n+1 Ruddlesden–Popper homologous series offers a wide variety of functionalities including dielectric, ferroelectric, magnetic and catalytic properties. Unfortunately, the synthesis of such layered oxides has been a major challenge owing to the occurrence of growth defects that result in poor materials behaviour in the higher-order members. To understand the fundamental physics of layered oxide growth, we have developed an oxide molecular beam epitaxy system with in situ synchrotron X-ray scattering capability. We present results demonstrating that layered oxide films can dynamically rearrange during growth, leading to structures that are highly unexpected on the basis of themore » intended layer sequencing. Theoretical calculations indicate that rearrangement can occur in many layered oxide systems and suggest a general approach that may be essential for the construction of metastable Ruddlesden–Popper phases. Lastly, we demonstrate the utility of the new-found growth strategy by performing the first atomically controlled synthesis of single-crystalline La 3Ni 2O 7.« less
Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massimi, Lorenzo, E-mail: lorenzo.massimi@uniroma1.it; Angelucci, Marco; Gargiani, Pierluigi
2014-06-28
Iron-phthalocyanine and cobalt-phthalocyanine chains, assembled along the Au(110)-(1×2) reconstructed channels, present a strong interaction with the Au metallic states, via the central metal ion. X-ray photoemission spectroscopy from the metal-2p core-levels and valence band high-resolution ultraviolet photoelectron spectroscopy bring to light signatures of the interaction of the metal-phthalocyanine single-layer with gold. The charge transfer from Au to the molecule causes the emerging of a metal-2p core level component at lower binding energy with respect to that measured in the molecular thin films, while the core-levels associated to the organic macrocycle (C and N 1s) are less influenced by the adsorption,more » and the macrocycles stabilize the interaction, inducing a strong interface dipole. Temperature Programmed Desorption experiments and photoemission as a function of temperature allow to estimate the adsorption energy for the thin-films, mainly due to the molecule-molecule van der Waals interaction, while the FePc and CoPc single-layers remain adsorbed on the Au surface up to at least 820 K.« less
2013-01-01
We propose a transparent conductive oxide electrode scheme of gallium oxide nanoparticle mixed with a single-walled carbon nanotube (Ga2O3 NP/SWNT) layer for deep ultraviolet light-emitting diodes using spin and dipping methods. We investigated the electrical, optical and morphological properties of the Ga2O3 NP/SWNT layers by increasing the thickness of SWNTs via multiple dipping processes. Compared with the undoped Ga2O3 films (current level 9.9 × 10-9 A @ 1 V, transmittance 68% @ 280 nm), the current level flowing in the Ga2O3 NP/SWNT increased by approximately 4 × 105 times and the transmittance improved by 9% after 15 times dip-coating (current level 4 × 10-4 A at 1 V; transmittance 77.0% at 280 nm). These improvements result from both native high transparency of Ga2O3 NPs and high conductivity and effective current spreading of SWNTs. PMID:24295342
NASA Astrophysics Data System (ADS)
Takagaki, Shunsuke; Yamada, Hirofumi; Noda, Kei
2018-03-01
Contact effects in organic thin-film transistors (OTFTs) were examined by using our previously proposed parameter extraction method from the electrical characteristics of a single staggered-type device. Gate-voltage-dependent contact resistance and channel mobility in the linear regime were evaluated for bottom-gate/top-contact (BGTC) pentacene TFTs with active layers of different thicknesses, and for pentacene TFTs with contact-doped layers prepared by coevaporation of pentacene and tetrafluorotetracyanoquinodimethane (F4TCNQ). The extracted parameters suggested that the influence of the contact resistance becomes more prominent with the larger active-layer thickness, and that contact-doping experiments give rise to a drastic decrease in the contact resistance and a concurrent considerable improvement in the channel mobility. Additionally, the estimated energy distributions of trap density in the transistor channel probably reflect the trap filling with charge carriers injected into the channel regions. The analysis results in this study confirm the effectiveness of our proposed method, with which we can investigate contact effects and circumvent the influences of characteristic variations in OTFT fabrication.
Sarker, Ashis K; Hong, Jong-Dal
2012-08-28
Multilayer assemblies of uniform ultrathin film electrodes with good electrical conductivity and very large surface areas were prepared for use as electrochemical capacitors. A layer-by-layer self-assembly approach was employed in an effort to improve the processability of highly conducting polyaniline (PANi) and chemically modified graphene. The electrochemical properties of the multilayer film (MF-) electrodes, including the sheet resistance, volumetric capacitance, and charge/discharge ratio, were determined by the morphological modification and the method used to reduce the graphene oxide (GO) to reduced graphene oxide (RGO) in the multilayer films. The PANi and GO concentrations could be modulated to control the morphology of the GO monolayer film in the multilayer assemblies. Optical ellipsometry was used to determine the thickness of the GO film in a single layer (1.32 nm), which agreed well with the literature value (~1.3 nm). Hydroiodic acid (HI), hydrazine, or pyrolysis were tested for the reduction of GO to RGO. HI was found to be the most efficient technique for reducing the GO to RGO in the multilayer assemblies while minimizing damage to the virgin state of the acid-doped PANi. Ultimately, the MF-electrode, which could be optimized by fine-tuning the nanostructure and selecting a suitable reduction method, exhibited an excellent volumetric capacitance, good cycling stability, and a rapid charge/discharge rate, which are required for supercapacitors. A MF-electrode composed of 15 PANi/RGO bilayers yielded a volumetric capacitance of 584 F/cm(3) at a current density of 3.0 A/cm(3). Although this value decreased exponentially as the current density increased, approaching a value of 170 F/cm(3) at 100 A/cm(3), this volumetric capacitance is one of the best yet reported for the other carbon-based materials. The intriguing features of the MF-electrodes composed of PANi/RGO multilayer films offer a new microdimensional design for high energy storage devices for use in small portable electronic devices.
NASA Astrophysics Data System (ADS)
Apreutesei, Mihai; Debord, Régis; Bouras, Mohamed; Regreny, Philippe; Botella, Claude; Benamrouche, Aziz; Carretero-Genevrier, Adrian; Gazquez, Jaume; Grenet, Geneviève; Pailhès, Stéphane; Saint-Girons, Guillaume; Bachelet, Romain
2017-12-01
High-quality thermoelectric La0.2Sr0.8TiO3 (LSTO) films, with thicknesses ranging from 20 nm to 0.7 μm, have been epitaxially grown on SrTiO3(001) substrates by enhanced solid-source oxide molecular-beam epitaxy. All films are atomically flat (with rms roughness < 0.2 nm), with low mosaicity (<0.1°), and present very low electrical resistivity (<5 × 10-4 Ω cm at room temperature), one order of magnitude lower than standard commercial Nb-doped SrTiO3 single-crystalline substrate. The conservation of transport properties within this thickness range has been confirmed by thermoelectric measurements where Seebeck coefficients of approximately -60 μV/K have been recorded for all films. These LSTO films can be integrated on Si for non-volatile memory structures or opto-microelectronic devices, functioning as transparent conductors or thermoelectric elements.
Stress generation and evolution in oxide heteroepitaxy
NASA Astrophysics Data System (ADS)
Fluri, Aline; Pergolesi, Daniele; Wokaun, Alexander; Lippert, Thomas
2018-03-01
Many physical properties of oxides can be changed by inducing lattice distortions in the crystal through heteroepitaxial growth of thin films. The average lattice strain can often be tuned by changing the film thickness or using suitable buffer layers between film and substrate. The exploitation of the full potential of strain engineering for sample or device fabrication rests on the understanding of the fundamental mechanisms of stress generation and evolution. For this study an optical measurement of the substrate curvature is used to monitor in situ how the stress builds up and relaxes during the growth of oxide thin films by pulsed laser deposition. The relaxation behavior is correlated with the growth mode, which is monitored simultaneously with reflection high-energy electron diffraction. The stress relaxation data is fitted and compared with theoretical models for stress evolution which were established for semiconductor epitaxy. The initial stage of the growth appears to be governed by surface stress and surface energy effects, while the subsequent stress relaxation is found to be fundamentally different between films grown on single-crystal substrates and on buffer layers. The first case can be rationalized with established theoretical models, but these models fail in the attempt to describe the growth on buffer layers. This is most probably due to the larger average density of crystalline defects in the buffer layers, which leads to a two-step stress relaxation mechanism, driven first by the nucleation and later by the migration of dislocation lines.
Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide.
Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J; Schlom, Darrell G; Alem, Nasim; Gopalan, Venkatraman
2016-08-31
Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.
Atomic scale imaging of competing polar states in a Ruddlesden–Popper layered oxide
Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J.; Schlom, Darrell G.; Alem, Nasim; Gopalan, Venkatraman
2016-01-01
Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden–Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure. PMID:27578622
Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide
NASA Astrophysics Data System (ADS)
Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J.; Schlom, Darrell G.; Alem, Nasim; Gopalan, Venkatraman
2016-08-01
Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.
Single crystal functional oxides on silicon
Bakaul, Saidur Rahman; Serrao, Claudy Rayan; Lee, Michelle; Yeung, Chun Wing; Sarker, Asis; Hsu, Shang-Lin; Yadav, Ajay Kumar; Dedon, Liv; You, Long; Khan, Asif Islam; Clarkson, James David; Hu, Chenming; Ramesh, Ramamoorthy; Salahuddin, Sayeef
2016-01-01
Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single-crystal functional oxides on-demand on silicon. PMID:26853112
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A.; Kotel'nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009
Using the space-resolved Brillouin light scattering spectroscopy we study the transformation of dynamic magnetization patterns in a bilayer multiferroic structure. We show that in the comparison with a single yttrium iron garnet (YIG) film magnetization distribution is transformed in the bilayer structure due to the coupling of waves propagating both in an YIG film (magnetic layer) and in a barium strontium titanate slab (ferroelectric layer). We present a simple electrodynamic model using the numerical finite element method to show the transformation of eigenmode spectrum of confined multiferroic. In particular, we demonstrate that the control over the dynamic magnetization and themore » transformation of spatial profiles of transverse modes in magnetic film of the bilayer structure can be performed by the tuning of the wavevectors of transverse modes. The studied confined multiferroic stripe can be utilized for fabrication of integrated dual tunable functional devices for magnonic applications.« less
Huang, Li; Chen, Hou -Tong; Zeng, Beibei; ...
2016-03-30
Metamaterials/metasurfaces have enabled unprecedented manipulation of electromagnetic waves. Here we present a new design of metasurface structure functioning as antireflection coatings. The structure consists of a subwavelength metallic mesh capped with a thin dielectric layer on top of a substrate. By tailoring the geometric parameters of the metallic mesh and the refractive index and thickness of the capping dielectric film, reflection from the substrate can be completely eliminated at a specific frequency. Compared to traditional methods such as coatings with single- or multi-layer dielectric films, the metasurface antireflection coatings are much thinner and the requirement of index matching is largelymore » lifted. Here, this approach is particularly suitable for antireflection coatings in the technically challenging terahertz frequency range and is also applicable in other frequency regimes.« less
Study on AN Intermediate Temperature Planar Sofc
NASA Astrophysics Data System (ADS)
Wang, Shaorong; Cao, Jiadi; Chen, Wenxia; Lu, Zhiyi; Wang, Daqian; Wen, Ting-Lian
An ITSOFC consisted of Ni/YSZ anode supported YSZ composite thin film and La0.6Sr0.4CoO3 (LSCO) cathode combined with a Ce0.8Sm0.2O1.9 (CSO) interlayer was studied. Tape cast method was applied to prepare green sheets of Ni/YSZ anode supported YSZ composite thin film. After isostatic pressing and cosintering, the YSZ film on the Ni/YSZ anode was gas-tight dense, and 15-30μm thick. The area of the composite film was over 100 cm2. A CSO interlayer was sintered on to the YSZ electrolyte film to protect LSCO cathode from reaction with YSZ at high temperatures. The LSCO cathode layer was screen printed onto the CSO interlayer and sintered at 1200°C for 3h to form a single cell. The obtained single cell was operated with H2 as fuel and O2 as oxidant. The cell performance and impedance were measured and discussed relating with the component contributions.
Magnetooptics of single and microresonator iron-garnet films at low temperatures
NASA Astrophysics Data System (ADS)
Shaposhnikov, A. N.; Prokopov, A. R.; Berzhansky, V. N.; Mikhailova, T. V.; Karavainikov, A. V.; Kharchenko, M. F.; Belotelov, V. I.; Lukienko, I. M.; Miloslavskaya, O. V.; Kharchenko, Yu. M.
2016-02-01
We have investigated the low-temperature behavior of the optical and magneto-optical properties of (Bi, Gd, Al)-substituted yttrium iron-garnet films that are either single or microresonator, i.e. sandwiched between two dielectric Bragg mirrors. It was shown that the magneto-optical properties of the microresonators with a magnetic film core are mainly determined by the properties of the constituent magnetic films. Special attention was paid to the compositions possessing magnetic compensation temperatures. The phenomenon of the temperature hysteresis was found and discussed for several samples. This testifies the fact that the magnetic moment reorientation in a magnetic field occurs by the full cycle of the first-order phase transitions "collinear phase - non-collinear phase - collinear phase". The Faraday hysteresis curves at around magnetic compensation temperatures are demonstrated to be very informative concerning composition of a sample. In particular, the hysteresis curves measured for the magnetic films on the garnet substrates showed bursts that indicates formation of a transition layer.
NASA Astrophysics Data System (ADS)
Wang, Sea-Fue; Lu, His-Chuan; Hsu, Yung-Fu; Hu, Yi-Xuan
2015-05-01
In this study, solid oxide fuel cells (SOFCs) containing a high quality La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) film deposited on anode supported substrate using RF magnetron sputtering are successfully prepared. The anode substrate is composed of two functional NiO/Sm0.2Ce0.8O2-δ (SDC) composite layers with ratios of 60/40 wt% and 50/50 wt% and a current collector layer of pure NiO. The as-deposited LSGM film appears to be amorphous in nature. After post-annealing at 1000 °C, a uniform and dense polycrystalline film with a composition of La0.87Sr0.13Ga0.85Mg0.15O3-δ and a thickness of 3.8 μm is obtained, which was well adhered to the anode substrate. A composite LSGM/La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) layer, with a ratio of 30/70 wt%, is used as the cathode. The SOFC prepared reveals a good mechanical integrity with no sign of cracking, delamination, or discontinuity among the interfaces. The total cell resistance of a single cell with LSGM electrolyte film declines from 0.60 to 0.10 Ω cm2 as the temperature escalates from 600 to 800 °C and the open circuit voltage (OCV) ranges from 0.85 to 0.95 V. The maximum power density (MPD) of the single cell is reported as 0.65, 1.02, 1.30, 1.42, and 1.38 W cm-2 at 600, 650, 700, 750, and 800 °C, respectively. The good cell performance leads to the conclusion that RF magnetron sputtering is a feasible deposition method for preparing good quality LSGM films in SOFCs.
Growth and nonlinear optical characterization of organic single crystal films
NASA Astrophysics Data System (ADS)
Zhou, Ligui
1997-12-01
Organic single crystal films are important for various future applications in photonics and integrated optics. The conventional method for inorganic crystal growth is not suitable for organic materials, and the high temperature melting method is not good for most organic materials due to decomposition problems. We developed a new method-modified shear method-to grow large area organic single crystal thin films which have exceptional nonlinear optical properties and high quality surfaces. Several organic materials (NPP, PNP and DAST) were synthesized and purified before the thin film crystal growth. Organic single crystal thin films were grown from saturated organic solutions using modified shear method. The area of single crystal films were about 1.5 cm2 for PNP, 1 cm2 for NPP and 5 mm2 for DAST. The thickness of the thin films which could be controlled by the applied pressure ranged from 1μm to 10 μm. The single crystal thin films of organic materials were characterized by polarized microscopy, x-ray diffraction, polarized UV-Visible and polarized micro-FTIR spectroscopy. Polarized microscopy showed uniform birefringence and complete extinction with the rotation of the single crystal thin films under crossed- polarization, which indicated high quality single crystals with no scattering. The surface orientation of single crystal thin films was characterized by x-ray diffraction. The molecular orientation within the crystal was further studied by the polarized UV-Visible and Polarized micro-FTIR techniques combined with the x-ray and polarized microscopy results. A Nd:YAG laser with 35 picosecond pulses at 1064nm wavelength was employed to perform the nonlinear optical characterization of the organic single crystal thin films. Two measurement techniques were used to study the crystal films: second harmonic generation (SHG) and electro-optic (EO) effect. SHG results showed that the nonlinear optical coefficient of NPP was 18 times that of LiNbO3, a standard inorganic crystal material, and the nonlinear optical coefficient of PNP was 11 times that of LiNbO3. Electro-optic measurements showed that r11 = 65 pm/V for NPP and r12 = 350 pm/V for DAST. EO modulation effect was also observed using Fabry-Perot interferometry. Waveguide devices are very important for integrated optics. But the fabrication of waveguide devices on the organic single crystal thin films was difficult due to the solubility of the film in common organic solvents. A modified photolithographic technique was employed to make channel waveguides and poly(vinyl alcohol) (PVA) was used as a protective layer in the fabrication of the waveguides. Waveguides with dimensions about 7/mum x 1μm x 1mm were obtained.
BiVO4 thin film photoanodes grown by chemical vapor deposition.
Alarcón-Lladó, Esther; Chen, Le; Hettick, Mark; Mashouf, Neeka; Lin, Yongjing; Javey, Ali; Ager, Joel W
2014-01-28
BiVO4 thin film photoanodes were grown by vapor transport chemical deposition on FTO/glass substrates. By controlling the flow rate, the temperatures of the Bi and V sources (Bi metal and V2O5 powder, respectively), and the temperature of the deposition zone in a two-zone furnace, single-phase monoclinic BiVO4 thin films can be obtained. The CVD-grown films produce global AM1.5 photocurrent densities up to 1 mA cm(-2) in aqueous conditions in the presence of a sacrificial reagent. Front illuminated photocatalytic performance can be improved by inserting either a SnO2 hole blocking layer and/or a thin, extrinsically Mo doped BiVO4 layer between the FTO and the CVD-grown layer. The incident photon to current efficiency (IPCE), measured under front illumination, for BiVO4 grown directly on FTO/glass is about 10% for wavelengths below 450 nm at a bias of +0.6 V vs. Ag/AgCl. For BiVO4 grown on a 40 nm SnO2/20 nm Mo-doped BiVO4 back contact, the IPCE is increased to over 40% at wavelengths below 420 nm.
NASA Astrophysics Data System (ADS)
Chen, Huai-Yi; Lee, Yao-Jen; Chang, Chien-Pin; Koo, Horng-Show; Lai, Chiung-Hui
2013-01-01
P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceylan, Abdullah, E-mail: aceylanabd@yahoo.com; Ozcan, Yusuf; Orujalipoor, Ilghar
2016-06-07
In this work, we present in depth structural investigations of nanocomposite ZnO: Ge thin films by utilizing a state of the art grazing incidence small angle x-ray spectroscopy (GISAXS) technique. The samples have been deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively, on single crystal Si(100) substrates. Transformation of Ge layers into Ge nanoparticles (Ge-np) has been initiated by ex-situ rapid thermal annealing of asprepared thin film samples at 600 °C for 30, 60, and 90 s under forming gas atmosphere. A special attention has been paid on the effects of reactive and nonreactivemore » growth of ZnO layers on the structural evolution of Ge-np. GISAXS analyses have been performed via cylindrical and spherical form factor calculations for different nanostructure types. Variations of the size, shape, and distributions of both ZnO and Ge nanostructures have been determined. It has been realized that GISAXS results are not only remarkably consistent with the electron microscopy observations but also provide additional information on the large scale size and shape distribution of the nanostructured components.« less
The Acoustoelectric and Electric Characterization of Single Layer Transition Metal Dichalcogenides
NASA Astrophysics Data System (ADS)
Preciado, Edwin Sabas
The acoustoelectric effect in single-layer molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) is studied in a hybrid setup. Such effects, which rely on the transfer of momentum from surface acoustic waves (SAWs), are generated on the surface of lithium niobate (LiNbO3) to the carriers in MoS2 and WSe2, resulting in an attenuation and velocity shift of the wave and giving rise to an acoustoelectric current. This dissertation examines the feasibility of integrating high-quality, single-layer MoS2 and WSe2 onto LiNbO3 to ultimately fabricate and characterize a hybrid chip that combines the functionality of a field-effect transistor (FET) and SAW device. MoS2 and WSe2 were synthesized by chemical vapor deposition (CVD) directly onto a chemically-reduced LiNbO3 substrate. LiNbO3 is a ferroelectric material that offers a unique blend of piezoelectric and birefringent properties, yet it lacks both optical activity and semiconductor transport. The prototypical device exhibits electrical characteristics that are competitive with MoS2 and WSe2 devices on silicon. These results demonstrate both a sound-driven battery and an acoustic photodetector, and ultimately open directions to non-invasive investigation of electrical properties of single-layer films. The experiments reveal close agreement between transport measurements utilizing conventional contacts and SAW spectroscopy. This approach will set forth the possibility of contact-free transport characterization of two-dimensional (2D) transition metal dichalcogenides (TMD) films, avoiding such concerns as the role of charge transfer at contacts as an artifact of such measurements.
2011-01-01
In this work, we apply nano-embossing technique to form a stagger structure in ferroelectric lead zirconate titanate [Pb(Zr0.3, Ti0.7)O3 (PZT)] films and investigate the ferroelectric and electrical characterizations of the embossed and un-embossed regions, respectively, of the same films by using piezoresponse force microscopy (PFM) and Radiant Technologies Precision Material Analyzer. Attributed to the different layer thickness of the patterned ferroelectric thin film, two distinctive coercive voltages have been obtained, thereby, allowing for a single ferroelectric memory cell to contain more than one bit of data. PMID:21794156
Anti-rewet felt for use in a papermaking machine
Beck, David A.
2003-09-09
An anti-rewet fabric is used for carrying a fiber web through an air press. The anti-rewet fabric includes at least one air distribution fabric layer, one air distribution fabric layer being configured for contacting the fiber web, and a perforated film layer, the perforated film layer being made of a polyester film. The perforated film layer has a first film side and a second film side, the first film side being one of laminated and attached to the one air distribution fabric layer.
In situ conductance measurements of copper phthalocyanine thin film growth on sapphire [0001].
Murdey, Richard; Sato, Naoki
2011-06-21
The current flowing through a thin film of copper phthalocyanine vacuum deposited on a single crystal sapphire [0001] surface was measured during film growth from 0 to 93 nm. The results, expressed as conductance vs. nominal film thickness, indicate three distinct film growth regions. Conductive material forms below about 5 nm and again above 35 nm, but in the intermediate thicknesses the film conductance was observed to decrease with increasing film thickness. With the aid of ac-AFM topology images taken ex situ, the conductance results are explained based on the Stranski-Krastanov (2D + 3D) film growth mechanism, in which the formation of a thin wetting layer is followed by the growth of discrete islands that eventually coalesce into an interpenetrating, conductive network. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Chia, Wei‑Kuo; Yokoyama, Meiso; Yang, Cheng‑Fu; Chiang, Wang‑Ta; Chen, Ying‑Chung
2006-07-01
Bi4Ti3O12 thin films are deposited on indium tin oxide (ITO)/glass substrates using RF magnetron sputtering technology and are annealed at 675 °C in a rapid thermal annealing furnace in an oxygen atmosphere. The resulting films have high optical transmittances and good crystalline characteristics. ZnS:TbOF films are then deposited on the Bi4Ti3O12 films, causing the originally highly transparent specimens to blacken and to resemble a glass surface coated with carbon powder. The optical transmittance of the specimen is less than 15% under the visible wavelength range, and neither a crystalline phase nor a distinct ZnS grain structure is evident in X-ray diffractometer (XRD) and scanning electronic microscope (SEM). Secondary ion mass spectrometer (SIMS) analysis reveals the occurrence of interdiffusion between the ZnS and Bi4Ti3O12 layers. This suggests that one or more unknown chemical reactions take place among the elements Bi, S, and O at the interface during the deposition of ZnS:TbOF film on a Bi4Ti3O12/ITO/glass substrate. These reactions cause the visible transmittance of the specimens to deteriorate dramatically. To prevent interdiffusion, a silicon dioxide (SiO2) buffer layer 100 nm thick was grown on the Bi4Ti3O12/ITO/glass substrate using plasma-enhanced chemical vapor deposition (PECVD), then the ZnS:TbOF film was grown on the SiO2 buffer layer. The transmittance of the resulting specimen is enhanced approximately 8-fold in the visible region. XRD patterns reveal the ZnS(111)-oriented phase is dominant. Furthermore, dense, crack-free ZnS:TbOF grains are observed by SEM. The results imply that the SiO2 buffer layer sandwiched between the ZnS:TbOF and Bi4Ti3O2 layers effectively separates the two layers. Therefore, interdiffusion and chemical reactions are prevented at the interface of the two layers, and the crystalline characteristics of the ZnS:TbOF layer and the optical transmittance of the specimen are improved as a result. Finally, the dielectric constant of the stacked structure is lower than that of the single layer structure without SiO2, but the dielectric breakdown strength is enhanced.
Photodetectors using III-V nitrides
Moustakas, T.D.; Misra, M.
1997-10-14
A photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The photodetector includes a substrate with interdigitated electrodes formed on its surface. The substrate has a sapphire base layer, a buffer layer formed from a III-V nitride and a single crystal III-V nitride film. The three layers are formed by electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-assisted MBE). Use of the ECR-assisted MBE process allows control and predetermination of the electrical properties of the photodetector. 24 figs.
Photodetectors using III-V nitrides
Moustakas, Theodore D.; Misra, Mira
1997-01-01
A photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The photodetector includes a substrate with interdigitated electrodes formed on its surface. The substrate has a sapphire base layer, a buffer layer formed from a III-V nitride and a single crystal III-V nitride film. The three layers are formed by electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-assisted MBE). Use of the ECR-assisted MBE process allows control and predetermination of the electrical properties of the photodetector.
Photo-stimulated low electron temperature high current diamond film field emission cathode
Shurter,; Roger Philips, Devlin [Los Alamos, NM; David James, Moody [Santa Fe, NM; Nathan Andrew, Taccetti [Los Alamos, NM; Jose Martin, Russell [Santa Fe, NM; John, Steven [Los Alamos, NM
2012-07-24
An electron source includes a back contact surface having a means for attaching a power source to the back contact surface. The electron source also includes a layer comprising platinum in direct contact with the back contact surface, a composite layer of single-walled carbon nanotubes embedded in platinum in direct contact with the layer comprising platinum. The electron source also includes a nanocrystalline diamond layer in direct contact with the composite layer. The nanocrystalline diamond layer is doped with boron. A portion of the back contact surface is removed to reveal the underlying platinum. The electron source is contained in an evacuable container.
Domain epitaxy for thin film growth
Narayan, Jagdish
2005-10-18
A method of forming an epitaxial film on a substrate includes growing an initial layer of a film on a substrate at a temperature T.sub.growth, said initial layer having a thickness h and annealing the initial layer of the film at a temperature T.sub.anneal, thereby relaxing the initial layer, wherein said thickness h of the initial layer of the film is greater than a critical thickness h.sub.c. The method further includes growing additional layers of the epitaxial film on the initial layer subsequent to annealing. In some embodiments, the method further includes growing a layer of the film that includes at least one amorphous island.
Liu, Pengpeng; Ge, Xingbo; Wang, Rongyue; Ma, Houyi; Ding, Yi
2009-01-06
Ultrathin Pt films from one to several atomic layers are successfully decorated onto nanoporous gold (NPG) membranes by utilizing under potential deposition (UPD) of Cu onto Au or Pt surfaces, followed by in situ redox replacement reaction (RRR) of UPD Cu by Pt. The thickness of Pt layers can be controlled precisely by repeating the Cu-UPD-RRR cycles. TEM observations coupled with electrochemical testing suggest that the morphology of Pt overlayers changes from an ultrathin epitaxial film in the case of one or two atomic layers to well-dispersed nanoislands in the case of four and more atomic layers. Electron diffraction (ED) patterns confirm that the as-prepared NPG-Pt membranes maintain a single-crystalline structure, even though the thickness of Pt films reaches six atomic layers, indicating the decorated Pt films hold the same crystallographic relationship to the NPG substrate during the entire fabrication process. Due to the regular modulation of Pt utilization, the electrocatalytic activity of NPG-Pt exhibits interesting surface structure dependence in methanol, ethanol, and CO electrooxidation reactions. These novel bimetallic nanocatalysts show excellent electrocatalytic activity and much enhanced poison tolerance as compared to the commercial Pt/C catalysts. The success in the fabrication of NPG-Pt-type materials provides a new path to prepare electrocatalysts with ultralow Pt loading and high Pt utilization, which is of great significance in energy-related applications, such as direct alcohol fuel cells (DAFCs).
Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas.
Lumdee, Chatdanai; Toroghi, Seyfollah; Kik, Pieter G
2012-07-24
Voltage controlled wavelength tuning of the localized surface plasmon resonance of gold nanoparticles on an aluminum film is demonstrated in single particle microscopy and spectroscopy measurements. Anodization of the Al film after nanoparticle deposition forms an aluminum oxide spacer layer between the gold particles and the Al film, modifying the particle-substrate interaction. Darkfield microscopy reveals ring-shaped scattering images from individual Au nanoparticles, indicative of plasmon resonances with a dipole moment normal to the substrate. Single particle scattering spectra show narrow plasmon resonances that can be tuned from ~580 to ~550 nm as the anodization voltage increases to 12 V. All observed experimental trends could be reproduced in numerical simulations. The presented approach could be used as a general postfabrication resonance optimization step of plasmonic nanoantennas and devices.
NASA Technical Reports Server (NTRS)
Macinnes, Andrew N.; Power, Michael B.; Barron, Andrew R.; Jenkins, Phillip P.; Hepp, Aloysius F.
1993-01-01
A two order-of-magnitude enhancement of photoluminescence intensity relative to untreated GaAs has been observed for GaAs surfaces coated with chemical vapor-deposited GaS. The increase in photoluminescence intensity can be viewed as an effective reduction in surface recombination velocity and/or band bending. The gallium cluster /(t-Bu)GaS/4 was used as a single-source precursor for the deposition of GaS thin films. The cubane core of the structurally characterized precursor is retained in the deposited film producing a cubic phase. Furthermore, a near-epitaxial growth is observed for the GaS passivating layer. Films were characterized by transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron and Rutherford backscattering spectroscopies.
Effect of Surface Termination on the Electonic Properties of LaNiO₃ Films
Kumah, Divine P.; Malashevich, Andrei; Disa, Ankit S.; ...
2014-11-06
The electronic and structural properties of thin LaNiO₃ films grown by using molecular beam epitaxy are studied as a function of the net ionic charge of the surface terminating layer. We demonstrate that electronic transport in nickelate heterostructures can be manipulated through changes in the surface termination due to a strong coupling of the surface electrostatic properties to the structural properties of the Ni—O bonds that govern electronic conduction. We observe experimentally and from first-principles theory an asymmetric response of the structural properties of the films to the sign of the surface charge, which results from a strong interplay betweenmore » electrostatic and mechanical boundary conditions governing the system. The structural response results in ionic buckling in the near-surface NiO₂ planes for films terminated with negatively charged NiO₂ and bulklike NiO₂ planes for films terminated with positively charged LaO planes. The ability to modify transport properties by the deposition of a single atomic layer can be used as a guiding principle for nanoscale device fabrication.« less
Strain-Engineered Oxygen Vacancies in CaMnO3 Thin Films.
Chandrasena, Ravini U; Yang, Weibing; Lei, Qingyu; Delgado-Jaime, Mario U; Wijesekara, Kanishka D; Golalikhani, Maryam; Davidson, Bruce A; Arenholz, Elke; Kobayashi, Keisuke; Kobata, Masaaki; de Groot, Frank M F; Aschauer, Ulrich; Spaldin, Nicola A; Xi, Xiaoxing; Gray, Alexander X
2017-02-08
We demonstrate a novel pathway to control and stabilize oxygen vacancies in complex transition-metal oxide thin films. Using atomic layer-by-layer pulsed laser deposition (PLD) from two separate targets, we synthesize high-quality single-crystalline CaMnO 3 films with systematically varying oxygen vacancy defect formation energies as controlled by coherent tensile strain. The systematic increase of the oxygen vacancy content in CaMnO 3 as a function of applied in-plane strain is observed and confirmed experimentally using high-resolution soft X-ray absorption spectroscopy (XAS) in conjunction with bulk-sensitive hard X-ray photoemission spectroscopy (HAXPES). The relevant defect states in the densities of states are identified and the vacancy content in the films quantified using the combination of first-principles theory and core-hole multiplet calculations with holistic fitting. Our findings open up a promising avenue for designing and controlling new ionically active properties and functionalities of complex transition-metal oxides via strain-induced oxygen-vacancy formation and ordering.
Thermal conductivity of Er{sup +3}:Y{sub 2}O{sub 3} films grown by atomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raeisi Fard, Hafez; Hess, Andrew; Pashayi, Kamyar
2013-11-04
Cross-plane thermal conductivity of 800, 458, and 110 nm erbium-doped crystalline yttria (Er{sup +3}:Y{sub 2}O{sub 3}) films deposited via atomic layer deposition was measured using the 3ω method at room temperature. Thermal conductivity results show 16-fold increase in thermal conductivity from 0.49 W m{sup −1}K{sup −1} to 8 W m{sup −1}K{sup −1} upon post deposition annealing, partially due to the suppression of the number of the -OH/H{sub 2}O bonds in the films after annealing. Thermal conductivity of the annealed film was ∼70% lower than undoped bulk single crystal yttria. The cumulative interface thermal resistivity of substrate-Er{sup +3}:Y{sub 2}O{sub 3}-metal heater was determined tomore » be ∼2.5 × 10{sup −8} m{sup 2} K/W.« less
Composite polymeric film and method for its use in installing a very-thin polymeric film in a device
Duchane, D.V.; Barthell, B.L.
1982-04-26
A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.
Composite polymeric film and method for its use in installing a very thin polymeric film in a device
Duchane, David V.; Barthell, Barry L.
1984-01-01
A composite polymeric film and a method for its use in forming and installing a very thin (<10 .mu.m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectively dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to be successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.
Heteroepitaxial growth of Pt and Au thin films on MgO single crystals by bias-assisted sputtering
Tolstova, Yulia; Omelchenko, Stefan T.; Shing, Amanda M.; ...
2016-03-17
The crystallographic orientation of a metal affects its surface energy and structure, and has profound implications for surface chemical reactions and interface engineering, which are important in areas ranging from optoelectronic device fabrication to catalysis. However, it can be very difficult and expensive to manufacture, orient, and cut single crystal metals along different crystallographic orientations, especially in the case of precious metals. One approach is to grow thin metal films epitaxially on dielectric substrates. In this work, we report on growth of Pt and Au films on MgO single crystal substrates of (100) and (110) surface orientation for use asmore » epitaxial templates for thin film photovoltaic devices. We develop bias-assisted sputtering for deposition of oriented Pt and Au films with sub-nanometer roughness. We show that biasing the substrate decreases the substrate temperature necessary to achieve epitaxial orientation, with temperature reduction from 600 to 350 °C for Au, and from 750 to 550 °C for Pt, without use of transition metal seed layers. Additionally, this temperature can be further reduced by reducing the growth rate. Biased deposition with varying substrate bias power and working pressure also enables control of the film morphology and surface roughness.« less
Surface chirality of CuO thin films.
Widmer, Roland; Haug, Franz-Josef; Ruffieux, Pascal; Gröning, Oliver; Bielmann, Michael; Gröning, Pierangelo; Fasel, Roman
2006-11-01
We present X-ray photoelectron spectroscopy (XPS) and X-ray photoelectron diffraction (XPD) investigations of CuO thin films electrochemically deposited on an Au(001) single-crystal surface from a solution containing chiral tartaric acid (TA). The presence of enantiopure TA in the deposition process results in a homochiral CuO surface, as revealed by XPD. On the other hand, XPD patterns of films deposited with racemic tartaric acid or the "achiral" meso-tartaric acid are completely symmetric. A detailed analysis of the experimental data using single scattering cluster calculations reveals that the films grown with l(+)-TA exhibit a CuO(1) orientation, whereas growth in the presence of d(-)-TA results in a CuO(11) surface orientation. A simple bulk-truncated model structure with two terminating oxygen layers reproduces the experimental XPD data. Deposition with alternating enantiomers of tartaric acid leads to CuO films of alternating chirality. Enantiospecifity of the chiral CuO surfaces is demonstrated by further deposition of CuO from a solution containing racemic tartaric acid. The pre-deposited homochiral films exhibit selectivity toward the same enantiomeric deposition pathway.
Mun, Seohyun; Park, Yoonkyung; Lee, Yong-Eun Koo; Sung, Myung Mo
2017-11-28
A highly sensitive organic field-effect transistor (OFET)-based sensor for ammonia in the range of 0.01 to 25 ppm was developed. The sensor was fabricated by employing an array of single-crystal poly(3-hexylthiophene) (P3HT) nanowires as the organic semiconductor (OSC) layer of an OFET with a top-contact geometry. The electrical characteristics (field-effect mobility, on/off current ratio) of the single-crystal P3HT nanowire OFET were about 2 orders of magnitude larger than those of the P3HT thin film OFET with the same geometry. The P3HT nanowire OFET showed excellent sensitivity to ammonia, about 3 times higher than that of the P3HT thin film OFET at 25 ppm ammonia. The ammonia response of the OFET was reversible and was not affected by changes in relative humidity from 45 to 100%. The high ammonia sensitivity of the P3HT nanowire OFET is believed to result from the single crystal nature and high surface/volume ratio of the P3HT nanowire used in the OSC layer.
Du, J H; Jin, H; Zhang, Z K; Zhang, D D; Jia, S; Ma, L P; Ren, W C; Cheng, H M; Burn, P L
2017-01-07
The large surface roughness, low work function and high cost of transparent electrodes using multilayer graphene films can limit their application in organic photovoltaic (OPV) cells. Here, we develop single layer graphene (SLG) films as transparent anodes for OPV cells that contain light-absorbing layers comprised of the evaporable molecular organic semiconductor materials, zinc phthalocyanine (ZnPc)/fullerene (C60), as well as a molybdenum oxide (MoO x ) interfacial layer. In addition to an increase in the optical transmittance, the SLG anodes had a significant decrease in surface roughness compared to two and four layer graphene (TLG and FLG) anodes fabricated by multiple transfer and stacking of SLGs. Importantly, the introduction of a MoO x interfacial layer not only reduced the energy barrier between the graphene anode and the active layer, but also decreased the resistance of the SLG by nearly ten times. The OPV cells with the structure of polyethylene terephthalate/SLG/MoO x /CuI/ZnPc/C60/bathocuproine/Al were flexible, and had a power conversion efficiency of up to 0.84%, which was only 17.6% lower than the devices with an equivalent structure but prepared on commercial indium tin oxide anodes. Furthermore, the devices with the SLG anode were 50% and 86.7% higher in efficiency than the cells with the TLG and FLG anodes. These results show the potential of SLG electrodes for flexible and wearable OPV cells as well as other organic optoelectronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velasco-Davalos, Ivan; Ambriz-Vargas, Fabian; Kolhatkar, Gitanjali
We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO{sub 3} (111) substrates and the deposition of ferroelectric BiFeO{sub 3} thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO{sub 3}){sup 4−} or Ti{sup 4+} layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d{sub 111}) and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO{sub 3} single crystal substrates. Multiferroic BiFeO{sub 3} thinmore » films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO{sub 3} (111) substrates. Bi(NO{sub 3}){sub 3} and Fe(NO{sub 3}){sub 3} along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO{sub 3} films on Nb : SrTiO{sub 3} (100) substrates was verified by piezoresponse force microscopy.« less
Single Layer Surface-Grafted PMMA as a Negative-Tone e-Beam Resist.
Yamada, Hirotaka; Aydinoglu, Ferhat; Liu, Yaoze; Dey, Ripon K; Cui, Bo
2017-12-05
One of the important challenges in electron beam lithography is nanofabrication on nonflat or irregular surfaces. Although spin coating is the most popular technique for resist coating, it is not suitable for nonflat, irregular substrates because a uniform film cannot be achieved on those surfaces. Here, it is demonstrated that single layer surface-grafted PMMA can be used as a negative-tone e-beam resist, and it can be applied to nonflat, irregular surfaces as well as flat, conventional surfaces. Although it is well known that heavily exposed PMMA undergoes cross-linking and works as a negative-tone e-beam resist when developed by solvent, solvent does not work as a developer for negative-tone single-layer surface-grafted PMMA. Instead, thermal treatment at 360 °C for 1 min is used to develop PMMA.
NASA Technical Reports Server (NTRS)
Gange, R. A.
1972-01-01
Polystyrene coating is applied to holographic storage tube substrate via glow discharge polymerization in an inert environment. After deposition of styrene coating, antimony and then cesium are added to produce photoemissive layer. Technique is utilized in preparing perfectly organized polymeric films useful as single-crystal membranes.
Nonepitaxial Thin-Film InP for Scalable and Efficient Photocathodes.
Hettick, Mark; Zheng, Maxwell; Lin, Yongjing; Sutter-Fella, Carolin M; Ager, Joel W; Javey, Ali
2015-06-18
To date, some of the highest performance photocathodes of a photoelectrochemical (PEC) cell have been shown with single-crystalline p-type InP wafers, exhibiting half-cell solar-to-hydrogen conversion efficiencies of over 14%. However, the high cost of single-crystalline InP wafers may present a challenge for future large-scale industrial deployment. Analogous to solar cells, a thin-film approach could address the cost challenges by utilizing the benefits of the InP material while decreasing the use of expensive materials and processes. Here, we demonstrate this approach, using the newly developed thin-film vapor-liquid-solid (TF-VLS) nonepitaxial growth method combined with an atomic-layer deposition protection process to create thin-film InP photocathodes with large grain size and high performance, in the first reported solar device configuration generated by materials grown with this technique. Current-voltage measurements show a photocurrent (29.4 mA/cm(2)) and onset potential (630 mV) approaching single-crystalline wafers and an overall power conversion efficiency of 11.6%, making TF-VLS InP a promising photocathode for scalable and efficient solar hydrogen generation.
NASA Astrophysics Data System (ADS)
Pongpaiboonkul, Suriyong; Kasa, Yumairah; Phokharatkul, Ditsayut; Putasaeng, Bundit; Hodak, Jose H.; Wisitsoraat, Anurat; Hodak, Satreerat K.
2016-11-01
Researchers have paid considerable attention to CaCu3Ti4O12 (CCTO) due to the colossal dielectric constant over a wide range of frequency and temperature. Despite of the growing number of works dealing with CCTO, there have been few studies of the role played by the substrate in inducing structural and dielectric effects of this material. In this work, highly-oriented CCTO thin films have been deposited on LaAlO3(100), NdGaO3(100) and NdGaO3(110) substrates using a sol-gel method. These single crystal substrates were chosen in terms of small lattice mismatch between CCTO and the substrate. The X-ray diffraction patterns showed that the CCTO film layers grow with different orientations depending upon the substrate used. We show that the preferred orientation of CCTO thin films can be manipulated to a high degree by growing it on specific crystal planes of the substrates without the use of buffer layers. Colossal dielectric constants are observed in our films which appear to correlate with the film crystallinity and preferred orientation.
Wideband acoustic wave resonators composed of hetero acoustic layer structure
NASA Astrophysics Data System (ADS)
Kadota, Michio; Tanaka, Shuji
2018-07-01
“Hetero acoustic layer (HAL) surface acoustic wave (SAW) device” is a new type of SAW device using a single crystal piezoelectric thin plate supported by a substrate. In this study, a HAL SAW resonator using a LiNbO3 (LN) thin plate and a multi-layer acoustic film was designed by finite element method (FEM) and fabricated. The thickness of LN is 3.6 µm and the pitch of an interdigital transducer (IDT) (λ) is 5.24 µm for a resonance frequency of 600 MHz. The multi-layer acoustic film is composed of 3 layers of SiO2 and AlN for each, i.e., 6 layers in total, alternately deposited on a glass substrate. The HAL SAW resonator achieved a wide bandwidth of 20.3% and a high impedance ratio of 83 dB. Compared with a 0th shear horizontal (SH0) mode plate wave resonator, the performance is better and the thickness of LN is 7 times larger. The HAL SAW without a cavity is advantageous in terms of mechanical stability, thickness controllability and fabrication yield.
Crack injection in silver gold alloys
NASA Astrophysics Data System (ADS)
Chen, Xiying
Stress corrosion cracking (SCC) is a materials degradation phenomena resulting from a combination of stress and a corrosive environment. Among the alphabet soup of proposed mechanism of SCC the most important are film-rupture, film-induced cleavage and hydrogen embrittlement. This work examines various aspects of film-induced cleavage in gold alloys for which the operation of hydrogen embrittlement processes can be strictly ruled out on thermodynamic grounds. This is so because in such alloys SCC occurs under electrochemical conditions within which water is stable to hydrogen gas evolution. The alloy system examined in this work is AgAu since the corrosion processes in this system occur by a dealloying mechanism that results in the formation of nanoporous gold. The physics behind the dealloying process as well as the resulting formation of nanoporous gold is today well understood. Two important aspects of the film-induced cleavage mechanism are examined in this work: dynamic fracture in monolithic nanoporous gold and crack injection. In crack injection there is a finite thickness dealloyed layer formed on a AgAu alloy sample and the question of whether or not a crack that nucleates within this layer can travel for some finite distance into the un-corroded parent phase alloy is addressed. Dynamic fracture tests were performed on single edge-notched monolithic nanoporous gold samples as well as "infinite strip" sample configurations for which the stress intensity remains constant over a significant portion of the crack length. High-speed photography was used to measure the crack velocity. In the dynamic fracture experiments cracks were observed to travel at speeds as large as 270 m/s corresponding to about 68% of the Raleigh wave velocity. Crack injection experiments were performed on single crystal Ag77Au23, polycrystalline Ag72Au28 and pure gold, all of which had thin nanoporous gold layers on the surface of samples. Through-thickness fracture was seen in both the single crystal and polycrystalline samples and there was an indication of ~ 1 mum injected cracks into pure gold. These results have important implications for the operation of the film-induced cleavage mechanism and represent a first step in the development of a fundamental model of SCC.
Properties of epitaxial BaTiO{sub 3} deposited on GaAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contreras-Guerrero, R.; Droopad, R.; Veazey, J. P.
2013-01-07
Single crystal BaTiO{sub 3} (BTO) has been grown epitaxially on GaAs using molecular beam epitaxy with a 2 unit cell SrTiO{sub 3} nucleation layer. The oxide film is lattice-matched to GaAs through an in-plane rotation of 45 Degree-Sign relative to the (100) surface leading to c-axis orientation of the BaTiO{sub 3}. X-ray diffraction confirmed the crystallinity and orientation of the oxide film with a full width half maximum of 0.58 Degree-Sign for a 7.5 nm thick layer. Piezoresponse force microscopy was used to characterize the ferroelectric domains in the BaTiO{sub 3} layer, and a coercive voltage of 1-2 V andmore » piezoresponse amplitude {approx}5 pm/V was measured.« less
Laser processing of thin films for industrial packaging
NASA Astrophysics Data System (ADS)
Sozzi, Michele; Lutey, Adrian H. A.; Cucinotta, Annamaria; Selleri, Stefano; Molari, Pier Gabriele
2014-05-01
Single layer thin-film materials such as aluminum, polyethylene, polypropylene, and their multi-layer combinations such as aluminum-paper have been exposed to different laser radiation. A wide number of samples have been processed with 10 - 12.5 ns IR and Green, and 500 - 800 ps IR laser radiation at different translating speeds ranging from 50 mm/s to 1 m/s. High quality incisions have been obtained for all tested materials within the experimental conditions. The presented results provide the necessary parameters for an efficient cut and processing of the tested materials, for the employment of pulsed laser sources in the packaging industry, allowing the laser to prevail in lieu of more costly and energy intensive methods.
Gabriel, Nicholas T; Kim, Sangho S; Talghader, Joseph J
2009-07-01
A mechanical design technique for optical coatings that simultaneously controls thermal deformation and optical reflectivity is reported. The method requires measurement of the refractive index and thermal stress of single films prior to the design. Atomic layer deposition was used for deposition because of the high repeatability of the film constants. An Al2O3/HfO2 distributed Bragg reflector was deposited with a predicted peak reflectivity of 87.9% at 542.4 nm and predicted edge deformation of -360 nm/K on a 10 cm silicon substrate. The measured peak reflectivity was 85.7% at 541.7 nm with an edge deformation of -346 nm/K.
Yang, Jie; Xiong, Liu; Li, Man; Sun, Qingjie
2018-06-20
The pursuit of sustainable functional materials requires the development of materials based on renewable resources and efficient fabrication methods. Here, we first fabricated chitosan-sodium phytate films via one-step-stripping and layer-by-layer-casting technologies. The proposed film-fabrication methods are general, facile, environmentally benign, cost-effective, and easy to scale up. The resultant one-step-stripped film was thin (9 ± 1 μm), soft, transparent, and strong, whereas the thickness of the layer-by-layer-cast film was 70 ± 3 μm. FTIR analysis of the films indicated the formation of interactions between the phosphoric groups in sodium phytate and the amino groups in chitosan. More importantly, the water-vapor-permeability values of the one-step-stripped and cast films were 4-5 orders of magnitude lower than chitosan films reported before. Layer-by-layer-cast films in particular exhibited high tensile strength (49.21 ± 1.12 MPa) and were more than three times stronger than other polyelectrolyte multilayer films. Both types of films remained stable in an acidic environment. Furthermore, the layer-by-layer-assembled films presented greater antimicrobial activity than the stripped films. The developed chitosan-sodium phytate films can enhance several biomedical and environmental applications, such as packaging, drug delivery, diagnostics, microfluidics, and biosensing.
Transport properties of layered Ba(Pb,Bi)O3 thin films
NASA Astrophysics Data System (ADS)
Hassink, G. W. J.; Munakata, K.; Hammond, R. H.; Beasley, M. R.
2012-02-01
Doped BaBiO3 is a 3D oxide superconductor with a maximum Tc of 30 K for Ba0.6K0.4BiO3. There has been a lot of discussion on whether this high Tc can be explained purely by electron-phonon coupling with a high coupling constant λ. In addition, the presence of real-space paired 6s^2 electrons in the parent compound raise intriguing questions about whether there is an electron-electron coupling interaction as well. This possible negative-U interaction might be used to implement the suggestion by Berg, Orgad and Kivelson [Phys.Rev.B 78, 094509] that for a two-layer system where one layer provides electron pairing interaction and the other layer is conducting, the whole can be superconducting with a high Tc. Here we discuss the transport properties of BaPbO3/BaBiO3 bilayers, where the BaBiO3 layer is thought to act as the pairing layer, while the BaPbO3 acts as the conducting layer. The transport behavior changes to insulating upon decreasing the metallic BaPbO3 layer thickness at values that single films are expected to still be metallic.
Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d'Abusco, Anna; Superti, Fabiana; Misiano, Carlo; Zanoni, Robertino; Politi, Laura; Mazzola, Luca; Iosi, Francesca; Mura, Francesco; Scandurra, Roberto
2016-01-01
Recently, we introduced a new deposition method, based on Ion Plating Plasma Assisted technology, to coat titanium implants with a thin but hard nanostructured layer composed of titanium carbide and titanium oxides, clustered around graphitic carbon. The nanostructured layer has a double effect: protects the bulk titanium against the harsh conditions of biological tissues and in the same time has a stimulating action on osteoblasts. The aim of this work is to describe the biological effects of this layer on osteoblasts cultured in vitro. We demonstrate that the nanostructured layer causes an overexpression of many early genes correlated to proteins involved in bone turnover and an increase in the number of surface receptors for α3β1 integrin, talin, paxillin. Analyses at single-cell level, by scanning electron microscopy, atomic force microscopy, and single cell force spectroscopy, show how the proliferation, adhesion and spreading of cells cultured on coated titanium samples are higher than on uncoated titanium ones. Finally, the chemistry of the layer induces a better formation of blood clots and a higher number of adhered platelets, compared to the uncoated cases, and these are useful features to improve the speed of implant osseointegration. In summary, the nanostructured TiC film, due to its physical and chemical properties, can be used to protect the implants and to improve their acceptance by the bone.
The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel
NASA Astrophysics Data System (ADS)
Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.
2015-09-01
For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.
MoOx modified ZnGaO based transparent conducting oxides
NASA Astrophysics Data System (ADS)
Dutta, Titas; Gupta, P.; Bhosle, V.; Narayan, J.
2009-03-01
We report here the growth of high work function bilayered structures of thin MoOx (2.0
NASA Astrophysics Data System (ADS)
Shu, Andrew Leo
Organic electronics is a topic of interest due to its potential for low temperature and solution processing for large area and flexible applications. Examples of organic electronic devices are already available on the market; however these are, in general, still rather expensive. In order to fully realize inexpensive and efficient organic electronics, the properties of organic films need to be understood and strategies developed to take advantage of these properties to improve device performance. This work focuses on two strategies that can be used to control charge transport at interfaces with active organic semiconducting thin films. These strategies are studied and verified with a range of photoemission spectroscopy, surface probe microscopy, and electrical measurements. Vacuum evaporated molecular organic devices have long used layer stacking of different materials as a method of dividing roles in a device and modifying energy level alignment to improve device performance and efficiency. Applying this type of architecture for solution-processed devices, on the other hand, is nontrivial, as an issue of removal of or mixing with underlying layers arises. We present and examine here soft-contact lamination as a viable technique for depositing solution-processed multilayer structures. The energetics at homojunctions of a couple of air-stable polymers is investigated. Charge transport is then compared between a two-layer film and a single-layer film of equivalent thicknesses. The interface formed by soft-contact lamination is found to be transparent with respect to electronic charge carriers. We also propose a technique for modifying electronic level alignment at active organic-organic heterojunctions using dipolar self-assembled monolayers (SAM). An ultra-thin metal oxide is first deposited via a gentle low temperature chemical vapor deposition as an adhesion layer for the SAM. The deposition is shown to be successful for a variety of organic films. A series of phenylphosphonic acid SAM molecules with various molecular dipoles is then used to functionalize the surface of an organic film and found to modify the work function depending on the molecular dipole across the molecule. This in turn is found to modify the energy level alignment between the underlying organic film with an organic film deposited on top.
Sharp chemical interface in epitaxial Fe{sub 3}O{sub 4} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gálvez, S.; Rubio-Zuazo, J., E-mail: rubio@esrf.fr; Salas-Colera, E.
Chemically sharp interface was obtained on single phase single oriented Fe{sub 3}O{sub 4} (001) thin film (7 nm) grown on NiO (001) substrate using oxygen assisted molecular beam epitaxy. Refinement of the atomic structure, stoichiometry, and oxygen vacancies were determined by soft and hard x-ray photoelectron spectroscopy, low energy electron diffraction and synchrotron based X-ray reflectivity, and X-ray diffraction. Our results demonstrate an epitaxial growth of the magnetite layer, perfect iron stoichiometry, absence of oxygen vacancies, and the existence of an intermixing free interface. Consistent magnetic and electrical characterizations are also shown.
Diagnosis at a glance of biological non-Newtonian fluids with Film Interference Flow Imaging (FIFI)
NASA Astrophysics Data System (ADS)
Hidema, R.; Yamada, N.; Furukawa, H.
2012-04-01
In the human body, full of biological non-Newtonian fluids exist. For example, synovial fluids exist in our joints, which contain full of biopolymers, such as hyaluronan and mucin. It is thought that these polymers play critical roles on the smooth motion of the joint. Indeed, luck of biopolymers in synovial fluid cause joint pain. Here we study the effects of polymer in thin liquid layer by using an original experimental method called Film Interference Flow Imaging (FIFI). A vertically flowing soap film containing polymers is made as two-dimensional flow to observe turbulence. The thickness of water layer is about 4 μm sandwiched between surfactant mono-layers. The interference pattern of the soap film is linearly related to the flow velocity in the water layer through the change in the thickness of the film. Thus the flow velocity is possibly analyzed by the single image analysis of the interference pattern, that is, FIFI. The grid turbulence was made in the flowing soap films containing the long flexible polymer polyethyleneoxide (PEO, Mw=3.5x106), and rigid polymer hydroxypropyl cellulose (HPC, Mw > 1.0 x106). The decaying process of the turbulence is affected by PEO and HPC at several concentrations. The effects of PEO are sharply seen even at low concentrations, while the effects of HPC are gradually occurred at much higher concentration compared to the PEO. It is assumed that such a difference between PEO and HPC is due to the polymer stretching or polymer orientation under turbulence, which is observed and analyzed by FIFI. We believe the FIFI will be applied in the future to examine biological fluids such as synovial fluids quickly and quantitatively.
Optical properties of epitaxial BiFeO3 thin film grown on SrRuO3-buffered SrTiO3 substrate.
Xu, Ji-Ping; Zhang, Rong-Jun; Chen, Zhi-Hui; Wang, Zi-Yi; Zhang, Fan; Yu, Xiang; Jiang, An-Quan; Zheng, Yu-Xiang; Wang, Song-You; Chen, Liang-Yao
2014-01-01
The BiFeO3 (BFO) thin film was deposited by pulsed-laser deposition on SrRuO3 (SRO)-buffered (111) SrTiO3 (STO) substrate. X-ray diffraction pattern reveals a well-grown epitaxial BFO thin film. Atomic force microscopy study indicates that the BFO film is rather dense with a smooth surface. The ellipsometric spectra of the STO substrate, the SRO buffer layer, and the BFO thin film were measured, respectively, in the photon energy range 1.55 to 5.40 eV. Following the dielectric functions of STO and SRO, the ones of BFO described by the Lorentz model are received by fitting the spectra data to a five-medium optical model consisting of a semi-infinite STO substrate/SRO layer/BFO film/surface roughness/air ambient structure. The thickness and the optical constants of the BFO film are obtained. Then a direct bandgap is calculated at 2.68 eV, which is believed to be influenced by near-bandgap transitions. Compared to BFO films on other substrates, the dependence of the bandgap for the BFO thin film on in-plane compressive strain from epitaxial structure is received. Moreover, the bandgap and the transition revealed by the Lorentz model also provide a ground for the assessment of the bandgap for BFO single crystals.
Growth, structure, and magnetic properties of {gamma}-Fe{sub 2}O{sub 3} epitaxial films on MgO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Y.; Kim, Y.J.; Thevuthasan, S.
1997-04-01
Single-crystal epitaxial thin films of {gamma}-Fe{sub 2}O{sub 3}(001) have been grown on MgO(001) using oxygen-plasma-assisted molecular beam epitaxy. The structure and magnetic properties of these films have been characterized by a variety of techniques, including reflection high-energy electron diffraction (RHEED), low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy and x-ray photoelectron/Auger electron diffraction (XPD/AED), vibrating sample magnetometry, and ferromagnetic resonance. Real-time RHEED reveals that the film growth occurs in a layer-by-layer fashion. The {gamma}-Fe{sub 2}O{sub 3}(001) film surface exhibits a (1{times}1) LEED pattern. The growth of {gamma}-Fe{sub 2}O{sub 3} films at 450 {degree}C is accompanied by significant Mg outdiffusion. AED ofmore » Mg KLL Auger emission reveals that Mg substitutionally incorporates in the {gamma}-Fe{sub 2}O{sub 3} lattice, occupying the octahedral sites. Magnetic moments are {approximately}2300 G and {approximately}4500 G for {gamma}-Fe{sub 2}O{sub 3} films grown at 250{degree}C and 450{degree}C, respectively. The high magnetic moment for the films grown at 450{degree}C could be attributed to the high degree of structural order of the films and Mg substitution at octahedral sites. {copyright} {ital 1997 American Institute of Physics.}« less
Superconducting FeSe0.1Te0.9 thin films integrated on Si-based substrates
NASA Astrophysics Data System (ADS)
Huang, Jijie; Chen, Li; Li, Leigang; Qi, Zhimin; Sun, Xing; Zhang, Xinghang; Wang, Haiyan
2018-05-01
With the goal of integrating superconducting iron chalcogenides with Si-based electronics, superconducting FeSe0.1Te0.9 thin films were directly deposited on Si and SiOx/Si substrates without any buffer layer by a pulsed laser deposition (PLD) method. Microstructural characterization showed excellent film quality with mostly c-axis growth on both types of substrates. Superconducting properties (such as superconducting transition temperature T c and upper critical field H c2) were measured to be comparable to that of the films on single crystal oxide substrates. The work demonstrates the feasibility of integrating superconducting iron chalcogenide (FeSe0.1Te0.9) thin films with Si-based microelectronics.
Chemical vapour deposition growth and Raman characterization of graphene layers and carbon nanotubes
NASA Astrophysics Data System (ADS)
Lai, Y.-C.; Rafailov, P. M.; Vlaikova, E.; Marinova, V.; Lin, S. H.; Yu, P.; Yu, S.-C.; Chi, G. C.; Dimitrov, D.; Sveshtarov, P.; Mehandjiev, V.; Gospodinov, M. M.
2016-02-01
Single-layer graphene films were grown by chemical vapour deposition (CVD) on Cu foil. The CVD process was complemented by plasma enhancement to grow also vertically aligned multiwalled carbon nanotubes using Ni nanoparticles as catalyst. The obtained samples were characterized by Raman spectroscopy analysis. Nature of defects in the samples and optimal growth conditions leading to achieve high quality of graphene and carbon nanotubes are discussed.
Biotechnology Conference: Diagnostics Held in Cambridge, England on 10 and 11 December 1987.
1988-05-25
settings. 1 -hour culture confirmation test for herpes (ColorGene DNA hybridization test for HSV confirmation). This test NEW AMPEROMETRIC BIOSENSORS...I Thin Layer Technology: Monolayers to Multi Thin Films ................. 1 Single-Step Immunoassay Systems...if this thin-layer pr•ccss~is probe technolh,,y. and biosensors. The aim of the con- demonstrated in Figure 1 . which shows the disposition of ference
Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction
NASA Astrophysics Data System (ADS)
Zeller, Patrick; Henß, Ann-Kathrin; Weinl, Michael; Diehl, Leo; Keefer, Daniel; Lippmann, Judith; Schulz, Anne; Kraus, Jürgen; Schreck, Matthias; Wintterlin, Joost
2016-11-01
Despite great previous efforts there is still a high need for a simple, clean, and upscalable method for detaching epitaxial graphene from the metal support on which it was grown. We present a method based on a pure gas phase reaction that is free of solvents and polymer supports and avoids mechanical transfer steps. The graphene was grown on 150 nm thick, single crystalline Ni(111) films on Si(111) wafers with YSZ buffer layers. Its quality was monitored by using low energy electron diffraction and scanning tunneling microscopy. The gas phase etching uses a chemical transport reaction, the so-called Mond process, based on the formation of gaseous nickel tetracarbonyl in 1 bar of CO at 75 °C and by adding small amounts of sulfide catalysts. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were used to characterize the detached graphene. It was found that the method successfully removes the nickel from underneath the graphene layer, so that the graphene lies on the insulating oxide buffer layer. Small residual particles of nickel sulfide and cracks in the obtained graphene layer were identified. The defect concentrations were comparable to graphene samples obtained by wet chemical etching and by the bubbling transfer.
Large magnetoelectric coupling in magnetically short-range ordered Bi₅Ti₃FeO₁₅ film.
Zhao, Hongyang; Kimura, Hideo; Cheng, Zhenxiang; Osada, Minoru; Wang, Jianli; Wang, Xiaolin; Dou, Shixue; Liu, Yan; Yu, Jianding; Matsumoto, Takao; Tohei, Tetsuya; Shibata, Naoya; Ikuhara, Yuichi
2014-06-11
Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. However, single-phase materials with such cross-coupling properties at room temperature exist rarely in nature; new design of nano-engineered thin films with a strong magneto-electric coupling is a fundamental challenge. Here we demonstrate a robust room-temperature magneto-electric coupling in a bismuth-layer-structured ferroelectric Bi₅Ti₃FeO₁₅ with high ferroelectric Curie temperature of ~1000 K. Bi₅Ti₃FeO₁₅ thin films grown by pulsed laser deposition are single-phase layered perovskit with nearly (00l)-orientation. Room-temperature multiferroic behavior is demonstrated by a large modulation in magneto-polarization and magneto-dielectric responses. Local structural characterizations by transmission electron microscopy and Mössbauer spectroscopy reveal the existence of Fe-rich nanodomains, which cause a short-range magnetic ordering at ~620 K. In Bi₅Ti₃FeO₁₅ with a stable ferroelectric order, the spin canting of magnetic-ion-based nanodomains via the Dzyaloshinskii-Moriya interaction might yield a robust magneto-electric coupling of ~400 mV/Oe·cm even at room temperature.
Monolith electroplating process
Agarrwal, Rajev R.
2001-01-01
An electroplating process for preparing a monolith metal layer over a polycrystalline base metal and the plated monolith product. A monolith layer has a variable thickness of one crystal. The process is typically carried in molten salts electrolytes, such as the halide salts under an inert atmosphere at an elevated temperature, and over deposition time periods and film thickness sufficient to sinter and recrystallize completely the nucleating metal particles into one single crystal or crystals having very large grains. In the process, a close-packed film of submicron particle (20) is formed on a suitable substrate at an elevated temperature. The temperature has the significance of annealing particles as they are formed, and substrates on which the particles can populate are desirable. As the packed bed thickens, the submicron particles develop necks (21) and as they merge into each other shrinkage (22) occurs. Then as micropores also close (23) by surface tension, metal density is reached and the film consists of unstable metal grain (24) that at high enough temperature recrystallize (25) and recrystallized grains grow into an annealed single crystal over the electroplating time span. While cadmium was used in the experimental work, other soft metals may be used.
NASA Astrophysics Data System (ADS)
Takata, Fumiya; Gushi, Toshiki; Anzai, Akihito; Toko, Kaoru; Suemasu, Takashi
2018-03-01
We grow MnAl films on different underlayers by molecular beam epitaxy (MBE), and investigate their structural and magnetic properties. L10-ordered MnAl films were successfully grown both on an MgO(0 0 1) single-crystalline substrate and on an Mn4N(0 0 1) buffer layer formed on MgO(0 0 1) and SrTiO3(0 0 1) substrates. For the MgO substrate, post rapid thermal annealing (RTA) drastically improved the crystalline quality and the degree of L10-ordering, whereas no improvement in the crystallinity was achieved by altering the substrate temperature (TS) during MBE growth. However, high-quality L10-MnAl films were formed on the Mn4N buffer layer by simply varying TS. Structural analysis using X-ray diffraction showed MnAl on an MgO substrate had a cubic structure whereas MnAl on the Mn4N buffer had a tetragonal structure. This difference in crystal structure affected the magnetic properties of the MnAl films. The uniaxial magnetic anisotropy constant (Ku) was drastically improved by inserting an Mn4N buffer layer. We achieved a perpendicular magnetic anisotropy of Ku = 5.0 ± 0.7 Merg/cm3 for MnAl/Mn4N film on MgO and 6.0 ± 0.2 Merg/cm3 on STO. These results suggest that Mn4N has potential as an underlayer for L10-MnAl.
Heteroepitaxial Cu 2O thin film solar cell on metallic substrates
Wee, Sung Hun; Huang, Po-Shun; Lee, Jung-Kun; ...
2015-11-06
Heteroepitaxial, single-crystal-like Cu 2O films on inexpensive, flexible, metallic substrates can potentially be used as absorber layers for fabrication of low-cost, high-performance, non-toxic, earth-abundant solar cells. Here, we report epitaxial growth of Cu 2O films on low cost, flexible, textured metallic substrates. Cu 2O films were deposited on the metallic templates via pulsed laser deposition under various processing conditions to study the influence of processing parameters on the structural and electronic properties of the films. It is found that pure, epitaxial Cu 2O phase without any trace of CuO phase is only formed in a limited deposition window of P(Omore » 2) - temperature. The (00l) single-oriented, highly textured, Cu 2O films deposited under optimum P(O 2) - temperature conditions exhibit excellent electronic properties with carrier mobility in the range of 40-60 cm 2 V -1 s -1 and carrier concentration over 10 16 cm -3. The power conversion efficiency of 1.65% is demonstrated from a proof-of-concept Cu 2O solar cell based on epitaxial Cu 2O film prepared on the textured metal substrate.« less
Heteroepitaxial Cu2O thin film solar cell on metallic substrates
Wee, Sung Hun; Huang, Po-Shun; Lee, Jung-Kun; Goyal, Amit
2015-01-01
Heteroepitaxial, single-crystal-like Cu2O films on inexpensive, flexible, metallic substrates can potentially be used as absorber layers for fabrication of low-cost, high-performance, non-toxic, earth-abundant solar cells. Here, we report epitaxial growth of Cu2O films on low cost, flexible, textured metallic substrates. Cu2O films were deposited on the metallic templates via pulsed laser deposition under various processing conditions to study the influence of processing parameters on the structural and electronic properties of the films. It is found that pure, epitaxial Cu2O phase without any trace of CuO phase is only formed in a limited deposition window of P(O2) - temperature. The (00l) single-oriented, highly textured, Cu2O films deposited under optimum P(O2) - temperature conditions exhibit excellent electronic properties with carrier mobility in the range of 40–60 cm2 V−1 s−1 and carrier concentration over 1016 cm−3. The power conversion efficiency of 1.65% is demonstrated from a proof-of-concept Cu2O solar cell based on epitaxial Cu2O film prepared on the textured metal substrate. PMID:26541499
Polyelectrolyte and carbon nanotube multilayers made from ionic liquid solutions
NASA Astrophysics Data System (ADS)
Nakashima, Takuya; Zhu, Jian; Qin, Ming; Ho, Szushen; Kotov, Nicholas A.
2010-10-01
The inevitable contact of substrates with water during the traditional practice of layer-by-layer assembly (LBL) creates problems for multiple potential applications of LBL films in electronics. To resolve this issue, we demonstrate here the possibility of a LBL process using ionic liquids (ILs), which potentially eliminates corrosion and hydration processes related to aqueous media and opens additional possibilities in structural control of LBL films. ILs are also considered to be one of the best ``green'' processing solvents, and hence, are advantageous in respect to traditional organic solvents. Poly(ethyleneimine) (PEI) and poly(sodium styrenesulfonate) (PSS) were dispersed in a hydrophilic IL and successfully deposited in the LBL fashion. To produce electroactive thin films with significance to electronics, a similar process was realized for PSS-modified single-walled carbon nanotubes (SWNT-PSS) and poly(vinyl alcohol) (PVA). Characterization of the coating using standard spectroscopy and microscopy techniques typical of the multilayer field indicated that there are both similarities and differences in the structure and properties of LBL films build from ILs and aqueous solutions. The films exhibited electrical conductivity of 102 S m-1 with transparency as high as 98% for visible light, which is comparable to similar parameters for many carbon nanotube and graphene films prepared by both aqueous LBL and other methods.The inevitable contact of substrates with water during the traditional practice of layer-by-layer assembly (LBL) creates problems for multiple potential applications of LBL films in electronics. To resolve this issue, we demonstrate here the possibility of a LBL process using ionic liquids (ILs), which potentially eliminates corrosion and hydration processes related to aqueous media and opens additional possibilities in structural control of LBL films. ILs are also considered to be one of the best ``green'' processing solvents, and hence, are advantageous in respect to traditional organic solvents. Poly(ethyleneimine) (PEI) and poly(sodium styrenesulfonate) (PSS) were dispersed in a hydrophilic IL and successfully deposited in the LBL fashion. To produce electroactive thin films with significance to electronics, a similar process was realized for PSS-modified single-walled carbon nanotubes (SWNT-PSS) and poly(vinyl alcohol) (PVA). Characterization of the coating using standard spectroscopy and microscopy techniques typical of the multilayer field indicated that there are both similarities and differences in the structure and properties of LBL films build from ILs and aqueous solutions. The films exhibited electrical conductivity of 102 S m-1 with transparency as high as 98% for visible light, which is comparable to similar parameters for many carbon nanotube and graphene films prepared by both aqueous LBL and other methods. Electronic supplementary information (ESI) available: Aggregation of PEI and PSS in [EMIm][EtSO4], detailed FTIR data, water-contact angle for (PEI/PSS)10 multilayers, and XPS survey spectra. See DOI: 10.1039/b9nr00333a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Quan, E-mail: wangq@mail.ujs.edu.cn; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000; Zhang, Yanmin
2013-11-14
Flat, low-stress, boron-doped polysilicon thin films were prepared on single crystalline silicon substrates by low pressure chemical vapor deposition. It was found that the polysilicon films with different deposition processing have different microstructure properties. The confinement effect, tensile stresses, defects, and the Fano effect all have a great influence on the line shape of Raman scattering peak. But the effect results are different. The microstructure and the surface layer are two important mechanisms dominating the internal stress in three types of polysilicon thin films. For low-stress polysilicon thin film, the tensile stresses are mainly due to the change of microstructuremore » after thermal annealing. But the tensile stresses in flat polysilicon thin film are induced by the silicon carbide layer at surface. After the thin film doped with boron atoms, the phenomenon of the tensile stresses increasing can be explained by the change of microstructure and the increase in the content of silicon carbide. We also investigated the disorder degree states for three polysilicon thin films by analyzing a constant C. It was found that the disorder degree of low-stress polysilicon thin film larger than that of flat and boron-doped polysilicon thin films due to the phase transformation after annealing. After the flat polysilicon thin film doped with boron atoms, there is no obvious change in the disorder degree and the disorder degree in some regions even decreases.« less
Layer-by-layer strippable Ag multilayer films fabricated by modular assembly.
Li, Yan; Chen, Xiaoyan; Li, Qianqian; Song, Kai; Wang, Shihui; Chen, Xiaoyan; Zhang, Kai; Fu, Yu; Jiao, Yong-Hua; Sun, Ting; Liu, Fu-Chun; Han, En-Hou
2014-01-21
We have developed a new method to fabricate multilayer films, which uses prepared thin films as modular blocks and transfer as operation mode to build up multilayer structures. In order to distinguish it from the in situ fabrication manner, this method is called modular assembly in this study. On the basis of such concept, we have fabricated a multilayer film using the silver mirror film as the modular block and poly(lactic acid) as the transfer tool. Due to the special double-layer structure of the silver mirror film, the resulting multilayer film had a well-defined stratified architecture with alternate porous/compact layers. As a consequence of the distinct structure, the interaction between the adjacent layers was so weak that the multilayer film could be layer-by-layer stripped. In addition, the top layer in the film could provide an effective protection on the morphology and surface property of the underlying layers. This suggests that if the surface of the film was deteriorated, the top layer could be peeled off and the freshly exposed surface would still maintain the original function. The successful preparation of the layer-by-layer strippable silver multilayer demonstrates that modular assembly is a feasible and effective method to build up multilayer films capable of creating novel and attractive micro/nanostructures, having great potential in the fabrication of nanodevices and coatings.
Development of a film sensor for static and dynamic force measurement
NASA Astrophysics Data System (ADS)
Castellini, P.; Montanini, R.; Revel, G. M.
2002-09-01
In this work an innovative double-layer film sensor for the measurement of forces is presented. The sensor is a thin film (thickness below 1 mm) based on a "sandwich" structure composed of two sensing elements glued together: one layer is a capacitive film and the other is a piezoelectric film. Both the layers are sensitive to compression loads, but they are suitable for working in different frequency ranges. In fact, while the capacitive element is capable of measuring from dc up to about 400 Hz, on the contrary the piezoelectric film works in the high frequency range. The output signals of both the sensors are acquired and then filtered and processed in order to achieve a single output signal. The piezocapacitive sensor has been developed in order to synthesize, in a small and cheap device, the capability to measure compression forces in a wide range of frequencies. The sensor is very small and has many potential applications, such as in the field of modal analysis. In particular, the very small thickness allows to insert it into a composite material to measure actual loads and excitations, as well as on the surface or between different components of a more complex system in order to obtain a smart structure. This article describes the realization of the sensor and the adopted signal processing strategies. The metrological characterization procedure is discussed and results are shown for both static and dynamic calibration of the film sensor. Finally, a simple application, that highlights the benefits of the sensor, is presented.
Electron Scattering at Surfaces of Epitaxial Metal Layers
NASA Astrophysics Data System (ADS)
Chawla, Jasmeet Singh
In the field of electron transport in metal films and wires, the 'size effect' refers to the increase in the resistivity of the films and wires as their critical dimensions (thickness of film, width and height of wires) approach or become less than the electron mean free path lambda, which is, for example, 39 nm for bulk copper at room temperature. This size-effect is currently of great concern to the semiconductor industry because the continued downscaling of feature sizes has already lead to Cu interconnect wires in this size effect regime, with a reported 2.5 times higher resistivity for 40 nm wide Cu wires than for bulk Cu. Silver is a possible alternate material for interconnect wires and titanium nitride is proposed as a gate metal in novel field-effect-transistors. Therefore, it is important to develop an understanding of how the growth, the surface morphology, and the microstructure of ultrathin (few nanometers) Cu, Ag and TiN layers affect their electrical properties. This dissertation aims to advance the scientific knowledge of electron scattering at surfaces (external surfaces and grain boundaries), that are, the primary reasons for the size-effect in metal conductors. The effect of surface and grain boundary scattering on the resistivity of Cu thin films and nanowires is separately quantified using (i) in situ transport measurements on single-crystal, atomically smooth Cu(001) layers, (ii) textured polycrystalline Cu(111) layers and patterned wires with independently varying grain size, thickness and line width, and (iii) in situ grown interfaces including Cu-Ta, Cu-MgO, Cu-vacuum and Cu-oxygen. In addition, the electron surface scattering is also measured in situ for single-crystal Ag(001), (111) twinned epitaxial Ag(001), and single-crystal TiN(001) layers. Cu(001), Ag(001), and TiN(001) layers with a minimum continuous thickness of 4, 3.5 and 1.8 nm, respectively, are grown by ultra-high vacuum magnetron sputter deposition on MgO(001) substrates with and without thin epitaxial TiN(001) wetting layers and are studied for structure, crystalline quality, surface morphology, density and composition by a combination of x-ray diffraction theta-2theta scans, o-rocking curves, pole figures, reciprocal space mapping, Rutherford backscattering, x-ray reflectometry and transmission electron microscopy. The TiN(001) surface suppresses Cu and Ag dewetting, yielding lower defect density, no twinning, and smaller surface roughness than if grown on MgO(001). Textured polycrystalline Cu(111) layers 25-50-nm-thick are deposited on a stack of 7.5-nm-Ta on SiO2/Si(001), and subsequent in situ annealing at 350°C followed by sputter etching in Ar plasma yields Cu layers with independently variable thickness and grain size. Cu nanowires, 75 to 350 nm wide, are fabricated from Cu layers with different average grain size using a subtractive patterning process. In situ electron transport measurements at room temperature in vacuum and at 77 K in liquid nitrogen for single-crystal Cu and Ag layers is consistent with the Fuchs-Sondheimer (FS) model and indicates specular scattering at the metal-vacuum boundary with an average specularity parameter p = 0.8 and 0.6, respectively. In contrast, layers measured ex situ show diffuse surface scattering due to sub-monolayer oxidation. Also, addition of Ta atoms on Cu(001) surface perturbs the smooth interface potential and results in completely diffuse scattering at the Cu-Ta interface, and in turn, a higher resistivity of single-crystal Cu layers. In situ exposure of Cu(001) layers to O2 between 10 -3 and 105 Pa-s results in a sequential increase, decrease and increase of the electrical resistance which is attributed to specular surface scattering for clean Cu(001) and for surfaces with a complete adsorbed monolayer, but diffuse scattering at partial coverage and after chemical oxidation. Electron transport measurements for polycrystalline Cu layers and wires show a 10-15% and 7-9% decrease in resistivity, respectively, when increasing the average lateral grain size by a factor of 1.8. The maximum resistivity decrease that can be achieved by increasing the grain size of polycrystalline Cu layers with an average grain size approximately ˜2.5x the layer thickness is 20-26%.
NASA Astrophysics Data System (ADS)
Tsuji, H.; Arai, N.; Ueno, K.; Matsumoto, T.; Gotoh, N.; Adachi, K.; Kotaki, H.; Gotoh, Y.; Ishikawa, J.
2006-01-01
Mono-layered gold nanoparticles just below the surface of silicon oxide film have been formed by a gold negative-ion implantation at a very low-energy, where the deviation of implanted atoms was sufficiently narrow comparing to the size of nanoparticles. Gold negative ions were implanted into SiO2 thin films on Si substrate at energies of 35, 15 and 1 keV. The samples were annealed in Ar flow for 1 h at 900 or 1000 °C. Cross-sectional TEM observation for the implantation at 1 keV showed existence of Au nanoparticles aligned in the same depth of 5 nm from the surface. The nanoparticles had almost same diameter of 7 nm. The nanoparticles were found to be gold single crystal from a high-resolution TEM image.
Pulsed energy synthesis and doping of silicon carbide
Truher, J.B.; Kaschmitter, J.L.; Thompson, J.B.; Sigmon, T.W.
1995-06-20
A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate is disclosed, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27--730 C is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including HETEROJUNCTION-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.
Pulsed energy synthesis and doping of silicon carbide
Truher, Joel B.; Kaschmitter, James L.; Thompson, Jesse B.; Sigmon, Thomas W.
1995-01-01
A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27.degree.-730.degree. C. is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including hetero-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.
Versatile fluoride substrates for Fe-based superconducting thin films
NASA Astrophysics Data System (ADS)
Kurth, F.; Reich, E.; Hänisch, J.; Ichinose, A.; Tsukada, I.; Hühne, R.; Trommler, S.; Engelmann, J.; Schultz, L.; Holzapfel, B.; Iida, K.
2013-04-01
We demonstrate the growth of Co-doped BaFe2As2 (Ba-122) thin films on CaF2 (001), SrF2 (001), and BaF2 (001) single crystal substrates using pulsed laser deposition. All films are grown epitaxially despite of a large misfit of -10.6% for BaF2 substrate. For all films, a reaction layer is formed at the interface confirmed by X-ray diffraction and for the films grown on CaF2 and BaF2 additionally by transmission electron microscopy. The superconducting transition temperature of the film on CaF2 is around 27 K, whereas the corresponding values of the films on SrF2 and BaF2 are around 22 K and 21 K, respectively. The Ba-122 on CaF2 shows almost identical crystalline quality and superconducting properties as films on Fe-buffered MgO.
Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tay, Roland Yingjie; Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore, Singapore 639798; Tsang, Siu Hon
Atomically thin hexagonal-boron nitride (h-BN) films are primarily synthesized through chemical vapor deposition (CVD) on various catalytic transition metal substrates. In this work, a single-step metal-catalyst-free approach to obtain few- to multi-layer nanocrystalline h-BN (NCBN) directly on amorphous SiO{sub 2}/Si and quartz substrates is demonstrated. The as-grown thin films are continuous and smooth with no observable pinholes or wrinkles across the entire deposited substrate as inspected using optical and atomic force microscopy. The starting layers of NCBN orient itself parallel to the substrate, initiating the growth of the textured thin film. Formation of NCBN is due to the random andmore » uncontrolled nucleation of h-BN on the dielectric substrate surface with no epitaxial relation, unlike on metal surfaces. The crystallite size is ∼25 nm as determined by Raman spectroscopy. Transmission electron microscopy shows that the NCBN formed sheets of multi-stacked layers with controllable thickness from ∼2 to 25 nm. The absence of transfer process in this technique avoids any additional degradation, such as wrinkles, tears or folding and residues on the film which are detrimental to device performance. This work provides a wider perspective of CVD-grown h-BN and presents a viable route towards large-scale manufacturing of h-BN substrates and for coating applications.« less
Electrodeposition of near stoichiometric CuInSe2 thin films for photovoltaic applications
NASA Astrophysics Data System (ADS)
Chandran, Ramkumar; Mallik, Archana
2018-03-01
This work investigates on the single step electrodeposition of quality CuInSe2 (CIS) thin film absorber layer for photovoltaics applications. The electrodeposition was carried using an aqueous acidic solution with a pH of 2.25. The deposition was carried using a three electrode system in potentiostatic conditions for 50 minutes. The as-deposited and nitrogen (N2) annealed films were characterized using XRD, FE-SEM and Raman spectroscopy. It has been observed that the SDS has the tendency to suppress the copper selenide (CuxSe) secondary phase which is detrimental to the device performance.
Water-Soluble Epitaxial NaCl Thin Film for Fabrication of Flexible Devices.
Lee, Dong Kyu; Kim, Sungjoo; Oh, Sein; Choi, Jae-Young; Lee, Jong-Lam; Yu, Hak Ki
2017-08-18
We studied growth mechanisms of water-soluble NaCl thin films on single crystal substrates. Epitaxial growth of NaCl(100) on Si(100) and domain-matched growth of NaCl(111) on c-sapphire were obtained at thicknesses below 100 nm even at room temperature from low lattice mismatches in both cases. NaCl thin film, which demonstrates high solubility selectivity for water, was successfully applied as a water-soluble sacrificial layer for fabrication of several functional materials, such as WO 3 nano-helix and Sn doped In 2 O 3 nano-branches.
The Ordering and Electronic Structure of Multilayer Epitaxial Graphene on SiC
NASA Astrophysics Data System (ADS)
Conrad, Edward
2011-03-01
The structural definition of graphene as a single sheet of hexagonal carbon limits how we view this material. It is the electronic properties of a single isolated graphene sheet that actually defines and motivates current graphene research. Remarkably, the best example of the idealized band structure of graphene comes does not come from a single graphene layer but from multilayer films grown on SiC. Multilayer epitaxial graphene (MEG) not only shows all the 2D properties expected for an isolated graphene sheet, but it the scalability to large scale integrated carbon circuits. I will show that the reason for this remarkable property, i.e. that a multilayer graphene films behaving like a single graphene sheet, is due to MEG's unique stacking. MEG films have a quasi-ordered rotational stacking that breaks the Bernal stacking symmetry associated with graphite. Angle resolved photoemission spectroscopy (ARPES) data demonstrates that the bands are linear at the K-point of these films. We can also show that the rotated stacking is highly ordered and that less than 20% of the graphene sheets in the film are Bernal stacked. I will also show that ARPES measurements on MEG films demonstrate serious inadequacies with both tight binding and ab initio formalisms. In particular the data shows no reductions in the Fermi velocity or the formation of Van Hove singularity that have been consistently predicted for this material. I wish to acknowledge funding from the NSF under Grants No. DMR-0820382 and DMR-1005880.
Recent progress in photoactive organic field-effect transistors.
Wakayama, Yutaka; Hayakawa, Ryoma; Seo, Hoon-Seok
2014-04-01
Recent progress in photoactive organic field-effect transistors (OFETs) is reviewed. Photoactive OFETs are divided into light-emitting (LE) and light-receiving (LR) OFETs. In the first part, LE-OFETs are reviewed from the viewpoint of the evolution of device structures. Device performances have improved in the last decade with the evolution of device structures from single-layer unipolar to multi-layer ambipolar transistors. In the second part, various kinds of LR-OFETs are featured. These are categorized according to their functionalities: phototransistors, non-volatile optical memories, and photochromism-based transistors. For both, various device configurations are introduced: thin-film based transistors for practical applications, single-crystalline transistors to investigate fundamental physics, nanowires, multi-layers, and vertical transistors based on new concepts.
Liquid phase heteroepitaxial growth on convex substrate using binary phase field crystal model
NASA Astrophysics Data System (ADS)
Lu, Yanli; Zhang, Tinghui; Chen, Zheng
2018-06-01
The liquid phase heteroepitaxial growth on convex substrate is investigated with the binary phase field crystal (PFC) model. The paper aims to focus on the transformation of the morphology of epitaxial films on convex substrate with two different radiuses of curvature (Ω) as well as influences of substrate vicinal angles on films growth. It is found that films growth experience different stages on convex substrate with different radiuses of curvature (Ω). For Ω = 512 Δx , the process of epitaxial film growth includes four stages: island coupled with layer-by-layer growth, layer-by-layer growth, island coupled with layer-by-layer growth, layer-by-layer growth. For Ω = 1024 Δx , film growth only experience islands growth and layer-by-layer growth. Also, substrate vicinal angle (π) is an important parameter for epitaxial film growth. We find the film can grow well when π = 2° for Ω = 512 Δx , while the optimized film can be obtained when π = 4° for Ω = 512 Δx .
Lawrence, Samantha Kay; Adams, David P.; Bahr, David F.; ...
2015-11-14
Nanosecond pulsed laser irradiation was used to fabricate colored, mechanically robust oxide “tags” on 304L stainless steel. Immersion in simulated seawater solution, salt fog exposure, and anodic polarization in a 3.5% NaCl solution were employed to evaluate the environmental resistance of these oxide tags. Single layer oxides outside a narrow thickness range (~ 100–150 nm) are susceptible to dissolution in chloride containing environments. The 304L substrates immediately beneath the oxides corrode severely—attributed to Cr-depletion in the melt zone during laser processing. For the first time, multilayered oxides were fabricated with pulsed laser irradiation in an effort to expand the protectivemore » thickness range while also increasing the variety of film colors attainable in this range. Layered films grown using a laser scan rate of 475 mm/s are more resistant to both localized and general corrosion than oxides fabricated at 550 mm/s. Furthermore, in the absence of pre-processing to mitigate Cr-depletion, layered films can enhance environmental stability of the system.« less
Atomically layer-by-layer diffusion of oxygen/hydrogen in highly epitaxial PrBaCo2O5.5+δ thin films
NASA Astrophysics Data System (ADS)
Bao, Shanyong; Xu, Xing; Enriquez, Erik; Mace, Brennan E.; Chen, Garry; Kelliher, Sean P.; Chen, Chonglin; Zhang, Yamei; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qinyu
2015-12-01
Single-crystalline epitaxial thin films of PrBaCo2O5.5+δ (PrBCO) were prepared, and their resistance R(t) under a switching flow of oxidizing and reducing gases were measured as a function of the gas flow time t in the temperature range of 200-800 °C. During the oxidation cycle under O2, the PrBCO films exhibit fast oscillations in their dR(t)/dt vs. t plots, which reflect the oxidation processes, Co2+/Co3+ → Co3+ and Co3+ → Co3+/Co4+, that the Co atoms of PrBCO undergo. Each oscillation consists of two peaks, with larger and smaller peaks representing the oxygen/hydrogen diffusion through the (BaO)(CoO2)(PrO)(CoO2) layers of PrBCO via the oxygen-vacancy-exchange mechanism. This finding paves a significant avenue for cathode materials operating in low-temperature solid-oxide-fuel-cell devices and for chemical sensors with wide range of operating temperature.
NASA Astrophysics Data System (ADS)
Kim, Youngkwang; Lee, Hyunjoon; Lim, Taeho; Kim, Hyun-Jong; Kwon, Oh Joong
2017-10-01
With emerging stability issues in fuel cell technology, a non-conventional catalyst not supported on carbon materials has been highlighted because it can avoid negative influences of carbon support materials on the stability, such as carbon corrosion. The nanostructured thin film catalyst is representative of non-conventional catalysts, which shows improved stability, enhanced mass specific activity, and fast mass transfer at high current densities. However, the nanostructured thin film catalyst usually requires multi-step processes for fabrication, making its mass production complex and irreproducible. We introduce a Pt-Cu alloy nanostructured thin film catalyst, which can be simply prepared by electrodeposition. By using hydrogen bubbles as a template, a three-dimensional free-standing foam of Cu was electrodeposited directly on the micro-porous layer/carbon paper and it was then displaced with Pt by simple immersion. The structure characterization revealed that a porous thin Pt-Cu alloy catalyst layer was successfully formed on the micro-porous layer/carbon paper. The synthesized Pt-Cu alloy catalyst exhibited superior durability compared to a conventional Pt/C in single cell test.
Electrochromic-photovoltaic film for light-sensitive control of optical transmittance
Branz, Howard M.; Crandall, Richard S.; Tracy, C. Edwin
1994-01-01
A variable transmittance optical component includes an electrochromic material and a photovoltaic device-type thin film solar cell deposited in a tandem type, monolithic single coating over the component. A bleed resistor of a predetermined value is connected in series across the electrochromic material and photovoltaic device controlling the activation and deactivation of the electrochromic material. The electrical conductivity between the electrochromic material and the photovoltaic device is enhanced by interposing a transparent electrically conductive layer.
Determining the Mechanism of Low Temperature Graphene Growth
2014-05-27
layer graphene over cobalt film crystallized on sapphire. ACS Nano, 2010. 4: p. 7407-7414. 8. Sutter, P.W., J. I. Flege and E. A. Sutter, Epitaxial...111). Journal of Physics, 2009. 11: p. 1-25. 15. Sukhdeo, D., Large area CVD of graphene over thin films of cobalt . 2009, Columbia University. p...B.R. Luo, W.P. Hu, G. Yu, Y.Q. Liu, Low Temperature Growth of Highly Nitrogen- doped Single Crystal Graphene Arrays by Chemical Vapor Deposition
Mod silver metallization: Screen printing and ink-jet printing
NASA Technical Reports Server (NTRS)
Vest, R. W.; Vest, G. M.
1985-01-01
Basic material efforts have proven to be very successful. Adherent and conductive films were achieved. A silver neodecanoate/bismuth 2-ethylhexanoate mixture has given the best results in both single and double layer applications. Another effort is continuing to examine the feasibility of applying metallo-organic deposition films by use of an ink jet printer. Direct line writing would result in a saving of process time and materials. So far, some well defined lines have been printed.
Momose, Wataru; Yoshino, Hiroyuki; Katakawa, Yoshifumi; Yamashita, Kazunari; Imai, Keiji; Sako, Kazuhiro; Kato, Eiji; Irisawa, Akiyoshi; Yonemochi, Etsuo; Terada, Katsuhide
2012-01-01
Here, we describe a nondestructive approach using terahertz wave to detect crack initiation in a film-coated layer on a drug tablet. During scale-up and scale-down of the film coating process, differences in film density and gaps between the film-coated layer and the uncoated tablet were generated due to differences in film coating process parameters, such as the tablet-filling rate in the coating machine, spray pressure, and gas–liquid ratio etc. Tablets using the PEO/PEG formulation were employed as uncoated tablets. We found that heat and humidity caused tablets to swell, thereby breaking the film-coated layer. Using our novel approach with terahertz wave nondestructively detect film surface density (FSD) and interface density differences (IDDs) between the film-coated layer and an uncoated tablet. We also found that a reduced FSD and IDD between the film-coated layer and uncoated tablet increased the risk of crack initiation in the film-coated layer, thereby enabling us to nondestructively predict initiation of cracks in the film-coated layer. Using this method, crack initiation can be nondestructively assessed in swelling tablets after the film coating process without conducting accelerated stability tests, and film coating process parameters during scale-up and scale-down studies can be appropriately established. PMID:25755992
Characterisation of LSO:Tb scintillator films for high resolution X-ray imaging applications
NASA Astrophysics Data System (ADS)
Cecilia, A.; Rack, A.; Douissard, P.-A.; Martin, T.; Dos Santos Rolo, T.; Vagovič, P.; Pelliccia, D.; Couchaud, M.; Dupré, K.; Baumbach, T.
2011-05-01
Within the framework of an FP6 project (SCINTAX)1The Project SCINTAX is funded by the European Community (STRP 033 427),
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, N.
1990-06-15
Artificially layered niobium-titanium (Nb-Ti) films with various thickness ratios (3/1--1/3) and periodicities (2--100 A) are made in an argon or in a mixed argon/nitrogen atmosphere by a dc magnetron sputtering method. Films with small periodicities (less than 30 A) have an artificial superlattice structure (ASL) with crystallographic coherence between constituent layers, where Nb and Ti grow epitaxially on the closest planes. The crystallographic structures of films are bcc with the (110) plane parallel to the film for films with the same or a thicker Nb layer than a Ti layer, and hcp with the (001) plane parallel to the filmmore » for films with a thinner Nb layer than a Ti layer. Films with large periodicities have an artificial superstructure (ASS) with only periodic stacking of constituent layers. Films deposited in the Ar/N atmosphere also have the artificially layered structures of ASL or ASS. The artificially layered structure is thermally stable at temperatures up to 500 {degree}C. The superconducting properties of the films depend strongly on the periodicity and thickness ratio of Nb and Ti layers. The dependence of the transition temperature on the periodicity and thickness ratio is qualitatively explained by a proximity effect with a three-region model. Films with periodicities less than 20 A, composed of the same or a thicker Nb layer than a Ti layer, show high transition temperatures (above 9.3 K). The highest {ital T}{sub {ital c}} of about 13.6 K is obtained in the film composed of monatomic layers of constituents deposited in an Ar atmosphere including 30 vol % N.« less
Novel approaches for fabrication of thin film layers for solid oxide electrolyte fuel cells
NASA Technical Reports Server (NTRS)
Murugesamoorthi, K. A.; Srinivasan, S.; Cocke, D. L.; Appleby, A. J.
1990-01-01
The main objectives of the SOFC (solid oxide fuel cell) project are to (1) identify viable and cost-effective techniques to prepare cell components for stable MSOFCs (monolithic SOFCs); (2) fabricate half and single cells; and (3) evaluate their performances. The approach used to fabricate stable MSOFCs is as follows: (1) the electrolyte layer is prepared in the form of a honeycomb structure by alloy oxidation and other cell components are deposited on it; (2) the electrolyte and anode layers are deposited on the cathode layer, which has a porous, honeycomb structure; and (3) the electrolyte and cathode layers are deposited on the anode layer. The current status of the project is reported.
Low stress polysilicon film and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)
2001-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.