Sample records for single lipid components

  1. Specific Adhesion of Lipid Membranes Can Simultaneously Produce Two Types of Lipid and Protein Heterogeneities

    NASA Astrophysics Data System (ADS)

    Shindell, Orrin; Micah, Natalie; Ritzer, Max; Gordon, Vernita

    2015-03-01

    Living cells adhere to one another and their environment. Adhesion is associated with re-organization of the lipid and protein components of the cell membrane. The resulting heterogeneities are functional structures involved in biological processes. We use artificial lipid membranes that contain a single type of binding protein. Before adhesion, the lipid, protein, and dye components in the membrane are well-mixed and constitute a single disordered-liquid phase (Ld) . After adhesion, two distinct types of heterogeneities coexist in the adhesion zone: a central domain of ordered lipid phase that excludes both binding proteins and membrane dye, and a peripheral domain of disordered lipid phase that is densely packed with adhesion proteins and enriched in membrane dye relative to the non-adhered portion of the vesicle. Thus, we show that adhesion that is mediated by only one type of protein can organize the lipid and protein components of the membranes into heterogeneities that resemble those found in biology, for example the immune synapse.

  2. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    NASA Astrophysics Data System (ADS)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  3. Studies of molecular diffusion in single-supported bilayer lipid membranes at high hydration by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Bai, M.; Miskowiec, A.; Wang, S.-K.; Taub, H.; Hansen, F. Y.; Jenkins, T.; Tyagi, M.; Neumann, D. A.; Diallo, S. O.; Mamontov, E.; Herwig, K. W.

    2011-03-01

    Bilayer lipid membranes supported on a solid surface are attractive model systems for understanding the structure and dynamics of more complex biological membranes that form the outer boundary of living cells. We have recently obtained quasielastic neutron spectra from single-supported bilayer lipid membranes using the backscattering spectrometer BASIS at the Spallation Neutron Source. Protonated DMPC membranes were deposited onto Si O2 -coated Si(100) substrates and characterized by AFM. Analysis of their neutron spectra shows evidence of a relatively broad Lorentzian component that we associate with bulk-like water above a freezing temperature of ~ 267 K. At lower temperatures, the spectra differ qualitatively from that of bulk supercooled water, a behavior that we attribute to water bound to the membrane. We also find evidence of a narrow Lorentzian component that we tentatively identify with a slower motion (time scale ~ 1 ns) associated with conformational changes of the alkyl tails of the lipid molecules. Supported by NSF Grant No. DMR-0705974.

  4. Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp.

    PubMed

    Wang, Xin; Sheng, Lili; Yang, Xiaoyi

    2017-04-01

    Microalgal components were isolated gradually to get lipid-rich, protein-rich and carbohydrate-rich components. The aim of this work was to study pyrolysis mechanism of microalgae by real isolated real algae components. Thermogrametric analysis (DTG) curve of microalgae was fitted by single pyrolysis curves of protein, lipid and carbohydrate except special zones, which likely affected by cell disruption and hydrolysis mass loss. Experimental microalgae liquefaction without water index N was 0.6776, 0.3861 and 0.2856 for isolated lipid, protein and carbohydrate. Pyrolysis pathways of lipid are decarboxylation, decarbonylation, fragmentation of glycerin moieties and steroid to form hydrocarbons, carboxylic acids and esters. Pyrolysis pathways of protein are decarboxylation, deamination, hydrocarbon residue fragmentation, dimerization and fragmentation of peptide bonds to form amide/amines/nitriles, esters, hydrocarbons and N-heterocyclic compounds, especially diketopiperazines (DKPs). Pyrolysis pathways of carbohydrate are dehydrated reactions and further fragmentation to form ketones and aldehyde, decomposition of lignin to form phenols, and fragmentation of lipopolysaccharides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Studies of molecular diffusion in single-supported bilayer lipid membranes at low hydration by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Miskowiec, A.; Bai, M.; Lever, M.; Taub, H.; Hansen, F. Y.; Jenkins, T.; Tyagi, M.; Neumann, D. A.; Diallo, S. O.; Mamontov, E.; Herwig, K. W.

    2011-03-01

    We have extended our investigation of the quasielastic neutron scattering from single-supported bilayer lipid membranes to a sample of lower hydration using the backscattering spectrometer BASIS at the SNS of ORNL. To focus on the diffusive motion of the water, tail-deuterated DMPC membranes were deposited onto Si O2 -coated Si(100) substrates and characterized by AFM. Compared to a sample of higher hydration, the dryer sample does not have a step-like freezing transition at ~ 267 K and shows less intensity at higher temperatures of a broad Lorentzian component representing bulk-like water. However, the broad component of the ``wet'' and ``dry'' samples behaves similarly at lower temperatures. The dryer sample also shows evidence of a narrow Lorentzian component that has a different temperature dependence than that attributed to conformational changes of the alkyl tails of the lipid molecules in the wet sample. We tentatively identify this slower diffusive motion (time scale ~ 1 ns) with water more tightly bound to the membrane. Supported by NSF Grant No. DMR-0705974.

  6. Molecular interactions of plant oil components with stratum corneum lipids correlate with clinical measures of skin barrier function

    PubMed Central

    Mack Correa, Mary Catherine; Mao, Guangru; Saad, Peter; Flach, Carol R; Mendelsohn, Richard; Walters, Russel M

    2014-01-01

    Plant-derived oils consisting of triglycerides and small amounts of free fatty acids (FFAs) are commonly used in skincare regimens. FFAs are known to disrupt skin barrier function. The objective of this study was to mechanistically study the effects of FFAs, triglycerides and their mixtures on skin barrier function. The effects of oleic acid (OA), glyceryl trioleate (GT) and OA/GT mixtures on skin barrier were assessed in vivo through measurement of transepidermal water loss (TEWL) and fluorescein dye penetration before and after a single application. OA's effects on stratum corneum (SC) lipid order in vivo were measured with infrared spectroscopy through application of perdeuterated OA (OA-d34). Studies of the interaction of OA and GT with skin lipids included imaging the distribution of OA-d34 and GT ex vivo with IR microspectroscopy and thermodynamic analysis of mixtures in aqueous monolayers. The oil mixtures increased both TEWL and fluorescein penetration 24 h after a single application in an OA dose-dependent manner, with the highest increase from treatment with pure OA. OA-d34 penetrated into skin and disordered SC lipids. Furthermore, the ex vivo IR imaging studies showed that OA-d34 permeated to the dermal/epidermal junction while GT remained in the SC. The monolayer experiments showed preferential interspecies interactions between OA and SC lipids, while the mixing between GT and SC lipids was not thermodynamically preferred. The FFA component of plant oils may disrupt skin barrier function. The affinity between plant oil components and SC lipids likely determines the extent of their penetration and clinically measurable effects on skin barrier functions. PMID:24372651

  7. Integrated analysis, transcriptome-lipidome, reveals the effects of INO-level (INO2 and INO4) on lipid metabolism in yeast.

    PubMed

    Chumnanpuen, Pramote; Nookaew, Intawat; Nielsen, Jens

    2013-10-16

    In the yeast Saccharomyces cerevisiae, genes containing UASINO sequences are regulated by the Ino2/Ino4 and Opi1 transcription factors, and this regulation controls lipid biosynthesis. The expression level of INO2 and INO4 genes (INO-level) at different nutrient limited conditions might lead to various responses in yeast lipid metabolism. In this study, we undertook a global study on how INO-levels (transcription level of INO2 and INO4) affect lipid metabolism in yeast and we also studied the effects of single and double deletions of the two INO-genes (deficient effect). Using 2 types of nutrient limitations (carbon and nitrogen) in chemostat cultures operated at a fixed specific growth rate of 0.1 h-1 and strains having different INO-level, we were able to see the effect on expression level of the genes involved in lipid biosynthesis and the fluxes towards the different lipid components. Through combined measurements of the transcriptome, metabolome, and lipidome it was possible to obtain a large dataset that could be used to identify how the INO-level controls lipid metabolism and also establish correlations between the different components. In this study, we undertook a global study on how INO-levels (transcription level of INO2 and INO4) affect lipid metabolism in yeast and we also studied the effects of single and double deletions of the two INO-genes (deficient effect). Using 2 types of nutrient limitations (carbon and nitrogen) in chemostat cultures operated at a fixed specific growth rate of 0.1 h-1 and strains having different INO-level, we were able to see the effect on expression level of the genes involved in lipid biosynthesis and the fluxes towards the different lipid components. Through combined measurements of the transcriptome, metabolome, and lipidome it was possible to obtain a large dataset that could be used to identify how the INO-level controls lipid metabolism and also establish correlations between the different components. Our analysis showed the strength of using a combination of transcriptome and lipidome analysis to illustrate the effect of INO-levels on phospholipid metabolism and based on our analysis we established a global regulatory map.

  8. Principal Component Analysis of Lipid Molecule Conformational Changes in Molecular Dynamics Simulations.

    PubMed

    Buslaev, Pavel; Gordeliy, Valentin; Grudinin, Sergei; Gushchin, Ivan

    2016-03-08

    Molecular dynamics simulations of lipid bilayers are ubiquitous nowadays. Usually, either global properties of the bilayer or some particular characteristics of each lipid molecule are evaluated in such simulations, but the structural properties of the molecules as a whole are rarely studied. Here, we show how a comprehensive quantitative description of conformational space and dynamics of a single lipid molecule can be achieved via the principal component analysis (PCA). We illustrate the approach by analyzing and comparing simulations of DOPC bilayers obtained using eight different force fields: all-atom generalized AMBER, CHARMM27, CHARMM36, Lipid14, and Slipids and united-atom Berger, GROMOS43A1-S3, and GROMOS54A7. Similarly to proteins, most of the structural variance of a lipid molecule can be described by only a few principal components. These major components are similar in different simulations, although there are notable distinctions between the older and newer force fields and between the all-atom and united-atom force fields. The DOPC molecules in the simulations generally equilibrate on the time scales of tens to hundreds of nanoseconds. The equilibration is the slowest in the GAFF simulation and the fastest in the Slipids simulation. Somewhat unexpectedly, the equilibration in the united-atom force fields is generally slower than in the all-atom force fields. Overall, there is a clear separation between the more variable previous generation force fields and significantly more similar new generation force fields (CHARMM36, Lipid14, Slipids). We expect that the presented approaches will be useful for quantitative analysis of conformations and dynamics of individual lipid molecules in other simulations of lipid bilayers.

  9. Labeling viral envelope lipids with quantum dots by harnessing the biotinylated lipid-self-inserted cellular membrane.

    PubMed

    Lv, Cheng; Lin, Yi; Liu, An-An; Hong, Zheng-Yuan; Wen, Li; Zhang, Zhenfeng; Zhang, Zhi-Ling; Wang, Hanzhong; Pang, Dai-Wen

    2016-11-01

    Highly efficient labeling of viruses with quantum dots (QDs) is the prerequisite for the long-term tracking of virus invasion at the single virus level to reveal mechanisms of virus infection. As one of the structural components of viruses, viral envelope lipids are hard to be labeled with QDs due to the lack of efficient methods to modify viral envelope lipids. Moreover, it is still a challenge to maintain the intactness and infectivity of labeled viruses. Herein, a mild method has been developed to label viral envelope lipids with QDs by harnessing the biotinylated lipid-self-inserted cellular membrane. Biotinylated lipids can spontaneously insert in cellular membranes of host cells during culture and then be naturally assembled on progeny Pseudorabies virus (PrV) via propagation. The biotinylated PrV can be labeled with streptavidin-conjugated QDs, with a labeling efficiency of ∼90%. Such a strategy to label lipids with QDs can retain the intactness and infectivity of labeled viruses to the largest extent, facilitating the study of mechanisms of virus infection at the single virus level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A single step reversed-phase high performance liquid chromatography separation of polar and non-polar lipids.

    PubMed

    Olsson, Petter; Holmbäck, Jan; Herslöf, Bengt

    2014-11-21

    This paper reports a simple chromatographic system to separate lipids classes as well as their molecular species. By the use of phenyl coated silica as stationary phase in combination with a simple mobile phase consisting of methanol and water, all tested lipid classes elute within 30 min. Furthermore, a method to accurately predict retention times of specific lipid components for this type of chromatography is presented. Common detection systems were used, namely evaporative light scattering detection (ELSD), charged aerosol detection (CAD), electrospray mass spectrometry (ESI-MS), and UV detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis.

    PubMed

    Zhang, Hongjie; Abraham, Nessy; Khan, Liakot A; Hall, David H; Fleming, John T; Göbel, Verena

    2011-09-18

    Metazoan internal organs are assembled from polarized tubular epithelia that must set aside an apical membrane domain as a lumenal surface. In a global Caenorhabditis elegans tubulogenesis screen, interference with several distinct fatty-acid-biosynthetic enzymes transformed a contiguous central intestinal lumen into multiple ectopic lumens. We show that multiple-lumen formation is caused by apicobasal polarity conversion, and demonstrate that in situ modulation of lipid biosynthesis is sufficient to reversibly switch apical domain identities on growing membranes of single post-mitotic cells, shifting lumen positions. Follow-on targeted lipid-biosynthesis pathway screens and functional genetic assays were designed to identify a putative single causative lipid species. They demonstrate that fatty-acid biosynthesis affects polarity through sphingolipid synthesis, and reveal ceramide glucosyltransferases (CGTs) as end-point biosynthetic enzymes in this pathway. Our findings identify glycosphingolipids, CGT products and obligate membrane lipids, as critical determinants of in vivo polarity and indicate that they sort new components to the expanding apical membrane.

  12. Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis

    PubMed Central

    Zhang, Hongjie; Abraham, Nessy; Khan, Liakot A.; Hall, David H.; Fleming, John T.; Gobel, Verena

    2011-01-01

    Metazoan internal organs are assembled from polarized tubular epithelia that must set aside an apical membrane domain as a lumenal surface. In a global Caenorhabditis elegans tubulogenesis screen, interference with several distinct fatty-acid-biosynthetic enzymes transformed a contiguous central intestinal lumen into multiple ectopic lumens. We show that multiple-lumen formation is caused by apicobasal polarity conversion, and demonstrate that in situ modulation of lipid biosynthesis is sufficient to reversibly switch apical domain identities on growing membranes of single postmitotic cells, shifting lumen positions. Follow-on targeted lipid-biosynthesis pathway screens and functional genetic assays were designed to identify a putative single causative lipid species. They demonstrate that fatty-acid biosynthesis affects polarity via sphingolipid synthesis, and reveal ceramideglucosyltransferases (CGTs) as endpoint biosynthetic enzymes in this pathway. Our findings identify glycosphingolipids (GSLs), CGT products and obligate membrane lipids, as critical determinants of in vivo polarity and suggest they sort new components to the expanding apical membrane. PMID:21926990

  13. Pulmonary lung surfactant synthetic peptide concentration-dependent modulation of DPPC and POPG acyl chain order in a DPPC:POPG:palmitic acid lipid mixture.

    PubMed

    Krill, S L; Gupta, S L; Smith, T

    1994-05-06

    Lung surfactant-associated protein interaction with lipid matrices and the effects on lipid thermotropic phase behavior are areas of active research. Many studies limit the lipids to a single or two-component system. The current investigation utilizes a three-lipid component matrix (DPPC:POPG:palmitic acid) to investigate the impact of a synthetic surfactant protein B fragment (SP-B 53-78 DiACM) on the dynamic surface activity of the lipid admixture as measured by a Wilhelmy surface balance. Also, the modulation of the individual lipid acyl chain order by the peptide within the lipid matrix is studied through the use of thermal perturbation FTIR spectroscopy. The data clearly demonstrate a concentration-dependent effect of the peptide on the surface activity with an improvement in the dynamic surface tension diagram characteristics (decreased surface tension and increased collapse plateau) especially at low, 0.36 M%, peptide concentrations. These effects are diminished upon further addition of the peptide. FTIR spectral data demonstrate that the peptide addition results in a significant increase in the acyl chain order of the DPPC and POPG components as measured by the position of the methylene stretching vibrational bands. DPPC is most sensitive to the peptide presence, while the palmitic acid is least affected. The transition temperatures of the individual lipids are also increased with the addition of the peptide. The presence of POPG in the matrix achieves the surface activity similarly seen with natural lung surfactant relative to a DPPC/palmitic acid lipid matrix alone. Its presence increases the sensitivity of the DPPC acyl chains to the presence of the peptide. These effects on the chain order are most probably related to the increased acyl chain fluidity which POPG imparts to the lipid matrix because of the presence of the cis double bond. The phosphatidylglycerol headgroup also adds a negative charge to the lipid matrix which enhances the peptide-lipid interaction. Although the palmitic acid is minimally affected by the peptide, its presence, as suggested by surface balance measurements, results in the establishment of a stable lipid film with DPPC, capable of achieving low surface tension values.

  14. Structure formation of lipid membranes: Membrane self-assembly and vesicle opening-up to octopus-like micelles

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2013-02-01

    We briefly review our recent studies on self-assembly and vesicle rupture of lipid membranes using coarse-grained molecular simulations. For single component membranes, lipid molecules self-assemble from random gas states to vesicles via disk-shaped clusters. Clusters aggregate into larger clusters, and subsequently the large disks close into vesicles. The size of vesicles are determined by kinetics than by thermodynamics. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle called bicelle can be formed. When both surfactants have negligibly low critical micelle concentration, it is found that bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and spontaneous curvature of the membrane monolayer.

  15. Maximally asymmetric transbilayer distribution of anionic lipids alters the structure and interaction with lipids of an amyloidogenic protein dimer bound to the membrane surface

    PubMed Central

    Cheng, Sara Y.; Chou, George; Buie, Creighton; Vaughn, Mark W.; Compton, Campbell; Cheng, Kwan H.

    2016-01-01

    We used molecular dynamics simulations to explore the effects of asymmetric transbilayer distribution of anionic phosphatidylserine (PS) lipids on the structure of a protein on the membrane surface and subsequent protein–lipid interactions. Our simulation systems consisted of an amyloidogenic, beta-sheet rich dimeric protein (D42) absorbed to the phosphatidylcholine (PC) leaflet, or protein-contact PC leaflet, of two membrane systems: a single-component PC bilayer and double PC/PS bilayers. The latter comprised of a stable but asymmetric transbilayer distribution of PS in the presence of counterions, with a 1-component PC leaflet coupled to a 1-component PS leaflet in each bilayer. The maximally asymmetric PC/PS bilayer had a non-zero transmembrane potential (TMP) difference and higher lipid order packing, whereas the symmetric PC bilayer had a zero TMP difference and lower lipid order packing under physiologically relevant conditions. Analysis of the adsorbed protein structures revealed weaker protein binding, more folding in the N-terminal domain, more aggregation of the N- and C-terminal domains and larger tilt angle of D42 on the PC leaflet surface of the PC/PS bilayer versus the PC bilayer. Also, analysis of protein-induced membrane structural disruption revealed more localized bilayer thinning in the PC/PS versus PC bilayer. Although the electric field profile in the non-protein-contact PS leaflet of the PC/PS bilayer differed significantly from that in the non-protein-contact PC leaflet of the PC bilayer, no significant difference in the electric field profile in the protein-contact PC leaflet of either bilayer was evident. We speculate that lipid packing has a larger effect on the surface adsorbed protein structure than the electric field for a maximally asymmetric PC/PS bilayer. Our results support the mechanism that the higher lipid packing in a lipid leaflet promotes stronger protein–protein but weaker protein–lipid interactions for a dimeric protein on membrane surfaces. PMID:26827904

  16. Near infra-red spectroscopy quantitative modelling of bivalve protein, lipid and glycogen composition using single-species versus multi-species calibration and validation sets.

    PubMed

    Bartlett, Jill K; Maher, William A; Purss, Matthew B J

    2018-03-15

    Near infrared spectroscopy (NIRS) quantitative modelling was used to measure the protein, lipid and glycogen composition of five marine bivalve species (Saccostrea glomerata, Ostrea angasi, Crassostrea gigas, Mytilus galloprovincialis and Anadara trapezia) from multiple locations and seasons. Predictive models were produced for each component using individual species and aggregated sample populations for the three oyster species (S. glomerata, O. angasi and C. gigas) and for all five bivalve species. Whole animal tissues were freeze dried, ground to >20μm and scanned by NIRS. Protein, lipid and glycogen composition were determined by traditional chemical analyses and calibration models developed to allow rapid NIRS-measurement of these components in the five bivalve species. Calibration modelling was performed using wavelet selection, genetic algorithms and partial least squares analysis. Model quality was assessed using RPIQ and RMESP. For protein composition, single species model results had RPIQ values between 2.4 and 3.5 and RMSEP between 8.6 and 18%, the three oyster model had an RPIQ of 2.6 and an RMSEP of 10.8% and the five bivalve species had an RPIQ of 3.6 and RMSEP of 8.7% respectively. For lipid composition, single species models achieved RPIQ values between 2.9 and 5.3 with RMSEP between 9.1 and 11.2%, the oyster model had an RPIQ of 3.6 and RMSEP of 6.8 and the five bivalve model had an RPIQ of 5.2 and RMSEP of 6.8% respectively. For glycogen composition, the single species models had RPIQs between 3.8 and 18.9 with RMSEP between 3.5 and 9.2%, the oyster model had an RPIQ of 5.5 and RMSEP of 7.1% and the five bivalve model had an RPIQ of 4 and RMSEP of 7.6% respectively. Comparison between individual species models and aggregated models for three oyster species and five bivalve species for each component indicate that aggregating data from like species produces high quality models with robust and reliable quantitative application. The benefit of aggregated multi-species models include a greater range of bivalve composition, greater application to different bivalve species and reduced need to extensively sample individual species, that is required for obtain robust single species NIRS models. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Near infra-red spectroscopy quantitative modelling of bivalve protein, lipid and glycogen composition using single-species versus multi-species calibration and validation sets

    NASA Astrophysics Data System (ADS)

    Bartlett, Jill K.; Maher, William A.; Purss, Matthew B. J.

    2018-03-01

    Near infrared spectroscopy (NIRS) quantitative modelling was used to measure the protein, lipid and glycogen composition of five marine bivalve species (Saccostrea glomerata, Ostrea angasi, Crassostrea gigas, Mytilus galloprovincialis and Anadara trapezia) from multiple locations and seasons. Predictive models were produced for each component using individual species and aggregated sample populations for the three oyster species (S. glomerata, O. angasi and C. gigas) and for all five bivalve species. Whole animal tissues were freeze dried, ground to > 20 μm and scanned by NIRS. Protein, lipid and glycogen composition were determined by traditional chemical analyses and calibration models developed to allow rapid NIRS-measurement of these components in the five bivalve species. Calibration modelling was performed using wavelet selection, genetic algorithms and partial least squares analysis. Model quality was assessed using RPIQ and RMESP. For protein composition, single species model results had RPIQ values between 2.4 and 3.5 and RMSEP between 8.6 and 18%, the three oyster model had an RPIQ of 2.6 and an RMSEP of 10.8% and the five bivalve species had an RPIQ of 3.6 and RMSEP of 8.7% respectively. For lipid composition, single species models achieved RPIQ values between 2.9 and 5.3 with RMSEP between 9.1 and 11.2%, the oyster model had an RPIQ of 3.6 and RMSEP of 6.8 and the five bivalve model had an RPIQ of 5.2 and RMSEP of 6.8% respectively. For glycogen composition, the single species models had RPIQs between 3.8 and 18.9 with RMSEP between 3.5 and 9.2%, the oyster model had an RPIQ of 5.5 and RMSEP of 7.1% and the five bivalve model had an RPIQ of 4 and RMSEP of 7.6% respectively. Comparison between individual species models and aggregated models for three oyster species and five bivalve species for each component indicate that aggregating data from like species produces high quality models with robust and reliable quantitative application. The benefit of aggregated multi-species models include a greater range of bivalve composition, greater application to different bivalve species and reduced need to extensively sample individual species, that is required for obtain robust single species NIRS models.

  18. Pyrene-Labeled Amphiphiles: Dynamic And Structural Probes Of Membranes And Lipoproteins

    NASA Astrophysics Data System (ADS)

    Pownall, Henry J.; Homan, Reynold; Massey, John B.

    1987-01-01

    Lipids and proteins are important functional and structural components of living organisms. Although proteins are frequently found as soluble components of plasma or the cell cytoplasm, many lipids are much less soluble and separate into complex assemblies that usually contain proteins. Cell membranes and plasma lipoproteins' are two important macro-molecular assemblies that contain both lipids and proteins. Cell membranes are composed of a variety of lipids and proteins that form an insoluble bilayer array that has relatively little curvature over distances of several nm. Plasma lipoproteins are different in that they are much smaller, water-soluble, and have highly curved surfaces. A model of a high density lipoprotein (HDL) is shown in Figure 1. This model (d - 10 nm) contains a surface of polar lipids and proteins that surrounds a small core of insoluble lipids, mostly triglycerides and cholesteryl esters. The low density (LDL) (d - 25 nm) and very low density (VLDL) (d 90 nm) lipoproteins have similar architectures, except the former has a cholesteryl ester core and the latter a core that is almost exclusively triglyceride (Figure 1). The surface proteins of HDL are amphiphilic and water soluble; the single protein of LDL is insoluble, whereas VLDL contains both soluble and insoluble proteins. The primary structures of all of these proteins are known.

  19. LipidPedia: a comprehensive lipid knowledgebase.

    PubMed

    Kuo, Tien-Chueh; Tseng, Yufeng Jane

    2018-04-10

    Lipids are divided into fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, sterols, prenol lipids and polyketides. Fatty acyls and glycerolipids are commonly used as energy storage, whereas glycerophospholipids, sphingolipids, sterols and saccharolipids are common used as components of cell membranes. Lipids in fatty acyls, glycerophospholipids, sphingolipids and sterols classes play important roles in signaling. Although more than 36 million lipids can be identified or computationally generated, no single lipid database provides comprehensive information on lipids. Furthermore, the complex systematic or common names of lipids make the discovery of related information challenging. Here, we present LipidPedia, a comprehensive lipid knowledgebase. The content of this database is derived from integrating annotation data with full-text mining of 3,923 lipids and more than 400,000 annotations of associated diseases, pathways, functions, and locations that are essential for interpreting lipid functions and mechanisms from over 1,400,000 scientific publications. Each lipid in LipidPedia also has its own entry containing a text summary curated from the most frequently cited diseases, pathways, genes, locations, functions, lipids and experimental models in the biomedical literature. LipidPedia aims to provide an overall synopsis of lipids to summarize lipid annotations and provide a detailed listing of references for understanding complex lipid functions and mechanisms. LipidPedia is available at http://lipidpedia.cmdm.tw. yjtseng@csie.ntu.edu.tw. Supplementary data are available at Bioinformatics online.

  20. Single-component supported lipid bilayers probed using broadband nonlinear optics.

    PubMed

    Olenick, Laura L; Chase, Hilary M; Fu, Li; Zhang, Yun; McGeachy, Alicia C; Dogangun, Merve; Walter, Stephanie R; Wang, Hong-Fei; Geiger, Franz M

    2018-01-31

    Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups. The SFG spectra obtained from bilayers formed from DOPC, POPC, DLPC, DMPC, DPPC and DSPC show a common peak at ∼2980 cm -1 , which is subject to interference between the C-H and the O-H stretches from the aqueous phase, while membranes having transition temperatures above the laboratory temperature produce SFG spectra with at least two additional peaks, one at ∼2920 cm -1 and another at ∼2880 cm -1 . The results validate spectroscopic and structural data from SFG experiments utilizing asymmetric bilayers in which one leaflet differs from the other in the extent of deuteration. Differences in H 2 O-D 2 O exchange experiments reveal that the lineshapes of the broadband SFG spectra are significantly influenced by interference from OH oscillators in the aqueous phase, even when those oscillators are not probed by the incident infrared light in our broadband setup. In the absence of spectral interference from the OH stretches of the solvent, the alkyl chain terminal methyl group of the bilayer is found to be tilted at an angle of 15° to 35° from the surface normal.

  1. Maximally asymmetric transbilayer distribution of anionic lipids alters the structure and interaction with lipids of an amyloidogenic protein dimer bound to the membrane surface.

    PubMed

    Cheng, Sara Y; Chou, George; Buie, Creighton; Vaughn, Mark W; Compton, Campbell; Cheng, Kwan H

    2016-03-01

    We used molecular dynamics simulations to explore the effects of asymmetric transbilayer distribution of anionic phosphatidylserine (PS) lipids on the structure of a protein on the membrane surface and subsequent protein-lipid interactions. Our simulation systems consisted of an amyloidogenic, beta-sheet rich dimeric protein (D42) absorbed to the phosphatidylcholine (PC) leaflet, or protein-contact PC leaflet, of two membrane systems: a single-component PC bilayer and double PC/PS bilayers. The latter comprised of a stable but asymmetric transbilayer distribution of PS in the presence of counterions, with a 1-component PC leaflet coupled to a 1-component PS leaflet in each bilayer. The maximally asymmetric PC/PS bilayer had a non-zero transmembrane potential (TMP) difference and higher lipid order packing, whereas the symmetric PC bilayer had a zero TMP difference and lower lipid order packing under physiologically relevant conditions. Analysis of the adsorbed protein structures revealed weaker protein binding, more folding in the N-terminal domain, more aggregation of the N- and C-terminal domains and larger tilt angle of D42 on the PC leaflet surface of the PC/PS bilayer versus the PC bilayer. Also, analysis of protein-induced membrane structural disruption revealed more localized bilayer thinning in the PC/PS versus PC bilayer. Although the electric field profile in the non-protein-contact PS leaflet of the PC/PS bilayer differed significantly from that in the non-protein-contact PC leaflet of the PC bilayer, no significant difference in the electric field profile in the protein-contact PC leaflet of either bilayer was evident. We speculate that lipid packing has a larger effect on the surface adsorbed protein structure than the electric field for a maximally asymmetric PC/PS bilayer. Our results support the mechanism that the higher lipid packing in a lipid leaflet promotes stronger protein-protein but weaker protein-lipid interactions for a dimeric protein on membrane surfaces. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion.

    PubMed Central

    Siegel, D P

    1986-01-01

    Results of a kinetic model of thermotropic L alpha----HII phase transitions are used to predict the types and order-of-magnitude rates of interactions between unilamellar vesicles that can occur by intermediates in the L alpha----HII phase transition. These interactions are: outer monolayer lipid exchange between vesicles; vesicle leakage subsequent to aggregation; and (only in systems with ratios of L alpha and HII phase structural dimensions in a certain range or with unusually large bilayer lateral compressibilities) vesicle fusion with retention of contents. It was previously proposed that inverted micellar structures mediate membrane fusion. These inverted micellar structures are thought to form in all systems with such transitions. However, I show that membrane fusion probably occurs via structures that form from these inverted micellar intermediates, and that fusion should occur in only a sub-set of lipid systems that can adopt the HII phase. For single-component phosphatidylethanolamine (PE) systems with thermotropic L alpha----HII transitions, lipid exchange should be observed starting at temperatures several degrees below TH and at all higher temperatures, where TH is the L alpha----HII transition temperature. At temperatures above TH, the HII phase forms between apposed vesicles, and eventually ruptures them (leakage). In most single-component PE systems, fusion via L alpha----HII transition intermediates should not occur. This is the behavior observed by Bentz, Ellens, Lai, Szoka, et al. in PE vesicle systems. Fusion is likely to occur under circumstances in which multilamellar samples of lipid form the so-called "inverted cubic" or "isotropic" phase. This is as observed in the mono-methyl DOPE system (Ellens, H., J. Bentz, and F. C. Szoka. 1986. Fusion of phosphatidylethanolamine containing liposomes and the mechanism of the L alpha-HII phase transition. Biochemistry. In press.) In lipid systems with L alpha----HII transitions driven by cation binding (e.g., Ca2+-cardiolipin), fusion should be more frequent than in thermotropic systems. PMID:3719075

  3. Microscopy and bioinformatic analyses of lipid metabolism implicate a sporophytic signaling network supporting pollen development in Arabidopsis.

    PubMed

    Wang, Yixing; Wu, Hong; Yang, Ming

    2008-07-01

    The Arabidopsis sporophytic tapetum undergoes a programmed degeneration process to secrete lipid and other materials to support pollen development. However, the molecular mechanism regulating the degeneration process is unknown. To gain insight into this molecular mechanism, we first determined that the most critical period for tapetal secretion to support pollen development is from the vacuolate microspore stage to the early binucleate pollen stage. We then analyzed the expression of enzymes responsible for lipid biosynthesis and degradation with available in-silico data. The genes for these enzymes that are expressed in the stamen but not in the concurrent uninucleate microspore and binucleate pollen are of particular interest, as they presumably hold the clues to unique molecular processes in the sporophytic tissues compared to the gametophytic tissue. No gene for lipid biosynthesis but a single gene encoding a patatin-like protein likely for lipid mobilization was identified based on the selection criterion. A search for genes co-expressed with this gene identified additional genes encoding typical signal transduction components such as a leucine-rich repeat receptor kinase, an extra-large G-protein, other protein kinases, and transcription factors. In addition, proteases, cell wall degradation enzymes, and other proteins were also identified. These proteins thus may be components of a signaling network leading to degradation of a broad range of cellular components. Since a broad range of degradation activities is expected to occur only in the tapetal degeneration process at this stage in the stamen, it is further hypothesized that the signaling network acts in the tapetal degeneration process.

  4. Optimization of a host diet for in vivo production of entomopathogenic nematodes

    USDA-ARS?s Scientific Manuscript database

    In previous studies, we developed an improved diet for Tenebrio molitor, a host that is used for in vivo nematode production, and we demonstrated that single insect diet components (e.g., lipids and proteins) can have a positive or negative impact on entomopathogenic nematode fitness and quality. I...

  5. Uncovering homo-and hetero-interactions on the cell membrane using single particle tracking approaches

    NASA Astrophysics Data System (ADS)

    Torreno-Pina, Juan A.; Manzo, Carlo; Garcia-Parajo, Maria F.

    2016-03-01

    The plasma membrane of eukaryotic cells is responsible for a myriad of functions that regulate cell physiology and plays a crucial role in a multitude of processes that include adhesion, migration, signaling recognition and cell-cell communication. This is accomplished by specific interactions between different membrane components such as lipids and proteins on the lipid bilayer but also through interactions with the underlying cortical actin cytoskeleton on the intracellular side and the glycocalyx matrix in close proximity to the extracellular side. Advanced biophysical techniques, including single particle tracking (SPT) have revealed that the lateral diffusion of molecular components on the plasma membrane represents a landmark manifestation of such interactions. Indeed, by studying changes in the diffusivity of individual membrane molecules, including sub-diffusion, confined diffusion and/or transient arrest of molecules in membrane compartments, it has been possible to gain insight on the nature of molecular interactions and to infer on its functional role for cell response. In this review, we will revise some exciting results where SPT has been crucial to reveal homo- and hetero-interactions on the cell membrane.

  6. Chemical imaging of molecular changes in a hydrated single cell by dynamic secondary ion mass spectrometry and super-resolution microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Xin; Szymanski, Craig; Wang, Zhaoying

    2016-01-01

    Chemical imaging of single cells is important in capturing biological dynamics. Single cell correlative imaging is realized between structured illumination microscopy (SIM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) using System for Analysis at the Liquid Vacuum Interface (SALVI), a multimodal microreactor. SIM characterized cells and guided subsequent ToF-SIMS analysis. Dynamic ToF-SIMS provided time- and space-resolved cell molecular mapping. Lipid fragments were identified in the hydrated cell membrane. Principal component analysis was used to elucidate chemical component differences among mouse lung cells that uptake zinc oxide nanoparticles. Our results provided submicron chemical spatial mapping for investigations of cell dynamics atmore » the molecular level.« less

  7. Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Composition Lipid Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Graham J.; Heberle, Frederick A.; Seinfeld, Jason S.

    In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interfacemore » bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ~38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.« less

  8. Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Composition Lipid Membranes

    DOE PAGES

    Taylor, Graham J.; Heberle, Frederick A.; Seinfeld, Jason S.; ...

    2017-08-15

    In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interfacemore » bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ~38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.« less

  9. Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns

    DOE PAGES

    Adams, Peter G.; Swingle, Kirstie L.; Paxton, Walter F.; ...

    2015-05-27

    Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when usedmore » in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.« less

  10. Human immunodeficiency virus type 1 RNA in breast-milk components.

    PubMed

    Hoffman, Irving F; Martinson, Francis E A; Stewart, Paul W; Chilongozi, David A; Leu, Szu-Yun; Kazembe, Peter N; Banda, Topia; Dzinyemba, Willard; Joshi, Priya; Cohen, Myron S; Fiscus, Susan A

    2003-10-15

    We conducted the present study to determine which of the 4 components of breast milk (whole milk, skim milk, lipid layer, and breast-milk cells) had the highest sensitivity and concentration of human immunodeficiency virus (HIV) type 1 RNA burden and to determine biological correlates to these factors. The probability of detection of HIV (sensitivity) and the concentration of HIV-1 RNA were both associated with the choice of milk component, CD4(+) cell count, concentration of blood serum HIV-1 RNA, and the presence of breast inflammation. Whole milk demonstrated higher sensitivity and mean concentration than any other single component. Sensitivity was enhanced by analyzing all 4 components of breast milk.

  11. Hyperspectral and differential CARS microscopy for quantitative chemical imaging in human adipocytes

    PubMed Central

    Di Napoli, Claudia; Pope, Iestyn; Masia, Francesco; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-01-01

    In this work, we demonstrate the applicability of coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy for quantitative chemical imaging of saturated and unsaturated lipids in human stem-cell derived adipocytes. We compare dual-frequency/differential CARS (D-CARS), which enables rapid imaging and simple data analysis, with broadband hyperspectral CARS microscopy analyzed using an unsupervised phase-retrieval and factorization method recently developed by us for quantitative chemical image analysis. Measurements were taken in the vibrational fingerprint region (1200–2000/cm) and in the CH stretch region (2600–3300/cm) using a home-built CARS set-up which enables hyperspectral imaging with 10/cm resolution via spectral focussing from a single broadband 5 fs Ti:Sa laser source. Through a ratiometric analysis, both D-CARS and phase-retrieved hyperspectral CARS determine the concentration of unsaturated lipids with comparable accuracy in the fingerprint region, while in the CH stretch region D-CARS provides only a qualitative contrast owing to its non-linear behavior. When analyzing hyperspectral CARS images using the blind factorization into susceptibilities and concentrations of chemical components recently demonstrated by us, we are able to determine vol:vol concentrations of different lipid components and spatially resolve inhomogeneities in lipid composition with superior accuracy compared to state-of-the art ratiometric methods. PMID:24877002

  12. In vivo lipid saturation study of C. elegans using quantitative broadband coherent anti-Stokes Raman imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Littleton, Bradley; Kavanagh, Thomas; Nie, Yu; Abbate, Vincenzo; Hylands, Peter; Sturzenbaum, Stephen; Richards, David

    2016-03-01

    In vivo lipid saturation maps of microscopic nematodes (Caenorhabditis elegans) have been produced using our novel Spectral Interferometric Polarisation Coherent anti-Stokes Raman Scattering (SIP-CARS) imaging technique. This technique employs simple passive polarisation optics and a balanced homodyne detection scheme to exploit symmetries in the CARS polarisation response resulting in the complete cancellation of the non-resonant background (NRB) and real component of the CARS signal (with no prior or post assumptions as regards to their form). The remaining imaginary component of the CARS response is linear with analyte concentration and directly relatable to the spontaneous Raman spectrum [1]. Furthermore, the resonant CARS signal is interferometrically amplified by the non-resonant response, a necessity for rapid imaging at biologically relevant powers [2]. This technique permits acquisition of a broad NRB-free spectrum, in excess of 1800cm-1, in a single exposure at each pixel. This allows simultaneous determination of lipid droplet saturation, from the fingerprint region, and lipid order, from the C-H stretch region from which maps can be readily constructed. Additionally exploiting the dispersive nature of our signal collection two-photon autofluorescence can be isolated and images subsequently produced. We have successfully applied this technique to identify differences in lipid saturation distributions in selective C. elegans mutants and demonstrated that the technique is sufficiently sensitive to detect the effects of lipid metabolism altering drugs on wild type C. elegans. [1] Littleton et al, Phys Rev Lett, 111, 103902 (2013) [2] Parekh et al, Biophys J, 99, 2695-2704 (2010)

  13. Reusable glucose sensing using carbon nanotube-based self-assembly

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Tamoghna; Samaddar, Sarbani; Dasgupta, Anjan Kr.

    2013-09-01

    Lipid functionalized single walled carbon nanotube-based self assembly forms a super-micellar structure. This assemblage has been exploited to trap glucose oxidase in a molecular cargo for glucose sensing. The advantage of such a molecular trap is that all components of this unique structure (both the trapping shell and the entrapped enzyme) are reusable and rechargeable. The unique feature of this sensing method lies in the solid state functionalization of single walled carbon nanotubes that facilitates liquid state immobilization of the enzyme. The method can be used for soft-immobilization (a new paradigm in enzyme immobilization) of enzymes with better thermostability that is imparted by the strong hydrophobic environment provided through encapsulation by the nanotubes.Lipid functionalized single walled carbon nanotube-based self assembly forms a super-micellar structure. This assemblage has been exploited to trap glucose oxidase in a molecular cargo for glucose sensing. The advantage of such a molecular trap is that all components of this unique structure (both the trapping shell and the entrapped enzyme) are reusable and rechargeable. The unique feature of this sensing method lies in the solid state functionalization of single walled carbon nanotubes that facilitates liquid state immobilization of the enzyme. The method can be used for soft-immobilization (a new paradigm in enzyme immobilization) of enzymes with better thermostability that is imparted by the strong hydrophobic environment provided through encapsulation by the nanotubes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02609d

  14. The lipid composition and its alteration during the growth stage in pathogenic fungus, epidermophyton floccosum

    NASA Technical Reports Server (NTRS)

    Yamada, T.; Watanabe, R.; Nozawa, Y.; Ito, Y.

    1984-01-01

    Qualitative and quantitative changes of lipid components during the growth stages were studied in E. floccosum. The acyl group components of total lipids of Trichophyton rubrum and Microsporum cookei were also examined. The lipids of E. floccosum amounted to approximately 4% of the dry cell weight. Neutral lipids mainly consisted of triglycerides and sterols, and major polar lipids were phosphatidylcholine, phosphatidylethanolamine, and an unknown lipid X. The fatty acids in tryglycerides and phospholipids were palmitic, palmitoleic, stearic, oleic, and linoleic acids. The unknown polar lipid X which appeared between phosphatidylethanolamine and cardiolipin on thin layer chromatography plates contained no phosphorus. There was no significant change in the fatty acid components of E. floccosum and T. rubrum during the cell growth, whereas profound changes occurred in M. cookei. The sterol components of E. floccosum showed striking changes depending on the growth stage.

  15. Evidence of Cholesterol Accumulated in High Curvature Regions: Implication ot the Curvature Elastic Energy for Lipid Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang,W.; Yang, L.; Huang, H.

    2007-01-01

    Recent experiments suggested that cholesterol and other lipid components of high negative spontaneous curvature facilitate membrane fusion. This is taken as evidence supporting the stalk-pore model of membrane fusion in which the lipid bilayers go through intermediate structures of high curvature. How do the high-curvature lipid components lower the free energy of the curved structure? Do the high-curvature lipid components modify the average spontaneous curvature of the relevant monolayer, thereby facilitate its bending, or do the lipid components redistribute in the curved structure so as to lower the free energy? This question is fundamental to the curvature elastic energy formore » lipid mixtures. Here we investigate the lipid distribution in a monolayer of a binary lipid mixture before and after bending, or more precisely in the lamellar, hexagonal, and distorted hexagonal phases. The lipid mixture is composed of 2:1 ratio of brominated di18:0PC and cholesterol. Using a newly developed procedure for the multiwavelength anomalous diffraction method, we are able to isolate the bromine distribution and reconstruct the electron density distribution of the lipid mixture in the three phases. We found that the lipid distribution is homogenous and uniform in the lamellar and hexagonal phases. But in the distorted hexagonal phase, the lipid monolayer has nonuniform curvature, and cholesterol almost entirely concentrates in the high curvature region. This finding demonstrates that the association energies between lipid molecules vary with the curvature of membrane. Thus, lipid components in a mixture may redistribute under conditions of nonuniform curvature, such as in the stalk structure. In such cases, the spontaneous curvature depends on the local lipid composition and the free energy minimum is determined by lipid distribution as well as curvature.« less

  16. A Label-Free Fluorescent Array Sensor Utilizing Liposome Encapsulating Calcein for Discriminating Target Proteins by Principal Component Analysis

    PubMed Central

    Imamura, Ryota; Murata, Naoki; Shimanouchi, Toshinori; Yamashita, Kaoru; Fukuzawa, Masayuki; Noda, Minoru

    2017-01-01

    A new fluorescent arrayed biosensor has been developed to discriminate species and concentrations of target proteins by using plural different phospholipid liposome species encapsulating fluorescent molecules, utilizing differences in permeation of the fluorescent molecules through the membrane to modulate liposome-target protein interactions. This approach proposes a basically new label-free fluorescent sensor, compared with the common technique of developed fluorescent array sensors with labeling. We have confirmed a high output intensity of fluorescence emission related to characteristics of the fluorescent molecules dependent on their concentrations when they leak from inside the liposomes through the perturbed lipid membrane. After taking an array image of the fluorescence emission from the sensor using a CMOS imager, the output intensities of the fluorescence were analyzed by a principal component analysis (PCA) statistical method. It is found from PCA plots that different protein species with several concentrations were successfully discriminated by using the different lipid membranes with high cumulative contribution ratio. We also confirmed that the accuracy of the discrimination by the array sensor with a single shot is higher than that of a single sensor with multiple shots. PMID:28714873

  17. A Label-Free Fluorescent Array Sensor Utilizing Liposome Encapsulating Calcein for Discriminating Target Proteins by Principal Component Analysis.

    PubMed

    Imamura, Ryota; Murata, Naoki; Shimanouchi, Toshinori; Yamashita, Kaoru; Fukuzawa, Masayuki; Noda, Minoru

    2017-07-15

    A new fluorescent arrayed biosensor has been developed to discriminate species and concentrations of target proteins by using plural different phospholipid liposome species encapsulating fluorescent molecules, utilizing differences in permeation of the fluorescent molecules through the membrane to modulate liposome-target protein interactions. This approach proposes a basically new label-free fluorescent sensor, compared with the common technique of developed fluorescent array sensors with labeling. We have confirmed a high output intensity of fluorescence emission related to characteristics of the fluorescent molecules dependent on their concentrations when they leak from inside the liposomes through the perturbed lipid membrane. After taking an array image of the fluorescence emission from the sensor using a CMOS imager, the output intensities of the fluorescence were analyzed by a principal component analysis (PCA) statistical method. It is found from PCA plots that different protein species with several concentrations were successfully discriminated by using the different lipid membranes with high cumulative contribution ratio. We also confirmed that the accuracy of the discrimination by the array sensor with a single shot is higher than that of a single sensor with multiple shots.

  18. Computing Curvature Sensitivity of Biomolecules in Membranes by Simulated Buckling.

    PubMed

    Elías-Wolff, Federico; Lindén, Martin; Lyubartsev, Alexander P; Brandt, Erik G

    2018-03-13

    Membrane curvature sensing, where the binding free energies of membrane-associated molecules depend on the local membrane curvature, is a key factor to modulate and maintain the shape and organization of cell membranes. However, the microscopic mechanisms are not well understood, partly due to absence of efficient simulation methods. Here, we describe a method to compute the curvature dependence of the binding free energy of a membrane-associated probe molecule that interacts with a buckled membrane, which has been created by lateral compression of a flat bilayer patch. This buckling approach samples a wide range of curvatures in a single simulation, and anisotropic effects can be extracted from the orientation statistics. We develop an efficient and robust algorithm to extract the motion of the probe along the buckled membrane surface, and evaluate its numerical properties by extensive sampling of three coarse-grained model systems: local lipid density in a curved environment for single-component bilayers, curvature preferences of individual lipids in two-component membranes, and curvature sensing by a homotrimeric transmembrane protein. The method can be used to complement experimental data from curvature partition assays and provides additional insight into mesoscopic theories and molecular mechanisms for curvature sensing.

  19. Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering

    DOE PAGES

    Kučerka, Norbert; Heberle, Frederick A.; Pan, Jianjun; ...

    2015-09-21

    In this paper, we review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach producesmore » robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition). Finally, from model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid’s different moieties (e.g., acyl chains, headgroups, backbones, etc.).« less

  20. Unique honey bee (Apis mellifera) hive component-based communities as detected by a hybrid of phospholipid fatty-acid and fatty-acid methyl ester analyses.

    PubMed

    Grubbs, Kirk J; Scott, Jarrod J; Budsberg, Kevin J; Read, Harry; Balser, Teri C; Currie, Cameron R

    2015-01-01

    Microbial communities (microbiomes) are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME) and phospholipid-derived fatty acid (PLFA) analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components.

  1. Unique Honey Bee (Apis mellifera) Hive Component-Based Communities as Detected by a Hybrid of Phospholipid Fatty-Acid and Fatty-Acid Methyl Ester Analyses

    PubMed Central

    2015-01-01

    Microbial communities (microbiomes) are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME) and phospholipid-derived fatty acid (PLFA) analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components. PMID:25849080

  2. Atomistic Monte Carlo Simulation of Lipid Membranes

    PubMed Central

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC) local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA) for the phospholipid dipalmitoylphosphatidylcholine (DPPC). We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol. PMID:24469314

  3. Analysis of population structures of the microalga Acutodesmus obliquus during lipid production using multi-dimensional single-cell analysis.

    PubMed

    Sandmann, Michael; Schafberg, Michaela; Lippold, Martin; Rohn, Sascha

    2018-04-19

    Microalgae bear a great potential to produce lipids for biodiesel, feed, or even food applications. To understand the still not well-known single-cell dynamics during lipid production in microalgae, a novel single-cell analytical technology was applied to study a well-established model experiment. Multidimensional single-cell dynamics were investigated with a non-supervised image analysis technique that utilizes data from epi-fluorescence microscopy. Reliability of this technique was successfully proven via reference analysis. The technique developed was used to determine cell size, chlorophyll amount, neutral lipid amount, and deriving properties on a single-cellular level in cultures of the biotechnologically promising alga Acutodesmus obliquus. The results illustrated a high correlation between cell size and chlorophyll amount, but a very low and dynamic correlation between cell size, lipid amount, and lipid density. During growth conditions under nitrogen starvation, cells with low chlorophyll content tend to start the lipid production first and the cell suspension differentiated in two subpopulations with significantly different lipid contents. Such quantitative characterization of single-cell dynamics of lipid synthesizing algae was done for the first time and the potential of such simple technology is highly relevant to other biotechnological applications and to deeper investigate the process of microalgal lipid accumulation.

  4. Choosing the right fluorophore for single-molecule fluorescence studies in a lipid environment.

    PubMed

    Zhang, Zhenfu; Yomo, Dan; Gradinaru, Claudiu

    2017-07-01

    Nonspecific interactions between lipids and fluorophores can alter the outcomes of single-molecule spectroscopy of membrane proteins in live cells, liposomes or lipid nanodiscs and of cytosolic proteins encapsulated in liposomes or tethered to supported lipid bilayers. To gain insight into these effects, we examined interactions between 9 dyes that are commonly used as labels for single-molecule fluorescence (SMF) and 6 standard lipids including cationic, zwitterionic and anionic types. The diffusion coefficients of dyes in the absence and presence of set amounts of lipid vesicles were measured by fluorescence correlation spectroscopy (FCS). The partition coefficients and the free energies of partitioning for different fluorophore-lipid pairs were obtained by global fitting of the titration FCS curves. Lipids with different charges, head groups and degrees of chain saturation were investigated, and interactions with dyes are discussed in terms of hydrophobic, electrostatic and steric contributions. Fluorescence imaging of individual fluorophores adsorbed on supported lipid bilayers provides visualization and additional quantification of the strength of dye-lipid interaction in the context of single-molecule measurements. By dissecting fluorophore-lipid interactions, our study provides new insights into setting up single-molecule fluorescence spectroscopy experiments with minimal interference from interactions between fluorescent labels and lipids in the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Irradiation-induced fusion between giant vesicles and photoresponsive large unilamellar vesicles containing malachite green derivative.

    PubMed

    Uda, Ryoko M; Yoshikawa, Yuki; Kitaba, Moe; Nishimoto, Noriko

    2018-07-01

    Light-initiated fusion between vesicles has attracted much attention in the research community. In particular, fusion between photoresponsive and non-photoresponsive vesicles has been of much interest in the development of systems for the delivery of therapeutic agents to cells. We have performed fusion between giant vesicles (GVs) and photoresponsive smaller vesicles containing malachite green (MG) derivative, which undergoes ionization to afford a positive charge on the molecule by irradiation. The fusion proceeds as the concentration of GV lipid increases toward equimolarity with the lipid of the smaller vesicle. It is also dependent on the molar percentage of photoionized MG in the lipid of the smaller vesicle. On the other hand, the fusion is hardly affected by the anionic component of the GV. The photoinduced fusion was characterized by two methods, involving the mixing of lipid membranes and of aqueous contents. Fluorescence microscopy revealed that irradiation triggered the fusion of a single GV with the smaller vesicles containing MG. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Optimization of a Host Diet for in vivo Production of Entomopathogenic Nematodes

    PubMed Central

    Shapiro-Ilan, David; Guadalupe Rojas, M.; Morales-Ramos, Juan A.; Louis Tedders, W.

    2012-01-01

    To facilitate improved in vivo culture of entomopathogenic nematodes, production of both insect hosts and nematodes should be optimized for maximum fitness, quality, and cost efficiency. In previous studies, we developed an improved diet for Tenebrio molitor, a host that is used for in vivo nematode production, and we demonstrated that single insect diet components (e.g., lipids and proteins) can have a positive or negative impact on entomopathogenic nematode fitness and quality. In this study, we tested components of our improved T. molitor diet (lipids, cholesterol, and a salt [MnSO4]) alone and in combination for effects on host susceptibility and reproductive capacity of Heterorhabditis indica and Steinernema carpocapsae. Our results indicated that moderate levels of lipids (10%) increased host susceptibility to S. carpocapsae but did not affect H. indica, whereas cholesterol and MnSO4 increased host susceptibility to H. indica but not S. carpocapsae. The combined T. molitor diet (improved for increased insect growth) increased host susceptibility to S. carpocapsae and had a neutral effect on H. indica; interactions among single diet ingredients were observed. No effects of insect host diet were detected on the reproductive capacity of either nematode species in T. molitor. Subsequently, progeny infective juveniles, derived from nematodes grown in T. molitor that were fed diets with varying nutritive components were tested for virulence to and reproduction capacity in the target pest Diaprepes abbreviatus. The progeny nematodes produced from differing T. molitor diet treatments did not differ in virulence except H. indica derived from a diet that lacked cholesterol or MnS04 (but contained lipids) did not cause significant D. abbreviatus suppression relative to the water control. We conclude that the improved insect host diet is compatible with production of H. indica and S. carpocapsae, and increases host susceptibility in S. carpocapsae. Furthermore, in a general sense, our results indicate host diets can be optimized for improved in vivo entomopathogenic nematode production efficiency. This is the first report of an insect diet that was optimized for both host and entomopathogenic nematode production. Additionally, our study indicates that host diet may impact broader aspects of entomopathogenic nematode ecology and pest control efficacy. PMID:23481558

  7. Revealing the Effects of Nanoscale Membrane Curvature on Lipid Mobility.

    PubMed

    Kabbani, Abir Maarouf; Woodward, Xinxin; Kelly, Christopher V

    2017-10-18

    Recent advances in nanoengineering and super-resolution microscopy have enabled new capabilities for creating and observing membrane curvature. However, the effects of curvature on single-lipid diffusion have yet to be revealed. The simulations presented here describe the capabilities of varying experimental methods for revealing the effects of nanoscale curvature on single-molecule mobility. Traditionally, lipid mobility is revealed through fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and single particle tracking (SPT). However, these techniques vary greatly in their ability to detect the effects of nanoscale curvature on lipid behavior. Traditionally, FRAP and FCS depend on diffraction-limited illumination and detection. A simulation of FRAP shows minimal effects on lipids diffusion due to a 50 nm radius membrane bud. Throughout the stages of the budding process, FRAP detected minimal changes in lipid recovery time due to the curvature versus flat membrane. Simulated FCS demonstrated small effects due to a 50 nm radius membrane bud that was more apparent with curvature-dependent lipid mobility changes. However, SPT achieves a sub-diffraction-limited resolution of membrane budding and lipid mobility through the identification of the single-lipid positions with ≤15 nm spatial and ≤20 ms temporal resolution. By mapping the single-lipid step lengths to locations on the membrane, the effects of membrane topography and curvature could be correlated to the effective membrane viscosity. Single-fluorophore localization techniques, such SPT, can detect membrane curvature and its effects on lipid behavior. These simulations and discussion provide a guideline for optimizing the experimental procedures in revealing the effects of curvature on lipid mobility and effective local membrane viscosity.

  8. Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform.

    PubMed

    Zhang, Liangfang; Chan, Juliana M; Gu, Frank X; Rhee, June-Wha; Wang, Andrew Z; Radovic-Moreno, Aleksandar F; Alexis, Frank; Langer, Robert; Farokhzad, Omid C

    2008-08-01

    We report the engineering of a novel lipid-polymer hybrid nanoparticle (NP) as a robust drug delivery platform, with high drug encapsulation yield, tunable and sustained drug release profile, excellent serum stability, and potential for differential targeting of cells or tissues. The NP comprises three distinct functional components: (i) a hydrophobic polymeric core where poorly water-soluble drugs can be encapsulated; (ii) a hydrophilic polymeric shell with antibiofouling properties to enhance NP stability and systemic circulation half-life; and (iii) a lipid monolayer at the interface of the core and the shell that acts as a molecular fence to promote drug retention inside the polymeric core, thereby enhancing drug encapsulation efficiency, increasing drug loading yield, and controlling drug release. The NP is prepared by self-assembly through a single-step nanoprecipitation method in a reproducible and predictable manner, making it potentially suitable for scale-up.

  9. Self-Assembled Lipid-Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform

    PubMed Central

    Zhang, Liangfang; Chan, Juliana M; Gu, Frank X; Rhee, June-Wha; Wang, Andrew Z; Radovic-Moreno, Aleksandar F; Alexis, Frank; Langer, Robert; Farokhzad, Omid C

    2014-01-01

    We report the engineering of a novel lipid-polymer hybrid nanoparticle (NP) as a robust drug delivery platform, with high drug encapsulation yield, tunable and sustained drug release profile, excellent serum stability, and potential for differential targeting of cells or tissues. The NP is comprised of three distinct functional components: i) a hydrophobic polymeric core where poorly water-soluble drugs can be encapsulated; ii) a hydrophilic polymeric shell with anti-biofouling properties to enhance NP stability and systemic circulation half-life; and iii) a lipid monolayer at the interface of the core and the shell that acts as a molecular fence to promote drug retention inside the polymeric core, thereby enhancing drug encapsulation efficiency, increasing drug loading yield, and controlling drug release. The NP is prepared by self-assembly through a single-step nanoprecipitation method in a reproducible and predictable manner, making it potentially suitable for scale-up PMID:19206374

  10. Hyperspectral vibrational photoacoustic imaging of lipids and collagen

    NASA Astrophysics Data System (ADS)

    Wang, Pu; Wang, Ping; Wang, Han-Wei; Cheng, Ji-Xin

    2012-02-01

    The recently developed vibrational photoacoustic (VPA) microscopy allows bond-selective imaging of deep tissues by taking advantage of intrinsic contrast from harmonic vibration of C-H bonds. Due to the spectral similarity of molecules in the overtone vibration region, the compositional information is not available from VPA images acquired by single wavelength excitation. Here we demonstrate that lipids and collagen, two critical markers in many kinds of diseases, can be distinguished by hyperspectral VPA imaging. A phantom consisted of rat tail tendon (collagen) and fat tissue (lipids) was constructed. Wavelengths between 1650 and 1850 nm were scanned to excite the first overtone/combination vibration of C-H bond. B-scan hyperspectral VPA images, in which each pixel contains a spectrum, was analyzed by a Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS) algorism to recover the spatial distribution of two chemical components in the phantom.

  11. Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration

    NASA Astrophysics Data System (ADS)

    Wang, Pu; Wang, Ping; Wang, Han-Wei; Cheng, Ji-Xin

    2012-09-01

    Photoacoustic microscopy using vibrational overtone absorption as a contrast mechanism allows bond-selective imaging of deep tissues. Due to the spectral similarity of molecules in the region of overtone vibration, it is difficult to interrogate chemical components using photoacoustic signal at single excitation wavelength. Here we demonstrate that lipids and collagen, two critical markers for many kinds of diseases, can be distinguished by multispectral photoacoustic imaging of the first overtone of C-H bond. A phantom consisting of rat-tail tendon and fat was constructed to demonstrate this technique. Wavelengths between 1650 and 1850 nm were scanned to excite both the first overtone and combination bands of C-H bonds. B-scan multispectral photoacoustic images, in which each pixel contains a spectrum, were analyzed by a multivariate curve resolution-alternating least squares algorithm to recover the spatial distribution of collagen and lipids in the phantom.

  12. Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration.

    PubMed

    Wang, Pu; Wang, Ping; Wang, Han-Wei; Cheng, Ji-Xin

    2012-09-01

    Photoacoustic microscopy using vibrational overtone absorption as a contrast mechanism allows bond-selective imaging of deep tissues. Due to the spectral similarity of molecules in the region of overtone vibration, it is difficult to interrogate chemical components using photoacoustic signal at single excitation wavelength. Here we demonstrate that lipids and collagen, two critical markers for many kinds of diseases, can be distinguished by multispectral photoacoustic imaging of the first overtone of C-H bond. A phantom consisting of rat-tail tendon and fat was constructed to demonstrate this technique. Wavelengths between 1650 and 1850 nm were scanned to excite both the first overtone and combination bands of C-H bonds. B-scan multispectral photoacoustic images, in which each pixel contains a spectrum, were analyzed by a multivariate curve resolution-alternating least squares algorithm to recover the spatial distribution of collagen and lipids in the phantom.

  13. Water and lipid diffusion MRI using chemical shift displacement-based separation of lipid tissue (SPLIT).

    PubMed

    Ohno, Naoki; Kan, Hirohito; Miyati, Tosiaki; Aoki, Toshitaka; Ishida, Shota; Gabata, Toshifumi

    2017-06-01

    To obtain water and lipid diffusion-weighted images (DWIs) simultaneously, we devised a novel method utilizing chemical shift displacement-based separation of lipid tissue (SPLIT) imaging. Single-shot diffusion echo-planar imaging without fat suppression was used and the imaging parameters were optimized to separate water and lipid DWIs by chemical shift displacement of the lipid signals along the phase-encoding direction. Using the optimized conditions, transverse DWIs at the maximum diameter of the right calf were scanned with multiple b-values in five healthy subjects. Then, apparent diffusion coefficients (ADCs) were calculated in the tibialis anterior muscle (TA), tibialis bone marrow (TB), and subcutaneous fat (SF), as well as restricted and perfusion-related diffusion coefficients (D and D*, respectively) and the fraction of the perfusion-related diffusion component (F) for TA. Water and lipid DWIs were separated adequately. The mean ADCs of the TA, TB, and SF were 1.56±0.03mm 2 /s, 0.01±0.01mm 2 /s, and 0.06±0.02mm 2 /s, respectively. The mean D*, D, and F of the TA were 13.7±4.3mm 2 /s, 1.48±0.05mm 2 /s, and 4.3±1.6%, respectively. SPLIT imaging makes it possible to simply and simultaneously obtain water and lipid DWIs without special pulse sequence and increases the amount of diffusion information of water and lipid tissue. Copyright © 2017. Published by Elsevier Inc.

  14. Revealing the Effects of Nanoscale Membrane Curvature on Lipid Mobility

    PubMed Central

    Kabbani, Abir Maarouf; Woodward, Xinxin

    2017-01-01

    Recent advances in nanoengineering and super-resolution microscopy have enabled new capabilities for creating and observing membrane curvature. However, the effects of curvature on single-lipid diffusion have yet to be revealed. The simulations presented here describe the capabilities of varying experimental methods for revealing the effects of nanoscale curvature on single-molecule mobility. Traditionally, lipid mobility is revealed through fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and single particle tracking (SPT). However, these techniques vary greatly in their ability to detect the effects of nanoscale curvature on lipid behavior. Traditionally, FRAP and FCS depend on diffraction-limited illumination and detection. A simulation of FRAP shows minimal effects on lipids diffusion due to a 50 nm radius membrane bud. Throughout the stages of the budding process, FRAP detected minimal changes in lipid recovery time due to the curvature versus flat membrane. Simulated FCS demonstrated small effects due to a 50 nm radius membrane bud that was more apparent with curvature-dependent lipid mobility changes. However, SPT achieves a sub-diffraction-limited resolution of membrane budding and lipid mobility through the identification of the single-lipid positions with ≤15 nm spatial and ≤20 ms temporal resolution. By mapping the single-lipid step lengths to locations on the membrane, the effects of membrane topography and curvature could be correlated to the effective membrane viscosity. Single-fluorophore localization techniques, such SPT, can detect membrane curvature and its effects on lipid behavior. These simulations and discussion provide a guideline for optimizing the experimental procedures in revealing the effects of curvature on lipid mobility and effective local membrane viscosity. PMID:29057801

  15. Interaction between phloretin and the red blood cell membrane

    PubMed Central

    1976-01-01

    Phloretin binding to red blood cell components has been characterized at pH6, where binding and inhibitory potency are maximal. Binding to intact red cells and to purified hemoglobin are nonsaturated processes approximately equal in magnitude, which strongly suggests that most of the red cell binding may be ascribed to hemoglobin. This conclusion is supported by the fact that homoglobin-free red cell ghosts can bind only 10% as much phloretin as an equivalent number of red cells. The permeability of the red cell membrane to phloretin has been determined by a direct measurement at the time-course of the phloretin uptake. At a 2% hematocrit, the half time for phloretin uptake is 8.7s, corresponding to a permeability coefficient of 2 x 10(-4) cm/s. The concentration dependence of the binding to ghosts reveals two saturable components. Phloretin binds with high affinity (K diss = 1.5 muM) to about 2.5 x 10(6) sites per cell; it also binds with lower affinity (Kdiss = 54 muM) to a second (5.5 x 10(7) per cell) set of sites. In sonicated total lipid extracts of red cell ghosts, phloretin binding consists of a single, saturable component. Its affinity and total number of sites are not significantly different from those of the low affinity binding process in ghosts. No high affinity binding of phloretin is exhibited by the red cell lipid extracts. Therefore, the high affinity phloretin binding sites are related to membrane proteins, and the low affinity sites result from phloretin binding to lipid. The identification of these two types of binding sites allows phloretin effects on protein-mediated transport processes to be distinguished from effects on the lipid region of the membrane. PMID:5575

  16. Watching individual molecules flex within lipid membranes using SERS

    NASA Astrophysics Data System (ADS)

    Taylor, Richard W.; Benz, Felix; Sigle, Daniel O.; Bowman, Richard W.; Bao, Peng; Roth, Johannes S.; Heath, George R.; Evans, Stephen D.; Baumberg, Jeremy J.

    2014-08-01

    Interrogating individual molecules within bio-membranes is key to deepening our understanding of biological processes essential for life. Using Raman spectroscopy to map molecular vibrations is ideal to non-destructively `fingerprint' biomolecules for dynamic information on their molecular structure, composition and conformation. Such tag-free tracking of molecules within lipid bio-membranes can directly connect structure and function. In this paper, stable co-assembly with gold nano-components in a `nanoparticle-on-mirror' geometry strongly enhances the local optical field and reduces the volume probed to a few nm3, enabling repeated measurements for many tens of minutes on the same molecules. The intense gap plasmons are assembled around model bio-membranes providing molecular identification of the diffusing lipids. Our experiments clearly evidence measurement of individual lipids flexing through telltale rapid correlated vibrational shifts and intensity fluctuations in the Raman spectrum. These track molecules that undergo bending and conformational changes within the probe volume, through their interactions with the environment. This technique allows for in situ high-speed single-molecule investigations of the molecules embedded within lipid bio-membranes. It thus offers a new way to investigate the hidden dynamics of cell membranes important to a myriad of life processes.

  17. Single-lipid tracking on nanoscale membrane buds: The effects of curvature on lipid diffusion and sorting.

    PubMed

    Woodward, Xinxin; Stimpson, Eric E; Kelly, Christopher V

    2018-05-29

    Nanoscale membrane curvature in cells is critical for endocytosis/exocytosis and membrane trafficking. However, the biophysical ramifications of nanoscale membrane curvature on the behavior of lipids remain poorly understood. Here, we created an experimental model system of membrane curvature at a physiologically-relevant scale and obtained nanoscopic information on single-lipid distributions and dynamics. Supported lipid bilayers were created over 50 and 70 nm radius nanoparticles to create membrane buds. Single-molecule localization microscopy was performed with diverse mixtures of fluorescent and non-fluorescent lipids. Variations in lipid acyl tales length, saturation, head-group, and fluorescent labeling strategy were tested while maintaining a single fluid lipid phase throughout the membrane. Monte Carlo simulations were used to fit our experimental results and quantify the effects of curvature on the lipid diffusion and sorting. Whereas varying the composition of the non-fluorescent lipids yielded minimal changes to the curvature effects, the labeling strategy of the fluorescent lipids yielded highly varying effects of curvature. Most conditions yield single-population Brownian diffusion throughout the membrane; however, curvature-induced lipid sorting, slowing, and aggregation were observed in some conditions. Head-group labeled lipids such as DPPE-Texas Red and POPE-Rhodamine diffused >2.4× slower on the curved vs. the planar membranes; tail-labeled lipids such as NBD-PPC, TopFluor-PPC, TopFluor-PIP2, DiIC 12 , and DiIC 18 displayed no significant changes in diffusion due to the membrane curvature. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. Copyright © 2018. Published by Elsevier B.V.

  18. An editor for pathway drawing and data visualization in the Biopathways Workbench.

    PubMed

    Byrnes, Robert W; Cotter, Dawn; Maer, Andreia; Li, Joshua; Nadeau, David; Subramaniam, Shankar

    2009-10-02

    Pathway models serve as the basis for much of systems biology. They are often built using programs designed for the purpose. Constructing new models generally requires simultaneous access to experimental data of diverse types, to databases of well-characterized biological compounds and molecular intermediates, and to reference model pathways. However, few if any software applications provide all such capabilities within a single user interface. The Pathway Editor is a program written in the Java programming language that allows de-novo pathway creation and downloading of LIPID MAPS (Lipid Metabolites and Pathways Strategy) and KEGG lipid metabolic pathways, and of measured time-dependent changes to lipid components of metabolism. Accessed through Java Web Start, the program downloads pathways from the LIPID MAPS Pathway database (Pathway) as well as from the LIPID MAPS web server http://www.lipidmaps.org. Data arises from metabolomic (lipidomic), microarray, and protein array experiments performed by the LIPID MAPS consortium of laboratories and is arranged by experiment. Facility is provided to create, connect, and annotate nodes and processes on a drawing panel with reference to database objects and time course data. Node and interaction layout as well as data display may be configured in pathway diagrams as desired. Users may extend diagrams, and may also read and write data and non-lipidomic KEGG pathways to and from files. Pathway diagrams in XML format, containing database identifiers referencing specific compounds and experiments, can be saved to a local file for subsequent use. The program is built upon a library of classes, referred to as the Biopathways Workbench, that convert between different file formats and database objects. An example of this feature is provided in the form of read/construct/write access to models in SBML (Systems Biology Markup Language) contained in the local file system. Inclusion of access to multiple experimental data types and of pathway diagrams within a single interface, automatic updating through connectivity to an online database, and a focus on annotation, including reference to standardized lipid nomenclature as well as common lipid names, supports the view that the Pathway Editor represents a significant, practicable contribution to current pathway modeling tools.

  19. Non-Brownian diffusion in lipid membranes: Experiments and simulations.

    PubMed

    Metzler, R; Jeon, J-H; Cherstvy, A G

    2016-10-01

    The dynamics of constituents and the surface response of cellular membranes-also in connection to the binding of various particles and macromolecules to the membrane-are still a matter of controversy in the membrane biophysics community, particularly with respect to crowded membranes of living biological cells. We here put into perspective recent single particle tracking experiments in the plasma membranes of living cells and supercomputing studies of lipid bilayer model membranes with and without protein crowding. Special emphasis is put on the observation of anomalous, non-Brownian diffusion of both lipid molecules and proteins embedded in the lipid bilayer. While single component, pure lipid bilayers in simulations exhibit only transient anomalous diffusion of lipid molecules on nanosecond time scales, the persistence of anomalous diffusion becomes significantly longer ranged on the addition of disorder-through the addition of cholesterol or proteins-and on passing of the membrane lipids to the gel phase. Concurrently, experiments demonstrate the anomalous diffusion of membrane embedded proteins up to macroscopic time scales in the minute time range. Particular emphasis will be put on the physical character of the anomalous diffusion, in particular, the occurrence of ageing observed in the experiments-the effective diffusivity of the measured particles is a decreasing function of time. Moreover, we present results for the time dependent local scaling exponent of the mean squared displacement of the monitored particles. Recent results finding deviations from the commonly assumed Gaussian diffusion patterns in protein crowded membranes are reported. The properties of the displacement autocorrelation function of the lipid molecules are discussed in the light of their appropriate physical anomalous diffusion models, both for non-crowded and crowded membranes. In the last part of this review we address the upcoming field of membrane distortion by elongated membrane-binding particles. We discuss how membrane compartmentalisation and the particle-membrane binding energy may impact the dynamics and response of lipid membranes. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Cross-sectional study on the relationship between the Mediterranean Diet Score and blood lipids.

    PubMed

    Mertens, Evelien; Mullie, Patrick; Deforche, Benedicte; Lefevre, Johan; Charlier, Ruben; Huybrechts, Inge; Clarys, Peter

    2014-09-04

    Blood lipids are cardiovascular health indicators. High LDL cholesterol values and/or high total cholesterol (TC)/HDL cholesterol ratios are positively related with cardiovascular mortality. Evidence suggests that a Mediterranean diet can reduce the incidence of cardiovascular diseases. Adherence to the Mediterranean diet is often measured by the Mediterranean Diet Score (MDS). However, the association between the Mediterranean diet and blood lipid profiles seems still inconclusive. The aim of this study was to investigate the relationship between the MDS, its different components and blood lipid profiles. A sample of 506 women and 707 men (aged 18-75 years) was recruited. Three-day diet records were used to calculate the MDS. Blood samples were analyzed for serum TC, LDL and HDL cholesterol. ANOVA was used to analyze blood lipids across the MDS tertiles. A multivariate linear regression analysis was performed to investigate the associations between the MDS, its components and blood lipids, adjusted for several confounders. All analyses were stratified by gender. Few gender-specific associations were found between the MDS, its components and blood lipids. Only in men, the total MDS was negatively related with LDL cholesterol and the ratio TC/HDL cholesterol while positively with HDL cholesterol. In women, respectively two (MUFA/SFA and cereals) and in men three (fruits & nuts, meat and alcohol) of the nine MDS components were related with blood lipids. Analyses investigating the relationship between the MDS, its components and blood lipid profiles indicate only limited influence of the Mediterranean diet on blood lipids. More associations were detected in men compared to women.

  1. Polygenic influences on dyslipidemias.

    PubMed

    Dron, Jacqueline S; Hegele, Robert A

    2018-04-01

    Rare large-effect genetic variants underlie monogenic dyslipidemias, whereas common small-effect genetic variants - single nucleotide polymorphisms (SNPs) - have modest influences on lipid traits. Over the past decade, these small-effect SNPs have been shown to cumulatively exert consistent effects on lipid phenotypes under a polygenic framework, which is the focus of this review. Several groups have reported polygenic risk scores assembled from lipid-associated SNPs, and have applied them to their respective phenotypes. For lipid traits in the normal population distribution, polygenic effects quantified by a score that integrates several common polymorphisms account for about 20-30% of genetic variation. Among individuals at the extremes of the distribution, that is, those with clinical dyslipidemia, the polygenic component includes both rare variants with large effects and common polymorphisms: depending on the trait, 20-50% of susceptibility can be accounted for by this assortment of genetic variants. Accounting for polygenic effects increases the numbers of dyslipidemic individuals who can be explained genetically, but a substantial proportion of susceptibility remains unexplained. Whether documenting the polygenic basis of dyslipidemia will affect outcomes in clinical trials or prospective observational studies remains to be determined.

  2. The influence of phase transitions in phosphatidylethanolamine models on the activity of violaxanthin de-epoxidase.

    PubMed

    Vieler, Astrid; Scheidt, Holger A; Schmidt, Peter; Montag, Cindy; Nowoisky, Janine F; Lohr, Martin; Wilhelm, Christian; Huster, Daniel; Goss, Reimund

    2008-04-01

    In the present study, the influence of the phospholipid phase state on the activity of the xanthophyll cycle enzyme violaxanthin de-epoxidase (VDE) was analyzed using different phosphatidylethanolamine species as model lipids. By using (31)P NMR spectroscopy, differential scanning calorimetry and temperature dependent enzyme assays, VDE activity could directly be related to the lipid structures the protein is associated with. Our results show that the gel (L beta) to liquid-crystalline (L alpha) phase transition in these single lipid component systems strongly enhances both the solubilization of the xanthophyll cycle pigment violaxanthin in the membrane and the activity of the VDE. This phase transition has a significantly stronger impact on VDE activity than the transition from the L alpha to the inverted hexagonal (HII) phase. Especially at higher temperatures we found increased VDE reaction rates in the presence of the L alpha phase compared to those in the presence of HII phase forming lipids. Our data furthermore imply that the HII phase is better suited to maintain high VDE activities at lower temperatures.

  3. A single factor underlies the metabolic syndrome: a confirmatory factor analysis.

    PubMed

    Pladevall, Manel; Singal, Bonita; Williams, L Keoki; Brotons, Carlos; Guyer, Heidi; Sadurni, Josep; Falces, Carles; Serrano-Rios, Manuel; Gabriel, Rafael; Shaw, Jonathan E; Zimmet, Paul Z; Haffner, Steven

    2006-01-01

    Confirmatory factor analysis (CFA) was used to test the hypothesis that the components of the metabolic syndrome are manifestations of a single common factor. Three different datasets were used to test and validate the model. The Spanish and Mauritian studies included 207 men and 203 women and 1,411 men and 1,650 women, respectively. A third analytical dataset including 847 men was obtained from a previously published CFA of a U.S. population. The one-factor model included the metabolic syndrome core components (central obesity, insulin resistance, blood pressure, and lipid measurements). We also tested an expanded one-factor model that included uric acid and leptin levels. Finally, we used CFA to compare the goodness of fit of one-factor models with the fit of two previously published four-factor models. The simplest one-factor model showed the best goodness-of-fit indexes (comparative fit index 1, root mean-square error of approximation 0.00). Comparisons of one-factor with four-factor models in the three datasets favored the one-factor model structure. The selection of variables to represent the different metabolic syndrome components and model specification explained why previous exploratory and confirmatory factor analysis, respectively, failed to identify a single factor for the metabolic syndrome. These analyses support the current clinical definition of the metabolic syndrome, as well as the existence of a single factor that links all of the core components.

  4. Loss of ERLIN2 function leads to juvenile primary lateral sclerosis.

    PubMed

    Al-Saif, Amr; Bohlega, Saeed; Al-Mohanna, Futwan

    2012-10-01

    Primary lateral sclerosis (PLS) is a motor neuron disorder that exclusively affects upper motor neurons leading to their degeneration. Mutations in the ALS2 gene encoding the protein Alsin have been described previously in the juvenile form of the disease. In this study, we identify mutation of the ERLIN2 gene in juvenile PLS patients and describe an in vitro model for loss of ERLIN2 function. Single nucleotide polymorphism arrays were used for homozygosity mapping. DNA sequencing of candidate genes was used to detect the underlying mutation. Level of ERLIN2 mRNA was measured by quantitative real time polymerase chain reaction. Knocking down ERLIN2 in NSC34 cells was accomplished by short-hairpin RNA interference. We identified a splice junction mutation in the ERLIN2 gene-a component of the endoplasmic reticulum (ER) lipid rafts-that resulted in abnormal splicing of ERLIN2 transcript and nonsense-mediated decay of ERLIN2 mRNA. Knocking down ERLIN2 in NSC34 cells suppressed their growth in culture. Recently, we found that mutation of SIGMAR1, a component of ER lipid rafts, leads to juvenile amyotrophic lateral sclerosis. The identification of mutation in another component of the ER lipid rafts in juvenile PLS patients emphasizes their role in motor neuron function. Furthermore, the discovered effect of ERLIN2 loss on cell growth may advance understanding of the mechanism behind motor neuron degeneration in PLS. Copyright © 2012 American Neurological Association.

  5. A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux

    PubMed Central

    2017-01-01

    Lipid accumulation within the lumen of endolysosomal vesicles is observed in various pathologies including atherosclerosis, liver disease, neurological disorders, lysosomal storage disorders, and cancer. Current methods cannot measure lipid flux specifically within the lysosomal lumen of live cells. We developed an optical reporter, composed of a photoluminescent carbon nanotube of a single chirality, that responds to lipid accumulation via modulation of the nanotube’s optical band gap. The engineered nanomaterial, composed of short, single-stranded DNA and a single nanotube chirality, localizes exclusively to the lumen of endolysosomal organelles without adversely affecting cell viability or proliferation or organelle morphology, integrity, or function. The emission wavelength of the reporter can be spatially resolved from within the endolysosomal lumen to generate quantitative maps of lipid content in live cells. Endolysosomal lipid accumulation in cell lines, an example of drug-induced phospholipidosis, was observed for multiple drugs in macrophages, and measurements of patient-derived Niemann–Pick type C fibroblasts identified lipid accumulation and phenotypic reversal of this lysosomal storage disease. Single-cell measurements using the reporter discerned subcellular differences in equilibrium lipid content, illuminating significant intracellular heterogeneity among endolysosomal organelles of differentiating bone-marrow-derived monocytes. Single-cell kinetics of lipoprotein-derived cholesterol accumulation within macrophages revealed rates that differed among cells by an order of magnitude. This carbon nanotube optical reporter of endolysosomal lipid content in live cells confers additional capabilities for drug development processes and the investigation of lipid-linked diseases. PMID:28898055

  6. Formation of supported lipid bilayers containing phase-segregated domains and their interaction with gold nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melby, Eric S.; Mensch, Arielle C.; Lohse, Samuel E.

    2016-01-01

    The cell membrane represents an important biological interface that nanoparticles may encounter after being released into the environment. Interaction of nanoparticles with cellular membranes may alter membrane structure and function, lead to their uptake into cells, and elicit adverse biological responses. Supported lipid bilayers have proven to be valuable ex vivo models for biological membranes, allowing investigation of their mechanisms of interaction with nanoparticles with a degree of control impossible in living cells. To date, the majority of research on nanoparticle interaction with supported lipid bilayers has employed membranes composed of single or binary mixtures of phospholipids. Cellular membranes containmore » a wide variety of lipids and exhibit lateral organization. Ordered membrane domains enriched in specific membrane components are referred to as lipid rafts and have not been explored with respect to their interaction with nanoparticles. Here we develop model lipid raft-containing membranes amenable to investigation by a variety of surface-sensitive analytical techniques and demonstrate that lipid rafts influence the extent of nanoparticle attachment to model membranes. We determined conditions that allow reliable formation of bilayers containing rafts enriched in sphingomyelin and cholesterol and confirmed their morphology by structured illumination and atomic force microscopies. We demonstrate that lipid rafts increase attachment of cationic gold nanoparticles to model membranes under near physiological ionic strength conditions (0.1 M NaCl) at pH 7.4. We anticipate that these results will serve as the foundation for and motivate further study of nanoparticle interaction with compositionally varied lipid rafts.« less

  7. Minimal-length Synthetic shRNAs Formulated with Lipid Nanoparticles are Potent Inhibitors of Hepatitis C Virus IRES-linked Gene Expression in Mice

    PubMed Central

    Dallas, Anne; Ilves, Heini; Shorenstein, Joshua; Judge, Adam; Spitler, Ryan; Contag, Christopher; Wong, Suet Ping; Harbottle, Richard P; MacLachlan, Ian; Johnston, Brian H

    2013-01-01

    We previously identified short synthetic shRNAs (sshRNAs) that target a conserved hepatitis C virus (HCV) sequence within the internal ribosome entry site (IRES) of HCV and potently inhibit HCV IRES-linked gene expression. To assess in vivo liver delivery and activity, the HCV-directed sshRNA SG220 was formulated into lipid nanoparticles (LNP) and injected i.v. into mice whose livers supported stable HCV IRES-luciferase expression from a liver-specific promoter. After a single injection, RNase protection assays for the sshRNA and 3H labeling of a lipid component of the nanoparticles showed efficient liver uptake of both components and long-lasting survival of a significant fraction of the sshRNA in the liver. In vivo imaging showed a dose-dependent inhibition of luciferase expression (>90% 1 day after injection of 2.5 mg/kg sshRNA) with t1/2 for recovery of about 3 weeks. These results demonstrate the ability of moderate levels of i.v.-injected, LNP-formulated sshRNAs to be taken up by liver hepatocytes at a level sufficient to substantially suppress gene expression. Suppression is rapid and durable, suggesting that sshRNAs may have promise as therapeutic agents for liver indications. PMID:24045712

  8. Effect of dipolar moments in domain sizes of lipid bilayers and monolayers

    NASA Astrophysics Data System (ADS)

    Travesset, A.

    2006-08-01

    Lipid domains are found in systems such as multicomponent bilayer membranes and single component monolayers at the air-water interface. It was shown by Keller et al. [J. Phys. Chem. 91, 6417 (1987)] that in monolayers, the size of the domains results from balancing the line tension, which favors the formation of a large single circular domain, against the electrostatic cost of assembling the dipolar moments of the lipids. In this paper, we present an exact analytical expression for the electric potential, ion distribution, and electrostatic free energy for different problems consisting of three different slabs with different dielectric constants and Debye lengths, with a circular homogeneous dipolar density in the middle slab. From these solutions, we extend the calculation of domain sizes for monolayers to include the effects of finite ionic strength, dielectric discontinuities (or image charges), and the polarizability of the dipoles and further generalize the calculations to account for domains in lipid bilayers. In monolayers, the size of the domains is dependent on the different dielectric constants but independent of ionic strength. In asymmetric bilayers, where the inner and outer leaflets have different dipolar densities, domains show a strong size dependence with ionic strength, with molecular-sized domains that grow to macroscopic phase separation with increasing ionic strength. We discuss the implications of the results for experiments and briefly consider their relation to other two dimensional systems such as Wigner crystals or heteroepitaxial growth.

  9. Visible micro-Raman spectroscopy of single human mammary epithelial cells exposed to x-ray radiation.

    PubMed

    Delfino, Ines; Perna, Giuseppe; Lasalvia, Maria; Capozzi, Vito; Manti, Lorenzo; Camerlingo, Carlo; Lepore, Maria

    2015-03-01

    A micro-Raman spectroscopy investigation has been performed in vitro on single human mammary epithelial cells after irradiation by graded x-ray doses. The analysis by principal component analysis (PCA) and interval-PCA (i-PCA) methods has allowed us to point out the small differences in the Raman spectra induced by irradiation. This experimental approach has enabled us to delineate radiation-induced changes in protein, nucleic acid, lipid, and carbohydrate content. In particular, the dose dependence of PCA and i-PCA components has been analyzed. Our results have confirmed that micro-Raman spectroscopy coupled to properly chosen data analysis methods is a very sensitive technique to detect early molecular changes at the single-cell level following exposure to ionizing radiation. This would help in developing innovative approaches to monitor radiation cancer radiotherapy outcome so as to reduce the overall radiation dose and minimize damage to the surrounding healthy cells, both aspects being of great importance in the field of radiation therapy.

  10. Menthol-induced action potentials in Conocephalum conicum as a result of unspecific interactions between menthol and the lipid phase of the plasma membrane.

    PubMed

    Kupisz, Kamila; Trebacz, Kazimierz; Gruszecki, Wiesław I

    2015-07-01

    Our previous study has shown that the liverwort Conocephalum conicum generates action potentials (APs) in response to both temperature drop and menthol, which are also activators of the TRPM8 (transient receptor potential melastatin 8) receptor in animals. Not only similarities but also differences between electrical reactions to menthol and cooling observed in the liverwort aroused our interest in the action of menthol at the molecular level. Patch-clamp investigations have shown that menthol causes a reduction of current flowing through slow vacuolar (SV) channels to 29 ± 10% of the initial value (n = 9); simultaneously, it does not influence magnitudes of currents passing through a single SV channel. This may point to an unspecific interaction between menthol and the lipid phase of the membrane. An influence of menthol on lipid organization in membranes was investigated in two-component monomolecular layers formed with menthol and dipalmitoylphosphatidylcholine (DPPC) at the argon-water interface. Analyses of the mean molecular area parameters vs the molar fraction of the menthol component have shown over-additivity (approximately 20 Å(2) ) in the region of high molar fractions of menthol. Infrared absorption spectroscopy studies have shown that menthol, most probably, induces breaking of a hydrogen bond network formed by ester carbonyl groups and water bridges in the lipid membrane and binds to the polar head group region of DPPC. We conclude that the disruption in the lipid phase of the membrane influences ion channels and/or pumps and subsequently causes generation of APs in excitable plants such as C. conicum. © 2014 Scandinavian Plant Physiology Society.

  11. Early Stages of Oxidative Stress-Induced Membrane Permeabilization: A Neutron Reflectometry Study

    PubMed Central

    Smith, Hillary L.; Howland, Michael C.; Szmodis, Alan W.; Li, Qijuan; Daemen, Luke L.; Parikh, Atul N.; Majewski, Jaroslaw

    2009-01-01

    Neutron reflectometry was used to probe in situ the structure of supported lipid bilayers at the solid–liquid interface during the early stages of UV-induced oxidative degradation. Single-component supported lipid bilayers composed of gel phase, dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and fluid phase, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), phospholipids were exposed to low-dose oxidative stress generated by UV light and their structures were examined by neutron reflectometry. An interrupted illumination mode, involving exposures in 15 min increments with 2 h intervals between subsequent exposures, and a continuous mode involving a single 60 (or 90) min exposure period were employed. In both cases, pronounced differences in the structure of the lipid bilayer after exposure were observed. Interrupted exposure led to a substantial decrease in membrane coverage but preserved its total thickness at reduced scattering length densities. These results indicate that the initial phase during UV-induced membrane degradation involves the formation of hydrophilic channels within the membrane. This is consistent with the loss of some lipid molecules we observe and attendant reorganization of residual lipids forming hemimicellar edges of the hydrophilic channels. In contrast, continuous illumination produced a graded interface of continuously varied scattering length density (and hence hydrocarbon density) extending 100–150 Å into the liquid phase. Exposure of a DPPC bilayer to UV light in the presence of a reservoir of unfused vesicles showed low net membrane disintegration during oxidative stress, presumably because of surface back-filling from the bulk reservoir. Chemical evidence for membrane degradation was obtained by mass spectrometry and Fourier transform infrared spectroscopy. Further evidence for the formation of hydrophilic channels was furnished by fluorescence microscopy and imaging ellipsometry data. PMID:19275260

  12. Lipid extraction from isolated single nerve cells

    NASA Technical Reports Server (NTRS)

    Krasnov, I. V.

    1977-01-01

    A method of extracting lipids from single neurons isolated from lyophilized tissue is described. The method permits the simultaneous extraction of lipids from 30-40 nerve cells and for each cell provides equal conditions of solvent removal at the conclusion of extraction.

  13. Single Lipid Molecule Dynamics on Supported Lipid Bilayers with Membrane Curvature.

    PubMed

    Cheney, Philip P; Weisgerber, Alan W; Feuerbach, Alec M; Knowles, Michelle K

    2017-03-15

    The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl- sn -glycero-3-phosphoethanolamine (DHPE) and hexadecanoic acid (HDA), using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed.

  14. Biochemical characterization of detergent-resistant membranes: a systematic approach

    PubMed Central

    Babiychuk, Eduard B.; Draeger, Annette

    2006-01-01

    Lateral segregation of cholesterol- and sphingomyelin-rich rafts and glycerophospholipid-containing non-raft microdomains has been proposed to play a role in a variety of biological processes. The most compelling evidence for membrane segregation is based on the observation that extraction with non-ionic detergents leads to solubilization of a subset of membrane components only. However, one decade later, a large body of inconsistent detergent-extraction data is threatening the very concept of membrane segregation. We have assessed the validity of the existing paradigms and we show the following. (i) The localization of a membrane component within a particular fraction of a sucrose gradient cannot be taken as a yardstick for its solubility: a variable localization of the DRMs (detergent-resistant membranes) in sucrose gradients is the result of complex associations between the membrane skeleton and the lipid bilayer. (ii) DRMs of variable composition can be generated by using a single detergent, the increasing concentration of which gradually extracts one protein/lipid after another. Therefore any extraction pattern obtained by a single concentration experiment is bound to be ‘investigator-specific’. It follows that comparison of DRMs obtained by different detergents in a single concentration experiment is prone to misinterpretations. (iii) Depletion of cholesterol has a graded effect on membrane solubility. (iv) Differences in detergent solubility of the members of the annexin protein family arise from their association with chemically different membrane compartments; however, these cannot be attributed to the ‘brick-like’ raft-building blocks of fixed size and chemical composition. Our findings demonstrate a need for critical re-evaluation of the accumulated detergent-extraction data. PMID:16608442

  15. Biochemical characterization of detergent-resistant membranes: a systematic approach.

    PubMed

    Babiychuk, Eduard B; Draeger, Annette

    2006-08-01

    Lateral segregation of cholesterol- and sphingomyelin-rich rafts and glycerophospholipid-containing non-raft microdomains has been proposed to play a role in a variety of biological processes. The most compelling evidence for membrane segregation is based on the observation that extraction with non-ionic detergents leads to solubilization of a subset of membrane components only. However, one decade later, a large body of inconsistent detergent-extraction data is threatening the very concept of membrane segregation. We have assessed the validity of the existing paradigms and we show the following. (i) The localization of a membrane component within a particular fraction of a sucrose gradient cannot be taken as a yardstick for its solubility: a variable localization of the DRMs (detergent-resistant membranes) in sucrose gradients is the result of complex associations between the membrane skeleton and the lipid bilayer. (ii) DRMs of variable composition can be generated by using a single detergent, the increasing concentration of which gradually extracts one protein/lipid after another. Therefore any extraction pattern obtained by a single concentration experiment is bound to be 'investigator-specific'. It follows that comparison of DRMs obtained by different detergents in a single concentration experiment is prone to misinterpretations. (iii) Depletion of cholesterol has a graded effect on membrane solubility. (iv) Differences in detergent solubility of the members of the annexin protein family arise from their association with chemically different membrane compartments; however, these cannot be attributed to the 'brick-like' raft-building blocks of fixed size and chemical composition. Our findings demonstrate a need for critical re-evaluation of the accumulated detergent-extraction data.

  16. Subcellular Metabolite and Lipid Analysis of Xenopus laevis Eggs by LAESI Mass Spectrometry

    PubMed Central

    Reschke, Brent R.; Henderson, Holly D.; Powell, Matthew J.; Moody, Sally A.; Vertes, Akos

    2014-01-01

    Xenopus laevis eggs are used as a biological model system for studying fertilization and early embryonic development in vertebrates. Most methods used for their molecular analysis require elaborate sample preparation including separate protocols for the water soluble and lipid components. In this study, laser ablation electrospray ionization (LAESI), an ambient ionization technique, was used for direct mass spectrometric analysis of X. laevis eggs and early stage embryos up to five cleavage cycles. Single unfertilized and fertilized eggs, their animal and vegetal poles, and embryos through the 32-cell stage were analyzed. Fifty two small metabolite ions, including glutathione, GABA and amino acids, as well as numerous lipids including 14 fatty acids, 13 lysophosphatidylcholines, 36 phosphatidylcholines and 29 triacylglycerols were putatively identified. Additionally, some proteins, for example thymosin β4 (Xen), were also detected. On the subcellular level, the lipid profiles were found to differ between the animal and vegetal poles of the eggs. Radial profiling revealed profound compositional differences between the jelly coat vitelline/plasma membrane and egg cytoplasm. Changes in the metabolic profile of the egg following fertilization, e.g., the decline of polyamine content with the development of the embryo were observed using LAESI-MS. This approach enables the exploration of metabolic and lipid changes during the early stages of embryogenesis. PMID:25506922

  17. Technological trends and market perspectives for production of microbial oils rich in omega-3.

    PubMed

    Finco, Ana Maria de Oliveira; Mamani, Luis Daniel Goyzueta; Carvalho, Júlio Cesar de; de Melo Pereira, Gilberto Vinícius; Thomaz-Soccol, Vanete; Soccol, Carlos Ricardo

    2017-08-01

    In recent years, foods that contain omega-3 lipids have emerged as important promoters of human health. These lipids are essential for the functional development of the brain and retina, and reduction of the risk of cardiovascular and Alzheimer's diseases. The global market for omega-3 production, particularly docosahexaenoic acid (DHA), saw a large expansion in the last decade due to the increasing use of this lipid as an important component of infant food formulae and supplements. The production of omega-3 lipids from fish and vegetable oil sources has some drawbacks, such as complex purification procedures, unwanted contamination by marine pollutants, reduction or even extinction of several species of fish, and aspects related to sustainability. A promising alternative system for the production of omega-3 lipids is from microbial metabolism of yeast, fungi, or microalgae. The aim of this review is to discuss the various omega-3 sources in the context of the global demand and market potential for these bioactive compounds. To summarize, it is clear that fish and vegetable oil sources will not be sufficient to meet the future needs of the world population. The biotechnological production of single-cell oil comes as a sustainable alternative capable of supplementing the global demand for omega-3, causing less environmental impact.

  18. Subcellular metabolite and lipid analysis of Xenopus laevis eggs by LAESI mass spectrometry.

    PubMed

    Shrestha, Bindesh; Sripadi, Prabhakar; Reschke, Brent R; Henderson, Holly D; Powell, Matthew J; Moody, Sally A; Vertes, Akos

    2014-01-01

    Xenopus laevis eggs are used as a biological model system for studying fertilization and early embryonic development in vertebrates. Most methods used for their molecular analysis require elaborate sample preparation including separate protocols for the water soluble and lipid components. In this study, laser ablation electrospray ionization (LAESI), an ambient ionization technique, was used for direct mass spectrometric analysis of X. laevis eggs and early stage embryos up to five cleavage cycles. Single unfertilized and fertilized eggs, their animal and vegetal poles, and embryos through the 32-cell stage were analyzed. Fifty two small metabolite ions, including glutathione, GABA and amino acids, as well as numerous lipids including 14 fatty acids, 13 lysophosphatidylcholines, 36 phosphatidylcholines and 29 triacylglycerols were putatively identified. Additionally, some proteins, for example thymosin β4 (Xen), were also detected. On the subcellular level, the lipid profiles were found to differ between the animal and vegetal poles of the eggs. Radial profiling revealed profound compositional differences between the jelly coat vitelline/plasma membrane and egg cytoplasm. Changes in the metabolic profile of the egg following fertilization, e.g., the decline of polyamine content with the development of the embryo were observed using LAESI-MS. This approach enables the exploration of metabolic and lipid changes during the early stages of embryogenesis.

  19. Molecular discriminators using single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Tamoghna; Dasgupta, Anjan Kr; Ranjan Ray, Nihar; Sarkar, Sabyasachi

    2012-09-01

    The interaction between single wall carbon nanotubes (SWNTs) and amphiphilic molecules has been studied in a solid phase. SWNTs are allowed to interact with different amphiphilic probes (e.g. lipids) in a narrow capillary interface. Contact between strong hydrophobic and amphiphilic interfaces leads to a molecular restructuring of the lipids at the interface. The geometry of the diffusion front and the rate and the extent of diffusion of the interface are dependent on the structure of the lipid at the interface. Lecithin having a linear tail showed greater mobility of the interface as compared to a branched tail lipid like dipalmitoyl phosphatidylcholine, indicating the hydrophobic interaction between single wall carbon nanotube core and the hydrophobic tail of the lipid. Solid phase interactions between SWNT and lipids can thus become a very simple but efficient means of discriminating amphiphilic molecules in general and lipids in particular.

  20. Nutrigenetics of the lipoprotein metabolism.

    PubMed

    Garcia-Rios, Antonio; Perez-Martinez, Pablo; Delgado-Lista, Javier; Lopez-Miranda, Jose; Perez-Jimenez, Francisco

    2012-01-01

    It is well known that lipid metabolism is a cornerstone in the development of the commonest important chronic diseases worldwide, such as obesity, cardiovascular disease, or metabolic syndrome. In this regard, the area of lipid and lipoprotein metabolism is one of the areas in which the understanding of the development and progression of those metabolic disorders has been studied in greater depth. Thus, growing evidence has demonstrated that while universal recommendations might be appropriate for the general population, in this area there is great variability among individuals, related to a combination of environmental and genetic factors. Moreover, the interaction between genetic and dietary components has helped in understanding this variability. Therefore, with further study into the interaction between the most important genetic markers or single-nucleotide polymorphisms (SNPs) and diet, it may be possible to understand the variability in lipid metabolism, which could lead to an increase in the use of personalized nutrition as the best support to combat metabolic disorders. This review discusses some of the evidence in which candidate SNPs can affect the key players of lipid metabolism and how their phenotypic manifestations can be modified by dietary intake. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Examining protein-lipid interactions in model systems with a new squarylium fluorescent dye.

    PubMed

    Ioffe, Valeriya M; Gorbenko, Galyna P; Tatarets, Anatoliy L; Patsenker, Leonid D; Terpechnig, Ewald A

    2006-07-01

    The applicability of newly synthesized squarylium dye Sq to probing the changes in physical characteristics of lipid bilayer on the formation of protein-lipid complexes has been evaluated. Lipid vesicles composed of zwitterionic phospholipid phosphatidylcholine (PC) and its mixtures with positively charged detergent cetyltrimethylammonium bromide (CTAB), anionic phospholipid cardiolipin (CL), and cholesterol (Chol) were employed as lipid component of model membrane systems while protein constituent was represented by lysozyme (Lz). Fluorescence intensity of Sq was found to decrease on Lz association with lipid bilayer. This effect was observed in all kinds of model systems suggesting that Sq is sensitive to modification of lipid bilayer physical properties on hydrophobic protein-lipid interactions. It was found that Sq spectral response to variations in Chol content depends on relative contributions of electrostatic and hydrophobic components of Lz-membrane binding.

  2. Single-Molecule Resolution of Antimicrobial Peptide Interactions with Supported Lipid A Bilayers.

    PubMed

    Nelson, Nathaniel; Schwartz, Daniel K

    2018-06-05

    The molecular interactions between antimicrobial peptides (AMPs) and lipid A-containing supported lipid bilayers were probed using single-molecule total internal reflection fluorescence microscopy. Hybrid supported lipid bilayers with lipid A outer leaflets and phospholipid (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)) inner leaflets were prepared and characterized, and the spatiotemporal trajectories of individual fluorescently labeled LL37 and Melittin AMPs were determined as they interacted with the bilayer surfaces comprising either monophosphoryl or diphosphoryl lipid A (from Escherichia coli) to determine the impact of electrostatic interactions. Large numbers of trajectories were obtained and analyzed to obtain the distributions of surface residence times and the statistics of the spatial trajectories. Interestingly, the AMP species were sensitive to subtle differences in the charge of the lipid, with both peptides diffusing more slowly and residing longer on the diphosphoryl lipid A. Furthermore, the single-molecule dynamics indicated a qualitative difference between the behavior of AMPs on hybrid Lipid A bilayers and on those composed entirely of DOPE. Whereas AMPs interacting with a DOPE bilayer exhibited two-dimensional Brownian diffusion with a diffusion coefficient of ∼1.7 μm 2 /s, AMPs adsorbed to the lipid A surface exhibited much slower apparent diffusion (on the order of ∼0.1 μm 2 /s) and executed intermittent trajectories that alternated between two-dimensional Brownian diffusion and desorption-mediated three-dimensional flights. Overall, these findings suggested that bilayers with lipid A in the outer leaflet, as it is in bacterial outer membranes, are valuable model systems for the study of the initial stage of AMP-bacterium interactions. Furthermore, single-molecule dynamics was sensitive to subtle differences in electrostatic interactions between cationic AMPs and monovalent or divalent anionic lipid A moieties. Copyright © 2018 Biophysical Society. All rights reserved.

  3. Molecular indicators for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy). II: High-resolution variations in abundances and 13C contents of free and sulphur-bound carbon skeletons in a single marl bed

    NASA Technical Reports Server (NTRS)

    Kenig, F.; Damste, J. S.; Frewin, N. L.; Hayes, J. M.; De Leeuw, J. W.

    1995-01-01

    The extractable organic matter of 10 immature samples from a marl bed of one evaporitic cycle of the Vena del Gesso sediments (Gessoso-solfifera Fm., Messinian, Italy) was analyzed quantitatively for free hydrocarbons and organic sulphur compounds. Nickel boride was used as a desulphurizing agent to recover sulphur-bound lipids from the polar and asphaltene fractions. Carbon isotopic compositions (delta vs PDB) of free hydrocarbons and of S-bound hydrocarbons were also measured. Relationships between these carbon skeletons, precursor biolipids, and the organisms producing them could then be examined. Concentrations of S-bound lipids and free hydrocarbons and their delta values were plotted vs depth in the marl bed and the profiles were interpreted in terms of variations in source organisms, 13 C contents of the carbon source, and environmentally induced changes in isotopic fractionation. The overall range of delta values measured was 24.7%, from -11.6% for a component derived from green sulphur bacteria (Chlorobiaceae) to -36.3% for a lipid derived from purple sulphur bacteria (Chromatiaceae). Deconvolution of mixtures of components deriving from multiple sources (green and purple sulphur bacteria, coccolithophorids, microalgae and higher plants) was sometimes possible because both quantitative and isotopic data were available and because either the free or S-bound pool sometimes appeared to contain material from a single source. Several free n-alkanes and S-bound lipids appeared to be specific products of upper-water-column primary producers (i.e. algae and cyanobacteria). Others derived from anaerobic photoautotrophs and from heterotrophic protozoa (ciliates), which apparently fed partly on Chlorobiaceae. Four groups of n-alkanes produced by algae or cyanobacteria were also recognized based on systematic variations of abundance and isotopic composition with depth. For hydrocarbons probably derived from microalgae, isotopic variations are well correlated with those of total organic carbon. A resistant aliphatic biomacromolecule produced by microalgae is, therefore, probably an important component of the kerogen. These variations reflect changes in the depositional environment and early diagenetic transformations. Changes in the concentrations of S-bound lipids induced by variations in conditions favourable for sulphurization were discriminated from those related to variations in primary producer assemblages. The water column of the lagoonal basin was stratified and photic zone anoxia occurred during the early and middle stages of marl deposition. During the last stage of the marl deposition the stratification collapsed due to a significant shallowing of the water column. Contributions from anaerobic photoautotrophs were apparently associated with variations in depth of the chemocline.

  4. Molecular indicators for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy). II: High-resolution variations in abundances and 13C contents of free and sulphur-bound carbon skeletons in a single marl bed.

    PubMed

    Kenig, F; Damsté, J S; Frewin, N L; Hayes, J M; De Leeuw, J W

    1995-06-01

    The extractable organic matter of 10 immature samples from a marl bed of one evaporitic cycle of the Vena del Gesso sediments (Gessoso-solfifera Fm., Messinian, Italy) was analyzed quantitatively for free hydrocarbons and organic sulphur compounds. Nickel boride was used as a desulphurizing agent to recover sulphur-bound lipids from the polar and asphaltene fractions. Carbon isotopic compositions (delta vs PDB) of free hydrocarbons and of S-bound hydrocarbons were also measured. Relationships between these carbon skeletons, precursor biolipids, and the organisms producing them could then be examined. Concentrations of S-bound lipids and free hydrocarbons and their delta values were plotted vs depth in the marl bed and the profiles were interpreted in terms of variations in source organisms, 13 C contents of the carbon source, and environmentally induced changes in isotopic fractionation. The overall range of delta values measured was 24.7%, from -11.6% for a component derived from green sulphur bacteria (Chlorobiaceae) to -36.3% for a lipid derived from purple sulphur bacteria (Chromatiaceae). Deconvolution of mixtures of components deriving from multiple sources (green and purple sulphur bacteria, coccolithophorids, microalgae and higher plants) was sometimes possible because both quantitative and isotopic data were available and because either the free or S-bound pool sometimes appeared to contain material from a single source. Several free n-alkanes and S-bound lipids appeared to be specific products of upper-water-column primary producers (i.e. algae and cyanobacteria). Others derived from anaerobic photoautotrophs and from heterotrophic protozoa (ciliates), which apparently fed partly on Chlorobiaceae. Four groups of n-alkanes produced by algae or cyanobacteria were also recognized based on systematic variations of abundance and isotopic composition with depth. For hydrocarbons probably derived from microalgae, isotopic variations are well correlated with those of total organic carbon. A resistant aliphatic biomacromolecule produced by microalgae is, therefore, probably an important component of the kerogen. These variations reflect changes in the depositional environment and early diagenetic transformations. Changes in the concentrations of S-bound lipids induced by variations in conditions favourable for sulphurization were discriminated from those related to variations in primary producer assemblages. The water column of the lagoonal basin was stratified and photic zone anoxia occurred during the early and middle stages of marl deposition. During the last stage of the marl deposition the stratification collapsed due to a significant shallowing of the water column. Contributions from anaerobic photoautotrophs were apparently associated with variations in depth of the chemocline.

  5. Deciphering the Functional Composition of Fusogenic Liposomes

    PubMed Central

    Kolašinac, Rejhana; Kleusch, Christian; Braun, Tobias; Merkel, Rudolf; Csiszár, Agnes

    2018-01-01

    Cationic liposomes are frequently used as carrier particles for nucleic acid delivery. The most popular formulation is the equimolar mixture of two components, a cationic lipid and a neutral phosphoethanolamine. Its uptake pathway has been described as endocytosis. The presence of an aromatic molecule as a third component strongly influences the cellular uptake process and results in complete membrane fusion instead of endocytosis. Here, we systematically varied all three components of this lipid mixture and determined how efficiently the resulting particles fused with the plasma membrane of living mammalian cells. Our results show that an aromatic molecule and a cationic lipid component with conical molecular shape are essential for efficient fusion induction. While a neutral lipid is not mandatory, it can be used to control fusion efficiency and, in the most extreme case, to revert the uptake mechanism back to endocytosis. PMID:29364187

  6. Single lipid bilayer deposition on polymer surfaces using bicelles.

    PubMed

    Saleem, Qasim; Zhang, Zhenfu; Petretic, Amy; Gradinaru, Claudiu C; Macdonald, Peter M

    2015-03-09

    A lipid bilayer was deposited on a 3 μm diameter polystyrene (PS) bead via hydrophobic anchoring of bicelles containing oxyamine-bearing cholesteric moieties reacting with the aldehyde functionalized bead surface. Discoidal bicelles were formed by mixing dimyristoylphosphatidylcholine (DMPC), dihexanoylphosphatidylcholine (DHPC), dimyristoyltrimethylammonium propane (DMTAP), and the oxyamine-terminated cholesterol derivative, cholest-5-en-3β-oxy-oct-3,6-oxa-an-8-oxyamine (CHOLOA), in the molar ratio DMPC/DHCP/DMTAP/CHOLOA (1/0.5/0.01/0.05) in water. Upon exposure to aldehyde-bearing PS beads, a stable single lipid bilayer coating rapidly formed at the bead surface. Fluorescence recovery after photobleaching demonstrated that the deposited lipids fused into an encapsulating lipid bilayer. Electrospray ionization mass spectrometry showed that the short chain lipid DHPC was entirely absent from the PS adherent lipid coating. Fluorescence quenching measurements proved that the coating was a single lipid bilayer. The bicelle coating method is thus simple and robust, can be modified to include membrane-associated species, and can be adapted to coat any number of different surfaces.

  7. Comparison of ambient solvent extraction methods for the analysis of fatty acids in non-starch lipids of flour and starch

    PubMed Central

    Bahrami, Niloufar; Yonekura, Lina; Linforth, Robert; Carvalho da Silva, Margarida; Hill, Sandra; Penson, Simon; Chope, Gemma; Fisk, Ian Denis

    2014-01-01

    BACKGROUND Lipids are minor components of flours, but are major determinants of baking properties and end-product quality. To the best of our knowledge, there is no single solvent system currently known that efficiently extracts all non-starch lipids from all flours without the risk of chemical, mechanical or thermal damage. This paper compares nine ambient solvent systems (monophasic and biphasic) with varying polarities: Bligh and Dyer (BD); modified Bligh and Dyer using HCl (BDHCL); modified BD using NaCl (BDNaCl); methanol–chloroform–hexane (3:2:1, v/v); Hara and Radin (hexane–isopropanol, 3:2, v/v); water-saturated n-butanol; chloroform; methanol and hexane for their ability to extract total non-starch lipids (separated by lipid classes) from wheat flour (Triticum aestivum L.). Seven ambient extraction protocols were further compared for their ability to extract total non-starch lipids from three alternative samples: barley flour (Hordeum vulgare L.), maize starch (Zea mays L.) and tapioca starch (Manihot esculenta Crantz). RESULTS For wheat flour the original BD method and those containing HCl or NaCl tended to extract the maximum lipid and a significant correlation between lipid extraction yield (especially the glycolipids and phospholipids) and the polarity of the solvent was observed. For the wider range of samples BD and BD HCl repeatedly offered the maximum extraction yield and using pooled standardized (by sample) data from all flours, total non-starch lipid extraction yield was positively correlated with solvent polarity (r = 0.5682, P < 0.05) and water ratio in the solvent mixture (r = 0.5299, P < 0.05). CONCLUSION In general, BD-based methods showed better extraction yields compared to methods without the addition of water and, most interestingly, there was much greater method dependence of lipid yields in the starches when compared to the flour samples, which is due to the differences in lipid profiles between the two sample types (flours and starches). PMID:24132804

  8. Nonspecific Organelle-Targeting Strategy with Core-Shell Nanoparticles of Varied Lipid Components/Ratios.

    PubMed

    Zhang, Lu; Sun, Jiashu; Wang, Yilian; Wang, Jiancheng; Shi, Xinghua; Hu, Guoqing

    2016-07-19

    We report a nonspecific organelle-targeting strategy through one-step microfluidic fabrication and screening of a library of surface charge- and lipid components/ratios-varied lipid shell-polymer core nanoparticles. Different from the common strategy relying on the use of organelle-targeted moieties conjugated onto the surface of nanoparticles, here, we program the distribution of hybrid nanoparticles in lysosomes or mitochondria by tuning the lipid components/ratios in shell. Hybrid nanoparticles with 60% 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 20% 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) can intracellularly target mitochondria in both in vitro and in vivo models. While replacing DOPE with the same amount of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the nanoparticles do not show mitochondrial targeting, indicating an incremental effect of cationic and fusogenic lipids on lysosomal escape which is further studied by molecular dynamics simulations. This work unveils the lipid-regulated subcellular distribution of hybrid nanoparticles in which target moieties and complex synthetic steps are avoided.

  9. Nanointaglio fabrication of optical lipid multilayer diffraction gratings with applications in biosensing

    NASA Astrophysics Data System (ADS)

    Lowry, Troy Warren

    The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at microscopic and nanoscopic levels. Exploiting the self-organization and innate biofunctionality of lyotropic liquid crystalline phospholipids, a novel nanofabrication process called "nanointaglio" was invented in order to rapidly and scalably integrate lipid nanopatterns onto the surface. The work presented here focuses on using nanointaglio fabricated lipid diffraction micro- and nanopatterns for the development of new sensing and bioactivity studies. The lipids are patterned as diffraction gratings for sensor functionality. The lipid multilayer gratings operate as nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. To demonstrate the label free detection capabilities, lipid nanopatterns are shown to be suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering, indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. A second main application is demonstrated for the study of membrane binding proteins. Although in vitro methods for assaying the catalytic activity of individual enzymes are well established, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Presented next is a nanointaglio based method for quantitative measurements of lipid-protein interactions and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1. Optical diffraction gratings composed of lipids are printed on surfaces using nanointaglio, resulting in lipid multilayer gratings. Exposure of lipid multilayer gratings to Sar1 results in the inflation of lipid multilayers into unilamellar structures, the kinetics of which can be detected in a label-free manner by monitoring the diffraction of white light through an optical microscope. Local variations in lipid multilayer volume on the surface can be used to vary substrate availability in a microarray format, allowing kinetic and thermodynamic data to be obtained from a single experiment without the need for varying enzyme concentration. A quantitative model is developed and fits to the data allow measurements of both binding affinity (KD) and kinetics (kon and koff). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1 induced inflation of single bilayers from surface supported multilayers, the semi-cylindrical grating lines are observed to remodel into semi-spherical buds when a critical radius of curvature equal to 300 nm is reached, which is explained in terms of a Rayleigh type instability.

  10. The physiology of long-distance migration: extending the limits of endurance metabolism.

    PubMed

    Weber, Jean-Michel

    2009-03-01

    Long-distance migrants have evolved specific adaptations that make their athletic records possible. Unique mechanisms explaining their amazing capacity for endurance exercise have now been uncovered, particularly with respect to energy storage, mobilization, transport and utilization. Birds are champions of migration because flying offers a key compromise: it allows more rapid movement than swimming, but has a lower cost of transport than running. High efficiency for muscle contraction, pointed wings, low wingloading, travelling in V-formations, storing fuel as energy-dense lipids and atrophy of non-essential organs are some of their strategies to decrease the cost of transport. The ability to process lipids rapidly also emerges as a crucial component of the migrant phenotype. High lipid fluxes are made possible by lipoprotein shuttles and fatty acid binding proteins (FABPs) that accelerate lipid transport and by upgrading the metabolic machinery for lipolysis and lipid oxidation. Preparation for long flights can include natural doping on n-3 polyunsaturated fatty acids (n-3 PUFAs) from unique invertebrate diets. Muscle performance is improved by restructuring membrane phospholipids and by activating key genes of lipid metabolism through peroxisome proliferator-activated receptors (PPARs). The physiological secret to long migrations does not depend on a single ;magic' adaptation but on the integration of multiple adjustments in morphology, biomechanics, behavior, nutrition and metabolism. Research on the physiology of migrants improves the fundamental knowledge of exercise biology, but it also has important implications for wildlife conservation, treating obesity and improving the performance of human athletes.

  11. Studying lipid-protein interactions with electron paramagnetic resonance spectroscopy of spin-labeled lipids.

    PubMed

    Páli, Tibor; Kóta, Zoltán

    2013-01-01

    Spin label electron paramagnetic resonance (EPR) of lipid-protein interactions reveals crucial features of the structure and assembly of integral membrane proteins. Spin label EPR spectroscopy is the technique of choice to characterize the protein-solvating lipid shell in its highly dynamic nature, because the EPR spectra of lipids that are spin labeled close to the terminal methyl end of their acyl chains display two spectral components, those corresponding to lipids directly contacting the protein and those corresponding to lipids in the bulk fluid bilayer regions of the membrane. In this chapter, typical spin label EPR procedures are presented that allow determination of the stoichiometry of interaction of spin-labeled lipids with the intra-membranous region of membrane proteins or polypeptides, as well as the association constant of the spin-labeled lipid with respect to the host lipid. The lipids giving rise to the so-called immobile spectral component in the EPR spectrum of such samples are identified as the motionally restricted first-shell lipids solvating membrane proteins in biomembranes. Stoichiometry and selectivity are directly related to the structure of the intra-membranous sections of membrane-associated proteins or polypeptides and can be used to study the state of assembly of such proteins in the membrane. Since these characteristics of lipid-protein interactions are discussed in detail in the literature [see Marsh (Eur Biophys J 39:513-525, 2010) for a most recent review], here we focus more on how to spin label model and biomembranes and how to measure and analyze the two-component EPR spectra of spin-labeled lipids in phospholipid bilayers that contain proteins or polypeptides. After a description of how to prepare spin-labeled model and native biological membranes, we present the reader with computational procedures for determining the molar fraction of motionally restricted lipids when both, one, or none of the pure isolated-mobile or immobile-spectral components are available. With these topics, this chapter complements a recent methodological paper [Marsh (Methods 46:83-96, 2008)]. The interpretation of the data is discussed briefly, as well as other relevant and recent spin label EPR techniques for studying lipid-protein interactions, not only from the point of view of lipid chain dynamics.

  12. Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion

    PubMed Central

    Brandstaetter, Hemma; Kendrick-Jones, John; Buss, Folma

    2012-01-01

    A balance between endocytosis and membrane recycling regulates the composition and dynamics of the plasma membrane. Internalization and recycling of cholesterol- and sphingolipid-enriched lipid rafts is an actin-dependent process that is mediated by a specialized Arf6-dependent recycling pathway. Here, we identify myosin1c (Myo1c) as the first motor protein that drives the formation of recycling tubules emanating from the perinuclear recycling compartment. We demonstrate that the single-headed Myo1c is a lipid-raft-associated motor protein that is specifically involved in recycling of lipid-raft-associated glycosylphosphatidylinositol (GPI)-linked cargo proteins and their delivery to the cell surface. Whereas Myo1c overexpression increases the levels of these raft proteins at the cell surface, in cells depleted of Myo1c function through RNA interference or overexpression of a dominant-negative mutant, these tubular transport carriers of the recycling pathway are lost and GPI-linked raft markers are trapped in the perinuclear recycling compartment. Intriguingly, Myo1c only selectively promotes delivery of lipid raft membranes back to the cell surface and is not required for recycling of cargo, such as the transferrin receptor, which is mediated by parallel pathways. The profound defect in lipid raft trafficking in Myo1c-knockdown cells has a dramatic impact on cell spreading, cell migration and cholesterol-dependent Salmonella invasion; processes that require lipid raft transport to the cell surface to deliver signaling components and the extra membrane essential for cell surface expansion and remodeling. Thus, Myo1c plays a crucial role in the recycling of lipid raft membrane and proteins that regulate plasma membrane plasticity, cell motility and pathogen entry. PMID:22328521

  13. Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion.

    PubMed

    Brandstaetter, Hemma; Kendrick-Jones, John; Buss, Folma

    2012-04-15

    A balance between endocytosis and membrane recycling regulates the composition and dynamics of the plasma membrane. Internalization and recycling of cholesterol- and sphingolipid-enriched lipid rafts is an actin-dependent process that is mediated by a specialized Arf6-dependent recycling pathway. Here, we identify myosin1c (Myo1c) as the first motor protein that drives the formation of recycling tubules emanating from the perinuclear recycling compartment. We demonstrate that the single-headed Myo1c is a lipid-raft-associated motor protein that is specifically involved in recycling of lipid-raft-associated glycosylphosphatidylinositol (GPI)-linked cargo proteins and their delivery to the cell surface. Whereas Myo1c overexpression increases the levels of these raft proteins at the cell surface, in cells depleted of Myo1c function through RNA interference or overexpression of a dominant-negative mutant, these tubular transport carriers of the recycling pathway are lost and GPI-linked raft markers are trapped in the perinuclear recycling compartment. Intriguingly, Myo1c only selectively promotes delivery of lipid raft membranes back to the cell surface and is not required for recycling of cargo, such as the transferrin receptor, which is mediated by parallel pathways. The profound defect in lipid raft trafficking in Myo1c-knockdown cells has a dramatic impact on cell spreading, cell migration and cholesterol-dependent Salmonella invasion; processes that require lipid raft transport to the cell surface to deliver signaling components and the extra membrane essential for cell surface expansion and remodeling. Thus, Myo1c plays a crucial role in the recycling of lipid raft membrane and proteins that regulate plasma membrane plasticity, cell motility and pathogen entry.

  14. Design of three-component vaccines against group A streptococcal infections: importance of spatial arrangement of vaccine components.

    PubMed

    Abdel-Aal, Abu-Baker M; Zaman, Mehfuz; Fujita, Yoshio; Batzloff, Michael R; Good, Michael F; Toth, Istvan

    2010-11-25

    Immunological assessment of group A streptococcal (GAS) branched lipopeptides demonstrated the impact of spatial arrangement of vaccine components on both the quality and quantity of their immune responses. Each lipopeptide was composed of three components: a GAS B-cell epitope (J14), a universal CD4(+) T-cell helper epitope (P25), and an immunostimulant lipid moiety that differs only in its spatial arrangement. The best systemic immune responses were demonstrated by a lipopeptide featuring the lipid moiety at the lipopeptide C-terminus. However, this candidate did not achieve protection against bacterial challenge. The best protection (100%) was shown by a lipopeptide featuring a C-terminal J14, conjugated through a lysine residue to P25 at the N-terminus, and a lipid moiety on the lysine side chain. The former candidate features α-helical conformation required to produce protective J14-specific antibodies. Our results highlight the importance of epitope orientation and lipid position in the design of three-component synthetic vaccines.

  15. Diffusion in Single Supported Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Armstrong, C. L.; Trapp, M.; Rheinstädter, M. C.

    2011-03-01

    Despite their potential relevance for the development of functionalized surfaces and biosensors, the study of single supported membranes using neutron scattering has been limited by the challenge of obtaining relevant dynamic information from a sample with minimal material. Using state of the art neutron instrumentation we have, for the first time, modeled lipid diffusion in single supported lipid bilayers. While we find that the diffusion coefficient for the single bilayer system is comparable to a multi-lamellar lipid system, the molecular mechanism for lipid motion in the single bilayer is a continuous diffusion process with no sign of the flow-like ballistic motion reported in the stacked membrane system. In the future, these membranes will be used to hold and align proteins, mimicking physiological conditions enabling the study of protein structure, function and interactions in relevant and highly topical membrane/protein systems with minimal sample material. C.L. Armstrong, M.D. Kaye, M. Zamponi, E. Mamontov, M. Tyagi, T. Jenkins and M.C. Rheinstädter, Soft Matter Communication, 2010, Advance Article, DOI: 10.1039/C0SM00637H

  16. [Proteins and saponins in the lipid preparation obtained by extraction of soybean flour].

    PubMed

    Baukova, N A; Alekseeva, S G; Sorokoumova, G M; Selishcheva, A A; Martynova, O M; Rogozhkina, E A; Shvets, V I

    2002-01-01

    A complex lipid preparation was obtained by extraction of soybean flour with organic solvents. This preparation was shown to include not only phospholipids (major components), but also up to 30% saponins. These compounds were identified by TLC, HPLC, and 1H-NMR spectroscopy. Minor components of the lipid extract were represented by polypeptides associated with phospholipids via electrostatic or hydrophobic forces.

  17. There Is No Simple Model of the Plasma Membrane Organization

    PubMed Central

    Bernardino de la Serna, Jorge; Schütz, Gerhard J.; Eggeling, Christian; Cebecauer, Marek

    2016-01-01

    Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure. PMID:27747212

  18. There Is No Simple Model of the Plasma Membrane Organization.

    PubMed

    Bernardino de la Serna, Jorge; Schütz, Gerhard J; Eggeling, Christian; Cebecauer, Marek

    2016-01-01

    Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure.

  19. Study of water diffusion on single-supported bilayer lipid membranes by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Bai, M.; Miskowiec, A.; Hansen, F. Y.; Taub, H.; Jenkins, T.; Tyagi, M.; Diallo, S. O.; Mamontov, E.; Herwig, K. W.; Wang, S.-K.

    2012-05-01

    High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules.

  20. FTIR Spectroscopy for Evaluation and Monitoring of Lipid Extraction Efficiency for Oleaginous Fungi.

    PubMed

    Forfang, Kristin; Zimmermann, Boris; Kosa, Gergely; Kohler, Achim; Shapaval, Volha

    2017-01-01

    To assess whether Fourier Transform Infrared (FTIR) spectroscopy could be used to evaluate and monitor lipid extraction processes, the extraction methods of Folch, Bligh and Lewis were used. Biomass of the oleaginous fungi Mucor circinelloides and Mortierella alpina were employed as lipid-rich material for the lipid extraction. The presence of lipids was determined by recording infrared spectra of all components in the lipid extraction procedure, such as the biomass before and after extraction, the water and extract phases. Infrared spectra revealed the incomplete extraction after all three extraction methods applied to M.circinelloides and it was shown that mechanical disruption using bead beating and HCl treatment were necessary to complete the extraction in this species. FTIR spectroscopy was used to identify components, such as polyphosphates, that may have negatively affected the extraction process and resulted in differences in extraction efficiency between M.circinelloides and M.alpina. Residual lipids could not be detected in the infrared spectra of M.alpina biomass after extraction using the Folch and Lewis methods, indicating their complete lipid extraction in this species. Bligh extraction underestimated the fatty acid content of both M.circinelloides and M.alpina biomass and an increase in the initial solvent-to-sample ratio (from 3:1 to 20:1) was needed to achieve complete extraction and a lipid-free IR spectrum. In accordance with previous studies, the gravimetric lipid yield was shown to overestimate the potential of the SCO producers and FAME quantification in GC-FID was found to be the best-suited method for lipid quantification. We conclude that FTIR spectroscopy can serve as a tool for evaluating the lipid extraction efficiency, in addition to identifying components that may affect lipid extraction processes.

  1. FTIR Spectroscopy for Evaluation and Monitoring of Lipid Extraction Efficiency for Oleaginous Fungi

    PubMed Central

    Zimmermann, Boris; Kosa, Gergely; Kohler, Achim; Shapaval, Volha

    2017-01-01

    To assess whether Fourier Transform Infrared (FTIR) spectroscopy could be used to evaluate and monitor lipid extraction processes, the extraction methods of Folch, Bligh and Lewis were used. Biomass of the oleaginous fungi Mucor circinelloides and Mortierella alpina were employed as lipid-rich material for the lipid extraction. The presence of lipids was determined by recording infrared spectra of all components in the lipid extraction procedure, such as the biomass before and after extraction, the water and extract phases. Infrared spectra revealed the incomplete extraction after all three extraction methods applied to M.circinelloides and it was shown that mechanical disruption using bead beating and HCl treatment were necessary to complete the extraction in this species. FTIR spectroscopy was used to identify components, such as polyphosphates, that may have negatively affected the extraction process and resulted in differences in extraction efficiency between M.circinelloides and M.alpina. Residual lipids could not be detected in the infrared spectra of M.alpina biomass after extraction using the Folch and Lewis methods, indicating their complete lipid extraction in this species. Bligh extraction underestimated the fatty acid content of both M.circinelloides and M.alpina biomass and an increase in the initial solvent-to-sample ratio (from 3:1 to 20:1) was needed to achieve complete extraction and a lipid-free IR spectrum. In accordance with previous studies, the gravimetric lipid yield was shown to overestimate the potential of the SCO producers and FAME quantification in GC-FID was found to be the best-suited method for lipid quantification. We conclude that FTIR spectroscopy can serve as a tool for evaluating the lipid extraction efficiency, in addition to identifying components that may affect lipid extraction processes. PMID:28118388

  2. Mechanism of Scrapie Prion Precipitation with Phosphotungstate Anions

    PubMed Central

    2015-01-01

    The phosphotungstate anion (PTA) is widely used to facilitate the precipitation of disease-causing prion protein (PrPSc) from infected tissue for applications in structural studies and diagnostic approaches. However, the mechanism of this precipitation is not understood. In order to elucidate the nature of the PTA interaction with PrPSc under physiological conditions, solutions of PTA were characterized by NMR spectroscopy at varying pH. At neutral pH, the parent [PW12O40]3– ion decomposes to give a lacunary [PW11O39]7– (PW11) complex and a single orthotungstate anion [WO4]2– (WO4). To measure the efficacy of each component of PTA, increasing concentrations of PW11, WO4, and mixtures thereof were used to precipitate PrPSc from brain homogenates of scrapie prion-infected mice. The amount of PrPSc isolated, quantified by ELISA and immunoblotting, revealed that both PW11 and WO4 contribute to PrPSc precipitation. Incubation with sarkosyl, PTA, or individual components of PTA resulted in separation of higher-density PrP aggregates from the neuronal lipid monosialotetrahexosylganglioside (GM1), as observed by sucrose gradient centrifugation. These experiments revealed that yield and purity of PrPSc were greater with polyoxometalates (POMs), which substantially supported the separation of lipids from PrPSc in the samples. Interaction of POMs and sarkosyl with brain homogenates promoted the formation of fibrillar PrPSc aggregates prior to centrifugation, likely through the separation of lipids like GM1 from PrPSc. We propose that this separation of lipids from PrP is a major factor governing the facile precipitation of PrPSc by PTA from tissue and might be optimized further for the detection of prions. PMID:25695325

  3. Immunoaffinity Knockout of Saponin Glycosides from Asparagus racemosus to Assess Anti-lipid Peroxidation.

    PubMed

    Onlom, Churanya; Phrompittayarat, Watoo; Putalun, Waraporn; Waranuch, Neti; Ingkaninan, Kornkanok

    2017-07-01

    Asparagus racemosus Willd (Asparagaceae family), known as Shatavari, is important in Ayurveda and traditional Thai medicines. The saponin glycosides, shatavarin I and IV are major constituents in its roots and may be responsible for their actions including protection against lipid peroxidation and carcinogenesis. To develop an immunoaffinity column for isolating compounds with structures related to shatavarin IV from crude extracts of A. racemosus root. The monoclonal antibody recognising shatavarin IV (mAbShavIV) was coupled to an Affi-Gel Hz gel to isolate compounds with structures related to shatavarin IV from the other components of crude extracts of A. racemosus root. The saponin glycosides in each fraction were analysed by mAbShavIV ELISA and LC-MS/MS. The pooled wash-through fractions contained 3% of loaded mAbShavIV reactive saponin glycosides, while eluted fractions released ~ 90% of shatavarin saponin glycosides in a single step. Using thiobarbiturate (TBARs) to measure lipid-peroxidation, the extract, and the pooled wash-through fractions showed moderate protection against Cu + -induced oxidation of human low density lipoprotein (LDL) (IC 50 11.3 ± 1.4 and 12.6 ± 0.9 μg/mL, respectively). In contrast, the saponin glycosides eluted from the mAbShavIV-column had weaker protectant (IC 50 29.7 ± 1.8 μg/mL) suggesting that A. racemosus shatavarins do not inhibit carcinogenesis through preventing lipid peroxidation. The strategy described here demonstrates its utility for isolating a group of related compounds from the rest of the extract with selectivity and recovery rate. Pharmacological efficacy and synergistic effects of the components obtained can be further investigated. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. [Structure and ultrastructure of the ovary of Cichlasoma urophthalmus (Osteichthyes: Cichlidae)].

    PubMed

    Viedma, Rubí; Franco, Jonathan; Bedia, Carlos; Guedea Fernández, Guadalupe; Villa Zevallos, Héctor Barrera; Barrera Escorcia, Héctor

    2011-06-01

    The study of the normal development, differentiation, structure and function of various components of developing follicles in the ovaries of numerous fish species have been a consistent focus of comparative reproduction. The structural and ultrastructural features of gonads from Cichlasoma urophthalmus have received scarce attention. In this work, we realized a descriptive study of female gonads of Cichlasoma urophthalmus. A total of 40 samples were collected in the Veracruz Alvarado Lagoon, Mexico in 2007-2008 period including the windy, dry and rainy seasons. Female gonads were extracted and a portion was fixed in 4% formaldehyde for treatment for routine histology hematoxylin and eosin (HE) and another part was processed for transmission electron microscopy (TEM). The gonads were fixed in 3% glutaraldehyde and 2% osmium tetroxide, followed by dehydrated in ethanol 50%, 70%, 80%, 95% and 100% for inclusion in Epon, thin sections were then prepared and were contrasted with lead citrate and uranyl acetate. The process of oocyte development can be divided into five distinct stages (formation of oocytes from oogonia, primary growth, lipid stage, vitellogenesis and maturation). In this work, we found that the primary growth stage is characterized by intense RNA synthesis and the differentiation of the vitelline envelope. Secondary growth starts with the accumulation of lipid droplets in the oocyte cytoplasm (lipid stage), which is then followed by massive uptake and processing of proteins into yolk platelets (vitellogenic stage). During the maturation stage, the lipid inclusions coalesce into a single oil droplet, and hydrolysis of the yolk platelets leads to the formation of a homogeneous mass of fluid yolk in mature eggs. In conclusion, further studies should elucidate structure and ultrastructural changes in the ovarian follicular components, in C. urophthalmus during different stages of oocyte growth.

  5. Kdo2-lipid A: structural diversity and impact on immunopharmacology

    PubMed Central

    Wang, Xiaoyuan; Quinn, Peter J; Yan, Aixin

    2015-01-01

    3-deoxy-d-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the essential component of lipopolysaccharide in most Gram-negative bacteria and the minimal structural component to sustain bacterial viability. It serves as the active component of lipopolysaccharide to stimulate potent host immune responses through the complex of Toll-like-receptor 4 (TLR4) and myeloid differentiation protein 2. The entire biosynthetic pathway of Escherichia coli Kdo2-lipid A has been elucidated and the nine enzymes of the pathway are shared by most Gram-negative bacteria, indicating conserved Kdo2-lipid A structure across different species. Yet many bacteria can modify the structure of their Kdo2-lipid A which serves as a strategy to modulate bacterial virulence and adapt to different growth environments as well as to avoid recognition by the mammalian innate immune systems. Key enzymes and receptors involved in Kdo2-lipid A biosynthesis, structural modification and its interaction with the TLR4 pathway represent a clear opportunity for immunopharmacological exploitation. These include the development of novel antibiotics targeting key biosynthetic enzymes and utilization of structurally modified Kdo2-lipid A or correspondingly engineered live bacteria as vaccines and adjuvants. Kdo2-lipid A/TLR4 antagonists can also be applied in anti-inflammatory interventions. This review summarizes recent knowledge on both the fundamental processes of Kdo2-lipid A biosynthesis, structural modification and immune stimulation, and applied research on pharmacological exploitations of these processes for therapeutic development. PMID:24838025

  6. HDL particles incorporate into lipid bilayers - a combined AFM and single molecule fluorescence microscopy study.

    PubMed

    Plochberger, Birgit; Röhrl, Clemens; Preiner, Johannes; Rankl, Christian; Brameshuber, Mario; Madl, Josef; Bittman, Robert; Ros, Robert; Sezgin, Erdinc; Eggeling, Christian; Hinterdorfer, Peter; Stangl, Herbert; Schütz, Gerhard J

    2017-11-21

    The process, how lipids are removed from the circulation and transferred from high density lipoprotein (HDL) - a main carrier of cholesterol in the blood stream - to cells, is highly complex. HDL particles are captured from the blood stream by the scavenger receptor, class B, type I (SR-BI), the so-called HDL receptor. The details in subsequent lipid-transfer process, however, have not yet been completely understood. The transfer has been proposed to occur directly at the cell surface across an unstirred water layer, via a hydrophobic channel in the receptor, or after HDL endocytosis. The role of the target lipid membrane for the transfer process, however, has largely been overlooked. Here, we studied at the single molecule level how HDL particles interact with synthetic lipid membranes. Using (high-speed) atomic force microscopy and fluorescence correlation spectroscopy (FCS) we found out that, upon contact with the membrane, HDL becomes integrated into the lipid bilayer. Combined force and single molecule fluorescence microscopy allowed us to directly monitor the transfer process of fluorescently labelled amphiphilic lipid probe from HDL particles to the lipid bilayer upon contact.

  7. Characterization of the lateral distribution of fluorescent lipid in binary-constituent lipid monolayers by principal component analysis.

    PubMed

    Sugár, István P; Zhai, Xiuhong; Boldyrev, Ivan A; Molotkovsky, Julian G; Brockman, Howard L; Brown, Rhoderick E

    2010-01-01

    Lipid lateral organization in binary-constituent monolayers consisting of fluorescent and nonfluorescent lipids has been investigated by acquiring multiple emission spectra during measurement of each force-area isotherm. The emission spectra reflect BODIPY-labeled lipid surface concentration and lateral mixing with different nonfluorescent lipid species. Using principal component analysis (PCA) each spectrum could be approximated as the linear combination of only two principal vectors. One point on a plane could be associated with each spectrum, where the coordinates of the point are the coefficients of the linear combination. Points belonging to the same lipid constituents and experimental conditions form a curve on the plane, where each point belongs to a different mole fraction. The location and shape of the curve reflects the lateral organization of the fluorescent lipid mixed with a specific nonfluorescent lipid. The method provides massive data compression that preserves and emphasizes key information pertaining to lipid distribution in different lipid monolayer phases. Collectively, the capacity of PCA for handling large spectral data sets, the nanoscale resolution afforded by the fluorescence signal, and the inherent versatility of monolayers for characterization of lipid lateral interactions enable significantly enhanced resolution of lipid lateral organizational changes induced by different lipid compositions.

  8. Adjusting membrane lipids under salt stress: the case of the moderate halophilic organism Halobacillus halophilus.

    PubMed

    Lopalco, Patrizia; Angelini, Roberto; Lobasso, Simona; Köcher, Saskia; Thompson, Melanie; Müller, Volker; Corcelli, Angela

    2013-04-01

    The lipid composition of Halobacillus halophilus was investigated by combined thin-layer chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analyses of the total lipid extract. Main polar lipids were found to be sulfoquinovosyldiacylglycerol and phosphatidylglycerol, while cardiolipin was a minor lipid together with phosphatidic acid, alanyl-phosphatidylglycerol and two not yet fully identified lipid components. In addition the analyses of residual lipids, associated with denatured proteins after the lipid extraction, revealed the presence of significant amounts of cardiolipin, indicating that it is a not readily extractable phospholipid. Post decay source mass spectrometry analyses allowed the determination of acyl chains of main lipid components. On increasing the culture medium salinity, an increase in the shorter chains and the presence of chain unsaturations were observed. These changes in the lipid core structures might compensate for the increase in packing and rigidity of phospholipid and sulfoglycolipid polar heads in high-salt medium, therefore contributing to the homeostasis of membrane fluidity and permeability in salt stress conditions. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  9. Design of quantum dot-conjugated lipids for long-term, high-speed tracking experiments on cell surfaces.

    PubMed

    Murcia, Michael J; Minner, Daniel E; Mustata, Gina-Mirela; Ritchie, Kenneth; Naumann, Christoph A

    2008-11-12

    The current study reports the facile design of quantum dot (QD)-conjugated lipids and their application to high-speed tracking experiments on cell surfaces. CdSe/ZnS core/shell QDs with two types of hydrophilic coatings, 2-(2-aminoethoxy)ethanol (AEE) and a 60:40 molar mixture of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine and 1,2-dipalmitoyl- sn-glycero-3-phosphoethanolamine- N-[methoxy(polyethylene glycol-2000], are conjugated to sulfhydryl lipids via maleimide reactive groups on the QD surface. Prior to lipid conjugation, the colloidal stability of both types of coated QDs in aqueous solution is confirmed using fluorescence correlation spectroscopy. A sensitive assay based on single lipid tracking experiments on a planar solid-supported phospholipid bilayer is presented that establishes conditions of monovalent conjugation of QDs to lipids. The QD-lipids are then employed as single-molecule tracking probes in plasma membranes of several cell types. Initial tracking experiments at a frame rate of 30 frames/s corroborate that QD-lipids diffuse like dye-labeled lipids in the plasma membrane of COS-7, HEK-293, 3T3, and NRK cells, thus confirming monovalent labeling. Finally, QD-lipids are applied for the first time to high-speed single-molecule imaging by tracking their lateral mobility in the plasma membrane of NRK fibroblasts with up to 1000 frames/s. Our high-speed tracking data, which are in excellent agreement with previous tracking experiments that used larger (40 nm) Au labels, not only push the time resolution in long-time, continuous fluorescence-based single-molecule tracking but also show that highly photostable, photoluminescent nanoprobes of 10 nm size can be employed (AEE-coated QDs). These probes are also attractive because, unlike Au nanoparticles, they facilitate complex multicolor experiments.

  10. Lipidomics: the function of vital lipids in embryogenesis preventing autism spectrum disorders, treating sterile inflammatory diatheses with a lymphopoietic central nervous system component.

    PubMed

    Tallberg, Thomas; Dabek, Jan; Hallamaa, Raija; Atroshi, Faik

    2011-01-01

    The central role performed by billions of vital central nervous system (CNS) lipids "lipidomics" in medical physiology is usually overlooked. A metabolic deficiency embracing these vital lipids can form the aetiology for a variety of diseases. CNS lipids regulate embryogenesis, cell induction, mental balance by preventing autism spectrum disorders, depression, burn-out syndromes like posttraumatic stress disease PTSD, by guarding normal immunity, treating sterile inflammatory diatheses with a titanium containing lymphopoietic CNS lipid component. The propaganda driving for unphysiological fat-free diets is dangerous and can cause serious health problems for a whole generation. This article presents a broad list of various mental and motor bodily functions of which the healthy function depends on these vital CNS lipids. A rigorous fat-free diet can provoke these metabolic lipid deficiencies but they can fortunately be compensated by dietary supplementation, but not by pharmacologic treatment.

  11. Turmeric extract and its active compound, curcumin, protect against chronic CCl4-induced liver damage by enhancing antioxidation.

    PubMed

    Lee, Hwa-Young; Kim, Seung-Wook; Lee, Geum-Hwa; Choi, Min-Kyung; Jung, Han-Wool; Kim, Young-Jun; Kwon, Ho-Jeong; Chae, Han-Jung

    2016-08-26

    Curcumin, a major active component of turmeric, has previously been reported to alleviate liver damage. Here, we investigated the mechanism by which turmeric and curcumin protect the liver against carbon tetrachloride (CCl4)-induced injury in rats. We hypothesized that turmeric extract and curcumin protect the liver from CCl4-induced liver injury by reducing oxidative stress, inhibiting lipid peroxidation, and increasing glutathione peroxidase activation. Chronic hepatic stress was induced by a single intraperitoneal injection of CCl4 (0.1 ml/kg body weight) into rats. Turmeric extracts and curcumin were administered once a day for 4 weeks at three dose levels (100, 200, and 300 mg/kg/day). We performed ALT and AST also measured of total lipid, triglyceride, cholesterol levels, and lipid peroxidation. We found that turmeric extract and curcumin significantly protect against liver injury by decreasing the activities of serum aspartate aminotransferase and alanine aminotransferase and by improving the hepatic glutathione content, leading to a reduced level of lipid peroxidase. Our data suggest that turmeric extract and curcumin protect the liver from chronic CCl4-induced injury in rats by suppressing hepatic oxidative stress. Therefore, turmeric extract and curcumin are potential therapeutic antioxidant agents for the treatment of hepatic disease.

  12. Reproducible MRI Measurement of Adipose Tissue Volumes in Genetic and Dietary Rodent Obesity Models

    PubMed Central

    Johnson, David H.; Flask, Chris A.; Ernsberger, Paul R.; Wong, Wilbur C. K.; Wilson, David L.

    2010-01-01

    Purpose To develop ratio MRI [lipid/(lipid+water)] methods for assessing lipid depots and compare measurement variability to biological differences in lean controls (spontaneously hypertensive rats, SHRs), dietary obese (SHR-DO), and genetic/dietary obese (SHROBs) animals. Materials and Methods Images with and without CHESS water-suppression were processed using a semi-automatic method accounting for relaxometry, chemical shift, receive coil sensitivity, and partial volume. Results Partial volume correction improved results by 10–15%. Over six operators, volume variation was reduced to 1.9 ml from 30.6 ml for single-image-analysis with intensity inhomogeneity. For three acquisitions on the same animal, volume reproducibility was <1%. SHROBs had 6X visceral and 8X subcutaneous adipose tissue than SHRs. SHR-DOs had enlarged visceral depots (3X SHRs). SHROB had significantly more subcutaneous adipose tissue, indicating a strong genetic component to this fat depot. Liver ratios in SHR-DO and SHROB were higher than SHR, indicating elevated fat content. Among SHROBs, evidence suggested a phenotype SHROB* having elevated liver ratios and visceral adipose tissue volumes. Conclusion Effects of diet and genetics on obesity were significantly larger than variations due to image acquisition and analysis, indicating that these methods can be used to assess accumulation/depletion of lipid depots in animal models of obesity. PMID:18821617

  13. Chemical Changes in Lipids Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Nawar, Wassef W.

    1984-01-01

    Describes heat effects on lipids, indicating that the chemical and physical changes that occur depend on the lipid's composition and conditions of treatment. Thermolytic and oxidation reactions, thermal/oxidative interaction of lipids with other food components and the chemistry of frying are considered. (JN)

  14. Plaque components affect wall stress in stented human carotid artery: A numerical study

    NASA Astrophysics Data System (ADS)

    Fan, Zhen-Min; Liu, Xiao; Du, Cheng-Fei; Sun, An-Qiang; Zhang, Nan; Fan, Zhan-Ming; Fan, Yu-Bo; Deng, Xiao-Yan

    2016-12-01

    Carotid artery stenting presents challenges of in-stent restenosis and late thrombosis, which are caused primarily by alterations in the mechanical environment of the artery after stent implantation. The present study constructed patient-specific carotid arterial bifurcation models with lipid pools and calcified components based on magnetic resonance imaging. We numerically analyzed the effects of multicomponent plaques on the distributions of von Mises stresses (VMSs) in the patient-specific models after stenting. The results showed that when a stent was deployed, the large soft lipid pool in atherosclerotic plaques cushioned the host artery and reduced the stress within the arterial wall; however, this resulted in a sharp increase of VMS in the fibrous cap. When compared with the lipid pool, the presence of the calcified components led to slightly increased stresses on the luminal surface. However, when a calcification was located close to the luminal surface of the host artery and the stenosis, the local VMS was elevated. Overall, compared with calcified components, large lipid pools severely damaged the host artery after stenting. Furthermore, damage due to the calcified component may depend on location.

  15. Trifunctional lipid probes for comprehensive studies of single lipid species in living cells

    PubMed Central

    Nadler, André; Haberkant, Per; Kirkpatrick, Joanna; Schifferer, Martina; Stein, Frank; Hauke, Sebastian; Porter, Forbes D.; Schultz, Carsten

    2017-01-01

    Lipid-mediated signaling events regulate many cellular processes. Investigations of the complex underlying mechanisms are difficult because several different methods need to be used under varying conditions. Here we introduce multifunctional lipid derivatives to study lipid metabolism, lipid−protein interactions, and intracellular lipid localization with a single tool per target lipid. The probes are equipped with two photoreactive groups to allow photoliberation (uncaging) and photo–cross-linking in a sequential manner, as well as a click-handle for subsequent functionalization. We demonstrate the versatility of the design for the signaling lipids sphingosine and diacylglycerol; uncaging of the probe for these two species triggered calcium signaling and intracellular protein translocation events, respectively. We performed proteomic screens to map the lipid-interacting proteome for both lipids. Finally, we visualized a sphingosine transport deficiency in patient-derived Niemann−Pick disease type C fibroblasts by fluorescence as well as correlative light and electron microscopy, pointing toward the diagnostic potential of such tools. We envision that this type of probe will become important for analyzing and ultimately understanding lipid signaling events in a comprehensive manner. PMID:28154130

  16. Profiling of epidermal lipids in a mouse model of dermatitis: Identification of potential biomarkers

    PubMed Central

    Franco, Jackeline; Ferreira, Christina; Paschoal Sobreira, Tiago J.; Sundberg, John P.

    2018-01-01

    Lipids are important structural and functional components of the skin. Alterations in the lipid composition of the epidermis are associated with inflammation and can affect the barrier function of the skin. SHARPIN-deficient cpdm mice develop a chronic dermatitis with similarities to atopic dermatitis in humans. Here, we used a recently-developed approach named multiple reaction monitoring (MRM)-profiling and single ion monitoring to rapidly identify discriminative lipid ions. Shorter fatty acyl residues and increased relative amounts of sphingosine ceramides were observed in cpdm epidermis compared to wild type mice. These changes were accompanied by downregulation of the Fasn gene which encodes fatty acid synthase. A profile of diverse lipids was generated by fast screening of over 300 transitions (ion pairs). Tentative attribution of the most significant transitions was confirmed by product ion scan (MS/MS), and the MRM-profiling linear intensity response was validated with a C17-ceramide lipid standard. Relative quantification of sphingosine ceramides CerAS(d18:1/24:0)2OH, CerAS(d18:1/16:0)2OH and CerNS(d18:1/16:0) discriminated between the two groups with 100% accuracy, while the free fatty acids cerotic acid, 16-hydroxy palmitic acid, and docosahexaenoic acid (DHA) had 96.4% of accuracy. Validation by liquid chromatography tandem mass spectrometry (LC-MS/MS) of the above-mentioned ceramides was in agreement with MRM-profiling results. Identification and rapid monitoring of these lipids represent a tool to assess therapeutic outcomes in SHARPIN-deficient mice and other mouse models of dermatitis and may have diagnostic utility in atopic dermatitis. PMID:29698466

  17. Inhibition of human polymorphonuclear leukocyte function by components of human colostrum and mature milk.

    PubMed

    Pickering, L K; Cleary, T G; Caprioli, R M

    1983-04-01

    To compare the effect of human colostrum (days 1 to 3 postpartum) and mature milk (days 170 +/- 24 postpartum) on the function of polymorphonuclear leukocytes (PMNL), Ficoll-Hypaque-separated PMNL from the blood of 60 healthy volunteers were incubated with whole colostrum, colostral lipid, and colostral aqueous phase from 30 mothers, or with mature whole milk and its separated components from 30 mothers, and tested for resting and zymosan-stimulated oxidative metabolism, functional activity, and the presence of Fc receptors. Stimulated oxygen consumption, quantitative nitroblue tetrazolium dye reduction, [1-(14)C]glucose utilization, and Fc receptors were significantly (P < 0.05 to P < 0.001) less in PMNL exposed to whole human colostrum or colostral lipid than in non-lipid-exposed cells or cells exposed to the aqueous phase of colostrum. In contrast, PMNL exposed to whole mature milk or to its lipid or aqueous phase caused no significant decrease in any of these parameters when compared to nonexposed cells. In assays of phagocytosis, colostral PMNL or blood PMNL exposed to colostral lipid had a significant (P < 0.001) decrease in their ability to ingest [methyl-(3)H]thymidine-labeled Staphylococcus aureus when compared to non-lipid-exposed PMNL. Blood PMNL exposed to lipid from mature milk had no decrease in ability to ingest S. aureus. Analysis of total lipid and total and individual fatty acid content revealed a uniform increase in all components in mature milk when compared to colostrum. Lipid or lipid-soluble material present in human colostrum but not mature milk causes inhibition of phagocytosis and respiratory burst-related activities of PMNL.

  18. STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells.

    PubMed

    Erdmann, Roman S; Toomre, Derek; Schepartz, Alanna

    2017-01-01

    Long time-lapse super-resolution imaging in live cells requires a labeling strategy that combines a bright, photostable fluorophore with a high-density localization probe. Lipids are ideal high-density localization probes, as they are >100 times more abundant than most membrane-bound proteins and simultaneously demark the boundaries of cellular organelles. Here, we describe Cer-SiR, a two-component, high-density lipid probe that is exceptionally photostable. Cer-SiR is generated in cells via a bioorthogonal reaction of two components: a ceramide lipid tagged with trans-cyclooctene (Cer-TCO) and a reactive, photostable Si-rhodamine dye (SiR-Tz). These components assemble within the Golgi apparatus of live cells to form Cer-SiR. Cer-SiR is benign to cellular function, localizes within the Golgi at a high density, and is sufficiently photostable to enable visualization of Golgi structure and dynamics by 3D confocal or long time-lapse STED microscopy.

  19. Full control of ligand positioning reveals spatial thresholds for T cell receptor triggering.

    PubMed

    Cai, Haogang; Muller, James; Depoil, David; Mayya, Viveka; Sheetz, Michael P; Dustin, Michael L; Wind, Shalom J

    2018-04-30

    Elucidating the rules for receptor triggering in cell-cell and cell-matrix contacts requires precise control of ligand positioning in three dimensions. Here, we use the T cell receptor (TCR) as a model and subject T cells to different geometric arrangements of ligands, using a nanofabricated single-molecule array platform. This comprises monovalent TCR ligands anchored to lithographically patterned nanoparticle clusters surrounded by mobile adhesion molecules on a supported lipid bilayer. The TCR ligand could be co-planar with the supported lipid bilayer (2D), excluding the CD45 transmembrane tyrosine phosphatase, or elevated by 10 nm on solid nanopedestals (3D), allowing closer access of CD45 to engaged TCR. The two configurations resulted in different T cell responses, depending on the lateral spacing between the ligands. These results identify the important contributions of lateral and axial components of ligand positioning and create a more complete foundation for receptor engineering for immunotherapy.

  20. Vibrational spectra of individual millimeter-size membrane patches using miniature infrared waveguides.

    PubMed Central

    Plunkett, S E; Jonas, R E; Braiman, M S

    1997-01-01

    We have used miniature planar IR waveguides, consisting of Ge strips 30-50 microm thick and 2 mm wide, as evanescent-wave sensors to detect the mid-(IR) evanescent-wave absorbance spectra of small areas of biomolecular monolayers and multilayers. Examples include picomolar quantities of an integral transmembrane protein (bacteriorhodopsin) and lipid (dimyristoyl phosphatidylcholine). IR bands due to the protein and lipid components of the plasma membrane of individual 1.5-mm-diameter devitellinized Xenopus laevis oocytes, submerged in buffer and sticking to the waveguide surface, were also detected. A significant improvement in sensitivity was observed, as compared to previous sizes and geometries of evanescent-wave sensors (e.g., commercially available internal reflection elements or tapered optical fibers). These measurements suggest the feasibility of using such miniature supported planar IR waveguides to observe structural changes in transmembrane proteins functioning in vivo in single cells. PMID:9336219

  1. Production of Isolated Giant Unilamellar Vesicles under High Salt Concentrations

    PubMed Central

    Stein, Hannah; Spindler, Susann; Bonakdar, Navid; Wang, Chun; Sandoghdar, Vahid

    2017-01-01

    The cell membrane forms a dynamic and complex barrier between the living cell and its environment. However, its in vivo studies are difficult because it consists of a high variety of lipids and proteins and is continuously reorganized by the cell. Therefore, membrane model systems with precisely controlled composition are used to investigate fundamental interactions of membrane components under well-defined conditions. Giant unilamellar vesicles (GUVs) offer a powerful model system for the cell membrane, but many previous studies have been performed in unphysiologically low ionic strength solutions which might lead to altered membrane properties, protein stability and lipid-protein interaction. In the present work, we give an overview of the existing methods for GUV production and present our efforts on forming single, free floating vesicles up to several tens of μm in diameter and at high yield in various buffer solutions with physiological ionic strength and pH. PMID:28243205

  2. Autophagy in adipose tissue biology.

    PubMed

    Zhang, Yong; Zeng, Xiangang; Jin, Shengkan

    2012-12-01

    Obesity, which predisposes individuals to type II diabetes and cardiovascular diseases, results from accumulation of white adipose tissue (WAT). WAT comprises mainly white adipocytes that have a unique cellular structure in which almost the entire intracellular space is occupied by one single lipid droplet. The cytoplasm envelopes this lipid droplet and occupies negligible space. Differentiation of WAT, or adipogenesis, requires dramatic cytoplasmic reorganization, including a dynamic change in mitochondrial mass. Autophagy is a major cytoplasmic degradation pathway and a primary pathway for mitochondrial degradation. Recent studies indicate that autophagy is implicated in adipogenesis. In this review, we summarize our current knowledge on autophagy in adipose tissue biology, with the emphasis on its role in mitochondrial degradation. Adipose tissue is a central component for whole-body energy homeostasis regulation. Advancement in this research area may provide novel venues for the intervention of obesity and obesity related diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Combination of 1H nuclear magnetic resonance spectroscopy and principal component analysis to evaluate the lipid fluidity of flutamide-encapsulated lipid nanoemulsions.

    PubMed

    Takegami, Shigehiko; Ueyama, Keita; Konishi, Atsuko; Kitade, Tatsuya

    2018-06-06

    The lipid fluidity of various lipid nanoemulsions (LNEs) without and with flutamide (FT) and containing one of two neutral lipids, one of four phosphatidylcholines as a surfactant, and sodium palmitate as a cosurfactant was investigated by the combination of 1 H nuclear magnetic resonance (NMR) spectroscopy and principal component analysis (PCA). In the 1 H NMR spectra, the peaks from the methylene groups of the neutral lipids and surfactants for all LNE preparations showed downfield shifts with increasing temperature from 20 to 60 °C. PCA was applied to the 1 H NMR spectral data obtained for the LNEs. The PCA resulted in a model in which the first two principal components (PCs) extracted 88% of the total spectral variation; the first PC (PC-1) axis and second PC (PC-2) axis accounted for 73 and 15%, respectively, of the total spectral variation. The Score-1 values for PC-1 plotted against temperature revealed the existence of two clusters, which were defined by the neutral lipid of the LNE preparations. Meanwhile, the Score-2 values decreased with rising temperature and reflected the increase in lipid fluidity of each LNE preparation, consistent with fluorescence anisotropy measurements. In addition, the changes of Score-2 values with temperature for LNE preparations with FT were smaller than those for LNE preparations without FT. This indicates that FT encapsulated in LNE particles markedly suppressed the increase in lipid fluidity of LNE particles with rising temperature. Thus, PCA of 1 H NMR spectra will become a powerful tool to analyze the lipid fluidity of lipid nanoparticles. Graphical abstract ᅟ.

  4. Lipid modulatory activities of Cichorium glandulosum Boiss et Huet are mediated by multiple components within hepatocytes

    PubMed Central

    Ding, Lin; Liu, Jun-Lin; Hassan, Waseem; Wang, Lu-Lu; Yan, Fang-Rong; Shang, Jing

    2014-01-01

    To investigate a possible methodology of exploiting herbal medicine and design polytherapy for the treatment of non-alcoholic fatty liver disease (NAFLD), we have made use of Cichorium glandulosum Boiss et Huet (CG), a traditional Chinese herbal medicine that has been proven to be effective in treating hepatic diseases. Here, we report that the extract of CG effectively reduced lipid accumulation under conditions of lipid overloading in vivo and in vitro (in a rat high-fat diet model and a hepG2 cell model of free fatty acid treatment). CG extract also protected hepatocytes from injury and inflammation to aid its lipid-lowering properties (in a rat high-fat diet model and a L02 cell model of acetaminophen treatment). Serum chemistry analysis accompanied by in vitro drug screening confirmed that CG-4, CG-10 and CG-14 are the lipo-effective components of CG. Western blotting analysis revealed that these components can regulate key lipid targets at the molecular level, including CD36, FATP5 and PPAR-α, thus the lipid oxidation and lipid absorption pathways. Finally, we adopted the experimental design and statistical method to calculate the best combination proportion (CG-4: CG-10: CG-14 = 2.065: 1.782: 2.153) to optimize its therapeutic effect. PMID:24797163

  5. Egg white hydrolysate inhibits oxidation in mayonnaise and a model system.

    PubMed

    Kobayashi, Hideaki; Sasahara, Ryou; Yoda, Shoichi; Kotake-Nara, Eiichi

    2017-06-01

    The flavor deterioration of mayonnaise is induced by iron, which is released from egg yolk phosvitin under acidic conditions and promotes lipid oxidation. To prevent oxidative deterioration, natural components, rather than synthetic chemicals such as ethylenediaminetetraacetic acid have been required by consumers. In the present study, we evaluated the inhibitory effects of three egg white components with the same amino acid composition, namely egg white protein, hydrolysate, and the amino acid mixture, on lipid oxidation in mayonnaise and an acidic egg yolk solution as a model system. We found that the hydrolysate had the strongest inhibitory effect on lipid oxidation among the three components. The mechanism underlying the antioxidant effect was associated with Fe 2+ -chelating activity. Thus, egg white hydrolysate may have the potential as natural inhibitors of lipid oxidation in mayonnaise.

  6. Platform for Lipid Based Nanocarriers' Formulation Components and their Potential Effects: A Literature Review.

    PubMed

    Farid, Ragwa Mohamed; Youssef, Nancy Abdel Hamid Abou; Kassem, Abeer Ahmed

    2017-11-27

    Lipid based nanocarriers have gained recently enormous interest for pharmaceutical application. They have the potential to provide controlled drug release and to target the drug to a specific area. In addition, lipid based nanocarriers can improve the bioavailability of drugs suffering from high hepatic first-pass metabolism, by enhancing their transport via the lymphatic system. The main components of lipid based nanocarriers are lipids and surfactants. Both have great influence on the prepared lipid based systems characteristics. The criteria for their selection are much related to physicochemical properties of the drug and the required administration route. This work gives an overview on the effect of both the type and amount of lipids and surfactants used in the manufacture of lipid based nanocarriers on their behavior and characteristics. Recent studies revealed that the properties of the final product including; particle size, homogeneity, drug loading capacity, zeta potential, drug release profile, stability, permeability, pharmacokinetic properties, crystallinity and cytotoxicity, may be significantly influenced not only by the type but also the amount of the lipids and/or surfactants included in the formulation of the lipid based nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. A bicontinuous tetrahedral structure in a liquid-crystalline lipid

    NASA Astrophysics Data System (ADS)

    Longley, William; McIntosh, Thomas J.

    1983-06-01

    The structure of most lipid-water phases can be visualized as an ordered distribution of two liquid media, water and hydrocarbons, separated by a continuous surface covered by the polar groups of the lipid molecules1. In the cubic phases in particular, rod-like elements are linked into three-dimensional networks1,2. Two of these phases (space groups Ia3d and Pn3m) contain two such three-dimensional networks mutually inter-woven and unconnected. Under the constraints of energy minimization3, the interface between the components in certain of these `porous fluids' may well resemble one of the periodic minimal surface structures of the type described mathematically by Schwarz4,5. A structure of this sort has been proposed for the viscous isotropic (cubic) form of glycerol monooleate (GMO) by Larsson et al.6 who suggested that the X-ray diagrams of Lindblom et al.7 indicated a body-centred crystal structure in which lipid bilayers might be arranged as in Schwarz's octahedral surface4. We have now found that at high water contents, a primitive cubic lattice better fits the X-ray evidence with the material in the crystal arranged in a tetrahedral way. The lipid appears to form a single bilayer, continuous in three dimensions, separating two continuous interlinked networks of water. Each of the water networks has the symmetry of the diamond crystal structure and the bilayer lies in the space between them following a surface resembling Schwarz's tetrahedral surface4.

  8. Tripartite assembly of RND multidrug efflux pumps

    NASA Astrophysics Data System (ADS)

    Daury, Laetitia; Orange, François; Taveau, Jean-Christophe; Verchère, Alice; Monlezun, Laura; Gounou, Céline; Marreddy, Ravi K. R.; Picard, Martin; Broutin, Isabelle; Pos, Klaas M.; Lambert, Olivier

    2016-02-01

    Tripartite multidrug efflux systems of Gram-negative bacteria are composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. They are assumed to form ducts inside the periplasm facilitating drug exit across the outer membrane. Here we present the reconstitution of native Pseudomonas aeruginosa MexAB-OprM and Escherichia coli AcrAB-TolC tripartite Resistance Nodulation and cell Division (RND) efflux systems in a lipid nanodisc system. Single-particle analysis by electron microscopy reveals the inner and outer membrane protein components linked together via the periplasmic adaptor protein. This intrinsic ability of the native components to self-assemble also leads to the formation of a stable interspecies AcrA-MexB-TolC complex suggesting a common mechanism of tripartite assembly. Projection structures of all three complexes emphasize the role of the periplasmic adaptor protein as part of the exit duct with no physical interaction between the inner and outer membrane components.

  9. Intravenous Lipid Emulsions in Parenteral Nutrition123

    PubMed Central

    Fell, Gillian L; Nandivada, Prathima; Gura, Kathleen M; Puder, Mark

    2015-01-01

    Fat is an important macronutrient in the human diet. For patients with intestinal failure who are unable to absorb nutrients via the enteral route, intravenous lipid emulsions play a critical role in providing an energy-dense source of calories and supplying the essential fatty acids that cannot be endogenously synthesized. Over the last 50 y, lipid emulsions have been an important component of parenteral nutrition (PN), and over the last 10–15 y many new lipid emulsions have been manufactured with the goal of improving safety and efficacy profiles and achieving physiologically optimal formulations. The purpose of this review is to provide a background on the components of lipid emulsions, their role in PN, and to discuss the lipid emulsions available for intravenous use. Finally, the role of parenteral fat emulsions in the pathogenesis and management of PN-associated liver disease in PN-dependent pediatric patients is reviewed. PMID:26374182

  10. Zilpaterol hydrochloride affects cellular muscle metabolism and lipid components of ten different muscles in feedlot heifers

    USDA-ARS?s Scientific Manuscript database

    This study determined if zilpaterol hydrochloride (ZH) altered muscle metabolism and lipid components of ten muscles. Crossbred heifers were either supplemented with ZH (n = 9) or not (Control; n = 10). Muscle tissue was collected (adductor femoris, biceps femoris, gluteus medius, infraspinatus, lat...

  11. A Hybrid Coarse-graining Approach for Lipid Bilayers at Large Length and Time Scales

    PubMed Central

    Ayton, Gary S.; Voth, Gregory A.

    2009-01-01

    A hybrid analytic-systematic (HAS) coarse-grained (CG) lipid model is developed and employed in a large-scale simulation of a liposome. The methodology is termed hybrid analyticsystematic as one component of the interaction between CG sites is variationally determined from the multiscale coarse-graining (MS-CG) methodology, while the remaining component utilizes an analytic potential. The systematic component models the in-plane center of mass interaction of the lipids as determined from an atomistic-level MD simulation of a bilayer. The analytic component is based on the well known Gay-Berne ellipsoid of revolution liquid crystal model, and is designed to model the highly anisotropic interactions at a highly coarse-grained level. The HAS CG approach is the first step in an “aggressive” CG methodology designed to model multi-component biological membranes at very large length and timescales. PMID:19281167

  12. Screening molecular associations with lipid membranes using natural abundance 13C cross-polarization magic-angle spinning NMR and principal component analysis.

    PubMed

    Middleton, David A; Hughes, Eleri; Madine, Jillian

    2004-08-11

    We describe an NMR approach for detecting the interactions between phospholipid membranes and proteins, peptides, or small molecules. First, 1H-13C dipolar coupling profiles are obtained from hydrated lipid samples at natural isotope abundance using cross-polarization magic-angle spinning NMR methods. Principal component analysis of dipolar coupling profiles for synthetic lipid membranes in the presence of a range of biologically active additives reveals clusters that relate to different modes of interaction of the additives with the lipid bilayer. Finally, by representing profiles from multiple samples in the form of contour plots, it is possible to reveal statistically significant changes in dipolar couplings, which reflect perturbations in the lipid molecules at the membrane surface or within the hydrophobic interior.

  13. Oxidative stability of fermented meat products.

    PubMed

    Wójciak, Karolina M; Dolatowski, Zbigniew J

    2012-04-02

    Meat and meat products, which form a major part of our diet, are very susceptible to quality changes resulting from oxidative processes. Quality of fermented food products depends on the course of various physicochemical and biochemical processes. Oxidation of meat components in raw ripening products may be the result of enzymatic changes occurring as a result of activity of enzymes originating in tissues and microorganisms, as well as lipid peroxidation by free radicals. Primary and secondary products of lipid oxidation are extremely reactive and react with other components of meat, changing their physical and chemical properties. Oxidised proteins take on a yellowish, red through brown hue. Products of lipid and protein degradation create a specific flavour and aroma ; furthermore, toxic substances (such as biogenic amines or new substances) are formed as a result of interactions between meat components, e.g. protein-lipid or protein-protein combinations, as well as transverse bonds in protein structures. Oxidation of meat components in raw ripening products is a particularly difficult process. On the one hand it is essential, since the enzymatic and non-enzymatic lipid oxidation creates flavour and aroma compounds characteristic for ripening products; on the other hand excessive amounts or transformations of those compounds may cause the fermented meat product to become a risk to health.

  14. Role of Components in the Formation of Self-microemulsifying Drug Delivery Systems.

    PubMed

    Gurram, A K; Deshpande, P B; Kar, S S; Nayak, Usha Y; Udupa, N; Reddy, M S

    2015-01-01

    Pharmaceutical research is focused in designing novel drug delivery systems to improve the bioavailability of poorly water soluble drugs. Self-microemulsifying drug delivery systems, one among the lipid-based dosage forms were proven to be promising in improving the oral bioavailability of such drugs by enhancing solubility, permeability and avoiding first-pass metabolism via enhanced lymphatic transport. Further, they have been successful in avoiding both inter and intra individual variations as well as the dose disproportionality. Aqueous insoluble drugs, in general, show greater solubility in lipid based excipients, and hence they are formulated as lipid based drug delivery systems. The extent of solubility of a hydrophobic drug in lipid excipients i.e. oil, surfactant and co-surfactant (components of self-microemulsifying drug delivery systems) greatly affects the drug loading and in producing stable self-microemulsifying drug delivery systems. The present review highlighted the influence of physicochemical factors and structural features of the hydrophobic drug on its solubility in lipid excipients and an attempt was made to explore the role of each component of self-microemulsifying drug delivery systems in the formation of stable microemulsion upon dilution.

  15. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  16. Edible lipid nanoparticles: digestion, absorption, and potential toxicity.

    PubMed

    McClements, David Julian

    2013-10-01

    Food-grade nanoemulsions are being increasingly used in the food and beverage industry to encapsulate, protect, and deliver hydrophobic functional components, such as oil-soluble flavors, colors, preservatives, vitamins, and nutraceuticals. These nanoemulsions contain lipid nanoparticles (radius <100 nm) whose physicochemical characteristics (e.g., composition, dimensions, structure, charge, and physical state) can be controlled by selection of appropriate ingredients and fabrication techniques. Nanoemulsions have a number of potential advantages over conventional emulsions for applications within the food industry: higher stability to particle aggregation and gravitational separation; higher optical transparency; and, increased bioavailability of encapsulated components. On the other hand, there are also some risks associated with consumption of lipid nanoparticles that should be considered before they are widely utilized, such as their ability to alter the fate of bioactive components within the gastrointestinal tract and the potential toxicity of some of the components used in their fabrication (e.g., surfactants and organic solvents). This article provides an overview of the current status of the biological fate and potential toxicity of food-grade lipid nanoparticles suitable for utilization within the food and beverage industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Anti-Brownian ELectrokinetic (ABEL) Trapping of Single High Density Lipoprotein (HDL) Particles

    NASA Astrophysics Data System (ADS)

    Bockenhauer, Samuel; Furstenberg, Alexandre; Wang, Quan; Devree, Brian; Jie Yao, Xiao; Bokoch, Michael; Kobilka, Brian; Sunahara, Roger; Moerner, W. E.

    2010-03-01

    The ABEL trap is a novel device for trapping single biomolecules in solution for extended observation. The trap estimates the position of a fluorescently-labeled object as small as ˜10 nm in solution and then applies a feedback electrokinetic drift every 20 us to trap the object by canceling its Brownian motion. We use the ABEL trap to study HDL particles at the single-copy level. HDL particles, essential in regulation of ``good'' cholesterol in humans, comprise a small (˜10 nm) lipid bilayer disc bounded by a belt of apolipoproteins. By engineering HDL particles with single fluorescent donor/acceptor probes and varying lipid compositions, we are working to study lipid diffusion on small length scales. We also use HDL particles as hosts for single transmembrane receptors, which should enable study of receptor conformational dynamics on long timescales.

  18. Abnormal lipid metabolism in skeletal muscle tissue of patients with muscular dystrophy: In vitro, high-resolution NMR spectroscopy based observation in early phase of the disease.

    PubMed

    Srivastava, Niraj Kumar; Yadav, Ramakant; Mukherjee, Somnath; Pal, Lily; Sinha, Neeraj

    2017-05-01

    Qualitative (assignment of lipid components) and quantitative (quantification of lipid components) analysis of lipid components were performed in skeletal muscle tissue of patients with muscular dystrophy in early phase of the disease as compared to control/normal subjects. Proton nuclear magnetic resonance (NMR) spectroscopy based experiment was performed on the lipid extract of skeletal muscle tissue of patients with muscular dystrophy in early phase of the disease and normal individuals for the analysis of lipid components [triglycerides, phospholipids, total cholesterol and unsaturated fatty acids (arachidonic, linolenic and linoleic acid)]. Specimens of muscle tissue were obtained from patients with Duchenne muscular dystrophy (DMD) [n=11; Age, Mean±SD; 9.2±1.4years; all were males], Becker muscular dystrophy (BMD) [n=12; Age, Mean±SD; 21.4±5.0years; all were males], facioscapulohumeral muscular dystrophy (FSHD) [n=11; Age, Mean±SD; 23.7±7.5years; all were males] and limb girdle muscular dystrophy-2B (LGMD-2B) [n=18; Age, Mean±SD; 24.2±4.1years; all were males]. Muscle specimens were also obtained from [n=30; Mean age±SD 23.1±6.0years; all were males] normal/control subjects. Assigned lipid components in skeletal muscle tissue were triglycerides (TG), phospholipids (PL), total cholesterol (CHOL) and unsaturated fatty acids (arachidonic, linolenic and linoleic acid)]. Quantity of lipid components was observed in skeletal muscle tissue of DMD, BMD, FSHD and LGMD-2B patients as compared to control/normal subjects. TG was significantly elevated in muscle tissue of DMD, BMD and LGMD-2B patients. Increase level of CHOL was found only in muscle of DMD patients. Level of PL was found insignificant for DMD, BMD and LGMD-2B patients. Quantity of TG, PL and CHOL was unaltered in the muscle of patients with FSHD as compared to control/normal subjects. Linoleic acids were significantly reduced in muscle tissue of DMD, BMD, FSHD and LGMD-2B as compared to normal/control individuals. Results clearly indicate alteration of lipid metabolism in patients with muscular dystrophy in early phase of the disease. Moreover, further evaluation is required to understand whether these changes are primary or secondary to muscular dystrophy. In future, these findings may prove an additional and improved approach for the diagnosis of different forms of muscular dystrophy. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Application of refractometry to quality assurance monitoring of parenteral nutrition solutions.

    PubMed

    Chang, Wei-Kuo; Chao, You-Chen; Yeh, Ming-Kung

    2008-01-01

    Parenteral nutrition (PN) solution contains various concentrations of dextrose, amino acids, lipids, vitamins, electrolytes, and trace elements. Incorrect preparation of PN solution could lead to patient death. In this study we used the refractive index as a quality assurance tool to monitor the preparation of PN solution. Refractive indices of single nutrient components and PN solutions consisting of various concentrations of dextrose, amino acids, electrolytes, and lipids were measured. A mathematical equation and its linear plot were generated then used to predict the refractive index of the PN solution. The best-fit refractive index for PN solution (i.e., the predicted refractive index)=0.9798x(% dextrose)+1.2889x(% amino acids)+1.1017x(% lipids)+0.9440x(% sum of the electrolytes)+0.5367 (r2=0.99). This equation was validated by comparing the measured refractive indices of 500 clinical PN solutions to their predicted refractive indices. We found that 2 of the 500 prepared samples (0.4%) had less than the predicted refractive index (<95%). Refractive index can be used as a reliable quality assurance tool for monitoring PN preparation. Such information can be obtained at the bedside and used to confirm the accuracy of the PN solution composition.

  20. MicroRNA-277 targets insulin-like peptides 7 and 8 to control lipid metabolism and reproduction in Aedes aegypti mosquitoes.

    PubMed

    Ling, Lin; Kokoza, Vladimir A; Zhang, Changyu; Aksoy, Emre; Raikhel, Alexander S

    2017-09-19

    Hematophagous female mosquitoes transmit numerous devastating human diseases, including malaria, dengue fever, Zika virus, and others. Because of their obligatory requirement of a vertebrate blood meal for reproduction, these mosquitoes need a lot of energy; therefore, understanding the molecular mechanisms linking metabolism and reproduction is of particular importance. Lipids are the major energy store providing the fuel required for host seeking and reproduction. They are essential components of the fat body, a metabolic tissue that is the insect analog of vertebrate liver and adipose tissue. In this study, we found that microRNA-277 (miR-277) plays an important role in regulating mosquito lipid metabolism. The genetic disruption of miR-277 using the CRISPR-Cas9 system led to failures in both lipid storage and ovary development. miR-277 mimic injection partially rescued these phenotypic manifestations. Examination of subcellular localization of FOXO protein via CRISPR-assisted, single-stranded oligodeoxynucleotide-mediated homology-directed repair revealed that insulin signaling is up-regulated in response to miR-277 depletion. In silico target prediction identified that insulin-like peptides 7 and 8 ( ilp7 and ilp8 ) are putative targets of miR-277; RNA immunoprecipitation and a luciferase reporter assay confirmed that ilp7 and ilp8 are direct targets of this miRNA. CRISPR-Cas9 depletion of ilp7 and ilp8 led to metabolic and reproductive defects. These depletions identified differential actions of ILP7 and ILP8 in lipid homeostasis and ovarian development. Thus, miR-277 plays a critical role in mosquito lipid metabolism and reproduction by targeting ilp7 and ilp8 , and serves as a monitor to control ILP7 and ILP8 mRNA levels.

  1. The physical mechanism of "inhomogeneous" magnetization transfer MRI

    NASA Astrophysics Data System (ADS)

    Manning, Alan P.; Chang, Kimberley L.; MacKay, Alex L.; Michal, Carl A.

    2017-01-01

    Inhomogeneous MT (ihMT) is a new magnetic resonance imaging technique that shows promise for myelin selectivity. Materials with a high proportion of lipids, such as white matter tissue, show a reduced intensity in magnetic resonance images acquired with selective prepulses at positive and negative offsets simultaneously compared to images with a single positive or negative offset prepulse of the same power. This effect was initially explained on the basis of hole-burning in inhomogeneously broadened lines of the lipid proton spin system. Our results contradict this explanation. ihMT in lipids can be understood with a simple spin-1 model of a coupled methylene proton pair. More generally, Provotorov theory can be used to consider the evolution of dipolar order in the non-aqueous spins during the prepulses. We show that the flip-angle dependence of the proton spectrum of a model lipid system (Prolipid-161) following dipolar order generation is in quantitative agreement with the model. In addition, we directly observe dipolar order and ihMT signals in the non-aqueous components of Prolipid-161 and homogeneously-broadened systems (hair, wood, and tendon) following ihMT prepulses. The observation of ihMT signals in tendon suggests that the technique may not be as specific to myelin as previously thought. Our work shows that ihMT occurs because of dipolar couplings alone, not from a specific type of spectral line broadening as its name suggests.

  2. Lipid characterization of individual porcine oocytes by dual mode DESI-MS and data fusion.

    PubMed

    Pirro, Valentina; Oliveri, Paolo; Ferreira, Christina Ramires; González-Serrano, Andrés Felipe; Machaty, Zoltan; Cooks, Robert Graham

    2014-10-27

    The development of sensitive measurements to analyze individual cells is of relevance to elucidate specialized roles or metabolic functions of each cell under physiological and pathological conditions. Lipids play multiple and critical roles in cellular functions and the application of analytical methods in the lipidomics area is of increasing interest. In this work, in vitro maturation of porcine oocytes was studied. Two independent sources of chemical information (represented by mass spectra in the positive and negative ion modes) from single oocytes (immature oocytes, 24-h and 44-h in vitro matured oocytes) were acquired by using desorption electrospray ionization-mass spectrometry (DESI-MS). Low and mid-level data fusion strategies are presented with the aim of better exploring the large amount of chemical information contained in the two mass spectrometric lipid profiles. Data were explored by principal component analysis (PCA) within the two multi-block approaches to include information on free fatty acids, phospholipids, cholesterol-related molecules, di- and triacylglycerols. After data fusion, clearer differences among immature and in vitro matured porcine oocytes were observed, which provide novel information regarding lipid metabolism throughout oocyte maturation. In particular, changes in TAG composition, as well as increase in fatty acid metabolism and membrane complexity were evidenced during the in vitro maturation process. This information can assist the improvement of in vitro embryo production for porcine species. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Identification of trapped and boundary lipid binding sites in M13 coat protein/lipid complexes by deuterium NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Gorkom, L.C.; Horvath, L.I.; Hemminga, M.A.

    The major coat protein of M13 bacteriophage has been incorporated into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine, deuterated in the trimethyl segments of the choline headgroup (DMPC-d9). Two-component deuterium and phosphorus-31 NMR spectra have been observed from bilayer complexes containing the coat protein, indicating slow exchange (on the deuterium quadrupole anisotropy and phosphorus-31 chemical shift averaging time scales) of lipid molecules of less than 10(3) Hz between two motionally distinct environments in the complexes. The fraction of the isotropic spectral component increases with increasing M13 protein concentration, and this component is attributed to lipid headgroups, which are disordered relative to their order inmore » protein-free bilayers. The activation energy of the fast local motions of the trimethyl groups of the choline residue in the headgroup decreases from 23 kJ mol-1 in the pure lipid bilayers to 20 kJ mol-1 for the protein-associated lipid headgroups. The chemical exchange rate of lipid molecules between the two motionally distinct environments has been estimated to be 20-50 Hz by steady-state line-shape simulations of the deuterium spectra of DMPC-d9/M13 coat protein complexes using exchange-coupled modified Bloch equations. The off-rate was, as expected from one-to-one exchange, independent of the L/P ratio; tau off -1 = 0.23 kHz. It is suggested that the protein-associated lipid may be trapped between closely packed parallel aggregates of M13 coat protein and that the high local concentration of protein in a one-dimensional arrangement in lipid bilayers may be required for the fast reassembly of phage particles before release from an infected cell.« less

  4. Proteomic analysis of BmN cell lipid rafts reveals roles in Bombyx mori nucleopolyhedrovirus infection.

    PubMed

    Hu, Xiaolong; Zhu, Min; Liang, Zi; Kumar, Dhiraj; Chen, Fei; Zhu, Liyuan; Kuang, Sulan; Xue, Renyu; Cao, Guangli; Gong, Chengliang

    2017-04-01

    The mechanism of how Bombyx mori nucleopolyhedrovirus (BmNPV) enters cells is unknown. The primary components of membrane lipid rafts are proteins and cholesterol, and membrane lipid rafts are thought to be an active region for host-viral interactions. However, whether they contribute to the entry of BmNPV into silkworm cells remains unclear. In this study, we explored the membrane protein components of lipid rafts from BmN cells with mass spectrometry (MS). Proteins and cholesterol were investigated after establishing infection with BmNPV in BmN cells. In total, 222 proteins were identified in the lipid rafts, and Gene Ontology (GO) annotation analysis showed that more than 10% of these proteins had binding and catalytic functions. We then identified proteins that potentially interact between lipid rafts and BmNPV virions using the Virus Overlay Protein Blot Assay (VOPBA). A total of 65 proteins were analyzed with MS, and 7 were predicted to be binding proteins involved in BmNPV cellular invasion, including actin, kinesin light chain-like isoform X2, annexin B13, heat-shock protein 90, barrier-to-autointegration factor B-like and serine/arginine-rich splicing factor 1 A-like. When the cholesterol of the lipid rafts from the membrane was depleted by methyl-β-cyclodextrin (MβCD), BmNPV entry into BmN cells was blocked. However, supplying cholesterol into the medium rescued the BmNPV infection ability. These results show that membrane lipid rafts may be the active regions for the entry of BmNPV into cells, and the components of membrane lipid rafts may be candidate targets for improving the resistance of the silkworm to BmNPV.

  5. Prediction of Adult Dyslipidemia Using Genetic and Childhood Clinical Risk Factors: The Cardiovascular Risk in Young Finns Study.

    PubMed

    Nuotio, Joel; Pitkänen, Niina; Magnussen, Costan G; Buscot, Marie-Jeanne; Venäläinen, Mikko S; Elo, Laura L; Jokinen, Eero; Laitinen, Tomi; Taittonen, Leena; Hutri-Kähönen, Nina; Lyytikäinen, Leo-Pekka; Lehtimäki, Terho; Viikari, Jorma S; Juonala, Markus; Raitakari, Olli T

    2017-06-01

    Dyslipidemia is a major modifiable risk factor for cardiovascular disease. We examined whether the addition of novel single-nucleotide polymorphisms for blood lipid levels enhances the prediction of adult dyslipidemia in comparison to childhood lipid measures. Two thousand four hundred and twenty-two participants of the Cardiovascular Risk in Young Finns Study who had participated in 2 surveys held during childhood (in 1980 when aged 3-18 years and in 1986) and at least once in a follow-up study in adulthood (2001, 2007, and 2011) were included. We examined whether inclusion of a lipid-specific weighted genetic risk score based on 58 single-nucleotide polymorphisms for low-density lipoprotein cholesterol, 71 single-nucleotide polymorphisms for high-density lipoprotein cholesterol, and 40 single-nucleotide polymorphisms for triglycerides improved the prediction of adult dyslipidemia compared with clinical childhood risk factors. Adjusting for age, sex, body mass index, physical activity, and smoking in childhood, childhood lipid levels, and weighted genetic risk scores were associated with an increased risk of adult dyslipidemia for all lipids. Risk assessment based on 2 childhood lipid measures and the lipid-specific weighted genetic risk scores improved the accuracy of predicting adult dyslipidemia compared with the approach using only childhood lipid measures for low-density lipoprotein cholesterol (area under the receiver-operating characteristic curve 0.806 versus 0.811; P =0.01) and triglycerides (area under the receiver-operating characteristic curve 0.740 versus area under the receiver-operating characteristic curve 0.758; P <0.01). The overall net reclassification improvement and integrated discrimination improvement were significant for all outcomes. The inclusion of weighted genetic risk scores to lipid-screening programs in childhood could modestly improve the identification of those at highest risk of dyslipidemia in adulthood. © 2017 American Heart Association, Inc.

  6. Lipid Profile Components and Risk of Ischemic Stroke

    PubMed Central

    Willey, Joshua Z.; Xu, Qiang; Boden-Albala, Bernadette; Paik, Myunghee C.; Moon, Yeseon Park; Sacco, Ralph L.; Elkind, Mitchell S. V.

    2010-01-01

    Objective To explore the relationship between lipid profile components and incident ischemic stroke in a stroke-free prospective cohort. Design Population-based prospective cohort study. Setting Northern Manhattan, New York. Patients Stroke-free community residents. Intervention As part of the Northern Manhattan Study, baseline fasting blood samples were collected on stroke-free community residents followed up for a mean of 7.5 years. Main Outcome Measures Cox proportional hazard models were used to calculate hazard ratios and 95% confidence intervals for lipid profile components and ischemic stroke after adjusting for demographic and risk factors. In secondary analyses, we used repeated lipid measures over 5 years from a 10% sample of the population to calculate the change per year of each of the lipid parameters and to impute time-dependent lipid parameters for the full cohort. Results After excluding those with a history of myocardial infarction, 2940 participants were available for analysis. Baseline high-density lipoprotein cholesterol, triglyceride, and total cholesterol levels were not associated with risk of ischemic stroke. Low-density lipoprotein cholesterol (LDL-C) and non–high-density lipoprotein cholesterol levels were associated with a paradoxical reduction in risk of stroke. There was an interaction with use of cholesterol-lowering medication on follow-up, such that LDL-C level was only associated with a reduction in stroke risk among those taking medications. An LDL-C level greater than 130 mg/dL as a time-dependent covariate showed an increased risk of ischemic stroke (adjusted hazard ratio, 3.81; 95% confidence interval, 1.53–9.51). Conclusions Baseline lipid panel components were not associated with an increased stroke risk in this cohort. Treatment with cholesterol-lowering medications and changes in LDL-C level over time may have attenuated the risk in this population, and lipid measurements at several points may be a better marker of stroke risk. PMID:19901173

  7. Lipids in DDGS

    USDA-ARS?s Scientific Manuscript database

    Distillers dried grains with soluble (DDGS) are one of the main coproducts of ethanol production from using the dry-grinding process. The lipids from corn or sorghum are not utilized in ethanol production, and are thus concentrated in DDGS. The main lipid components in corn and sorghum DDGS are tr...

  8. Effects of organic composition on the anaerobic biodegradability of food waste.

    PubMed

    Li, Yangyang; Jin, Yiying; Borrion, Aiduan; Li, Hailong; Li, Jinhui

    2017-11-01

    This work investigated the influence of carbohydrates, proteins and lipids on the anaerobic digestion of food waste (FW) and the relationship between the parameters characterising digestion. Increasing the concentrations of proteins and lipids, and decreasing carbohydrate content in FW, led to high buffering capacity, reduction of proteins (52.7-65.0%) and lipids (57.4-88.2%), and methane production (385-627 mLCH 4 /g volatile solid), while achieving a short retention time. There were no significant correlations between the reduction of organics, hydrolysis rate constant (0.25-0.66d -1 ) and composition of organics. Principal Component Analysis revealed that lipid, C, and N contents as well as the C/N ratio were the principal components for digestion. In addition, methane yield, the final concentrations of total ammonia nitrogen and free ammonia nitrogen, final pH values, and the reduction of proteins and lipids could be predicted by a second-order polynomial model, in terms of the protein and lipid weight fraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Specific Uptake of Lipid-Antibody-Functionalized LbL Microcarriers by Cells.

    PubMed

    Göse, Martin; Scheffler, Kira; Reibetanz, Uta

    2016-11-14

    The modular construction of Layer-by-Layer biopolymer microcarriers facilitates a highly specific design of drug delivery systems. A supported lipid bilayer (SLB) contributes to biocompatibility and protection of sensitive active agents. The addition of a lipid anchor equipped with PEG (shielding from opsonins) and biotin (attachment of exchangeable outer functional molecules) enhances the microcarrier functionality even more. However, a homogeneously assembled supported lipid bilayer is a prerequisite for a specific binding of functional components. Our investigations show that a tightly packed SLB improves the efficiency of functional components attached to the microcarrier's surface, as illustrated with specific antibodies in cellular application. Only a low quantity of antibodies is needed to obtain improved cellular uptake rates independent from cell type as compared to an antibody-functionalized loosely packed lipid bilayer or directly assembled antibody onto the multilayer. A fast disassembly of the lipid bilayer within endolysosomes exposing the underlying drug delivering multilayer structure demonstrates the suitability of LbL-microcarriers as a multifunctional drug delivery system.

  10. Water insoluble and soluble lipids for gene delivery.

    PubMed

    Mahato, Ram I

    2005-04-05

    Among various synthetic gene carriers currently in use, liposomes composed of cationic lipids and co-lipids remain the most efficient transfection reagents. Physicochemical properties of lipid/plasmid complexes, such as cationic lipid structure, cationic lipid to co-lipid ratio, charge ratio, particle size and zeta potential have significant influence on gene expression and biodistribution. However, most cationic lipids are toxic and cationic liposomes/plasmid complexes do not disperse well inside the target tissues because of their large particle size. To overcome the problems associated with cationic lipids, we designed water soluble lipopolymers for gene delivery to various cells and tissues. This review provides a critical discussion on how the components of water insoluble and soluble lipids affect their transfection efficiency and biodistribution of lipid/plasmid complexes.

  11. Evaluation of Physarum polycephalum plasmodial growth and lipid production using rice bran as a carbon source.

    PubMed

    Tran, Hanh; Stephenson, Steven; Pollock, Erik

    2015-08-01

    The myxomycete Physarum polycephalum appears to have remarkable potential as a lipid source for biodiesel production. The present study evaluated the use of rice bran as a carbon source and determined the medium components for optimum growth and lipid production for this organism. Optimization of medium components by response surface methodology showed that rice bran and yeast extract had significant influences on lipid and biomass production. The optimum medium consisted of 37.5 g/L rice bran, 0.79 g/L yeast extract and 12.5 g/L agar, and this yielded 7.5 g/L dry biomass and 0.9 g/L lipid after 5 days. The biomass and lipid production profiles revealed that these parameters increased over time and reached their maximum values (10.5 and 1.26 g/L, respectively) after 7 days. Physarum polycephalum growth decreased on the spent medium but using the latter increased total biomass and lipid concentrations to 14.3 and 1.72 g/L, respectively. An effective method for inoculum preparation was developed for biomass and lipid production by P. polycephalum on a low-cost medium using rice bran as the main carbon source. These results also demonstrated the feasibility of scaling up and reusing the medium for additional biomass and lipid production.

  12. Egg components and hatchling lipid reserves: parental investment in kinosternid turtles from the southeastern United States.

    PubMed

    Nagle, R D; Burke, V J; Congdon, J D

    1998-05-01

    We measured egg components and pre-ovulatory parental investment in kinosternid turtles (Kinosternon baurii, Kinosternon subrubrum, Sternotherus minor, and Sternotherus odoratus) from the southeastern USA. Allocation patterns were determined by comparing lipid content of eggs and hatchlings, to determine whether females of species with hatchlings that exhibit a delayed nest-emergence strategy: (1) allocate higher proportions of energy storage lipids to eggs, (2) produce hatchlings with higher levels of storage lipids, and (3) have higher levels of pre-ovulatory parental investment in comparison to species whose hatchlings exhibit immediate emergence. Whereas total non-polar lipid (NPL) proportions by dry mass of eggs varied significantly among species, NPL proportions of hatchlings were not significantly different. Pre-ovulatory parental investment in care (proportion of hatchling NPL to egg NPL) was 40, 50, and 55% for K. subrubrum, S. minor, and S. odoratus, respectively. Lipid class composition of eggs and hatchlings was studied to distinguish lipids allocated for energy storage from those allocated to other functions. For both eggs and hatchlings, individual lipid classes (triacylglycerol, triacylglycerol fatty acid, cholesterol, cholesterol ester, and phospholipid) as proportions of total lipid, were similar among species. The major lipid class component of eggs and hatchlings of all species was triacylglycerol (> 83%), an energy storage lipid. Substantial changes in lipid classes during embryogenesis were similar among species and included: (1) depletion of triacylglycerol, (2) increase in cholesterol esters, and (3) changes in phospholipid composition. Incubation time varied significantly among species, and appeared to be responsible for differential energy utilization during embryogenesis. Our results are inconsistent with the previously observed pattern that hatchlings exhibiting a delayed nest-emergence strategy are allocated higher proportions of energy storage lipids than those that exhibit immediate emergence. However, because the species that overwinters in the nest (K. subrubrum) hatches approximately 40 days later than the species that typically does not (S. odoratus), hatchling K. subrubrum may contain higher non-polar lipid proportions than hatchling S. odoratus during similar winter time periods. Kinosternid hatchlings contain enough stored lipids to support basal maintenance costs for substantial time periods. We suggest that such reserves may be critical to hatchling survival during a period of negative energy balance, regardless of nest emergence strategy.

  13. Inter- and intra-individual differences in skin hydration and surface lipids measured with mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ezerskaia, A.; Pereira, S. F.; Urbach, H. P.; Varghese, B.

    2016-03-01

    Skin health is characterized by heterogeneous system of water and lipids in upper layers providing protection from external environment and preventing loss of vital components of the body. Skin hydration (moisture) and sebum (skin surface lipids) are considered to be important factors in skin health; a right balance between these components is an indication of healthy skin and plays a central role in protecting and preserving skin integrity. In this manuscript we present inter- and intra-individual variation in skin hydration and surface lipids measured with a home-built experimental prototype based on infrared spectroscopy. Results show good agreement with measurements performed by commercially available instruments Corneometer and Sebumeter used for skin hydration and sebum measurements respectively.

  14. LIPIDS OF SARCINA LUTEA II.

    PubMed Central

    Albro, Phillip W.; Huston, Charles K.

    1964-01-01

    Albro, Phillip W. (Ft. Detrick, Frederick, Md.), and Charles K. Huston. Lipids of Sarcina lutea. II. Hydrocarbon content of the lipid extracts. J. Bacteriol. 88:981–986. 1964.—The hydrocarbon fraction from Sarcina lutea lipid extracts was characterized by a combination of thin-layer and gas-liquid chromatography and infrared spectroscopy. A total of 37 components were observed by gas-liquid chromatography of this material. A breakdown of the components into classes indicated a composition consisting of 88.9% n-saturates, 1.2% monoenes, 2.1% dienes, 5.0% trienes, and 0.6% branched-saturates. Less than 0.1% of the hydrocarbon material was aromatic. No attempt was made in this study to relate the composition to either origin or function in the cell. PMID:14222808

  15. Intramyocellular lipid quantification: repeatability with 1H MR spectroscopy.

    PubMed

    Torriani, Martin; Thomas, Bijoy J; Halpern, Elkan F; Jensen, Megan E; Rosenthal, Daniel I; Palmer, William E

    2005-08-01

    To prospectively determine the repeatability and variability of tibialis anterior intramyocellular lipid (IMCL) quantifications performed by using 1.5-T hydrogen 1 (1H) magnetic resonance (MR) spectroscopy in healthy subjects. Institutional review board approval and written informed consent were obtained for this Health Insurance Portability and Accountability Act-compliant study. The authors examined the anterior tibial muscles of 27 healthy subjects aged 19-48 years (12 men, 15 women; mean age, 25 years) by using single-voxel short-echo-time point-resolved 1H MR spectroscopy. During a first visit, the subjects underwent 1H MR spectroscopy before and after being repositioned in the magnet bore, with voxels carefully placed on the basis of osseous landmarks. Measurements were repeated after a mean interval of 12 days. All spectra were fitted by using Java-based MR user interface (jMRUI) and LCModel software, and lipid peaks were scaled to the unsuppressed water peak (at 4.7 ppm) and the total creatine peak (at approximately 3.0 ppm). A one-way random-effects variance components model was used to determine intraday and intervisit coefficients of variation (CVs). A power analysis was performed to determine the detectable percentage change in lipid measurements for two subject sample sizes. Measurements of the IMCL methylene protons peak at a resonance of 1.3 ppm scaled to the unsuppressed water peak (IMCL(W)) that were obtained by using jMRUI software yielded the lowest CVs overall (intraday and intervisit CVs, 13.4% and 14.4%, respectively). The random-effects variance components model revealed that nonbiologic factors (equipment and repositioning) accounted for 50% of the total variability in IMCL quantifications. Power analysis for a sample size of 20 subjects revealed that changes in IMCL(W) of greater than 15% could be confidently detected between 1H MR spectroscopic measurements obtained on different days. 1H MR spectroscopy is feasible for repeatable quantification of IMCL concentrations in longitudinal studies of muscle metabolism.

  16. LC-MS-Based Lipidomics and Automated Identification of Lipids Using the LipidBlast In-Silico MS/MS Library.

    PubMed

    Cajka, Tomas; Fiehn, Oliver

    2017-01-01

    This protocol describes the analysis, specifically the identification, of blood plasma lipids. Plasma lipids are extracted using methyl tert-butyl ether (MTBE), methanol, and water followed by separation and data acquisition of isolated lipids using reversed-phase liquid chromatography coupled to quadrupole/time-of-flight mass spectrometry (RPLC-QTOFMS) operated in MS/MS mode. For lipid identification, acquired MS/MS spectra are converted to the mascot generic format (MGF) followed by library search using the in-silico MS/MS library LipidBlast. Using this approach, lipid classes, carbon-chain lengths, and degree of unsaturation of fatty-acid components are annotated.

  17. Lipid and fatty acid analysis of the Plodia interpunctella granulosis virus (PiGV) envelope

    NASA Technical Reports Server (NTRS)

    Shastri-Bhalla, K.; Funk, C. J.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Virus envelope was isolated from Plodia interpunctella granulosis virus, produced in early fourth-instar larvae. Both polar and neutral lipids were analyzed by two-dimensional thin-layer chromatography. Fatty acid composition of various individual neutral and polar lipids was determined by gas-liquid chromatography. The major components of envelope neutral lipid were diacylglycerols. Palmitic acid and stearic acid were the major saturated fatty acids in both polar and neutral lipids. Whereas palmitoleic acid was the major unsaturated fatty acids in neutral lipids, oleic acid was the major unsaturated fatty acid in the polar lipids.

  18. Extraction and Analysis of Food Lipids

    USDA-ARS?s Scientific Manuscript database

    Along with proteins and carbohydrates, lipids are one of the main components of foods. Lipids are often defined as a group of biomolecules that are insoluble in water and soluble in organic solvents such as hexane, diethyl ether or chloroform. Modern methods for the extraction and analysis of lipi...

  19. COMPREHENSIVE RESPONSES OF LIPID CLASSES TO TOXIANTS AND INVOLVEMENT IN DISEASES

    EPA Science Inventory

    Along with genes and proteins, lipids are a key component of the cellular metabolome. Lipids can mediate the induction of some diseases such as atherosclerosis and also responses to some diseases, e.g., asthma. Pollutants such as ozone appear to induce biological responses throug...

  20. Analysis of early lipid oxidation in smoked, comminuted pork or poultry sausages with spices.

    PubMed

    Olsen, Elisabeth; Vogt, Gjermund; Veberg, Annette; Ekeberg, Dag; Nilsson, Astrid

    2005-09-21

    Dynamic headspace/gas chromatography-mass spectrometry (GC-MS), front-face fluorescence spectroscopy, and a gas-sensor array technique (electronic nose) have previously detected lipid oxidation in pork back fat or mechanically recovered poultry meat earlier than or at the same time as a sensory panel. The present study was focused on measurement of early lipid oxidation in a more complicated product (freeze-stored, smoked sausages with spices). During the storage time, formation of components contributing to rancid odor and flavor (e.g., hexanal and 1-penten-3-ol) could be monitored with dynamic headspace/GC-MS. The GC-MS data also showed a decrease in 2-furancarboxaldehyde, which could indicate loss of Maillard type components often associated with acidic or meat odor and flavor. The fluorescence spectra were difficult to interpret, probably due to the simultaneous influence from increasing levels of lipid oxidation products and loss of fluorescent Maillard or spice components. The gas-sensor array responses were dominated by signals from, e.g., spice and smoke compounds.

  1. Assessing an effective feeding strategy to optimize crude glycerol utilization as sustainable carbon source for lipid accumulation in oleaginous yeasts.

    PubMed

    Signori, Lorenzo; Ami, Diletta; Posteri, Riccardo; Giuzzi, Andrea; Mereghetti, Paolo; Porro, Danilo; Branduardi, Paola

    2016-05-05

    Microbial lipids can represent a valuable alternative feedstock for biodiesel production in the context of a viable bio-based economy. This production can be driven by cultivating some oleaginous microorganisms on crude-glycerol, a 10% (w/w) by-product produced during the transesterification process from oils into biodiesel. Despite attractive, the perspective is still economically unsustainable, mainly because impurities in crude glycerol can negatively affect microbial performances. In this view, the selection of the best cell factory, together with the development of a robust and effective production process are primary requirements. The present work compared crude versus pure glycerol as carbon sources for lipid production by three different oleaginous yeasts: Rhodosporidium toruloides (DSM 4444), Lipomyces starkeyi (DSM 70295) and Cryptococcus curvatus (DSM 70022). An efficient yet simple feeding strategy for avoiding the lag phase caused by growth on crude glycerol was developed, leading to high biomass and lipid production for all the tested yeasts. Flow-cytometry and fourier transform infrared (FTIR) microspectroscopy, supported by principal component analysis (PCA), were used as non-invasive and quick techniques to monitor, compare and analyze the lipid production over time. Gas chromatography (GC) analysis completed the quali-quantitative description. Under these operative conditions, the highest lipid content (up to 60.9% wt/wt) was measured in R. toruloides, while L. starkeyi showed the fastest glycerol consumption rate (1.05 g L(-1) h(-1)). Being productivity the most industrially relevant feature to be pursued, under the presented optimized conditions R. toruloides showed the best lipid productivity (0.13 and 0.15 g L(-1) h(-1) on pure and crude glycerol, respectively). Here we demonstrated that the development of an efficient feeding strategy is sufficient in preventing the inhibitory effect of crude glycerol, and robust enough to ensure high lipid accumulation by three different oleaginous yeasts. Single cell and in situ analyses allowed depicting and comparing the transition between growth and lipid accumulation occurring differently for the three different yeasts. These data provide novel information that can be exploited for screening the best cell factory, moving towards a sustainable microbial biodiesel production.

  2. Thermal phase transition behavior of lipid layers on a single human corneocyte cell.

    PubMed

    Imai, Tomohiro; Nakazawa, Hiromitsu; Kato, Satoru

    2013-09-01

    We have improved the selected area electron diffraction method to analyze the dynamic structural change in a single corneocyte cell non-invasively stripped off from human skin surface. The improved method made it possible to obtain reliable diffraction images to trace the structural change in the intercellular lipid layers on a single corneocyte cell during heating from 24°C to 100°C. Comparison of the results with those of synchrotron X-ray diffraction experiments on human stratum corneum sheets revealed that the intercellular lipid layers on a corneocyte cell exhibit essentially the same thermal phase transitions as those in a stratum corneum sheet. These results suggest that the structural features of the lipid layers are well preserved after the mechanical stripping of the corneocyte cell. Moreover, electron diffraction analyses of the thermal phase transition behaviors of the corneocyte cells that had the lipid layers with different distributions of orthorhombic and hexagonal domains at 24°C suggested that small orthorhombic domains interconnected with surrounding hexagonal domains transforms in a continuous manner into new hexagonal domains. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Advancing the vesosome, a multifunctional drug delivery platform, toward applied in vivo testing

    NASA Astrophysics Data System (ADS)

    Wong, Benjamin J.

    An optimal drug delivery vehicle should circulate long enough to reach the site of illness or disease, possess a large drug loading capacity, retain its contents over the course of treatment, and be able deliver its contents at a rate appropriate for maximum therapeutic benefit at the site of interest. The vesosome, a large lipid bilayer enclosing multiple, smaller liposomes, is our solution to addressing these needs. The external lipid bilayer offers a second barrier of protection for interior components and can also serve as the anchor for active targeting components. Furthermore, internal compartmentalization permits customization of separate environments for multiple therapeutics and release triggers. Previous work established the ability of the vesosome to retain its contents in vitro an order of magnitude longer than liposomes. To be viable in vivo, the vesosome must be functionalized for biocompatibility and tracking, and its synthetic procedure must be repeatable, reliable and result in a purified product. The vesosome was functionalized by introducing biocompatible polymers, such as poly(ethylene glycol) (PEG), and fluorescent dyes in their lipid-bound forms into the external membrane of the vesosome. The external vesosomal membrane is formed from large, flat lipid sheets in the interdigitated (L betaI) phase which, when heated, are used to encapsulate smaller drug-containing vesicles. Through X-Ray diffraction (XRD) and freeze-fracture transmission electron microscopy (FF-TEM), we established that the molar amounts of functionalized lipid required to label the vesosome for tracking and biocompatibility (˜5--7mol% total) did not prevent the formation of the interdigitated phase. Thus, functionalization of the external vesosome membrane can be achieved through functionalization of interdigitated sheets. For in vivo testing, functionalized vesosomes must be separated from unencapsulated vesicles and purification was performed using size exclusion chromatography (SEC) and centrifugation. Having functionalized vesosomes for biocompatibility, PEGylated vesosomes were examined in vitro and in vivo. The presence of surface-grafted PEG was shown to reduce vesosome-vesosome aggregation when exposed to human blood and the circulation half-life was determined to be approximately 2 hours. The evolution of biodistribution was examined by functionalizing the vesosome with a near-infrared dye for in vivo fluorescence imaging and preliminary active targeting experiments show increased vesosome presence at the targeted sites. Ex vivo organ analysis showed the ability of the vesosome to maintain structural integrity for at least 24 hours post-injection. By functionalizing the vesosome for biocompatibility and tracking through a repeatable and reliable synthesis, we have obtained a biocompatible vesosome. Through proof-of-concept live animal testing, we have demonstrated the feasibility of the vesosome as a single site, single dose, multi-therapeutic drug delivery vehicle.

  4. Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by Raman spectroscopy and gas chromatography

    USDA-ARS?s Scientific Manuscript database

    Cellular lipid droplets are the least studied and least understood cellular organelles in eukaryotic and prokaryotic cells. Despite a broad research trying to understand lipid droplets it has not been possible to determine the composition of individual cellular lipid droplets. In this paper we prese...

  5. The lipid phenotype of breast cancer cells characterized by Raman microspectroscopy: towards a stratification of malignancy.

    PubMed

    Nieva, Claudia; Marro, Monica; Santana-Codina, Naiara; Rao, Satish; Petrov, Dmitri; Sierra, Angels

    2012-01-01

    Although molecular classification brings interesting insights into breast cancer taxonomy, its implementation in daily clinical care is questionable because of its expense and the information supplied in a single sample allocation is not sufficiently reliable. New approaches, based on a panel of small molecules derived from the global or targeted analysis of metabolic profiles of cells, have found a correlation between activation of de novo lipogenesis and poorer prognosis and shorter disease-free survival for many tumors. We hypothesized that the lipid content of breast cancer cells might be a useful indirect measure of a variety of functions coupled to breast cancer progression. Raman microspectroscopy was used to characterize metabolism of breast cancer cells with different degrees of malignancy. Raman spectra from MDA-MB-435, MDA-MB-468, MDA-MB-231, SKBR3, MCF7 and MCF10A cells were acquired with an InVia Raman microscope (Renishaw) with a backscattered configuration. We used Principal Component Analysis and Partial Least Squares Discriminant Analyses to assess the different profiling of the lipid composition of breast cancer cells. Characteristic bands related to lipid content were found at 3014, 2935, 2890 and 2845 cm(-1), and related to lipid and protein content at 2940 cm(-1). A classificatory model was generated which segregated metastatic cells and non-metastatic cells without basal-like phenotype with a sensitivity of 90% and a specificity of 82.1%. Moreover, expression of SREBP-1c and ABCA1 genes validated the assignation of the lipid phenotype of breast cancer cells. Indeed, changes in fatty acid unsaturation were related with the epithelial-to-mesenchymal transition phenotype. Raman microspectroscopy is a promising technique for characterizing and classifying the malignant phenotype of breast cancer cells on the basis of their lipid profiling. The algorithm for the discrimination of metastatic ability is a first step towards stratifying breast cancer cells using this rapid and reagent-free tool.

  6. Lipid membranes and single ion channel recording for the advanced physics laboratory

    NASA Astrophysics Data System (ADS)

    Klapper, Yvonne; Nienhaus, Karin; Röcker, Carlheinz; Ulrich Nienhaus, G.

    2014-05-01

    We present an easy-to-handle, low-cost, and reliable setup to study various physical phenomena on a nanometer-thin lipid bilayer using the so-called black lipid membrane technique. The apparatus allows us to precisely measure optical and electrical properties of free-standing lipid membranes, to study the formation of single ion channels, and to gain detailed information on the ion conduction properties of these channels using statistical physics and autocorrelation analysis. The experiments are well suited as part of an advanced physics or biophysics laboratory course; they interconnect physics, chemistry, and biology and will be appealing to students of the natural sciences who are interested in quantitative experimentation.

  7. Lipid composition and chemotaxonomy of Pseudomonas putrefaciens (Alteromonas putrefaciens).

    PubMed

    Wilkinson, S G; Caudwell, P F

    1980-06-01

    The major polar lipids in cells of Pseudomonas putrefaciens NCIB 10472 grown on nutrient agar were phosphatidylethanolamine, phoisphatidylglycerol, a glucosyldiacylglycerol, a glucuronosyldiacylglycerol and an ornithine amide lipid. An additional phospholipid, tentatively identified as acyl phosphatidylglycerol or bis-phosphatidic acid, was a trace component of the wall lipids from broth cultures, which lacked the glycolipids and the ornithine amide lipid. The wall lipids from broth cultures of three further strains of P. putrefaciens (NCIB 10471, NCIB 11156 and NCTC 10737) contained all of the above lipids, and in two cases (strains NCIB 10471 and NCIB 11156) had an unusually high content of free fatty acid. Fatty acid compositions of the extractable lipids were qualitatively similar for all four strains: the major components were iso-pentadecanoic acid, pentadecanoic acid, a cis-heptadecenoic acid and a cis-hexadecenoic acid. Anteiso fatty acids were minor components in strain NCIB 10472. Lipid mixtures in which the ornithine amide lipid was present also contained small amounts of beta-hydroxy fatty acids: in strain NCIB 10472 the major ones were the straight-chain and iso-branched C16 acids. Lipopolysaccharides from all four strains had similar, complex fatty acid compositions. The major non-hydroxy acids were the straight-chain and iso-branched C13 acids. beta-Hydroxy acids common to all strains included the straight-chain C11, C12, C13, C14 and C15 acids, together with branched-chain C13 and C15 acids probably belonging to the iso series. The lipopolysaccharide from strains NCIB 10472 also contained C12 and C14 hydroxy acids of the same series, and small amounts of C13 and C15 beta-hydroxy acids probably belonging to the anteiso series. The close resemblance in both polar lipid and fatty acid compositions between strains of P. putrefaciens and Pseudomonas rubescens is further evidence that these species are synonymous. Significant differences between the lipids and fatty acids of P. putrefaciens and those reported for a strain of Alteromonas haloplanktis do not harmonize with a proposal to transfer the former organism to the genus Alteromonas.

  8. Biophysical characterization of an integrin-targeted lipopolyplex gene delivery vector.

    PubMed

    Mustapa, M Firouz Mohd; Bell, Paul C; Hurley, Christopher A; Nicol, Alastair; Guénin, Erwann; Sarkar, Supti; Writer, Michele J; Barker, Susie E; Wong, John B; Pilkington-Miksa, Michael A; Papahadjopoulos-Sternberg, Brigitte; Shamlou, Parviz Ayazi; Hailes, Helen C; Hart, Stephen L; Zicha, Daniel; Tabor, Alethea B

    2007-11-13

    Nonviral gene delivery vectors now show good therapeutic potential: however, detailed characterization of the composition and macromolecular organization of such particles remains a challenge. This paper describes experiments to elucidate the structure of a ternary, targeted, lipopolyplex synthetic vector, the LID complex. This consists of a lipid component, Lipofectin (L) (1:1 DOTMA:DOPE), plasmid DNA (D), and a dual-function, cationic peptide component (I) containing DNA condensation and integrin-targeting sequences. Fluorophore-labeled lipid, peptide, and DNA components were used to formulate the vector, and the stoichiometry of the particles was established by fluorescence correlation spectroscopy (FCS). The size of the complex was measured by FCS, and the sizes of LID, L, LD, and ID complexes were measured by dynamic light scattering (DLS). Fluorescence quenching experiments and freeze-fracture electron microscopy were then used to demonstrate the arrangement of the lipid, peptide, and DNA components within the complex. These experiments showed that the cationic portion of the peptide, I, interacts with the plasmid DNA, resulting in a tightly condensed DNA-peptide inner core; this is surrounded by a disordered lipid layer, from which the integrin-targeting sequence of the peptide partially protrudes.

  9. Biosynthesis, characterization and enzymatic transesterification of single cell oil of Mucor circinelloides--a sustainable pathway for biofuel production.

    PubMed

    Carvalho, Ana K F; Rivaldi, Juan D; Barbosa, Jayne C; de Castro, Heizir F

    2015-04-01

    The filamentous fungus Mucor circinelloides URM 4182 was tested to determine its ability to produce single-cell oil suitable for obtaining biodiesel. Cell growth and lipid accumulation were investigated in a medium containing glucose as the main carbon source. A microwave-assisted ethanol extraction technique (microwave power ⩽200 W, 50-60 °C) was established and applied to lipid extraction from the fungal hyphae to obtain high lipid concentration (44%wt) of the dry biomass, which was considerably higher than the quantity obtained by classical solvent methods. The lipid profile showed a considerable amount of oleic acid (39.3%wt), palmitic acid (22.2%wt) and γ-linoleic acid (10.8%wt). Biodiesel was produced by transesterification of the single-cell oil with ethanol using a immobilized lipase from Candida antarctica (Novozym® 435) as the catalyst. (1)H NMR and HPLC analyses confirmed conversion of 93% of the single-cell oil from M. circinelloides into ethyl esters (FAEE). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Characteristics of lipids and their feeding value in swine diets

    USDA-ARS?s Scientific Manuscript database

    In livestock diets, energy is one of the most expensive nutritional components of feed formulation. Because lipids are a concentrated energy source, inclusion of lipids are known to affect growth rate and feed efficiency, but are also known to affect diet palatability, feed dustiness, and pellet qua...

  11. Multivariate Analysis of Mixed Lipid Aggregate Phase Transitions Monitored Using Raman Spectroscopy.

    PubMed

    Neal, Sharon L

    2018-01-01

    The phase behavior of aqueous 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC)/1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) mixtures between 8.0 ℃ and 41.0 ℃ were monitored using Raman spectroscopy. Temperature-dependent Raman matrices were assembled from series of spectra and subjected to multivariate analysis. The consensus of pseudo-rank estimation results is that seven to eight components account for the temperature-dependent changes observed in the spectra. The spectra and temperature response profiles of the mixture components were resolved by applying a variant of the non-negative matrix factorization (NMF) algorithm described by Lee and Seung (1999). The rotational ambiguity of the data matrix was reduced by augmenting the original temperature-dependent spectral matrix with its cumulative counterpart, i.e., the matrix formed by successive integration of the spectra across the temperature index (columns). Successive rounds of constrained NMF were used to isolate component spectra from a significant fluorescence background. Five major components exhibiting varying degrees of gel and liquid crystalline lipid character were resolved. Hydrogen-bonded water networks exhibiting varying degrees of organization are associated with the lipid components. Spectral parameters were computed to compare the chain conformation, packing, and hydration indicated by the resolved spectra. Based on spectral features and relative amounts of the components observed, four components reflect long chain lipid response. The fifth component could reflect the response of the short chain lipid, DHPC, but there were no definitive spectral features confirming this assignment. A minor component of uncertain assignment that exhibits a striking response to the DMPC pre-transition and chain melting transition also was recovered. While none of the spectra resolved exhibit features unequivocally attributable to a specific aggregate morphology or step in the gelation process, the results are consistent with the evolution of mixed phase bicelles (nanodisks) and small amounts of worm-like DMPC/DHPC aggregates, and perhaps DHPC micelles, at low temperature to suspensions of branched and entangled worm-like aggregates above the DMPC gel phase transition and perforated multi-lamellar aggregates at high temperature.

  12. Protocells and their use for targeted delivery of multicomponent cargos to cancer cells

    DOEpatents

    Brinker, Jeffrey C.; Ashley, Carlee Erin; Jiang, Xingmao; Liu, Juewen; Peabody, David S.; Wharton, Walker Richard; Carnes, Eric; Chackerian, Bryce; Willman, Cheryl L.

    2016-11-01

    Various embodiments provide materials and methods for synthesizing protocells for use in targeted delivery of cargo components to cancer cells. In one embodiment, the lipid bilayer can be fused to the porous particle core to form a protocell. The lipid bilayer can be modified with targeting ligands or other ligands to achieve targeted delivery of cargo components that are loaded within the protocell to a target cell, e.g., a type of cancer. Shielding materials can be conjugated to the surface of the lipid bilayer to reduce undesired non-specific binding.

  13. Protocells and their use for targeted delivery of multicomponent cargos to cancer cells

    DOEpatents

    Brinker, C Jeffrey; Ashley, Carlee Erin; Jiang, Xingmao; Liu, Juewen; Peabody, David S; Wharton, Walker Richard; Carnes, Eric; Chackerian, Bryce; Willman, Cheryl L

    2015-03-31

    Various embodiments provide materials and methods for synthesizing protocells for use in targeted delivery of cargo components to cancer cells. In one embodiment, the lipid bilayer can be fused to the porous particle core to form a protocell. The lipid bilayer can be modified with targeting ligands or other ligands to achieve targeted delivery of cargo components that are loaded within the protocell to a target cell, e.g., a type of cancer. Shielding materials can be conjugated to the surface of the lipid bilayer to reduce undesired non-specific binding.

  14. Raman and Autofluorescence Spectrum Dynamics along the HRG-Induced Differentiation Pathway of MCF-7 Cells

    PubMed Central

    Morita, Shin-ichi; Takanezawa, Sota; Hiroshima, Michio; Mitsui, Toshiyuki; Ozaki, Yukihiro; Sako, Yasushi

    2014-01-01

    Cellular differentiation proceeds along complicated pathways, even when it is induced by extracellular signaling molecules. One of the major reasons for this complexity is the highly multidimensional internal dynamics of cells, which sometimes causes apparently stochastic responses in individual cells to extracellular stimuli. Therefore, to understand cell differentiation, it is necessary to monitor the internal dynamics of cells at single-cell resolution. Here, we used a Raman and autofluorescence spectrum analysis of single cells to detect dynamic changes in intracellular molecular components. MCF-7 cells are a human cancer-derived cell line that can be induced to differentiate into mammary-gland-like cells with the addition of heregulin (HRG) to the culture medium. We measured the spectra in the cytoplasm of MCF-7 cells during 12 days of HRG stimulation. The Raman scattering spectrum, which was the major component of the signal, changed with time. A multicomponent analysis of the Raman spectrum revealed that the dynamics of the major components of the intracellular molecules, including proteins and lipids, changed cyclically along the differentiation pathway. The background autofluorescence signals of Raman scattering also provided information about the differentiation process. Using the total information from the Raman and autofluorescence spectra, we were able to visualize the pathway of cell differentiation in the multicomponent phase space. PMID:25418290

  15. Single Cell Profiling using Ionic Liquid Matrix-Enhanced Secondary Ion Mass Spectrometry for Neuronal Cell Type Differentiation

    PubMed Central

    Do, Thanh D.; Comi, Troy J.; Dunham, Sage J. B.; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2017-01-01

    A high-throughput single cell profiling method has been developed for matrix-enhanced secondary ion mass spectrometry (ME-SIMS) to investigate the lipid profiles of neuronal cells. Populations of cells are dispersed onto the substrate, their locations determined using optical microscopy, and the cell locations used to guide the acquisition of SIMS spectra from the cells. Up to 2,000 cells can be assayed in one experiment at a rate of 6 s per cell. Multiple saturated and unsaturated phosphatidylcholines (PCs) and their fragments are detected and verified with tandem mass spectrometry from individual cells when ionic liquids are employed as a matrix. Optically guided single cell profiling with ME-SIMS is suitable for a range of cell sizes, from Aplysia californica neurons larger than 75 μm to 7-μm rat cerebellar neurons. ME-SIMS analysis followed by t-distributed stochastic neighbor embedding of peaks in the lipid molecular mass range (m/z 700–850) distinguishes several cell types from the rat central nervous system, largely based on the relative proportions of the four dominant lipids, PC(32:0), PC(34:1), PC(36:1), and PC(38:5). Furthermore, subpopulations within each cell type are tentatively classified consistent with their endogenous lipid ratios. The results illustrate the efficacy of a new approach to classify single cell populations and subpopulations using SIMS profiling of lipid and metabolite contents. These methods are broadly applicable for high throughput single cell chemical analyses. PMID:28194949

  16. [Isoflavone genistein-8-c-glycoside prevents the oxidative damages in structure and function of rat liver microsomal membranes].

    PubMed

    Zavodnik, L B

    2003-01-01

    Bioflavonoids (polyhydroxyphenols) are ubiquitous components of plants, fruits and vegetables; these compounds are efficient scavengers of free oxygen radicals and peroxides. The aim of this study was to investigate the antioxidant and radioprotective effects of genistein-8-C-glicoside (G8CG), an isoflavone, isolated from the flowers of Lipinus luteusl L. G8CG prevents dose-dependently the destruction of the cytochrome P-450 and its conversion to an inactive form cytochrome P-420, inhibits membrane lipid peroxidation and membrane SH-group oxidation in isolated rat liver microsomal membranes under tert-butylhydroperoxide-induced oxidative stress. Single whole-body gamma-irradiation (1 Gy) of rats results in blood plasma and liver microsomal membrane lipid peroxidation, impairments of microsomal membrane structure and function. Rat treatment with G8CG (75 mg/kg) developed the clear protective effect, stabilized membrane structure and improved the parameters of the monooxygenase function. We can conclude that G8CG can be used as antioxidant and radioprotective agent.

  17. Univariate and multivariate molecular spectral analyses of lipid related molecular structural components in relation to nutrient profile in feed and food mixtures

    NASA Astrophysics Data System (ADS)

    Abeysekara, Saman; Damiran, Daalkhaijav; Yu, Peiqiang

    2013-02-01

    The objectives of this study were (i) to determine lipid related molecular structures components (functional groups) in feed combination of cereal grain (barley, Hordeum vulgare) and wheat (Triticum aestivum) based dried distillers grain solubles (wheat DDGSs) from bioethanol processing at five different combination ratios using univariate and multivariate molecular spectral analyses with infrared Fourier transform molecular spectroscopy, and (ii) to correlate lipid-related molecular-functional structure spectral profile to nutrient profiles. The spectral intensity of (i) CH3 asymmetric, CH2 asymmetric, CH3 symmetric and CH2 symmetric groups, (ii) unsaturation (Cdbnd C) group, and (iii) carbonyl ester (Cdbnd O) group were determined. Spectral differences of functional groups were detected by hierarchical cluster analysis (HCA) and principal components analysis (PCA). The results showed that the combination treatments significantly inflicted modifications (P < 0.05) in nutrient profile and lipid related molecular spectral intensity (CH2 asymmetric stretching peak height, CH2 symmetric stretching peak height, ratio of CH2 to CH3 symmetric stretching peak intensity, and carbonyl peak area). Ratio of CH2 to CH3 symmetric stretching peak intensity, and carbonyl peak significantly correlated with nutrient profiles. Both PCA and HCA differentiated lipid-related spectrum. In conclusion, the changes of lipid molecular structure spectral profiles through feed combination could be detected using molecular spectroscopy. These changes were associated with nutrient profiles and functionality.

  18. Time-Correlated Single-Photon Counting Fluorescence Imaging of Lipid Domains In Raft-Mimicking Giant Unilamellar Vesicles

    NASA Astrophysics Data System (ADS)

    Clarke, James; Cheng, Kwan; Shindell, Orrin; Wang, Exing

    We have designed and constructed a high-throughput electrofusion chamber and an incubator to fabricate Giant Unilamellar Vesicles (GUVs) consisting of high-melting lipids, low-melting lipids, cholesterol and both ordered and disordered phase sensitive fluorescent probes (DiIC12, dehydroergosterol and BODIPY-Cholesterol). GUVs were formed in a 3 stage pulse sequence electrofusion process with voltages ranging from 50mVpp to 2.2Vpp and frequencies from 5Hz to 10Hz. Steady state and time-correlated single-photon counting (TCSPC) fluorescence lifetime (FLIM) based confocal and/or multi-photon microscopic techniques were used to characterize phase separated lipid domains in GUVs. Confocal imaging measures the probe concentration and the chemical environment of the system. TCSPC techniques determine the chemical environment through the perturbation of fluorescent lifetimes of the probes in the system. The above techniques will be applied to investigate the protein-lipid interactions involving domain formation. Specifically, the mechanisms governing lipid domain formations in the above systems that mimic the lipid rafts in cells will be explored. Murchison Fellowship at Trinity University.

  19. Production of solid lipid nanoparticles (SLN): scaling up feasibilities.

    PubMed

    Dingler, A; Gohla, S

    2002-01-01

    Solid lipid nanoparticles (SLN/Lipopearls) are widely discussed as a new colloidal drug carrier system. In contrast to polymeric systems, such as Polylactic copolyol microcapsules, these systems show with a good biocompatibility, if applied parenterally. The solid lipid matrices can be comprised of fats or waxes, and allow protection of incorporated active ingredients against chemical and physical degradation. The SLN can either be produced by 'hot homogenization' of melted lipids at elevated temperatures or by a 'cold homogenization' process. This paper deals with production technologies for SLN formulations, based on non-ethoxylated fat components for topical application and high pressure homogenization. Based on the chosen fat components, a novel and easy manufacturing and scaling-up method was developed to maintain chemical and physical integrity of the encapsulated active ingredients in the carrier.

  20. Raman imaging of lipid bilayer membrane by surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Mori, Motoaki; Abe, Shunsuke; Kondo, Takahiro; Saito, Yuika

    2018-04-01

    We investigated two-dimensional lipid bilayers by spectroscopic imaging with surface enhanced Raman spectroscopy (SERS). A DSPC lipid bilayer incubated on a glass substrate was coated with a thin layer of silver. Due to the strong electromagnetic enhancement of the silver film and the affinity to lipid molecules, the Raman spectrum of a single bilayer was obtained in a 1 s exposure time with 0.1 mW of incident laser power. In the C-H vibrational region of the spectra, which is sensitive to bilayer configurations, a randomly stacked area was dominated by the CH3 asymmetric-stretch mode, whereas flat areas including double bilayers showed typical SERS spectra. The spectral features of the randomly stacked area are explained by the existence of many free lipid molecules, which is supported by DFT calculations of paired DSPC molecules. Our method can be applied to reveal the local crystallinity of single lipid bilayers, which is difficult to assess by conventional Raman imaging.

  1. Nanoparticle uptake and their co-localization with cell compartments - a confocal Raman microscopy study at single cell level

    NASA Astrophysics Data System (ADS)

    Estrela-Lopis, I.; Romero, G.; Rojas, E.; Moya, S. E.; Donath, E.

    2011-07-01

    Confocal Raman Microscopy, a non-invasive, non-destructive and label-free technique, was employed to study the uptake and localization of nanoparticles (NPs) in the Hepatocarcinoma human cell line HepG2 at the level of single cells. Cells were exposed to carbon nanotubes (CNTs) the surface of which was engineered with polyelectrolytes and lipid layers, aluminium oxide and cerium dioxide nanoparticles. Raman spectra deconvolution was applied to obtain the spatial distributions of NPs together with lipids/proteins in cells. The colocalization of the NPs with different intracellular environments, lipid bodies, protein and DNA, was inferred. Lipid coated CNTs associated preferentially with lipid rich regions, whereas polyelectrolyte coated CNTs were excluded from lipid rich regions. Al2O3 NPs were found in the cytoplasm. CeO2 NPs were readily taken up and have been observed all over the cell. Raman z-scans proved the intracellular distribution of the respective NPs.

  2. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077.

    PubMed

    Pancha, Imran; Chokshi, Kaumeel; Maurya, Rahulkumar; Trivedi, Khanjan; Patidar, Shailesh Kumar; Ghosh, Arup; Mishra, Sandhya

    2015-01-01

    Microalgal biomass is considered as potential feedstock for biofuel production. Enhancement of biomass, lipid and carbohydrate contents in microalgae is important for the commercialization of microalgal biofuels. In the present study, salinity stress induced physiological and biochemical changes in microalgae Scenedesmus sp. CCNM 1077 were studied. During single stage cultivation, 33.13% lipid and 35.91% carbohydrate content was found in 400 mM NaCl grown culture. During two stage cultivation, salinity stress of 400 mM for 3 days resulted in 24.77% lipid (containing 74.87% neutral lipid) along with higher biomass compared to single stage, making it an efficient strategy to enhance biofuel production potential of Scenedesmus sp. CCNM 1077. Apart from biochemical content, stress biomarkers like hydrogen peroxide, lipid peroxidation, ascorbate peroxidase, proline and mineral contents were also studied to understand the role of reactive oxygen species (ROS) mediated lipid accumulation in microalgae Scenedesmus sp. CCNM 1077. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Avanti lipid tools: connecting lipids, technology, and cell biology.

    PubMed

    Sims, Kacee H; Tytler, Ewan M; Tipton, John; Hill, Kasey L; Burgess, Stephen W; Shaw, Walter A

    2014-08-01

    Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014. Published by Elsevier B.V.

  4. Wet and dry extraction of coconut oil: impact on lipid metabolic and antioxidant status in cholesterol coadministered rats.

    PubMed

    Nevin, K Govindan; Rajamohan, Thankappan

    2009-08-01

    Because coconut oil extracted by wet process (virgin coconut oil, VCO) is gaining popularity among consumers, this study was conducted to evaluate VCO compared with coconut oil extracted by dry process (copra oil, CO) for their influence on lipid parameters, lipid peroxidation, and antioxidant status in rats coadministered with cholesterol. VCO, CO, and cholesterol were fed in a semi-synthetic diet to 24 male Sprague-Dawley rats for 45 days. After the experimental period, lipid and lipid peroxide levels and antioxidant enzyme activities were observed. Chemical composition and antioxidant properties of the polyphenolic fraction from VCO and CO were also analyzed. The results showed that lipid and lipid peroxide levels were lower in VCO-fed animals than in animals fed either CO or cholesterol alone. Antioxidant enzyme activities in VCO-fed animals were comparable with those in control animals. Although the fatty acid profiles of both oils were similar, a significantly higher level of unsaponifiable components was observed in VCO. Polyphenols from VCO also showed significant radical-scavenging activity compared with those from CO. This study clearly indicates the potential benefits of VCO over CO in maintaining lipid metabolism and antioxidant status. These effects may be attributed in part to the presence of biologically active minor unsaponifiable components.

  5. Integrative Analysis of Subcellular Quantitative Proteomics Studies Reveals Functional Cytoskeleton Membrane-Lipid Raft Interactions in Cancer.

    PubMed

    Shah, Anup D; Inder, Kerry L; Shah, Alok K; Cristino, Alexandre S; McKie, Arthur B; Gabra, Hani; Davis, Melissa J; Hill, Michelle M

    2016-10-07

    Lipid rafts are dynamic membrane microdomains that orchestrate molecular interactions and are implicated in cancer development. To understand the functions of lipid rafts in cancer, we performed an integrated analysis of quantitative lipid raft proteomics data sets modeling progression in breast cancer, melanoma, and renal cell carcinoma. This analysis revealed that cancer development is associated with increased membrane raft-cytoskeleton interactions, with ∼40% of elevated lipid raft proteins being cytoskeletal components. Previous studies suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft proteome modulation by an unrelated tumor suppressor opioid binding protein cell-adhesion molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are cytoskeletal components, with microfilaments and intermediate filaments specifically down-regulated. Furthermore, protein-protein interaction network and simulation analysis showed significantly higher interactions among cancer raft proteins compared with general human raft proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of lipid raft domains with greater molecular interactions as a common, functional, and reversible feature of cancer cells.

  6. Lipids of parasitic and saprophytic leptospires.

    PubMed

    Johnson, R C; Livermore, B P; Walby, J K; Jenkin, H M

    1970-09-01

    The lipid composition of five parasitic and six saprophytic leptospires was compared. Lipids comprise 18 to 26% of the dry weight of the cells after chloroform-methanol extraction. No residual (bound) lipid was found after acid or alkaline hydrolysis of the extracted residue. The total lipid was composed of 60 to 70% phospholipid, and the remaining lipid was free fatty acids. The phospholipid fraction contained phosphatidylethanolamine as the major component, and phosphatidylglycerol and diphosphatidylglycerol were minor components with traces of lysophatidylethanolamine sometimes found. The major fatty acids of leptospires were hexadecanoic, hexadecenoic, and octadecenoic acids. Both the unusual cis-11-hexadecenoic acid and the more common cis-9-hexadecenoic acid were synthesized by the leptospires. Neither the parasitic nor the saprophytic leptospires can chain elongate fatty acids. However, they were capable of beta-oxidation of fatty acids. Both groups of leptospires desaturate fatty acids by an aerobic pathway. When the parasite canicola was cultivated on octadecanoic acid, 87% of the hexadecenoic acid was the 11 isomer, whereas the saprophyte semeranga consisted of 10% of this isomer. In addition, the saprophytic leptospires contained more tetradecanoic acid than the parasites. No differences were observed in the lipid composition of virulent and avirulent strains of canicola.

  7. Lipids of Parasitic and Saprophytic Leptospires

    PubMed Central

    Johnson, R. C.; Livermore, B. P.; Walby, Judith K.; Jenkin, H. M.

    1970-01-01

    The lipid composition of five parasitic and six saprophytic leptospires was compared. Lipids comprise 18 to 26% of the dry weight of the cells after chloroform-methanol extraction. No residual (bound) lipid was found after acid or alkaline hydrolysis of the extracted residue. The total lipid was composed of 60 to 70% phospholipid, and the remaining lipid was free fatty acids. The phospholipid fraction contained phosphatidylethanolamine as the major component, and phosphatidylglycerol and diphosphatidylglycerol were minor components with traces of lysophatidylethanolamine sometimes found. The major fatty acids of leptospires were hexadecanoic, hexadecenoic, and octadecenoic acids. Both the unusual cis-11-hexadecenoic acid and the more common cis-9-hexadecenoic acid were synthesized by the leptospires. Neither the parasitic nor the saprophytic leptospires can chain elongate fatty acids. However, they were capable of β-oxidation of fatty acids. Both groups of leptospires desaturate fatty acids by an aerobic pathway. When the parasite canicola was cultivated on octadecanoic acid, 87% of the hexadecenoic acid was the 11 isomer, whereas the saprophyte semeranga consisted of 10% of this isomer. In addition, the saprophytic leptospires contained more tetradecanoic acid than the parasites. No differences were observed in the lipid composition of virulent and avirulent strains of canicola. PMID:16557833

  8. EVALUATION OF RECOVERABLE FUNCTIONAL LIPID COMPONENTS OF SEVERAL BROWN SEAWEEDS (PHAEOPHYTA) FROM JAPAN WITH SPECIAL REFERENCE TO FUCOXANTHIN AND FUCOSTEROL CONTENTS(1).

    PubMed

    Terasaki, Masaru; Hirose, Atsushi; Narayan, Bhaskar; Baba, Yuta; Kawagoe, Chikara; Yasui, Hajime; Saga, Naotsune; Hosokawa, Masashi; Miyashita, Kazuo

    2009-08-01

    Fucoxanthin (Fx) and fucosterol (Fs) are characteristic lipid components of brown seaweeds that afford several health benefits to humans. This article describes the quantitative evaluation of lipids of 15 species of brown seaweeds with specific reference to Fx, Fs, and functional long-chain omega-6/omega-3 polyunsaturated fatty acids (PUFAs). In addition, fatty-acid composition of selected species was also accomplished in the study. Major omega-3 PUFAs in the brown seaweeds analyzed were α-linolenic acid (18:3n-3), octadecatetraenoic acid (18:4n-3), arachidonic acid (20:4n-6), and eicosapentaenoic acid (20:5n-3). Both Fx (mg · g(-1) dry weight [dwt]) and Fs (mg · g(-1) dwt) were determined to be relatively abundant in Sargassum horneri (Turner) C. Agardh (Fx, 3.7 ± 1.6; Fs, 13.4 ± 4.4) and Cystoseira hakodatensis (Yendo) Fensholt (Fx, 2.4 ± 0.9; Fs, 8.9 ± 2.0), as compared with other brown seaweed species. Studies related to seasonal variation in Fx, Fs, and total lipids of six brown algae [S. horneri, C. hakodatensis, Sargassum fusiforme (Harv.) Setch., Sargassum thunbergii (Mertens ex Roth) Kuntze, Analipus japonicus (Harv.) M. J. Wynne, and Melanosiphon intestinalis (D. A. Saunders) M. J. Wynne] indicated that these functional lipid components reached maximum during the period between January and March. The functional lipid components present in these seaweeds have the potential for application as nutraceuticals and novel functional ingredients after their recovery. © 2009 Phycological Society of America.

  9. Integrated analysis of transcriptome and lipid profiling reveals the co-influences of inositol-choline and Snf1 in controlling lipid biosynthesis in yeast.

    PubMed

    Chumnanpuen, Pramote; Zhang, Jie; Nookaew, Intawat; Nielsen, Jens

    2012-07-01

    In the yeast Saccharomyces cerevisiae many genes involved in lipid biosynthesis are transcriptionally controlled by inositol-choline and the protein kinase Snf1. Here we undertook a global study on how inositol-choline and Snf1 interact in controlling lipid metabolism in yeast. Using both a reference strain (CEN.PK113-7D) and a snf1Δ strain cultured at different nutrient limitations (carbon and nitrogen), at a fixed specific growth rate of 0.1 h(-1), and at different inositol choline concentrations, we quantified the expression of genes involved in lipid biosynthesis and the fluxes towards the different lipid components. Through integrated analysis of the transcriptome, the lipid profiling and the fluxome, it was possible to obtain a high quality, large-scale dataset that could be used to identify correlations and associations between the different components. At the transcription level, Snf1 and inositol-choline interact either directly through the main phospholipid-involving transcription factors (i.e. Ino2, Ino4, and Opi1) or through other transcription factors e.g. Gis1, Mga2, and Hac1. However, there seems to be flux regulation at the enzyme levels of several lipid involving enzymes. The analysis showed the strength of using both transcriptome and lipid profiling analysis for mapping the co-influence of inositol-choline and Snf1 on phospholipid metabolism.

  10. Mango (Mangifera indica L.) peel extract fractions from different cultivars differentially affect lipid accumulation in 3T3-L1 adipocyte cells.

    PubMed

    Taing, Meng-Wong; Pierson, Jean-Thomas; Shaw, Paul N; Dietzgen, Ralf G; Roberts-Thomson, Sarah J; Gidley, Michael J; Monteith, Gregory R

    2013-02-26

    Plant phytochemicals are increasingly recognised as sources of bioactive molecules which may have potential benefit in many health conditions. In mangoes, peel extracts from different cultivars exhibit varying effects on adipogenesis in the 3T3-L1 adipocyte cell line. In this study, the effects of preparative HPLC fractions of methanol peel extracts from Irwin, Nam Doc Mai and Kensington Pride mangoes were evaluated. Fraction 1 contained the most hydrophilic components while subsequent fractions contained increasingly more hydrophobic components. High content imaging was used to assess mango peel fraction effects on lipid accumulation, nuclei count and nuclear area in differentiating 3T3-L1 cells. For all three mango cultivars, the more hydrophilic peel fractions 1-3 inhibited lipid accumulation with greater potency than the more hydrophobic peel fractions 4. For all three cultivars, the more lipophilic fraction 4 had concentrations that enhanced lipid accumulation greater than fractions 1-3 as assessed by lipid droplet integrated intensity. The potency of this fraction 4 varied significantly between cultivars. Using mass spectrometry, five long chain free fatty acids were detected in fraction 4; these were not present in any other peel extract fractions. Total levels varied between cultivars, with Irwin fraction 4 containing the highest levels of these free fatty acids. Lipophilic components appear to be responsible for the lipid accumulation promoting effects of some mango extracts and are the likely cause of the diverse effects of peel extracts from different mango cultivars on lipid accumulation.

  11. Investigation of phase transitions of saturated phosphocholine lipid bilayers via molecular dynamics simulations.

    PubMed

    Khakbaz, Pouyan; Klauda, Jeffery B

    2018-08-01

    Lipid bilayers play an important role in biological systems as they protect cells against unwanted chemicals and provide a barrier for material inside a cell from leaking out. In this paper, nearly 30 μs of molecular dynamics (MD) simulations were performed to investigate phase transitions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-phosphocholine (DPPC) lipid bilayers from the liquid crystalline (L α ) to the ripple (P β ) and to the gel phase (L β ). Our MD simulations accurately predict the main transition temperature for the single-component bilayers. A key focus of this work is to quantify the structure of the P β phase for DMPC and compare with measures from x-ray experiments. The P β major arm has similar structure to that of the L β , while the thinner minor arm has interdigitated chains and the transition region between these two regions has large chain splay and disorder. At lower temperatures, our MD simulations predict the formation of the L β phase with tilted fatty acid chains. The P β and L β phases are studied for mixtures of DMPC and DPPC and compare favorably with experiment. Overall, our MD simulations provide evidence for the relevancy of the CHARMM36 lipid force field for structures and add to our understanding of the less-defined P β phase. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Do lipids retard the evaporation of the tear fluid?

    PubMed

    Rantamäki, Antti H; Javanainen, Matti; Vattulainen, Ilpo; Holopainen, Juha M

    2012-09-21

    We examined in vitro the potential evaporation-retarding effect of the tear film lipid layer (TFLL). The artificial TFLL compositions used here were based on the present knowledge of TFLL composition. A custom-built system was developed to measure evaporation rates at 35°C. Lipids were applied to an air-water interface, and the evaporation rate through the lipid layer was defined as water loss from the interface. A thick layer of olive oil and a monolayer of long-chain alcohol were used as controls. The artificial TFLLs were composed of 1 to 4 lipid species: polar phosphatidylcholine (PC), nonpolar cholesteryl ester, triglycerides, and wax ester (WE). Brewster angle microscopy (BAM) and interfacial shear rheometry (ISR) were used to assess the lateral structure and shear stress response of the lipid layers, respectively. Olive oil and long-chain alcohol decreased evaporation by 54% and 45%, respectively. The PC monolayer and the four-component mixtures did not retard evaporation. WE was the most important evaporation-retardant TFLL lipid (∼20% decrease). In PC/WE mixtures, an ∼90% proportion of WE was required for evaporation retardation. Based on BAM and ISR, WE resulted in more condensed layers than the non-retardant layers. Highly condensed, solid-like lipid layers, such as those containing high proportions of WEs, are evaporation-retardant. In multi-component lipid layers, the evaporation-retardant interactions between carbon chains decrease and, therefore, these lipid layers do not retard evaporation.

  13. Supported lipid bilayer/carbon nanotube hybrids

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Moran-Mirabal, Jose M.; Craighead, Harold G.; McEuen, Paul L.

    2007-03-01

    Carbon nanotube transistors combine molecular-scale dimensions with excellent electronic properties, offering unique opportunities for chemical and biological sensing. Here, we form supported lipid bilayers over single-walled carbon nanotube transistors. We first study the physical properties of the nanotube/supported lipid bilayer structure using fluorescence techniques. Whereas lipid molecules can diffuse freely across the nanotube, a membrane-bound protein (tetanus toxin) sees the nanotube as a barrier. Moreover, the size of the barrier depends on the diameter of the nanotube-with larger nanotubes presenting bigger obstacles to diffusion. We then demonstrate detection of protein binding (streptavidin) to the supported lipid bilayer using the nanotube transistor as a charge sensor. This system can be used as a platform to examine the interactions of single molecules with carbon nanotubes and has many potential applications for the study of molecular recognition and other biological processes occurring at cell membranes.

  14. Dark-field-based observation of single-nanoparticle dynamics on a supported lipid bilayer for in situ analysis of interacting molecules and nanoparticles.

    PubMed

    Lee, Young Kwang; Kim, Sungi; Nam, Jwa-Min

    2015-01-12

    Observation of single plasmonic nanoparticles in reconstituted biological systems allows us to obtain snapshots of dynamic processes between molecules and nanoparticles with unprecedented spatiotemporal resolution and single-molecule/single-particle-level data acquisition. This Concept is intended to introduce nanoparticle-tethered supported lipid bilayer platforms that allow for the dynamic confinement of nanoparticles on a two-dimensional fluidic surface. The dark-field-based long-term, stable, real-time observation of freely diffusing plasmonic nanoparticles on a lipid bilayer enables one to extract a broad range of information about interparticle and molecular interactions throughout the entire reaction period. Herein, we highlight important developments in this context to provide ideas on how molecular interactions can be interpreted by monitoring dynamic behaviors and optical signals of laterally mobile nanoparticles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Single-molecule studies of the neuronal SNARE fusion machinery.

    PubMed

    Brunger, Axel T; Weninger, Keith; Bowen, Mark; Chu, Steven

    2009-01-01

    SNAREs are essential components of the machinery for Ca(2+)-triggered fusion of synaptic vesicles with the plasma membrane, resulting in neurotransmitter release into the synaptic cleft. Although much is known about their biophysical and structural properties and their interactions with accessory proteins such as the Ca(2+) sensor synaptotagmin, their precise role in membrane fusion remains an enigma. Ensemble studies of liposomes with reconstituted SNAREs have demonstrated that SNAREs and accessory proteins can trigger lipid mixing/fusion, but the inability to study individual fusion events has precluded molecular insights into the fusion process. Thus, this field is ripe for studies with single-molecule methodology. In this review, we discuss applications of single-molecule approaches to observe reconstituted SNAREs, their complexes, associated proteins, and their effect on biological membranes. Some of the findings are provocative, such as the possibility of parallel and antiparallel SNARE complexes or of vesicle docking with only syntaxin and synaptobrevin, but have been confirmed by other experiments.

  16. Antidiabetic effect of Sida cordata in alloxan induced diabetic rats.

    PubMed

    Shah, Naseer Ali; Khan, Muhammad Rashid

    2014-01-01

    Medicinal plants are efficient ameliorator of oxidative stress associated with diabetes mellitus. In this study, ethyl acetate fraction (SCEE) of Sida cordata was investigated for scientific validation of its folk use in diabetes. Antidiabetic effect of SCEE was confirmed by antihyperglycemic activity in normal glucose loaded and diabetic glucose loaded animals as well as normal off feed animals. Confirmation of antidiabetic activity and toxicity ameliorative role of S. cordata was investigated in a chronic multiple dose treatment study of fifteen days. A single dose of alloxan (120 mg/kg) produced a decrease in insulin level, hyperglycemia, elevated total lipids, triglycerides, and cholesterol and decreased the high-density lipoproteins. Concurrent with these changes, there was an increase in the concentration of lipid peroxidation (TBARS), H2O2, and nitrite in pancreas, liver, and testis. This oxidative stress was related to a decrease in glutathione content (GSH) and antioxidant enzymes. Administration of SCEE for 15 days after diabetes induction ameliorated hyperglycemia, restored lipid profile, blunted the increase in TBARS, H2O2, and nitrite content, and stimulated the GSH production in the organs of alloxan-treated rats. We suggested that SCEE could be used as antidiabetic component in case of diabetes mellitus. This may be related to its antioxidative properties.

  17. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed.

    PubMed

    Maehre, Hanne K; Malde, Marian K; Eilertsen, Karl-Erik; Elvevoll, Edel O

    2014-12-01

    The objectives of this study were to examine protein and amino acid composition, lipid and fatty acid composition, along with a range of essential minerals in common Norwegian seaweed species representing the red (Palmaria palmata and Vertebrata lanosa), green (Cladophora rupestris, Enteromorpha intestinalis and Ulva lactuca) and brown (Alaria esculenta, Laminaria digitata, Laminaria hyperborea, Fucus vesiculosus and Pelvetia canaliculata) classes and assess their potential as alternatives to cereals in food and feed. As macroalgae accumulate heavy metals, arsenic, cadmium and mercury were also analyzed. Proteins ranged from 34 to 123 g kg(-1) dry weight (DW) and the essential amino acid levels may cover both human and salmonid requirements. Lipids were low (6-58 g kg(-1) DW), but the red algae had high relative content of long-chained omega-3 fatty acids (32-34 % of the fatty acids). Iodine contents were particularly high in the Laminaria species. Of the heavy metals only arsenic levels may be of concern. In total, the red alga P. palmata was regarded as the best alternative to cereals in food and feed. For several of the other species, single-component extraction for the ingredients market may be better than using the whole product. © 2014 Society of Chemical Industry.

  18. Surface Properties of Squalene/Meibum Films and NMR Confirmation of Squalene in Tears

    PubMed Central

    Ivanova, Slavyana; Tonchev, Vesselin; Yokoi, Norihiko; Yappert, Marta C.; Borchman, Douglas; Georgiev, Georgi As.

    2015-01-01

    Squalene (SQ) possesses a wide range of pharmacological activities (antioxidant, drug carrier, detoxifier, hydrating, emollient) that can be of benefit to the ocular surface. It can come in contact with human meibum (hMGS; the most abundant component of the tear film lipid layer) as an endogenous tear lipid or from exogenous sources as eyelid sebum or pharmaceuticals. The aims of this study were to determine (i) if SQ is in tear lipids and (ii) its influence on the surface properties of hMGS films. Heteronuclear single quantum correlation NMR confirmed 7 mol % SQ in Schirmer’s strips extracts. The properties of SQ/hMGS pseudo-binary films at the air/water interface were studied with Langmuir surface balance, stress-relaxation dilatational rheology and Brewster angle microscopy. SQ does not possess surfactant properties. When mixed with hMGS squalene (i) localized over the layers’ thinner regions and (ii) did not affect the film pressure at high compression. Therefore, tear SQ is unlikely to instigate dry eye, and SQ can be used as a safe and “inert” ingredient in formulations to protect against dry eye. The layering of SQ over the thinner film regions in addition to its pharmacological properties could contribute to the protection of the ocular surface. PMID:26370992

  19. A catheter-based near-infrared scanning spectroscopy system for imaging lipid-rich plaques in human coronary arteries in vivo

    NASA Astrophysics Data System (ADS)

    Gardner, Craig M.; Lisauskas, Jennifer; Hull, Edward L.; Tan, Huwei; Sum, Stephen; Meese, Thomas; Jiang, Chunsheng; Madden, Sean; Caplan, Jay; Muller, James E.

    2007-09-01

    Although heart disease remains the leading cause of death in the industrialized world, there is still no method, even under cardiac catheterization, to reliably identify those atherosclerotic lesions most likely to lead to heart attack and death. These lesions, which are often non-stenotic, are frequently comprised of a necrotic, lipid-rich core overlaid with a thin fibrous cap infiltrated with inflammatory cells. InfraReDx has developed a scanning, near-infrared, optical-fiber-based, spectroscopic cardiac catheter system capable of acquiring NIR reflectance spectra from coronary arteries through flowing blood under automated pullback and rotation in order to identify lipid-rich plaques (LRP). The scanning laser source and associated detection electronics produce a spectrum in 5 ms at a collection rate of 40 Hz, yielding thousands of spectra in a single pullback. The system console analyzes the spectral data with a chemometric model, producing a hyperspectral image (a Chemogram, see figure below) that identifies LRP encountered in the region interrogated by the system. We describe the system architecture and components, explain the experimental procedure by which the chemometric model was constructed from spectral data and histology-based reference information collected from autopsy hearts, and provide representative data from ongoing ex vivo and clinical studies.

  20. Three-Dimensional Microphase Separation and Synergistic Permeability in Stacked Lipid–Polymer Hybrid Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Minjee; Lee, Byeongdu; Leal, Cecilia

    Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less

  1. Three-Dimensional Microphase Separation and Synergistic Permeability in Stacked Lipid–Polymer Hybrid Membranes

    DOE PAGES

    Kang, Minjee; Lee, Byeongdu; Leal, Cecilia

    2017-10-20

    Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less

  2. Charging the quantum capacitance of graphene with a single biological ion channel.

    PubMed

    Wang, Yung Yu; Pham, Ted D; Zand, Katayoun; Li, Jinfeng; Burke, Peter J

    2014-05-27

    The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents.

  3. Charging the Quantum Capacitance of Graphene with a Single Biological Ion Channel

    PubMed Central

    2015-01-01

    The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents. PMID:24754625

  4. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.

    PubMed

    Yeh, Kuei-Ling; Chang, Jo-Shu

    2011-11-01

    Microalgae are recognized for serving as a sustainable source for biodiesel production. This study investigated the effect of nitrogen starvation strategies and photobioreactor design on the performance of lipid production and of CO(2) fixation of an indigenous microalga Chlorella vulgaris ESP-31. Comparison of single-stage and two-stage nitrogen starvation strategies shows that single-stage cultivation on basal medium with low initial nitrogen source concentration (i.e., 0.313 g/L KNO(3)) was the most effective approach to enhance microalgal lipid production, attaining a lipid productivity of 78 mg/L/d and a lipid content of 55.9%. The lipid productivity of C. vulgaris ESP-31 was further upgraded to 132.4 mg/L/d when it was grown in a vertical tubular photobioreactor with a high surface to volume ratio of 109.3 m(2)/m(3) . The high lipid productivity was also accompanied by fixation of 6.36 g CO(2) during the 10-day photoautotrophic growth with a CO(2) fixation rate of 430 mg/L/d. Analysis of fatty acid composition of the microalgal lipid indicates that over 65% of fatty acids in the microalgal lipid are saturated [i.e., palmitic acid (C16:0) and stearic acid (C18:0)] and monounsaturated [i.e., oleic acid (C18:1)]. This lipid quality is suitable for biodiesel production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nontargeted quantitation of lipid classes using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry with single internal standard and response factor approach.

    PubMed

    Cífková, Eva; Holčapek, Michal; Lísa, Miroslav; Ovčačíková, Magdaléna; Lyčka, Antonín; Lynen, Frédéric; Sandra, Pat

    2012-11-20

    The identification and quantitation of a wide range of lipids in complex biological samples is an essential requirement for the lipidomic studies. High-performance liquid chromatography-mass spectrometry (HPLC/MS) has the highest potential to obtain detailed information on the whole lipidome, but the reliable quantitation of multiple lipid classes is still a challenging task. In this work, we describe a new method for the nontargeted quantitation of polar lipid classes separated by hydrophilic interaction liquid chromatography (HILIC) followed by positive-ion electrospray ionization mass spectrometry (ESI-MS) using a single internal lipid standard to which all class specific response factors (RFs) are related to. The developed method enables the nontargeted quantitation of lipid classes and molecules inside these classes in contrast to the conventional targeted quantitation, which is based on predefined selected reaction monitoring (SRM) transitions for selected lipids only. In the nontargeted quantitation method described here, concentrations of lipid classes are obtained by the peak integration in HILIC chromatograms multiplied by their RFs related to the single internal standard (i.e., sphingosyl PE, d17:1/12:0) used as common reference for all polar lipid classes. The accuracy, reproducibility and robustness of the method have been checked by various means: (1) the comparison with conventional lipidomic quantitation using SRM scans on a triple quadrupole (QqQ) mass analyzer, (2) (31)P nuclear magnetic resonance (NMR) quantitation of the total lipid extract, (3) method robustness test using subsequent measurements by three different persons, (4) method transfer to different HPLC/MS systems using different chromatographic conditions, and (5) comparison with previously published results for identical samples, especially human reference plasma from the National Institute of Standards and Technology (NIST human plasma). Results on human plasma, egg yolk and porcine liver extracts are presented and discussed.

  6. Multicomponent blood lipid analysis by means of near infrared spectroscopy, in geese.

    PubMed

    Bazar, George; Eles, Viktoria; Kovacs, Zoltan; Romvari, Robert; Szabo, Andras

    2016-08-01

    This study provides accurate near infrared (NIR) spectroscopic models on some laboratory determined clinicochemical parameters (i.e. total lipid (5.57±1.95 g/l), triglyceride (2.59±1.36 mmol/l), total cholesterol (3.81±0.68 mmol/l), high density lipoprotein (HDL) cholesterol (2.45±0.58 mmol/l)) of blood serum samples of fattened geese. To increase the performance of multivariate chemometrics, samples significantly deviating from the regression models implying laboratory error were excluded from the final calibration datasets. Reference data of excluded samples having outlier spectra in principal component analysis were not marked as false. Samples deviating from the regression models but having non outlier spectra in PCA were identified as having false reference constituent values. Based on the NIR selection methods, 5% of the reference measurement data were rated as doubtful. The achieved models reached R(2) of 0.864, 0.966, 0.850, 0.793, and RMSE of 0.639 g/l, 0.232 mmol/l, 0.210 mmol/l, 0.241 mmol/l for total lipid, triglyceride, total cholesterol and HDL cholesterol, respectively, during independent validation. Classical analytical techniques focus on single constituents and often require chemicals, time-consuming measurements, and experienced technicians. NIR technique provides a quick, cost effective, non-hazardous alternative method for analysis of several constituents based on one single spectrum of each sample, and it also offers the possibility for looking at the laboratory reference data critically. Evaluation of reference data to identify and exclude falsely analyzed samples can provide warning feedback to the reference laboratory, especially in the case of analyses where laboratory methods are not perfectly suited to the subjected material and there is an increased chance of laboratory error. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. ATR-IR study of skin components: Lipids, proteins and water. Part I: Temperature effect

    NASA Astrophysics Data System (ADS)

    Olsztyńska-Janus, S.; Pietruszka, A.; Kiełbowicz, Z.; Czarnecki, M. A.

    2018-01-01

    In this work we report the studies of the effect of temperature on skin components, such as lipids, proteins and water. Modifications of lipids structure induced by increasing temperature (from 20 to 90 °C) have been studied using ATR-IR (Attenuated Total Reflectance Infrared) spectroscopy, which is a powerful tool for characterization of the molecular structure and properties of tissues, such as skin. Due to the small depth of penetration (0.6-5.6 μm), ATR-IR spectroscopy probes only the outermost layer of the skin, i.e. the stratum corneum (SC). The assignment of main spectral features of skin components allows for the determination of phase transitions from the temperature dependencies of band intensities [e.g. νas(CH2) and νs(CH2)]. The phase transitions were determined by using two methods: the first one was based on the first derivative of the Boltzmann function and the second one employed tangent lines of sigmoidal, aforementioned dependencies. The phase transitions in lipids were correlated with modifications of the structure of water and proteins.

  8. A modular platform for one-step assembly of multi-component membrane systems by fusion of charged proteoliposomes

    NASA Astrophysics Data System (ADS)

    Ishmukhametov, Robert R.; Russell, Aidan N.; Berry, Richard M.

    2016-10-01

    An important goal in synthetic biology is the assembly of biomimetic cell-like structures, which combine multiple biological components in synthetic lipid vesicles. A key limiting assembly step is the incorporation of membrane proteins into the lipid bilayer of the vesicles. Here we present a simple method for delivery of membrane proteins into a lipid bilayer within 5 min. Fusogenic proteoliposomes, containing charged lipids and membrane proteins, fuse with oppositely charged bilayers, with no requirement for detergent or fusion-promoting proteins, and deliver large, fragile membrane protein complexes into the target bilayers. We demonstrate the feasibility of our method by assembling a minimal electron transport chain capable of adenosine triphosphate (ATP) synthesis, combining Escherichia coli F1Fo ATP-synthase and the primary proton pump bo3-oxidase, into synthetic lipid vesicles with sizes ranging from 100 nm to ~10 μm. This provides a platform for the combination of multiple sets of membrane protein complexes into cell-like artificial structures.

  9. Tissue Fixation and Processing for the Histological Identification of Lipids.

    PubMed

    Carriel, Víctor; Campos, Fernando; Aneiros-Fernández, José; Kiernan, John A

    2017-01-01

    Lipids are a heterogeneous group of substances characterized by their solubility in organic solvents and insolubility in water. Lipids can be found as normal components of different tissues and organs, and they can be affected by several pathological conditions. The histochemical identification of lipids plays an important role in histopathological diagnosis and research, but successful staining depends on adequate fixation and processing of the tissue. Here we describe methods to fix and process tissue samples for the histochemical identification of lipids in frozen or paraffin-embedded tissues.

  10. Polar lipid composition of mammalian hair.

    PubMed

    Wix, M A; Wertz, P W; Downing, D T

    1987-01-01

    The types and amounts of polar lipids from the hair of monkey (Macacca fascicularis), dog (Canis familiaris), pig (Sus scrofa) and porcupine (Erethizon dorsatum) have been determined by quantitative thin-layer chromatography. The polar lipid content of the hair samples ranged from 0.6 to 1.6 wt%. Lipid compositions included ceramides (57-63% of the polar lipid by weight), glycosphingolipids (7-9%) and cholesteryl sulfate (22-29%). Several minor components (4-7%) remain unidentified. The results suggest that cholesteryl sulfate may be an important determinant of the cohesiveness of hair.

  11. Origins of cell-to-cell bioprocessing diversity and implications of the extracellular environment revealed at the single-cell level

    DOE PAGES

    Vasdekis, A. E.; Silverman, A. M.; Stephanopoulos, G.

    2015-12-14

    We probed the lipid expression dynamics of the oleaginous yeast Yarrowia Lipolytica. We observed that neutral lipid expression is sporadic. By performing single-cell analysis, we found that such noise emanates from the metabolic reaction level. Our results provide an alternative insight into the regulation and phenotypic variability of lipogenesis.

  12. Scaling up feasibility of the production of solid lipid nanoparticles (SLN).

    PubMed

    Gohla, S H; Dingler, A

    2001-01-01

    Solid lipid nanoparticles (SLN/Lipopearls) are widely discussed as colloidal drug carrier system. In contrast to polymeric systems, such as polylactic copolyol capsules, these systems show up with a good biocompatibility, if applied parenterally. The solid lipid matrices can be comprised of fats or waxes and allow protection of incorporated active ingredients against chemical and physical degradation. The SLN can either be produced by "hot homogenisation" of melted lipids at elevated temperatures or a "cold homogenization" process. This paper deals with production technologies for SLN formulations, based on non-ethoxylated fat components for topical application and high pressure homogenization (APV Deutschland GmbH, D-Lübeck). Based on the chosen fat components, a novel and easy manufacturing and scaling up method was developed to maintain chemical and physical integrity of encapsulated active and carrier.

  13. Functional analysis of alpha5beta1 integrin and lipid rafts in invasion of epithelial cells by Porphyromonas gingivalis using fluorescent beads coated with bacterial membrane vesicles.

    PubMed

    Tsuda, Kayoko; Furuta, Nobumichi; Inaba, Hiroaki; Kawai, Shinji; Hanada, Kentaro; Yoshimori, Tamotsu; Amano, Atsuo

    2008-01-01

    Porphyromonas gingivalis, a periodontal pathogen, was previously suggested to exploit alpha5beta1 integrin and lipid rafts to invade host cells. However, it is unknown if the functional roles of these host components are distinct from one another during bacterial invasion. In the present study, we analyzed the mechanisms underlying P. gingivalis invasion, using fluorescent beads coated with bacterial membrane vesicles (MV beads). Cholesterol depletion reagents including methyl-beta-cyclodextrin (MbetaCD) drastically inhibited the entry of MV beads into epithelial cells, while they were less effective on bead adhesion to the cells. Bead entry was also abolished in CHO cells deficient in sphingolipids, components of lipid rafts, whereas adhesion was negligibly influenced. Following MbetaCD treatment, downstream events leading to actin polymerization were abolished; however, alpha5beta1 integrin was recruited to beads attached to the cell surface. Dominant-negative Rho GTPase Rac1 abolished cellular engulfment of the beads, whereas dominant-negative Cdc42 did not. Following cellular interaction with the beads, Rac1 was found to be translocated to the lipid rafts fraction, which was inhibited by MbetaCD. These results suggest that alpha5beta1 integrin, independent of lipid rafts, promotes P. gingivalis adhesion to epithelial cells, while the subsequent uptake process requires lipid raft components for actin organization, with Rho GTPase Rac1.

  14. Univariate and multivariate molecular spectral analyses of lipid related molecular structural components in relation to nutrient profile in feed and food mixtures.

    PubMed

    Abeysekara, Saman; Damiran, Daalkhaijav; Yu, Peiqiang

    2013-02-01

    The objectives of this study were (i) to determine lipid related molecular structures components (functional groups) in feed combination of cereal grain (barley, Hordeum vulgare) and wheat (Triticum aestivum) based dried distillers grain solubles (wheat DDGSs) from bioethanol processing at five different combination ratios using univariate and multivariate molecular spectral analyses with infrared Fourier transform molecular spectroscopy, and (ii) to correlate lipid-related molecular-functional structure spectral profile to nutrient profiles. The spectral intensity of (i) CH(3) asymmetric, CH(2) asymmetric, CH(3) symmetric and CH(2) symmetric groups, (ii) unsaturation (CC) group, and (iii) carbonyl ester (CO) group were determined. Spectral differences of functional groups were detected by hierarchical cluster analysis (HCA) and principal components analysis (PCA). The results showed that the combination treatments significantly inflicted modifications (P<0.05) in nutrient profile and lipid related molecular spectral intensity (CH(2) asymmetric stretching peak height, CH(2) symmetric stretching peak height, ratio of CH(2) to CH(3) symmetric stretching peak intensity, and carbonyl peak area). Ratio of CH(2) to CH(3) symmetric stretching peak intensity, and carbonyl peak significantly correlated with nutrient profiles. Both PCA and HCA differentiated lipid-related spectrum. In conclusion, the changes of lipid molecular structure spectral profiles through feed combination could be detected using molecular spectroscopy. These changes were associated with nutrient profiles and functionality. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Behavior of sphingomyelin and ceramide in a tear film lipid layer model.

    PubMed

    Olżyńska, Agnieszka; Cwiklik, Lukasz

    2017-03-01

    Tear film lipid layer is a complex lipid mixture forming the outermost interface between eye and environment. Its key characteristics, such as surface tension and structural stability, are governed by the presence of polar lipids. The origin of these lipids and exact composition of the mixture are still elusive. We focus on two minor polar lipid components of the tear film lipid later: sphingomyelin and ceramide. By employing coarse grain molecular dynamics in silico simulations accompanied by Langmuir balance experiments we provide molecular-level insight into behavior of these two lipids in a tear film lipid layer model. Sphingomyelin headgroups are significantly exposed at the water-lipids boundary while ceramide molecules are incorporated between other lipids frequently interacting with nonpolar lipids. Even though these two lipids increase surface tension of the film, their molecular-level behavior suggests that they have a stabilizing effect on the tear film lipid layer. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. A comparative study of the fatty acid composition of prochloron lipids

    NASA Technical Reports Server (NTRS)

    Kenrick, J. R.; Deane, E. M.; Bishop, D. G.

    1983-01-01

    The chemical analysis of lipids of Prochloron isolated from several hosts is discussed. The object was to determine whether differences in lipid composition could be used to characterize organisms from different sources. Major lipid components are given. An analysis of fatty acid composition of individual lipids slowed a distinctive disstribution of fatty acids. While present results do not justify the use of fatty acid content in the taxonomy of Prochlon, the variations found in the lipids of cells from the same host harvested from different areas, or at different times in the same area, suggest that a study of the effects of temperature and light intensity on lipid composition would be rewarding.

  17. CHARACTERIZING THE TRANSFORMATION AND METABOLISM OF ANTHROPOGENIC ORGANIC MATTER IN ESTUARIES USING INTACT POLAR LIPIDS: A BIOMARKER APPROACH TO ECOSYSTEM HEALTH ASSESSMENT

    EPA Science Inventory

    Because polar lipids are critical structural components of all planktonic cells, it is expected that anthropogenic stressors will be found to alter substantively the relative proportions and types of polar lipids produced by various species in the two ecosystems. In additio...

  18. Imaging of Lipids in Microalgae with Coherent Anti-Stokes Raman Scattering Microscopy1[OPEN

    PubMed Central

    Cavonius, Lillie; Fink, Helen; Kiskis, Juris; Albers, Eva; Undeland, Ingrid; Enejder, Annika

    2015-01-01

    Microalgae have great prospects as a sustainable resource of lipids for refinement into nutraceuticals and biodiesel, which increases the need for detailed insights into their intracellular lipid synthesis/storage mechanisms. As an alternative strategy to solvent- and label-based lipid quantification techniques, we introduce time-gated coherent anti-Stokes Raman scattering (CARS) microscopy for monitoring lipid contents in living algae, despite strong autofluorescence from the chloroplasts, at approximately picogram and subcellular levels by probing inherent molecular vibrations. Intracellular lipid droplet synthesis was followed in Phaeodactylum tricornutum algae grown under (1) light/nutrient-replete (control [Ctrl]), (2) light-limited (LL), and (3) nitrogen-starved (NS) conditions. Good correlation (r2 = 0.924) was found between lipid volume data yielded by CARS microscopy and total fatty acid content obtained from gas chromatography-mass spectrometry analysis. In Ctrl and LL cells, micron-sized lipid droplets were found to increase in number throughout the growth phases, particularly in the stationary phase. During more excessive lipid accumulation, as observed in NS cells, promising commercial harvest as biofuels and nutritional lipids, several micron-sized droplets were present already initially during cultivation, which then fused into a single giant droplet toward stationary phase alongside with new droplets emerging. CARS microspectroscopy further indicated lower lipid fluidity in NS cells than in Ctrl and LL cells, potentially due to higher fatty acid saturation. This agreed with the fatty acid profiles gathered by gas chromatography-mass spectrometry. CARS microscopy could thus provide quantitative and semiqualitative data at the single-cell level along with important insights into lipid-accumulating mechanisms, here revealing two different modes for normal and excessive lipid accumulation. PMID:25583924

  19. Accumulation of High-Value Lipids in Single-Cell Microorganisms: A Mechanistic Approach and Future Perspectives

    PubMed Central

    2015-01-01

    In recent years attention has been focused on the utilization of microorganisms as alternatives for industrial and nutritional applications. Considerable research has been devoted to techniques for growth, extraction, and purification of high-value lipids for their use as biofuels and biosurfactants as well as high-value metabolites for nutrition and health. These successes argue that the elucidation of the mechanisms underlying the microbial biosynthesis of such molecules, which are far from being completely understood, now will yield spectacular opportunities for industrial scale biomolecular production. There are important additional questions to be solved to optimize the processing strategies to take advantage of the assets of microbial lipids. The present review describes the current state of knowledge regarding lipid biosynthesis, accumulation, and transport mechanisms present in single-cell organisms, specifically yeasts, microalgae, bacteria, and archaea. Similarities and differences in biochemical pathways and strategies of different microorganisms provide a diverse toolset to the expansion of biotechnologies for lipid production. This paper is intended to inspire a generation of lipid scientists to insights that will drive the biotechnologies of microbial production as uniquely enabling players of lipid biotherapeutics, biofuels, biomaterials, and other opportunity areas into the 21st century. PMID:24628496

  20. Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives.

    PubMed

    Garay, Luis A; Boundy-Mills, Kyria L; German, J Bruce

    2014-04-02

    In recent years attention has been focused on the utilization of microorganisms as alternatives for industrial and nutritional applications. Considerable research has been devoted to techniques for growth, extraction, and purification of high-value lipids for their use as biofuels and biosurfactants as well as high-value metabolites for nutrition and health. These successes argue that the elucidation of the mechanisms underlying the microbial biosynthesis of such molecules, which are far from being completely understood, now will yield spectacular opportunities for industrial scale biomolecular production. There are important additional questions to be solved to optimize the processing strategies to take advantage of the assets of microbial lipids. The present review describes the current state of knowledge regarding lipid biosynthesis, accumulation, and transport mechanisms present in single-cell organisms, specifically yeasts, microalgae, bacteria, and archaea. Similarities and differences in biochemical pathways and strategies of different microorganisms provide a diverse toolset to the expansion of biotechnologies for lipid production. This paper is intended to inspire a generation of lipid scientists to insights that will drive the biotechnologies of microbial production as uniquely enabling players of lipid biotherapeutics, biofuels, biomaterials, and other opportunity areas into the 21st century.

  1. Solid Lipid Nanoparticles of Guggul Lipid as Drug Carrier for Transdermal Drug Delivery

    PubMed Central

    Gaur, Praveen Kumar; Mishra, Shikha; Purohit, Suresh

    2013-01-01

    Diclofenac sodium loaded solid lipid nanoparticles (SLNs) were formulated using guggul lipid as major lipid component and analyzed for physical parameters, permeation profile, and anti-inflammatory activity. The SLNs were prepared using melt-emulsion sonication/low temperature-solidification method and characterized for physical parameters, in vitro drug release, and accelerated stability studies, and formulated into gel. Respective gels were compared with a commercial emulgel (CEG) and plain carbopol gel containing drug (CG) for ex vivo and in vivo drug permeation and anti-inflammatory activity. The SLNs were stable with optimum physical parameters. GMS nanoparticle 1 (GMN-1) and stearic acid nanoparticle 1 (SAN-1) gave the highest in vitro drug release. Guggul lipid nanoparticle gel 3 (GLNG-3) showed 104.68 times higher drug content than CEG in receptor fluid. The enhancement ratio of GLNG-3 was 39.43 with respect to CG. GLNG-3 showed almost 8.12 times higher C max than CEG at 4 hours. The AUC value of GLNG-3 was 15.28 times higher than the AUC of CEG. GLNG-3 showed edema inhibition up to 69.47% in the first hour. Physicochemical properties of major lipid component govern the properties of SLN. SLN made up of guggul lipid showed good physical properties with acceptable stability. Furthermore, it showed a controlled drug release profile along with a promising permeation profile. PMID:24058913

  2. The interplay between lipid profiles, glucose, BMI and risk of kidney cancer in the Swedish AMORIS study.

    PubMed

    Van Hemelrijck, Mieke; Garmo, Hans; Hammar, Niklas; Jungner, Ingmar; Walldius, Göran; Lambe, Mats; Holmberg, Lars

    2012-05-01

    With exception of cholesterol and total fat intake, associations between lipid biomarkers and kidney cancer have not often been researched. We aimed to assess possible links between lipid profiles and kidney cancer risk in a large prospective cohort study, while also taking into account glucose levels and BMI. A cohort based on 542,924 persons with baseline information on glucose, triglycerides (TGs), total cholesterol (TC) and creatinine was selected from the Swedish Apolipoprotein Mortality Risk study. A subgroup of 85,621 also had baseline measurements of HDL, LDL, apolipoprotein A-I and apoB. Multivariate Cox proportional hazard models were used to analyze associations between quartiles and dichotomized values of these lipid components and kidney cancer risk. During a mean follow-up of 13 years, 958 persons developed kidney cancer. TGs were the only lipid component for which a statistically significant association was found with kidney cancer risk when using both quartiles and a clinical cutoff (hazard ratio: 1.25 (95% CI: 0.99-1.60), 1.29 (1.01-1.66) and 1.66 (1.30-2.13) for the 2nd, 3rd and 4th quartile, compared to the 1st, with p-value for trend: <0.001). The association remained after exclusion of the 95% percentile of TG. Quartiles of glucose were also positively associated with kidney cancer risk, whereas quartiles of TC were negatively associated with kidney cancer risk. This detailed analysis of lipid components only showed a consistent relation between TG levels and kidney cancer risk. Further mechanistic studies are required to assess links between lipid abnormalities and kidney cancer. Copyright © 2011 UICC.

  3. Pretranslational regulation of the synthesis of the third component of complement in human mononuclear phagocytes by the lipid A portion of lipopolysaccharide.

    PubMed Central

    Strunk, R C; Whitehead, A S; Cole, F S

    1985-01-01

    The third component of complement (C3) is a plasma glycoprotein with a variety of biologic functions in the initiation and maintenance of host response to infectious agents. While the hepatocyte is the primary source of plasma C3, mononuclear phagocytes contribute to the regulation of tissue availability of C3. Lipopolysaccharide (LPS), a constituent of cell walls of gram-negative bacteria, consists of a polysaccharide moiety (core polysaccharide and O antigen) covalently linked to a lipid portion (lipid A). Using metabolic labeling with [35S]methionine, immunoprecipitation, and SDS-polyacrylamide gel electrophoresis, we examined the effects of LPS on synthesis of C3 by human mononuclear phagocytes as well as synthesis of the second component of complement (C2), factor B, lysozyme, and total protein. LPS increased C3 synthesis 5-30-fold without affecting the kinetics of secretion of C3 or the synthesis of C2, lysozyme, or total protein. Factor B synthesis was consistently increased by LPS. Experiments with lipid A-inactivated LPS (alkaline treated), LPS from a polysaccharide mutant strain, and lipid X (a lipid A precursor) indicated that the lipid A portion is the structural element required for this effect. Northern blot analysis demonstrated at least a fivefold increase in C3 mRNA in LPS-treated monolayers, which suggests that the regulation of the increase in C3 synthesis is pretranslational. C2 mRNA and factor B mRNA were increased approximately twofold. The availability of specific gene products in human mononuclear phagocytes that respond to LPS should permit understanding of the molecular regulation of more complex functions of these cells elicited by LPS in which multiple gene products are coordinately expressed. Images PMID:3900137

  4. Influence of Physiological Gastrointestinal Surfactant Ratio on the Equilibrium Solubility of BCS Class II Drugs Investigated Using a Four Component Mixture Design

    PubMed Central

    2017-01-01

    The absorption of poorly water-soluble drugs is influenced by the luminal gastrointestinal fluid content and composition, which control solubility. Simulated intestinal fluids have been introduced into dissolution testing including endogenous amphiphiles and digested lipids at physiological levels; however, in vivo individual variation exists in the concentrations of these components, which will alter drug absorption through an effect on solubility. The use of a factorial design of experiment and varying media by introducing different levels of bile, lecithin, and digested lipids has been previously reported, but here we investigate the solubility variation of poorly soluble drugs through more complex biorelevant amphiphile interactions. A four-component mixture design was conducted to understand the solubilization capacity and interactions of bile salt, lecithin, oleate, and monoglyceride with a constant total concentration (11.7 mM) but varying molar ratios. The equilibrium solubility of seven low solubility acidic (zafirlukast), basic (aprepitant, carvedilol), and neutral (fenofibrate, felodipine, griseofulvin, and spironolactone) drugs was investigated. Solubility results are comparable with literature values and also our own previously published design of experiment studies. Results indicate that solubilization is not a sum accumulation of individual amphiphile concentrations, but a drug specific effect through interactions of mixed amphiphile compositions with the drug. This is probably due to a combined interaction of drug characteristics; for example, lipophilicity, molecular shape, and ionization with amphiphile components, which can generate specific drug–micelle affinities. The proportion of each component can have a remarkable influence on solubility with, in some cases, the highest and lowest points close to each other. A single-point solubility measurement in a fixed composition simulated media or human intestinal fluid sample will therefore provide a value without knowledge of the surrounding solubility topography meaning that variability may be overlooked. This study has demonstrated how the amphiphile ratios influence drug solubility and highlights the importance of the envelope of physiological variation when simulating in vivo drug behavior. PMID:28749696

  5. Brownian Motion at Lipid Membranes: A Comparison of Hydrodynamic Models Describing and Experiments Quantifying Diffusion within Lipid Bilayers.

    PubMed

    Block, Stephan

    2018-05-22

    The capability of lipid bilayers to exhibit fluid-phase behavior is a fascinating property, which enables, for example, membrane-associated components, such as lipids (domains) and transmembrane proteins, to diffuse within the membrane. These diffusion processes are of paramount importance for cells, as they are for example involved in cell signaling processes or the recycling of membrane components, but also for recently developed analytical approaches, which use differences in the mobility for certain analytical purposes, such as in-membrane purification of membrane proteins or the analysis of multivalent interactions. Here, models describing the Brownian motion of membrane inclusions (lipids, peptides, proteins, and complexes thereof) in model bilayers (giant unilamellar vesicles, black lipid membranes, supported lipid bilayers) are summarized and model predictions are compared with the available experimental data, thereby allowing for evaluating the validity of the introduced models. It will be shown that models describing the diffusion in freestanding (Saffman-Delbrück and Hughes-Pailthorpe-White model) and supported bilayers (the Evans-Sackmann model) are well supported by experiments, though only few experimental studies have been published so far for the latter case, calling for additional tests to reach the same level of experimental confirmation that is currently available for the case of freestanding bilayers.

  6. The effect of a lipid composition and a surfactant on the characteristics of the solid lipid microspheres and nanospheres (SLM and SLN).

    PubMed

    Sznitowska, Malgorzata; Wolska, Eliza; Baranska, Helena; Cal, Krzysztof; Pietkiewicz, Justyna

    2017-01-01

    Solid lipid microparticles (SLM) were produced by a two-step process that, firstly, involved the emulsification of the molten lipid phase in a heated aqueous phase and, secondly, the system cooling. Compritol 888 ATO and Precirol ATO 5, including their mixtures with Miglyol 812 or Witepsol H15 were used as lipid components (10-30% w/w). The average size of the SLM prepared with Compritol and Tween 80 as an emulsifier was 3-7μm and the influence of lipid concentration and thermal sterilization was not large. Dispersions of SLM with Precirol (10-20% w/w) gellified upon storage. SLM stabilized with another surfactant, Tego Care 450, were larger in size and measured 40μm on average. The use of the sonication step (5-15min) in hot formulations containing 5% w/w of Compritol resulted in the formation of the solid lipid nanoparticles (SLN) with average size 200-300nm. The smallest SLN size (below 100nm on average) was obtained in SLN that contained Tego Care and an antimicrobial agent Euxyl PE 9010; such combination evoked synergism between the surfactant and Euxyl components. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Interactions and Translational Dynamics of Phosphatidylinositol Bisphosphate (PIP2) Lipids in Asymmetric Lipid Bilayers.

    PubMed

    Shi, Xiaojun; Kohram, Maryam; Zhuang, Xiaodong; Smith, Adam W

    2016-02-23

    Phosphatidylinositol phosphate (PIP) lipids are critical to many cell signaling pathways, in part by acting as molecular beacons that recruit peripheral membrane proteins to specific locations within the plasma membrane. Understanding the biophysics of PIP-protein interactions is critical to developing a chemically detailed model of cell communication. Resolving such interactions is challenging, even in model membrane systems, because of the difficulty in preparing PIP-containing membranes with high fluidity and integrity. Here we report on a simple, vesicle-based protocol for preparing asymmetric supported lipid bilayers in which fluorescent PIP lipid analogues are found only on the top leaflet of the supported membrane facing the bulk solution. With this asymmetric distribution of lipids between the leaflets, the fluorescent signal from the PIP lipid analogue reports directly on interactions between the peripheral molecules and the top leaflet of the membrane. Asymmetric PIP-containing bilayers are an ideal platform to investigate the interaction of PIP with peripheral membrane proteins using fluorescence-based imaging approaches. We demonstrate their usefulness here with a combined fluorescence correlation spectroscopy and single particle tracking study of the interaction between PIP2 lipids and a polycationic polymer, quaternized polyvinylpyridine (QPVP). With this approach we are able to quantify the microscopic features of the mobility coupling between PIP2 lipids and polybasic QPVP. With single particle tracking we observe individual PIP2 lipids switch from Brownian to intermittent motion as they become transiently trapped by QPVP.

  8. Single cell assessment of yeast metabolic engineering for enhanced lipid production using Raman and AFM-IR imaging.

    PubMed

    Kochan, Kamila; Peng, Huadong; Wood, Bayden R; Haritos, Victoria S

    2018-01-01

    Biodiesel is a valuable renewable fuel made from derivatized fatty acids produced in plants, animals, and oleaginous microbes. Of the latter, yeasts are of special interest due to their wide use in biotechnology, ability to synthesize fatty acids and store large amounts of triacylglycerols while utilizing non-food carbon sources. While yeast efficiently produce lipids, genetic modification and indeed, lipid pathway metabolic engineering, is usually required for cost-effective production. Traditionally, gas chromatography (GC) is used to measure fatty acid production and to track the success of a metabolic engineering strategy in a microbial culture; here we have employed vibrational spectroscopy approaches at population and single cell level of engineered yeast while simultaneously investigating metabolite levels in subcellular structures. Firstly, a strong correlation ( r 2  > 0.99) was established between Fourier transform infrared (FTIR) lipid in intact cells and GC analysis of fatty acid methyl esters in the differently engineered strains. Confocal Raman spectroscopy of individual cells carrying genetic modifications to enhance fatty acid synthesis and lipid accumulation revealed changes to the lipid body (LB), the storage organelle for lipids in yeast, with their number increasing markedly (up to tenfold higher); LB size was almost double in the strain that also expressed a LB stabilizing gene but considerable variation was also noted between cells. Raman spectroscopy revealed a clear trend toward reduced unsaturated fatty acid content in lipids of cells carrying more complex metabolic engineering. Atomic force microscopy-infrared spectroscopy (AFM-IR) analysis of individual cells indicated large differences in subcellular constituents between strains: cells of the most highly engineered strain had elevated lipid and much reduced carbohydrate in their cytoplasm compared with unmodified cells. Vibrational spectroscopy analysis allowed the simultaneous measurement of strain variability in metabolite production and impact on cellular structures as a result of different gene introductions or knockouts, within a lipid metabolic engineering strategy and these inform the next steps in comprehensive lipid engineering. Additionally, single cell spectroscopic analysis measures heterogeneity in metabolite production across microbial cultures under genetic modification, an emerging issue for efficient biotechnological production.

  9. A two-photon view of an enzyme at work: Crotalus atrox venom PLA2 interaction with single-lipid and mixed-lipid giant unilamellar vesicles.

    PubMed Central

    Sanchez, Susana A; Bagatolli, Luis A; Gratton, Enrico; Hazlett, Theodore L

    2002-01-01

    We describe the interaction of Crotalus atrox-secreted phospholipase A2 (sPLA2) with giant unilamellar vesicles (GUVs) composed of single and binary phospholipid mixtures visualized through two-photon excitation fluorescent microscopy. The GUV lipid compositions that we examined included 1-palmitoyl-2-oleoyl-phosphatidylcholine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) (above their gel-liquid crystal transition temperatures) and two well characterized lipid mixtures, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE):DMPC (7:3) and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)/1,2-diarachidoyl-sn-glycero-3-phosphocholine (DAPC) (1:1) equilibrated at their phase-coexistence temperature regime. The membrane fluorescence probes, 6-lauroyl-2-(dimethylamino) napthalene, 6-propionyl-2-(dimethylamino) naphthalene, and rhodamine-phosphatidylethanolamine, were used to assess the state of the membrane and specifically mark the phospholipid domains. Independent of their lipid composition, all GUVs were reduced in size as sPLA2-dependent lipid hydrolysis proceeded. The binding of sPLA2 was monitored using a fluorescein-sPLA2 conjugate. The sPLA2 was observed to associate with the entire surface of the liquid phase in the single phospholipid GUVs. In the mixed-lipid GUV's, at temperatures promoting domain coexistence, a preferential binding of the enzyme to the liquid regions was also found. The lipid phase of the GUV protein binding region was verified by the introduction of 6-propionyl-2-(dimethylamino) naphthalene, which partitions quickly into the lipid fluid phase. Preferential hydrolysis of the liquid domains supported the conclusions based on the binding studies. sPLA2 hydrolyzes the liquid domains in the binary lipid mixtures DLPC:DAPC and DMPC:DMPE, indicating that the solid-phase packing of DAPC and DMPE interferes with sPLA2 binding, irrespective of the phospholipid headgroup. These studies emphasize the importance of lateral packing of the lipids in C. atrox sPLA2 enzymatic hydrolysis of a membrane surface. PMID:11916878

  10. The atherogenic and metabolic impact of non-HDL cholesterol versus other lipid sub-components among non-diabetic and diabetic Saudis

    PubMed Central

    Al-Daghri, Nasser M; Al-Attas, Omar S; Al-Rubeaan, Khalid

    2007-01-01

    Background Several trials from different populations have reported that non-high density lipoprotein cholesterol (non-HDL-C) has more predictive power than low-density lipoprotein cholesterol (LDL-C) in detecting coronary heart disease (CHD) and none in any Arab community whose propensity to develop CHD is higher compared to other ethnicities. This study aims to determine and compare the impact of non-HDL-C versus other lipid parameters, in predicting coronary heart disease among diabetic versus non-diabetic adult Saudis and identify the lipid parameters which make a significant contribution in the development of coronary heart disease, diabetes mellitus, and metabolic syndrome. 733 adult Saudis were recruited and divided into groups of diabetics and non-diabetics. Each participant completed a questionnaire, underwent physical exam including 12-L ECG, and submitted a fasting blood sample where glucose and lipid parameters were analyzed using routine procedures. Results 462 subjects (age 45.03 ± 11.52; BMI 28.91 ± 6.07) were classified non-diabetics while the remaining 271 (age 52.73 ± 11.45, BMI 30.15 ± 6.62) were diabetics. 99 out of 465 (21.3%) of non-diabetics had CHD and 114 out of 271 (52.5%) in the diabetics. Non-HDL cholesterol was the best predictor among the non-diabetics (odds-ratio 2.89, CI 1.10–7.58, p-0.03). Total cholesterol was the highest single predictor for the development of CHD among the lipids (odds-ratio 1.36, CI 0.68–2.71, p-0.39) but HDL-cholesterol although small was significant (odds-ratio 0.52, CI 0.27–0.99, p-0.05). Conclusion This study supports the use of non-HDL cholesterol as the more practical and reliable target for lipid lowering therapy among the Saudi population. PMID:17408471

  11. Genetic modulation of lipid profiles following lifestyle modification or metformin treatment: the Diabetes Prevention Program.

    PubMed

    Pollin, Toni I; Isakova, Tamara; Jablonski, Kathleen A; de Bakker, Paul I W; Taylor, Andrew; McAteer, Jarred; Pan, Qing; Horton, Edward S; Delahanty, Linda M; Altshuler, David; Shuldiner, Alan R; Goldberg, Ronald B; Florez, Jose C; Franks, Paul W

    2012-01-01

    Weight-loss interventions generally improve lipid profiles and reduce cardiovascular disease risk, but effects are variable and may depend on genetic factors. We performed a genetic association analysis of data from 2,993 participants in the Diabetes Prevention Program to test the hypotheses that a genetic risk score (GRS) based on deleterious alleles at 32 lipid-associated single-nucleotide polymorphisms modifies the effects of lifestyle and/or metformin interventions on lipid levels and nuclear magnetic resonance (NMR) lipoprotein subfraction size and number. Twenty-three loci previously associated with fasting LDL-C, HDL-C, or triglycerides replicated (P = 0.04-1 × 10(-17)). Except for total HDL particles (r = -0.03, P = 0.26), all components of the lipid profile correlated with the GRS (partial |r| = 0.07-0.17, P = 5 × 10(-5)-1 10(-19)). The GRS was associated with higher baseline-adjusted 1-year LDL cholesterol levels (β = +0.87, SEE ± 0.22 mg/dl/allele, P = 8 × 10(-5), P(interaction) = 0.02) in the lifestyle intervention group, but not in the placebo (β = +0.20, SEE ± 0.22 mg/dl/allele, P = 0.35) or metformin (β = -0.03, SEE ± 0.22 mg/dl/allele, P = 0.90; P(interaction) = 0.64) groups. Similarly, a higher GRS predicted a greater number of baseline-adjusted small LDL particles at 1 year in the lifestyle intervention arm (β = +0.30, SEE ± 0.012 ln nmol/L/allele, P = 0.01, P(interaction) = 0.01) but not in the placebo (β = -0.002, SEE ± 0.008 ln nmol/L/allele, P = 0.74) or metformin (β = +0.013, SEE ± 0.008 nmol/L/allele, P = 0.12; P(interaction) = 0.24) groups. Our findings suggest that a high genetic burden confers an adverse lipid profile and predicts attenuated response in LDL-C levels and small LDL particle number to dietary and physical activity interventions aimed at weight loss.

  12. Hacking an Algal Transcription Factor for Lipid Biosynthesis.

    PubMed

    Chen, Xiulai; Hu, Guipeng; Liu, Liming

    2018-03-01

    Transcriptional engineering is a viable means for engineering microalgae to produce lipid, but it often results in a trade-off between production and growth. A recent study shows that engineering a single transcriptional regulator enables efficient carbon partitioning to lipid biosynthesis with high biomass productivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Pulmonary lipomatous hemangiopericytoma: report of a rare tumor and comparison with solitary fibrous tumor.

    PubMed

    Yamazaki, Kazuto; Eyden, Brian P

    2007-01-01

    Lipomatous hemangiopericytoma is a rare mesenchymal tumor showing areas of lipid-containing cells admixed with a spindle-cell component. Like other hemangiopericytomas, it shows a similar vascular pattern to solitary fibrous tumor and, partly for this reason, it and other hemangiopericytomas have been subsumed into solitary fibrous tumor. The present study provides a comprehensive documentation of a single case of pulmonary lipomatous hemangiopericytoma of the lung, the first to be described at this site, and compares it with solitary fibrous tumor, in terms of clinical, histological, immunohistochemical, ultrastructural, and cytogenetic findings. Apart from the lipid-laden-cell component, pulmonary lipomatous hemangiopericytoma and solitary fibrous tumor were similar histologically. Bcl-2 was positive in both. CD34 was minimally expressed in pulmonary lipomatous hemangiopericytoma, which possessed some non-descriptive intercellular junctions, a feature shared by solitary fibrous tumor, which was CD34 positive. However, one of the latter was rich in gap junctions, a feature consistent with strong connexin (Cx) 43 staining and the existence, hitherto unappreciated, of a CD34/Cx43-positive tumor cell network. In pulmonary lipomatous hemangiopericytoma, chromosomal deletions of 43-44, X, -Y were found. In solitary fibrous tumor, 46, XY, del(13)(q?) abnormalities and abnormalities involving chromosome 10 were frequently observed. These similarities and differences are discussed in the context of the currently favored diagnostic fusion of hemangiopericytoma and solitary fibrous tumor.

  14. Effect of Cholesterol on the Structure of a Five-Component Mitochondria-Like Phospholipid Membrane

    PubMed Central

    Cathcart, Kelly; Patel, Amit; Dies, Hannah; Rheinstädter, Maikel C.; Fradin, Cécile

    2015-01-01

    Cellular membranes have a complex phospholipid composition that varies greatly depending on the organism, cell type and function. In spite of this complexity, most structural data available for phospholipid bilayers concern model systems containing only one or two different phospholipids. Here, we examine the effect of cholesterol on the structure of a complex membrane reflecting the lipid composition of mitochondrial membranes, with five different types of headgroups (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS) and cardiolipin (CL)) and a variety of hydrocarbon tails. This particular system was chosen because elevated cholesterol contents in mitochondrial membranes have been linked to a breaking down of Bax-mediated membrane permeabilization and resistance to cancer treatments. High resolution electron density profiles were determined by X-ray reflectivity, while the area per phospholipid chain, Apc, and the chain order parameter, SX-ray, were determined by wide-angle X-ray scattering (WAXS). We show that chain order increases upon the addition of cholesterol, resulting in both a thickening of the lipid bilayer and a reduction in the average surface area per phospholipid chain. This effect, well known as cholesterol’s condensation effect, is similar, but not as pronounced as for single-component phospholipid membranes. We conclude by discussing the relevance of these findings for the insertion of the pro-apoptotic protein Bax in mitochondrial membranes with elevated cholesterol content. PMID:26529029

  15. Effect of Cholesterol on the Structure of a Five-Component Mitochondria-Like Phospholipid Membrane.

    PubMed

    Cathcart, Kelly; Patel, Amit; Dies, Hannah; Rheinstädter, Maikel C; Fradin, Cécile

    2015-10-30

    Cellular membranes have a complex phospholipid composition that varies greatly depending on the organism, cell type and function. In spite of this complexity, most structural data available for phospholipid bilayers concern model systems containing only one or two different phospholipids. Here, we examine the effect of cholesterol on the structure of a complex membrane reflecting the lipid composition of mitochondrial membranes, with five different types of headgroups (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS) and cardiolipin (CL)) and a variety of hydrocarbon tails. This particular system was chosen because elevated cholesterol contents in mitochondrial membranes have been linked to a breaking down of Bax-mediated membrane permeabilization and resistance to cancer treatments. High resolution electron density profiles were determined by X-ray reflectivity, while the area per phospholipid chain, Apc, and the chain order parameter, SX-ray, were determined by wide-angle X-ray scattering (WAXS). We show that chain order increases upon the addition of cholesterol, resulting in both a thickening of the lipid bilayer and a reduction in the average surface area per phospholipid chain. This effect, well known as cholesterol's condensation effect, is similar, but not as pronounced as for single-component phospholipid membranes. We conclude by discussing the relevance of these findings for the insertion of the pro-apoptotic protein Bax in mitochondrial membranes with elevated cholesterol content.

  16. Biochemistry of ungerminated and germinated spores of the vesicular-arbuscular mycorrhizal fungus, Glomus caledonius: changes in neutral and polar lipids.

    PubMed

    Beilby, J P; Kidby, D K

    1980-08-01

    Neutral and polar spore lipids of the vesicular-arbuscular (VA) endophyte Glomus caledonius, were identified and quantitatively determined during spore germination, germ tube growth, and germ tube senescence. There are no previous reports detailing the spore lipid components of any member of the Endogenaceae, which is in the Zygomycotina. The fungus contained 45 to 72% total lipid depending upon its stage of growth. The concentration of neutral lipids decreased during germination while the polar lipids increased. Triacylglycerides were the most abundant neutral lipid, and lesser amounts of diacylglycerides, monoacylglycerides, free fatty acids, bound fatty acids, hydrocarbons, and sterols. The major fatty acids identified by gas--liquid chromatography and mass spectrometry were 16:1, 16:0, and 18:1. The minor fatty acids identified were n-3 and n-6 polyunsaturates. The n-3 polyunsaturated fatty acids have not been reported before in Zygomycetes. The fatty acid composition of the individual lipid classes was examined. The major phospholipids were phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine, with smaller amounts of diphosphatidylglycerol and phosphatidic acid. The free sterol fraction was in greater quantity than sterol esters during germination and germ tube elongation. The capacity to synthesize sterols was demonstrated. Approximate net rates of change in the different lipid components were calculated. During spore germination and early germ tube growth, there was a net synthesis of lipids, with a large production of free fatty acids, in the germinating spore. Later in the growth period there was a net degradation of lipid, characterized by a large conversion of free fatty acids to unidentified compounds. During this period net free sterol synthesis ceased and sterol ester synthesis continued using the existing free sterol.

  17. Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic

    PubMed Central

    Puri, Anu; Loomis, Kristin; Smith, Brandon; Lee, Jae-Ho; Yavlovich, Amichai; Heldman, Eli; Blumenthal, Robert

    2010-01-01

    In recent years, various nanotechnology platforms in the area of medical biology, including both diagnostics and therapy, have gained remarkable attention. Moreover, research and development of engineered multifunctional nanoparticles as pharmaceutical drug carriers have spurred exponential growth in applications to medicine in the last decade. Design principles of these nanoparticles, including nano-emulsions, dendrimers, nano-gold, liposomes, drug-carrier conjugates, antibody-drug complexes, and magnetic nanoparticles, are primarily based on unique assemblies of synthetic, natural, or biological components, including but not limited to synthetic polymers, metal ions, oils, and lipids as their building blocks. However, the potential success of these particles in the clinic relies on consideration of important parameters such as nanoparticle fabrication strategies, their physical properties, drug loading efficiencies, drug release potential, and, most importantly, minimum toxicity of the carrier itself. Among these, lipid-based nanoparticles bear the advantage of being the least toxic for in vivo applications, and significant progress has been made in the area of DNA/RNA and drug delivery using lipid-based nanoassemblies. In this review, we will primarily focus on the recent advances and updates on lipid-based nanoparticles for their projected applications in drug delivery. We begin with a review of current activities in the field of liposomes (the so-called honorary nanoparticles), and challenging issues of targeting and triggering will be discussed in detail. We will further describe nanoparticles derived from a novel class of amphipathic lipids called bolaamphiphiles with unique lipid assembly features that have been recently examined as drug/DNA delivery vehicles. Finally, an overview of an emerging novel class of particles (based on lipid components other than phospholipids), solid lipid nanoparticles and nanostructured lipid carriers will be presented. We conclude with a few examples of clinically successful formulations of currently available lipid-based nanoparticles. PMID:20402623

  18. Using fluorescent lipids in live zebrafish larvae: From imaging whole animal physiology to subcellular lipid trafficking.

    PubMed

    Anderson, J L; Carten, J D; Farber, S A

    2016-01-01

    Lipids serve essential functions in cells as signaling molecules, membrane components, and sources of energy. Defects in lipid metabolism are implicated in a number of pandemic human diseases, including diabetes, obesity, and hypercholesterolemia. Many aspects of how fatty acids and cholesterol are absorbed and processed by intestinal cells remain unclear and present a hurdle to developing approaches for disease prevention and treatment. Numerous studies have shown that the zebrafish is an excellent model for vertebrate lipid metabolism. In this chapter, we review commercially available fluorescent lipids that can be deployed in live zebrafish to better understand lipid signaling and metabolism. In this chapter, we present criteria one should consider when selecting specific fluorescent lipids for the study of digestive physiology or lipid metabolism in larval zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Lipid Raft: A Floating Island Of Death or Survival

    PubMed Central

    George, Kimberly S.; Wu, Shiyong

    2012-01-01

    Lipid rafts are microdomains of the plasma membrane enriched in cholesterol and sphingolipids, and play an important role in the initiation of many pharmacological agent-induced signaling pathways and toxicological effects. The structure of lipid rafts is dynamic, resulting in an ever-changing content of both lipids and proteins. Cholesterol, as a major component of lipid rafts, is critical for the formation and configuration of lipid rafts microdomains, which provide signaling platforms capable of activating both pro-apoptotic and anti-apoptotic signaling pathways. A change of cholesterol level can result in lipid rafts disruption and activate or deactivate raft-associated proteins, such as death receptor proteins, protein kinases, and calcium channels. Several anti-cancer drugs are able to suppress growth and induce apoptosis of tumor cells through alteration of lipid raft contents via disrupting lipid raft integrity. PMID:22289360

  20. Multicomponent T2 relaxation studies of the avian egg.

    PubMed

    Mitsouras, Dimitris; Mulkern, Robert V; Maier, Stephan E

    2016-05-01

    To investigate the tissue-like multiexponential T2 signal decays in avian eggs. Transverse relaxation studies of raw, soft-boiled and hard-boiled eggs were performed at 3 Tesla using a three-dimensional Carr-Purcell-Meiboom-Gill imaging sequence. Signal decays over a TE range of 11 to 354 ms were fitted assuming single- and multicomponent signal decays with up to three separately decaying components. Fat saturation was used to facilitate spectral assignment of observed decay components. Egg white, yolk and the centrally located latebra all demonstrate nonmonoexponential T2 decays. Specifically, egg white exhibits two-component decays with intermediate and long T2 times. Meanwhile, yolk and latebra are generally best characterized with triexponential decays, with short, intermediate and very long T2 decay times. Fat saturation revealed that the intermediate component of yolk could be attributed to lipids. Cooking of the egg profoundly altered the decay curves. Avian egg T2 decay curves cover a wide range of decay times. Observed T2 components in yolk and latebra as short as 10 ms, may prove valuable for testing clinical sequences designed to measure short T2 components, such as myelin-associated water in the brain. Thus we propose that the egg can be a versatile and widely available MR transverse relaxation phantom. © 2015 Wiley Periodicals, Inc.

  1. Raman spectroscopic study on the excystation process in a single unicellular organism amoeba (Acanthamoeba polyphaga)

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chung; Perevedentseva, Elena; Cheng, Chia-Liang

    2015-05-01

    An in vivo Raman spectroscopic study of amoeba (Acanthamoeba polyphaga) is presented. The changes of the spectra during the amoeba cyst activation and excystation are analyzed. The spectra show the changes of the relative intensities of bands corresponding to protein, lipid, and carotenoid components during cyst activation. The presence of carotenoids in the amoeba is observed via characteristic Raman bands. These signals in the Raman spectra are intense in cysts but decrease in intensity with cyst activation and exhibit a correlation with the life cycle of amoeba. This work demonstrates the feasibility of using Raman spectroscopy for the detection of single amoeba microorganisms in vivo and for the analysis of the amoeba life activity. The information obtained may have implications for the estimation of epidemiological situations and for the diagnostics and prognosis of the development of amoebic inflammations.

  2. Raman spectroscopic study on the excystation process in a single unicellular organism amoeba (Acanthamoeba polyphaga).

    PubMed

    Lin, Yu-Chung; Perevedentseva, Elena; Cheng, Chia-Liang

    2015-05-01

    An in vivo Raman spectroscopic study of amoeba (Acanthamoeba polyphaga) is presented. The changes of the spectra during the amoeba cyst activation and excystation are analyzed. The spectra show the changes of the relative intensities of bands corresponding to protein, lipid, and carotenoid components during cyst activation. The presence of carotenoids in the amoeba is observed via characteristic Raman bands. These signals in the Raman spectra are intense in cysts but decrease in intensity with cyst activation and exhibit a correlation with the life cycle of amoeba. This work demonstrates the feasibility of using Raman spectroscopy for the detection of single amoeba microorganisms in vivo and for the analysis of the amoeba life activity. The information obtained may have implications for the estimation of epidemiological situations and for the diagnostics and prognosis of the development of amoebic inflammations.

  3. ADP/ATP mitochondrial carrier MD simulations to shed light on the structural-dynamical events that, after an additional mutation, restore the function in a pathological single mutant.

    PubMed

    Di Marino, Daniele; Oteri, Francesco; Morozzo Della Rocca, Blasco; Chillemi, Giovanni; Falconi, Mattia

    2010-12-01

    Molecular dynamics simulations of the wild type bovine ADP/ATP mitochondrial carrier, and of the single Ala113Pro and double Ala113Pro/Val180Met mutants, embedded in a lipid bilayer, have been carried out for 30ns to shed light on the structural-dynamical changes induced by the Val180Met mutation restoring the carrier function in the Ala113Pro pathologic mutant. Principal component analysis indicates that, for the three systems, the protein dynamics is mainly characterized by the motion of the matrix loops and of the odd-numbered helices having a conserved proline in their central region. Analysis of the motions shows a different behaviour of single pathological mutant with respect of the other two systems. The single mutation induces a regularization and rigidity of the H3 helix, lost upon the introduction of the second mutation. This is directly correlated to the salt bridge distribution involving residues Arg79, Asp134 and Arg234, hypothesized to interact with the substrate. In fact, in the wild type simulation two stable inter-helices salt bridges, crucial for substrate binding, are present almost over all the simulation time. In line with the impaired ADP transport, one salt interaction is lost in the single mutant trajectory but reappears in the double mutant simulation, where a salt bridge network matching the wild type is restored. Other important structural-dynamical properties, such as the trans-membrane helices mobility, analyzed via the principal component analysis, are similar for the wild type and double mutant while are different for the single mutant, providing a mechanistic explanation for their different functional properties. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Protective effect of Curcuma longa L. extract on CCl4-induced acute hepatic stress.

    PubMed

    Lee, Geum-Hwa; Lee, Hwa-Young; Choi, Min-Kyung; Chung, Han-Wool; Kim, Seung-Wook; Chae, Han-Jung

    2017-02-01

    The Curcuma longa L. (CLL) rhizome has long been used to treat patients with hepatic dysfunction. CLL is a member of the ginger family of spices that are widely used in China, India, and Japan, and is a common spice, coloring, flavoring, and traditional medicine. This study was performed to evaluate the hepatoprotective activity of CLL extract and its active component curcumin in an acute carbon tetrachloride (CCl 4 )-induced liver stress model. Acute hepatic stress was induced by a single intraperitoneal injection of CCl 4 (0.1 ml/kg body weight) in rats. CLL extract was administered once a day for 3 days at three dose levels (100, 200, and 300 mg/kg/day) and curcumin was administered once a day at the 200 mg/kg/day. We performed alanine transaminase (ALT) and aspartate transaminase (AST). activity analysis and also measured total lipid, triglyceride, and cholesterol levels, and lipid peroxidation. At 100 g CLL, the curcuminoid components curcumin (901.63 ± 5.37 mg/100 g), bis-demethoxycurcumin (108.28 ± 2.89 mg/100 g), and demethoxycurcumin (234.85 ± 1.85 mg/100 g) were quantified through high liquid chromatography analysis. In CCl 4 -treated rats, serum AST and ALT levels increased 2.1- and 1.2-fold compared with the control. AST but not ALT elevation induced by CCl 4 was significantly alleviated in CLL- and curcumin-treated rats. Peroxidation of membrane lipids in the liver was significantly prevented by CLL (100, 200, and 300 mg/kg/day) on tissue lipid peroxidation assay and immunostaining with anti-4HNE antibody. We found that CLL extract and curcumin exhibited significant protection against liver injury by improving hepatic superoxide dismutase (p < 0.05) and glutathione peroxidase activity, and glutathione content in the CCl 4 -treated group (p < 0.05), leading to a reduced lipid peroxidase level. Our data suggested that CLL extract and curcumin protect the liver from acute CCl 4 -induced injury in a rodent model by suppressing hepatic oxidative stress. Therefore, CLL extract and curcumin are potential therapeutic antioxidant agents against acute hepatotoxicity.

  5. 2-Nonenal newly found in human body odor tends to increase with aging.

    PubMed

    Haze, S; Gozu, Y; Nakamura, S; Kohno, Y; Sawano, K; Ohta, H; Yamazaki, K

    2001-04-01

    Human body odor consists of various kinds of odor components. Here, we have investigated the changes in body odor associated with aging. The body odor of subjects between the ages of 26 and 75 was analyzed by headspace gas chromatography/mass spectrometry. 2-Nonenal, an unsaturated aldehyde with an unpleasant greasy and grassy odor, was detected only in older subjects (40 y or older). Furthermore, analysis of skin surface lipids revealed that omega7 unsaturated fatty acids and lipid peroxides also increased with aging and that there were positive correlations between the amount of 2-nonenal in body odor and the amount of omega7 unsaturated fatty acids or lipid peroxides in skin surface lipids. 2-Nonenal was generated only when omega7 unsaturated fatty acids were degraded by degradation tests in which some main components of skin surface lipids were oxidatively decomposed using lipid peroxides as initiator of an oxidative chain reaction. The results indicate that 2-nonenal is generated by the oxidative degradation of omega7 unsaturated fatty acids, and suggest that 2-nonenal may be involved in the age-related change of body odor.

  6. [Adrenal hormones in the formation of atherosclerotic precursors in adolescents with primary arterial hypertension].

    PubMed

    Bogmat, L F

    1993-01-01

    The components of blood lipid spectrum (total cholesterol, triglycerides and high density lipoprotein cholesterol) were studied in 131 adolescents (12-18 years old) with primary arterial hypertension at various levels of adrenal hormones (hydrocortisone and aldosterone) and blood plasma renin activity. The optimal ratio of lipid components in blood was detected if concentrations of adrenal hormones and blood plasma renin activity were low. Hyperfunction of the adrenal cortex in teen-agers contributed both to the development of hypertension and to atherosclerotic changes in vessels. This suggests that definite forms of hypertension occurred in adults, with specific impairments in the metabolism of blood serum lipids, were developed during the juvenile age.

  7. Multi-Component T2 Relaxation Studies of the Avian Egg

    PubMed Central

    Mitsouras, Dimitris; Mulkern, Robert V.; Maier, Stephan E.

    2015-01-01

    Purpose To investigate the tissue-like multiexponential T2 signal decays in avian eggs. Methods Transverse relaxation studies of raw, soft-boiled and hard-boiled eggs were performed at 3 Tesla using a 3D Carr-Purcell-Meiboom-Gill (CPMG) imaging sequence. Signal decays over a TE range of 11 to 354 ms were fitted assuming single- and multi-component signal decays with up to three separately decaying components. Fat saturation was used to facilitate spectral assignment of observed decay components. Results Egg white, yolk and the centrally located latebra all demonstrate nonmonoexponential T2 decays. Specifically, egg white exhibits two-component decays with intermediate and long T2 times. Meanwhile, yolk and latebra are generally best characterized with triexponential decays, with short, intermediate and very long T2 decay times. Fat saturation revealed that the intermediate component of yolk could be attributed to lipids. Cooking of the egg profoundly altered the decay curves. Conclusion Avian egg T2 decay curves cover a wide range of decay times. Observed T2 components in yolk and latebra as short as 10 ms, may prove valuable for testing clinical sequences designed to measure short T2 components, such as myelin-associated water in the brain. Thus we propose that the egg can be a versatile and widely available MR transverse relaxation phantom. PMID:26037128

  8. Lipid shedding from single oscillating microbubbles.

    PubMed

    Luan, Ying; Lajoinie, Guillaume; Gelderblom, Erik; Skachkov, Ilya; van der Steen, Antonius F W; Vos, Hendrik J; Versluis, Michel; De Jong, Nico

    2014-08-01

    Lipid-coated microbubbles are used clinically as contrast agents for ultrasound imaging and are being developed for a variety of therapeutic applications. The lipid encapsulation and shedding of the lipids by acoustic driving of the microbubble has a crucial role in microbubble stability and in ultrasound-triggered drug delivery; however, little is known about the dynamics of lipid shedding under ultrasound excitation. Here we describe a study that optically characterized the lipid shedding behavior of individual microbubbles on a time scale of nanoseconds to microseconds. A single ultrasound burst of 20 to 1000 cycles, with a frequency of 1 MHz and an acoustic pressure varying from 50 to 425 kPa, was applied. In the first step, high-speed fluorescence imaging was performed at 150,000 frames per second to capture the instantaneous dynamics of lipid shedding. Lipid detachment was observed within the first few cycles of ultrasound. Subsequently, the detached lipids were transported by the surrounding flow field, either parallel to the focal plane (in-plane shedding) or in a trajectory perpendicular to the focal plane (out-of-plane shedding). In the second step, the onset of lipid shedding was studied as a function of the acoustic driving parameters, for example, pressure, number of cycles, bubble size and oscillation amplitude. The latter was recorded with an ultrafast framing camera running at 10 million frames per second. A threshold for lipid shedding under ultrasound excitation was found for a relative bubble oscillation amplitude >30%. Lipid shedding was found to be reproducible, indicating that the shedding event can be controlled. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Rapid prediction of single green coffee bean moisture and lipid content by hyperspectral imaging.

    PubMed

    Caporaso, Nicola; Whitworth, Martin B; Grebby, Stephen; Fisk, Ian D

    2018-06-01

    Hyperspectral imaging (1000-2500 nm) was used for rapid prediction of moisture and total lipid content in intact green coffee beans on a single bean basis. Arabica and Robusta samples from several growing locations were scanned using a "push-broom" system. Hypercubes were segmented to select single beans, and average spectra were measured for each bean. Partial Least Squares regression was used to build quantitative prediction models on single beans (n = 320-350). The models exhibited good performance and acceptable prediction errors of ∼0.28% for moisture and ∼0.89% for lipids. This study represents the first time that HSI-based quantitative prediction models have been developed for coffee, and specifically green coffee beans. In addition, this is the first attempt to build such models using single intact coffee beans. The composition variability between beans was studied, and fat and moisture distribution were visualized within individual coffee beans. This rapid, non-destructive approach could have important applications for research laboratories, breeding programmes, and for rapid screening for industry.

  10. Design, Synthesis, and Characterization of Novel Zwitterionic Lipids for Drug and siRNA Delivery Applications

    NASA Astrophysics Data System (ADS)

    Walsh, Colin L.

    Lipid-based nanoparticles have long been used to deliver biologically active molecules such as drugs, proteins, peptides, DNA, and siRNA in vivo. Liposomes and lipoplexes alter the biodistribution, pharmacokinetics, and cellular uptake of their encapsulated or associated cargo. This can increase drug efficacy while reducing toxicity, resulting in an increased therapeutic index and better clinical outcomes. Unlike small molecule drugs, which passively diffuse through lipid membranes, nucleic acids and proteins require an active, carrier mediated escape mechanism to reach their site of action. As such, the therapeutic application and drug properties dictate the required biophysical characteristics of the lipid nanoparticle. These carrier properties depend on the structure and biophysical characteristics of the lipids and other components used to formulate them. This dissertation presents a series of studies related to the development of novel synthetic lipids for use in drug delivery systems. First, we developed a novel class of zwitterionic lipids with head groups containing a cationic amine and anionic carboxylate and ester-linked oleic acid tails. These lipids exhibit structure-dependent, pH-responsive biophysical properties, and may be useful components for next-generation drug delivery systems. Second, we extended the idea of amine/carboxylate containing zwitterionic head groups and synthesized a series of acetate terminated diacyl lipids containing a quaternary amine. These lipids have an inverted headgroup orientation compared to naturally occurring zwitterionic lipids, and show interesting salt-dependent biophysical properties. Third, we synthesized and characterized a focused library of ionizable lysine-based lipids, which contain a lysine head group linked to a long-chain dialkylamine. A focused library was synthesized to determine the impact of hydrophobic fluidity, lipid net charge, and lipid pKa on the biophysical and siRNA transfection characteristics of these lipids. Our results indicate that structural variations significantly impact the biophysical and transfection behavior of this class of lipids. In summary, we have synthesized several new classes of lipids with biophysical characteristics that may be useful for drug delivery applications. Our results show that slight modifications to lipid structure impacts their biophysical behavior, which in turn dictates their potential utility in drug delivery systems. Further understanding lipid structure-activity relationships will allow for the rational design and engineering of lipids with appropriate properties for specific delivery applications.

  11. Synchrotron FTIR microspectroscopy reveals early adipogenic differentiation of human mesenchymal stem cells at single-cell level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhixiao; University of Chinese Academy of Science, Beijing 100049; Tang, Yuzhao

    Human mesenchymal stem cells (hMSCs) have been used as an ideal in vitro model to study human adipogenesis. However, little knowledge of the early stage differentiation greatly hinders our understanding on the mechanism of the adipogenesis processes. In this study, synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy was applied to track the global structural and compositional changes of lipids, proteins and nucleic acids inside individual hMSCs along the time course. The multivariate analysis of the SR-FTIR spectra distinguished the dynamic and significant changes of the lipids and nucleic acid at early differentiation stage. Importantly, changes of lipid structure during early daysmore » (Day 1–3) of differentiation might serve as a potential biomarker in identifying the state in early differentiation at single cell level. These results proved that SR-FTIR is a powerful tool to study the stem cell fate determination and early lipogenesis events. - Highlights: • Molecular events occur in the early adipogenic differentiation stage of hMSCs are studied by SR-FTIR. • SR-FTIR data suggest that lipids may play an important role in hMSCs determination. • As potential biomarkers, lipids peaks can identify the state of cell in early differentiation stage at single-cell level.« less

  12. Therapeutic effect of aqueous extracts of three dietary spices and their mixture on lipid metabolism and oxidative stress in a rat model of chronic alcohol consumption.

    PubMed

    Otunola, Gloria Aderonke; Afolayan, Anthony Jide

    2016-07-01

    The protective effect of aqueous extracts of three dietary spices, garlic, (Allium sativum), ginger (Zingiber officinale) and pepper (Capsicum frutescens) singly and combined was investigated using a rat model of chronic alcohol intake. Rats were given 30% ethanol, with or without aqueous extracts of garlic, ginger, pepper or mixture of the three administered at 200mg/kg body weight by oral gavage for 28 days. Lipid profile, lipid peroxidation, oxidative and antioxidative profiles of serum, faecal, liver, kidney, heart and brain tissues of the rats were analyzed. Alcohol treatment significantly elevated liver enzymes, lipid peroxidation, depleted antioxidant system and induced histopathological changes in the liver. These alterations were markedly ameliorated by treatment with aqueous extracts of the three spices singly or mixed at 200mg/kg body weight. These results suggest that aqueous extracts of garlic, ginger, pepper or a blend of the three protects against alcohol- induced hypercholesterolemia, lipid peroxidation, oxidative stress and liver damage.

  13. In situ AFM imaging of apolipoprotein A-I directly derived from plasma HDL.

    PubMed

    Gan, Chaoye; Wang, Zhexuan; Chen, Yong

    2017-04-01

    The major apolipoproteins of plasma lipoproteins play vital roles in the structural integrity and physiological functions of lipoproteins. More than ten structural models of apolipoprotein A-I (apoA-I), the major apolipoprotein of high-density lipoprotein (HDL), have been developed successively. In these models, apoA-I was supposed to organize in a ring-shaped form. To date, however, there is no direct evidence under physiological condition. Here, atomic force microscopy (AFM) was used to in situ visualize the organization of apoA-I, which was exposed via depletion of the lipid component of plasma HDL pre-immobilized on functionalized mica sheets. For the first time, the ring-shaped coarse structure and three detailed structures (crescent-shaped, gapped "O"-shaped, and parentheses-shaped structures, respectively) of apoA-I in plasma HDL, which have the ability of binding scavenger receptors, were directly observed and quantitatively measured by AFM. The three detailed structures probably represent the different extents to which the lipid component of HDL was depleted. Data on lipid depletion of HDL may provide clues to understand lipid insertion of HDL. These data provide important information for the understanding of the structure/maturation of plasma HDL. Moreover, they suggest a powerful method for directly visualizing the major apolipoproteins of plasma lipoproteins or the protein component of lipoprotein-like lipid-protein complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The influence of Bauhinia forficata Link subsp. pruinosa tea on lipid peroxidation and non-protein SH groups in human erythrocytes exposed to high glucose concentrations.

    PubMed

    Salgueiro, Andréia C F; Leal, Carina Q; Bianchini, Matheus C; Prado, Ianeli O; Mendez, Andreas S L; Puntel, Robson L; Folmer, Vanderlei; Soares, Félix A; Avila, Daiana S; Puntel, Gustavo O

    2013-06-21

    Bauhinia forficata (BF) has been traditionally used as tea in folk medicine of Brazil for treatment of Diabetes mellitus (DM). To evaluate the effects of BF leaf tea on markers of oxidative damage and antioxidant levels in an experimental model of hyperglycemia in human erythrocytes in vitro. Human erythrocytes were incubated with high glucose concentrations or glucose and BF tea for 24h and 48h. After incubation lipid peroxidation and non-protein SH levels were analyzed. Moreover, quantification of polyphenols and flavonoids, iron chelating property, scavenging of DPPH, and prevention of lipid peroxidation in isolated lipids were also assessed. A significant amount of polyphenols and flavonoids was observed. The main components found by LC-MS analysis were quercetin-3-O-(2-rhamnosyl) rutinoside, kaempferol-3-O-(2-rhamnosyl) rutinoside, quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside. BF tea presents important antioxidant and chelating properties. Moreover, BF tea was effective to increase non-protein SH levels and reduce lipid peroxidation induced by high glucose concentrations in human erythrocytes. The antioxidant effects of BF tea could be related to the presence of different phenolic and flavonoids components. We believe that these components can be responsible to protect human erythrocytes exposed to high glucose concentrations against oxidative damage. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Dynamic interfacial properties of human tear-lipid films and their interactions with model-tear proteins in vitro.

    PubMed

    Svitova, Tatyana F; Lin, Meng C

    2016-07-01

    This review summarizes the current state of knowledge regarding interfacial properties of very complex biological colloids, specifically, human meibum and tear lipids, and their interactions with proteins similar to the proteins found in aqueous part of human tears. Tear lipids spread as thin films over the surface of tear-film aqueous and play crucial roles in tear-film stability and overall ocular-surface health. The vast majority of papers published to date report interfacial properties of meibum-lipid monolayers spread on various aqueous sub-phases, often containing model proteins, in Langmuir trough. However, it is well established that natural human ocular tear lipids exist as multilayered films with a thickness between 30 and 100nm, that is very much disparate from 1 to 2nm thick meibum monolayers. We employed sessile-bubble tensiometry to study the dynamic interfacial and rheological properties of reconstituted multilayered human tear-lipid films. Small amounts (0.5-1μg) of human tear lipids were deposited on an air-bubble surface to produce tear-lipid films in thickness range 30-100nm corresponding to ocular lipid films. Thus, we were able to overcome major Langmuir-trough method limitations because ocular tear lipids can be safely harvested only in minute, sub-milligram quantities, insufficient for Langmuir through studies. Sessile-bubble method is demonstrated to be a versatile tool for assessing conventional synthetic surfactants adsorption/desorption dynamics at an air-aqueous solution interface. (Svitova T., Weatherbee M., Radke C.J. Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry. J. Colloid Interf. Sci. 2003;261:1170-179). The augmented flow-sessile-bubble setup, with step-strain relaxation module for dynamic interfacial rheological properties and high-precision syringe pump to generate larger and slow interfacial area expansions-contractions, was developed and employed in our studies. We established that this method is uniquely suitable for examination of multilayered lipid-film interfacial properties. Recently it was compellingly proven that chemical composition of human tear lipids extracted from whole tears is substantially different from that of meibum lipids. To be exact, healthy human tear lipids contain 8-16% of polar lipids, similar to lung lipids, and they are mostly double-tailed phospholipids, with C16 and longer alkyl chains. Rationally, one would assume that the results obtained for meibum lipids, devoid of surface-active components such as phospholipids, and, above all, in a form of monolayers, are not pertinent or useful for elucidating behavior and stability of an averaged 60-nm thick ocular tear-lipid films in vivo. The advantage of sessile-bubble technique, specifically, using a small amount of lipids required to attain multilayered films, unlocks the prospect of evaluating and comparing the interfacial properties of human tear lipids collected from a single individual, typically 100-150μg. This is in sharp contrast with several milligrams of lipids that would be required to build equally thick films for Langmuir-trough experiments. The results of our studies provided in-depth understanding of the mechanisms responsible for properties and stability of human tear-lipid films in vivo. Here we summarize recent publications and our latest findings regarding human tear-lipid interfacial properties, their chemical composition, and their interaction with model proteins mimicking the proteins found in human tear-aqueous phase. Published by Elsevier B.V.

  16. Metabolic control analysis of developing oilseed rape (Brassica napus cv Westar) embryos shows that lipid assembly exerts significant control over oil accumulation.

    PubMed

    Tang, Mingguo; Guschina, Irina A; O'Hara, Paul; Slabas, Antoni R; Quant, Patti A; Fawcett, Tony; Harwood, John L

    2012-10-01

    Metabolic control analysis allows the study of metabolic regulation. We applied both single- and double-manipulation top-down control analysis to examine the control of lipid accumulation in developing oilseed rape (Brassica napus) embryos. The biosynthetic pathway was conceptually divided into two blocks of reactions (fatty acid biosynthesis (Block A), lipid assembly (Block B)) connected by a single system intermediate, the acyl-coenzyme A (acyl-CoA) pool. Single manipulation used exogenous oleate. Triclosan was used to inhibit specifically Block A, whereas diazepam selectively manipulated flux through Block B. Exogenous oleate inhibited the radiolabelling of fatty acids from [1-(14)C]acetate, but stimulated that from [U-14C]glycerol into acyl lipids. The calculation of group flux control coefficients showed that c. 70% of the metabolic control was in the lipid assembly block of reactions. Monte Carlo simulations gave an estimation of the error of the resulting group flux control coefficients as 0.27±0.06 for Block A and 0.73±0.06 for Block B. The two methods of control analysis gave very similar results and showed that Block B reactions were more important under our conditions. This contrasts notably with data from oil palm or olive fruit cultures and is important for efforts to increase oilseed rape lipid yields. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  17. Lipids as a principle for the identification of Archaebacteria

    NASA Technical Reports Server (NTRS)

    Tornabene, T. G.; Lloyd, R. E.; Holzer, G.; Oro, J.

    1980-01-01

    The 'Archaebacteria' consist of several distinct subgroups including methanogens, extreme halophiles and specific thermoacidophiles. These bacteria are distinct from other bacteria with respect to their characteristic RNA compositions, the absence of muramic acid in the cell walls and the predominance of nonsaponifable lipids. The lipid composition of the Archaebacteria consists of isoprenoid and hydroisoprenoid hydrocarbons and isopranyl glycerol ether lipids. The pathways for the biosynthesis of the lipid components are those shared by most microorganisms and demonstrate a close relationship; however, an independent line of descent is indicated by the formation of the isopranyl glycerol ether lipids. This discontinuity formulates a point for delineating the early stages of biological evolution and for dividing bacteria into two subgroups.

  18. Lysosomal degradation of membrane lipids.

    PubMed

    Kolter, Thomas; Sandhoff, Konrad

    2010-05-03

    The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Alcohol dose dumping: The influence of ethanol on hot-melt extruded pellets comprising solid lipids.

    PubMed

    Jedinger, N; Schrank, S; Mohr, S; Feichtinger, A; Khinast, J; Roblegg, E

    2015-05-01

    The objective of the present study was to investigate interactions between alcohol and hot-melt extruded pellets and the resulting drug release behavior. The pellets were composed of vegetable calcium stearate as matrix carrier and paracetamol or codeine phosphate as model drugs. Two solid lipids (Compritol® and Precirol®) were incorporated into the matrix to form robust/compact pellets. The drug release characteristics were a strong function of the API solubility, the addition of solid lipids, the dissolution media composition (i.e., alcohol concentration) and correspondingly, the pellet wettability. Pellets comprising paracetamol, which is highly soluble in ethanol, showed alcohol dose dumping regardless of the matrix composition. The wettability increased with increasing ethanol concentrations due to higher paracetamol solubilities yielding increased dissolution rates. For pellets containing codeine phosphate, which has a lower solubility in ethanol than in acidic media, the wettability was a function of the matrix composition. Dose dumping occurred for formulations comprising solid lipids as they showed increased wettabilities with increasing ethanol concentrations. In contrast, pellets comprising calcium stearate as single matrix component showed robustness in alcoholic media due to wettabilities that were not affected by the addition of ethanol. The results clearly indicate that the physico-chemical properties of the drug and the matrix systems are crucial for the design of ethanol-resistant dosage forms. Moreover, hydrophobic calcium stearate can be considered a suitable matrix system that minimizes the risk of ethanol-induced dose dumping for certain API's. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Droplet-size distribution and stability of commercial injectable lipid emulsions containing fish oil.

    PubMed

    Gallegos, Críspulo; Valencia, Concepción; Partal, Pedro; Franco, José M; Maglio, Omay; Abrahamsson, Malin; Brito-de la Fuente, Edmundo

    2012-08-01

    The droplet size of commercial fish oil-containing injectable lipid emulsions, including conformance to United States Pharmacopeia (USP) standards on fat-globule size, was investigated. A total of 18 batches of three multichamber parenteral products containing the emulsion SMOFlipid as a component were analyzed. Samples from multiple lots of the products were evaluated to determine compliance with standards on the volume-weighted percentage of fat exceeding 0.05% (PFAT(5)) specified in USP chapter 729 to ensure the physical stability of i.v. lipid emulsions. The products were also analyzed to determine the effects of various storage times (3, 6, 9, and 12 months) and storage temperatures (25, 30, and 40 °C) on product stability. Larger-size lipid particles were quantified via single-particle optical sensing (SPOS). The emulsion's droplet-size distribution was determined via laser light scattering. SPOS and light-scattering analysis demonstrated mean PFAT(5) values well below USP-specified globule-size limits for all the tested products under all study conditions. In addition, emulsion aging at any storage temperature in the range studied did not result in a significant increase of PFAT(5) values, and mean droplet-size values did not change significantly during storage of up to 12 months at temperatures of 25-40 °C. PFAT(5) values were below the USP upper limits in SMOFlipid samples from multiple lots of three multichamber products after up to 12 months of storage at 25 or 30 °C or 6 months of storage at 40 °C.

  1. Analysis of Bacterial Lipooligosaccharides by MALDI-TOF MS with Traveling Wave Ion Mobility

    NASA Astrophysics Data System (ADS)

    Phillips, Nancy J.; John, Constance M.; Jarvis, Gary A.

    2016-07-01

    Lipooligosaccharides (LOS) are major microbial virulence factors displayed on the outer membrane of rough-type Gram-negative bacteria. These amphipathic glycolipids are comprised of two domains, a core oligosaccharide linked to a lipid A moiety. Isolated LOS samples are generally heterogeneous mixtures of glycoforms, with structural variability in both domains. Traditionally, the oligosaccharide and lipid A components of LOS have been analyzed separately following mild acid hydrolysis, although important acid-labile moieties can be cleaved. Recently, an improved method was introduced for analysis of intact LOS by MALDI-TOF MS using a thin layer matrix composed of 2,4,6-trihydroxyacetophenone (THAP) and nitrocellulose. In addition to molecular ions, the spectra show in-source "prompt" fragments arising from regiospecific cleavage between the lipid A and oligosaccharide domains. Here, we demonstrate the use of traveling wave ion mobility spectrometry (TWIMS) for IMS-MS and IMS-MS/MS analyses of intact LOS from Neisseria spp. ionized by MALDI. Using IMS, the singly charged prompt fragments for the oligosaccharide and lipid A domains of LOS were readily separated into resolved ion plumes, permitting the extraction of specific subspectra, which led to increased confidence in assigning compositions and improved detection of less abundant ions. Moreover, IMS separation of precursor ions prior to collision-induced dissociation (CID) generated time-aligned, clean MS/MS spectra devoid of fragments from interfering species. Incorporating IMS into the profiling of intact LOS by MALDI-TOF MS exploits the unique domain structure of the molecule and offers a new means of extracting more detailed information from the analysis.

  2. Molecular mobility in the monolayers of foam films stabilized by porcine lung surfactant.

    PubMed Central

    Lalchev, Z I; Todorov, R K; Christova, Y T; Wilde, P J; Mackie, A R; Clark, D C

    1996-01-01

    Certain physical properties of a range of foam film types that are believed to exist in vivo in the lung have been investigated. The contribution of different lung surfactant components found in porcine lung surfactant to molecular surface diffusion in the plane of foam films has been investigated for the first time. The influence of the type and thickness of black foam films, temperature, electrolyte concentration, and extract composition on surface diffusion has been studied using the fluorescence recovery after photobleaching technique. Fluorescent phospholipid probe molecules in foam films stabilized by porcine lung surfactant samples or their hydrophobic extracts consisting of surfactant lipids and hydrophobic lung surfactant proteins, SP-B and SP-C, exhibited more rapid diffusion than observed in films of its principal lipid component alone, L-alpha-phosphatidylcholine dipalmitoyl. This effect appears to be due to contributions from minor lipid components present in the total surfactant lipid extracts. The minor lipid components influence the surface diffusion in foam films both by their negative charge and by lowering the phase transition temperature of lung surfactant samples. In contrast, the presence of high concentrations of the hydrophillic surfactant protein A (SP-A) and non-lung-surfactant proteins in the sample reduced the diffusion coefficient (D) of the lipid analog in the adsorbed layer of the films. Hysteresis behavior of D was observed during temperature cycling, with the cooling curve lying above the heating curve. However, in cases where some surface molecular aggregation and surface heterogeneity were observed during cooling, the films became more rigid and molecules at the interfaces became immobilized. The thickness, size, capillary pressure, configuration, and composition of foam films of lung surfactant prepared in vitro support their investigation as realistic structural analogs of the surface films that exist in vivo in the lung. Compared to other models currently in use, foam films provide new opportunities for studying the properties and function of physiologically important alveolar surface films. Images FIGURE 1 FIGURE 2 PMID:8913597

  3. Lipids, lysosomes, and autophagy

    PubMed Central

    2016-01-01

    Lipids are essential components of a cell providing energy substrates for cellular processes, signaling intermediates, and building blocks for biological membranes. Lipids are constantly recycled and redistributed within a cell. Lysosomes play an important role in this recycling process that involves the recruitment of lipids to lysosomes via autophagy or endocytosis for their degradation by lysosomal hydrolases. The catabolites produced are redistributed to various cellular compartments to support basic cellular function. Several studies demonstrated a bidirectional relationship between lipids and lysosomes that regulate autophagy. While lysosomal degradation pathways regulate cellular lipid metabolism, lipids also regulate lysosome function and autophagy. In this review, we focus on this bidirectional relationship in the context of dietary lipids and provide an overview of recent evidence of how lipid-overload lipotoxicity, as observed in obesity and metabolic syndrome, impairs lysosomal function and autophagy that may eventually lead to cellular dysfunction or cell death. PMID:27330054

  4. Effect of tension and curvature on the chemical potential of lipids in lipid aggregates.

    PubMed

    Grafmüller, Andrea; Lipowsky, Reinhard; Knecht, Volker

    2013-01-21

    Understanding the factors that influence the free energy of lipids in bilayer membranes is an essential step toward understanding exchange processes of lipids between membranes. In general, both lipid composition and membrane geometry can affect lipid exchange rates between bilayer membranes. Here, the free energy change ΔG(des) for the desorption of dipalmitoyl-phosphatidylcholine (DPPC) lipids from different lipid aggregates has been computed using molecular dynamics simulations and umbrella sampling. The value of ΔG(des) is found to depend strongly on the local properties of the aggregate, in that both tension and curvature lead to an increase in ΔG(des). A detailed analysis shows that the increased desorption free energy for tense bilayers arises from the increased conformational entropy of the lipid tails, which reduces the favorable component -TΔS(L) of the desorption free energy.

  5. Lipid Cell Biology: A Focus on Lipids in Cell Division.

    PubMed

    Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S

    2018-06-20

    Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.

  6. Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation.

    PubMed

    Nevin, K G; Rajamohan, T

    2004-09-01

    The present study was conducted to investigate the effect of consumption of virgin coconut oil (VCO) on various lipid parameters in comparison with copra oil (CO). In addition, the preventive effect of polyphenol fraction (PF) from test oils on copper induced oxidation of LDL and carbonyl formation was also studied. After 45 days of oil feeding to Sprague-Dawley rats, several lipid parameters and lipoprotein levels were determined. PF was isolated from the oils and its effect on in vitro LDL oxidation was assessed. VCO obtained by wet process has a beneficial effect in lowering lipid components compared to CO. It reduced total cholesterol, triglycerides, phospholipids, LDL, and VLDL cholesterol levels and increased HDL cholesterol in serum and tissues. The PF of virgin coconut oil was also found to be capable of preventing in vitro LDL oxidation with reduced carbonyl formation. The results demonstrated the potential beneficiary effect of virgin coconut oil in lowering lipid levels in serum and tissues and LDL oxidation by physiological oxidants. This property of VCO may be attributed to the biologically active polyphenol components present in the oil.

  7. Mitochondrial lipids in Bufo arenarum full-grown oocytes.

    PubMed

    Gili, Valeria; Alonso, Telma S

    2004-05-01

    Both the content and composition of polar and neutral lipids from the mitochondrial fraction of ovarian full-grown Bufo arenarum oocytes were analysed in the present study. Triacylglycerols (TAG) represent 33% of the total lipids, followed by phosphatidylcholine (PC), free fatty acids (FFA) and phosphatidylethanolamine (PE). Diphosphatidylglycerol (DPG) or cardiolipin, a specific component of the inner mitochondrial membrane, represents about 4% of the total lipid content. Palmitic (16:0) and arachidonic (20:4n6) acids are the most abundant fatty acids in PC and PE, respectively. DPG is enriched in fatty acids with carbon chain lengths of 18, the principal component being linoleic acid. In phosphatidylinositol (PI), 20:4n6 and stearic acid (18:0) represent about 72 mol% of the total acyl group level. The main fatty acids in TAG are linoleic (18:2), oleic (18:1), and palmitic acids. The fatty acid composition of FFA and diacylglycerols (DAG) is similar, 16:0 being the most abundant acyl group. PE is the most unsaturated lipid and sphingomyelin (SM) has the lowest unsaturation index.

  8. Multiscale modeling of transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Rim, Jee Eun

    2006-04-01

    This study addresses the modeling of transdermal diffusion of drugs, to better understand the permeation of molecules through the skin, and especially the stratum corneum, which forms the main permeation barrier of the skin. In transdermal delivery of systemic drugs, the drugs diffuse from a patch placed on the skin through the epidermis to the underlying blood vessels. The epidermis is the outermost layer of the skin and can be further divided into the stratum corneum (SC) and the viable epidermis layers. The SC consists of keratinous cells (corneocytes) embedded in the lipid multi-bilayers of the intercellular space. It is widely accepted that the barrier properties of the skin mostly arises from the ordered structure of the lipid bilayers. The diffusion path, at least for lipophilic molecules, seems to be mainly through the lipid bilayers. Despite the advantages of transdermal drug delivery compared to other drug delivery routes such as oral dosing and injections, the low percutaneous permeability of most compounds is a major difficulty in the wide application of transdermal drug delivery. In fact, many transdermal drug formulations include one or more permeation enhancers that increase the permeation of the drug significantly. During the last two decades, many researchers have studied percutaneous absorption of drugs both experimentally and theoretically. However, many are based on pharmacokinetic compartmental models, in which steady or pseudo-steady state conditions are assumed, with constant diffusivity and partitioning for single component systems. This study presents a framework for studying the multi-component diffusion of drugs coupled with enhancers through the skin by considering the microstructure of the stratum corneum (SC). A multiscale framework of modeling the transdermal diffusion of molecules is presented, by first calculating the microscopic diffusion coefficient in the lipid bilayers of the SC using molecular dynamics (MD). Then a homogenization procedure is performed over a model unit cell of the heterogeneous SC, resulting in effective diffusion parameters. These effective parameters are the macroscopic diffusion coefficients for the homogeneous medium that is "equivalent" to the heterogeneous SC, and thus can be used in finite element simulations of the macroscopic diffusion process.

  9. Lipid-protein stoichiometries in a crystalline biological membrane: NMR quantitative analysis of the lipid extract of the purple membrane.

    PubMed

    Corcelli, Angela; Lattanzio, Veronica M T; Mascolo, Giuseppe; Papadia, Paride; Fanizzi, Francesco

    2002-01-01

    The lipid/protein stoichiometries of a naturally crystalline biological membrane, the purple membrane (PM) of Halobacterium salinarum, have been obtained by a combination of (31)P- and (1)H-NMR analyses of the lipid extract. In total, 10 lipid molecules per retinal were found to be present in the PM lipid extract: 2-3 molecules of phosphatidylglycerophosphate methyl ester (PGP-Me), 3 of glycolipid sulfate, 1 of phosphatidylglycerol, 1 of archaeal glycocardiolipin (GlyC), 2 of squalene plus minor amounts of phosphatidylglycerosulfate (PGS) and bisphosphatidylglycerol (archaeal cardiolipin) (BPG) and a negligible amount of vitamin MK8. The novel data of the present study are necessary to identify the lipids in the electron density map, and to shed light on the structural relationships of the lipid and protein components of the PM.

  10. Selective fermentation of carbohydrate and protein fractions of Scenedesmus, and biohydrogenation of its lipid fraction for enhanced recovery of saturated fatty acids.

    PubMed

    Lai, YenJung Sean; Parameswaran, Prathap; Li, Ang; Aguinaga, Alyssa; Rittmann, Bruce E

    2016-02-01

    Biofuels derived from microalgae have promise as carbon-neutral replacements for petroleum. However, difficulty extracting microalgae-derived lipids and the co-extraction of non-lipid components add major costs that detract from the benefits of microalgae-based biofuel. Selective fermentation could alleviate these problems by managing microbial degradation so that carbohydrates and proteins are hydrolyzed and fermented, but lipids remain intact. We evaluated selective fermentation of Scenedesmus biomass in batch experiments buffered at pH 5.5, 7, or 9. Carbohydrates were fermented up to 45% within the first 6 days, protein fermentation followed after about 20 days, and lipids (measured as fatty acid methyl esters, FAME) were conserved. Fermentation of the non-lipid components generated volatile fatty acids, with acetate, butyrate, and propionate being the dominant products. Selective fermentation of Scenedesmus biomass increased the amount of extractable FAME and the ratio of FAME to crude lipids. It also led to biohydrogenation of unsaturated FAME to more desirable saturated FAME (especially to C16:0 and C18:0), and the degree of saturation was inversely related to the accumulation of hydrogen gas after fermentation. Moreover, the microbial communities after selective fermentation were enriched in bacteria from families known to perform biohydrogenation, i.e., Porphyromonadaceae and Ruminococcaceae. Thus, this study provides proof-of-concept that selective fermentation can improve the quantity and quality of lipids that can be extracted from Scenedesmus. © 2015 Wiley Periodicals, Inc.

  11. Protein Diffusion on Charged Membranes: A Dynamic Mean-Field Model Describes Time Evolution and Lipid Reorganization

    PubMed Central

    Khelashvili, George; Weinstein, Harel; Harries, Daniel

    2008-01-01

    As charged macromolecules adsorb and diffuse on cell membranes in a large variety of cell signaling processes, they can attract or repel oppositely charged lipids. This results in lateral membrane rearrangement and affects the dynamics of protein function. To address such processes quantitatively we introduce a dynamic mean-field scheme that allows self-consistent calculations of the equilibrium state of membrane-protein complexes after such lateral reorganization of the membrane components, and serves to probe kinetic details of the process. Applicable to membranes with heterogeneous compositions containing several types of lipids, this comprehensive method accounts for mobile salt ions and charged macromolecules in three dimensions, as well as for lateral demixing of charged and net-neutral lipids in the membrane plane. In our model, the mobility of membrane components is governed by the diffusion-like Cahn-Hilliard equation, while the local electrochemical potential is based on nonlinear Poisson-Boltzmann theory. We illustrate the method by applying it to the adsorption of the anionic polypeptide poly-Lysine on negatively charged lipid membranes composed of binary mixtures of neutral and monovalent lipids, or onto ternary mixtures of neutral, monovalent, and multivalent lipids. Consistent with previous calculations and experiments, our results show that at steady-state multivalent lipids (such as PIP2), but not monovalent lipid (such as phosphatidylserine), will segregate near the adsorbing macromolecules. To address the corresponding diffusion of the adsorbing protein in the membrane plane, we couple lipid mobility with the propagation of the adsorbing protein through a dynamic Monte Carlo scheme. We find that due to their higher mobility dictated by the electrochemical potential, multivalent lipids such as PIP2 more quickly segregate near oppositely charged proteins than do monovalent lipids, even though their diffusion constants may be similar. The segregation, in turn, slows protein diffusion, as lipids introduce an effective drag on the motion of the adsorbate. In contrast, monovalent lipids such as phosphatidylserine only weakly segregate, and the diffusions of protein and lipid remain largely uncorrelated. PMID:18065451

  12. SNARE-mediated Fusion of Single Proteoliposomes with Tethered Supported Bilayers in a Microfluidic Flow Cell Monitored by Polarized TIRF Microscopy

    PubMed Central

    Nikolaus, Joerg; Karatekin, Erdem

    2016-01-01

    In the ubiquitous process of membrane fusion the opening of a fusion pore establishes the first connection between two formerly separate compartments. During neurotransmitter or hormone release via exocytosis, the fusion pore can transiently open and close repeatedly, regulating cargo release kinetics. Pore dynamics also determine the mode of vesicle recycling; irreversible resealing results in transient, "kiss-and-run" fusion, whereas dilation leads to full fusion. To better understand what factors govern pore dynamics, we developed an assay to monitor membrane fusion using polarized total internal reflection fluorescence (TIRF) microscopy with single molecule sensitivity and ~15 msec time resolution in a biochemically well-defined in vitro system. Fusion of fluorescently labeled small unilamellar vesicles containing v-SNARE proteins (v-SUVs) with a planar bilayer bearing t-SNAREs, supported on a soft polymer cushion (t-SBL, t-supported bilayer), is monitored. The assay uses microfluidic flow channels that ensure minimal sample consumption while supplying a constant density of SUVs. Exploiting the rapid signal enhancement upon transfer of lipid labels from the SUV to the SBL during fusion, kinetics of lipid dye transfer is monitored. The sensitivity of TIRF microscopy allows tracking single fluorescent lipid labels, from which lipid diffusivity and SUV size can be deduced for every fusion event. Lipid dye release times can be much longer than expected for unimpeded passage through permanently open pores. Using a model that assumes retardation of lipid release is due to pore flickering, a pore "openness", the fraction of time the pore remains open during fusion, can be estimated. A soluble marker can be encapsulated in the SUVs for simultaneous monitoring of lipid and soluble cargo release. Such measurements indicate some pores may reseal after losing a fraction of the soluble cargo. PMID:27585113

  13. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785

    PubMed Central

    2010-01-01

    Background The production of microbial lipids has attracted considerable interest during the past decade since they can be successfully used to produce biodiesel by catalyzed transesterification with short chain alcohols. Certain yeast species, including several psychrophilic isolates, are oleaginous and accumulate lipids from 20 to 70% of biomass under appropriate cultivation conditions. Among them, Rhodotorula glacialis is a psychrophilic basidiomycetous species capable to accumulate intracellular lipids. Results Rhodotorula glacialis DBVPG 4785 is an oleaginous psychrophilic yeast isolated from a glacial environment. Despite its origin, the strain abundantly grew and accumulated lipids between -3 to 20°C. The temperature did not influence the yield coefficients of both biomass and lipids production, but had positive effect on the growth rate and thus on volumetric productivity of lipid. In glucose-based media, cellular multiplication occurred first, while the lipogenic phase followed whenever the culture was limited by a nutrient other than glucose. The extent of the carbon excess had positive effects on triacylglycerols production, that was maximum with 120 g L-1 glucose, in terms of lipid concentration (19 g L-1), lipid/biomass (68%) and lipid/glucose yields (16%). Both glucose concentration and growth temperature influenced the composition of fatty acids, whose unsaturation degree decreased when the temperature or glucose excess increased. Conclusions This study is the first proposed biotechnological application for Rhodotorula glacialis species, whose oleaginous biomass accumulates high amounts of lipids within a wide range of temperatures through appropriate cultivation C:N ratio. Although R. glacialis DBVPG 4785 is a cold adapted yeast, lipid production occurs over a broad range of temperatures and it can be considered an interesting microorganism for the production of single cell oils. PMID:20863365

  14. Studies on the nature and managment of psoriasis.

    PubMed

    Farber, E M

    1971-06-01

    Prevalence of psoriasis in Caucasians is estimated as 2 to 3 percent. Sound epidemiologic studies on a worldwide basis are needed to secure accurate prevalence rates for comparative purposes. Utilizing Stanford's psoriasis life histories records, the genetics of psoriasis has been explored by various means: statistical census data, pedigree analysis, and twin studies. This research suggests a multifactorial pattern of inheritance for psoriasis, implying that both genetic and environmental components are responsible for the manifestation of the disease. At present it is not possible to point to any single causative factor. Some of the suggested areas for research include study of uninvolved skin, growth control in the psoriatic lesion, viral causes, immunological aspects, and lipid metabolism.

  15. Ionization of biomolecular targets by ion impact: input data for radiobiological applications

    NASA Astrophysics Data System (ADS)

    de Vera, Pablo; Abril, Isabel; Garcia-Molina, Rafael; Solov'yov, Andrey V.

    2013-06-01

    In this work we review and further develop a semiempirical model recently proposed for the ion impact ionization of complex biological media. The model is based on the dielectric formalism, and makes use of a semiempirical parametrization of the optical energy-loss function of bioorganic compounds, allowing the calculation of single and total ionization cross sections and related quantities for condensed biological targets, such as liquid water, DNA and its components, proteins, lipids, carbohydrates or cell constituents. The model shows a very good agreement with experimental data for water, adenine and uracil, and allows the comparison of the ionization efficiency of different biological targets, and also the average kinetic energy of the ejected secondary electrons.

  16. 76 FR 51876 - Medical Devices; Ophthalmic Devices; Classification of the Eyelid Thermal Pulsation System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... meibomian gland dysfunction (MGD), also known as evaporative dry eye or lipid deficiency dry eye. The system... evaporative dry eye or lipid deficiency dry eye. The system consists of a component that is inserted around...

  17. Chewing the fat: lipid metabolism and homeostasis during M. tuberculosis infection.

    PubMed

    Lovewell, Rustin R; Sassetti, Christopher M; VanderVen, Brian C

    2016-02-01

    The interplay between Mycobacterium tuberculosis lipid metabolism, the immune response and lipid homeostasis in the host creates a complex and dynamic pathogen-host interaction. Advances in imaging and metabolic analysis techniques indicate that M. tuberculosis preferentially associates with foamy cells and employs multiple physiological systems to utilize exogenously derived fatty-acids and cholesterol. Moreover, novel insights into specific host pathways that control lipid accumulation during infection, such as the PPARγ and LXR transcriptional regulators, have begun to reveal mechanisms by which host immunity alters the bacterial micro-environment. As bacterial lipid metabolism and host lipid regulatory pathways are both important, yet inherently complex, components of active tuberculosis, delineating the heterogeneity in lipid trafficking within disease states remains a major challenge for therapeutic design. Copyright © 2015. Published by Elsevier Ltd.

  18. Cyclohexane Rings Reduce Membrane Permeability to Small Ions in Archaea-Inspired Tetraether Lipids.

    PubMed

    Koyanagi, Takaoki; Leriche, Geoffray; Onofrei, David; Holland, Gregory P; Mayer, Michael; Yang, Jerry

    2016-01-26

    Extremophile archaeal organisms overcome problems of membrane permeability by producing lipids with structural elements that putatively improve membrane integrity compared to lipids from other life forms. Herein, we describe a series of lipids that mimic some key structural features of archaeal lipids, such as: 1) single tethering of lipid tails to create fully transmembrane tetraether lipids and 2) the incorporation of small rings into these tethered segments. We found that membranes formed from pure tetraether lipids leaked small ions at a rate that was about two orders of magnitude slower than common bilayer-forming lipids. Incorporation of cyclopentane rings into the tetraether lipids did not affect membrane leakage, whereas a cyclohexane ring reduced leakage by an additional 40 %. These results show that mimicking certain structural features of natural archaeal lipids results in improved membrane integrity, which may help overcome limitations of many current lipid-based technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of formulation and process variables on lipid based sustained release tablets via continuous twin screw granulation: A comparative study.

    PubMed

    Kallakunta, Venkata Raman; Tiwari, Roshan; Sarabu, Sandeep; Bandari, Suresh; Repka, Michael A

    2018-05-14

    The current study's aim is to prepare lipid based sustained release tablets via a twin-screw granulation technique and compare those dosage forms with conventional techniques, namely wet granulation and direct compression. The granules were successfully manufactured in a single-step, continuous twin-screw granulation process with a low proportion of binder (Klucel™ EF, HPC SSL) using Compritol® 888 ATO, Precirol® ATO 5 and Geleol™ as sustained release agents. The granules prepared showed good flow characteristics and compaction properties. DSC and XRD studies were conducted to characterize the granules prepared via a twin-screw granulation method and the results demonstrated the crystalline nature of lipids within the granules. FTIR data indicated that there were no interactions with the formulation components investigated. The formulations developed by all three methods were compressed into tablets with a mechanical strength of 14-16 KP. The tablets formulated were characterized for physicochemical properties, in vitro drug release studies, water uptake and erosion studies. These results showed that the drug was not completely released after 24 h for tablets developed by the wet granulation process using all three lipids. The tablets prepared by the direct compression method demonstrated a burst release within 8 to 10 h from Precirol ATO 5® and Geleol™ formulations compared to Compritol® 888 ATO. However, tablets prepared using twin-screw granulation exhibited sustained release of the drug over 24 h and the water uptake and erosion results were in accordance with dissolution data. Stability data for 45 days at accelerated conditions (40 °C/75% RH) showed similar release profiles with ƒ2 values above 50 for all of the twin screw granulation formulations, indicating the suitability of the process for formulating sustained release tablets. These findings of a single-step, continuous twin-screw granulation process are novel and demonstrate new opportunities for development of sustained release tablets. Copyright © 2017. Published by Elsevier B.V.

  20. Membrane lipids and the origin of life

    NASA Technical Reports Server (NTRS)

    Oro, J.; Holzer, G.; Rao, M.; Tornabene, T. G.

    1981-01-01

    The current state of knowledge regarding the development of biological systems is briefly reviewed. At a crucial stage concerning the evolution of such systems, the mechanisms leading to more complex structures must have evolved within the confines of a protected microenvironment, similar to those provided by the contemporary cell membranes. The major components found normally in biomembranes are phospholipids. The structure of the biomembrane is examined, and attention is given to questions concerning the availability of the structural components which are necessary in the formation of primitive lipid membranes. Two approaches regarding the study of protomembranes are discussed. The probability of obtaining ether lipids under prebiotic conditions is considered, taking into account the formation of cyclic and acyclic isoprenoids by the irradiation of isoprene with UV.

  1. Utilization of non-conventional systems for conversion of biomass to food components

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1989-01-01

    The potential use of micro-algae in yielding useful macronutrients for the CELSS is investigated. Algal proteins were isolated and characterized from green algae (Scenedesmus obliquus) grown under controlled conditions. The RNA and DNA contents were determined, and methodology for reduction of the nucleic acid content to acceptable levels developed. Lipid extraction procedures using supercritical fluids were tailored to removal of undesirable lipids and pigments. Initial steps toward preparation of model foods for potential use in the CELSS were taken. The goal was to fabricate food products which contain isolated algal macronutrients such as proteins and lipids and also some components derived from higher plants including wheat flour, soy flour, potato powder (flakes), soy oil, and corn syrup.

  2. Effect of quercetin and genistein on copper- and iron-induced lipid peroxidation in methyl linolenate.

    PubMed

    Boadi, William Y; Iyere, Peter A; Adunyah, Samuel E

    2003-01-01

    The single and combined effects of two abundant flavonoids, namely quercetin and genistein, were investigated according to their ability to inhibit the oxidation of methyl linolenate via Fenton's pathway. Antioxidative activity was determined by oxidizing methyl linolenate suspended in a buffer solution with either Fe2+ (50 microM) or Cu2+ (50 microM) and hydrogen peroxide (0.01 mM) without or with a flavonoid sample (10 or 20 microM). Lipid peroxidation products were measured by the thiobarbituric acid (TBA) assay and the amounts of thiobarbituric acid-reactive substances (TBARS) were calculated from a calibration curve using 1,1,3,3-tetraethoxypropane as the standard. Both quercetin and genistein at the 10 or 20 microM level decreased lipid peroxidation significantly compared with their respective controls. Of the two flavonoids tested, quercetin had a more marked effect on inhibiting lipid peroxides. Peroxidation products for the control samples were higher for the Fe2+-treated samples compared with the Cu2+ samples. Combination of both flavonoids at the same dose levels continued to decrease lipid peroxidation, the effect being the same for both metal ions. The data suggest that the combined flavonoids offered better protection than the single treatments and this may be attributed to the better radical scavenging or increased chelating capabilities of the combined over the single treatments. The differences in peroxide levels for the single treatment of quercetin compared with the genistein-treated samples may reflect the structural differences between these compounds in combating oxidative stress. Copyright 2003 John Wiley & Sons, Ltd.

  3. Influence of apolipoprotein A-V on the metabolic fate of triacylglycerol.

    PubMed

    Sharma, Vineeta; Forte, Trudy M; Ryan, Robert O

    2013-04-01

    Apolipoprotein (apo) A-V functions to modulate intracellular and extracellular triacylglycerol metabolism. The present review addresses molecular mechanisms underlying these effects. The relevance of apoA-V to human disease conditions is illustrated by the strong correlation between single nucleotide polymorphisms in APOA5, elevated plasma triacylglycerol and dyslipidemic disease. Despite undergoing processing for secretion from hepatocytes, a portion of apoA-V escapes this destiny and accumulates as a component of cytosolic lipid droplets. Expression of recombinant apoA-V in hepatocarcinoma cells results in increased lipid droplet size and number at the expense of triacylglycerol secretion.ApoA-V modulates atherosclerosis in hypercholesterolemic apoE null mice. ApoE null/human apoA-V transgenic mice had reduced levels of triacylglycerol and cholesterol in plasma along with decreased aortic lesion size. ApoA-V modulates triacylglycerol metabolic fate. Following its synthesis, apoA-V enters the endoplasmic reticulum and associates with membrane defects created by triacylglycerol accumulation. Association of apoA-V with endoplasmic reticulum membrane defects promotes nascent lipid droplets budding toward the cytosol. Despite its low concentration in plasma (∼150 ng/ml), apoA-V modulates lipoprotein metabolism by binding to glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1. This interaction effectively localizes triacylglycerol-rich lipoproteins in the vicinity of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein1's other ligand, lipoprotein lipase.

  4. Influence of apolipoprotein A-V on the metabolic fate of triacylglycerol

    PubMed Central

    Sharma, Vineeta; Forte, Trudy M.; Ryan, Robert O.

    2013-01-01

    Purpose of review Apolipoprotein (apo) A-V functions to modulate intracellular and extracellular triacylglycerol metabolism. The present review addresses molecular mechanisms underlying these effects. The relevance of apoA-V to human disease conditions is illustrated by the strong correlation between single nucleotide polymorphisms in APOA5, elevated plasma triacylglycerol and dyslipidemic disease. Recent findings Despite undergoing processing for secretion from hepatocytes, a portion of apoA-V escapes this destiny and accumulates as a component of cytosolic lipid droplets. Expression of recombinant apoA-V in hepatocarcinoma cells results in increased lipid droplet size and number at the expense of triacylglycerol secretion. ApoA-V modulates atherosclerosis in hypercholesterolemic apoE null mice. ApoE null/human apoA-V transgenic mice had reduced levels of triacylglycerol and cholesterol in plasma along with decreased aortic lesion size. Summary ApoA-V modulates triacylglycerol metabolic fate. Following its synthesis, apoA-V enters the endoplasmic reticulum and associates with membrane defects created by triacylglycerol accumulation. Association of apoA-V with endoplasmic reticulum membrane defects promotes nascent lipid droplets budding toward the cytosol. Despite its low concentration in plasma (~150 ng/ml), apoA-V modulates lipoprotein metabolism by binding to glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1. This interaction effectively localizes triacylglycerol-rich lipoproteins in the vicinity of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1’s other ligand, lipoprotein lipase. PMID:23241513

  5. Effects of dimethyl sulfoxide in cholesterol-containing lipid membranes: a comparative study of experiments in silico and with cells.

    PubMed

    de Ménorval, Marie-Amélie; Mir, Lluis M; Fernández, M Laura; Reigada, Ramon

    2012-01-01

    Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca(2+)) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations.

  6. Chemical and physical analyses of wax ester properties

    PubMed Central

    Patel, Sejal; Nelson, Dennis R.; Gibbs, Allen G.

    2001-01-01

    Wax esters are major constituents of the surface lipids in many terrestrial arthropods, but their study is complicated by their diversity. We developed a procedure for quantifying isomers in mixtures of straight-chain saturated and unsaturated wax esters having the same molecular weights, using single-ion monitoring of the total ion current data from gas chromatography-mass spectrometry. We examined the biological consequences of structural differences by measuring the melting temperatures, Tm, of >60 synthetic wax esters, containing 26–48 carbon atoms. Compounds containing saturated alcohol and acid moieties melted at 38–73°C. The main factor affecting Tm was the total chain length of the wax ester, but the placement of the ester bond also affected Tm. Insertion of a double bond into either the alcohol or acid moiety decreased Tm by ∼30°C. Simple mixtures of wax esters with n-alkanes melted several °C lower than predicted from the melting points of the component lipids. Our results indicate that the wax esters of primary alcohols that are most typically found on the cuticle of terrestrial arthropods occur in a solid state under physiological conditions, thereby conferring greater waterproofing. Wax esters of secondary alcohols, which occur on melanopline grasshoppers, melted >60°C below primary esters of the same molecular weight and reduced Tm of the total surface lipids to environmental values. PMID:15455064

  7. Effects of Dimethyl Sulfoxide in Cholesterol-Containing Lipid Membranes: A Comparative Study of Experiments In Silico and with Cells

    PubMed Central

    de Ménorval, Marie-Amélie; Mir, Lluis M.; Fernández, M. Laura; Reigada, Ramon

    2012-01-01

    Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca2+) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations. PMID:22848583

  8. Structural and mechanical heterogeneity of the erythrocyte membrane reveals hallmarks of membrane stability.

    PubMed

    Picas, Laura; Rico, Félix; Deforet, Maxime; Scheuring, Simon

    2013-02-26

    The erythrocyte membrane, a metabolically regulated active structure that comprises lipid molecules, junctional complexes, and the spectrin network, enables the cell to undergo large passive deformations when passing through the microvascular system. Here we use atomic force microscopy (AFM) imaging and quantitative mechanical mapping at nanometer resolution to correlate structure and mechanics of key components of the erythrocyte membrane, crucial for cell integrity and function. Our data reveal structural and mechanical heterogeneity modulated by the metabolic state at unprecedented nanometer resolution. ATP-depletion, reducing skeletal junction phosphorylation in RBC cells, leads to membrane stiffening. Analysis of ghosts and shear-force opened erythrocytes show that, in the absence of cytosolic kinases, spectrin phosphorylation results in membrane stiffening at the extracellular face and a reduced junction remodeling in response to loading forces. Topography and mechanical mapping of single components at the cytoplasmic face reveal that, surprisingly, spectrin phosphorylation by ATP softens individual filaments. Our findings suggest that, besides the mechanical signature of each component, the RBC membrane mechanics is regulated by the metabolic state and the assembly of its structural elements.

  9. Extraction and Characterization of Lipids from Salicornia virginica and Salicornia europaea

    NASA Technical Reports Server (NTRS)

    Kulis,Michael J.; Hepp, Aloysius F.; Pham, Phong X.; Ribita, Daniela; Bomani, Bilal M. M.; Duraj, Stan A.

    2010-01-01

    The lipid content from Salicornia virginica and Salicornia europaea is investigated. The plants are leafless halophytes with seeds contained in terminal nodes. The lipids, in the form of cell membranes and oil bodies that come directly from the node cells, are observed using fluorescence microscopy. Two extraction methods as well as the results of extracting from the seeds and from the entire nodes are described. Characterization of the fatty acid components of the lipids using Gas Chromatography in tandem with Mass Spectroscopy is also described. Comparisons are made between the two methods and between the two plant materials as lipid sources.

  10. TrackArt: the user friendly interface for single molecule tracking data analysis and simulation applied to complex diffusion in mica supported lipid bilayers.

    PubMed

    Matysik, Artur; Kraut, Rachel S

    2014-05-01

    Single molecule tracking (SMT) analysis of fluorescently tagged lipid and protein probes is an attractive alternative to ensemble averaged methods such as fluorescence correlation spectroscopy (FCS) or fluorescence recovery after photobleaching (FRAP) for measuring diffusion in artificial and plasma membranes. The meaningful estimation of diffusion coefficients and their errors is however not straightforward, and is heavily dependent on sample type, acquisition method, and equipment used. Many approaches require advanced computing and programming skills for their implementation. Here we present TrackArt software, an accessible graphic interface for simulation and complex analysis of multiple particle paths. Imported trajectories can be filtered to eliminate spurious or corrupted tracks, and are then analyzed using several previously described methodologies, to yield single or multiple diffusion coefficients, their population fractions, and estimated errors. We use TrackArt to analyze the single-molecule diffusion behavior of a sphingolipid analog SM-Atto647N, in mica supported DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayers. Fitting with a two-component diffusion model confirms the existence of two separate populations of diffusing particles in these bilayers on mica. As a demonstration of the TrackArt workflow, we characterize and discuss the effective activation energies required to increase the diffusion rates of these populations, obtained from Arrhenius plots of temperature-dependent diffusion. Finally, TrackArt provides a simulation module, allowing the user to generate models with multiple particle trajectories, diffusing with different characteristics. Maps of domains, acting as impermeable or permeable obstacles for particles diffusing with given rate constants and diffusion coefficients, can be simulated or imported from an image. Importantly, this allows one to use simulated data with a known diffusion behavior as a comparison for results acquired using particular algorithms on actual, "natural" samples whose diffusion behavior is to be extracted. It can also serve as a tool for demonstrating diffusion principles. TrackArt is an open source, platform-independent, Matlab-based graphical user interface, and is easy to use even for those unfamiliar with the Matlab programming environment. TrackArt can be used for accurate simulation and analysis of complex diffusion data, such as diffusion in lipid bilayers, providing publication-quality formatted results.

  11. Supported Lipid Bilayer/Carbon Nanotube Hybrids

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Moran-Mirabal, Jose; Craighead, Harold; McEuen, Paul

    2007-03-01

    We form supported lipid bilayers on single-walled carbon nanotubes and use this hybrid structure to probe the properties of lipid membranes and their functional constituents. We first demonstrate membrane continuity and lipid diffusion over the nanotube. A membrane-bound tetanus toxin protein, on the other hand, sees the nanotube as a diffusion barrier whose strength depends on the diameter of the nanotube. Finally, we present results on the electrical detection of specific binding of streptavidin to biotinylated lipids with nanotube field effect transistors. Possible techniques to extract dynamic information about the protein binding events will also be discussed.

  12. Molecular dynamics simulations of the rotary motor F(0) under external electric fields across the membrane.

    PubMed

    Lin, Yang-Shan; Lin, Jung-Hsin; Chang, Chien-Cheng

    2010-03-17

    The membrane-bound component F(0), which is a major component of the F(0)F(1)-ATP synthase, works as a rotary motor and plays a central role in driving the F(1) component to transform chemiosmotic energy into ATP synthesis. We conducted molecular dynamics simulations of b(2)-free F(0) in a 1-palmitoyl-2-oleoyl-phosphatidylcholine lipid bilayer for tens of nanoseconds with two different protonation states of the cAsp-61 residue at the interface of the a-c complex in the absence of electric fields and under electric fields of +/-0.03 V/nm across the membrane. To our surprise, we observed that the upper half of the N-terminal helix of the c(1) subunit rotated about its axis clockwise by 30 degrees . An energetic analysis revealed that the electrostatic repulsion between this N-terminal helix and subunit c(12) was a major contributor to the observed rotation. A correlation map analysis indicated that the correlated motions of residues in the interface of the a-c complex were significantly reduced by external electric fields. The deuterium order parameter (S(CD)) profile calculated by averaging all the lipids in the F(0)-bound bilayer was not very different from that of the pure bilayer system, in agreement with recent (2)H solid-state NMR experiments. However, by delineating the lipid properties according to their vicinity to F(0), we found that the S(CD) profiles of different lipid shells were prominently different. Lipids close to F(0) formed a more ordered structure. Similarly, the lateral diffusion of lipids on the membrane surface also followed a shell-dependent behavior. The lipids in the proximity of F(0) exhibited very significantly reduced diffusional motion. The numerical value of S(CD) was anticorrelated with that of the diffusion coefficient, i.e., the more ordered lipid structures led to slower lipid diffusion. Our findings will help elucidate the dynamics of F(0) depending on the protonation state and electric field, and may also shed some light on the interactions between the motor F(0) and its surrounding lipids under physiological conditions, which could help to rationalize its extraordinary energy conversion efficiency. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Carbon nanotubes for stabilization of nanostructured lipid particles

    NASA Astrophysics Data System (ADS)

    Gaunt, Nicholas P.; Patil-Sen, Yogita; Baker, Matthew J.; Kulkarni, Chandrashekhar V.

    2014-12-01

    Carbon nanotubes (CNTs) are increasingly studied for innovative biotechnological applications particularly where they are combined with essential biological materials like lipids. Lipids have been used earlier for enhancing the dispersibility of CNTs in aqueous solutions. Here we report a novel application of CNTs for stabilization of internally self-assembled nanostructured lipid particles of 2-5 μm size. Single-walled (pristine) as well as -OH and -COOH functionalized multi-walled CNTs were employed to produce nanostructured emulsions which stayed stable for months and could be re-dispersed after complete dehydration. Concentrations of CNTs employed for stabilization were very low; moreover CNTs were well-decorated with lipid molecules. These features contribute towards reducing their toxicity and improving biocompatibility for biomedical and pharmaceutical applications. Our approach paves the way for future development of combination therapies employing both CNTs and nanostructured lipid self-assembly together as carriers of different drugs.Carbon nanotubes (CNTs) are increasingly studied for innovative biotechnological applications particularly where they are combined with essential biological materials like lipids. Lipids have been used earlier for enhancing the dispersibility of CNTs in aqueous solutions. Here we report a novel application of CNTs for stabilization of internally self-assembled nanostructured lipid particles of 2-5 μm size. Single-walled (pristine) as well as -OH and -COOH functionalized multi-walled CNTs were employed to produce nanostructured emulsions which stayed stable for months and could be re-dispersed after complete dehydration. Concentrations of CNTs employed for stabilization were very low; moreover CNTs were well-decorated with lipid molecules. These features contribute towards reducing their toxicity and improving biocompatibility for biomedical and pharmaceutical applications. Our approach paves the way for future development of combination therapies employing both CNTs and nanostructured lipid self-assembly together as carriers of different drugs. Electronic supplementary information (ESI) available: Concentration series studies with Raman spectroscopy and small angle X-ray diffraction pattern for dry lipid and dehydrated CNT-lipid particles support the article. See DOI: 10.1039/c4nr05593d

  14. Lipid composition of slash pine tissue cultures grown with lunar and earth soils

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Weete, J. D.; Baur, P. S.; Walkinshaw, C. H.

    1973-01-01

    Lipid analyses were conducted on slash pine tissues grown in culture in the presence of lunar (Apollo 15) and earth soils. Significant reductions in the total lipids, fatty acids, and sterol components were found in the tissues grown in contact with each of the soils employed when compared to the control. Tissues grown with lunar soil showed the greatest reductions. These results are discussed with respect to previous ultrastructural studies on similarly treated slash pine tissues and lipid analyses on tobacco tissue cultures.

  15. Single histidine residue in head-group region is sufficient to impart remarkable gene transfection properties to cationic lipids: evidence for histidine-mediated membrane fusion at acidic pH.

    PubMed

    Kumar, V V; Pichon, C; Refregiers, M; Guerin, B; Midoux, P; Chaudhuri, A

    2003-08-01

    Presence of endosome-disrupting multiple histidine functionalities in the molecular architecture of cationic polymers, such as polylysine, has previously been demonstrated to significantly enhance their in vitro gene delivery efficiencies. Towards harnessing improved transfection property through covalent grafting of endosome-disrupting single histidine functionality in the molecular structure of cationic lipids, herein, we report on the design, the synthesis and the transfection efficiency of two novel nonglycerol-based histidylated cationic amphiphiles. We found that L-histidine-(N,N-di-n-hexadecylamine)ethylamide (lipid 1) and L-histidine-(N,N-di-n-hexadecylamine,-N-methyl)ethylamide (lipid 2) in combination with cholesterol gave efficient transfections into various cell lines. The transfection efficiency of Chol/lipid 1 lipoplexes into HepG2 cells was two order of magnitude higher than that of FuGENE(TM)6 and DC-Chol lipoplexes, whereas it was similar into A549, 293T7 and HeLa cells. A better efficiency was obtained with Chol/lipid 2 lipoplexes when using the cytosolic luciferase expression vector (pT7Luc) under the control of the bacterial T7 promoter. Membrane fusion activity measurements using fluorescence resonance energy transfer (FRET) technique showed that the histidine head-groups of Chol/lipid 1 liposomes mediated membrane fusion in the pH range 5-7. In addition, the transgene expression results using the T7Luc expression vector convincingly support the endosome-disrupting role of the presently described mono-histidylated cationic transfection lipids and the release of DNA into the cytosol. We conclude that covalent grafting of a single histidine amino acid residue to suitable twin-chain hydrophobic compounds is able to impart remarkable transfection properties on the resulting mono-histidylated cationic amphiphile, presumably via the endosome-disrupting characteristics of the histidine functionalities.

  16. Pretreatment of different food rest materials for bioconversion into fungal lipid-rich biomass.

    PubMed

    Tzimorotas, D; Afseth, N K; Lindberg, D; Kjørlaug, O; Axelsson, L; Shapaval, V

    2018-04-13

    Food rest materials have the potential to be used as media components in various types of fermentations. Oleaginous filamentous fungi can utilize those components and generate a high-value lipid-rich biomass, which could be further used for animal and human use. One of the main limitations in this process is the pretreatment of food rest materials, needed to provide homogenization, sterilization and solubilization. In this study, two pretreatment processes-steam explosion and enzymatic hydrolysis-were evaluated for potato and animal protein-rich food rest materials. The pretreated food rest materials were used for the production of fungal lipid-rich biomass in submerged fermentation by the oleaginous fungus Mucor circinelloides. Cultivation media based on malt extract broth and glucose were used as controls of growth and lipid production, respectively. It was observed that media based on food rest materials can support growth and lipid production in M. circinelloides to a similar extent as the control media. More specifically, the use of potato hydrolysate combined with chicken auto-hydrolysate resulted in a higher fungal total biomass weight than using malt extract broth. When the same C/N ratio was used for glucose and rest materials-based media, similar lipid content was obtained or even higher using the latter media.

  17. Influence of physical fitness on cardio-metabolic risk factors in European children. The IDEFICS study.

    PubMed

    Zaqout, M; Michels, N; Bammann, K; Ahrens, W; Sprengeler, O; Molnar, D; Hadjigeorgiou, C; Eiben, G; Konstabel, K; Russo, P; Jiménez-Pavón, D; Moreno, L A; De Henauw, S

    2016-07-01

    The aim of the study was to assess the associations of individual and combined physical fitness components with single and clustering of cardio-metabolic risk factors in children. This 2-year longitudinal study included a total of 1635 European children aged 6-11 years. The test battery included cardio-respiratory fitness (20-m shuttle run test), upper-limb strength (handgrip test), lower-limb strength (standing long jump test), balance (flamingo test), flexibility (back-saver sit-and-reach) and speed (40-m sprint test). Metabolic risk was assessed through z-score standardization using four components: waist circumference, blood pressure (systolic and diastolic), blood lipids (triglycerides and high-density lipoprotein) and insulin resistance (homeostasis model assessment). Mixed model regression analyses were adjusted for sex, age, parental education, sugar and fat intake, and body mass index. Physical fitness was inversely associated with clustered metabolic risk (P<0.001). All coefficients showed a higher clustered metabolic risk with lower physical fitness, except for upper-limb strength (β=0.057; P=0.002) where the opposite association was found. Cardio-respiratory fitness (β=-0.124; P<0.001) and lower-limb strength (β=-0.076; P=0.002) were the most important longitudinal determinants. The effects of cardio-respiratory fitness were even independent of the amount of vigorous-to-moderate activity (β=-0.059; P=0.029). Among all the metabolic risk components, blood pressure seemed not well predicted by physical fitness, while waist circumference, blood lipids and insulin resistance all seemed significantly predicted by physical fitness. Poor physical fitness in children is associated with the development of cardio-metabolic risk factors. Based on our results, this risk might be modified by improving mainly cardio-respiratory fitness and lower-limb muscular strength.

  18. Diet enriched with the Amazon fruit açaí (Euterpe oleracea) prevents electrophysiological deficits and oxidative stress induced by methyl-mercury in the rat retina.

    PubMed

    Brasil, Alódia; Rocha, Fernando Allan de Farias; Gomes, Bruno Duarte; Oliveira, Karen Renata M; de Carvalho, Tayana Silva; Batista, Evander de Jesus O; Borges, Rosivaldo Dos Santos; Kremers, Jan; Herculano, Anderson Manoel

    2017-06-01

    The protective effect of a diet supplemented by the Amazonian fruit Euterpe oleracea (EO) against methylmercury (MeHg) toxicity in rat retina was studied using electroretinography (ERG) and biochemical evaluation of oxidative stress. Wistar rats were submitted to conventional diet or EO-enriched diet for 28 days. After that, each group received saline solution or 5 mg/kg/day of MeHg for 7 days. Full-field single flash, flash and flicker ERGs were evaluated in the following groups: control, EO, MeHg, and EO+MeHg. The amplitudes of the a-wave, b-wave, photopic negative response from rod and/or cone were measured by ERGs as well as the amplitudes and phases of the fundamental component of the sine-wave flicker ERG. Lipid peroxidation was determined by thiobarbituric acid reactive species. All ERG components had decreased amplitudes in the MeHg group when compared with controls. EO-enriched food had no effect on the non-intoxicated animals. The intoxicated animals and those that received the supplemented diet presented significant amplitude reductions of the cone b-wave and of the fundamental flicker component when compared with non-intoxicated control. The protective effect of the diet on scotopic conditions was only observed for bright flashes eliciting a mixed rod and cone response. There was a significant increase of lipid peroxidation in the retina from animals exposed to MeHg and EO-supplemented diet was able to prevent MeHg-induced oxidative stress in retinal tissue. These findings open up perspectives for the use of diets supplemented with EO as a protective strategy against visual damage induced by MeHg.

  19. An experimental comparison between the continuum and single jump descriptions of nonactin-mediated potassium transport through black lipid membranes.

    PubMed Central

    van Dijk, C; de Levie, R

    1985-01-01

    The continuum and single jump treatments of ion transport through black lipid membranes predict experimentally distinguishable results, even when the same mechanistic assumptions are made and the same potential-distance profile is used. On the basis of steady-state current-voltage curves for nonactin-mediated transport of potassium ions, we find that the continuum model describes the data accurately, whereas the single jump model fails to do so, for all cases investigated in which capacitance measurements indicate that the membrane thickness varies little with applied potential. PMID:3839420

  20. [Germ cell membrane lipids in spermatogenesis].

    PubMed

    Wang, Ting; Shi, Xiao; Quan, Song

    2016-05-01

    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  1. The effect of charged lipids on bacteriorhodopsin membrane reconstitution and its photochemical activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Zhen; Bai Jing; Xu Yuhong

    2008-07-11

    Bacteriorhodopsin (BR) was reconstituted into artificial lipid membrane containing various charged lipid compositions. The proton pumping activity of BR under flash and continuous illumination, proton permeability across membrane, as well as the decay kinetics of the photocycle intermediate M{sub 412} were studied. The results showed that lipid charges would significantly affect the orientation of BR inserted into lipid membranes. In liposomes containing anionic lipids, BRs were more likely to take natural orientation as in living cells. In neutral or positively charged liposomes, most BRs were reversely assembled, assuming an inside out orientation. Moreover, the lipids charges also affect BR's Mmore » intermediate kinetics, especially the slow component in M intermediate decay. The half-life M{sub 412s} increased significantly in BRs in liposomes containing cationic lipids, while decreased in those in anionic liposomes.« less

  2. Introduction to fatty acids and lipids.

    PubMed

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects. © 2015 S. Karger AG, Basel.

  3. LDRD final report on imaging self-organization of proteins in membranes by photocatalytic nano-tagging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavadil, Kevin Robert; Shelnutt, John Allen; Sasaki, Darryl Yoshio

    We have developed a new nanotagging technology for detecting and imaging the self-organization of proteins and other components of membranes at nanometer resolution for the purpose of investigating cell signaling and other membrane-mediated biological processes. We used protein-, lipid-, or drug-bound porphyrin photocatalysts to grow in-situ nanometer-sized metal particles, which reveal the location of the porphyrin-labeled molecules by electron microscopy. We initially used photocatalytic nanotagging to image assembled multi-component proteins and to monitor the distribution of lipids and porphyrin labels in liposomes. For example, by exchanging the heme molecules in hemoproteins with a photocatalytic tin porphyrin, a nanoparticle was grownmore » at each heme site of the protein. The result obtained from electron microscopy for a tagged multi-subunit protein such as hemoglobin is a symmetric constellation of a specific number of nanoparticle tags, four in the case of the hemoglobin tetramer. Methods for covalently linking photocatalytic porphyrin labels to lipids and proteins were also developed to detect and image the self-organization of lipids, protein-protein supercomplexes, and membrane-protein complexes. Procedures for making photocatalytic porphyrin-drug, porphyrin-lipid, and porphyrin-protein hybrids for non-porphyrin-binding proteins and membrane components were pursued and the first porphyrin-labeled lipids was investigated in liposomal membrane models. Our photocatalytic nanotagging technique may ultimately allow membrane self-organization and cell signaling processes to be imaged in living cells. Fluorescence and plasmonic spectra of the tagged proteins might also provide additional information about protein association and membrane organization. In addition, a porphyrin-aspirin or other NSAID hybrid may be used to grow metal nanotags for the pharmacologically important COX enzymes in membranes so that the distribution of the protein can be imaged at the nanometer scale.« less

  4. Quantitative Chemical Imaging and Unsupervised Analysis Using Hyperspectral Coherent Anti-Stokes Raman Scattering Microscopy

    PubMed Central

    2013-01-01

    In this work, we report a method to acquire and analyze hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy images of organic materials and biological samples resulting in an unbiased quantitative chemical analysis. The method employs singular value decomposition on the square root of the CARS intensity, providing an automatic determination of the components above noise, which are retained. Complex CARS susceptibility spectra, which are linear in the chemical composition, are retrieved from the CARS intensity spectra using the causality of the susceptibility by two methods, and their performance is evaluated by comparison with Raman spectra. We use non-negative matrix factorization applied to the imaginary part and the nonresonant real part of the susceptibility with an additional concentration constraint to obtain absolute susceptibility spectra of independently varying chemical components and their absolute concentration. We demonstrate the ability of the method to provide quantitative chemical analysis on known lipid mixtures. We then show the relevance of the method by imaging lipid-rich stem-cell-derived mouse adipocytes as well as differentiated embryonic stem cells with a low density of lipids. We retrieve and visualize the most significant chemical components with spectra given by water, lipid, and proteins segmenting the image into the cell surrounding, lipid droplets, cytosol, and the nucleus, and we reveal the chemical structure of the cells, with details visualized by the projection of the chemical contrast into a few relevant channels. PMID:24099603

  5. Effect of gender, age, diet and smoking status on chronomics of circulating plasma lipid components in healthy Indians.

    PubMed

    Singh, Ranjana; Sharma, Sumita; Singh, Rajesh K; Mahdi, Abbas A; Singh, Raj K; Lee Gierke, Cathy; Cornelissen, Germaine

    2016-08-01

    Circulating lipid components were studied under near-normal tropical conditions (around Lucknow) in 162 healthy volunteers - mostly medical students, staff members and members of their families (103 males and 59 females; 7 to 75y), subdivided into 4 age groups: A (7-20y; N=42), B (21-40y; N=60), C (41-60y; N=35) and D (61-75y; N=25). Blood samples were collected from each subject every 6h for 24h (4 samples). Plasma was separated and total cholesterol, high-density-lipoprotein (HDL) cholesterol, phospholipids and total lipids were measured spectrophotometrically. Data from each subject were analyzed by cosinor. We examined by multiple-analysis of variance how the MESOR (Midline Estimating Statistic Of Rhythm, a rhythm-adjusted mean) and the circadian amplitude of these variables is affected by gender, age, diet (vegetarian vs. omnivore), and smoking status. In addition to effects of gender and age, diet and smoking were found to affect the MESOR of circulating plasma lipid components in healthy Indians residing in northern India. Age also affected the circadian amplitude of these variables. These results indicate the possibility of using non-pharmacological interventions to improve a patient's metabolic profile before prescribing medication under near normal tropical conditions. They also add information that may help refine cut-off values in the light of factors shown here to affect blood lipids. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Nutrients and certain lipid soluble bioactive components in dehusked whole grains (gota) and dehusked splits (dhal) from pigeon pea (Cajanus cajan) and their cooking characteristics.

    PubMed

    Jayadeep, Padmanabhan A; Sashikala, Vadakkoot B; Pratape, Vishwas M

    2009-01-01

    The nutritional quality of dehusked whole grains (gota) and dehusked splits (dhal) in red and white varieties of pigeon pea regarding proximate composition and certain lipid-soluble bioactive components was investigated. A decrease in fat and crude fiber was noticed when gota was converted to dhal. The lipid profile of gota and dhal from red and white husk pigeon pea types indicated that essential fatty acids were greater in gota than in their respective dhals. Gota from white husk variety contained more tocopherols than the red variety. Dhal contained less tocopherols than gota. A decrease in the content of gamma and alpha tocopherols, vitamin E activity and total antioxidant activity also indicates loss of bioactive components on splitting gota into dhal. Cooking time and dispersed solids on cooking indicated good cooking quality of gotta. The results indicated the nutritional superiority of gota over dhal and its similarity with dhal in cooking characteristics.

  7. Effects of soy sauce and packaging method on volatile compounds and lipid oxidation of cooked irradiated beef patties

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Wook; Lee, Soo-Yeon; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Lee, Ju-Woon; Kim, Cheon-Jei

    2014-10-01

    The objective of this study is to determine the effect of soy sauce on volatile compounds and lipid oxidation of cooked irradiated beef patties. Sulfur-containing volatile components, which are produced by irradiation, were not found in all treatments. Volatile components derived from soy sauce, such as 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol and 2-methyl-1-butanol, were detected in beef patties containing soy sauce regardless of irradiation and packaging method. Volatile aldehydes, including hexanal, significantly decreased the irradiated beef patty prepared with soy sauce compared to those of irradiated beef patty made with NaCl at 1 day and 5 days after irradiation. In addition, combined use of vacuum packaging and soy sauce treatments could inhibit the formation of volatile compounds and 2-thiobarbituric acid reactive substances during chilled storage. Therefore, the use of soy sauce in cooked and irradiated beef could reduce the production of volatile components associated with the irradiation-induced off-flavor and lipid oxidation.

  8. Antioxidant activities of ginger extract and its constituents toward lipids.

    PubMed

    Si, Wenhui; Chen, Yan Ping; Zhang, Jianhao; Chen, Zhen-Yu; Chung, Hau Yin

    2018-01-15

    Lipid oxidation-a major cause of food product deterioration-necessitates the use of food additives to inhibit food oxidation. Ginger extract (GE) has been reported to possess antioxidant properties. However, components isolated from ginger have been rarely reported to inhibit fat oxidation. Herein, antioxidant properties of GE and four pure components derived from it (6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol) were examined and their properties were compared to those of butylated hydroxytoluene. GE and the constituent components exhibited antioxidant properties that might be attributed to their hydroxyl groups and suitable solubilizing side chains. 6-Shogaol and 10-gingerol exhibited higher activity at 60°C than 6-gingerol and 8-gingerol. Low antioxidant activity was detected at high temperatures (120/180°C). Overall, GE displayed the strongest dose-dependent antioxidant properties, especially at high temperatures, thereby demonstrating that GE can be employed as a natural antioxidant in lipid-containing processed foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Lipid diffusion in the distal and proximal leaflets of supported lipid bilayer membranes studied by single particle tracking

    NASA Astrophysics Data System (ADS)

    Schoch, Rafael L.; Barel, Itay; Brown, Frank L. H.; Haran, Gilad

    2018-03-01

    Supported lipid bilayers (SLBs) have been studied extensively as simple but powerful models for cellular membranes. Yet, potential differences in the dynamics of the two leaflets of a SLB remain poorly understood. Here, using single particle tracking, we obtain a detailed picture of bilayer dynamics. We observe two clearly separate diffusing populations, fast and slow, that we associate with motion in the distal and proximal leaflets of the SLB, respectively, based on fluorescence quenching experiments. We estimate diffusion coefficients using standard techniques as well as a new method based on the blur of images due to motion. Fitting the observed diffusion coefficients to a two-leaflet membrane hydrodynamic model allows for the simultaneous determination of the intermonolayer friction coefficient and the substrate-membrane friction coefficient, without any prior assumptions on the strengths of the relevant interactions. Remarkably, our calculations suggest that the viscosity of the interfacial water confined between the membrane and the substrate is elevated by ˜104 as compared to bulk water. Using hidden Markov model analysis, we then obtain insight into the transbilayer movement of lipids. We find that lipid flip-flop dynamics are very fast, with half times in the range of seconds. Importantly, we find little evidence for membrane defect mediated lipid flip-flop for SLBs at temperatures well above the solid-to-liquid transition, though defects seem to be involved when the SLBs are cooled down. Our work thus shows that the combination of single particle tracking and advanced hydrodynamic modeling provides a powerful means to obtain insight into membrane dynamics.

  10. Free fatty acids chain length distribution affects the permeability of skin lipid model membranes.

    PubMed

    Uchiyama, Masayuki; Oguri, Masashi; Mojumdar, Enamul H; Gooris, Gert S; Bouwstra, Joke A

    2016-09-01

    The lipid matrix in the stratum corneum (SC) plays an important role in the barrier function of the skin. The main lipid classes in this lipid matrix are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The aim of this study was to determine whether a variation in CER subclass composition and chain length distribution of FFAs affect the permeability of this matrix. To examine this, we make use of lipid model membranes, referred to as stratum corneum substitute (SCS). We prepared SCS containing i) single CER subclass with either a single FFA or a mixture of FFAs and CHOL, or ii) a mixture of various CER subclasses with either a single FFA or a mixture of FFAs and CHOL. In vitro permeation studies were performed using ethyl-p-aminobenzoic acid (E-PABA) as a model drug. The flux of E-PABA across the SCS containing the mixture of FFAs was higher than that across the SCS containing a single FA with a chain length of 24 C atoms (FA C24), while the E-PABA flux was not effected by the CER composition. To select the underlying factors for the changes in permeability, the SCSs were examined by Fourier transform infrared spectroscopy (FTIR) and Small angle X-ray scattering (SAXS). All lipid models demonstrated a similar phase behavior. However, when focusing on the conformational ordering of the individual FFA chains, the shorter chain FFA (with a chain length of 16, 18 or 20 C atoms forming only 11m/m% of the total FFA level) had a higher conformational disordering, while the conformational ordering of the chains of the CER and FA C24 and FA C22 hardly did not change irrespective of the composition of the SCS. In conclusion, the conformational mobility of the short chain FFAs present only at low levels in the model SC lipid membranes has a great impact on the permeability of E-PABA. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.

    PubMed

    Adams, Mark; Wang, Eric; Zhuang, Xiaohong; Klauda, Jeffery B

    2017-11-21

    The lipid composition of bovine and human ocular lens membranes has been probed, and a variety of lipids have been found including phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), and cholesterol (CHOL) with cholesterol being present in particularly high concentrations. In this study, we use the all-atom CHARMM36 force field to simulate binary, ternary, and quaternary mixtures as models of the ocular lens. High concentration of cholesterol, in combination with different and varying diversity of phospholipids (PL) and sphingolipids (SL), affect the structure of the ocular lens lipid bilayer. The following analyses were done for each simulation: surface area per lipid, component surface area per lipid, deuterium order parameters (S CD ), electron density profiles (EDP), membrane thickness, hydrogen bonding, radial distribution functions, clustering, and sterol tilt angle distribution. The S CD show significant bilayer alignment and packing in cholesterol-rich bilayers. The EDP show the transition from liquid crystalline to liquid ordered with the addition of cholesterol. Hydrogen bonds in our systems show the tendency for intramolecular interactions between cholesterol and fully saturated lipid tails for less complex bilayers. But with an increased number of components in the bilayer, the acyl chain of the lipids becomes a less important characteristic, and the headgroup of the lipid becomes more significant. Overall, cholesterol is the driving force of membrane structure of the ocular lens membrane where interactions between cholesterol, PL, and SL determine structure and function of the biomembrane. The goal of this work is to develop a baseline for further study of more physiologically realistic ocular lens lipid membranes. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Differential Lipid Profiles of Normal Human Brain Matter and Gliomas by Positive and Negative Mode Desorption Electrospray Ionization – Mass Spectrometry Imaging

    PubMed Central

    Pirro, Valentina; Hattab, Eyas M.; Cohen-Gadol, Aaron A.; Cooks, R. Graham

    2016-01-01

    Desorption electrospray ionization—mass spectrometry (DESI-MS) imaging was used to analyze unmodified human brain tissue sections from 39 subjects sequentially in the positive and negative ionization modes. Acquisition of both MS polarities allowed more complete analysis of the human brain tumor lipidome as some phospholipids ionize preferentially in the positive and others in the negative ion mode. Normal brain parenchyma, comprised of grey matter and white matter, was differentiated from glioma using positive and negative ion mode DESI-MS lipid profiles with the aid of principal component analysis along with linear discriminant analysis. Principal component–linear discriminant analyses of the positive mode lipid profiles was able to distinguish grey matter, white matter, and glioma with an average sensitivity of 93.2% and specificity of 96.6%, while the negative mode lipid profiles had an average sensitivity of 94.1% and specificity of 97.4%. The positive and negative mode lipid profiles provided complementary information. Principal component–linear discriminant analysis of the combined positive and negative mode lipid profiles, via data fusion, resulted in approximately the same average sensitivity (94.7%) and specificity (97.6%) of the positive and negative modes when used individually. However, they complemented each other by improving the sensitivity and specificity of all classes (grey matter, white matter, and glioma) beyond 90% when used in combination. Further principal component analysis using the fused data resulted in the subgrouping of glioma into two groups associated with grey and white matter, respectively, a separation not apparent in the principal component analysis scores plots of the separate positive and negative mode data. The interrelationship of tumor cell percentage and the lipid profiles is discussed, and how such a measure could be used to measure residual tumor at surgical margins. PMID:27658243

  13. Lipid content and fatty acid profile during lake whitefish embryonic development at different incubation temperatures.

    PubMed

    Mueller, Casey A; Doyle, Liam; Eme, John; Manzon, Richard G; Somers, Christopher M; Boreham, Douglas R; Wilson, Joanna Y

    2017-01-01

    Lipids serve as energy sources, structural components, and signaling molecules during fish embryonic development, and utilization of lipids may vary with temperature. Embryonic energy utilization under different temperatures is an important area of research in light of the changing global climate. Therefore, we examined percent lipid content and fatty acid profiles of lake whitefish (Coregonus clupeaformis) throughout embryonic development at three incubation temperatures. We sampled fertilized eggs and embryos at gastrulation, eyed and fin flutter stages following chronic incubation at temperatures of 1.8, 4.9 and 8.0°C. Hatchlings were also sampled following incubation at temperatures of 3.3, 4.9 and 8.0°C. Fertilized eggs had an initial high percentage of dry mass composed of lipid (percent lipid content; ~29%) consisting of ~20% saturated fatty acids (SFA), ~32% monounsaturated fatty acids (MUFA), ~44% polyunsaturated fatty acids (PUFA), and 4% unidentified. The most abundant fatty acids were 16:0, 16:1, 18:1(n-9c), 20:4(n-6), 20:5(n-3) and 22:6(n-3). This lipid profile matches that of other cold-water fish species. Percent lipid content increased during embryonic development, suggesting protein or other yolk components were preferentially used for energy. Total percentage of MUFA decreased during development, which indicated MUFA were the primary lipid catabolized for energy during embryonic development. Total percentage of PUFA increased during development, driven largely by an increase in 22:6(n-3). Temperature did not influence percent lipid content or percent MUFA at any development stage, and had inconsistent effects on percent SFA and percent PUFA during development. Thus, lake whitefish embryos appear to be highly adapted to low temperatures, and do not alter lipids in response to temperature within their natural incubation conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The effect of Meibomian lipids and tear proteins on evaporation rate under controlled in vitro conditions.

    PubMed

    Herok, George Henryk; Mudgil, Poonam; Millar, Thomas James

    2009-07-01

    The lipid layer of the tear film is associated with preventing evaporative loss. The ability of human Meibomian lipids to reduce evaporation in vitro was tested. Films of human or animal Meibomian lipids or mixtures of cholesterol and phosphatidylcholine were spread on the surface of either artificial buffer or on whole tears and placed on a mass balance that was enclosed in a sealed chamber. The temperature was adjusted to 37 degrees C and gas flow was controlled. Increasing the amounts of Meibomian lipids gave a very small reduction in evaporation. It was concluded from these in vitro experiments that prevention of evaporation from the tear film is not due to the Meibomian lipids alone, but is more likely to be due to a complex interaction between components of the aqueous and the Meibomian lipids.

  15. Autophagic Regulation of Lipid Homeostasis in Cardiometabolic Syndrome.

    PubMed

    Yang, Mingjie; Zhang, Yingmei; Ren, Jun

    2018-01-01

    As an important protein quality control process, autophagy is essential for the degradation and removal of long-lived or injured cellular components and organelles. Autophagy is known to participate in a number of pathophysiological processes including cardiometabolic syndrome. Recent findings have shown compelling evidence for the intricate interplay between autophagy and lipid metabolism. Autophagy serves as a major regulator of lipid homeostasis while lipid can also influence autophagosome formation and autophagic signaling. Lipophagy is a unique form of selective autophagy and functions as a fundamental mechanism for clearance of lipid excess in atherosclerotic plaques. Ample of evidence has denoted a novel therapeutic potential for autophagy in deranged lipid metabolism and management of cardiometabolic diseases such as atherosclerosis and diabetic cardiomyopathy. Here we will review the interplays between cardiac autophagy and lipid metabolism in an effort to seek new therapeutic options for cardiometabolic diseases.

  16. 3D MALDI Mass Spectrometry Imaging of a Single Cell: Spatial Mapping of Lipids in the Embryonic Development of Zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dueñas, Maria Emilia; Essner, Jeffrey J.; Lee, Young Jin

    The zebrafish ( Danio rerio) has been widely used as a model vertebrate system to study lipid metabolism, the roles of lipids in diseases, and lipid dynamics in embryonic development. Here, we applied high-spatial resolution matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) to map and visualize the three-dimensional spatial distribution of phospholipid classes, phosphatidylcholine (PC), phosphatidylethanolamines (PE), and phosphatidylinositol (PI), in newly fertilized individual zebrafish embryos. This is the first time MALDI-MSI has been applied for three dimensional chemical imaging of a single cell. PC molecular species are present inside the yolk in addition to the blastodisc, while PE andmore » PI species are mostly absent in the yolk. Two-dimensional MSI was also studied for embryos at different cell stages (1-, 2-, 4-, 8-, and 16-cell stage) to investigate the localization changes of some lipids at various cell developmental stages. Lastly, four different normalization approaches were compared to find reliable relative quantification in 2D- and 3D- MALDI MSI data sets.« less

  17. Long-timescale motions in glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulation.

    PubMed

    Laner, Monika; Horta, Bruno A C; Hünenberger, Philippe H

    2015-02-01

    The occurrence of long-timescale motions in glycerol-1-monopalmitate (GMP) lipid bilayers is investigated based on previously reported 600 ns molecular dynamics simulations of a 2×8×8 GMP bilayer patch in the temperature range 302-338 K, performed at three different hydration levels, or in the presence of the cosolutes methanol or trehalose at three different concentrations. The types of long-timescale motions considered are: (i) the possible phase transitions; (ii) the precession of the relative collective tilt-angle of the two leaflets in the gel phase; (iii) the trans-gauche isomerization of the dihedral angles within the lipid aliphatic tails; and (iv) the flipping of single lipids across the two leaflets. The results provide a picture of GMP bilayers involving a rich spectrum of events occurring on a wide range of timescales, from the 100-ps range isomerization of single dihedral angles, via the 100-ns range of tilt precession motions, to the multi-μs range of phase transitions and lipid-flipping events. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. An assessment of morphometric indices, blood chemistry variables and an energy meter as indicators of the whole body lipid content in Micropterus dolomieu, Sander vitreus and Ictalurus punctatus

    USGS Publications Warehouse

    Mesa, Matthew G.; Rose, Brien P.

    2015-01-01

    The effectiveness of several non-lethal techniques as indicators of total lipid content in smallmouth bass Micropterus dolomieu, walleye Sander vitreus and channel catfish Ictalurus punctatus was investigated. The techniques included (1) the Fulton and relative condition factors, (2) relative mass, (3) plasma indicators of nutritional status (alkaline phosphatase, calcium, cholesterol, protein, triglycerides and glucose) and (4) readings from a hand-held, microwave energy meter. Although simple linear regression analysis showed that lipid content was significantly correlated with several predictor variables in each species, the r2 values for the relations ranged from 0·17 to 0·50 and no single approach was consistent for all species. Only one model, between energy-meter readings and lipid content in I. punctatus, had an r2 value (0·83) high enough to justify using it as a predictive tool. Results indicate that no single variable was an accurate and reliable indicator of whole body lipid content in these fishes, except the energy meter for I. punctatus.

  19. 3D MALDI Mass Spectrometry Imaging of a Single Cell: Spatial Mapping of Lipids in the Embryonic Development of Zebrafish

    DOE PAGES

    Dueñas, Maria Emilia; Essner, Jeffrey J.; Lee, Young Jin

    2017-11-02

    The zebrafish ( Danio rerio) has been widely used as a model vertebrate system to study lipid metabolism, the roles of lipids in diseases, and lipid dynamics in embryonic development. Here, we applied high-spatial resolution matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) to map and visualize the three-dimensional spatial distribution of phospholipid classes, phosphatidylcholine (PC), phosphatidylethanolamines (PE), and phosphatidylinositol (PI), in newly fertilized individual zebrafish embryos. This is the first time MALDI-MSI has been applied for three dimensional chemical imaging of a single cell. PC molecular species are present inside the yolk in addition to the blastodisc, while PE andmore » PI species are mostly absent in the yolk. Two-dimensional MSI was also studied for embryos at different cell stages (1-, 2-, 4-, 8-, and 16-cell stage) to investigate the localization changes of some lipids at various cell developmental stages. Lastly, four different normalization approaches were compared to find reliable relative quantification in 2D- and 3D- MALDI MSI data sets.« less

  20. Poly-(R)-3-hydroxybutyrates (PHB) are Atherogenic Components of Lipoprotein Lp(a).

    PubMed

    Reusch, Rosetta N

    2015-12-01

    The hypothesis is that poly-(R)-3-hydroxybutyrates (PHB), linear polymers of the ketone body, R-3-hydroxybutyrate (R-3HB), are atherogenic components of lipoprotein Lp(a). PHB are universal constituents of biological cells and are thus components of all foods. Medium chain-length PHB (<200 residues) (mPHB) are located in membranes and organelles, and short-chain PHB (<15 residues) are covalently attached to certain proteins (cPHB). PHB are highly insoluble in water, but soluble in lipids in which they exhibit a high intrinsic viscosity. They have a higher density than other cellular lipids and they are very adhesive, i.e. they engage in multiple noncovalent interactions with other molecules and salts via hydrogen, hydrophobic and coordinate bonds, thus producing insoluble deposits. Following digestive processes, PHB enter the circulation in chylomicrons and very low density lipoproteins (VLDL). The majority of the PHB (>70%) are absorbed by albumin, which transports them to the liver for disposal. When the amount of PHB in the diet exceed the capacity of albumin to safely remove them from the circulation, the excess PHB remain in the lipid core of LDL particles that become constituents of lipoprotein Lp(a), and contribute to the formation of arterial deposits. In summary, the presence of PHB – water-insoluble, dense, viscous, adhesive polymers – in the lipid cores of the LDL moieties of Lp(a) particles supports the hypothesis that PHB are atherogenic components of Lp(a).

  1. Influenza A Virus Hemagglutinin is Required for the Assembly of Viral Components Including Bundled vRNPs at the Lipid Raft.

    PubMed

    Takizawa, Naoki; Momose, Fumitaka; Morikawa, Yuko; Nomoto, Akio

    2016-09-10

    The influenza glycoproteins, hemagglutinin (HA) and neuraminidase (NA), which are associated with the lipid raft, have the potential to initiate virion budding. However, the role of these viral proteins in infectious virion assembly is still unclear. In addition, it is not known how the viral ribonucleoprotein complex (vRNP) is tethered to the budding site. Here, we show that HA is necessary for the efficient progeny virion production and vRNP packaging in the virion. We also found that the level of HA does not affect the bundling of the eight vRNP segments, despite reduced virion production. Detergent solubilization and a subsequent membrane flotation analysis indicated that the accumulation of nucleoprotein, viral polymerases, NA, and matrix protein 1 (M1) in the lipid raft fraction was delayed without HA. Based on our results, we inferred that HA plays a role in the accumulation of viral components, including bundled vRNPs, at the lipid raft.

  2. Assessment of storage lipid accumulation patterns in eucalanoid copepods from the eastern tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Cass, Christine J.; Daly, Kendra L.; Wakeham, Stuart G.

    2014-11-01

    Members of the copepod family Eucalanidae are widely distributed throughout the world's oceans and have been noted for their accumulation of storage lipids in high- and low-latitude environments. However, little is known about the lipid composition of eucalanoid copepods in low-latitude environments. The purpose of this study was to examine fatty acid and alcohol profiles in the storage lipids (wax esters and triacylglycerols) of Eucalanus inermis, Rhincalanus rostrifrons, R. nasutus, Pareucalanus attenuatus, and Subeucalanus subtenuis, collected primarily in the eastern tropical north Pacific near the Tehuantepec Bowl and Costa Rica Dome regions, noted for its oxygen minimum zone, during fall 2007 and winter 2008/2009. Adult copepods and particulate material were collected in the upper 50 m and from 200 to 300 m in the upper oxycline. Lipid profiles of particulate matter were generated to help ascertain information on ecological strategies of these species and on differential accumulation of dietary and modified fatty acids in the wax ester and triacylglycerol storage lipid components of these copepods in relation to their vertical distributions around the oxygen minimum zone. Additional data on phospholipid fatty acid and sterol/fatty alcohol fractions were also generated to obtain a comprehensive lipid data set for each sample. Rhincalanus spp. accumulated relatively large amounts of storage lipids (31-80% of dry mass (DM)), while E. inermis had moderate amounts (2-9% DM), and P. attenuatus and S. subtenuis had low quantities of storage lipid (0-1% DM). E. inermis and S. subtenuis primarily accumulated triacylglycerols (>90% of storage lipids), while P. attenuatus and Rhincalanus spp. primarily accumulated wax esters (>84% of storage lipids). Based on previously generated molecular phylogenies of the Eucalanidae family, these results appear to support genetic predisposition as a major factor explaining why a given species accumulates primarily triacylglycerols or wax esters, and also potentially dictating major fatty acid and alcohol accumulation patterns within the more highly modified wax ester fraction. Comparisons of fatty acid profiles between triacylglycerol and wax ester components in copepods with that in available prey suggested that copepod triacylglycerols were more reflective of dietary fatty acids, while wax esters contained a higher proportion of modified or de novo synthesized forms. Sterols and phospholipid fatty acids were similar between species, confirming high levels of regulation within these components. Similarities between triacylglycerol fatty acid profiles of E. inermis collected in surface waters and at >200 m depth indicate little to no feeding during their ontogenetic migration to deeper, low-oxygen waters.

  3. Changes in Plasma Lipids during Exposure to Total Sleep Deprivation.

    PubMed

    Chua, Eric Chern-Pin; Shui, Guanghou; Cazenave-Gassiot, Amaury; Wenk, Markus R; Gooley, Joshua J

    2015-11-01

    The effects of sleep loss on plasma lipids, which play an important role in energy homeostasis and signaling, have not been systematically examined. Our aim was to identify lipid species in plasma that increase or decrease reliably during exposure to total sleep deprivation. Twenty individuals underwent sleep deprivation in a laboratory setting. Blood was drawn every 4 h and mass spectrometry techniques were used to analyze concentrations of 263 lipid species in plasma, including glycerolipids, glycerophospholipids, sphingolipids, and sterols. Chronobiology and Sleep Laboratory, Duke-NUS Graduate Medical School. Healthy ethnic-Chinese males aged 21-28 y (n = 20). Subjects were kept awake for 40 consecutive hours. Each metabolite time series was modeled as a sum of sinusoidal (circadian) and linear components, and we assessed whether the slope of the linear component differed from zero. More than a third of all individually analyzed lipid profiles exhibited a circadian rhythm and/or a linear change in concentration during sleep deprivation. Twenty-five lipid species showed a linear and predominantly unidirectional trend in concentration levels that was consistent across participants. Choline plasmalogen levels decreased, whereas several phosphatidylcholine (PC) species and triacylglycerides (TAG) carrying polyunsaturated fatty acids increased. The decrease in choline plasmalogen levels during sleep deprivation is consistent with prior work demonstrating that these lipids are susceptible to degradation by oxidative stress. The increase in phosphatidylcholines and triacylglycerides suggests that sleep loss might modulate lipid metabolism, which has potential implications for metabolic health in individuals who do not achieve adequate sleep. © 2015 Associated Professional Sleep Societies, LLC.

  4. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity.

    PubMed

    Morimoto-Kobayashi, Yumie; Ohara, Kazuaki; Takahashi, Chika; Kitao, Sayoko; Wang, Guanying; Taniguchi, Yoshimasa; Katayama, Mikio; Nagai, Katsuya

    2015-01-01

    Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB) appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA). Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional foods or beverages to counteract the accumulation of body fat.

  5. Langmuir monolayers composed of single and double tail sulfobetaine lipids.

    PubMed

    Hazell, Gavin; Gee, Anthony P; Arnold, Thomas; Edler, Karen J; Lewis, Simon E

    2016-07-15

    Owing to structural similarities between sulfobetaine lipids and phospholipids it should be possible to form stable Langmuir monolayers from long tail sulfobetaines. By modification of the density of lipid tail group (number of carbon chains) it should also be possible to modulate the two-dimensional phase behaviour of these lipids and thereby compare with that of equivalent phospholipids. Potentially this could enable the use of such lipids for the wide array of applications that currently use phospholipids. The benefit of using sulfobetaine lipids is that they can be synthesised by a one-step reaction from cheap and readily available starting materials and will degrade via different pathways than natural lipids. The molecular architecture of the lipid can be easily modified allowing the design of lipids for specific purposes. In addition the reversal of the charge within the sulfobetaine head group relative to the charge orientation in phospholipids may modify behaviour and thereby allow for novel uses of these surfactants. Stable Langmuir monolayers were formed composed of single and double tailed sulfobetaine lipids. Surface pressure-area isotherm, Brewster Angle Microscopy and X-ray and neutron reflectometry measurements were conducted to measure the two-dimensional phase behaviour and out-of-plane structure of the monolayers as a function of molecular area. Sulfobetaine lipids are able to form stable Langmuir monolayers with two dimensional phase behaviour analogous to that seen for the well-studied phospholipids. Changing the number of carbon tail groups on the lipid from one to two promotes the existence of a liquid condensed phase due to increased Van der Waals interactions between the tail groups. Thus the structure of the monolayers appears to be defined by the relative sizes of the head and tail groups in a predictable way. However, the presence of sub-phase ions has little effect on the monolayer structure, behaviour that is surprisingly different to that seen for phospholipids. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Lipid Extraction Techniques for Stable Isotope Analysis and Ecological Assays.

    PubMed

    Elliott, Kyle H; Roth, James D; Crook, Kevin

    2017-01-01

    Lipid extraction is an important component of many ecological and ecotoxicological measurements. For instance, percent lipid is often used as a measure of body condition, under the assumption that those individuals with higher lipid reserves are healthier. Likewise, lipids are depleted in 13 C compared with protein, and it is consequently a routine to remove lipids prior to measuring carbon isotopes in ecological studies so that variation in lipid content does not obscure variation in diet. We provide detailed methods for two different protocols for lipid extraction: Soxhlet apparatus and manual distillation. We also provide methods for polar and nonpolar solvents. Neutral (nonpolar) solvents remove some lipids but few non-lipid compounds, whereas polar solvents remove most lipids but also many non-lipid compounds. We discuss each of the methods and provide guidelines for best practices. We recommend that, for stable isotope analysis, researchers test for a relationship between the change in carbon stable isotope ratio and the amount of lipid extracted to see if the degree of extraction has an impact on isotope ratios. Stable isotope analysis is widely used by ecologists, and we provide a detailed methodology that minimizes known biases.

  7. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acar, Handan; Samaeekia, Ravand; Schnorenberg, Mathew R.

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are twomore » major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.« less

  8. Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion

    PubMed Central

    Ryham, Rolf J.; Klotz, Thomas S.; Yao, Lihan; Cohen, Fredric S.

    2016-01-01

    We use continuum mechanics to calculate an entire least energy pathway of membrane fusion, from stalk formation, to pore creation, and through fusion pore enlargement. The model assumes that each structure in the pathway is axially symmetric. The static continuum stalk structure agrees quantitatively with experimental stalk architecture. Calculations show that in a stalk, the distal monolayer is stretched and the stored stretching energy is significantly less than the tilt energy of an unstretched distal monolayer. The string method is used to determine the energy of the transition barriers that separate intermediate states and the dynamics of two bilayers as they pass through them. Hemifusion requires a small amount of energy independently of lipid composition, while direct transition from a stalk to a fusion pore without a hemifusion intermediate is highly improbable. Hemifusion diaphragm expansion is spontaneous for distal monolayers containing at least two lipid components, given sufficiently negative diaphragm spontaneous curvature. Conversely, diaphragms formed from single-component distal monolayers do not expand without the continual injection of energy. We identify a diaphragm radius, below which central pore expansion is spontaneous. For larger diaphragms, prior studies have shown that pore expansion is not axisymmetric, and here our calculations supply an upper bound for the energy of the barrier against pore formation. The major energy-requiring deformations in the steps of fusion are: widening of a hydrophobic fissure in bilayers for stalk formation, splay within the expanding hemifusion diaphragm, and fissure widening initiating pore formation in a hemifusion diaphragm. PMID:26958888

  9. Molecular Characterization of Lipopolysaccharide Binding to Human α-1-Acid Glycoprotein

    PubMed Central

    Huang, Johnny X.; Azad, Mohammad A. K.; Yuriev, Elizabeth; Baker, Mark A.; Nation, Roger L.; Li, Jian; Cooper, Matthew A.; Velkov, Tony

    2012-01-01

    The ability of AGP to bind circulating lipopolysaccharide (LPS) in plasma is believed to help reduce the proinflammatory effect of bacterial lipid A molecules. Here, for the first time we have characterized human AGP binding characteristics of the LPS from a number of pathogenic Gram-negative bacteria: Escherichia coli, Salmonella typhimurium, Klebsiella pneumonia, Pseudomonas aeruginosa, and Serratia marcescens. The binding affinity and structure activity relationships (SAR) of the AGP-LPS interactions were characterized by surface plasma resonance (SPR). In order to dissect the contribution of the lipid A, core oligosaccharide and O-antigen polysaccharide components of LPS, the AGP binding affinity of LPS from smooth strains, were compared to lipid A, Kdo2-lipid A, Ra, Rd, and Re rough LPS mutants. The SAR analysis enabled by the binding data suggested that, in addition to the important role played by the lipid A and core components of LPS, it is predominately the unique species- and strain-specific carbohydrate structure of the O-antigen polysaccharide that largely determines the binding affinity for AGP. Together, these data are consistent with the role of AGP in the binding and transport of LPS in plasma during acute-phase inflammatory responses to invading Gram-negative bacteria. PMID:23316371

  10. Factor analysis of metabolic syndrome components and predicting type 2 diabetes: Results of 10-year follow-up in a Middle Eastern population.

    PubMed

    Ayubi, Erfan; Khalili, Davood; Delpisheh, Ali; Hadaegh, Farzad; Azizi, Fereidoun

    2015-11-01

    The relationship among components of metabolic syndrome (MetS) and their association with diabetes is unclear in West Asia. The aim of the present study was to conduct factor analysis of MetS components and the effect these factors have on the incidence of type 2 diabetes (T2D) in a population-based cohort study of the Tehran Lipid and Glucose Study (TLGS). The present study enrolled 1861 men and 2706 women (20-60 years of age), from Tehran (Iran) who were free of diabetes at baseline and followed them for 10 years. A principal component analysis was performed to extract standardized factors from MetS components. Logistic regression was used to detect associations between the extracted factors and the incidence of diabetes. A propensity score was used to correct differential selection bias resulting from loss to follow-up. Factor analysis identified three factors (blood pressure, lipids and glycemia). Waist circumference was shared in three all factors. Blood pressure, lipids and glycemia were related to the incidence of diabetes with odds ratios (95% confidence intervals) of 2.23 (1.31-3.78), 1.89 (1.27-3.67), and 7.54 (4.09-13.91), respectively, in men and 2.13 (1.34-3.40), 2.06 (1.35-3.15), and 13.91 (7.29-26.51), respectively, in women for the third versus the first tertile of these standardized factors. Central adiposity may have a pivotal role in MetS linking other risk factors together. Glycemia had a high impact on the incidence of diabetes, whereas blood pressure and lipid had a similar moderate effect on the incidence of diabetes. © 2014 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  11. Calcium Ions as “Miscibility Switch”: Colocalization of Surfactant Protein B with Anionic Lipids under Absolute Calcium Free Conditions

    PubMed Central

    Saleem, Mohammed; Meyer, Michaela C.; Breitenstein, Daniel; Galla, Hans-Joachim

    2009-01-01

    Abstract One of the main determinants of lung surfactant function is the complex interplay between its protein and lipid components. The lipid specificity of surfactant protein B (SP-B), however, and the protein's ability to selectively squeeze out lipids, has remained contradictory. In this work we present, for the first time to our knowledge, by means of time-of-flight secondary ion mass spectrometry chemical imaging, a direct evidence for colocalization of SP-B as well as its model peptide KL4 with negatively charged dipalmitoylphosphatidylglycerol under absolute calcium free conditions. Our results prove that protein/lipid localization depends on the miscibility of all surfactant components, which itself is influenced by subphase ionic conditions. In contrast to our earlier studies reporting SP-B/KL4 colocalization with zwitterionic dipalmitoylphosphatidylcholine, in the presence of even the smallest traces of calcium, we finally evidence an apparent reversal of protein/lipid mixing behavior upon calcium removal with ethylene diamine tetraacetic acid. In addition, scanning force microscopy measurements reveal that by depleting the subphase from calcium ions the protrusion formation ability of SP-B or KL4 is not hampered. However, in the case of KL4, distinct differences in protrusion morphology and height are visible. Our results support the idea that calcium ions act as a “miscibility switch” in surfactant model systems and probably are one of the major factors steering lipid/protein mixing behavior as well as influencing the protein's protrusion formation ability. PMID:19619464

  12. Phospholipid component volumes: determination and application to bilayer structure calculations.

    PubMed

    Armen, R S; Uitto, O D; Feller, S E

    1998-08-01

    We present a new method for the determination of bilayer structure based on a combination of computational studies and laboratory experiments. From molecular dynamics simulations, the volumes of submolecular fragments of saturated and unsaturated phosphatidylcholines in the liquid crystalline state have been extracted with a precision not available experimentally. Constancy of component volumes, both among different lipids and as a function of membrane position for a given lipid, have been examined. The component volumes were then incorporated into the liquid crystallographic method described by Wiener and White (1992. Biophys. J. 61:434-447, and references therein) for determining the structure of a fluid-phase dioleoylphosphatidylcholine bilayer from x-ray and neutron diffraction experiments.

  13. Phospholipid component volumes: determination and application to bilayer structure calculations.

    PubMed Central

    Armen, R S; Uitto, O D; Feller, S E

    1998-01-01

    We present a new method for the determination of bilayer structure based on a combination of computational studies and laboratory experiments. From molecular dynamics simulations, the volumes of submolecular fragments of saturated and unsaturated phosphatidylcholines in the liquid crystalline state have been extracted with a precision not available experimentally. Constancy of component volumes, both among different lipids and as a function of membrane position for a given lipid, have been examined. The component volumes were then incorporated into the liquid crystallographic method described by Wiener and White (1992. Biophys. J. 61:434-447, and references therein) for determining the structure of a fluid-phase dioleoylphosphatidylcholine bilayer from x-ray and neutron diffraction experiments. PMID:9675175

  14. Lipids from the nacreous and prismatic layers of two Pteriomorpha Mollusc shells

    NASA Astrophysics Data System (ADS)

    Farre, B.; Dauphin, Y.

    2009-04-01

    Mollusc shells are the best-known Ca-carbonate biominerals. They are commonly described as a mineralized two layered structure: an outer layer composed of calcite prismatic units, and an internal layer composed of tablets of aragonite: the nacreous layer. An external organic layer (periostracum) is present in most taxa. However, the most common structure in the Mollusc shell is the aragonite crossed lamellar layer, but aragonite prisms, calcite foliated layers and homogeneous layers have been also described by Boggild (1930) in all the Mollusc orders. Since, more detailed descriptions of Bivalve shells have been done (Taylor et al., 1969, 1973). Despite the nacroprismatic arrangement is rare, calcite prismatic and aragonite nacreous layers are the best studied because of their simple 3D structure and large units. Among these Molluscs, some Bivalve species composed of these two layers are of commercial interest, such as the pearl oyster, Pinctada margaritifera, cultivated in French Polynesia to produce black pearls. It is well established that Mollusc shells are composite structures of organic and inorganic components (Hatchett, 1799; Grégoire et al., 1955; Beedham, 1958; Simkiss, 1965; Mutvei, 1969; Cuif et al., 1980; Berman et al., 1993; Kobayashi and Samata, 2006). Numerous studies are concerned with the organic matrix of the shell. Organic components are commonly obtained after a strong or mild decalcification process. They are said to consist of both a soluble and insoluble fraction. The main part of studies is dedicated to the soluble components, and among them, proteins (Grégoire et al., 1955; Grégoire, 1961; Krampitz et al., 1976; Samata et al., 1980, 2004; Weiner, 1983; Miyamoto et al., 2006). Despite the pioneering work of Wada (1980) sugars are usually neglected despite their role in biomineralization. The third component of the organic matrix of calcareous biominerals is lipids. To date, there is a paucity of information concerning the presence, abundance and composition of these components in Mollusc shells. Goulletquer and Wolowicz (1989) have estimated that proteins represent 90% of the organic matrix of the shell, carbohydrates vary from 0.15 to 0.29%, while lipids vary from 0.8 to 2.9%. Fatty acids, cholesterol, phytadienes and ketones have been described in modern and fossil shells (Cobabe and Pratt, 1995). Using a procedure to extract intra- and intercrystalline organic matrices, Collins et al. (1995) have detected n-alkanes, n-alcohols, fatty acids and sterols in modern shells. It is suggested that the contents and ratios of these components are dependant on the environment and phylogeny. Lipids of the nacreous layer of Pinctada are diverse, with cholesterol, fatty acids, triglycerides and other unknown components (Rousseau et al., 2006). It has been established that the main part of the soluble organic matrices of the nacreous layer is composed of acidic proteins (Samata, 1988, 1990), whereas the prismatic layer of Pinna is mainly composed of acidic and sulphated polysaccharides (Dauphin, 2002; Dauphin et al., 2003). The amino acid compositions of the two layers are also different (Samata, 1990). Because the organic matrices extracted from the aragonite nacre and calcite prisms are the best known materials, the lipids extracted from the calcite prisms of Pinna nobilis and Pinctada margaritifera and the aragonite nacre of P. margaritifera have been chosen as test material for characterisation of the lipid fraction of molusk shells. The nacreous layer of Pinctada is thick,whereas its prismatic layer is thin, and the prisms display complex structures. On the opposite, the calcitic prismatic layer of Pinna is thick, with no intraprismatic membranes, and its nacreous layer is thin and present only in the oldest part of the shell. Moreover, these layers have a simple geometry so that some organic components (membranes, wall…) said to be insoluble, are clearly visible. Lipids were extracted from the calcite prismatic and aragonite nacreous layer of two mollusc shells thanks organic solvents. Two methods were used for the characterisation of the lipid obtaiened Fourier Tranform Infrared Spectrometry and thin layed chromatography. Fourier Transform Infrared Spectrometry shows that lipids are present in both samples, but they are not similar. Thin layer chromatography confirms that lipids are different in the two studied layers, so that it may be suggested they are species-dependant, but also structure-dependant. Although not yet deciphered, their role in biomineralization and fossilisation processes is probably important.

  15. Metabolite mapping by consecutive nanostructure and silver-assisted mass spectrometry imaging on tissue sections.

    PubMed

    Gustafsson, O J R; Guinan, T M; Rudd, D; Kobus, H; Benkendorff, K; Voelcker, N H

    2017-06-30

    Nanostructure-based mass spectrometry imaging (MSI) is a promising technology for molecular imaging of small molecules, without the complex chemical background typically encountered in matrix-assisted molecular imaging approaches. Here, we have enhanced these surfaces with silver (Ag) to provide a second tier of MSI data from a single sample. MSI data was acquired through the application of laser desorption/ionization mass spectrometry to biological samples imprinted onto desorption/ionization on silicon (DIOS) substrates. Following initial analysis, ultra-thin Ag layers were overlaid onto the followed by MSI analysis (Ag-DIOS MSI). This approach was first demonstrated for fingermark small molecules including environmental contaminants and sebum components. Subsequently, this bimodal method was translated to lipids and metabolites in fore-stomach sections from a 6-bromoisatin chemopreventative murine mouse model. DIOS MSI allowed mapping of common ions in fingermarks as well as 6-bromoisatin metabolites and lipids in murine fore-stomach. Furthermore, DIOS MSI was complemented by the Ag-DIOS MSI of Ag-adductable lipids such as wax esters in fingermarks and cholesterol in murine fore-stomach. Gastrointestinal acid condensation products of 6-bromoisatin, such as the 6,6'-dibromoindirubin mapped herein, are very challenging to isolate and characterize. By re-analyzing the same tissue imprints, this metabolite was readily detected by DIOS, placed in a tissue-specific spatial context, and subsequently overlaid with additional lipid distributions acquired using Ag-DIOS MSI. The ability to place metabolite and lipid classes in a tissue-specific context makes this novel method suited to MSI analyses where the collection of additional information from the same sample maximises resource use, and also maximises the number of annotated small molecules, in particular for metabolites that are typically undetectable with traditional platforms. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Enriched dairy fat matrix diet prevents early life lipopolysaccharide-induced spatial memory impairment at adulthood.

    PubMed

    Dinel, A L; Rey, C; Baudry, C; Fressange-Mazda, C; Le Ruyet, P; Nadjar, A; Pallet, P; Joffre, C; Layé, S

    2016-10-01

    Polyunsaturated fatty acids (PUFAs) are essential fatty acids, which are critical for brain development and later life cognitive functions. The main brain PUFAs are docosahexaenoic acid (DHA) for the n-3 family and arachidonic acid (ARA) for the n-6 family, which are provided to the post-natal brain by breast milk or infant formula. Recently, the use of dairy lipids (DL) in replacement of vegetable lipids (VL) was revealed to potently promote the accretion of DHA in the developing brain. Brain DHA, in addition to be a key component of brain development, display potent anti-inflammatory activities, which protect the brain from adverse inflammatory events. In this work, we evaluated the protective effect of partial replacement of VL by DL, supplemented or not with DHA and ARA, on post-natal inflammation and its consequence on memory. Mice were fed with diets poor in vegetal n-3 PUFA (Def VL), balanced in vegetal n-3/n-6 PUFA (Bal VL), balanced in dairy lipids (Bal DL) or enriched in DHA and ARA (Supp VL; Supp DL) from the first day of gestation until adulthood. At post-natal day 14 (PND14), pups received a single administration of the endotoxin lipopolysaccharide (LPS) and brain cytokine expression, microglia phenotype and neurogenesis were measured. In a second set of experiments, memory and neurogenesis were measured at adulthood. Overall, our data showed that lipid quality of the diet modulates early life LPS effect on microglia phenotype, brain cytokine expression and neurogenesis at PND14 and memory at adulthood. In particular, Bal DL diet protects from the adverse effect of early life LPS exposure on PND14 neurogenesis and adult spatial memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Sequence Analysis of APOA5 Among the Kuwaiti Population Identifies Association of rs2072560, rs2266788, and rs662799 With TG and VLDL Levels

    PubMed Central

    Jasim, Anfal A.; Al-Bustan, Suzanne A.; Al-Kandari, Wafa; Al-Serri, Ahmad; AlAskar, Huda

    2018-01-01

    Common variants of Apolipoprotein A5 (APOA5) have been associated with lipid levels yet very few studies have reported full sequence data from various ethnic groups. The purpose of this study was to analyse the full APOA5 gene sequence to identify variants in 100 healthy Kuwaitis of Arab ethnicities and assess their association with variation in lipid levels in a cohort of 733 samples. Sanger method was used in the direct sequencing of the full 3.7 Kb APOA5 and multiple sequence alignment was used to identify variants. The complete APOA5 sequence in Kuwaiti Arabs has been deposited in GenBank (KJ401315). A total of 20 reported single nucleotide polymorphisms (SNPs) were identified. Two novel SNPs were also identified: a synonymous 2197G>A polymorphism at genomic position 116661525 and a 3′ UTR 3222 C>T polymorphism at genomic position 116660500 based on human genome assembly GRCh37/hg:19. Five SNPs along with the two novel SNPs were selected for validation in the cohort. Association of those SNPs with lipid levels was tested and minor alleles of three SNPs (rs2072560, rs2266788, and rs662799) were found significantly associated with TG and VLDL levels. This is the first study to report the full APOA5 sequence and SNPs in an Arab ethnic group. Analysis of the variants identified and comparison to other populations suggests a distinctive genetic component in Arabs. The positive association observed for rs2072560 and rs2266788 with TG and VLDL levels confirms their role in lipid metabolism. PMID:29686695

  18. Sequence Analysis of APOA5 Among the Kuwaiti Population Identifies Association of rs2072560, rs2266788, and rs662799 With TG and VLDL Levels.

    PubMed

    Jasim, Anfal A; Al-Bustan, Suzanne A; Al-Kandari, Wafa; Al-Serri, Ahmad; AlAskar, Huda

    2018-01-01

    Common variants of Apolipoprotein A5 ( APOA 5) have been associated with lipid levels yet very few studies have reported full sequence data from various ethnic groups. The purpose of this study was to analyse the full APOA5 gene sequence to identify variants in 100 healthy Kuwaitis of Arab ethnicities and assess their association with variation in lipid levels in a cohort of 733 samples. Sanger method was used in the direct sequencing of the full 3.7 Kb APOA5 and multiple sequence alignment was used to identify variants. The complete APOA5 sequence in Kuwaiti Arabs has been deposited in GenBank (KJ401315). A total of 20 reported single nucleotide polymorphisms (SNPs) were identified. Two novel SNPs were also identified: a synonymous 2197G>A polymorphism at genomic position 116661525 and a 3' UTR 3222 C>T polymorphism at genomic position 116660500 based on human genome assembly GRCh37/hg:19. Five SNPs along with the two novel SNPs were selected for validation in the cohort. Association of those SNPs with lipid levels was tested and minor alleles of three SNPs (rs2072560, rs2266788, and rs662799) were found significantly associated with TG and VLDL levels. This is the first study to report the full APOA5 sequence and SNPs in an Arab ethnic group. Analysis of the variants identified and comparison to other populations suggests a distinctive genetic component in Arabs. The positive association observed for rs2072560 and rs2266788 with TG and VLDL levels confirms their role in lipid metabolism.

  19. Shaping the Flavivirus Replication Complex: It's Curvaceous!

    PubMed

    Aktepe, Turgut E; Mackenzie, Jason M

    2018-06-22

    Flavivirus replication is intimately involved with remodelled membrane organelles that are compartmentalised for different functions during their life cycle. Recent advances in lipid analyses and gene depletion have identified a number of host components that enable efficient virus replication in infected cells. Here we describe the current understanding on the role and contribution of host lipids and membrane bending proteins to flavivirus replication, with a particular focus on the components that bend and shape the membrane bilayer to induce the flavivirus-induced organelles characteristic of infection. This article is protected by copyright. All rights reserved.

  20. Engineering lipid structure for recognition of the liquid ordered membrane phase

    DOE PAGES

    Bordovsky, Stefan S.; Wong, Christopher S.; Bachand, George D.; ...

    2016-08-26

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Furthermore, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L o) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, wemore » found that although the lipid tails can direct selective partitioning to the L o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L d). The PEG spacer can serve as a buffer to mute headgroup–membrane interactions and thus improve L o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L o phase.« less

  1. Engineering Lipid Structure for Recognition of the Liquid Ordered Membrane Phase.

    PubMed

    Bordovsky, Stefan S; Wong, Christopher S; Bachand, George D; Stachowiak, Jeanne C; Sasaki, Darryl Y

    2016-11-29

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Here, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L o ) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, we found that although the lipid tails can direct selective partitioning to the L o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L d ). The PEG spacer can serve as a buffer to mute headgroup-membrane interactions and thus improve L o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L o phase.

  2. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    PubMed Central

    Quon, Evan; Beh, Christopher T.

    2015-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer. In yeast, cortical ER is stapled to the PM through membrane-tethering proteins, which establish a direct connection between the membranes. In this review, we consider passive and facilitated models for lipid transfer at PM–ER contact sites. Besides the tethering proteins, we examine the roles of an additional repertoire of lipid and protein regulators that prime and propagate PM–ER membrane association. We conclude that instead of being simple mediators of membrane association, regulatory components of membrane contact sites have complex and multilayered functions. PMID:26949334

  3. Lipids and lipid binding proteins: a perfect match.

    PubMed

    Glatz, Jan F C

    2015-02-01

    Lipids serve a great variety of functions, ranging from structural components of biological membranes to signaling molecules affecting various cellular functions. Several of these functions are related to the unique physico-chemical properties shared by all lipid species, i.e., their hydrophobicity. The latter, however, is accompanied by a poor solubility in an aqueous environment and thus a severe limitation in the transport of lipids in aqueous compartments such as blood plasma and the cellular soluble cytoplasm. Specific proteins which can reversibly and non-covalently associate with lipids, designated as lipid binding proteins or lipid chaperones, greatly enhance the aqueous solubility of lipids and facilitate their transport between tissues and within tissue cells. Importantly, transport of lipids across biological membranes also is facilitated by specific (membrane-associated) lipid binding proteins. Together, these lipid binding proteins determine the bio-availability of their ligands, and thereby markedly influence the subsequent processing, utilization, or signaling effect of lipids. The bio-availability of specific lipid species thus is governed by the presence of specific lipid binding proteins, the affinity of these proteins for distinct lipid species, and the presence of competing ligands (including pharmaceutical compounds). Recent studies suggest that post-translational modifications of lipid binding proteins may have great impact on lipid-protein interactions. As a result, several levels of regulation exist that together determine the bio-availability of lipid species. This short review discusses the significance of lipid binding proteins and their potential application as targets for therapeutic intervention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Expanding roles for lipid droplets

    PubMed Central

    Welte, Michael A.

    2015-01-01

    Summary Lipid droplets are the intracellular sites for neutral lipid storage. They are critical for lipid metabolism and energy homeostasis, and their dysfunction has been linked to many diseases. Accumulating evidence suggests that the roles lipid droplets play in biology are significantly broader than previously anticipated. Lipid droplets are the source of molecules important in the nucleus: they can sequester transcription factors and chromatin components and generate the lipid ligands for certain nuclear receptors. Lipid droplets have also emerged as important nodes for fatty acid trafficking, both inside the cell and between cells. In immunity, new roles for droplets, not directly linked to lipid metabolism, have been uncovered, as assembly platforms for specific viruses and as reservoirs for proteins that fight intracellular pathogens. Until recently, knowledge about droplets in the nervous system has been minimal, but now there are multiple links between lipid droplets and neurodegeneration: Many candidate genes for Hereditary Spastic Paraplegia also have central roles in lipid-droplet formation and maintenance, and mitochondrial dysfunction in neurons can lead to transient accumulating of lipid droplets in neighboring glial cells, an event that may, in turn, contribute to neuronal damage. As the cell biology and biochemistry of lipid droplets are increasingly well understood, the next few years should yield many new mechanistic insights into these novel functions of lipid droplets. PMID:26035793

  5. Survey of ecotoxicologically-relevant reproductive endpoint coverage within the ECOTOX database across ToxCast ER agonists (SETAC)

    EPA Science Inventory

    Adipose tissue represents an important and understudied component of the endocrine system. Recent evidence suggests that endocrine-disrupting chemicals (EDCs) may be able to alter lipid development (e.g., adipogenesis) and/or the balance of lipid metabolism. The environmentally a...

  6. Analysis and Design of a Photonic Biosensor for Mild Traumatic Brain Injury

    DTIC Science & Technology

    2013-03-01

    well developed. The basic process involves hydration of dry lipid, cholesterol, protein, or other component of the lipid membrane onto a vessel...surface from organic solvent (e.g., chloroform), thereby producing a thin film of dry lipid. This material is then hydrated to solution typically in an...such as by reaction with a polystyrene plate . A nucleic acid molecule may be aminated to promote binding to a polystyrene section of a housing via the

  7. Human breast milk: A review on its composition and bioactivity.

    PubMed

    Andreas, Nicholas J; Kampmann, Beate; Mehring Le-Doare, Kirsty

    2015-11-01

    Breast milk is the perfect nutrition for infants, a result of millions of years of evolution, finely attuning it to the requirements of the infant. Breast milk contains many complex proteins, lipids and carbohydrates, the concentrations of which alter dramatically over a single feed, as well as over lactation, to reflect the infant's needs. In addition to providing a source of nutrition for infants, breast milk contains a myriad of biologically active components. These molecules possess diverse roles, both guiding the development of the infants immune system and intestinal microbiota. Orchestrating the development of the microbiota are the human milk oligosaccharides, the synthesis of which are determined by the maternal genotype. In this review, we discuss the composition of breast milk and the factors that affect it during the course of breast feeding. Understanding the components of breast milk and their functions will allow for the improvement of clinical practices, infant feeding and our understanding of immune responses to infection and vaccination in infants. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components.

    PubMed

    Rhoades, Elizabeth R; Geisel, Rachel E; Butcher, Barbara A; McDonough, Sean; Russell, David G

    2005-05-01

    The chronic inflammatory response to Mycobacterium generates complex granulomatous lesions that balance containment with destruction of infected tissues. To study the contributing factors from host and pathogen, we developed a model wherein defined mycobacterial components and leukocytes are delivered in a gel, eliciting a localized response that can be retrieved and analysed. We validated the model by comparing responses to the cell wall lipids from Mycobacterium bovis bacillus Calmette-Guerin (BCG) to reported activities in other models. BCG lipid-coated beads and bone marrow-derived macrophages (input macrophages) were injected intraperitoneally into BALB/c mice. Input macrophages and recruited peritoneal exudate cells took up fluorescently tagged BCG lipids, and matrix-associated macrophages and neutrophils produced tumor necrosis factor, interleukin-1alpha, and interleukin-6. Leukocyte numbers and cytokine levels were greater in BCG lipid-bearing matrices than matrices containing non-coated or phosphatidylglycerol-coated beads. Leukocytes arrived in successive waves of neutrophils, macrophages and eosinophils, followed by NK and T cells (CD4(+), CD8(+), or gammadelta) at 7 days and B cells within 12 days. BCG lipids also predisposed matrices for adherence and vascularization, enhancing cellular recruitment. We submit that the matrix model presents pertinent features of the murine granulomatous response that will prove to be an adaptable method for study of this complex response.

  9. Skin lipids of the striped plateau lizard (Sceloporus virgatus) correlate with female receptivity and reproductive quality alongside visual ornaments.

    PubMed

    Goldberg, Jay K; Wallace, Alisa K; Weiss, Stacey L

    2017-09-14

    Sex pheromones can perform a variety of functions ranging from revealing the location of suitable mates to being honest signals of mate quality, and they are used in the mate selection process by many species of reptile. In this study, we determined whether the skin lipids of female striped plateau lizards (Sceloporus virgatus) can predict the reproductive quality of females, thereby having the potential to serve as pheromones. Using gas chromatography/mass spectrometry, we identified 17 compounds present in skin lipids of female lizards. Using principal component analysis to compare the skin lipid profile of receptive and non-receptive females, we determined that an uncharacterized compound may allow for chemical identification of receptive mates. We also compared extracted principal components to measures of female fitness and reproductive qualities and found that the level of two 18 carbon fatty acids present in a female's skin lipids may indicate her clutch size. Finally, we compared the information content of the skin lipids to that of female-specific color ornaments to assess whether chemical and visual cues transmit different information or not. We found that the chroma of a female's orange throat patch is also related to her clutch size, suggesting that chemical signals may reinforce the information communicated by visual ornamentation in this species which would support the "backup signals" hypothesis for multiple signals.

  10. Interactions between lipids and proteins are critical for organization of plasma membrane-ordered domains in tobacco BY-2 cells.

    PubMed

    Grosjean, Kevin; Der, Christophe; Robert, Franck; Thomas, Dominique; Mongrand, Sébastien; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2018-06-27

    The laterally heterogeneous plant plasma membrane (PM) is organized into finely controlled specialized areas that include membrane-ordered domains. Recently, the spatial distribution of such domains within the PM has been identified as playing a key role in cell responses to environmental challenges. To examine membrane order at a local level, BY-2 tobacco suspension cell PMs were labelled with an environment-sensitive probe (di-4-ANEPPDHQ). Four experimental models were compared to identify mechanisms and cell components involved in short-term (1 h) maintenance of the ordered domain organization in steady-state cell PMs: modulation of the cytoskeleton or the cell wall integrity of tobacco BY-2 cells; and formation of giant vesicles using either a lipid mixture of tobacco BY-2 cell PMs or the original lipid and protein combinations of the tobacco BY-2 cell PM. Whilst inhibiting phosphorylation or disrupting either the cytoskeleton or the cell wall had no observable effects, we found that lipids and proteins significantly modified both the abundance and spatial distribution of ordered domains. This indicates the involvement of intrinsic membrane components in the local physical state of the plant PM. Our findings support a major role for the 'lipid raft' model, defined as the sterol-dependent ordered assemblies of specific lipids and proteins in plant PM organization.

  11. Skin lipids of the striped plateau lizard ( Sceloporus virgatus) correlate with female receptivity and reproductive quality alongside visual ornaments

    NASA Astrophysics Data System (ADS)

    Goldberg, Jay K.; Wallace, Alisa K.; Weiss, Stacey L.

    2017-10-01

    Sex pheromones can perform a variety of functions ranging from revealing the location of suitable mates to being honest signals of mate quality, and they are used in the mate selection process by many species of reptile. In this study, we determined whether the skin lipids of female striped plateau lizards ( Sceloporus virgatus) can predict the reproductive quality of females, thereby having the potential to serve as pheromones. Using gas chromatography/mass spectrometry, we identified 17 compounds present in skin lipids of female lizards. Using principal component analysis to compare the skin lipid profile of receptive and non-receptive females, we determined that an uncharacterized compound may allow for chemical identification of receptive mates. We also compared extracted principal components to measures of female fitness and reproductive qualities and found that the level of two 18 carbon fatty acids present in a female's skin lipids may indicate her clutch size. Finally, we compared the information content of the skin lipids to that of female-specific color ornaments to assess whether chemical and visual cues transmit different information or not. We found that the chroma of a female's orange throat patch is also related to her clutch size, suggesting that chemical signals may reinforce the information communicated by visual ornamentation in this species which would support the "backup signals" hypothesis for multiple signals.

  12. Large-scale dialysis of sample lipids

    USGS Publications Warehouse

    Meadows, Jill; Tillitt, Donald E.; Huckins, James; Schroeder, D.

    1993-01-01

    The use of a semipermeable membrane device (SPMD) for dialysis in an organic solvent phase is an efficient alternative approach to separation of contaminants from large amounts of lipid (up to 50 grams or more) prior to organic chemical analysis. Passive separation of contaminants can be accomplished with a minimum of equipment and a comparatively small volume of solvent. This study examines the effects of factors such as dialytic solvent, lipid type, dialytic solvent:lipid volume ratio, dialysis time, and temperature on the performance of polyethylene SPMDs during lipid-contaminant separations. The experimental conditions for maximal recoveries of organochlorine pesticides and polychlorinated biphenyls with minimal lipid carryover are determined for the examined variables. When the dialytic procedure is optimized, very satisfactory and highly reproducible analyte recoveries can be obtained in a few days while separating > 90% of the lipid material in a single operation.

  13. Intra- and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus.

    PubMed

    Piffanelli, P; Ross, J H; Murphy, D J

    1997-03-01

    Pollen development in angiosperms is regulated by the interaction of products contributed by both the gametophytic (haploid) and sporophytic (diploid) genomes. In entomophilous species, lipids are major products of both sporophytic and gametophytic metabolism during pollen development. Mature pollen grains of Brassica napus are shown to contain three major acyl lipid pools as follows: (i) the extracellular tryphine mainly consisting of medium-chain neutral esters; (ii) the intracellular membranes, particularly endoplasmic reticulum, mainly containing phospholipids; and (iii) the intracellular storage lipids, which are mostly triacylglycerols. This paper reports on the kinetics of accumulation of these lipid classes during pollen maturation and the expression patterns of several lipid biosynthetic genes and their protein products that are differentially regulated in developing microspores/ pollen grains (gametophyte) and tapetal cells (sporophyte) of B. napus. Detailed analysis of three members of the stearoyl-ACP desaturase (sad) gene family by Northern blotting, in situ hybridization and RT-PCR showed that the same individual genes were expressed both in gametophytic and sporophytic tissues, although under different temporal regulation. In the tapetum, maximal expression of two marker genes for lipid biosynthesis (sad and ear) occurred at a bud length of 2-3 mm, and the corresponding gene products SAD and EAR were detected by Western blotting in 3-4 mm buds, coinciding with the maximal rates of tapetal lipid accumulation. These lipids are released following tapetal cell disintegration and are relocated to form the major structural component of the extracellular tryphine layer that coats the mature pollen grain. In contrast, in developing microspores/pollen grains, maximal expression of the lipid marker genes sad, ear, acp and cyb5 was at the 3-5 mm bud stages, with the SAD and EAR gene products detected in 4-7 mm buds. This pattern of expression coincided with accumulation of the intracellular storage and membrane lipid components of pollen. These results suggest that, although the same genes may be expressed in the sporophytic tapetal cells and in gametophytic tissues, they are regulated differentially leading to the production of the various contrasting lipidic structures that are assembled together to give rise to a viable, fertile pollen grain.

  14. The potential role of IDEAL MRI for identification of lipids and hemorrhage in carotid artery plaques.

    PubMed

    Khosa, Faisal; Clough, Rachel E; Wang, Xiaoen; Madhuranthakam, Ananth J; Greenman, Robert L

    2018-06-01

    Hemorrhage and lipid deposits contribute to instability in atherosclerotic plaques. Unstable carotid artery plaques can lead to cerebral ischemic events. While MRI studies have shown the ability to identify plaque components, the identification of hemorrhage and lipids has proven to be problematic. The purpose of this study was to quantitatively evaluate the potential of the MRI fat/water separation method known as iterative decomposition of water and fat with echo asymmetry and least squares estimation (IDEAL) to complement and improve existing methods for the identification of hemorrhage and lipids in carotid artery plaques. Fifteen asymptomatic subjects with 50-79% stenosis of at least one carotid artery were enrolled. Hemorrhage and lipid components within carotid plaques were identified using previously published criteria based on the multiple contrast-weighted (MCW) method (3D Time-of-Flight (3D-TOF), T1-Weighted (T1W) and T2-Weighted (T2W)). The hemorrhage:muscle, lipid:muscle and intra-plaque lipid:hemorrhage signal intensity ratios (SIR) and contrast to noise ratios (CNR) were measured on MCW and compared to IDEAL black-blood images. No differences were found between any of the MCW methods for any of the SIRs measured. The IDEAL Fat images had higher lipid:muscle and lipid/hemorrhage SIRs (p<0.001) compared to IDEAL Water and all MCW image sequence types. The mean values of IDEAL Fat hemorrhage:muscle SIR and CNR were nearly unity (1.1±0.6) and nearly zero (0.1±1.1), respectively. The IDEAL Water imaging was not significantly different than any of the MCW methods for any of the SIRs or for the hemorrhage:muscle CNR of 3D-TOF, while its CNRs were significantly higher than IDEAL Fat lipid:muscle (p<0.05) and lipid:hemorrhage (p<0.001) and all MCW methods (p<0.001). The addition of IDEAL Water and Fat imaging to the MCW method shows potential to improve the identification of hemorrhage and lipid structures in carotid artery plaques. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Racial/ethnic variation in the association of lipid-related genetic variants with blood lipids in the US adult population.

    PubMed

    Chang, Man-huei; Ned, Renée M; Hong, Yuling; Yesupriya, Ajay; Yang, Quanhe; Liu, Tiebin; Janssens, A Cecile J W; Dowling, Nicole F

    2011-10-01

    Genome-wide association studies (GWAS) have identified a number of single-nucleotide polymorphisms (SNPs) associated with serum lipid level in populations of European descent. The individual and the cumulative effect of these SNPs on blood lipids are largely unclear for the US population. Using data from the second phase (1991-1994) of the Third National Health and Nutrition Examination Survey (NHANES III), a nationally representative survey of the US population, we examined associations of 57 GWAS-identified or well-established lipid-related genetic loci with plasma concentrations of high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, total cholesterol, triglycerides, total cholesterol/HDL-C ratio, and non-HDL-C. We used multivariable linear regression to examine single SNP associations and the cumulative effect of multiple SNPs (using a genetic risk score [GRS]) on blood lipid levels. Analyses were conducted in adults from each of the 3 major racial/ethnic groups in the United States: non-Hispanic whites (n=2296), non-Hispanic blacks (n=1699), and Mexican Americans (n=1713). Allele frequencies for all SNPs varied significantly by race/ethnicity, except rs3764261 in CETP. Individual SNPs had very small effects on lipid levels, effects that were generally consistent in direction across racial/ethnic groups. More GWAS-validated SNPs were replicated in non-Hispanic whites (<67%) than in non-Hispanic blacks (<44%) or Mexican Americans (<44%). GRSs were strongly associated with increased lipid levels in each racial/ethnic group. The combination of all SNPs into a weighted GRS explained no more than 11% of the total variance in blood lipid levels. Our findings show that the combined association of SNPs, based on a GRS, was strongly associated with increased blood lipid measures in all major race/ethnic groups in the United States, which may help in identifying subgroups with a high risk for an unfavorable lipid profile.

  16. Silicon supported lipid-DNA thin film structures at varying temperature studied by energy dispersive X-ray diffraction and neutron reflectivity.

    PubMed

    Domenici, F; Castellano, C; Dell'Unto, F; Albinati, A; Congiu, A

    2011-11-01

    Non-viral gene transfection by means of lipid-based nanosystems, such as solid supported lipid assemblies, is often limited due to their lack of stability and the consequent loss of efficiency. Therefore not only a detailed thermo-lyotropic study of these DNA-lipid complexes is necessary to understand their interaction mechanisms, but it can also be considered as a first step in conceiving and developing new transfection biosystems. The aim of our study is a structural characterization of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC)-dimethyl-dioctadecyl-ammonium bromide (DDAB)-DNA complex at varying temperature using the energy dispersive X-ray diffraction (EDXD) and neutron reflectivity (NR) techniques. We have shown the formation of a novel thermo-lyotropic structure of DOPC/DDAB thin film self-organized in multi-lamellar planes on (100)-oriented silicon support by spin coating, thus enlightening its ability to include DNA strands. Our NR measurements indicate that the DOPC/DDAB/DNA complex forms temperature-dependent structures. At 65°C and relative humidity of 100% DNA fragments are buried between single lamellar leaflets constituting the hydrocarbon core of the lipid bilayers. This finding supports the consistency of the hydrophobic interaction model, which implies that the coupling between lipid tails and hypo-hydrated DNA single strands could be the driving force of DNA-lipid complexation. Upon cooling to 25°C, EDXD analysis points out that full-hydrated DOPC-DDAB-DNA can switch in a different metastable complex supposed to be driven by lipid heads-DNA electrostatic interaction. Thermotropic response analysis also clarifies that DOPC has a pivotal role in promoting the formation of our observed thermophylic silicon supported lipids-DNA assembly. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Biophysical mechanism of the protective effect of blue honeysuckle (Lonicera caerulea L. var. kamtschatica Sevast.) polyphenols extracts against lipid peroxidation of erythrocyte and lipid membranes.

    PubMed

    Bonarska-Kujawa, D; Pruchnik, H; Cyboran, S; Żyłka, R; Oszmiański, J; Kleszczyńska, H

    2014-07-01

    The aim of the present research was to determine the effect of blue honeysuckle fruit and leaf extracts components on the physical properties of erythrocyte and lipid membranes and assess their antioxidant properties. The HPLC analysis showed that the extracts are rich in polyphenol anthocyanins in fruits and flavonoids in leaves. The results indicate that both extracts have antioxidant activity and protect the red blood cell membrane against oxidation induced by UVC irradiation and AAPH. The extracts do not induce hemolysis and slightly increase osmotic resistance of erythrocytes. The research showed that extracts components are incorporated mainly in the external part of the erythrocyte membrane, inducing the formation of echinocytes. The values of generalized polarization and fluorescence anisotropy indicate that the extracts polyphenols alter the packing arrangement of the hydrophilic part of the erythrocyte and lipid membranes, without changing the fluidity of the hydrophobic part. The DSC results also show that the extract components do not change the main phase transition temperature of DPPC membrane. Studies of electric parameters of membranes modified by the extracts showed that they slightly stabilize lipid membranes and do not reduce their specific resistance or capacity. Examination of IR spectra indicates small changes in the degree of hydration in the hydrophilic region of liposomes under the action of the extracts. The location of polyphenolic compounds in the hydrophilic part of the membrane seems to constitute a protective shield of the cell against other substances, the reactive forms of oxygen in particular.

  18. Production Strategies and Applications of Microbial Single Cell Oils

    PubMed Central

    Ochsenreither, Katrin; Glück, Claudia; Stressler, Timo; Fischer, Lutz; Syldatk, Christoph

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 class (e.g., α-linolenic acid, linoleic acid) are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a promising source as well. These single cell oils can be used for many valuable chemicals with applications not only for nutrition but also for fuels and are therefore an ideal basis for a bio-based economy. A crucial point for the establishment of microbial lipids utilization is the cost-effective production and purification of fuels or products of higher value. The fermentative production can be realized by submerged (SmF) or solid state fermentation (SSF). The yield and the composition of the obtained microbial lipids depend on the type of fermentation and the particular conditions (e.g., medium, pH-value, temperature, aeration, nitrogen source). From an economical point of view, waste or by-product streams can be used as cheap and renewable carbon and nitrogen sources. In general, downstream processing costs are one of the major obstacles to be solved for full economic efficiency of microbial lipids. For the extraction of lipids from microbial biomass cell disruption is most important, because efficiency of cell disruption directly influences subsequent downstream operations and overall extraction efficiencies. A multitude of cell disruption and lipid extraction methods are available, conventional as well as newly emerging methods, which will be described and discussed in terms of large scale applicability, their potential in a modern biorefinery and their influence on product quality. Furthermore, an overview is given about applications of microbial lipids or derived fatty acids with emphasis on food applications. PMID:27761130

  19. Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus

    NASA Technical Reports Server (NTRS)

    Choi, K. J.; Nakhost, Z.; Barzana, E.; Karel, M.

    1987-01-01

    The lipids of alga Scenedesmus obliquus grown under controlled conditions were separated and fractionated by column and thin-layer chromatography, and fatty acid composition of each lipid component was studied by gas-liquid chromatography (GLC). Total lipids were 11.17%, and neutral lipid, glycolipid and phospholipid fractions were 7.24%, 2.45% and 1.48% on a dry weight basis, respectively. The major neutral lipids were diglycerides, triglycerides, free sterols, hydrocarbons and sterol esters. The glycolipids were: monogalactosyl diglyceride, digalactosyl diglyceride, esterified sterol glycoside, and sterol glycoside. The phospholipids included: phosphatidyl choline, phosphatidyl glycerol and phosphatidyl ethanolamine. Fourteen fatty acids were identified in the four lipid fractions by GLC. The main fatty acids were C18:2, C16:0, C18:3(alpha), C18:1, C16:3, C16:1, and C16:4. Total unsaturated fatty acid and essential fatty acid compositions of the total algal lipids were 80% and 38%, respectively.

  20. The helix bundle: A reversible lipid binding motif

    PubMed Central

    Narayanaswami, Vasanthy; Kiss, Robert S.; Weers, Paul M.M.

    2009-01-01

    Apolipoproteins are the protein components of lipoproteins that have the innate ability to inter convert between a lipid-free and a lipid-bound form in a facile manner, a remarkable property conferred by the helix bundle motif. Composed of a series of four or five amphipathic α-helices that fold to form a helix bundle, this motif allows the en face orientation of the hydrophobic faces of the α-helices in the protein interior in the lipid-free state. A conformational switch then permits helix-helix interactions to be substituted by helix-lipid interactions upon lipid binding interaction. This review compares the apolipoprotein high resolution structures and the factors that trigger this switch in insect apolipophorin III and the mammalian apolipoproteins, apolipoprotein E and apolipoprotein A-I, pointing out the commonalities and key differences in the mode of lipid interaction. Further insights into the lipid bound conformation of apolipoproteins are required to fully understand their functional role under physiological conditions. PMID:19770066

  1. Optimization of lipid profile and hardness of low-fat mortadella following a sequential strategy of experimental design.

    PubMed

    Saldaña, Erick; Siche, Raúl; da Silva Pinto, Jair Sebastião; de Almeida, Marcio Aurélio; Selani, Miriam Mabel; Rios-Mera, Juan; Contreras-Castillo, Carmen J

    2018-02-01

    This study aims to optimize simultaneously the lipid profile and instrumental hardness of low-fat mortadella. For lipid mixture optimization, the overlapping of surface boundaries was used to select the quantities of canola, olive, and fish oils, in order to maximize PUFAs, specifically the long-chain n-3 fatty acids (eicosapentaenoic-EPA, docosahexaenoic acids-DHA) using the minimum content of fish oil. Increased quantities of canola oil were associated with higher PUFA/SFA ratios. The presence of fish oil, even in small amounts, was effective in improving the nutritional quality of the mixture, showing lower n-6/n-3 ratios and significant levels of EPA and DHA. Thus, the optimal lipid mixture comprised of 20, 30 and 50% fish, olive and canola oils, respectively, which present PUFA/SFA (2.28) and n-6/n-3 (2.30) ratios within the recommendations of a healthy diet. Once the lipid mixture was optimized, components of the pre-emulsion used as fat replacer in the mortadella, such as lipid mixture (LM), sodium alginate (SA), and milk protein concentrate (PC), were studied to optimize hardness and springiness to target ranges of 13-16 N and 0.86-0.87, respectively. Results showed that springiness was not significantly affected by these variables. However, as the concentration of the three components increased, hardness decreased. Through the desirability function, the optimal proportions were 30% LM, 0.5% SA, and 0.5% PC. This study showed that the pre-emulsion decreases hardness of mortadella. In addition, response surface methodology was efficient to model lipid mixture and hardness, resulting in a product with improved texture and lipid quality.

  2. Metabolism of defined structured triglyceride particles compared to mixtures of medium and long chain triglycerides intravenously infused in dogs.

    PubMed

    Simoens, Ch; Deckelbaum, R J; Carpentier, Y A

    2004-08-01

    The present study aimed to determine whether including medium-chain fatty acids (MCFA) in specifically designed structured triglycerides (STG) with a MCFA in sn-1 and sn-3 positions and a long-chain (LC) FA in sn-2 position (MLM) would lead to different effects on plasma lipids and FA distribution into plasma and tissue lipids by comparison to a mixture of separate MCT and LCT molecules (MMM/LLL). The fatty acid (FA) composition was comparable in both lipid emulsions. Lipids were infused over 9h daily, in 2 groups of dogs (n = 6 each), for 28 days as a major component (55% of the non-protein energy intake) of total parenteral nutrition (TPN). Blood samples were obtained on specific days, before starting and just before stopping TPN. The concentration of plasma lipids was measured before starting and before stopping TPN on days 1, 2, 3, 4, 5, 8, 10, 12, 16 and 28. Biopsies were obtained from liver, muscle and adipose tissue 15 days before starting, and again on the day following cessation of TPN. In addition, the spleen was removed after the TPN period. FA composition in plasma and tissue lipids was analysed by gas liquid chromatography in different lipid components of plasma and tissues. No differences in either safety or tolerance parameters were detected between both lipid preparations. A lower rise of plasma TG (P < 0.05) was observed during MLM infusion, indicating a faster elimination rate of MLM vs MMM/LLL emulsion. In spite of the differences of TG molecules which would be assumed to affect the site of FA delivery and metabolic fate, FA distribution in phospholipids (PL) of hepatic and extrahepatic tissues did not substantially differ between both emulsions. Copyright 2003 Elsevier Ltd.

  3. Nanoscale Membrane Curvature detected by Polarized Localization Microscopy

    NASA Astrophysics Data System (ADS)

    Kelly, Christopher; Maarouf, Abir; Woodward, Xinxin

    Nanoscale membrane curvature is a necessary component of countless cellular processes. Here we present Polarized Localization Microscopy (PLM), a super-resolution optical imaging technique that enables the detection of nanoscale membrane curvature with order-of-magnitude improvements over comparable optical techniques. PLM combines the advantages of polarized total internal reflection fluorescence microscopy and fluorescence localization microscopy to reveal single-fluorophore locations and orientations without reducing localization precision by point spread function manipulation. PLM resolved nanoscale membrane curvature of a supported lipid bilayer draped over polystyrene nanoparticles on a glass coverslip, thus creating a model membrane with coexisting flat and curved regions and membrane radii of curvature as small as 20 nm. Further, PLM provides single-molecule trajectories and the aggregation of curvature-inducing proteins with super-resolution to reveal the correlated effects of membrane curvature, dynamics, and molecular sorting. For example, cholera toxin subunit B has been observed to induce nanoscale membrane budding and concentrate at the bud neck. PLM reveals a previously hidden and critical information of membrane topology.

  4. A Unified Description of Structural Levels in Biomolecules.

    ERIC Educational Resources Information Center

    Macarulla, Alberto; And Others

    1990-01-01

    A single, didactic criterion for the description of all biological macromolecules is proposed. This criterion is applicable to globular, fibrous or mixed proteins, as well as to nucleic acids and lipids or polysaccharides. Specific examples are given for all except lipids and polysaccarides. (KR)

  5. Effect of low levels of lipid oxidation on the curvature, dynamics, and permeability of lipid bilayers and their interactions with cationic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Hwankyu; Malmstadt, Noah

    2018-04-01

    Lipid bilayers composed of saturated and unsaturated lipids, oxidized lipids, and cholesterol at concentrations of 0–18 mol% oxidized lipid were simulated, showing that the presence of oxidized lipid increases bilayer disorder, curvature, and lateral dynamics at low oxidized-lipid concentrations of 18 mol% or less. The aldehyde terminal of a shortened oxidized-lipid tail tends to interact with water and thus bends toward the bilayer-water interface, in agreement with previous experiments and simulations. In particular, water molecules pass through the oxidized bilayer without pore formation, implying passive permeability. A single nanoparticle, which consists of 300 polystyrene (PS) chains with cationic terminals, added to this bilayer simulation induces negative bilayer curvature and inserts to the bilayer, regardless of the oxidized-lipid concentration. Hydrophobic monomers and cationic terminals of the PS particle interact respectively with lipid tails and headgroups, leading to the wrapping of either lipid monolayer or bilayer along the particle surface. These results indicate that lipid oxidation increases membrane curvature and permeability even at such a low concentration of oxidized lipid, which supports the experimental observations regarding the passive permeability of oxidized bilayer, and also that oxidized lipids of low concentration do not significantly influence the insertion of a cationic PS particle to the bilayer.

  6. Direct Visualization of De novo Lipogenesis in Single Living Cells

    NASA Astrophysics Data System (ADS)

    Li, Junjie; Cheng, Ji-Xin

    2014-10-01

    Increased de novo lipogenesis is being increasingly recognized as a hallmark of cancer. Despite recent advances in fluorescence microscopy, autoradiography and mass spectrometry, direct observation of de novo lipogenesis in living systems remains to be challenging. Here, by coupling stimulated Raman scattering (SRS) microscopy with isotope labeled glucose, we were able to trace the dynamic metabolism of glucose in single living cells with high spatial-temporal resolution. As the first direct visualization, we observed that glucose was largely utilized for lipid synthesis in pancreatic cancer cells, which occurs at a much lower rate in immortalized normal pancreatic epithelial cells. By inhibition of glycolysis and fatty acid synthase (FAS), the key enzyme for fatty acid synthesis, we confirmed the deuterium labeled lipids in cancer cells were from de novo lipid synthesis. Interestingly, we also found that prostate cancer cells exhibit relatively lower level of de novo lipogenesis, but higher fatty acid uptake compared to pancreatic cancer cells. Together, our results demonstrate a valuable tool to study dynamic lipid metabolism in cancer and other disorders.

  7. Molecular organization, localization and orientation of antifungal antibiotic amphotericin B in a single lipid bilayer

    PubMed Central

    Grudzinski, Wojciech; Sagan, Joanna; Welc, Renata; Luchowski, Rafal; Gruszecki, Wieslaw I.

    2016-01-01

    Amphotericin B is a popular antifungal antibiotic, a gold standard in treatment of systemic mycotic infections, due to its high effectiveness. On the other hand, applicability of the drug is limited by its considerable toxicity to patients. Biomembranes are a primary target of physiological activity of amphotericin B and both the pharmacologically desired and toxic side effects of the drug relay on its molecular organization in the lipid phase. In the present work, molecular organization, localization and orientation of amphotericin B, in a single lipid bilayer system, was analysed simultaneously, thanks to application of a confocal fluorescence lifetime imaging microscopy of giant unilamellar vesicles. The results show that the presence of sterols, in the lipid phase, promotes formation of supramolecular structures of amphotericin B and their penetration into the membrane hydrophobic core. The fact that such an effect is substantially less pronounced in the case of cholesterol than ergosterol, the sterol of fungal membranes, provides molecular insight into the selectivity of the drug. PMID:27620838

  8. Potential for utilization of algal biomass for components of the diet in CELSS

    NASA Technical Reports Server (NTRS)

    Kamarei, A. R.; Nakhost, Z.; Karel, M.

    1985-01-01

    Techniques which eliminate or reduce the undesirable cell components of algae and enhance the potential nutritional and organoleptic acceptability of algae products are studied. The cell walls, nucleic acids, and pigments and lipids of the green algae Scenedesmus obiliquus need to be removed. The procedures for determining the composition of proteins, pigments and lipids, and moisture and ash are described. Chemical, enzymatic, and physical methods of removing the cell wall to make the algae digestable are analyzed; a homogenization technique is utilized. The problems encountered if algae nucleic acids are ingested directly are discussed; the reduction of DNA and RNA by applying extracellular DNase and RNase to the nucleic acids is examined. The color and flavor of the algae are enhanced with the extraction of pigments and lipids from the algae protein concentration.

  9. Non-staining visualization of embryogenesis and energy metabolism in medaka fish eggs using near-infrared spectroscopy and imaging.

    PubMed

    Puangchit, Paralee; Ishigaki, Mika; Yasui, Yui; Kajita, Misato; Ritthiruangdej, Pitiporn; Ozaki, Yukihiro

    2017-12-04

    The energy metabolism and embryogenesis of fertilized Japanese medaka eggs were investigated in vivo at the molecular level using near-infrared (NIR) spectroscopy and imaging. Changes in chemical components, such as proteins and lipids, in yolk sphere and embryonic body were studied over the course of embryonic development. Metabolic changes that represent variations in the concentrations and molecular compositions of proteins and lipids in the yolk part, particularly on the 1 st day after fertilization and the day just before hatching, were successfully identified in the 4900-4000 cm -1 wavenumber region. The yolk components were shown to have specific functions at the very early and final stages of the embryonic development. Proteins with α-helix- or β-sheet-rich structures clearly showed the different variation patterns within the developing egg. Furthermore, the distribution of lipids could be selectively visualized using data from the higher wavenumber region. Detailed embryonic structures were clearly depicted in the NIR images using the data from the 6400-5500 cm -1 region in which the embryo parts had some characteristic peaks due to unsaturated fatty acids. It was made clear that yolk and embryo parts had different components especially lipid components. The present study provides new insights into material variations in the fertilized egg during its growth. NIR imaging proved to be valuable in investigating the embryogenesis in vivo at the molecular level in terms of changes in biomolecular concentrations and compositions, metabolic differentiation, and detailed information about embryonic structures without the need for staining.

  10. Membrane Structure: Spin Labeling and Freeze Etching of Mycoplasma laidlawii*

    PubMed Central

    Tourtellotte, Mark E.; Branton, Daniel; Keith, Alec

    1970-01-01

    A spin-labeled fatty acid was incorporated in vivo into the polar lipids of Mycoplasma laidlawii membranes. The electron paramagnetic resonance signal from either intact cells or their extracted lipids reflected the fatty acid composition of the Mycoplasma membranes. Comparison of signals from intact cells, gramicidin-treated cells, heat-treated cells, and extracted lipids indicates that a major portion of the membrane lipids is in a semiviscous hydrocarbon environment. The results also show that the spin label in the intact membrane is slightly but significantly less mobile than it is in protein-free lipid extracts made from these membranes. Correlated electron microscope examinations using the freeze-etch technique reveal particulate components in the hydrophobic region of the membrane. The mobility of the lipids in the intact cell membrane may be influenced by their association with these particles. Images PMID:4316683

  11. Contribution of 20 single nucleotide polymorphisms of 13 genes to dyslipidemia associated with antiretroviral therapy.

    PubMed

    Arnedo, Mireia; Taffé, Patrick; Sahli, Roland; Furrer, Hansjakob; Hirschel, Bernard; Elzi, Luigia; Weber, Rainer; Vernazza, Pietro; Bernasconi, Enos; Darioli, Roger; Bergmann, Sven; Beckmann, Jacques S; Telenti, Amalio; Tarr, Philip E

    2007-09-01

    HIV-1 infected individuals have an increased cardiovascular risk which is partially mediated by dyslipidemia. Single nucleotide polymorphisms in multiple genes involved in lipid transport and metabolism are presumed to modulate the risk of dyslipidemia in response to antiretroviral therapy. The contribution to dyslipidemia of 20 selected single nucleotide polymorphisms of 13 genes reported in the literature to be associated with plasma lipid levels (ABCA1, ADRB2, APOA5, APOC3, APOE, CETP, LIPC, LIPG, LPL, MDR1, MTP, SCARB1, and TNF) was assessed by longitudinally modeling more than 4400 plasma lipid determinations in 438 antiretroviral therapy-treated participants during a median period of 4.8 years. An exploratory genetic score was tested that takes into account the cumulative contribution of multiple gene variants to plasma lipids. Variants of ABCA1, APOA5, APOC3, APOE, and CETP contributed to plasma triglyceride levels, particularly in the setting of ritonavir-containing antiretroviral therapy. Variants of APOA5 and CETP contributed to high-density lipoprotein-cholesterol levels. Variants of CETP and LIPG contributed to non-high-density lipoprotein-cholesterol levels, a finding not reported previously. Sustained hypertriglyceridemia and low high-density lipoprotein-cholesterol during the study period was significantly associated with the genetic score. Single nucleotide polymorphisms of ABCA1, APOA5, APOC3, APOE, and CETP contribute to plasma triglyceride and high-density lipoprotein-cholesterol levels during antiretroviral therapy exposure. Genetic profiling may contribute to the identification of patients at risk for antiretroviral therapy-related dyslipidemia.

  12. Herbal composition Gambigyeongsinhwan (4) from Curcuma longa, Alnus japonica, and Massa Medicata Fermentata inhibits lipid accumulation in 3T3-L1 cells and regulates obesity in Otsuka Long-Evans Tokushima Fatty rats.

    PubMed

    Roh, Jong Sung; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Park, Sun Dong; Shin, Soon Shik; Yoon, Michung

    2015-08-02

    Adipocyte lipid accumulation due to impaired fatty acid oxidation causes adipocyte hypertrophy and adipose tissue increment, leading to obesity. The aim of this study was to determine the antiobesity effects of the herbal composition Gambigyeongsinhwan (4) (GGH(4)) composed of Curcuma longa L. (Zingiberaceae), Alnus japonica (Thunb.) Steud. (Betulaceae), and the fermented traditional Korean medicine Massa Medicata Fermentata. The effects of GGH(4) and the individual components on lipid accumulation in 3T3-L1 adipocytes and body weight gain in Otsuka Long-Evans Tokushima Fatty (OLETF) rats were examined using Oil red O staining, hematoxylin and eosin staining, quantitative real-time PCR, and peroxisome proliferator-activated receptor α (PPARα) transactivation assay. GGH(4), individual components, and an active principle of Curcuma longa curcumin inhibited lipid accumulation and mRNA levels of adipocyte-specific genes (PPARγ, aP2, and C/EBPα) in 3T3-L1 adipocytes compared with control cells. Treatment with GGH(4), the individual components or curcmumin increased mRNA levels of mitochondrial (CPT-1, MCAD, and VLCAD) and peroxisomal (ACOX and thiolase) PPARα target genes. GGH(4) and the individual components also increased PPARα reporter gene expression compared with control cells. These effects were most prominent in GGH(4)-treated cells. However, the PPARα antagonist GW6471 reversed the inhibitory effects of GGH(4) on adipogenesis. An in vivo study showed that GGH(4) decreased body weight gain, adipose tissue mass, and visceral adipocyte size with increasing mRNA levels of adipose tissue PPARα target genes in OLETF rats. These results demonstrate that GGH(4) has an antiobesity effects through the inhibition of adipocyte lipid accumulation, and this process may be mediated in part through adipose PPARα activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Rhodopsin-lipid interactions studied by NMR.

    PubMed

    Soubias, Olivier; Gawrisch, Klaus

    2013-01-01

    The biophysical properties of the lipid matrix are known to influence function of integral membrane proteins. We report on a sample preparation method for reconstitution of membrane proteins which uses porous anodic aluminum oxide (AAO) filters with 200-nm-wide pores of high density. The substrate permits formation of tubular, single membranes that line the inner surface of pores. One square centimeter of filter with a thickness of 60μm yields on the order of 500cm(2) of solid-supported single bilayer surface, sufficient for NMR studies. The tubular bilayers are free of detergent, fully hydrated, and accessible for ligands from one side of the membrane. The use of AAO filters greatly improves reproducibility of the reconstitution process such that the influence of protein on lipid order parameters can be studied with high resolution. As an example, results for the G protein-coupled receptor of class A, bovine rhodopsin, are shown. By (2)H NMR order parameter measurements, it is detected that rhodopsin insertion elastically deforms membranes near the protein. Furthermore, by (1)H saturation-transfer NMR under conditions of magic angle spinning, we demonstrate detection of preferences in interactions of rhodopsin with particular lipid species. It is assumed that function of integral membrane proteins depends on both protein-induced elastic deformations of the lipid matrix and preferences for interaction of the protein with particular lipid species in the first layer of lipids surrounding the protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Characteristic lipids of Bordetella pertussis: simple fatty acid composition, hydroxy fatty acids, and an ornithine-containing lipid.

    PubMed Central

    Kawai, Y; Moribayashi, A

    1982-01-01

    The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica. Images PMID:6284719

  15. Characteristic lipids of Bordetella pertussis: simple fatty acid composition, hydroxy fatty acids, and an ornithine-containing lipid.

    PubMed

    Kawai, Y; Moribayashi, A

    1982-08-01

    The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica.

  16. Optimization of the qualitative composition of liposomal drugs based on natural organomineral formations

    NASA Astrophysics Data System (ADS)

    Chzhu, O. P.; Shubenkova, E. G.

    2017-08-01

    Liposomal structures were developed on the basis of oil and water extracts of natural organomineral formations. These structures are natural compositions. The content of the main components in the preparations varies within the range of 20-25% of the lipophilic phase, 64-74% of the hydrophilic phase, 5-10% of the auxiliary component and the stabilizer on the phospholipid base is 1%. Phospholipids of natural origin were used as surface-active substances. The influence of hydrophilic and lipophilic auxiliary components on the content of neutral lipids in the surface lipid layer of the skin was studied. The developed preparations can be used as carriers of both hydrophilic and lipophilic active substances in pharmaceutical compositions, cosmetic and veterinary products on a natural basis.

  17. Lipids and proteins in the Rathke's gland secretions of the North American mud turtle (Kinosternon subrubrum)

    USGS Publications Warehouse

    Seifert, W.E.; Gotte, S.W.; Leto, T.L.; Weldon, P.J.

    1994-01-01

    Lipids and proteins in the Rathke's gland secretions of the North American mud turtle (Kinosternon subrubrum, Kinosternidae) were analyzed by gas chromatography-mass spectrometry (GC-MS) and SDS-polyacrylamide gel electrophoresis (SDS-PAGE), respectively. Analysis by GC-MS indicates 2,3-dihydroxypropanal and C3–C24 free or esterified fatty acids. Analysis by SDS-PAGE indicates a major protein component with an approximate molecular mass of 60 kDa and minor components ranging from ca. 23 to 34 kDa. The major component of K. subrubrum glandular secretions exhibits a mobility that matches that of the Kemp's ridley sea turtle (Lepidochelys kempi, Cheloniidae), suggesting that these proteins are evolutionarily conserved.

  18. A simple protocol for Matrix Assisted Laser Desorption Ionization- time of flight-mass spectrometry (MALDI-TOF-MS) analysis of lipids and proteins in single microsamples of paintings.

    PubMed

    van der Werf, Inez D; Calvano, Cosima D; Palmisano, Francesco; Sabbatini, Luigia

    2012-03-09

    A simple protocol, based on Bligh-Dyer (BD) extraction followed by MALDI-TOF-MS analysis, for fast identification of paint binders in single microsamples is proposed. For the first time it is demonstrated that the BD method is effective for the simultaneous extraction of lipids and proteins from complex, and atypical matrices, such as pigmented paint layers. The protocol makes use of an alternative denaturing anionic detergent (RapiGest™) in order to improve efficiency of protein digestion and purification step. Detection of various lipid classes, such as triacylglycerols (TAGs) and phospholipids (PLs), and their oxidation by-products was accomplished, whereas proteins could be identified by peptide mass fingerprinting. The effect of pigments on ageing of lipids and proteins was also investigated. Finally, the proposed protocol was successfully applied to the study of a late-15th century Italian panel painting allowing the identification of various proteinaceous and lipid sections in organic binders, such as egg yolk, egg white, animal glue, casein, and drying oil. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Single Cell Oil Production from Hydrolysates of Inulin by a Newly Isolated Yeast Papiliotrema laurentii AM113 for Biodiesel Making.

    PubMed

    Wang, Guangyuan; Liu, Lin; Liang, Wenxing

    2018-01-01

    Microbial oils are among the most attractive alternative feedstocks for biodiesel production. In this study, a newly isolated yeast strain, AM113 of Papiliotrema laurentii, was identified as a potential lipid producer, which could accumulate a large amount of intracellular lipids from hydrolysates of inulin. P. laurentii AM113 was able to produce 54.6% (w/w) of intracellular oil in its cells and 18.2 g/l of dry cell mass in a fed-batch fermentation. The yields of lipid and biomass were 0.14 and 0.25 g per gram of consumed sugar, respectively. The lipid productivity was 0.092 g of oil per hour. Compositions of the fatty acids produced were C 14:0 (0.9%), C 16:0 (10.8%), C 16:1 (9.7%), C 18:0 (6.5%), C 18:1 (60.3%), and C 18:2 (11.8%). Biodiesel obtained from the extracted lipids could be burnt well. This study not only provides a promising candidate for single cell oil production, but will also probably facilitate more efficient biodiesel production.

  20. Exome-wide association analysis reveals novel coding sequence variants associated with lipid traits in Chinese.

    PubMed

    Tang, Clara S; Zhang, He; Cheung, Chloe Y Y; Xu, Ming; Ho, Jenny C Y; Zhou, Wei; Cherny, Stacey S; Zhang, Yan; Holmen, Oddgeir; Au, Ka-Wing; Yu, Haiyi; Xu, Lin; Jia, Jia; Porsch, Robert M; Sun, Lijie; Xu, Weixian; Zheng, Huiping; Wong, Lai-Yung; Mu, Yiming; Dou, Jingtao; Fong, Carol H Y; Wang, Shuyu; Hong, Xueyu; Dong, Liguang; Liao, Yanhua; Wang, Jiansong; Lam, Levina S M; Su, Xi; Yan, Hua; Yang, Min-Lee; Chen, Jin; Siu, Chung-Wah; Xie, Gaoqiang; Woo, Yu-Cho; Wu, Yangfeng; Tan, Kathryn C B; Hveem, Kristian; Cheung, Bernard M Y; Zöllner, Sebastian; Xu, Aimin; Eugene Chen, Y; Jiang, Chao Qiang; Zhang, Youyi; Lam, Tai-Hing; Ganesh, Santhi K; Huo, Yong; Sham, Pak C; Lam, Karen S L; Willer, Cristen J; Tse, Hung-Fat; Gao, Wei

    2015-12-22

    Blood lipids are important risk factors for coronary artery disease (CAD). Here we perform an exome-wide association study by genotyping 12,685 Chinese, using a custom Illumina HumanExome BeadChip, to identify additional loci influencing lipid levels. Single-variant association analysis on 65,671 single nucleotide polymorphisms reveals 19 loci associated with lipids at exome-wide significance (P<2.69 × 10(-7)), including three Asian-specific coding variants in known genes (CETP p.Asp459Gly, PCSK9 p.Arg93Cys and LDLR p.Arg257Trp). Furthermore, missense variants at two novel loci-PNPLA3 p.Ile148Met and PKD1L3 p.Thr429Ser-also influence levels of triglycerides and low-density lipoprotein cholesterol, respectively. Another novel gene, TEAD2, is found to be associated with high-density lipoprotein cholesterol through gene-based association analysis. Most of these newly identified coding variants show suggestive association (P<0.05) with CAD. These findings demonstrate that exome-wide genotyping on samples of non-European ancestry can identify additional population-specific possible causal variants, shedding light on novel lipid biology and CAD.

  1. Selective One-Dimensional Total Correlation Spectroscopy Nuclear Magnetic Resonance Experiments for a Rapid Identification of Minor Components in the Lipid Fraction of Milk and Dairy Products: Toward Spin Chromatography?

    PubMed

    Papaemmanouil, Christina; Tsiafoulis, Constantinos G; Alivertis, Dimitrios; Tzamaloukas, Ouranios; Miltiadou, Despoina; Tzakos, Andreas G; Gerothanassis, Ioannis P

    2015-06-10

    We report a rapid, direct, and unequivocal spin-chromatographic separation and identification of minor components in the lipid fraction of milk and common dairy products with the use of selective one-dimensional (1D) total correlation spectroscopy (TOCSY) nuclear magnetic resonance (NMR) experiments. The method allows for the complete backbone spin-coupling network to be elucidated even in strongly overlapped regions and in the presence of major components from 4 × 10(2) to 3 × 10(3) stronger NMR signal intensities. The proposed spin-chromatography method does not require any derivatization steps for the lipid fraction, is selective with excellent resolution, is sensitive with quantitation capability, and compares favorably to two-dimensional (2D) TOCSY and gas chromatography-mass spectrometry (GC-MS) methods of analysis. The results of the present study demonstrated that the 1D TOCSY NMR spin-chromatography method can become a procedure of primary interest in food analysis and generally in complex mixture analysis.

  2. Purification and some properties of the protein component of tissue thromboplastin from human brain.

    PubMed Central

    Bjorklid, E; Storm, E

    1977-01-01

    The protein component of tissue thromboplastib (Factor III) from human brain was purified by extraction of a microsomal fraction with sodium deoxycholate, gel filtration of the extract on Sephadex G-100 and preparative polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. The product, apoprotein III, was homogeneous by anayltical polyacrylamide-gel electrophoresis, and it induced monospecific antibodies in rabbits and goat as shown by immunodiffusion and immunoelectrophoresis. Amino acid- and carbohydrate-analysis data for apoprotein III are presented. The carbohydrate moiety of the protein consists of fucose, mannose, galactose, N-acetylglucosamine and N-acetylneuraminate, amounting to a total content of 6.3g/100g. The apoprotein alone had no procoagulant activity. When Factor III was reconstituted by combining the pure apoprotein with a purified lipid fraction from the deoxycholate extract of crude Factor III, a high and optimal procoagulant activity was obtained at a phospholipid/protein ratio of 1.1g/g. Phosphatidylethanolamine alone had a weak but significant ability to restore activity, whereas phosphatidylcholine and phosphatidylserine separately had almost none. Two-component mixtures were on average more effective, and three-component mixtures far more effective, than the single phospholipids. The inclusion of a small amount of phosphatidylserine was very important for high activity. Images Fig. 2. PLATE 1 PMID:889578

  3. Functional Characteristics of Tumor Associated Protein Spot14 and Interacting Proteins in Mouse Mammary Epithelial and Breast Cancer Cell Lines

    DTIC Science & Technology

    2012-03-01

    enhanced accumulation of total lipids evaluated by Bodipy staining and NMR analysis. A major finding in this report is that glycolytic and lipogenic enzyme...total lipid component using NMR Metabolomics showed significant increases in the quantity of intracellular (CH2)n and (CH3) acyl chains (i.e. fatty...Mass Spectrometry (GC-MS) methods were developed. GC-MS differs from NMR analysis of lipid fractions in that GC-MS distinguishes between fatty acids

  4. Review: Lipid Formulations for the Adult and Pediatric Patient: Understanding the Differences

    PubMed Central

    Anez-Bustillos, Lorenzo; Dao, Duy T.; Baker, Meredith A.; Fell, Gillian L.; Puder, Mark; Gura, Kathleen M.

    2017-01-01

    Intravenous lipid emulsions (IVLE) provide essential fatty acids (FA) and are a dense source of energy in parenteral nutrition (PN). Parenterally administered lipid was introduced in the 17th century but plagued with side effects. The formulation of lipid emulsions later on made it a relatively safe component for administration to patients. Many ingredients are common to all IVLE, yet the oil source(s) and its (their) percentage(s) makes them different from each other. The oil used dictates how IVLE are metabolized and cleared from the body. The FA present in each type of oil provide unique beneficial and detrimental properties. This review provides an overview of IVLE and discuss factors that would help clinicians choose the optimal product for their patients. Elucidating the characteristics of each oil source over time has resulted in an evolution of the different formulations currently available. Emulsions have gone from being solely made with soybean oil, to being combined with medium-chain triglycerides (i.e., coconut oil), olive oil, and more recently, fish oil. Unfortunately, the lipid, among other constituents in PN formulations, has been associated with the development of liver disease. Lipid-sparing or lipid-reduction strategies have therefore been proposed to avoid these complications. The ideal IVLE would reverse or prevent essential FA deficiency without leading to complications, while simultaneously providing energy to facilitate normal growth and development. Modifications in their ingredients, formulation, and dosing have made IVLE a relatively safe component alone or when added to PN formulations. The ideal emulsion, however, has yet to be developed. PMID:27533942

  5. Detection of superlattice domain formation in ternary lipid mixtures using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Mutlu, Burcin; Lopez, Stephanie; Vaughn, Mark; Huang, Juyang; Cheng, K.

    2011-10-01

    Multicomponent lipid bilayers represent an important model system for studying the structures and functions of cell membranes. At present, the lateral organization of lipid components, particularly the formation of regular distribution, in lipid membranes containing charged lipid, e.g., phosphatidylserine, is not clear. Using a ternary phosphatidylcholine/phosphatidylserine/cholesterol lipid bilayer system, the presence of ordered domain formation was examined by measuring the fluorescence anisotropy of the embedded fluorescent probe, 22-(N-(7-nitrobenz-2-oxa-1,3-diazol- 4-yl)amino)-23,24-bisnor-5-cholen-3β- ol (NBD-CHOL), with structure similar to that of a cholesterol, as a function of phospatidylserine composition. The plot of the anisotropy vs. phosphatidylserine revealed abrupt changes at certain critical compositions of phosphatidylserine. Some of these critical compositions agree favorably with those predicted by the headgroup superlattice model suggesting that the charged phosphatidylserine lipid molecules adopt a superlattice-like distribution in the lipid bilayer at some predicted compositions. The ordered distribution of charged lipids may play an important role in the regulation of the composition of the biological membranes.

  6. LipidMiner: A Software for Automated Identification and Quantification of Lipids from Multiple Liquid Chromatography-Mass Spectrometry Data Files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Da; Zhang, Qibin; Gao, Xiaoli

    2014-04-30

    We have developed a tool for automated, high-throughput analysis of LC-MS/MS data files, which greatly simplifies LC-MS based lipidomics analysis. Our results showed that LipidMiner is accurate and comprehensive in identification and quantification of lipid molecular species. In addition, the workflow implemented in LipidMiner is not limited to identification and quantification of lipids. If a suitable metabolite library is implemented in the library matching module, LipidMiner could be reconfigured as a tool for general metabolomics data analysis. It is of note that LipidMiner currently is limited to singly charged ions, although it is adequate for the purpose of lipidomics sincemore » lipids are rarely multiply charged,[14] even for the polyphosphoinositides. LipidMiner also only processes file formats generated from mass spectrometers from Thermo, i.e. the .RAW format. In the future, we are planning to accommodate file formats generated by mass spectrometers from other predominant instrument vendors to make this tool more universal.« less

  7. ICTV Virus taxonomy profile: Asfarviridae

    USDA-ARS?s Scientific Manuscript database

    The family Asfarviridae includes the single species African swine fever virus, isolates of which have linear dsDNA genomes of 170-194 kbp. Virons have an internal core, an internal lipid membrane, an icosahedral capsid and an outer lipid envelope. Infection of domestic pigs and wild boar results i...

  8. Lipid fatty acid profile analyses in liver and serum in rats with nonalcoholic steatohepatitis using improved gas chromatography-mass spectrometry methodology

    USDA-ARS?s Scientific Manuscript database

    Fatty acids (FA) are essential components of lipids and exhibit important biological functions. The analyses of FAs are routinely carried out by gas chromatography-mass spectrometry, after multi-step sample preparation. In this study, several key experimental factors were carefully examined, validat...

  9. Temporal and tissue-specific regulation of a Brassica napus stearoyl-acyl carrier protein desaturase gene.

    PubMed Central

    Slocombe, S P; Piffanelli, P; Fairbairn, D; Bowra, S; Hatzopoulos, P; Tsiantis, M; Murphy, D J

    1994-01-01

    The nucleotide sequence of a Brassica napus stearoyl-acyl carrier protein desaturase gene (Bn10) is presented. This gene is one member of a family of four closely related genes expressed in oilseed rape. The expression of the promoter of this gene in transgenic tobacco was found to be temporally regulated in the developing seed tissues. However, the promoter was also particularly active in other oleogenic tissues such as the tapetum and pollen grains. This raises the interesting question of whether seed-expressed lipid synthesis genes are regulated by separate tissue-specific determinants or by a single factor common to all oleogenic tissues. Parts of the plants undergoing rapid development such as the components of immature flowers and seedlings also exhibited high levels of promoter activity. These tissues are likely to have an elevated requirement for membrane lipid synthesis. Stearoyl-acyl carrier protein desaturase transcript levels have previously been shown to be temporally regulated in the B. napus embryo (S.P. Slocombe, I. Cummins, R.P. Jarvis, D.J. Murphy [1992] Plant Mol Biol 20: 151-155). Evidence is presented demonstrating the induction of desaturase mRNA by abscisic acid in the embryo. PMID:8016261

  10. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice.

    PubMed

    Holland, William L; Bikman, Benjamin T; Wang, Li-Ping; Yuguang, Guan; Sargent, Katherine M; Bulchand, Sarada; Knotts, Trina A; Shui, Guanghou; Clegg, Deborah J; Wenk, Markus R; Pagliassotti, Michael J; Scherer, Philipp E; Summers, Scott A

    2011-05-01

    Obesity is associated with an enhanced inflammatory response that exacerbates insulin resistance and contributes to diabetes, atherosclerosis, and cardiovascular disease. One mechanism accounting for the increased inflammation associated with obesity is activation of the innate immune signaling pathway triggered by TLR4 recognition of saturated fatty acids, an event that is essential for lipid-induced insulin resistance. Using in vitro and in vivo systems to model lipid induction of TLR4-dependent inflammatory events in rodents, we show here that TLR4 is an upstream signaling component required for saturated fatty acid-induced ceramide biosynthesis. This increase in ceramide production was associated with the upregulation of genes driving ceramide biosynthesis, an event dependent of the activity of the proinflammatory kinase IKKβ. Importantly, increased ceramide production was not required for TLR4-dependent induction of inflammatory cytokines, but it was essential for TLR4-dependent insulin resistance. These findings suggest that sphingolipids such as ceramide might be key components of the signaling networks that link lipid-induced inflammatory pathways to the antagonism of insulin action that contributes to diabetes.

  11. Bacteroidaceae in Thromboembolic Disease: Effects of Cell Wall Components on Blood Coagulation In Vivo and In Vitro

    PubMed Central

    Bjornson, H. S.; Hill, E. O.

    1973-01-01

    The effects of Bacteroides sp., Fusobacterium mortiferum, Bacteroides fragilis, and Sphaerophorus necrophorus on various parameters of blood coagulation in vivo and in vitro were determined and compared to the coagulation effects of Escherichia coli and Salmonella minnesota, wild type and R595. Intravenous injection of washed cells, culture filtrate, lipopolysaccharide, or lipid A of the anaerobic gram-negative microorganisms into mice resulted in acceleration of coagulation. Lipopolysaccharide and lipid A of the anaerobic microorganisms had no apparent effect on circulating platelets in mice or rabbits and did not cause aggregation of human platelets in vitro. Washed cells, lipopolysaccharide, and lipid A of Bacteroides sp. and F. mortiferum also significantly accelerated the clotting time of recalcified platelet poor normal human plasma and C6-deficient rabbit plasma. Lipid A, but not lipopolysaccharide, of E. coli and washed cells of S. minnesota R595 accelerated coagulation by a similar mechanism. These results indicated that Bacteroides sp. and F. mortiferum can accelerate blood coagulation in vivo and in vitro by a mechanism which does not involve platelets or terminal components of complement. PMID:4594118

  12. Supercritical fluid extraction and characterization of lipids from algae Scenedesmus obliquus

    NASA Technical Reports Server (NTRS)

    Choi, K. J.; Nakhost, Z.; Krukonis, V. J.; Karel, M.

    1987-01-01

    Lipids were extracted from a protein concentrate of green algae (Scenedesmus obliquus), using a one-step supercritical carbon dioxide extraction procedure in presence of ethanol as an entrainer, and were characterized. The compositions of neutral lipids, glycolipids, and phospholipids, separated into individual components by column, thin-layer, and gas-liquid chromatography procedures, are presented. Fatty acid composition patterns indicated that the major fatty acids were 16:0, 16:1, 16:2, 16:3, 16:4, 18:1, 18:2, and 18:3. The lipids of S. obliquus were found to contain relatively high concentrations of polyunsaturated fatty acids and essential fatty acids.

  13. [Effects of progestogens on the metabolism of lipids and carbohydrates. Practical consequences (author's transl)].

    PubMed

    Ghéron, G

    Estrogens which are one of the components of contraceptive less than pills greater than are incriminated in many cardiovascular accidents. These occur as a result of metabolic disorders (involving lipids and carbohydrates), of modifications in coagulation factors, etc. The possible influence of progestogens was ignored for a long time. The widespread use of these compounds, prescribed for contraception as well as during hormonal replacement therapy for absolute or relative luteinic insufficiency, makes careful monitoring of lipid and carbohydrate metabolism imperative. This position is strengthened by a preliminary review of the literature which leads to several conclusions concerning lipid and carbohydrate metabolism.

  14. Single-Cell Mass Spectrometry Reveals Changes in Lipid and Metabolite Expression in RAW 264.7 Cells upon Lipopolysaccharide Stimulation

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Patterson, Nathan Heath; Tsui, Tina; Caprioli, Richard M.; Norris, Jeremy L.

    2018-05-01

    It has been widely recognized that individual cells that exist within a large population of cells, even if they are genetically identical, can have divergent molecular makeups resulting from a variety of factors, including local environmental factors and stochastic processes within each cell. Presently, numerous approaches have been described that permit the resolution of these single-cell expression differences for RNA and protein; however, relatively few techniques exist for the study of lipids and metabolites in this manner. This study presents a methodology for the analysis of metabolite and lipid expression at the level of a single cell through the use of imaging mass spectrometry on a high-performance Fourier transform ion cyclotron resonance mass spectrometer. This report provides a detailed description of the overall experimental approach, including sample preparation as well as the data acquisition and analysis strategy for single cells. Applying this approach to the study of cultured RAW264.7 cells, we demonstrate that this method can be used to study the variation in molecular expression with cell populations and is sensitive to alterations in that expression that occurs upon lipopolysaccharide stimulation. [Figure not available: see fulltext.

  15. Single-Cell Mass Spectrometry Reveals Changes in Lipid and Metabolite Expression in RAW 264.7 Cells upon Lipopolysaccharide Stimulation

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Patterson, Nathan Heath; Tsui, Tina; Caprioli, Richard M.; Norris, Jeremy L.

    2018-03-01

    It has been widely recognized that individual cells that exist within a large population of cells, even if they are genetically identical, can have divergent molecular makeups resulting from a variety of factors, including local environmental factors and stochastic processes within each cell. Presently, numerous approaches have been described that permit the resolution of these single-cell expression differences for RNA and protein; however, relatively few techniques exist for the study of lipids and metabolites in this manner. This study presents a methodology for the analysis of metabolite and lipid expression at the level of a single cell through the use of imaging mass spectrometry on a high-performance Fourier transform ion cyclotron resonance mass spectrometer. This report provides a detailed description of the overall experimental approach, including sample preparation as well as the data acquisition and analysis strategy for single cells. Applying this approach to the study of cultured RAW264.7 cells, we demonstrate that this method can be used to study the variation in molecular expression with cell populations and is sensitive to alterations in that expression that occurs upon lipopolysaccharide stimulation. [Figure not available: see fulltext.

  16. Effect of single-session aerobic exercise with varying intensities on lipid peroxidation and muscle-damage markers in sedentary males.

    PubMed

    Moflehi, Daruosh; Kok, Lian-Yee; Tengku-Kamalden, Tengku-Fadilah; Amri, Saidon

    2012-05-23

    This study was conducted to evaluate the effect of the different intensity levels of single-session aerobic exercise on serum levels of lipid peroxidation and muscle damage markers in sedentary males. Fifty one sedentary healthy males aged 21.76±1.89 years were randomly divided into four groups, with one control (n=10) and three treatment groups that attended single-session aerobic exercise with low (n=14), moderate (n=14), and high (n=13) intensities. The serum levels of malondialdehyde (MDA) and creatine kinase (CK) were measured. Data analysis revealed a significant effect by the intensity levels of aerobic exercise on MDA (P=0.001) and CK (P=0.003) post-test when the participants in the treatment groups were compared with the control. When the intensity of aerobic exercise was increased, the amount of MDA and CK was also found to be increased. Single-session aerobic exercise can increase the amount of MDA and CK, suggesting that low intensity level of aerobic exercise should be utilized for more adaptation, and to prevent lipid peroxidation and muscle damage in sedentary males.

  17. Quantification of hexanal as an index of lipid oxidation in human milk and association with antioxidant components

    PubMed Central

    Elisia, Ingrid; Kitts, David D.

    2011-01-01

    Hexanal, a secondary product of lipid oxidation, was identified as the major volatile aldehyde generated from lipid peroxidation in human milk. Hexanal was quantified in human milk using solid phase microextraction-gas chromatography/flame ionization detection that required correction for recovery based on the fat content of human milk. Alpha-tocopherol was the only tocopherol isomer in human milk found to be significantly correlated with hexanal (R = −0.374, p<0.05) and the total antioxidant capacity of human milk (ORACFl (R = 0.408, p<0.01)). Ascorbic acid content was negatively correlated (R = −0.403, p<0.05) with hexanal, but not to ORACFl in human milk. The effect of Holder pasteurization on oxidative status of human milk was determined using multiple parameters that included, hexanal level and malondialdehyde as markers of lipid oxidation, vitamins C and E content and antioxidant capacity (e.g. ORACFl). Pasteurization did not affect the oxidative status of milk as measured by hexanal level, ORACFl and malondialdehyde content. We conclude that hexanal is a sensitive and useful chemical indicator for assessing peroxidation reactions in human milk and that alpha tocopherol and ascorbic acid are two key antioxidant components in milk that contribute to protection against oxidation of milk lipids. PMID:22128211

  18. Xanthine oxidoreductase mediates membrane docking of milk-fat droplets but is not essential for apocrine lipid secretion.

    PubMed

    Monks, Jenifer; Dzieciatkowska, Monika; Bales, Elise S; Orlicky, David J; Wright, Richard M; McManaman, James L

    2016-10-15

    Xanthine oxidoreductase (XOR) modulates milk lipid secretion and lactation initiation. XOR is required for butyrophilin1a1 clustering in the membrane during milk lipid secretion. XOR mediates apical membrane reorganization during milk lipid secretion. Loss of XOR delays milk fat globule secretion. XOR loss alters the proteome of milk fat globules. Apocrine secretion is utilized by epithelial cells of exocrine glands. These cells bud off membrane-bound particles into the lumen of the gland, losing a portion of the cytoplasm in the secretion product. The lactating mammary gland secretes milk lipid by this mechanism, and xanthine oxidoreductase (XOR) has long been thought to be functionally important. We generated mammary-specific XOR knockout (MGKO) mice, expecting lactation to fail. Histology of the knockout glands showed very large lipid droplets enclosed in the mammary alveolar cells, but milk analysis showed that these large globules were secreted. Butyrophilin, a membrane protein known to bind to XOR, was clustered at the point of contact of the cytoplasmic lipid droplet with the apical plasma membrane, in the wild-type gland but not in the knockout, suggesting that XOR mediates 'docking' to this membrane. Secreted milk fat globules were isolated from mouse milk of wild-type and XOR MGKO dams, and subjected to LC-MS/MS for analysis of protein component. Proteomic results showed that loss of XOR leads to an increase in cytoplasmic, cytoskeletal, Golgi apparatus and lipid metabolism proteins associated with the secreted milk fat globule. Association of XOR with the lipid droplet results in membrane docking and more efficient retention of cytoplasmic components by the secretory cell. Loss of XOR then results in a reversion to a more rudimentary, less efficient, apocrine secretion mechanism, but does not prevent milk fat globule secretion. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  19. Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum.

    PubMed

    Barkla, Bronwyn J; Garibay-Hernández, Adriana; Melzer, Michael; Rupasinghe, Thusitha W T; Roessner, Ute

    2018-05-29

    Salt stress causes dramatic changes in the organization and dynamic properties of membranes, however, little is known about the underlying mechanisms involved. Modified trichomes, known as epidermal bladder cells (EBC), on the leaves and stems of the halophyte Mesembryanthemum crystallinum can be successfully exploited as a single-cell-type system to investigate salt-induced changes to cellular lipid composition. In this study alterations in key molecular species from different lipid classes highlighted an increase in phospholipid species, particularly those from phosphatidylcholine (PC) and phosphatidic acid (PA), where the latter is central to the synthesis of membrane lipids. Triacylglycerol (TG) species decreased during salinity, while there was little change in plastidic galactolipids. EBC transcriptomic and proteomic data mining revealed changes in genes and proteins involved in lipid metabolism and the upregulation of transcripts for PIPKIB, PI5PII, PIPKIII, and PLDδ, suggested the induction of signalling processes mediated by phosphoinositides and PA. TEM and flow cytometry showed the dynamic nature of lipid droplets in these cells under salt stress. Altogether, this work indicates the metabolism of TG might play an important role in EBC response to salinity as either an energy reserve for sodium accumulation and/or driving membrane biosynthesis for EBC expansion. This article is protected by copyright. All rights reserved.

  20. Enhancement of skin radical scavenging activity and stratum corneum lipids after the application of a hyperforin-rich cream.

    PubMed

    Haag, S F; Tscherch, K; Arndt, S; Kleemann, A; Gersonde, I; Lademann, J; Rohn, S; Meinke, M C

    2014-02-01

    Hyperforin is well-known for its anti-inflammatory, anti-tumor, anti-bacterial, and antioxidant properties. The application of a hyperforin-rich verum cream could strengthen the skin barrier function by reducing radical formation and stabilizing stratum corneum lipids. Here, it was investigated whether topical treatment with a hyperforin-rich cream increases the radical protection of the skin during VIS/NIR irradiation. Skin lipid profile was investigated applying HPTLC on skin lipid extracts. Furthermore, the absorption- and scattering coefficients, which influence radical formation, were determined. 11 volunteers were included in this study. After a single cream application, VIS/NIR-induced radical formation could be completely inhibited by both verum and placebo showing an immediate protection. After an application period of 4weeks, radical formation could be significantly reduced by 45% following placebo application and 78% after verum application showing a long-term protection. Furthermore, the skin lipids in both verum and placebo groups increased directly after a single cream application but only significantly for ceramide [AP], [NP1], and squalene. After long-term cream application, concentration of cholesterol and the ceramides increased, but no significance was observed. These results indicate that regular application of the hyperforin-rich cream can reduce radical formation and can stabilize skin lipids, which are responsible for the barrier function. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Large-scale human skin lipidomics by quantitative, high-throughput shotgun mass spectrometry.

    PubMed

    Sadowski, Tomasz; Klose, Christian; Gerl, Mathias J; Wójcik-Maciejewicz, Anna; Herzog, Ronny; Simons, Kai; Reich, Adam; Surma, Michal A

    2017-03-07

    The lipid composition of human skin is essential for its function; however the simultaneous quantification of a wide range of stratum corneum (SC) and sebaceous lipids is not trivial. We developed and validated a quantitative high-throughput shotgun mass spectrometry-based platform for lipid analysis of tape-stripped SC skin samples. It features coverage of 16 lipid classes; total quantification to the level of individual lipid molecules; high reproducibility and high-throughput capabilities. With this method we conducted a large lipidomic survey of 268 human SC samples, where we investigated the relationship between sampling depth and lipid composition, lipidome variability in samples from 14 different sampling sites on the human body and finally, we assessed the impact of age and sex on lipidome variability in 104 healthy subjects. We found sebaceous lipids to constitute an abundant component of the SC lipidome as they diffuse into the topmost SC layers forming a gradient. Lipidomic variability with respect to sampling depth, site and subject is considerable, and mainly accredited to sebaceous lipids, while stratum corneum lipids vary less. This stresses the importance of sampling design and the role of sebaceous lipids in skin studies.

  2. Clustering of metabolic and cardiovascular risk factors in the polycystic ovary syndrome: a principal component analysis.

    PubMed

    Stuckey, Bronwyn G A; Opie, Nicole; Cussons, Andrea J; Watts, Gerald F; Burke, Valerie

    2014-08-01

    Polycystic ovary syndrome (PCOS) is a prevalent condition with heterogeneity of clinical features and cardiovascular risk factors that implies multiple aetiological factors and possible outcomes. To reduce a set of correlated variables to a smaller number of uncorrelated and interpretable factors that may delineate subgroups within PCOS or suggest pathogenetic mechanisms. We used principal component analysis (PCA) to examine the endocrine and cardiometabolic variables associated with PCOS defined by the National Institutes of Health (NIH) criteria. Data were retrieved from the database of a single clinical endocrinologist. We included women with PCOS (N = 378) who were not taking the oral contraceptive pill or other sex hormones, lipid lowering medication, metformin or other medication that could influence the variables of interest. PCA was performed retaining those factors with eigenvalues of at least 1.0. Varimax rotation was used to produce interpretable factors. We identified three principal components. In component 1, the dominant variables were homeostatic model assessment (HOMA) index, body mass index (BMI), high density lipoprotein (HDL) cholesterol and sex hormone binding globulin (SHBG); in component 2, systolic blood pressure, low density lipoprotein (LDL) cholesterol and triglycerides; in component 3, total testosterone and LH/FSH ratio. These components explained 37%, 13% and 11% of the variance in the PCOS cohort respectively. Multiple correlated variables from patients with PCOS can be reduced to three uncorrelated components characterised by insulin resistance, dyslipidaemia/hypertension or hyperandrogenaemia. Clustering of risk factors is consistent with different pathogenetic pathways within PCOS and/or differing cardiometabolic outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Uptake of raft components into amyloid β-peptide aggregates and membrane damage.

    PubMed

    Sasahara, Kenji; Morigaki, Kenichi; Mori, Yasuko

    2015-07-15

    Amyloid aggregation and deposition of amyloid β-peptide (Aβ) are pathologic characteristics of Alzheimer's disease (AD). Recent reports have shown that the association of Aβ with membranes containing ganglioside GM1 (GM1) plays a pivotal role in amyloid deposition and the pathogenesis of AD. However, the molecular interactions responsible for membrane damage associated with Aβ deposition are not fully understood. In this study, we microscopically observed amyloid aggregation of Aβ in the presence of lipid vesicles and on a substrate-supported planar membrane containing raft components and GM1. The experimental system enabled us to observe lipid-associated aggregation of Aβ, uptake of the raft components into Aβ aggregates, and relevant membrane damage. The results indicate that uptake of raft components from the membrane into Aβ deposits induces macroscopic heterogeneity of the membrane structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Wildfire effects on lipid composition and hydrophobicity of bulk soil and soil size fractions under Quercus suber cover (SW-Spain).

    PubMed

    Jiménez-Morillo, Nicasio T; Spangenberg, Jorge E; Miller, Ana Z; Jordán, Antonio; Zavala, Lorena M; González-Vila, Francisco J; González-Pérez, José A

    2017-11-01

    Soil water repellency (hydrophobicity) prevents water from wetting or infiltrating soils, triggering changes in the ecosystems. Fire may develop, enhance or destroy hydrophobicity in previously wettable or water-repellent soils. Soil water repellency is mostly influenced by the quality and quantity of soil organic matter, particularly the lipid fraction. Here we report the results of a study on the effect of fire on the distribution of soil lipids and their role in the hydrophobicity grade of six particle size fractions (2-1, 1-0.5, 0.5-0.25, 0.25-0.1, 0.1-0.05 and <0.05mm) of an Arenosol under Quercus suber canopy at the Doñana National Park (SW-Spain). Hydrophobicity was determined using water drop penetration time test. Field emission scanning electron microscopy (FESEM) was used to assess the presence and morphology of the inorganic and organic soil components in the particle size fractions. Soil lipids were Soxhlet extracted with a dichloromethane-methanol mixture. Fatty acids (FAs) and neutral lipids were separated, derivatized, identified and quantified by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. The hydrophobicity values of soil samples and fractions were statistically different (P < 0.05), for both, the unburnt and burnt soils, and particle size fractions. All samples displayed a similar distribution of FAs, straight-chain saturated acids in the C 14 -C 32 range, and neutral lipids (n-alkan-1-ols, n-alkanes), only differing in their relative abundances. Among possible biogeochemical mechanisms responsible for the changes in soil lipids, the observed depletion of long chain FAs (C ≥24 ) in the coarse fraction is best explained by thermal cracking caused by the heat of the fire. The enrichment of long chain FAs observed in other fractions suggests possible exogenous additions of charred, lipid-rich, material, like cork suberin or other plant-derived macromolecules (cutins). Principal component analysis was used to study the relationships between hydrophobicity with soil organic matter and its different components. Extractable organic matter (EOM) and specifically long chain FAs content were positively correlated to soil hydrophobicity. Therefore, the latter could be used as biomarkers surrogated to hydrophobicity in sandy soils. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Impact of Nutrients and Food Components on Dyslipidemias: What Is the Evidence?12

    PubMed Central

    Rosa, Carla de Oliveira Barbosa; dos Santos, Carolina Araújo; Leite, Jacqueline Isaura Alvarez; Caldas, Ana Paula Silva; Bressan, Josefina

    2015-01-01

    Dyslipidemias have been shown to bear a close association with an increased risk of cardiovascular diseases, atherosclerosis in particular. As efforts are being made to find alternative therapies and ways to prevent disease, there is a corresponding rise in public interest in food and/or active food components that contribute to an improved lipid profile and, thus, to better health. Besides supplying the basic nutrients necessary for well-being, some foods add further physiologic benefits. In fact, specific foods and bioactive components could be beneficial in controlling dyslipidemias. From a review of the literature on foods and bioactive compounds, their recommended quantities, and expected effects, we found that the following nutrients and food components could positively impact the lipid profile: monounsaturated and polyunsaturated fatty acids, soluble fiber, vegetable proteins, phytosterols, and polyphenols. Therefore, incorporating these components into the regular diets of individuals is justified, because they contribute additional positive effects. This suggests that they also be recommended in clinical practice. PMID:26567195

  6. Dye-release assay for investigation of antimicrobial peptide activity in a competitive lipid environment.

    PubMed

    Sani, Marc-Antoine; Gagne, Eve; Gehman, John D; Whitwell, Thomas C; Separovic, Frances

    2014-09-01

    A dye-release method for investigating the effect of a competitive lipid environment on the activity of two membrane-disrupting antimicrobial peptides (AMP), maculatin 1.1 and aurein 1.2, is presented. The results support the general conclusion that AMP have greater affinity for negatively charged membranes, for example bacterial membranes, than for the neutral membrane surface found in eukaryotic cells, but only within a competitive lipid environment. Indeed, in a single-model membrane environment, both peptides were more potent against neutral vesicles than against charged vesicles. The approach was also used to investigate the effect of pre-incubating the peptides in a neutral lipid environment then introducing charged lipid vesicles. Maculatin was shown to migrate from the neutral lipid bilayers, where pores had already formed, to the charged membrane bilayers. This result was also observed for charged-to-charged bilayers but, interestingly, not for neutral-to-neutral lipid interfaces. Aurein was able to migrate from either lipid environment, indicating weaker binding to lipid membranes, and a different molecular mechanism for lysis of lipid bilayers. Competitive lipid environments could be used to assess other critical conditions that modulate the activity of membrane peptides or proteins.

  7. Development of edible films obtained from submicron emulsions based on whey protein concentrate, oil/beeswax and brea gum.

    PubMed

    Cecchini, Juan Pablo; Spotti, María J; Piagentini, Andrea M; Milt, Viviana G; Carrara, Carlos R

    2017-06-01

    Edible films with whey protein concentrate (WPC) with a lipid component, sunflower oil (O) or beeswax (W), to enhance barrier to water vapor were obtained. Brea gum was used as emulsifier and also as matrix component. In order to achieve emulsion with small and homogeneous droplet size, an ultrasonicator equipment was used after obtaining a pre-emulsion using a blender. The films were made by casting. Effects of lipid fraction on droplet size, zeta potential, mechanical properties, water vapor permeability (WVP), solubility, and optical properties were determined. The droplet size of emulsions with BG decreased when decreasing the lipid content in the formulation. The zeta potential was negative for all the formulations, since the pH was close to 6 for all of them and pI of BG is close to 2.5, and pI of ß-lactoglobulin and α-lactalbumin (main proteins in WPC) are 5.2 and 4.1, respectively. Increasing W or SO content in blended films reduced the tensile strength and puncture resistance significantly. BG and WPC films without lipid presented better mechanical properties. The presence of lipids decreased the WVP, as expected, and those films having BG improved this property. BG films were slightly amber as a result of the natural color of the gum. BG has shown to be a good polysaccharide for emulsifying the lipid fraction and improving the homogeneity and mechanical properties of the films with WPC and beeswax or oil.

  8. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane.

    PubMed

    Danielsen, E Michael; Hansen, Gert H

    2013-01-01

    The small intestinal brush border has an unusually high proportion of glycolipids which promote the formation of lipid raft microdomains, stabilized by various cross-linking lectins. This unique membrane organization acts to provide physical and chemical stability to the membrane that faces multiple deleterious agents present in the gut lumen, such as bile salts, digestive enzymes of the pancreas, and a plethora of pathogens. In the present work, we studied the constitutive endocytosis from the brush border of cultured jejunal explants of the pig, and the results indicate that this process functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs), was absent from detergent resistant membranes (DRMs), implying an association with non-raft membrane. Furthermore, neither major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB) was present. In conclusion, we propose that constitutive, selective endocytic removal of non-raft membrane acts as a sorting mechanism to enrich the brush border contents of lipid raft components, such as glycolipids and the major digestive enzymes. This sorting may be energetically driven by changes in membrane curvature when molecules move from a microvillar surface to an endocytic invagination.

  9. Magnetic resonance lactate and lipid signals in rat brain after middle cerebral artery occlusion model

    PubMed Central

    Harada, Kuniaki; Honmou, Osamu; Liu, He; Bando, Michio; Houkin, Kiyohiro; Kocsis, Jeffery D.

    2008-01-01

    Proton magnetic resonance spectroscopy (1-H MRS) has revealed changes of metabolites in acute cerebral infarction. Although the drastic changes of lactate and N-acetyl-aspartate have been reported to be useful indicators of the ischemic damage in both humans and experimental animals, lipid signals are also detected by the short echo time sequence 1–5 days after ischemia. The objective of this study was to find a novel technique to isolate lactate signals from lipid signals in the ischemic brain. First, MRS was used to study the lipid and lactate components of a spherical phantom in vitro, and parameters were established to separate these components in vitro. Then, MR measurements were obtained from the brains of middle cerebral artery occlusion rats. All MR measurements were performed using a 7-T (300 MHz), 18.3-cm-bore superconducting magnet (Oxford Magnet Technologies) interfaced to a Unity INOVA Imaging System (Varian Technologies). T2-weighted images were obtained from a 1.0-mm-thick coronal section using a 3-cm field of view. It is well known that lipid has a shorter and lactate a longer T2 relaxation time. These distinct magnetic characteristics allowed us to separate the lactate signal from the lipid signal. Thus, adjustment of the echo time is essential to analyze the metabolites in acute cerebral infarction, which may be useful in both the clinic and laboratory. PMID:17196558

  10. Mixing, diffusion, and percolation in binary supported membranes containing mixtures of lipids and amphiphilic block copolymers.

    PubMed

    Gettel, Douglas L; Sanborn, Jeremy; Patel, Mira A; de Hoog, Hans-Peter; Liedberg, Bo; Nallani, Madhavan; Parikh, Atul N

    2014-07-23

    Substrate-mediated fusion of small polymersomes, derived from mixtures of lipids and amphiphilic block copolymers, produces hybrid, supported planar bilayers at hydrophilic surfaces, monolayers at hydrophobic surfaces, and binary monolayer/bilayer patterns at amphiphilic surfaces, directly responding to local measures of (and variations in) surface free energy. Despite the large thickness mismatch in their hydrophobic cores, the hybrid membranes do not exhibit microscopic phase separation, reflecting irreversible adsorption and limited lateral reorganization of the polymer component. With increasing fluid-phase lipid fraction, these hybrid, supported membranes undergo a fluidity transition, producing a fully percolating fluid lipid phase beyond a critical area fraction, which matches the percolation threshold for the immobile point obstacles. This then suggests that polymer-lipid hybrid membranes might be useful models for studying obstructed diffusion, such as occurs in lipid membranes containing proteins.

  11. Occurrence of fatty acid chlorohydrins in jellyfish lipids.

    PubMed

    White, R H; Hager, L P

    1977-11-01

    Fatty acid chlorohydrins are characterized as lipid components of an edible jellyfish. The four isomers 9-chloro-10-hydroxypalmitic acid, 10-chloro-9-hydroxypalmitic acid, 9-chloro-10-hydroxystearic acid, and 10-chloro-9-hydroxystearic acid were identified by gas chromatography-mass spectrometry comparison of the methyl esters and their trimethylsilyl derivatives with known synthetic samples. Two additional isomers, 11-chloro-12-hydroxystearic acid and 12-chloro-11-hydroxystearic acid, were also found in the lipid by the identification of the expected mass spectral fragments of the trimethylsilyl (Me3Si) derivative of their methyl esters. These six isomeric compounds represented approximately 1.4% of the total extractable jellyfish lipid and were released from the lipid as methyl esters by boron trifluoride-methanol treatment. These isomers account for only about 30% of the organic chlorine in the lipid. Evidence is given that the remaining organic chlorine is also present as fatty acid chlorohydrins containing more than one hydroxyl group.

  12. Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion.

    PubMed

    Zick, Michael; Stroupe, Christopher; Orr, Amy; Douville, Deborah; Wickner, William T

    2014-01-01

    Like other intracellular fusion events, the homotypic fusion of yeast vacuoles requires a Rab GTPase, a large Rab effector complex, SNARE proteins which can form a 4-helical bundle, and the SNARE disassembly chaperones Sec17p and Sec18p. In addition to these proteins, specific vacuole lipids are required for efficient fusion in vivo and with the purified organelle. Reconstitution of vacuole fusion with all purified components reveals that high SNARE levels can mask the requirement for a complex mixture of vacuole lipids. At lower, more physiological SNARE levels, neutral lipids with small headgroups that tend to form non-bilayer structures (phosphatidylethanolamine, diacylglycerol, and ergosterol) are essential. Membranes without these three lipids can dock and complete trans-SNARE pairing but cannot rearrange their lipids for fusion. DOI: http://dx.doi.org/10.7554/eLife.01879.001.

  13. Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications.

    PubMed

    Li-Beisson, Yonghua; Nakamura, Yuki; Harwood, John

    2016-01-01

    Lipids are one of the major subcellular components, and play numerous essential functions. As well as their physiological roles, oils stored in biomass are useful commodities for a variety of biotechnological applications including food, chemical feedstocks, and fuel. Due to their agronomic as well as economic and societal importance, lipids have historically been subjected to intensive studies. Major current efforts are to increase the energy density of cell biomass, and/or create designer oils suitable for specific applications. This chapter covers some basic aspects of what one needs to know about lipids: definition, structure, function, metabolism and focus is also given on the development of modern lipid analytical tools and major current engineering approaches for biotechnological applications. This introductory chapter is intended to serve as a primer for all subsequent chapters in this book outlining current development in specific areas of lipids and their metabolism.

  14. Comprehensive lipid analysis: a powerful metanomic tool for predictive and diagnostic medicine.

    PubMed

    Watkins, S M

    2000-09-01

    The power and accuracy of predictive diagnostics stand to improve dramatically as a result of lipid metanomics. The high definition of data obtained with this approach allows multiple rather than single metabolites to be used in markers for a group. Since as many as 40 fatty acids are quantified from each lipid class, and up to 15 lipid classes can be quantified easily, more than 600 individual lipid metabolites can be measured routinely for each sample. Because these analyses are comprehensive, only the most appropriate and unique metabolites are selected for their predictive value. Thus, comprehensive lipid analysis promises to greatly improve predictive diagnostics for phenotypes that directly or peripherally involve lipids. A broader and possibly more exciting aspect of this technology is the generation of metabolic profiles that are not simply markers for disease, but metabolic maps that can be used to identify specific genes or activities that cause or influence the disease state. Metanomics is, in essence, functional genomics from metabolite analysis. By defining the metabolic basis for phenotype, researchers and clinicians will have an extraordinary opportunity to understand and treat disease. Much in the same way that gene chips allow researchers to observe the complex expression response to a stimulus, metanomics will enable researchers to observe the complex metabolic interplay responsible for defining phenotype. By extending this approach beyond the observation of individual dysregulations, medicine will begin to profile not single diseases, but health. As health is the proper balance of all vital metabolic pathways, comprehensive or metanomic analysis lends itself very well to identifying the metabolite distributions necessary for optimum health. Comprehensive and quantitative analysis of lipids would provide this degree of diagnostic power to researchers and clinicians interested in mining metabolic profiles for biological meaning.

  15. Seasonal changes in D/H fractionation accompanying lipid biosynthesis in Spartina alterniflora

    NASA Astrophysics Data System (ADS)

    Sessions, Alex L.

    2006-05-01

    To investigate potential variability in the biosynthetic fractionation of hydrogen isotopes between environmental water and plant lipids, the cord grass Spartina alterniflora was sampled from a single location in a coastal marsh over a period of 16 months. Values of δD for a variety of lipids were measured by gas chromatography/pyrolysis/isotope ratio mass spectrometry. S. alterniflora grows partially submerged in seawater, so it has a virtually unlimited supply of water with nearly unvarying isotopic composition. Temporal changes in the δD values of lipids can thus be interpreted as representing mainly variations in biosynthetic fractionation. Fatty acids, n-alkanes, and phytol extracted from S. alterniflora have nearly constant δD values from ˜October through May, but exhibit marked decreases of up to 40‰ during summer months. These shifts in lipid δD values are interpreted as representing a change in the source of organic substrates, principally acetate, used for their biosynthesis. Lower summertime δD values for lipids are consistent with an increasing reliance on current photosynthate as feedstock for biosynthesis, whereas stored carbohydrate reserves are utilized more extensively during other times of the year. Regardless of the specific mechanism, the data emphasize that overall fractionations between water and plant lipids depend on biological as well as environmental variables, and that the biosynthetic fractionation is not necessarily constant even for a single plant. Because lipids such as fatty acids are present in all cells and turn over on timescales of weeks to months, measurements of δD values in fatty acids may also provide useful constraints for distinguishing biologic versus environmental controls on cellulose δD values in trees.

  16. Optimization and design of ibuprofen-loaded nanostructured lipid carriers using a hybrid-design approach for ocular drug delivery

    NASA Astrophysics Data System (ADS)

    Rathod, Vishal

    The objective of the present project was to develop the Ibuprofen-loaded Nanostructured Lipid Carrier (IBU-NLCs) for topical ocular delivery based on substantial pre-formulation screening of the components and understanding the interplay between the formulation and process variables. The BCS Class II drug: Ibuprofen was selected as the model drug for the current study. IBU-NLCs were prepared by melt emulsification and ultrasonication technique. Extensive pre-formulation studies were performed to screen the lipid components (solid and liquid) based on drug's solubility and affinity as well as components compatibility. The results from DSC & XRD assisted in selecting the most suitable ratio to be utilized for future studies. DynasanRTM 114 was selected as the solid lipid & MiglyolRTM 840 was selected as the liquid lipid based on preliminary lipid screening. The ratio of 6:4 was predicted to be the best based on its crystallinity index and the thermal events. As there are many variables involved for further optimization of the formulation, a single design approach is not always adequate. A hybrid-design approach was applied by employing the Plackett Burman design (PBD) for preliminary screening of 7 critical variables, followed by Box-Behnken design (BBD), a sub-type of response surface methodology (RSM) design using 2 relatively significant variables from the former design and incorporating Surfactant/Co-surfactant ratio as the third variable. Comparatively, KolliphorRTM HS15 demonstrated lower Mean Particle Size (PS) & Polydispersity Index (PDI) and KolliphorRTM P188 resulted in Zeta Potential (ZP) < -20 mV during the surfactant screening & stability studies. Hence, Surfactant/Cosurfactant ratio was employed as the third variable to understand its synergistic effect on the response variables. We selected PS, PDI, and ZP as critical response variables in the PBD since they significantly influence the stability & performance of NLCs. Formulations prepared using BBD were further characterized and evaluated concerning PS, PDI, ZP and Entrapment Efficiency (EE) to identify the multi-factor interactions between selected formulation variables. In vitro release studies were performed using Spectra/por dialysis membrane on Franz diffusion cell and Phosphate Saline buffer (7.4 pH) as the medium. Samples for assay, EE, Loading Capacity (LC), Solubility studies & in-vitro release were filtered using Amicon 50K and analyzed via UPLC system (Waters) at a detection wavelength of 220 nm. Significant variables were selected through PBD, and the third variable was incorporated based on surfactant screening & stability studies for the next design. Assay of the BBD based formulations was found to be within 95-104% of the theoretically calculated values. Further studies were investigated for PS, PDI, ZP & EE. PS was found to be in the range of 103-194 nm with PDI ranging from 0.118 to 0.265. The ZP and EE were observed to be in the range of -22.2 to -11 mV & 90 to 98.7 % respectively. Drug release of 30% was observed from the optimized formulation in the first 6 hr of in-vitro studies, and the drug release showed a sustained release of ibuprofen thereafter over several hours. These values also confirm that the production method, and all other selected variables, effectively promoted the incorporation of ibuprofen in NLC. Quality by Design (QbD) approach was successfully implemented in developing a robust ophthalmic formulation with superior physicochemical and morphometric properties. NLCs as the nanocarrier demonstrated promising perspective for topical delivery of poorly water-soluble drugs.

  17. Non-triglyceride components modulate the fat crystal network of palm kernel oil and coconut oil.

    PubMed

    Chai, Xiuhang; Meng, Zong; Jiang, Jiang; Cao, Peirang; Liang, Xinyu; Piatko, Michael; Campbell, Shawn; Lo, Seong Koon; Liu, Yuanfa

    2018-03-01

    PKO and CNO are composed of 97-98% triacylglycerols and 2-3% minor non-triglyceride components (FFA, DAG and MAG). Triglycerides were separated from minor components by chromatographic method. The lipid composition, thermal properties, polymorphism, isothermal crystallization behavior, nanostructure and microstructure of PKO, PKO-TAG, CNO and CNO-TAG were evaluated. Removal of minor components had no effect on lipid composition and equilibrium solid fat contents. However, presence of minor components did increase the slip melting point and promoted the onset of crystallization from DSC crystallization profiles. The thickness of the nanoscale crystals increased with no polymorphic transformation after removing the minor components. Crystallization kinetics revealed that minor components decreased crystal growth rate with higher t 1/2 . Sharp changes in the values of the Avrami constant k and exponent n were observed for all fats around 10°C. Increases in n around 10°C indicated a change from one-dimensional to multi-dimensional growth . From the results of polarized light micrographs, the transformation from the coarser crystal structure to tiny crystal structure occurred in microstructure networks at the action of minor components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products.

    PubMed

    Verardo, Vito; Gómez-Caravaca, Ana Maria; Arráez-Román, David; Hettinga, Kasper

    2017-01-17

    Milk is one of the most important foods for mammals, because it is the first form of feed providing energy, nutrients and immunological factors. In the last few years, milk lipids have attracted the attention of researchers due to the presence of several bioactive components in the lipid fraction. The lipid fraction of milk and dairy products contains several components of nutritional significance, such as ω-3 and ω-6 polyunsaturated fatty acids, CLA, short chain fatty acids, gangliosides and phospholipids. Prospective cohort evidence has shown that phospholipids play an important role in the human diet and reinforce the possible relationship between their consumption and prevention of several chronic diseases. Because of these potential benefits of phospholipids in the human diet, this review is focused on the recent advances in phospholipids from colostrum, milk and dairy by-products. Phospholipid composition, its main determination methods and the health activities of these compounds will be addressed.

  19. Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products

    PubMed Central

    Verardo, Vito; Gómez-Caravaca, Ana Maria; Arráez-Román, David; Hettinga, Kasper

    2017-01-01

    Milk is one of the most important foods for mammals, because it is the first form of feed providing energy, nutrients and immunological factors. In the last few years, milk lipids have attracted the attention of researchers due to the presence of several bioactive components in the lipid fraction. The lipid fraction of milk and dairy products contains several components of nutritional significance, such as ω-3 and ω-6 polyunsaturated fatty acids, CLA, short chain fatty acids, gangliosides and phospholipids. Prospective cohort evidence has shown that phospholipids play an important role in the human diet and reinforce the possible relationship between their consumption and prevention of several chronic diseases. Because of these potential benefits of phospholipids in the human diet, this review is focused on the recent advances in phospholipids from colostrum, milk and dairy by-products. Phospholipid composition, its main determination methods and the health activities of these compounds will be addressed. PMID:28106745

  20. Spontaneous transfer of stearic acids between human serum albumin and PEG:2000-grafted DPPC membranes.

    PubMed

    Pantusa, Manuela; Stirpe, Andrea; Sportelli, Luigi; Bartucci, Rosa

    2010-05-01

    Electron spin resonance (ESR) spectroscopy is used to study the transfer of stearic acids between human serum albumin (HSA) and sterically stabilized liposomes (SSL) composed of dipalmitoylphosphatidylcholine (DPPC) and of submicellar content of poly(ethylene glycol:2000)-dipalmitoylphosphatidylethanolamine (PEG:2000-DPPE). Protein/lipid dispersions are considered in which spin-labelled stearic acids at the 16th carbon atom along the acyl chain (16-SASL) are inserted either in the protein or in the SSL. Two component ESR spectra with different rotational mobility are obtained over a broad range of temperature and membrane composition. Indeed, superimposed to an anisotropic protein-signal, appears a more isotropic lipid-signal. Since in the samples only one matrix (protein or membranes) is spin-labelled, the other component accounts for the transfer of 16-SASL between albumin and membranes. The two components have been resolved and quantified by spectral subtractions, and the fraction, f (p) (16-SASL), of spin labels bound non-covalently to the protein has been used to monitor the transfer. It is found that it depends on the type of donor and acceptor matrix, on the physical state of the membranes and on the grafting density of the polymer-lipids. Indeed, it is favoured from SSL to HSA and the fraction of stearic acids transferred increases with temperature in both directions of transfer. Moreover, in the presence of polymer-lipids, the transfer from HSA to SSL is slightly attenuated, especially in the brush regime of the polymer-chains. Instead, the transfer from SSL to HSA is favoured by the polymer-lipids much more in the mushroom than in the brush regime.

  1. Membrane lipid alterations in the metabolic syndrome and the role of dietary oils.

    PubMed

    Perona, Javier S

    2017-09-01

    The metabolic syndrome is a cluster of pathological conditions, including hypertension, hyperglycemia, hypertriglyceridemia, obesity and low HDL levels that is of great concern worldwide, as individuals with metabolic syndrome have an increased risk of type-2 diabetes and cardiovascular disease. Insulin resistance, the key feature of the metabolic syndrome, might be at the same time cause and consequence of impaired lipid composition in plasma membranes of insulin-sensitive tissues like liver, muscle and adipose tissue. Diet intervention has been proposed as a powerful tool to prevent the development of the metabolic syndrome, since healthy diets have been shown to have a protective role against the components of the metabolic syndrome. Particularly, dietary fatty acids are capable of modulating the deleterious effects of these conditions, among other mechanisms, by modifications of the lipid composition of the membranes in insulin-sensitive tissues. However, there is still scarce data based of high-level evidence on the effects of dietary oils on the effects of the metabolic syndrome and its components. This review summarizes the current knowledge on the effects of dietary oils on improving alterations of the components of the metabolic syndrome. It also examines their influence in the modulation of plasma membrane lipid composition and in the functionality of membrane proteins involved in insulin activity, like the insulin receptor, GLUT-4, CD36/FAT and ABCA-1, and their effect in the metabolism of glucose, fatty acids and cholesterol, and, in turn, the key features of the metabolic syndrome. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity

    PubMed Central

    Grover, Rahul; Fischer, Janine; Schwarz, Friedrich W.; Walter, Wilhelm J.; Schwille, Petra; Diez, Stefan

    2016-01-01

    In eukaryotic cells, membranous vesicles and organelles are transported by ensembles of motor proteins. These motors, such as kinesin-1, have been well characterized in vitro as single molecules or as ensembles rigidly attached to nonbiological substrates. However, the collective transport by membrane-anchored motors, that is, motors attached to a fluid lipid bilayer, is poorly understood. Here, we investigate the influence of motors’ anchorage to a lipid bilayer on the collective transport characteristics. We reconstituted “membrane-anchored” gliding motility assays using truncated kinesin-1 motors with a streptavidin-binding peptide tag that can attach to streptavidin-loaded, supported lipid bilayers. We found that the diffusing kinesin-1 motors propelled the microtubules in the presence of ATP. Notably, we found the gliding velocity of the microtubules to be strongly dependent on the number of motors and their diffusivity in the lipid bilayer. The microtubule gliding velocity increased with increasing motor density and membrane viscosity, reaching up to the stepping velocity of single motors. This finding is in contrast to conventional gliding motility assays where the density of surface-immobilized kinesin-1 motors does not influence the microtubule velocity over a wide range. We reason that the transport efficiency of membrane-anchored motors is reduced because of their slippage in the lipid bilayer, an effect that we directly observed using single-molecule fluorescence microscopy. Our results illustrate the importance of motor–cargo coupling, which potentially provides cells with an additional means of regulating the efficiency of cargo transport. PMID:27803325

  3. A PHARMACOKINETIC MODEL FOR ESTIMATING ...

    EPA Pesticide Factsheets

    Empirical evidence suggests that exposure of Americans to dioxin-like compounds was low during the early decades of the 20th century, then increased during the 1940s and 1950s reaching a peak in the 1960s and 1970s, and progressively decreased to lower levels in the 1980s and 1990s. Such evidence includes dioxin analysis of carbon-dated sediment cores of lakes and rivers, preserved meat samples from different decades of the 20th century, and limited body burden measurements of dioxin-like compounds. Pinsky and Lorber (1998) summarized studies measuring 2,3,7,8-TCDD in blood and adipose tissue finding a range of 10-20 pg/g (ppt) lipid during the 1970s, and 2-10 ppt lipid during the 1980s. This study reviews body burdens of dioxin toxic equivalents, TEQs, to find a range from about 50-80 ppt lipid during the 1970s, 30-50 ppt lipid during the 1980s, and 10-20 ppt lipid during the 1990s (TEQs comprised of the 17 dioxin and furan congeners only). Pinsky and Lorber (1998) investigated historical exposure trends for 2,3,7,8-TCDD by using a single-compartment, first-order pharmacokinetic model. The current study extends this prior effort by modeling dioxin TEQs instead of the single compound, 2,3,7,8-TCDD. TEQs are modeled as though they are a single compound, in contrast to an approach where the individual dioxin and furan congeners are modeled separately. It was found that body burdens of TEQs during the 1970s, 80s, and 90s could be modeled by assuming a histor

  4. Factor VIII organisation on nanodiscs with different lipid composition.

    PubMed

    Grushin, Kirill; Miller, Jaimy; Dalm, Daniela; Stoilova-McPhie, Svetla

    2015-04-01

    Nanodiscs (ND) are lipid bilayer membrane patches held by amphiphilic scaffolding proteins (MSP) of ~10 nm in diameter. Nanodiscs have been developed as lipid nanoplatforms for structural and functional studies of membrane and membrane associated proteins. Their size and monodispersity have rendered them unique for electron microscopy (EM) and single particle analysis studies of proteins and complexes either spanning or associated to the ND membrane. Binding of blood coagulation factors and complexes, such as the Factor VIII (FVIII) and the Factor VIIIa - Factor IXa (intrinsic tenase) complex to the negatively charged activated platelet membrane is required for normal haemostasis. In this study we present our work on optimising ND, specifically designed to bind FVIII at close to physiological conditions. The binding of FVIII to the negatively charged ND rich in phosphatidylserine (PS) was followed by electron microscopy at three different PS compositions and two different membrane scaffolding protein (MSP1D1) to lipid ratios. Our results show that the ND with highest PS content (80 %) and lowest MSP1D1 to lipid ratio (1:47) are the most suitable for structure determination of the membrane-bound FVIII by single particle EM. Our preliminary FVIII 3D reconstruction as bound to PS containing ND demonstrates the suitability of the optimised ND for structural studies by EM. Further assembly of the activated FVIII form (FVIIIa) and the whole FVIIIa-FIXa complex on ND, followed by EM and single particle reconstruction will help to identify the protein-protein and protein-membrane interfaces critical for the intrinsic tenase complex assembly and function.

  5. Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review

    PubMed Central

    Meng, Shengxi; Cao, Jianmei; Feng, Qin; Peng, Jinghua; Hu, Yiyang

    2013-01-01

    Intracellular glucose and lipid metabolic homeostasis is vital for maintaining basic life activities of a cell or an organism. Glucose and lipid metabolic disorders are closely related with the occurrence and progression of diabetes, obesity, hepatic steatosis, cardiovascular disease, and cancer. Chlorogenic acid (CGA), one of the most abundant polyphenol compounds in the human diet, is a group of phenolic secondary metabolites produced by certain plant species and is an important component of coffee. Accumulating evidence has demonstrated that CGA exerts many biological properties, including antibacterial, antioxidant, and anticarcinogenic activities. Recently, the roles and applications of CGA, particularly in relation to glucose and lipid metabolism, have been highlighted. This review addresses current studies investigating the roles of CGA in glucose and lipid metabolism. PMID:24062792

  6. Quantifying lipid changes in various membrane compartments using lipid binding protein domains.

    PubMed

    Várnai, Péter; Gulyás, Gergő; Tóth, Dániel J; Sohn, Mira; Sengupta, Nivedita; Balla, Tamas

    2017-06-01

    One of the largest challenges in cell biology is to map the lipid composition of the membranes of various organelles and define the exact location of processes that control the synthesis and distribution of lipids between cellular compartments. The critical role of phosphoinositides, low-abundant lipids with rapid metabolism and exceptional regulatory importance in the control of almost all aspects of cellular functions created the need for tools to visualize their localizations and dynamics at the single cell level. However, there is also an increasing need for methods to determine the cellular distribution of other lipids regulatory or structural, such as diacylglycerol, phosphatidic acid, or other phospholipids and cholesterol. This review will summarize recent advances in this research field focusing on the means by which changes can be described in more quantitative terms. Published by Elsevier Ltd.

  7. Comparison of the lipid composition of oat root and coleoptile plasma membranes: lack of short-term change in response to auxin

    NASA Technical Reports Server (NTRS)

    Sandstrom, R. P.; Cleland, R. E.

    1989-01-01

    The total lipid composition of plasma membranes (PM), isolated by the phase partitioning method from two different oat (Avena sativa L.) tissues, the root and coleoptile, was compared. In general, the PM lipid composition was not conserved between these two organs of the oat seedling. Oat roots contained 50 mole percent phospholipid, 25 mole percent glycolipid, and 25 mole percent free sterol, whereas comparable amounts in the coleoptile were 42, 39, and 19 mole percent, respectively. Individual lipid components within each lipid class also showed large variations between the two tissues. Maximum specific ATPase activity in the root PM was more than double the activity in the coleoptile. Treatment of coleoptile with auxin for 1 hour resulted in no detectable changes in PM lipids or extractable ATPase activity. Differences in the PM lipid composition between the two tissues that may define the limits of ATPase activity are discussed.

  8. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose

    PubMed Central

    Lowry, Troy W.; Prommapan, Plengchart; Rainer, Quinn; Van Winkle, David; Lenhert, Steven

    2015-01-01

    Lipid multilayer gratings are recently invented nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. Here, we show that nanointaglio is suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used here is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. PMID:26308001

  9. Kruppel-like factor 15 regulates skeletal muscle lipid flux and exercise adaptation

    PubMed Central

    Haldar, Saptarsi M.; Jeyaraj, Darwin; Anand, Priti; Zhu, Han; Lu, Yuan; Prosdocimo, Domenick A.; Eapen, Betty; Kawanami, Daiji; Okutsu, Mitsuharu; Brotto, Leticia; Fujioka, Hisashi; Kerner, Janos; Rosca, Mariana G.; McGuinness, Owen P.; Snow, Rod J.; Russell, Aaron P.; Gerber, Anthony N.; Bai, Xiaodong; Yan, Zhen; Nosek, Thomas M.; Brotto, Marco; Hoppel, Charles L.; Jain, Mukesh K.

    2012-01-01

    The ability of skeletal muscle to enhance lipid utilization during exercise is a form of metabolic plasticity essential for survival. Conversely, metabolic inflexibility in muscle can cause organ dysfunction and disease. Although the transcription factor Kruppel-like factor 15 (KLF15) is an important regulator of glucose and amino acid metabolism, its endogenous role in lipid homeostasis and muscle physiology is unknown. Here we demonstrate that KLF15 is essential for skeletal muscle lipid utilization and physiologic performance. KLF15 directly regulates a broad transcriptional program spanning all major segments of the lipid-flux pathway in muscle. Consequently, Klf15-deficient mice have abnormal lipid and energy flux, excessive reliance on carbohydrate fuels, exaggerated muscle fatigue, and impaired endurance exercise capacity. Elucidation of this heretofore unrecognized role for KLF15 now implicates this factor as a central component of the transcriptional circuitry that coordinates physiologic flux of all three basic cellular nutrients: glucose, amino acids, and lipids. PMID:22493257

  10. Emerging roles for lipids in non-apoptotic cell death

    PubMed Central

    Magtanong, L; Ko, P J; Dixon, S J

    2016-01-01

    Non-apoptotic regulated cell death (RCD) is essential to maintain organismal homeostasis and may be aberrantly activated during certain pathological states. Lipids are emerging as key components of several non-apoptotic RCD pathways. For example, a direct interaction between membrane phospholipids and the pore-forming protein mixed lineage kinase domain-like (MLKL) is needed for the execution of necroptosis, while the oxidative destruction of membrane polyunsaturated fatty acids (PUFAs), following the inactivation of glutathione peroxidase 4 (GPX4), is a requisite gateway to ferroptosis. Here, we review the roles of lipids in the initiation and execution of these and other forms of non-apoptotic cell death. We also consider new technologies that are allowing for the roles of lipids and lipid metabolism in RCD to be probed in increasingly sophisticated ways. In certain cases, this new knowledge may enable the development of therapies that target lipids and lipid metabolic processes to enhance or suppress specific non-apoptotic RCD pathways. PMID:26967968

  11. Evolutionarily conserved gene family important for fat storage

    PubMed Central

    Kadereit, Bert; Kumar, Pradeep; Wang, Wen-Jun; Miranda, Diego; Snapp, Erik L.; Severina, Nadia; Torregroza, Ingrid; Evans, Todd; Silver, David L.

    2008-01-01

    The ability to store fat in the form of cytoplasmic triglyceride droplets is conserved from Saccharomyces cerevisiae to humans. Although much is known regarding the composition and catabolism of lipid droplets, the molecular components necessary for the biogenesis of lipid droplets have remained obscure. Here we report the characterization of a conserved gene family important for lipid droplet formation named fat-inducing transcript (FIT). FIT1 and FIT2 are endoplasmic reticulum resident membrane proteins that induce lipid droplet accumulation in cell culture and when expressed in mouse liver. shRNA silencing of FIT2 in 3T3-LI adipocytes prevents accumulation of lipid droplets, and depletion of FIT2 in zebrafish blocks diet-induced accumulation of lipid droplets in the intestine and liver, highlighting an important role for FIT2 in lipid droplet formation in vivo. Together these studies identify and characterize a conserved gene family that is important in the fundamental process of storing fat. PMID:18160536

  12. The effect of rosemary (Rosmarinus officinalis L.) extract on the oxidative stability of lipids in cow and soy milk enriched with fish oil.

    PubMed

    Qiu, Xujian; Jacobsen, Charlotte; Sørensen, Ann-Dorit Moltke

    2018-10-15

    Lipid oxidation of fish oil enriched cow milk and soy milk supplemented with rosemary extract stored at 2 °C was studied. Both peroxide value and volatile secondary lipid oxidation products were determined to monitor the progress of lipid oxidation. Rosemary extract inhibited lipid oxidation in fish oil enriched cow milk. In contrast, soy milk samples having much higher unsaturated fatty acid content showed higher lipid oxidation stability compared to cow milk. Reduction in the content of chlorogenic acid during storage suggested that this compound may contribute to the lipid oxidation stability of fish oil enriched soy milk product. Total carnosic acid and carnosol concentration declined much faster in soy milk than in cow milk. It is suggested from the results that food components could have significant impact on the fate of bioactive antioxidant compounds in a specific food product during storage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. It’s a lipid’s world: Bioactive lipid metabolism and signaling in neural stem cell differentiation

    PubMed Central

    Bieberich, Erhard

    2012-01-01

    Lipids are often considered membrane components whose function is to embed proteins into cell membranes. In the last two decades, studies on brain lipids have unequivocally demonstrated that many lipids have critical cell signaling functions; they are called “bioactive lipids”. Pioneering work in Dr. Robert Ledeen’s laboratory has shown that two bioactive brain sphingolipids, sphingomyelin and the ganglioside GM1 are major signaling lipids in the nuclear envelope. In addition to derivatives of the sphingolipid ceramide, the bioactive lipids discussed here belong to the classes of terpenoids and steroids, eicosanoids, and lysophospholipids. These lipids act mainly through two mechanisms: 1) direct interaction between the bioactive lipid and a specific protein binding partner such as a lipid receptor, protein kinase or phosphatase, ion exchanger, or other cell signaling protein; and 2) formation of lipid microdomains or rafts that regulate the activity of a group of raft-associated cell signaling proteins. In recent years, a third mechanism has emerged, which invokes lipid second messengers as a regulator for the energy and redox balance of differentiating neural stem cells (NSCs). Interestingly, developmental niches such as the stem cell niche for adult NSC differentiation may also be metabolic compartments that respond to a distinct combination of bioactive lipids. The biological function of these lipids as regulators of NSC differentiation will be reviewed and their application in stem cell therapy discussed. PMID:22246226

  14. Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion.

    PubMed

    Ryham, Rolf J; Klotz, Thomas S; Yao, Lihan; Cohen, Fredric S

    2016-03-08

    We use continuum mechanics to calculate an entire least energy pathway of membrane fusion, from stalk formation, to pore creation, and through fusion pore enlargement. The model assumes that each structure in the pathway is axially symmetric. The static continuum stalk structure agrees quantitatively with experimental stalk architecture. Calculations show that in a stalk, the distal monolayer is stretched and the stored stretching energy is significantly less than the tilt energy of an unstretched distal monolayer. The string method is used to determine the energy of the transition barriers that separate intermediate states and the dynamics of two bilayers as they pass through them. Hemifusion requires a small amount of energy independently of lipid composition, while direct transition from a stalk to a fusion pore without a hemifusion intermediate is highly improbable. Hemifusion diaphragm expansion is spontaneous for distal monolayers containing at least two lipid components, given sufficiently negative diaphragm spontaneous curvature. Conversely, diaphragms formed from single-component distal monolayers do not expand without the continual injection of energy. We identify a diaphragm radius, below which central pore expansion is spontaneous. For larger diaphragms, prior studies have shown that pore expansion is not axisymmetric, and here our calculations supply an upper bound for the energy of the barrier against pore formation. The major energy-requiring deformations in the steps of fusion are: widening of a hydrophobic fissure in bilayers for stalk formation, splay within the expanding hemifusion diaphragm, and fissure widening initiating pore formation in a hemifusion diaphragm. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Beneficial effects of sustained activity on the use of dietary protein and carbohydrate traced with stable isotopes 15N and 13C in gilthead sea bream (Sparus aurata).

    PubMed

    Felip, O; Blasco, J; Ibarz, A; Martin-Perez, M; Fernández-Borràs, J

    2013-02-01

    To determine the effects of sustained swimming on the use and fate of dietary nutrients in gilthead sea bream, a group of fish were forced to undertake moderate and sustained swimming (1.5 BL s(-1)) for 3 weeks and compared with a control group undertaking voluntary activity. The exercise group showed a significant increase in specific growth rate (C: 1.13 ± 0.05; E: 1.32 ± 0.06 % day(-1), P < 0.05) with no significant change in food intake (C: 3.56 ± 0.20; E: 3.84 ± 0.03 % of body weight). The addition of (13)C-starch and (15)N-protein to a single meal of 1 % ration allowed analysis of the fate of both nutrients in several tissues and in their components, 6 and 24 h after force-feeding. In exercised fish improved redistribution of dietary components increased the use of carbohydrates and lipid as fuels. Gilthead sea bream have a considerable capacity for carbohydrate absorption irrespective of swimming conditions, but in trained fish (13)C rose in all liver fractions with no changes in store contents. This implies higher nutrient turnover with exercise. Higher retention of dietary protein (higher (15)N uptake into white muscle during the entire post-prandial period) was found under sustained exercise, highlighting the protein-sparing effect. The combined effects of a carbohydrate-rich, low-protein diet plus sustained swimming enhanced amino acid retention and also prevented excessive lipid deposition in gilthead sea bream.

  16. In vivo and in situ monitoring of the nitric oxide stimulus response of single cancer cells by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Su, L.; Chen, Y.; Zhang, G. N.; Wang, L. H.; Shen, A. G.; Zhou, X. D.; Wang, X. H.; Hu, J. M.

    2013-04-01

    Raman spectroscopy is capable of studying time-resolved information of selected biomolecular distributions inside individual cells without labeling. In this study, Raman spectroscopy was for the first time utilized to in vivo and in situ monitor the cellular response to nitric oxide (NO) in single oral squamous cell carcinoma (OSCC) cells over a period of 24 h. Sodium nitroprusside (SNP) was chosen as a NO donor to be incubated with the OSCC cell line (TCA8113) for certain time intervals. In vivo and in situ Raman analysis revealed that the degradation and conformational changes of nucleic acids, lipids and proteins could be directly observed by changes in the characteristic Raman bands. In comparison with conventional flow cytometric analysis, Raman spectroscopy not only detected more subtle NO-induced chemical changes of cells, where the SNP concentration could be even less than 1 mM, but also provided a full view of the whole chemical components of single cells. Raman spectroscopy therefore is an important candidate for label-free, nondestructive and in situ monitoring of cellular changes in response to chemotherapeutic agents, which could potentially be used in rapid screening of novel drugs.

  17. Design and Application of Sensors for Chemical Cytometry.

    PubMed

    Vickerman, Brianna M; Anttila, Matthew M; Petersen, Brae V; Allbritton, Nancy L; Lawrence, David S

    2018-02-08

    The bulk cell population response to a stimulus, be it a growth factor or a cytotoxic agent, neglects the cell-to-cell variability that can serve as a friend or as a foe in human biology. Biochemical variations among closely related cells furnish the basis for the adaptability of the immune system but also act as the root cause of resistance to chemotherapy by tumors. Consequently, the ability to probe for the presence of key biochemical variables at the single-cell level is now recognized to be of significant biological and biomedical impact. Chemical cytometry has emerged as an ultrasensitive single-cell platform with the flexibility to measure an array of cellular components, ranging from metabolite concentrations to enzyme activities. We briefly review the various chemical cytometry strategies, including recent advances in reporter design, probe and metabolite separation, and detection instrumentation. We also describe strategies for improving intracellular delivery, biochemical specificity, metabolic stability, and detection sensitivity of probes. Recent applications of these strategies to small molecules, lipids, proteins, and other analytes are discussed. Finally, we assess the current scope and limitations of chemical cytometry and discuss areas for future development to meet the needs of single-cell research.

  18. Effects of Quercetin Supplementation on Lipid and Protein Metabolism after Classic Boxing Training

    ERIC Educational Resources Information Center

    Demirci, Nevzat

    2017-01-01

    The metabolic fitness (MF) is a component of athletes' physical conditioning. This study aims to investigate the effects of quercetin supplementation on Turkish Junior athletes' lipid and protein metabolism relating to MF after one month classic boxing training. Totally 20 voluntary junior male athletes were separated into two equal groups as the…

  19. Lipid-Based Passivation in Nanofluidics

    PubMed Central

    2012-01-01

    Stretching DNA in nanochannels is a useful tool for direct, visual studies of genomic DNA at the single molecule level. To facilitate the study of the interaction of linear DNA with proteins in nanochannels, we have implemented a highly effective passivation scheme based on lipid bilayers. We demonstrate virtually complete long-term passivation of nanochannel surfaces to a range of relevant reagents, including streptavidin-coated quantum dots, RecA proteins, and RecA–DNA complexes. We show that the performance of the lipid bilayer is significantly better than that of standard bovine serum albumin-based passivation. Finally, we show how the passivated devices allow us to monitor single DNA cleavage events during enzymatic degradation by DNase I. We expect that our approach will open up for detailed, systematic studies of a wide range of protein–DNA interactions with high spatial and temporal resolution. PMID:22432814

  20. Lipid composition of leprosy-derived corynebacteria, a distinct group of corynebacteria, and of a reference Corynebacterium.

    PubMed

    Gailly, C; David, F; Sandra, P; Laneelle, M A; Cocito, C

    1993-01-01

    Leprosy-derived corynebacteria (LDC) are diphtheroid organisms isolated from leprosy patients and previously characterized by DNA and cell wall analysis. Three groups of LDC components of taxonomic value, glycolipids, and phospholipids and cell-wall-bound lipids were analyzed in comparison with those of a reference strain C. hoffmannii (CH). The main CH glycolipid, "cord factor" (trehalose dimycolate), was missing from LDC. Among phospholipids, phosphatidylinositol and phosphatidylglycerol had lowered proportions in LDC, as compared to CH, whereas phosphatidylethanolamine and cardiolipin were absent from both microorganisms. Bound lipids in acidic extracts of delipidated LDC yielded arabinose corynomycolate in lesser quantity with respect to CH. Alkaline hydrolysis of whole cells released fatty acids and mycolic acids, which were analyzed by gas chromatography/mass spectrometry. Reference CH, grown in the absence of serum, yielded C16:0 and C18:1 (major) and C18:0 (minor) fatty acids, as well as C32, C34, and C36 corynomycolic acids. All these components, particularly mycolates, had lowered proportions when this organism was grown in the presence of serum. Dominant LDC components were, in addition to C16:0, C18:0, and CI8:u fatty acids, cholesterol from serum. Very low concentrations of corynomycolic acids with a high degree of unsaturation were found in these organisms, suggesting a dependence of lipid metabolism on growth conditions. The presence in LDC of tuberculostearic acid (C19r:0), a mycobacterial component found in some pathogenic corynebacteria, was carefully explored: Traces of C19r:0 were found in LDC 19 grown in the presence of delipidated serum, but not in LDC 15 nor in C. hoffmannii. Present data, in conjunction with previous studies on DNA and mycolic acids, disclose basic differences in the composition of LDC and conventional corynebacteria.

  1. Hepatically-metabolized and -excreted artificial oxygen carrier, hemoglobin vesicles, can be safely used under conditions of hepatic impairment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taguchi, Kazuaki; Miyasato, Mayumi; Ujihira, Hayato

    2010-11-01

    The hemoglobin vesicle (HbV) is an artificial oxygen carrier in which a concentrated Hb solution is encapsulated in lipid vesicles. Our previous studies demonstrated that HbV is metabolized by the mononuclear phagocyte system, and the lipid components are excreted from the liver. It is well-known that many hepatically-metabolized and -excreted drugs show altered pharmaceutics under conditions of liver impairment, which results in adverse effects. The aim of this study was to determine whether the administration of HbV causes toxicity in rats with carbon tetrachloride induced liver cirrhosis. Changes in plasma biochemical parameters, histological staining and the pharmacokinetic distribution of HbVmore » were evaluated after an HbV injection of the above model rats at a putative clinical dose (1400 mgHb/kg). Plasma biochemical parameters were not significantly affected, except for a transient elevation of lipase, lipid components and bilirubin, which recovered within 14 days after an HbV infusion. Negligible morphological changes were observed in the kidney, liver, spleen, lung and heart. Hemosiderin, a marker of iron accumulation in organs, was observed in the liver and spleen up to 14 days after HbV treatment, but no evidence of oxidative stress in the plasma and liver were observed. HbV is mainly distributed in the liver and spleen, and the lipid components are excreted into feces within 7 days. In conclusion, even under conditions of hepatic cirrhosis, HbV and its components exhibit the favorable metabolic and excretion profile at the putative clinical dose. These findings provide further support for the safety and effectiveness of HbV in clinical settings.« less

  2. The role of lipids in host microbe interactions.

    PubMed

    Lang, Roland; Mattner, Jochen

    2017-06-01

    Lipids are one of the major subcellular constituents and serve as signal molecules, energy sources, metabolic precursors and structural membrane components in various organisms. The function of lipids can be modified by multiple biochemical processes such as (de-)phosphorylation or (de-)glycosylation, and the organization of fatty acids into distinct cellular pools and subcellular compartments plays a pivotal role for the morphology and function of various cell populations. Thus, lipids regulate, for example, phagosome formation and maturation within host cells and thus, are critical for the elimination of microbial pathogens. Vice versa, microbial pathogens can manipulate the lipid composition of phagosomal membranes in host cells, and thus avoid their delivery to phagolysosomes. Lipids of microbial origin belong also to the strongest and most versatile inducers of mammalian immune responses upon engagement of distinct receptors on myeloid and lymphoid cells. Furthermore, microbial lipid toxins can induce membrane injuries and cell death. Thus, we will review here selected examples for mutual host-microbe interactions within the broad and divergent universe of lipids in microbial defense, tissue injury and immune evasion.

  3. Synaptic membrane rafts: traffic lights for local neurotrophin signaling?

    PubMed

    Zonta, Barbara; Minichiello, Liliana

    2013-10-18

    Lipid rafts, cholesterol and lipid rich microdomains, are believed to play important roles as platforms for the partitioning of transmembrane and synaptic proteins involved in synaptic signaling, plasticity, and maintenance. There is increasing evidence of a physical interaction between post-synaptic densities and post-synaptic lipid rafts. Localization of proteins within lipid rafts is highly regulated, and therefore lipid rafts may function as traffic lights modulating and fine-tuning neuronal signaling. The tyrosine kinase neurotrophin receptors (Trk) and the low-affinity p75 neurotrophin receptor (p75(NTR)) are enriched in neuronal lipid rafts together with the intermediates of downstream signaling pathways, suggesting a possible role of rafts in neurotrophin signaling. Moreover, neurotrophins and their receptors are involved in the regulation of cholesterol metabolism. Cholesterol is an important component of lipid rafts and its depletion leads to gradual loss of synapses, underscoring the importance of lipid rafts for proper neuronal function. Here, we review and discuss the idea that translocation of neurotrophin receptors in synaptic rafts may account for the selectivity of their transduced signals.

  4. Single-step assembly of cationic lipid-polymer hybrid nanoparticles for systemic delivery of siRNA.

    PubMed

    Yang, Xian-Zhu; Dou, Shuang; Wang, Yu-Cai; Long, Hong-Yan; Xiong, Meng-Hua; Mao, Cheng-Qiong; Yao, Yan-Dan; Wang, Jun

    2012-06-26

    The clinical success of therapeutics of small interfering RNA (siRNA) is still hindered by its delivery systems. Cationic polymer or lipid-based vehicles as the major delivery systems of siRNA cannot sufficiently satisfy siRNA therapeutic applications. It is hypothesized that cationic lipid-polymer hybrid nanoparticles may take advantage of both polymeric and lipid-based nanoparticles for siRNA delivery, while diminishing the shortcomings of both. In this study, cationic lipid-polymer hybrid nanoparticles were prepared by a single-step nanoprecipitation of a cationic lipid (N,N-bis(2-hydroxyethyl)-N-methyl-N-(2-cholesteryloxycarbonyl aminoethyl) ammonium bromide, BHEM-Chol) and amphiphilic polymers for systemic delivery of siRNA. The formed hybrid nanoparticles comprised a hydrophobic polylactide core, a hydrophilic poly(ethylene glycol) shell, and a cationic lipid monolayer at the interface of the core and the shell. Such hybrid nanoparticles exhibited excellent stability in serum and showed significantly improved biocompatibility compared to that of pure BHEM-Chol particles. The hybrid nanoparticles were capable of delivering siRNA into BT474 cells and facilitated the escape of loaded siRNA from the endosome into the cytoplasm. The hybrid nanoparticles carrying polo-like kinase 1 (Plk1)-specific siRNA (siPlk1) remarkably and specifically downregulated expression of the oncogene Plk1 and induced cancer cell apoptosis both in vitro and in vivo and significantly suppressed tumor growth following systemic administration. We demonstrate that this system is stable, nontoxic, highly efficient, and easy to scale up, bringing the clinical application of siRNA therapy one important step closer to reality.

  5. Partial deficiency of CTRP12 alters hepatic lipid metabolism

    PubMed Central

    Tan, Stefanie Y.; Little, Hannah C.; Lei, Xia; Li, Shuoyang; Rodriguez, Susana

    2016-01-01

    Secreted hormones play pivotal roles in tissue cross talk to maintain physiologic blood glucose and lipid levels. We previously showed that C1q/TNF-related protein 12 (CTRP12) is a novel secreted protein involved in regulating glucose metabolism whose circulating levels are reduced in obese and insulin-resistant mouse models. Its role in lipid metabolism, however, is unknown. Using a novel heterozygous mouse model, we show that the loss of a single copy of the Ctrp12 gene (also known as Fam132a and adipolin) affects whole body lipid metabolism. In Ctrp12 (+/−) male mice fed a control low-fat diet, hepatic fat oxidation was upregulated while hepatic VLDL-triglyceride secretion was reduced relative to wild-type (WT) littermates. When challenged with a high-fat diet, Ctrp12 (+/−) male mice had impaired lipid clearance in response to acute lipid gavage, reduced hepatic triglyceride secretion, and greater steatosis with higher liver triglyceride and cholesterol levels. Unlike male mice, Ctrp12 (+/−) female mice fed a control low-fat diet were indistinguishable from WT littermates. When obesity was induced by high-fat feeding, Ctrp12 (+/−) female mice developed mild insulin resistance with impaired insulin tolerance. In contrast to male mice, hepatic triglyceride secretion was increased in Ctrp12 (+/−) female mice fed a high-fat diet. Thus, in different dietary and metabolic contexts, loss of a single Ctrp12 allele affects glucose and lipid metabolism in a sex-dependent manner, highlighting the importance of genetic and environmental determinants of metabolic phenotypes. PMID:27815536

  6. Partial deficiency of CTRP12 alters hepatic lipid metabolism.

    PubMed

    Tan, Stefanie Y; Little, Hannah C; Lei, Xia; Li, Shuoyang; Rodriguez, Susana; Wong, G William

    2016-12-01

    Secreted hormones play pivotal roles in tissue cross talk to maintain physiologic blood glucose and lipid levels. We previously showed that C1q/TNF-related protein 12 (CTRP12) is a novel secreted protein involved in regulating glucose metabolism whose circulating levels are reduced in obese and insulin-resistant mouse models. Its role in lipid metabolism, however, is unknown. Using a novel heterozygous mouse model, we show that the loss of a single copy of the Ctrp12 gene (also known as Fam132a and adipolin) affects whole body lipid metabolism. In Ctrp12 (+/-) male mice fed a control low-fat diet, hepatic fat oxidation was upregulated while hepatic VLDL-triglyceride secretion was reduced relative to wild-type (WT) littermates. When challenged with a high-fat diet, Ctrp12 (+/-) male mice had impaired lipid clearance in response to acute lipid gavage, reduced hepatic triglyceride secretion, and greater steatosis with higher liver triglyceride and cholesterol levels. Unlike male mice, Ctrp12 (+/-) female mice fed a control low-fat diet were indistinguishable from WT littermates. When obesity was induced by high-fat feeding, Ctrp12 (+/-) female mice developed mild insulin resistance with impaired insulin tolerance. In contrast to male mice, hepatic triglyceride secretion was increased in Ctrp12 (+/-) female mice fed a high-fat diet. Thus, in different dietary and metabolic contexts, loss of a single Ctrp12 allele affects glucose and lipid metabolism in a sex-dependent manner, highlighting the importance of genetic and environmental determinants of metabolic phenotypes. Copyright © 2016 the American Physiological Society.

  7. Nanoscale Packing Differences in Sphingomyelin and Phosphatidylcholine Revealed by BODIPY Fluorescence in Monolayers: Physiological Implications

    PubMed Central

    2015-01-01

    Phosphatidycholines (PC) with two saturated acyl chains (e.g., dipalmitoyl) mimic natural sphingomyelin (SM) by promoting raft formation in model membranes. However, sphingoid-based lipids, such as SM, rather than saturated-chain PCs have been implicated as key components of lipid rafts in biomembranes. These observations raise questions about the physical packing properties of the phase states that can be formed by these two major plasma membrane lipids with identical phosphocholine headgroups. To investigate, we developed a monolayer platform capable of monitoring changes in surface fluorescence by acquiring multiple spectra during measurement of a lipid force–area isotherm. We relied on the concentration-dependent emission changes of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-labeled PC to detect nanoscale alterations in lipid packing and phase state induced by monolayer lateral compression. The BODIPY-PC probe contained an indacene ring with four symmetrically located methyl (Me) substituents to enhance localization to the lipid hydrocarbon region. Surface fluorescence spectra indicated changes in miscibility even when force–area isotherms showed no deviation from ideal mixing behavior in the surface pressure versus cross-sectional molecular area response. We detected slightly better mixing of Me4-BODIPY-8-PC with the fluid-like, liquid expanded phase of 1-palmitoyl-2-oleoyl-PC compared to N-oleoyl-SM. Remarkably, in the gel-like, liquid condensed phase, Me4-BODIPY-8-PC mixed better with N-palmitoyl-SM than dipalmitoyl-PC, suggesting naturally abundant SMs with saturated acyl chains form gel-like lipid phase(s) with enhanced ability to accommodate deeply embedded components compared to dipalmitoyl-PC gel phase. The findings reveal a fundamental difference in the lateral packing properties of SM and PC that occurs even when their acyl chains match. PMID:24564829

  8. Crystallization modifiers in lipid systems.

    PubMed

    Ribeiro, Ana Paula Badan; Masuchi, Monise Helen; Miyasaki, Eriksen Koji; Domingues, Maria Aliciane Fontenele; Stroppa, Valter Luís Zuliani; de Oliveira, Glazieli Marangoni; Kieckbusch, Theo Guenter

    2015-07-01

    Crystallization of fats is a determinant physical event affecting the structure and properties of fat-based products. The stability of these processed foods is regulated by changes in the physical state of fats and alterations in their crystallization behavior. Problems like polymorphic transitions, oil migration, fat bloom development, slow crystallization and formation of crystalline aggregates stand out. The change of the crystallization behavior of lipid systems has been a strategic issue for the processing of foods, aiming at taylor made products, reducing costs, improving quality, and increasing the applicability and stability of different industrial fats. In this connection, advances in understanding the complex mechanisms that govern fat crystallization led to the development of strategies in order to modulate the conventional processes of fat structuration, based on the use of crystallization modifiers. Different components have been evaluated, such as specific triacyglycerols, partial glycerides (monoacylglycerols and diacylglycerols), free fatty acids, phospholipids and emulsifiers. The knowledge and expertise on the influence of these specific additives or minor lipids on the crystallization behavior of fat systems represents a focus of current interest for the industrial processing of oils and fats. This article presents a comprehensive review on the use of crystallization modifiers in lipid systems, especially for palm oil, cocoa butter and general purpose fats, highlighting: i) the removal, addition or fractionation of minor lipids in fat bases; ii) the use of nucleating agents to modify the crystallization process; iii) control of crystallization in lipid bases by using emulsifiers. The addition of these components into lipid systems is discussed in relation to the phenomena of nucleation, crystal growth, morphology, thermal behavior and polymorphism, with the intention of providing the reader with a complete panorama of the associated mechanisms with crystallization of fats and oils.

  9. Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes.

    PubMed

    Vetrivel, Kulandaivelu S; Cheng, Haipeng; Lin, William; Sakurai, Takashi; Li, Tong; Nukina, Nobuyuki; Wong, Philip C; Xu, Huaxi; Thinakaran, Gopal

    2004-10-22

    Alzheimer's disease-associated beta-amyloid peptides (Abeta) are generated by the sequential proteolytic processing of amyloid precursor protein (APP) by beta- and gamma-secretases. There is growing evidence that cholesterol- and sphingolipid-rich membrane microdomains are involved in regulating trafficking and processing of APP. BACE1, the major beta-secretase in neurons is a palmitoylated transmembrane protein that resides in lipid rafts. A subset of APP is subject to amyloidogenic processing by BACE1 in lipid rafts, and this process depends on the integrity of lipid rafts. Here we describe the association of all four components of the gamma-secretase complex, namely presenilin 1 (PS1)-derived fragments, mature nicastrin, APH-1, and PEN-2, with cholesterol-rich detergent insoluble membrane (DIM) domains of non-neuronal cells and neurons that fulfill the criteria of lipid rafts. In PS1(-/-)/PS2(-/-) and NCT(-/-) fibroblasts, gamma-secretase components that still remain fail to become detergent-resistant, suggesting that raft association requires gamma-secretase complex assembly. Biochemical evidence shows that subunits of the gamma-secretase complex and three TGN/endosome-resident SNAREs cofractionate in sucrose density gradients, and show similar solubility or insolubility characteristics in distinct non-ionic and zwitterionic detergents, indicative of their co-residence in membrane microdomains with similar protein-lipid composition. This notion is confirmed using magnetic immunoisolation of PS1- or syntaxin 6-positive membrane patches from a mixture of membranes with similar buoyant densities following Lubrol WX extraction or sonication, and gradient centrifugation. These findings are consistent with the localization of gamma-secretase in lipid raft microdomains of post-Golgi and endosomes, organelles previously implicated in amyloidogenic processing of APP.

  10. Association of γ-Secretase with Lipid Rafts in Post-Golgi and Endosome Membranes*

    PubMed Central

    Vetrivel, Kulandaivelu S.; Cheng, Haipeng; Lin, William; Sakurai, Takashi; Li, Tong; Nukina, Nobuyuki; Wong, Philip C.; Xu, Huaxi; Thinakaran, Gopal

    2005-01-01

    Alzheimer’s disease-associated β-amyloid peptides (Aβ) are generated by the sequential proteolytic processing of amyloid precursor protein (APP) by β- and γ-secretases. There is growing evidence that cholesterol- and sphingolipid-rich membrane microdomains are involved in regulating trafficking and processing of APP. BACE1, the major γ-secretase in neurons is a palmi-toylated transmembrane protein that resides in lipid rafts. A subset of APP is subject to amyloidogenic processing by BACE1 in lipid rafts, and this process depends on the integrity of lipid rafts. Here we describe the association of all four components of the γ-secretase complex, namely presenilin 1 (PS1)-derived fragments, mature nicastrin, APH-1, and PEN-2, with cholesterol-rich detergent insoluble membrane (DIM) domains of non-neuronal cells and neurons that fulfill the criteria of lipid rafts. In PS1−/−/PS2−/− and NCT−/− fibroblasts, γ-secretase components that still remain fail to become detergent-resistant, suggesting that raft association requires γ-secretase complex assembly. Biochemical evidence shows that subunits of the γ-secretase complex and three TGN/endosome-resident SNAREs cofractionate in sucrose density gradients, and show similar solubility or insolubility characteristics in distinct non-ionic and zwitterionic detergents, indicative of their co-residence in membrane microdomains with similar protein-lipid composition. This notion is confirmed using magnetic immunoisolation of PS1- or syntaxin 6-positive membrane patches from a mixture of membranes with similar buoyant densities following Lubrol WX extraction or sonication, and gradient centrifugation. These findings are consistent with the localization of γ-secretase in lipid raft microdomains of post-Golgi and endosomes, organelles previously implicated in amyloidogenic processing of APP. PMID:15322084

  11. Optimisation of critical medium components and culture conditions for enhanced biomass and lipid production in the oleaginous diatom Navicula phyllepta: a statistical approach.

    PubMed

    Sabu, Sanyo; Singh, Isaac Sarojini Bright; Joseph, Valsamma

    2017-12-01

    Diatoms hold great promise as potential sources of biofuel production. In the present study, the biomass and lipid production in the marine diatom Navicula phyllepta, isolated from Cochin estuary, India and identified as a potential biodiesel feedstock, were optimized using Plackett-Burman (PB) statistical experimental design followed by central composite design (CCD) and response surface methodology (RSM). The growth analyses of the isolate in different nitrogen sources, salinities and five different enriched sea water media showed the best growth in the cheapest medium with minimum components using urea as nitrogen source at salinity between 25 and 40 g kg -1 . Plackett-Burman experimental analyses for screening urea, sodium metasilicate, sodium dihydrogen phosphate, ferric chloride, salinity, temperature, pH and agitation influencing lipid and biomass production showed that silicate and temperature had a positive coefficient on biomass production, and temperature had a significant positive coefficient, while urea and phosphate showed a negative coefficient on lipid content. A 2 4 factorial central composite design (FCCD) was used to optimize the concentration of the factors selected. The optimized media resulted in 1.62-fold increase (64%) in biomass (1.2 ± 0.08 g L -1 ) and 1.2-fold increase (22%) in estimated total lipid production (0.11 ± 0.003 g L -1 ) compared to original media within 12 days of culturing. A significantly higher biomass and lipid production in the optimized medium demands further development of a two-stage strategy of biomass production followed by induction of high lipid production under nutrient limitation or varying culture conditions for large-scale production of biodiesel from the marine diatom.

  12. Characteristic of lipids and fatty acid compositions of the neon flying squid, Ommastrephes bartramii.

    PubMed

    Saito, Hiroaki; Ishikawa, Satoru

    2012-01-01

    The lipids and fatty acids of the neon flying squid (Ommastrephes bartramii) were an-alyzed to clarify its lipid physiology and health benefit as marine food. Triacylglycerols were the only major component in the digestive gland (liver). In all other organs (mantle, arm, integument, and ovary), sterols and phospholipids were the major components with noticeable levels of ceramide aminoethyl phosphonate and sphingomyelin. The significant levels of sphingolipids suggest the O. bartramii lipids is a useful source for cosmetics. Although the lipid content between the liver and all other tissues markedly differed from each other, the same nine dominant fatty acids in the triacylglycerols were found in all organs; 14:0, 16:0, 18:0, 18:1n-9, 20:1n-9, 20:1n-11, 22:1n-11, 20:5n-3 (icosapentaenoic acid, EPA), and 22:6n-3 (docosahexaenoic acid, DHA). Unusually high 20:1n-11 levels in the O. bartramii triacylglycerols were probably characteristic for western Pacific animal depot lipids, compared with non-detectable levels of 20:1n-11 reported in other marine animals. O. bartramii concurrently has high levels of DHA in their triacylglycerols. The major fatty acids in the phospholipids were 16:0, 18:0, 20:1n-9, EPA, and DHA without 20:1n-11. Markedly high levels of both EPA and DHA were observed in phosphatidylethanolamine, while only DHA was found as the major one in phosphatidylcholine. In particular, high levels of DHA were found both in its depot triacylglycerols and tissue phospholipids in all organs of O. bartramii, similar to that in highly migratory fishes. The high DHA levels in all its organs suggest that O. bartramii lipids is a healthy marine source for DHA supplements.

  13. In-Plane Correlations in a Polymer-Supported Lipid Membrane Measured by Off-Specular Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Jablin, Michael S.; Zhernenkov, Mikhail; Toperverg, Boris P.; Dubey, Manish; Smith, Hillary L.; Vidyasagar, Ajay; Toomey, Ryan; Hurd, Alan J.; Majewski, Jaroslaw

    2011-04-01

    Polymer-supported single lipid bilayers are models to study configurations of cell membranes. We used off-specular neutron scattering to quantify in-plane height-height correlations of interfacial fluctuations of such a lipid bilayer. As temperature decreased from 37°C to 25°C, the polymer swells and the polymer-supported lipid membrane deviates from its initially nearly planar structure. A correlation length characteristic of capillary waves changes from 30μm at 37°C to 11μm at 25°C, while the membrane bending rigidity remains roughly constant in this temperature range.

  14. Lipid extraction from microalgae using a single ionic liquid

    DOEpatents

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2013-05-28

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

  15. Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvedova, Anna A.; Kisin, Elena R.; Murray, Ashley R.

    2007-06-15

    Exposure of mice to single-walled carbon nanotubes (SWCNTs) induces an unusually robust pulmonary inflammatory response with an early onset of fibrosis, which is accompanied by oxidative stress and antioxidant depletion. The role of specific components of the antioxidant protective system, specifically vitamin E, the major lipid-soluble antioxidant, in the SWCNT-induced reactions has not been characterized. We used C57BL/6 mice, maintained on vitamin E-sufficient or vitamin E-deficient diets, to explore and compare the pulmonary inflammatory reactions to aspired SWCNTs. The vitamin E-deficient diet caused a 90-fold depletion of {alpha}-tocopherol in the lung tissue and resulted in a significant decline of othermore » antioxidants (GSH, ascorbate) as well as accumulation of lipid peroxidation products. A greater decrease of pulmonary antioxidants was detected in SWCNT-treated vitamin E-deficient mice as compared to controls. Lowered levels of antioxidants in vitamin E-deficient mice were associated with a higher sensitivity to SWCNT-induced acute inflammation (total number of inflammatory cells, number of polymorphonuclear leukocytes, released LDH, total protein content and levels of pro-inflammatory cytokines, TNF-{alpha} and IL-6) and enhanced profibrotic responses (elevation of TGF-{beta} and collagen deposition). Exposure to SWCNTs markedly shifted the ratio of cleaved to full-length extracellular superoxide dismutase (EC-SOD). Given that pulmonary levels of vitamin E can be manipulated through diet, its effects on SWCNT-induced inflammation may be of practical importance in optimizing protective strategies.« less

  16. Lipid raft components cholesterol and sphingomyelin increase H+/OH− permeability of phosphatidylcholine membranes

    PubMed Central

    Gensure, Rebekah H.; Zeidel, Mark L.; Hill, Warren G.

    2006-01-01

    H+/OH− permeation through lipid bilayers occurs at anomalously high rates and the determinants of proton flux through membranes are poorly understood. Since all life depends on proton gradients, it is important to develop a greater understanding of proton leak phenomena. We have used stopped-flow fluorimetry to probe the influence of two lipid raft components, chol (cholesterol) and SM (sphingomyelin), on H+/OH− and water permeability. Increasing the concentrations of both lipids in POPC (palmitoyl-2-oleoyl phosphatidylcholine) liposomes decreased water permeability in a concentration-dependent manner, an effect that correlated with increased lipid order. Surprisingly, proton flux was increased by increasing the concentration of chol and SM. The chol effect was complex with molar concentrations of 17.9, 33 and 45.7% giving 2.8-fold (P<0.01), 2.2-fold (P<0.001) and 5.1-fold (P<0.001) increases in H+/OH− permeability from a baseline of 2.4×10−2 cm/s. SM at 10 mole% effected a 2.8-fold increase (P<0.01), whereas 20 and 30 mole% enhanced permeability by 3.6-fold (P<0.05) and 4.1-fold respectively (P<0.05). Supplementing membranes containing chol with SM did not enhance H+/OH− permeability. Of interest was the finding that chol addition to soya-bean lipids decreased H+/OH− permeability, consistent with an earlier report [Ira and Krishnamoorthy (2001) J. Phys. Chem. B 105, 1484–1488]. We speculate that the presence of proton carriers in crude lipid extracts might contribute to this result. We conclude that (i) chol and SM specifically and independently increase rates of proton permeation in POPC bilayers, (ii) domains enriched in these lipids or domain interfaces may represent regions with high H+/OH− conductivity, (iii) H+/OH− fluxes are not governed by lipid order and (iv) chol can inhibit or promote H+/OH− permeability depending on the total lipid environment. Theories of proton permeation are discussed in the light of these results. PMID:16706750

  17. Analysis of the effects of exposure to polychlorinated biphenyls and chlorinated pesticides on serum lipid levels in residents of Anniston, Alabama

    PubMed Central

    2013-01-01

    Background Anniston, Alabama, is the site of a former Monsanto plant where polychlorinated biphenyls (PCBs) were manufactured from 1929 until 1971. Residents of Anniston are known to have elevated levels of PCBs. The objective of the study was to test the hypothesis that levels of the various lipid components (total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides) are differentially associated with concentrations of total PCBs and total pesticides, and further that different congeners, congener groups and different pesticides do not have identical associations in serum samples obtained from Anniston residents in a cross-sectional study. Methods Fasting serum samples were obtained from 575 residents of Anniston who were not on any lipid-lowering medication and were analyzed for 35 PCB congeners, nine chlorinated pesticides, total cholesterol, LDL and HDL cholesterol and triglyceride concentrations. Associations between toxicant concentrations and lipid levels were determined using multiple linear regression analysis. Results We observed that elevated serum concentrations of lipids were associated with elevated serum concentrations of ΣPCBs and summed pesticides in analyses adjusted for age, race, gender, BMI, alcohol consumption, smoking and exercising status. The strongest associations were seen for PCB congeners with three, four, or at least eight substituted chlorines. Mono-ortho substituted congeners 74 and 156, di-ortho congeners 172 and 194, and tri- and tetra-ortho congeners 199, 196–203, 206 and 209 each were significantly associated with total lipids, total cholesterol and triglycerides. Serum concentrations of HCB and chlordane also had strong associations with lipid components. Conclusions Increased concentrations of PCBs and organochlorine pesticides are associated with elevations in total serum lipids, total cholesterol and triglycerides, but the patterns are different for different groups of PCBs and different pesticides. These observations show selective effects of different organochlorines on serum concentrations of different groups of lipids. This elevation in concentrations of serum lipids may be the basis for the increased incidence of cardiovascular disease found in persons with elevated exposures to PCBs and chlorinated pesticides. PMID:24325314

  18. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    PubMed

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Aliphatic Chains of Esterified Lipids in Isolated Eyespots of Euglena gracilis var. bacillaris1

    PubMed Central

    Hilenski, Lula L.; Walne, Patricia L.; Snyder, Fred

    1976-01-01

    Isolated eyespot granules of Euglena gracilis Klebs var. bacillaris Pringsheim contained approximately 6% lipids (based on protein). Separation of the lipid extracts by thin layer chromatography revealed four major fractions: wax esters, triacylglycerols, free fatty acids, and phospholipids. Methanolysis of each fraction yielded between 27 and 29 different fatty acids ranging from 12:0 to 22:6. Acetates of the fatty alcohols of the wax fraction consisted of 11:0 to 18:0 carbon chains, with 14:0 being the major component; unsaturated alcohols were not detected. PMID:16659543

  20. Spatial Mapping of Lipids at Cellular Resolution in Embryos of Cotton[W][OA

    PubMed Central

    Horn, Patrick J.; Korte, Andrew R.; Neogi, Purnima B.; Love, Ebony; Fuchs, Johannes; Strupat, Kerstin; Borisjuk, Ljudmilla; Shulaev, Vladimir; Lee, Young-Jin; Chapman, Kent D.

    2012-01-01

    Advances in mass spectrometry (MS) have made comprehensive lipidomics analysis of complex tissues relatively commonplace. These compositional analyses, although able to resolve hundreds of molecular species of lipids in single extracts, lose the original cellular context from which these lipids are derived. Recently, high-resolution MS of individual lipid droplets from seed tissues indicated organelle-to-organelle variation in lipid composition, suggesting that heterogeneity of lipid distributions at the cellular level may be prevalent. Here, we employed matrix-assisted laser desorption/ionization–MS imaging (MALDI-MSI) approaches to visualize lipid species directly in seed tissues of upland cotton (Gossypium hirsutum). MS imaging of cryosections of mature cotton embryos revealed a distinct, heterogeneous distribution of molecular species of triacylglycerols and phosphatidylcholines, the major storage and membrane lipid classes in cotton embryos. Other lipids were imaged, including phosphatidylethanolamines, phosphatidic acids, sterols, and gossypol, indicating the broad range of metabolites and applications for this chemical visualization approach. We conclude that comprehensive lipidomics images generated by MALDI-MSI report accurate, relative amounts of lipid species in plant tissues and reveal previously unseen differences in spatial distributions providing for a new level of understanding in cellular biochemistry. PMID:22337917

  1. Single Cell Synchrotron FT-IR Microspectroscopy Reveals a Link between Neutral Lipid and Storage Carbohydrate Fluxes in S. cerevisiae

    PubMed Central

    Jamme, Frédéric; Vindigni, Jean-David; Méchin, Valérie; Cherifi, Tamazight; Chardot, Thierry; Froissard, Marine

    2013-01-01

    In most organisms, storage lipids are packaged into specialized structures called lipid droplets. These contain a core of neutral lipids surrounded by a monolayer of phospholipids, and various proteins which vary depending on the species. Hydrophobic structural proteins stabilize the interface between the lipid core and aqueous cellular environment (perilipin family of proteins, apolipoproteins, oleosins). We developed a genetic approach using heterologous expression in Saccharomyces cerevisiae of the Arabidopsis thaliana lipid droplet oleosin and caleosin proteins AtOle1 and AtClo1. These transformed yeasts overaccumulate lipid droplets, leading to a specific increase in storage lipids. The phenotype of these cells was explored using synchrotron FT-IR microspectroscopy to investigate the dynamics of lipid storage and cellular carbon fluxes reflected as changes in spectral fingerprints. Multivariate statistical analysis of the data showed a clear effect on storage carbohydrates and more specifically, a decrease in glycogen in our modified strains. These observations were confirmed by biochemical quantification of the storage carbohydrates glycogen and trehalose. Our results demonstrate that neutral lipid and storage carbohydrate fluxes are tightly connected and co-regulated. PMID:24040242

  2. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  3. Arabidopsis SEIPIN proteins modulate triacylglycerol accumulation and influence lipid droplet proliferation

    USDA-ARS?s Scientific Manuscript database

    The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. By contrast to the single SEIPIN genes in humans and yeast, there are three SEIPIN homologues in Arabidopsis thaliana, designated At-SEIPIN1, At-SEIPIN2 and At-SEIPIN3. Here, a yeast (Saccharomy...

  4. Identification of superior lipid producing Lipomyces and Myxozyma yeasts

    USDA-ARS?s Scientific Manuscript database

    Oleaginous yeasts are of interest for production of single cell oils from sugars. Here 17 members of the Lipomyces and Myxozyma clade were screened for lipid production when cultured on glucose. The highest ranking yeasts included L. tetrasporus (21 g/l), L. kononenkoae (19.6 g/l), and L. lipofer (1...

  5. Relevance of Lipid-Based Products in the Management of Dry Eye Disease.

    PubMed

    Garrigue, Jean-Sébastien; Amrane, Mourad; Faure, Marie-Odile; Holopainen, Juha M; Tong, Louis

    2017-11-01

    Components of the ocular surface synergistically contribute to maintaining and protecting a smooth refractive layer to facilitate the optimal transmission of light. At the air-water interface, the tear film lipid layer (TFLL), a mixture of lipids and proteins, plays a key role in tear surface tension and is important for the physiological hydration of the ocular surface and for ocular homeostasis. Alterations in tear fluid rheology, differences in lipid composition, or downregulation of specific tear proteins are found in most types of ocular surface disease, including dry eye disease (DED). Artificial tears have long been a first line of treatment in DED and aim to replace or supplement tears. More recently, lipid-containing eye drops have been developed to more closely mimic the combination of aqueous and lipid layers of the TFLL. Over the last 2 decades, our understanding of the nature and importance of lipids in the tear film in health and disease has increased substantially. The aim of this article is to provide a brief overview of our current understanding of tear film properties and review the effectiveness of lipid-based products in the treatment of DED. Liposome lid sprays, emulsion eye drops, and other lipid-containing formulations are discussed.

  6. Excretion of extracellular lipids by Streptococcus mutans BHT and FA-1.

    PubMed Central

    Cabacungan, E; Pieringer, R A

    1980-01-01

    Streptococcus mutans BHT and FA-1, when grown to log phase on chemically defined medium containing [14C]glycerol, excreted 15% of the total biosynthesized 14C-lipid into the medium. When grown to early stationary phase, 28 to 33% of the 14C-lipid was found in the medium. The radioactive lipids of these varieties of S. mutans were identified as diacylglycerol, diglucosyl diacylglycerol (DGD), monoglucosyl diacylglycerol, diphosphatidylglycerol, phosphatidylglycerol (PG), and smaller amounts of two other lipids tentatively were identified as amino acyl-PG and glycerol phosphoryl-DGD. All lipids were found as extracellular and intracellular components from cells grown to either log or stationary phase. However, there were some shifts in the relative percentage of these lipids as the cells changed from log to stationary phase. For example, the intracellular lipid content of log-phase S. mutans BHT was composed of 49% PG and 19% DGD, but these percents shifted to 18% PG and 57% DGD when the cells were grown to stationary phase. However, the extracellular lipids of this organism contained 50 to 60% PG and 20% DGD in both log and stationary phases. PMID:7380539

  7. Co-localization of fluorescent labeled lipid nanoparticles with specifically tagged subcellular compartments by single particle tracking at low nanoparticle to cell ratios.

    PubMed

    Tiffany, Matthew; Szoka, Francis C

    2016-11-01

    We utilized quantitative high-resolution single particle tracking to study the internalization and endosomal sorting of lipid nanoparticles (LNPs) by HeLa cells in vitro to gain a better understanding of how cells process LNPs that are used for siRNA delivery. We compared the trafficking of three formulations that have been demonstrated to deliver siRNA into cells. They were composed of either a tritratable anionic lipid, formulation of cholesterol hemisuccinate (CHEMS), or a titratatable cationic lipid formulation of 1,2-dilinoleyloxy-3-dimethylaminopropane (DLinDMA) or a non-titratable cationic formulation lipid formulation of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). They also contained either a substantial percentage of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol and 5 mole percent 1,2-dimyristoyl-sn-glycerol-[methoxy(polyethylene glycol)-2000 (PEG-DMG). We optically measured the endosomal pH experienced by individual LNPs, observed the internalization pathways used and tracked the particles as they co-localized with fluorescent protein tags on compartment-specific proteins, during endosomal sorting to the lysosome. The data revealed significant differences in the accumulation in subcellular compartments among the three formulations, which help to explain the observed effects LNP composition exerts on in vitro delivery efficiency.

  8. Membrane-on-a-chip: microstructured silicon/silicon-dioxide chips for high-throughput screening of membrane transport and viral membrane fusion.

    PubMed

    Kusters, Ilja; van Oijen, Antoine M; Driessen, Arnold J M

    2014-04-22

    Screening of transport processes across biological membranes is hindered by the challenge to establish fragile supported lipid bilayers and the difficulty to determine at which side of the membrane reactants reside. Here, we present a method for the generation of suspended lipid bilayers with physiological relevant lipid compositions on microstructured Si/SiO2 chips that allow for high-throughput screening of both membrane transport and viral membrane fusion. Simultaneous observation of hundreds of single-membrane channels yields statistical information revealing population heterogeneities of the pore assembly and conductance of the bacterial toxin α-hemolysin (αHL). The influence of lipid composition and ionic strength on αHL pore formation was investigated at the single-channel level, resolving features of the pore-assembly pathway. Pore formation is inhibited by a specific antibody, demonstrating the applicability of the platform for drug screening of bacterial toxins and cell-penetrating agents. Furthermore, fusion of H3N2 influenza viruses with suspended lipid bilayers can be observed directly using a specialized chip architecture. The presented micropore arrays are compatible with fluorescence readout from below using an air objective, thus allowing high-throughput screening of membrane transport in multiwell formats in analogy to plate readers.

  9. High-throughput label-free screening of euglena gracilis with optofluidic time-stretch quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Guo, Baoshan; Lei, Cheng; Ito, Takuro; Yaxiaer, Yalikun; Kobayashi, Hirofumi; Jiang, Yiyue; Tanaka, Yo; Ozeki, Yasuyuki; Goda, Keisuke

    2017-02-01

    The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, microalgal biofuel is expected to play a key role in reducing the detrimental effects of global warming since microalgae absorb atmospheric CO2 via photosynthesis. Unfortunately, conventional analytical methods only provide population-averaged lipid contents and fail to characterize a diverse population of microalgal cells with single-cell resolution in a noninvasive and interference-free manner. Here we demonstrate high-throughput label-free single-cell screening of lipid-producing microalgal cells with optofluidic time-stretch quantitative phase microscopy. In particular, we use Euglena gracilis - an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement) within lipid droplets. Our optofluidic time-stretch quantitative phase microscope is based on an integration of a hydrodynamic-focusing microfluidic chip, an optical time-stretch phase-contrast microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase contents of every single cell at a high throughput of 10,000 cells/s. We characterize heterogeneous populations of E. gracilis cells under two different culture conditions to evaluate their lipid production efficiency. Our method holds promise as an effective analytical tool for microalgaebased biofuel production.

  10. Lipid content and composition of coffee brews prepared by different methods.

    PubMed

    Ratnayake, W M; Hollywood, R; O'Grady, E; Stavric, B

    1993-04-01

    The lipid content and composition of boiled, filtered, dripped, Turkish and espresso coffees prepared from roasted beans of Coffea arabica and Coffea robusta, and of coffees prepared from different brands of instant coffee were examined. The lipid content varied with the method of preparation. While coffee brews filtered through filter paper contained less than 7 mg lipids, those prepared by boiling without filtering and espresso coffee reached 60-160 mg lipids/150-ml cup. Coffee brew filtered through a metal screener contained 50 mg lipids/150-ml cup. Although the lipid content varied, the method of preparation of the brew and filtration had no important influence on the lipid composition. During paper filtration lipids remained mainly in spent coffee grounds, and the brew and filter paper retained only 0.4 and 9.4%, respectively, of the total lipids recovered. However, the lipids in the brew, filter paper and spent coffee grounds had the same profile, indicating that there was no preferential retention of a particular lipid component in filter paper. Triglycerides and diterpene alcohol esters were the major lipid classes in coffee brewed from ground coffee beans, and ranged from 86.6 to 92.9 and 6.5 to 12.5% of total lipids, respectively. For coffee brews made from instant coffee, the levels of these two lipid classes were 96.4-98.5 and 1.6-3.6%, respectively. The lipid contents of both regular and decaffeinated instant coffees varied slightly from one brand to the other, and ranged from 1.8 to 6.6 mg/150-ml cup.

  11. The relative proportions of different lipid classes and their fatty acid compositions change with culture age in the cariogenic dental pathogen Streptococcus mutans UA159.

    PubMed

    Custer, Jenny E; Goddard, Bryan D; Matter, Stephen F; Kaneshiro, Edna S

    2014-06-01

    The oral cariogenic bacterial pathogen Streptococcus mutans strain UA159 has become an important research organism strain since its genome was sequenced. However, there is a paucity of information on its lipidome using direct analytical biochemical approaches. We here report on comprehensive analyses of the major lipid classes and their fatty acids in cells grown in batch standing cultures. Using 2-D high-performance thin-layer chromatography lipid class composition changes were detected with culture age. More lipid components were detected in the stationary-phase compared to log-phase cells. The major lipids identified included 1,3-bis(sn-3'-phosphatidyl)-sn-glycerol (phosphatidylglycerol), 1,3-diphosphatidylglycerol (cardiolipin), aminoacyl-phosphatidylglycerol, monoglucosyldiacylglycerol, diglucosyldiacylglycerol, diglucosylmonoacylglycerol and, glycerophosphoryldiglucosyldiacylglycerol. Culture age also affected the fatty acid composition of the total polar lipid fraction. Thus, the major lipid classes detected in log-phase and stationary-phase cells were isolated and their fatty acids were analyzed by gas-liquid chromatography to determine the basis for the fatty acid compositional changes in the total polar lipid fraction. The analyses showed that the relative proportions of these acids changed with culture age within individual lipid classes. Hence fatty acid changes in the total polar lipid fraction reflected changes in both lipid class composition and fatty acid compositions within individual lipid classes.

  12. A fluorescence correlation spectroscopy study of the diffusion of an organic dye in the gel phase and fluid phase of a single lipid vesicle.

    PubMed

    Ghosh, Subhadip; Adhikari, Aniruddha; Sen Mojumdar, Supratik; Bhattacharyya, Kankan

    2010-05-06

    The mobility of the organic dye DCM (4-dicyanomethylene-2-methyl-6-p-dimethyl aminostyryl-4H-pyran) in the gel and fluid phases of a lipid vesicle is studied by fluorescence correlation spectroscopy (FCS). Using FCS, translational diffusion of DCM is determined in the gel phase and fluid phase of a single lipid vesicle adhered to a glass surface. The size of a lipid vesicle (average diameter approximately 100 nm) is smaller than the diffraction limited spot size (approximately 250 nm) of the microscope. Thus, the vesicle is confined within the laser focus. Three lipid vesicles (1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)) having different gel transition temperatures (-1, 23, and 41 degrees C, respectively) were studied. The diffusion coefficient of the dye DCM in bulk water is approximately 300 microm(2)/s. In the lipid vesicle, the average D(t) decreases markedly to approximately 5 microm(2)/s (approximately 60 times) in the gel phase (for DPPC at 20 degrees C) and 40 microm(2)/s ( approximately 8 times) in the fluid phase (for DLPC at 20 degrees C). This clearly demonstrates higher mobility in the fluid phase compared with the gel phase of a lipid. It is observed that the D(t) values vary from lipid to lipid and there is a distribution of D(t) values. The diffusion of the hydrophobic dye DCM (D(t) approximately 5 microm(2)/s) in the DPPC vesicle is found to be 8 times smaller than that of a hydrophilic anioinic dye C343 (D(t) approximately 40 microm(2)/s). This is attributed to different locations of the hydrophobic (DCM) and hydrophilic (C343) dyes.

  13. Effect of Solvent System on Extractability of Lipidic Components of Scenedesmus obliquus (M2-1) and Gloeothece sp. on Antioxidant Scavenging Capacity Thereof

    PubMed Central

    Amaro, Helena M.; Fernandes, Fátima; Valentão, Patrícia; Andrade, Paula B.; Sousa-Pinto, I.; Malcata, F. Xavier; Guedes, A. Catarina

    2015-01-01

    Microalgae are well known for their biotechnological potential, namely with regard to bioactive lipidic components—especially carotenoids and polyunsaturated fatty acids (PUFA), well-known for therapeutic applications based on their antioxidant capacity. The aim of this work was to evaluate the influence of four distinct food-grade solvents upon extractability of specific lipidic components, and on the antioxidant capacity exhibited against both synthetic (2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+•)) and biological reactive species (O2•− and •NO−). A eukaryotic microalga (Scenedesmus obliquus (M2-1)) and a prokaryotic one (Gloeothece sp.) were used as case studies. Concerning total antioxidant capacity, the hexane:isopropanol (3:2) and acetone extracts of Sc. obliquus (M2-1) were the most effective against DPPH• and ABTS+•, respectively. Gloeothece sp. ethanol extracts were the most interesting scavengers of O2•−, probably due the high content of linolenic acid. On the other hand, acetone and hexane:isopropanol (3:2) extracts were the most interesting ones in •NO− assay. Acetone extract exhibited the best results for the ABTS assay, likely associated to its content of carotenoids, in both microalgae. Otherwise, ethanol stood out in PUFA extraction. Therefore, profiles of lipidic components extracted are critical for evaluating the antioxidant performance—which appears to hinge, in particular, on the balance between carotenoids and PUFAs. PMID:26492257

  14. Monitoring of temperature-mediated phase transitions of adipose tissue by combined optical coherence tomography and Abbe refractometry.

    PubMed

    Yanina, Irina Y; Popov, Alexey P; Bykov, Alexander V; Meglinski, Igor V; Tuchin, Valery V

    2018-01-01

    Observation of temperature-mediated phase transitions between lipid components of the adipose tissues has been performed by combined use of the Abbe refractometry and optical coherence tomography. The phase transitions of the lipid components were clearly observed in the range of temperatures from 24°C to 60°C, and assessed by quantitatively monitoring the changes of the refractive index of 1- to 2-mm-thick porcine fat tissue slices. The developed approach has a great potential as an alternative method for obtaining accurate information on the processes occurring during thermal lipolysis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. Structure of bacterial lipopolysaccharides.

    PubMed

    Caroff, Martine; Karibian, Doris

    2003-11-14

    Bacterial lipopolysaccharides are the major components of the outer surface of Gram-negative bacteria They are often of interest in medicine for their immunomodulatory properties. In small amounts they can be beneficial, but in larger amounts they may cause endotoxic shock. Although they share a common architecture, their structural details exert a strong influence on their activity. These molecules comprise: a lipid moiety, called lipid A, which is considered to be the endotoxic component, a glycosidic part consisting of a core of approximately 10 monosaccharides and, in "smooth-type" lipopolysaccharides, a third region, named O-chain, consisting of repetitive subunits of one to eight monosaccharides responsible for much of the immunospecificity of the bacterial cell.

  16. Synthetic Ion Channels and DNA Logic Gates as Components of Molecular Robots.

    PubMed

    Kawano, Ryuji

    2018-02-19

    A molecular robot is a next-generation biochemical machine that imitates the actions of microorganisms. It is made of biomaterials such as DNA, proteins, and lipids. Three prerequisites have been proposed for the construction of such a robot: sensors, intelligence, and actuators. This Minireview focuses on recent research on synthetic ion channels and DNA computing technologies, which are viewed as potential candidate components of molecular robots. Synthetic ion channels, which are embedded in artificial cell membranes (lipid bilayers), sense ambient ions or chemicals and import them. These artificial sensors are useful components for molecular robots with bodies consisting of a lipid bilayer because they enable the interface between the inside and outside of the molecular robot to function as gates. After the signal molecules arrive inside the molecular robot, they can operate DNA logic gates, which perform computations. These functions will be integrated into the intelligence and sensor sections of molecular robots. Soon, these molecular machines will be able to be assembled to operate as a mass microrobot and play an active role in environmental monitoring and in vivo diagnosis or therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. FoxA and LIPG endothelial lipase control the uptake of extracellular lipids for breast cancer growth

    PubMed Central

    Slebe, Felipe; Rojo, Federico; Vinaixa, Maria; García-Rocha, Mar; Testoni, Giorgia; Guiu, Marc; Planet, Evarist; Samino, Sara; Arenas, Enrique J.; Beltran, Antoni; Rovira, Ana; Lluch, Ana; Salvatella, Xavier; Yanes, Oscar; Albanell, Joan; Guinovart, Joan J.; Gomis, Roger R.

    2016-01-01

    The mechanisms that allow breast cancer (BCa) cells to metabolically sustain rapid growth are poorly understood. Here we report that BCa cells are dependent on a mechanism to supply precursors for intracellular lipid production derived from extracellular sources and that the endothelial lipase (LIPG) fulfils this function. LIPG expression allows the import of lipid precursors, thereby contributing to BCa proliferation. LIPG stands out as an essential component of the lipid metabolic adaptations that BCa cells, and not normal tissue, must undergo to support high proliferation rates. LIPG is ubiquitously and highly expressed under the control of FoxA1 or FoxA2 in all BCa subtypes. The downregulation of either LIPG or FoxA in transformed cells results in decreased proliferation and impaired synthesis of intracellular lipids. PMID:27045898

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Clare L; Marquardt, Drew; Dies, Hannah

    Rafts, or functional domains, are transient nano- or mesoscopic structures in the exoplasmic leaflet of the plasma membrane, and are thought to be essential for many cellular processes. Using neutron diffraction and computer modelling, we present evidence for the existence of highly ordered lipid domains in the cholesterol-rich (32.5 mol%) liquid-ordered (lo) phase of dipalmitoylphosphatidylcholine membranes. The liquid ordered phase in one-component lipid membranes has previously been thought to be a homogeneous phase. The presence of highly ordered lipid domains embedded in a disordered lipid matrix implies non-uniform distribution of cholesterol between the two phases. The experimental results are inmore » excellent agreement with recent computer simulations of DPPC/cholesterol complexes [Meinhardt, Vink and Schmid (2013). Proc Natl Acad Sci USA 110(12): 4476 4481], which reported the existence of nanometer size lo domains in a liquid disordered lipid environment.« less

  19. Domain Nucleation Rates and Interfacial Line Tensions in Supported Bilayers of Ternary Mixtures Containing Galactosylceramide

    PubMed Central

    Blanchette, Craig D.; Lin, Wan-Chen; Orme, Christine A.; Ratto, Timothy V.; Longo, Marjorie L.

    2008-01-01

    Domains within the plane of the plasma membrane, referred to as membrane rafts, have been a topic of considerable interest in the field of membrane biophysics. Although model membrane systems have been used extensively to study lipid phase behavior as it relates to the existence of rafts, very little work has focused on either the initial stage of lipid domain nucleation, or the relevant physical parameters such as temperature and interfacial line tension which control nucleation. In this work, we utilize a method in which the kinetic process of lipid domain nucleation is imaged by atomic force microscopy and modeled using classical theory of nucleation to map interfacial line tension in ternary lipid mixtures. These mixtures consist of a fluid phase lipid component (1,2-dilauroyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, or 1,2-dioleoyl-sn-glycero-3-phosphocholine), a solid phase component (galactosylceramide), and cholesterol. Interfacial line tension measurements of galactosylceramide-rich domains track with our previously measured area/perimeter ratios and height mismatches measured here. Line tension also follows known trends in cholesterol interactions and partitioning, as we observed previously with area/perimeter ratios. Our line tension measurements are discussed in combination with recent line tension measurements to address line tension regulation by cholesterol and the dynamic nature of membrane rafts. PMID:18065459

  20. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity

    PubMed Central

    Omotayo, T.I.; Akinyemi, G.S.; Omololu, P.A.; Ajayi, B.O.; Akindahunsi, A.A.; Rocha, J.B.T.; Kade, I.J.

    2014-01-01

    The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe2+-mediated in vitro oxidative stress model. The results show that Fe2+ inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe2+ inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA) inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe2+ may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe2+ and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump. PMID:25618580

  1. Manipulating lipid membrane architecture by liquid crystal-analog curvature elasticity (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lee, Sin-Doo

    2015-10-01

    Soft matters such as liquid crystals and biological molecules exhibit a variety of interesting physical phenomena as well as new applications. Recently, in mimicking biological systems that have the ability to sense, regulate, grow, react, and regenerate in a highly responsive and self-adaptive manner, the significance of the liquid crystal order in living organisms, for example, a biological membrane possessing the lamellar order, is widely recognized from the viewpoints of physics and chemistry of interfaces and membrane biophysics. Lipid bilayers, resembling cell membranes, provide primary functions for the transport of biological components of ions and molecules in various cellular activities, including vesicle budding and membrane fusion, through lateral organization of the membrane components such as proteins. In this lecture, I will describe how the liquid crystal-analog curvature elasticity of a lipid bilayer plays a critical role in developing a new platform for understanding diverse biological functions at a cellular level. The key concept is to manipulate the local curvature at an interface between a solid substrate and a model membrane. Two representative examples will be demonstrated: one of them is the topographic control of lipid rafts in a combinatorial array where the ligand-receptor binding event occurs and the other concerns the reconstitution of a ring-type lipid raft in bud-mimicking architecture within the framework of the curvature elasticity.

  2. Bis-quaternary gemini surfactants as components of nonviral gene delivery systems: a comprehensive study from physicochemical properties to membrane interactions.

    PubMed

    Cardoso, Ana M; Morais, Catarina M; Silva, Sandra G; Marques, Eduardo F; de Lima, Maria C Pedroso; Jurado, Maria Amália S

    2014-10-20

    Gemini surfactants have been successfully used as components of gene delivery systems. In the present work, a family of gemini surfactants, represented by the general structure [CmH2m+1(CH3)2N(+)(CH2)sN(+)(CH3)2CmH2m+1]2Br(-), or simply m-s-m, was used to prepare cationic gene carriers, aiming at their application in transfection studies. An extensive characterization of the gemini surfactant-based complexes, produced with and without the helper lipids cholesterol and DOPE, was carried out in order to correlate their physico-chemical properties with transfection efficiency. The most efficient complexes were those containing helper lipids, which, combining amphiphiles with propensity to form structures with different intrinsic curvatures, displayed a morphologically labile architecture, putatively implicated in the efficient DNA release upon complex interaction with membranes. While complexes lacking helper lipids were translocated directly across the lipid bilayer, complexes containing helper lipids were taken up by cells also by macropinocytosis. This study contributes to shed light on the relationship between important physico-chemical properties of surfactant-based DNA vectors and their efficiency to promote gene transfer, which may represent a step forward to the rational design of gene delivery systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Noncatalytic transformation of the crude lipid of ChlorellaI vulgaris into fatty acid methyl ester (FAME) with charcoal via a thermo-chemical process.

    PubMed

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2013-02-01

    The noncatalytic transformation of the crude lipid of Chlorella vulgaris (C. vulgaris) into fatty acid methyl ester (FAME) via a thermo-chemical process was mainly investigated in this work. The crude lipid of C. vulgaris was recovered by means of solvent extraction from C. vulgaris cultivated in a raceway pond. The conventional catalyzed transesterification of crude lipid of C. vulgaris is notably inhibited by the impurities contained in the crude lipid of C. vulgaris. These impurities are inevitably derived from the solvent extraction process for C. vulgaris. However, this work presents the noncatalytic transesterification of microalgal lipid into FAME, which could be an alternative option. For example, the noncatalytic transformation of microalgal lipid into FAME provides evidence that the esterification of free fatty acids (FFAs) and the transesterification of triglycerides can be combined into a single step less susceptible to the impurities and with a high conversion efficiency (∼97%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Conversion and recovery of saponifiable lipids from microalgae using a nonpolar solvent via lipase-assisted extraction.

    PubMed

    Law, Sam Q K; Halim, Ronald; Scales, Peter J; Martin, Gregory J O

    2018-07-01

    A single-step method for transesterifying and recovering lipids in concentrated slurries (ca 20% w/w solids) of ruptured microalgae is presented. A soluble Rhizomucor miehei lipase (RML) was used to directly transesterify the lipids in the marine microalgae Nannochloropsis salina. This allowed both triglycerides (TAG) and polar saponifiable lipids to be recovered as fatty acid methyl esters (FAME) using a nonpolar solvent (hexane). Up to 90 wt% of the total saponifiable lipids (SL) were converted to FAME within 24 h, approximately 75% of which was recovered in the hexane by centrifugation. Two pathways for the conversion and recovery of polar lipids were identified. The water in the slurry buffered against potential lipase inhibition by methanol, but necessitated a high methanol dose for maximal FAME conversion. Nonetheless the method enables the recovery of polar lipids as FAME while avoiding the need for both drying of the biomass and a downstream transesterification step. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. A plural role for lipids in motor neuron diseases: energy, signaling and structure

    PubMed Central

    Schmitt, Florent; Hussain, Ghulam; Dupuis, Luc; Loeffler, Jean-Philippe; Henriques, Alexandre

    2013-01-01

    Motor neuron diseases (MNDs) are characterized by selective death of motor neurons and include mainly adult-onset amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Neurodegeneration is not the single pathogenic event occurring during disease progression. There are multiple lines of evidence for the existence of defects in lipid metabolism at peripheral level. For instance, hypermetabolism is well characterized in ALS, and dyslipidemia correlates with better prognosis in patients. Lipid metabolism plays also a role in other MNDs. In SMA, misuse of lipids as energetic nutrients is described in patients and in related animal models. The composition of structural lipids in the central nervous system is modified, with repercussion on membrane fluidity and on cell signaling mediated by bioactive lipids. Here, we review the main epidemiologic and mechanistic findings that link alterations of lipid metabolism and motor neuron degeneration, and we discuss the rationale of targeting these modifications for therapeutic management of MNDs. PMID:24600344

  6. The Potential of Microalgae Lipids for Edible Oil Production.

    PubMed

    Huang, Yanfei; Zhang, Dongmei; Xue, Shengzhang; Wang, Meng; Cong, Wei

    2016-10-01

    The objective of this study was to evaluate the potential of oil-rich green algae, Chlorella vulgaris, Scenedesmus obliquus, and Nannochloropsis oceanica, to produce edible oil with respect to lipid and residue properties. The results showed that C. vulgaris and N. oceanica had similarly much higher lipid recovery (about 50 %) in hexane extraction than that of S. obliquus (about 25 %), and C. vulgaris had the highest content of neutral lipids among the three algae. The fatty acid compositions of neutral lipids from C. vulgaris and S. obliquus were mainly C16 and C18, resembling that of vegetable oils. ARA and EPA were the specific valuable fatty acids in lipids of N. oceanica, but the content of which was lower in neutral lipids. Phytol was identified as the major unsaponifiable component in lipids of the three algae. Combined with the evaluation of the ratios in SFA/MUFA/PUFA, (n-6):(n-3) and content of free fatty acids, lipids obtained from C. vulgaris displayed the great potential for edible oil production. Lipids of N. oceanica showed the highest antioxidant activity, and its residue contained the largest amounts of protein as well as the amino acid compositions were greatly beneficial to the health of human beings.

  7. A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins[S

    PubMed Central

    Gaebler, Anne; Penno, Anke; Kuerschner, Lars; Thiele, Christoph

    2016-01-01

    The demand to study the cellular localization of specific lipids has led to recent advances in lipid probes and microscopy. Alkyne lipids bear a small, noninterfering tag and can be detected upon click reaction with an azide-coupled reporter. Fluorescent alkyne lipid imaging crucially depends on appropriate azide reporters and labeling protocols that allow for an efficient click reaction and therefore a sensitive detection. We synthesized several azide reporters with different spacer components and tested their suitability for alkyne lipid imaging in fixed cells. The implementation of a copper-chelating picolyl moiety into fluorescent or biotin-based azide reagents strongly increased the sensitivity of the imaging routine. We demonstrate the applicability and evaluate the performance of this approach using different lipid classes and experimental setups. As azide picolyl reporters allow for reduced copper catalyst concentrations, they also enable coimaging of alkyne lipids with multiple fluorescent proteins including enhanced green fluorescent protein. Alternatively, and as we also show, microscopy of alkyne lipids can be combined with protein detection by immunocytochemistry. In summary, we present a robust, sensitive, and highly versatile protocol for the labeling of alkyne lipids with azide-coupled reporters for fluorescence microscopy that can be combined with different protein detection and imaging techniques. PMID:27565170

  8. Role of Gag and lipids during HIV-1 assembly in CD4+ T cells and macrophages

    PubMed Central

    Mariani, Charlotte; Desdouits, Marion; Favard, Cyril; Benaroch, Philippe; Muriaux, Delphine M.

    2014-01-01

    HIV-1 is an RNA enveloped virus that preferentially infects CD4+ T lymphocytes and also macrophages. In CD4+ T cells, HIV-1 mainly buds from the host cell plasma membrane. The viral Gag polyprotein targets the plasma membrane and is the orchestrator of the HIV assembly as its expression is sufficient to promote the formation of virus-like particles carrying a lipidic envelope derived from the host cell membrane. Certain lipids are enriched in the viral membrane and are thought to play a key role in the assembly process and the envelop composition. A large body of work performed on infected CD4+ T cells has provided important knowledge about the assembly process and the membrane virus lipid composition. While HIV assembly and budding in macrophages is thought to follow the same general Gag-driven mechanism as in T-lymphocytes, the HIV cycle in macrophage exhibits specific features. In these cells, new virions bud from the limiting membrane of seemingly intracellular compartments, where they accumulate while remaining infectious. These structures are now often referred to as Virus Containing Compartments (VCCs). Recent studies suggest that VCCs represent intracellularly sequestered regions of the plasma membrane, but their precise nature remains elusive. The proteomic and lipidomic characterization of virions produced by T cells or macrophages has highlighted the similarity between their composition and that of the plasma membrane of producer cells, as well as their enrichment in acidic lipids, some components of raft lipids and in tetraspanin-enriched microdomains. It is likely that Gag promotes the coalescence of these components into an assembly platform from which viral budding takes place. How Gag exactly interacts with membrane lipids and what are the mechanisms involved in the interaction between the different membrane nanodomains within the assembly platform remains unclear. Here we review recent literature regarding the role of Gag and lipids on HIV-1 assembly in CD4+ T cells and macrophages. PMID:25009540

  9. Epicuticular lipids induce aggregation in Chagas disease vectors

    PubMed Central

    Figueiras, Alicia N Lorenzo; Girotti, Juan R; Mijailovsky, Sergio J; Juárez, M Patricia

    2009-01-01

    Background The triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Aggregation behavior plays an important role in their survival by facilitating the location of refuges and cohesion of aggregates, helping to keep them safely assembled into shelters during daylight time, when they are vulnerable to predators. There are evidences that aggregation is mediated by thigmotaxis, by volatile cues from their faeces, and by hexane-extractable contact chemoreceptive signals from their cuticle surface. The epicuticular lipids of Triatoma infestans include a complex mixture of hydrocarbons, free and esterified fatty acids, alcohols, and sterols. Results We analyzed the response of T. infestans fifth instar nymphs after exposure to different amounts either of total epicuticular lipid extracts or individual lipid fractions. Assays were performed in a circular arena, employing a binary choice test with filter papers acting as aggregation attractive sites; papers were either impregnated with a hexane-extract of the total lipids, or lipid fraction; or with the solvent. Insects were significantly aggregated around papers impregnated with the epicuticular lipid extracts. Among the lipid fractions separately tested, only the free fatty acid fraction promoted significant bug aggregation. We also investigated the response to different amounts of selected fatty acid components of this fraction; receptiveness varied with the fatty acid chain length. No response was elicited by hexadecanoic acid (C16:0), the major fatty acid component. Octadecanoic acid (C18:0) showed a significant assembling effect in the concentration range tested (0.1 to 2 insect equivalents). The very long chain hexacosanoic acid (C26:0) was significantly attractant at low doses (≤ 1 equivalent), although a repellent effect was observed at higher doses. Conclusion The detection of contact aggregation pheromones has practical application in Chagas disease vector control. These data may be used to help design new tools against triatomine bugs. PMID:19173716

  10. Epicuticular lipids induce aggregation in Chagas disease vectors.

    PubMed

    Figueiras, Alicia N Lorenzo; Girotti, Juan R; Mijailovsky, Sergio J; Juárez, M Patricia

    2009-01-27

    The triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Aggregation behavior plays an important role in their survival by facilitating the location of refuges and cohesion of aggregates, helping to keep them safely assembled into shelters during daylight time, when they are vulnerable to predators. There are evidences that aggregation is mediated by thigmotaxis, by volatile cues from their faeces, and by hexane-extractable contact chemoreceptive signals from their cuticle surface. The epicuticular lipids of Triatoma infestans include a complex mixture of hydrocarbons, free and esterified fatty acids, alcohols, and sterols. We analyzed the response of T. infestans fifth instar nymphs after exposure to different amounts either of total epicuticular lipid extracts or individual lipid fractions. Assays were performed in a circular arena, employing a binary choice test with filter papers acting as aggregation attractive sites; papers were either impregnated with a hexane-extract of the total lipids, or lipid fraction; or with the solvent. Insects were significantly aggregated around papers impregnated with the epicuticular lipid extracts. Among the lipid fractions separately tested, only the free fatty acid fraction promoted significant bug aggregation. We also investigated the response to different amounts of selected fatty acid components of this fraction; receptiveness varied with the fatty acid chain length. No response was elicited by hexadecanoic acid (C16:0), the major fatty acid component. Octadecanoic acid (C18:0) showed a significant assembling effect in the concentration range tested (0.1 to 2 insect equivalents). The very long chain hexacosanoic acid (C26:0) was significantly attractant at low doses (

  11. Detergent-Based Isolation of Yeast Membrane Rafts: An Inquiry-Based Laboratory Series for the Undergraduate Cell Biology or Biochemistry Lab

    ERIC Educational Resources Information Center

    Willhite, D. Grant; Wright, Stephen E.

    2009-01-01

    Lipid rafts have been implicated in numerous cellular processes including cell signaling, endocytosis, and even viral infection. Isolation of these lipid rafts often involves detergent treatment of the membrane to dissolve nonraft components followed by separation of raft regions in a density gradient. We present here an inquiry-based lab series…

  12. Interleaflet Coupling, Pinning, and Leaflet Asymmetry—Major Players in Plasma Membrane Nanodomain Formation

    PubMed Central

    Fujimoto, Toyoshi; Parmryd, Ingela

    2017-01-01

    The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities surrounded by a second, slightly different, liquid environment. Contributing to the dynamics is a continuous repartitioning of components between the two types of liquids and transient links between lipids and proteins, both to extracellular matrix and cytoplasmic components, that temporarily pin membrane constituents. This make plasma membrane nanodomains exceptionally challenging to study and much of what is known about membrane domains has been deduced from studies on model membranes at equilibrium. However, living cells are by definition not at equilibrium and lipids are distributed asymmetrically with inositol phospholipids, phosphatidylethanolamines and phosphatidylserines confined mostly to the inner leaflet and glyco- and sphingolipids to the outer leaflet. Moreover, each phospholipid group encompasses a wealth of species with different acyl chain combinations whose lateral distribution is heterogeneous. It is becoming increasingly clear that asymmetry and pinning play important roles in plasma membrane nanodomain formation and coupling between the two lipid monolayers. How asymmetry, pinning, and interdigitation contribute to the plasma membrane organization is only beginning to be unraveled and here we discuss their roles and interdependence. PMID:28119914

  13. Development of γ-Oryzanol Rich Extract from Leum Pua Glutinous Rice Bran Loaded Nanostructured Lipid Carriers for Topical Delivery.

    PubMed

    Pornputtapitak, Warangkana; Pantakitcharoenkul, Jaturavit; Panpakdee, Ratchada; Teeranachaideekul, Veerawat; Sinchaipanid, Nuttanan

    2018-02-01

    Leum Pua is native Thai glutinous rice that contains antioxidants higher than white rice and other colored rice. One of the major antioxidants in rice brans is γ-oryzanol (GO). In this study, Leum Pua glutinous rice bran was extracted by different solvents. Oleic acid (~40 g/100 g extract), linoleic acid (~30 g/100 g extract), and palmitic acid (~20 g/100 g extract) were found to be major lipid components in the extracts. Methanol extract showed less variety of lipid components compared to the others. However, hexane extract showed the highest percent of γ-oryzanol compared to other solvents. Therefore, the hexane extract was selected to prepare nanostructured lipid carriers (NLC). The prepared NLC had small particles in the size range of 142.9 ± 0.4 nm for extract-loaded NLC and 137.1 ± 0.5 nm for GO-loaded NLC with narrow size distribution (PI < 0.1) in both formulations. The release profile of extract-loaded NLC formulation was slightly higher than GO-loaded NLC formulation. However, they did not follow the Higuchi model because of small amounts of γ-oryzanol loaded in NLC particles.

  14. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid–induced ceramide biosynthesis in mice

    PubMed Central

    Holland, William L.; Bikman, Benjamin T.; Wang, Li-Ping; Yuguang, Guan; Sargent, Katherine M.; Bulchand, Sarada; Knotts, Trina A.; Shui, Guanghou; Clegg, Deborah J.; Wenk, Markus R.; Pagliassotti, Michael J.; Scherer, Philipp E.; Summers, Scott A.

    2011-01-01

    Obesity is associated with an enhanced inflammatory response that exacerbates insulin resistance and contributes to diabetes, atherosclerosis, and cardiovascular disease. One mechanism accounting for the increased inflammation associated with obesity is activation of the innate immune signaling pathway triggered by TLR4 recognition of saturated fatty acids, an event that is essential for lipid-induced insulin resistance. Using in vitro and in vivo systems to model lipid induction of TLR4-dependent inflammatory events in rodents, we show here that TLR4 is an upstream signaling component required for saturated fatty acid–induced ceramide biosynthesis. This increase in ceramide production was associated with the upregulation of genes driving ceramide biosynthesis, an event dependent of the activity of the proinflammatory kinase IKKβ. Importantly, increased ceramide production was not required for TLR4-dependent induction of inflammatory cytokines, but it was essential for TLR4-dependent insulin resistance. These findings suggest that sphingolipids such as ceramide might be key components of the signaling networks that link lipid-induced inflammatory pathways to the antagonism of insulin action that contributes to diabetes. PMID:21490391

  15. Interleaflet Coupling, Pinning, and Leaflet Asymmetry-Major Players in Plasma Membrane Nanodomain Formation.

    PubMed

    Fujimoto, Toyoshi; Parmryd, Ingela

    2016-01-01

    The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities surrounded by a second, slightly different, liquid environment. Contributing to the dynamics is a continuous repartitioning of components between the two types of liquids and transient links between lipids and proteins, both to extracellular matrix and cytoplasmic components, that temporarily pin membrane constituents. This make plasma membrane nanodomains exceptionally challenging to study and much of what is known about membrane domains has been deduced from studies on model membranes at equilibrium. However, living cells are by definition not at equilibrium and lipids are distributed asymmetrically with inositol phospholipids, phosphatidylethanolamines and phosphatidylserines confined mostly to the inner leaflet and glyco- and sphingolipids to the outer leaflet. Moreover, each phospholipid group encompasses a wealth of species with different acyl chain combinations whose lateral distribution is heterogeneous. It is becoming increasingly clear that asymmetry and pinning play important roles in plasma membrane nanodomain formation and coupling between the two lipid monolayers. How asymmetry, pinning, and interdigitation contribute to the plasma membrane organization is only beginning to be unraveled and here we discuss their roles and interdependence.

  16. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes

    DOE PAGES

    Rai, Durgesh K.; Qian, Shuo; Heller, William T.

    2016-08-13

    We report that membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine andmore » phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L = 1/500, but membrane thinning results when P/L = 1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. Lastly, the results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes.« less

  17. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes.

    PubMed

    Rai, Durgesh K; Qian, Shuo; Heller, William T

    2016-11-01

    Membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine and phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L=1/500, but membrane thinning results when P/L=1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. The results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The histone deacetylase inhibiting drug Entinostat induces lipid accumulation in differentiated HepaRG cells

    NASA Astrophysics Data System (ADS)

    Nunn, Abigail D. G.; Scopigno, Tullio; Pediconi, Natalia; Levrero, Massimo; Hagman, Henning; Kiskis, Juris; Enejder, Annika

    2016-06-01

    Dietary overload of toxic, free metabolic intermediates leads to disrupted insulin signalling and fatty liver disease. However, it was recently reported that this pathway might not be universal: depletion of histone deacetylase (HDAC) enhances insulin sensitivity alongside hepatic lipid accumulation in mice, but the mechanistic role of microscopic lipid structure in this effect remains unclear. Here we study the effect of Entinostat, a synthetic HDAC inhibitor undergoing clinical trials, on hepatic lipid metabolism in the paradigmatic HepaRG liver cell line. Specifically, we statistically quantify lipid droplet morphology at single cell level utilizing label-free microscopy, coherent anti-Stokes Raman scattering, supported by gene expression. We observe Entinostat efficiently rerouting carbohydrates and free-fatty acids into lipid droplets, upregulating lipid coat protein gene Plin4, and relocating droplets nearer to the nucleus. Our results demonstrate the power of Entinostat to promote lipid synthesis and storage, allowing reduced systemic sugar levels and sequestration of toxic metabolites within protected protein-coated droplets, suggesting a potential therapeutic strategy for diseases such as diabetes and metabolic syndrome.

  19. Droplet-Based Production of Liposomes

    NASA Technical Reports Server (NTRS)

    Ackley, Donald E.; Forster, Anita

    2009-01-01

    A process for making monodisperse liposomes having lipid bilayer membranes involves fewer, simpler process steps than do related prior methods. First, a microfluidic, cross junction droplet generator is used to produce vesicles comprising aqueous solution droplets contained in single layer lipid membranes. The vesicles are collected in a lipid-solvent mix that is at most partially soluble in water and is less dense than is water. A layer of water is dispensed on top of the solvent. By virtue of the difference in densities, the water sinks to the bottom and the solvent floats to the top. The vesicles, which have almost the same density as that of water, become exchanged into the water instead of floating to the top. As there are excess lipids in the solvent solution, in order for the vesicles to remain in the water, the addition of a second lipid layer to each vesicle is energetically favored. The resulting lipid bilayers present the hydrophilic ends of the lipid molecules to both the inner and outer membrane surfaces. If lipids of a second kind are dissolved in the solvent in sufficient excess before use, then asymmetric liposomes may be formed.

  20. In vivo kinetics of lipids and astaxanthin evolution in Haematococcus pluvialis mutant under 15% CO2 using Raman microspectroscopy.

    PubMed

    Li, Ke; Cheng, Jun; Ye, Qing; He, Yong; Zhou, Junhu; Cen, Kefa

    2017-11-01

    In vivo spatiotemporal dynamics of lipids and astaxanthin evolution in Haematococcus pluvialis mutant induced with 15% CO 2 and high light intensity were monitored with high spatial resolution in a non-destructive and label-free manner using single-cell Raman imaging. Astaxanthin intensity increased by 3.5 times within 12h under 15% CO 2 , and the accumulation rate was 5.8 times higher than that under air. Lipids intensity under 15% CO 2 was 27% higher than that under air. The lipids initially concentrated in chloroplast under 15% CO 2 due to an increase of directly photosynthetic fatty acid, which was different from the whole-cell dispersed lipids under air. Astaxanthin produced in chloroplast first accumulated around nucleus and then spread in cytoplasmic lipids under both air and 15% CO 2 . The calculation results of kinetic models for lipids and astaxanthin evolutions showed that accumulation rate of lipids was much higher than that of astaxanthin in cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top