Single-mode fiber laser based on core-cladding mode conversion.
Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N
2008-02-15
A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.
NASA Astrophysics Data System (ADS)
Chevalier, Paul; Piccardo, Marco; Anand, Sajant; Mejia, Enrique A.; Wang, Yongrui; Mansuripur, Tobias S.; Xie, Feng; Lascola, Kevin; Belyanin, Alexey; Capasso, Federico
2018-02-01
Free-running Fabry-Perot lasers normally operate in a single-mode regime until the pumping current is increased beyond the single-mode instability threshold, above which they evolve into a multimode state. As a result of this instability, the single-mode operation of these lasers is typically constrained to few percents of their output power range, this being an undesired limitation in spectroscopy applications. In order to expand the span of single-mode operation, we use an optical injection seed generated by an external-cavity single-mode laser source to force the Fabry-Perot quantum cascade laser into a single-mode state in the high current range, where it would otherwise operate in a multimode regime. Utilizing this approach, we achieve single-mode emission at room temperature with a tuning range of 36 cm-1 and stable continuous-wave output power exceeding 1 W at 4.5 μm. Far-field measurements show that a single transverse mode is emitted up to the highest optical power, indicating that the beam properties of the seeded Fabry-Perot laser remain unchanged as compared to free-running operation.
Inversed Vernier effect based single-mode laser emission in coupled microdisks
Li, Meng; Zhang, Nan; Wang, Kaiyang; Li, Jiankai; Xiao, Shumin; Song, Qinghai
2015-01-01
Recently, on-chip single-mode laser emissions in coupled microdisks have attracted considerable research attention due to their wide applications. While most of single-mode lasers in coupled microdisks or microrings have been qualitatively explained by either Vernier effect or inversed Vernier effect, none of them have been experimentally confirmed. Here, we studied the mechanism of single-mode laser operation in coupled microdisks. We found that the mode numbers had been significantly reduced to nearly single-mode within a large pumping power range from threshold to gain saturation. The detail laser spectra showed that the largest gain and the first lasing peak were mainly generated by one disk and the laser intensity was proportional to the wavelength detuning of two set of modes. The corresponding theoretical analysis showed that the experimental observations were dominated by internal coupling within one cavity, which was similar to the recently explored inversed Vernier effect in two coupled microrings. We believe our finding will be important for understanding the previous experimental findings and the development of on-chip single-mode laser. PMID:26330218
High power and single mode quantum cascade lasers.
Bismuto, Alfredo; Bidaux, Yves; Blaser, Stéphane; Terazzi, Romain; Gresch, Tobias; Rochat, Michel; Muller, Antoine; Bonzon, Christopher; Faist, Jerome
2016-05-16
We present a single mode quantum cascade laser with nearly 1 W optical power. A buried distributed feedback reflector is used on the back section for wavelength selection. The laser is 6 mm long, 3.5 μm wide, mounted episide-up and the laser facets are left uncoated. Laser emission is centered at 4.68 μm. Single-mode operation with a side mode suppression ratio of more than 30 dB is obtained in whole range of operation. Farfield measurements prove a symmetric, single transverse-mode emission in TM00-mode with typical divergences of 41° and 33° in the vertical and horizontal direction respectively. This work shows the potential for simple fabrication of high power lasers compatible with standard DFB processing.
All fiber passively Q-switched laser
Soh, Daniel B. S.; Bisson, Scott E
2015-05-12
Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.
NASA Technical Reports Server (NTRS)
Linden, K. J.
1985-01-01
Pb-salt diode lasers are being used as frequency-tunable infrared sources in high resolution spectroscopy and heterodyne detection applications. Recent advances in short cavity, stripe-geometry laser configurations have led to significant increases in maximum CW operating temperature, single mode operation, and increased single mode tuning range. This paper describes short cavity, stripe geometry lasers operating in the 5, 10, and 30-microns spectral regions, with single mode tuning ranges of over 6/cm.
The AlGaAs single-mode stability
NASA Technical Reports Server (NTRS)
Botez, D.; Ladany, I.
1983-01-01
Single-mode spectral behavior with aging in constricted double heterojunction (CDH) lasers was studied. The CDH lasers demonstrated excellent reliability ( or = 1 million years extrapolated room-temperature MTTF) and single-mode operation after 10,000 hours of 70 C aging. The deleterious effects of laser-fiber coupling on the spectra of the diodes were eliminated through the use of wedge-shaped fibers. A novel high-power large optical cavity (LOC)-type laser was developed: the terraced-heterostructure (TH)-LOC laser, which provides the highest power into a single-mode (i.e., 50 mW CW) ever reported.
Yin, Guolu; Saxena, Bhavaye; Bao, Xiaoyi
2011-12-19
A tunable and single longitudinal mode Er-doped fiber ring laser (SLM-EDFRL) is proposed and demonstrated based on Rayleigh backscattering (RBS) in single mode fiber-28e (SMF-28e). Theory and experimental study on formation of SLM from normal multi-mode ring laser is demonstrated. The RBS feedback in 660 m SMF-28e is the key to ensure SLM laser oscillation. This tunable SLM laser can be tuned over 1549.7-1550.18 nm with a linewidth of 2.5-3.0 kHz and a side mode suppression ratio (SMSR) of ~72 dB for electrical signal power. The tuning range is determined by the bandpass filter and gain medium used in the experiment. The laser is able to operate at S+C+L band.
Single mode pulsed dye laser oscillator
Hackel, Richard P.
1992-01-01
A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability.
High-Reliability Pump Module for Non-Planar Ring Oscillator Laser
NASA Technical Reports Server (NTRS)
Liu, Duncan T.; Qiu, Yueming; Wilson, Daniel W.; Dubovitsky, Serge; Forouhar, Siamak
2007-01-01
We propose and have demonstrated a prototype high-reliability pump module for pumping a Non-Planar Ring Oscillator (NPRO) laser suitable for space missions. The pump module consists of multiple fiber-coupled single-mode laser diodes and a fiber array micro-lens array based fiber combiner. The reported Single-Mode laser diode combiner laser pump module (LPM) provides a higher normalized brightness at the combined beam than multimode laser diode based LPMs. A higher brightness from the pump source is essential for efficient NPRO laser pumping and leads to higher reliability because higher efficiency requires a lower operating power for the laser diodes, which in turn increases the reliability and lifetime of the laser diodes. Single-mode laser diodes with Fiber Bragg Grating (FBG) stabilized wavelength permit the pump module to be operated without a thermal electric cooler (TEC) and this further improves the overall reliability of the pump module. The single-mode laser diode LPM is scalable in terms of the number of pump diodes and is capable of combining hundreds of fiber-coupled laser diodes. In the proof-of-concept demonstration, an e-beam written diffractive micro lens array, a custom fiber array, commercial 808nm single mode laser diodes, and a custom NPRO laser head are used. The reliability of the proposed LPM is discussed.
Single mode pulsed dye laser oscillator
Hackel, R.P.
1992-11-24
A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.
Single mode wavelength control of modulated AlGaAs lasers with external and internal etalon feedback
NASA Technical Reports Server (NTRS)
Maynard, William L.
1989-01-01
Single mode lasing without mode hops has been obtained for VSIS and CSP laser diodes with an external etalon attached to the laser's front facet for up to an 8 C range CW and a 4 C range pulsed, with .07 nm/C tuning. Tests of thin tapered-thickness (TTT) laser diodes show CW and pulsed single mode lasing over 10 C and 2 C ranges, respectively, with .08 nm/C tuning. An analysis of the TTT structure reveals the equivalent of an internal etalon. The time-resolved pulsed behavior for both types of lasers show single mode lasing within the proper temperature ranges with minor modes present only early in the optical pulse, if at all. The external etalon produces noticeable interference fringes in the farfield pattern, while those of the TTT lasers are smooth. Ongoing CW lifetest results indicate stability to within one longitudinal mode after a few hundred hours of operation, along with at least several thousand hours lifetime.
NASA Astrophysics Data System (ADS)
Dai, T. Y.; Fan, Z. G.; Wu, J.; Ju, Y. L.; Yao, B. Q.; Zhang, Z. G.; Teng, K.; Xu, X. G.; Duan, X. M.
2017-05-01
We report a unidirectional single-longitudinal-mode Ho:YLF ring laser. An acousto-optic modulator and two half-wave plates were used to enforce the Ho:YLF ring laser in a unidirectional operation. The single-longitudinal-mode output power could reach 3.73 W successfully when the incident pump power was 16.4 W. The corresponding slope efficiency was 27.1%. The wavelength of the single-longitudinal-mode Ho:YLF ring laser was 2063.8 nm. The M2 factor was 1.12. The results illustrated that the single-longitudinal-mode output power could be further enhanced by increasing the radio frequency power of the acousto-optic modulator.
Single-frequency Ince-Gaussian mode operations of laser-diode-pumped microchip solid-state lasers.
Ohtomo, Takayuki; Kamikariya, Koji; Otsuka, Kenju; Chu, Shu-Chun
2007-08-20
Various single-frequency Ince-Gaussian mode oscillations have been achieved in laser-diode-pumped microchip solid-state lasers, including LiNdP(4)O(12) (LNP) and Nd:GdVO(4), by adjusting the azimuthal symmetry of the short laser resonator. Ince-Gaussian modes formed by astigmatic pumping have been reproduced by numerical simulation.
Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A
2015-11-30
In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 < 1.05). By frequency doubling of the fundamental 1342 nm laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.
Beach, Raymond J.; Dawson, Jay W.; Messerly, Michael J.; Barty, Christopher P. J.
2012-12-18
Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.
Lysevych, M; Tan, H H; Karouta, F; Fu, L; Jagadish, C
2013-04-08
In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.
Transverse single-mode edge-emitting lasers based on coupled waveguides.
Gordeev, Nikita Yu; Payusov, Alexey S; Shernyakov, Yuri M; Mintairov, Sergey A; Kalyuzhnyy, Nikolay A; Kulagina, Marina M; Maximov, Mikhail V
2015-05-01
We report on the transverse single-mode emission from InGaAs/GaAs quantum well edge-emitting lasers with broadened waveguide. The lasers are based on coupled large optical cavity (CLOC) structures where high-order vertical modes of the broad active waveguide are suppressed due to their resonant tunneling into a coupled single-mode passive waveguide. The CLOC lasers have shown stable Gaussian-shaped vertical far-field profiles with a reduced divergence of ∼22° FWHM (full width at half-maximum) in CW (continuous-wave) operation.
Investigation of single lateral mode for 852nm diode lasers with ridge waveguide design
NASA Astrophysics Data System (ADS)
Liu, Chu; Guan, Baolu; Mi, Guoxin; Liao, Yiru; Liu, Zhenyang; Li, Jianjun; Xu, Chen
2016-11-01
852nm Narrow linewidth lasers can be widely used in the field of ultra-fine spectrum measurement, Cs atomic clock control, satellite and optical fiber communication and so on. Furthermore, the stability of the single lateral mode is a very important condition to guarantee the narrow linewidth lasers. Here we investigate experimentally the influence of the narrow ridge structure and asymmetrical waveguide design on the stability single lateral mode of an 852nm diode laser. According to the waveguide theoretical analysis, ridge mesa etch depth (Δη , related to the refractive index difference of parallel to the junction) and ridge mesa width (the narrower the more control force to low order mode) are the main elements for lateral modes. In this paper, we designed different structures to investigate and verify major factors for lateral mode by experiment, and to confirm our thought. Finally, the 5μm mesa ridge laser, 800nm etch depth, with groove structure obtains excellent steady single lateral mode output by 150mA operating current and 30°C temperature. The optical spectrum FWHM is 0.5nm and side mode suppression ratio is 27dBm with uncoated. The laser with 1mm cavity length showed the threshold current of 50mA, a lasing wavelength of λ = 852.6nm, slope efficiency of above 0.7mW/mA. We accomplished single lateral mode of ridge waveguide edge-emitting lasers which can also be used as a laser source in the ultra-narrow linewidth external cavity laser system.
Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cha, Hyungrae; Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826; Bae, Seunghwan
2016-05-02
We report optically pumped room temperature single mode laser that contains a thin film of hybrid perovskite, an emerging photonic material, as gain medium. Two-dimensional square lattice photonic crystal (PhC) backbone structure enables single mode laser operation via a photonic bandedge mode, while a thin film of methyl-ammonium lead iodide (CH{sub 3}NH{sub 3}PbI{sub 3}) spin-coated atop provides optical gain for lasing. Two kinds of bandedge modes, Γ and M, are employed, and both devices laser in single mode at similar laser thresholds of ∼200 μJ/cm{sup 2} in pulse energy density. Polarization dependence measurements reveal a clear difference between the two kindsmore » of bandedge lasers: isotropic for the Γ-point laser and highly anisotropic for the M-point laser. These observations are consistent with expected modal properties, confirming that the lasing actions indeed originate from the corresponding PhC bandedge modes.« less
An integrated parity-time symmetric wavelength-tunable single-mode microring laser
Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping
2017-01-01
Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm. PMID:28497784
An integrated parity-time symmetric wavelength-tunable single-mode microring laser.
Liu, Weilin; Li, Ming; Guzzon, Robert S; Norberg, Erik J; Parker, John S; Lu, Mingzhi; Coldren, Larry A; Yao, Jianping
2017-05-12
Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm.
Mode coupling in hybrid square-rectangular lasers for single mode operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiu-Wen; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn; Yang, Yue-De
Mode coupling between a square microcavity and a Fabry-Pérot (FP) cavity is proposed and demonstrated for realizing single mode lasers. The modulations of the mode Q factor as simulation results are observed and single mode operation is obtained with a side mode suppression ratio of 46 dB and a single mode fiber coupling loss of 3.2 dB for an AlGaInAs/InP hybrid laser as a 300-μm-length and 1.5-μm-wide FP cavity connected to a vertex of a 10-μm-side square microcavity. Furthermore, tunable single mode operation is demonstrated with a continuous wavelength tuning range over 10 nm. The simple hybrid structure may shed light on practicalmore » applications of whispering-gallery mode microcavities in large-scale photonic integrated circuits and optical communication and interconnection.« less
NASA Technical Reports Server (NTRS)
Giacobino, E.; Marin, F.; Bramati, A.; Jost, V.; Poizat, J. Ph.; Roch, J.-F.; Grangier, P.; Zhang, T.-C.
1996-01-01
We have investigated the intensity noise of single mode laser diodes, either free-running or using different types of line narrowing techniques at room temperature. We have measured an intensity squeezing of 1.2 dB with grating-extended cavity lasers and 1.4 dB with injection locked lasers (respectively 1.6 dB and 2.3 dB inferred at the laser output). We have observed that the intensity noise of a free-running nominally single mode laser diode results from a cancellation effect between large anti-correlated fluctuations of the main mode and of weak longitudinal side modes. Reducing the side modes by line narrowing techniques results in intensity squeezing.
Switchable narrow linewidth fiber laser with LP11 transverse mode output
NASA Astrophysics Data System (ADS)
Shen, Ya; Ren, Guobin; Yang, Yuguang; Yao, Shuzhi; Wu, Yue; Jiang, Youchao; Xu, Yao; Jin, Wenxing; Zhu, Bofeng; Jian, Shuisheng
2018-01-01
We experimentally demonstrate a switchable narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser with LP11 transverse mode output. The laser is based on a mode selective all-fiber fused coupler which is composed of a single-mode fiber (SMF) and a two-mode fiber (TMF). By controlling the polarization state of the output light, the laser can provide narrow linewidth SLM output with LP11 transverse mode at two specific wavelengths, which correspond to two transmission peaks of the chirped moiré fiber grating (CMFBG). The 20 dB linewidth of the fiber laser for each wavelength is approximately 7.2 and 6.4 kHz.
Tri-channel single-mode terahertz quantum cascade laser.
Wang, Tao; Liu, Jun-Qi; Liu, Feng-Qi; Wang, Li-Jun; Zhang, Jin-Chuan; Wang, Zhan-Guo
2014-12-01
We report on a compact THz quantum cascade laser source emitting at, individually controllable, three different wavelengths (92.6, 93.9, and 95.1 μm). This multiwavelength laser array can be used as a prototype of the emission source of THz wavelength division multiplex (WDM) wireless communication system. The source consists of three tapered single-mode distributed feedback (DFB) terahertz quantum cascade lasers fabricated monolithically on a single chip. All array elements feature longitudinal as well as lateral single-mode in the entire injection range. The peak output powers of individual lasers are 42, 73, and 37 mW at 10 K, respectively.
NASA Technical Reports Server (NTRS)
Botez, D.
1982-01-01
Constricted double-heterojunction (CDH) lasers are presented as the class of single-mode nonplanar-substrate devices for which the lasing cavity is on the least resistive electrical path between the contact and the substrate. Various types of CDH structures are considered under three general topics: liquid-phase epitaxy over channeled substrates, lateral mode control, and current control in nonplanar-substrate devices. Ridge-guide CDH lasers have positive-index lateral-mode confinement and provide: single-mode CW operation to 7 mW/facet at room temperature and to 3 mW/facet at 150 C; light-current characteristics with second-harmonic distortion as low as -57 dB below the fundamental level; threshold-current temperature coefficients, as high as 375 C (pulsed) and 310 C (CW); constant external differential quantum efficiency to 100 C; and lasing operation to 170 C CW and 280 C pulsed. Semileakyguide CDH lasers have an asymmetric leaky cavity for lateral-mode confinement and provide single-mode operation to 15 to 20 mW/facet CW and to 50 mW/facet at 50% duty cycle. Modulation characteristics and preliminary reliability data are discussed.
Quantum dash based single section mode locked lasers for photonic integrated circuits.
Joshi, Siddharth; Calò, Cosimo; Chimot, Nicolas; Radziunas, Mindaugas; Arkhipov, Rostislav; Barbet, Sophie; Accard, Alain; Ramdane, Abderrahim; Lelarge, Francois
2014-05-05
We present the first demonstration of an InAs/InP Quantum Dash based single-section frequency comb generator designed for use in photonic integrated circuits (PICs). The laser cavity is closed using a specifically designed Bragg reflector without compromising the mode-locking performance of the self pulsating laser. This enables the integration of single-section mode-locked laser in photonic integrated circuits as on-chip frequency comb generators. We also investigate the relations between cavity modes in such a device and demonstrate how the dispersion of the complex mode frequencies induced by the Bragg grating implies a violation of the equi-distance between the adjacent mode frequencies and, therefore, forbids the locking of the modes in a classical Bragg Device. Finally we integrate such a Bragg Mirror based laser with Semiconductor Optical Amplifier (SOA) to demonstrate the monolithic integration of QDash based low phase noise sources in PICs.
Himei, Yusuke; Qiu, Jianrong; Nakajima, Sotohiro; Sakamoto, Akihiko; Hirao, Kazuyuki
2004-12-01
Novel optical attenuation fibers were fabricated by the irradiation of a focused infrared femtosecond pulsed laser onto the core of a silica glass single-mode optical fiber. Optical attenuation at a wavelength of 1.55 microm proportionally increased with increasing numbers of irradiation points and was controllable under laser irradiation conditions. The single-mode property of the waveguide and the mode-field diameter of the optical fiber were maintained after irradiation of the femtosecond laser. It is suggested that the attenuation results from optical scattering at photoinduced spots formed inside the fiber core.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hui; School of Physics, University of Chinese Academy of Sciences, Beijing 100049; Yin, Mojuan
2015-10-12
In this paper, we report on the active filtering and amplification of a single mode from an optical femtosecond laser comb with mode spacing of 250 MHz by optical injection of two external-cavity diode lasers operating in cascade to build a narrow linewidth laser for laser cooling of the strontium atoms in an optical lattice clock. Despite the low injection of individual comb mode of approximately 50 nW, a single comb line at 689 nm could be filtered and amplified to reach as high as 10 mW with 37 dB side mode suppression and a linewidth of 240 Hz. This method could be appliedmore » over a broad spectral band to build narrow linewidth lasers for various applications.« less
NASA Astrophysics Data System (ADS)
Otsuka, Kenju; Nemoto, Kana; Kamikariya, Koji; Miyasaka, Yoshihiko; Chu, Shu-Chun
2007-09-01
Detailed oscillation spectra and polarization properties have been examined in laser-diode-pumped (LD-pumped) microchip ceramic (i.e., polycrystalline) Nd:YAG lasers and the inherent segregation of lasing patterns into local modes possessing different polarization states was observed. Single-frequency linearly-polarized stable oscillations were realized by forcing the laser to Ince-Gaussian mode operations by adjusting azimuthal cavity symmetry.
NASA Astrophysics Data System (ADS)
Wang, Zixiao; Tan, Zhongwei; Xing, Rui; Liang, Linjun; Qi, Yanhui; Jian, Shuisheng
2016-10-01
A novel reflective liquid level sensor based on single-mode-offset coreless-single-mode (SOCS) fiber structure is proposed and experimentally demonstrated. Theory analyses and experimental results indicate that offset fusion can remarkably enhance the sensitivity of sensor. Ending-reflecting structure makes the sensor compact and easy to deploy. Meanwhile, we propose a laser sensing system, and the SOCS structure is used as sensing head and laser filter simultaneously. Experimental results show that laser spectra with high optical signal-to-noise ratio (-30 dB) and narrow 3-dB bandwidth (<0.15 nm) are achieved. Various liquids with different indices are used for liquid level sensing, besides, the refractive index sensitivity is also investigated. In measurement range, the sensing system presents steady laser output.
NASA Astrophysics Data System (ADS)
Giglio, Marilena; Patimisco, Pietro; Sampaolo, Angelo; Kriesel, Jason M.; Tittel, Frank K.; Spagnolo, Vincenzo
2018-01-01
We report single-mode midinfrared laser beam delivery through a 50-cm-long tapered hollow-core waveguide (HCW) having bore diameter linearly increasing from 200 to 260 μm. We performed theoretical calculations to identify the best HCW-laser coupling conditions in terms of optical losses and single-mode fiber output. To validate our modeling, we coupled the HCW with an interband cascade laser and four quantum cascade lasers with their emission wavelengths spanning 3.5 to 7.8 μm, using focusing lenses with different focal lengths. With the best coupling conditions, we achieved single-mode output in the investigated 3.5 to 7.8 μm spectral range, with minimum transmission losses of 1.27 dB at 6.2 μm.
Single-mode SOA-based 1kHz-linewidth dual-wavelength random fiber laser.
Xu, Yanping; Zhang, Liang; Chen, Liang; Bao, Xiaoyi
2017-07-10
Narrow-linewidth multi-wavelength fiber lasers are of significant interests for fiber-optic sensors, spectroscopy, optical communications, and microwave generation. A novel narrow-linewidth dual-wavelength random fiber laser with single-mode operation, based on the semiconductor optical amplifier (SOA) gain, is achieved in this work for the first time, to the best of our knowledge. A simplified theoretical model is established to characterize such kind of random fiber laser. The inhomogeneous gain in SOA mitigates the mode competition significantly and alleviates the laser instability, which are frequently encountered in multi-wavelength fiber lasers with Erbium-doped fiber gain. The enhanced random distributed feedback from a 5km non-uniform fiber provides coherent feedback, acting as mode selection element to ensure single-mode operation with narrow linewidth of ~1kHz. The laser noises are also comprehensively investigated and studied, showing the improvements of the proposed random fiber laser with suppressed intensity and frequency noises.
Wavelength meter having single mode fiber optics multiplexed inputs
Hackel, R.P.; Paris, R.D.; Feldman, M.
1993-02-23
A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.
Wavelength meter having single mode fiber optics multiplexed inputs
Hackel, Richard P.; Paris, Robert D.; Feldman, Mark
1993-01-01
A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.
Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality.
Peng, Kun; Zhan, Huan; Ni, Li; Wang, Xiaolong; Wang, Yuying; Gao, Cong; Li, Yuwei; Wang, Jianjun; Jing, Feng; Lin, Aoxiang
2016-12-10
By using the chelate precursor doping technique, we report on an ytterbium-doped aluminophosphosilicate (APS) large-mode-area fiber with ultralow numerical aperture of 0.036 and effective fundamental mode area of ∼550 μm2. With a bend diameter of 600 mm, the bending loss of fundamental mode LP01 was measured to be <10-3 dB/m, in agreement with the corresponding simulation results, while that of higher order mode LP11 is >100 dB/m at 1080 nm. Measured in an all-fiber oscillator laser cavity, 592 W single-mode laser output was obtained at 1079.64 nm with high-beam quality M2 of 1.12. The results indicate that the chelate precursor doping technique is a competitive method for ultralow numerical aperture fiber fabrication, which is very suitable for developing single-mode seed lasers for high power laser systems.
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2012-01-01
We have developed a linearly polarized Ytterbium-doped fiber ring laser with a single longitudinal mode output at 1064 run. A fiber-coupled intracavity phase modulator ensured mode-hop free operation and allowed fast frequency tuning. The fiber laser was locked with high stability to an iodine-stabilized laser, showing a frequency noise suppression of a factor approx 10 (exp 5) at 1 mHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierściński, K., E-mail: kamil.pierscinski@ite.waw.pl; Pierścińska, D.; Pluska, M.
2015-10-07
Room temperature, single mode, pulsed emission from two-section coupled cavity InGaAs/AlGaAs/GaAs quantum cascade laser fabricated by focused ion beam processing is demonstrated and analyzed. The single mode emission is centered at 1059.4 cm{sup −1} (9.44 μm). A side mode suppression ratio of 43 dB was achieved. The laser exhibits a peak output power of 15 mW per facet at room temperature. The stable, single mode emission is observed within temperature tuning range, exhibiting shift at rate of 0.59 nm/K.
NASA Technical Reports Server (NTRS)
Megie, G.; Menzies, R. T.
1979-01-01
The tunable single-longitudinal-mode operation of a TEA CO2 laser by an injection technique using a CW waveguide laser as the master oscillator is reported. With the experimental arrangement described, in which the waveguide laser frequency is tuned to correspond to one of the oscillating longitudinal modes of the TEA laser, single-longitudinal-mode operation was achieved with no apparent reduction in the TEA output energy, on various CO2 lines with frequency offsets from the line center as large as 300 MHz. The capability of this technique for high-resolution spectroscopy or atmospheric lidar studies is demonstrated by the recording of the absorption spectrum of a strong ozone line.
Cendejas, Richard A; Phillips, Mark C; Myers, Tanya L; Taubman, Matthew S
2010-12-06
An external-cavity (EC) quantum cascade (QC) laser using optical feedback from a partial-reflector is reported. With this configuration, the otherwise multi-mode emission of a Fabry-Perot QC laser was made single-mode with optical output powers exceeding 40 mW. A mode-hop free tuning range of 2.46 cm(-1) was achieved by synchronously tuning the EC length and QC laser current. The linewidth of the partial-reflector EC-QC laser was measured for integration times from 100 μs to 4 seconds, and compared to a distributed feedback QC laser. Linewidths as small as 480 kHz were recorded for the EC-QC laser.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai
2018-03-01
To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1998-01-01
Single-frequency operation of uncoated Fabry-Perot laser diodes is demonstrated by phase- locking the laser oscillations through self-injection seeding with feedback from a fiber Bragg grating. By precisely tuning the laser temperature so that an axial-mode coincides with the short-wavelength band edge of the grating, the phase of the feedback is made conjugate to that of the axial mode, locking the phase of the laser oscillations to that mode.
NASA Astrophysics Data System (ADS)
Wan, Hongdan; Liu, Linqian; Ding, Zuoqin; Wang, Jie; Xiao, Yu; Zhang, Zuxing
2018-06-01
This paper proposes and demonstrates a single-longitudinal-mode, narrow bandwidth fiber laser, using an ultra-high roundness microsphere resonator (MSR) with a stabilized package as the single-longitudinal-mode selector inside a double-ring fiber cavity. By improving the heating technology and surface cleaning process, MSR with high Q factor are obtained. With the optimized coupling condition, light polarization state and fiber taper diameter, we achieve whispering gallery mode (WGM) spectra with a high extinction ratio of 23 dB, coupling efficiency of 99.5%, a 3 dB bandwidth of 1 pm and a side-mode-suppression-ratio of 14.5 dB. The proposed fiber laser produces single-longitudinal-mode laser output with a 20-dB frequency linewidth of about 340 kHz, a signal-to-background ratio of 54 dB and a high long-term stability without mode-hopping, which is potential for optical communication and sensing applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Jeremy Benjamin
2014-07-01
In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key gure of merit that allows for nanowire lasing is the relatively high optical con nement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices.more » Two devices were designed to reduce the number of lasing modes to achieve singlemode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode op eration. The rst method involves reducing the diameter of individual nanowires to the cut-o condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter e ciency. Advances in nanowire fabrication, speci cally a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip that emit vertically. By tuning the geometrical properties of the individual lasers across the array, each individual nanowire laser produced a di erent emission wavelength yielding a near continuum of laser wavelengths. I successfully fabricated an array of emitters spanning a bandwidth of 60 nm on a single chip. This was achieved in the blue-violet using III-nitride photonic crystal nanowire lasers.« less
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Huang, Tzu-Jung; Yang, Zi-Qing; Chow, Chi-Wai
2017-12-01
In this demonstration, a stable and tunable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser with multiple-ring configuration is proposed and investigated. The proposed compound-ring structure can create different free spectrum ranges (FSRs) to result in the mode-filter effect based on the Vernier effect for suppressing the other modes. Additionally, the output stabilization of power and wavelength in the proposed EDF multiple-ring laser are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Mei C., E-mail: meizheng@princeton.edu; Gmachl, Claire F.; Liu, Peter Q.
2013-11-18
We report on the experimental demonstration of a widely tunable single mode quantum cascade laser with Asymmetric Mach-Zehnder (AMZ) interferometer type cavities with separately biased arms. Current and, consequently, temperature tuning of the two arms of the AMZ type cavity resulted in a single mode tuning range of 20 cm{sup −1} at 80 K in continuous-wave mode operation, a ten-fold improvement from the lasers under a single bias current. In addition, we also observed a five fold increase in the tuning rate as compared to the AMZ cavities controlled by one bias current.
Electrically-pumped, broad-area, single-mode photonic crystal lasers.
Zhu, Lin; Chak, Philip; Poon, Joyce K S; DeRose, Guy A; Yariv, Amnon; Scherer, Axel
2007-05-14
Planar broad-area single-mode lasers, with modal widths of the order of tens of microns, are technologically important for high-power applications and improved coupling efficiency into optical fibers. They may also find new areas of applications in on-chip integration with devices that are of similar size scales, such as for spectroscopy in microfluidic chambers or optical signal processing with micro-electromechanical systems. An outstanding challenge is that broad-area lasers often require external means of control, such as injection-locking or a frequency/spatial filter to obtain single-mode operation. In this paper, we propose and demonstrate effective index-guided, large-area, edge-emitting photonic crystal lasers driven by pulsed electrical current injection at the optical telecommunication wavelength of 1550 nm. By suitable design of the photonic crystal lattice, our lasers operate in a single mode with a 1/e(2) modal width of 25 microm and a length of 600 microm.
Nine-channel wavelength tunable single mode laser array based on slots.
Guo, Wei-Hua; Lu, Qiaoyin; Nawrocka, Marta; Abdullaev, Azat; O'Callaghan, James; Donegan, John F
2013-04-22
A 9-channel wavelength tunable single-mode laser array based on slots is presented. The fabricated laser array demonstrated a threshold current in a range of 19~21 mA with the SOA unbiased at 20°C under continuous wave condition. Stable single mode performances have been observed with side-mode suppression-ratio (SMSR) > 50 dB. The output power higher than 37 mW was obtained at the SOA injected current of 70 mA for all the 9 channels within the laser array. A wavelength quasi-continuous tuning range of about 27 nm has been achieved for the laser array with the temperature variations from 10°C to 45°C. This array platform is of a single growth and monolithically integrable. It can be easily fabricated by standard photolithography. In addition, it potentially removes the yield problem due to the uncertainty of the facet cleaving.
Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.
2016-02-01
Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.
Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.« less
NASA Astrophysics Data System (ADS)
Gonschior, C. P.; Klein, K.-F.; Sun, T.; Grattan, K. T. V.
2012-04-01
As the demand for high power fiber-coupled violet laser systems increases existing problems remain. The typical power of commercially available diode lasers around 400 nm is in the order of 100 to 300 mW, depending on the type of laser. But in combination with the small core of single-mode fibers reduced spot sizes are needed for good coupling efficiencies, leading to power densities in the MW/cm2 range. We investigated the influence of 405 nm laser light irradiation on different fused silica fibers and differently treated end-faces. The effect of glued-and-polished, cleaved-and-clamped and of cleaved-and-fusion-arc-treated fiber end-faces on the damage rate and behavior are presented. In addition, effects in the deep ultra-violet were determined spectrally using newest spectrometer technology, allowing the measurement of color centers around 200 nm in small core fibers. Periodic surface structures were found on the proximal end-faces and were investigated concerning generation control parameters and composition. The used fiber types range from low-mode fiber to single-mode and polarization-maintaining fiber. For this investigation 405 nm single-mode or multi-mode diode lasers with 150 mW or 300 mW, respectively, were employed.
[INVITED] On the mechanisms of single-pulse laser-induced backside wet etching
NASA Astrophysics Data System (ADS)
Tsvetkov, M. Yu.; Yusupov, V. I.; Minaev, N. V.; Akovantseva, A. A.; Timashev, P. S.; Golant, K. M.; Chichkov, B. N.; Bagratashvili, V. N.
2017-02-01
Laser-induced backside wet etching (LIBWE) of a silicate glass surface at interface with a strongly absorbing aqueous dye solution is studied. The process of crater formation and the generated optoacoustic signals under the action of single 5 ns laser pulses at the wavelength of 527 nm are investigated. The single-pulse mode is used to avoid effects of incubation and saturation of the etched depth. Significant differences in the mechanisms of crater formation in the ;soft; mode of laser action (at laser fluencies smaller than 150-170 J/cm2) and in the ;hard; mode (at higher laser fluencies) are observed. In the ;soft; single-pulse mode, LIBWE produces accurate craters with the depth of several hundred nanometers, good shape reproducibility and smooth walls. Estimates of temperature and pressure of the dye solution heated by a single laser pulse indicate that these parameters can significantly exceed the corresponding critical values for water. We consider that chemical etching of glass surface (or molten glass) by supercritical water, produced by laser heating of the aqueous dye solution, is the dominant mechanism responsible for the formation of crater in the ;soft; mode. In the ;hard; mode, the produced craters have ragged shape and poor pulse-to-pulse reproducibility. Outside the laser exposed area, cracks and splits are formed, which provide evidence for the shock induced glass fracture. By measuring the amplitude and spectrum of the generated optoacoustic signals it is possible to conclude that in the ;hard; mode of laser action, intense hydrodynamic processes induced by the formation and cavitation collapse of vapor-gas bubbles at solid-liquid interface are leading to the mechanical fracture of glass. The LIBWE material processing in the ;soft; mode, based on chemical etching in supercritical fluids (in particular, supercritical water) is very promising for structuring of optical materials.
High-power diode lasers for optical communications applications
NASA Technical Reports Server (NTRS)
Carlin, D. B.; Goldstein, B.; Channin, D. J.
1985-01-01
High-power, single-mode, double-heterojunction AlGaAs diode lasers are being developed to meet source requirements for both fiber optic local area network and free space communications systems. An individual device, based on the channeled-substrate-planar (CSP) structure, has yielded single spatial and longitudinal mode outputs of up to 90 mW CW, and has maintained a single spatial mode to 150 mW CW. Phase-locked arrays of closely spaced index-guided lasers have been designed and fabricated with the aim of multiplying the outputs of the individual devices to even higher power levels in a stable, single-lobe, anastigmatic beam. The optical modes of the lasers in such arrays can couple together in such a way that they appear to be emanating from a single source, and can therefore be efficiently coupled into optical communications systems. This paper will review the state of high-power laser technology and discuss the communication system implications of these devices.
The second-order interference of two independent single-mode He-Ne lasers
NASA Astrophysics Data System (ADS)
Liu, Jianbin; Le, Mingnan; Bai, Bin; Wang, Wentao; Chen, Hui; Zhou, Yu; Li, Fu-li; Xu, Zhuo
2015-09-01
The second-order spatial and temporal interference patterns with two independent single-mode continuous-wave He-Ne lasers are observed when these two lasers are incident to two adjacent input ports of a 1:1 non-polarizing beam splitter, respectively. Two-photon interference based on the superposition principle in Feynman's path integral theory is employed to interpret the experimental results. The conditions to observe the second-order interference pattern with two independent single-mode continuous-wave lasers are discussed. It is concluded that frequency stability is important to observe the second-order interference pattern with two independent light beams.
NASA Astrophysics Data System (ADS)
Ikoma, S.; Nguyen, H. K.; Kashiwagi, M.; Uchiyama, K.; Shima, K.; Tanaka, D.
2017-02-01
A 3 kW single stage all-fiber Yb-doped single-mode fiber laser with bi-directional pumping configuration has been demonstrated. Our newly developed high-power LD modules are employed for a high available pump power of 4.9 kW. The length of the delivery fiber is 20 m which is long enough to be used in most of laser processing machines. An output power of 3 kW was achieved at a pump power of 4.23 kW. The slope efficiency was 70%. SRS was able to be suppressed at the same output power by increasing ratio of backward pump power. The SRS level was improved by 5dB when 57% backward pump ratio was adopted compared with the case of 50%. SRS was 35dB below the laser power at the output power of 3 kW even with a 20-m delivery fiber. The M-squared factor was 1.3. Single-mode beam quality was obtained. To evaluate practical utility of the 3 kW single-mode fiber laser, a Bead-on-Plate (BoP) test onto a pure copper plate was executed. The BoP test onto a copper plate was made without stopping or damaging the laser system. That indicates our high power single-mode fiber lasers can be used practically in processing of materials with high reflectivity and high thermal conductivity.
Single transverse mode protein laser
NASA Astrophysics Data System (ADS)
Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat
2017-12-01
Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.
Jang, Hee Won; Chun, Seung Hyun; Park, Hae Chul; Ryu, Hwa Jung; Kim, Il-Hwan
2017-04-01
Recently dual-pulsed low-fluence 1064-nm Q-switched Nd:YAG (QSNY) laser has been developed for reducing complication during melasma treatment. Comparison of the efficacy and safety between dual-pulsed mode and single-pulsed mode for the treatment of melasma. In preclinical study, adult zebrafish were irradiated with dual-pulsed and single-pulsed mode. Changes of melanophore and cell death were assessed. In split-face clinical study, dual-pulsed and single-pulsed mode were irradiated on the left and right side of the face, respectively. L* value, clinical digital photos, modified Melasma Area and Severity Index (MASI) scores, and side effects were measured. As compared to single-pulsed mode and dual-pulsed mode with longer intervals, zebrafish melanophore was cleared quickly at dual-pulsed mode with 80-μsec interval and 0.3 J/cm 2 fluence. Dual-pulsed mode showed the least regeneration of melanophore at 4 weeks after irradiation and no cell death was observed with 80-μsec interval. Both pulse modes improved melasma significantly but modified MASI score and L* value were not significantly different between each other. Lesser pain and shorter duration of post-laser erythema were observed with dual-pulsed mode. Dual-pulsed mode was as effective as single-pulsed mode for the treatment of melasma and revealed less side effects.
Feedback stabilization system for pulsed single longitudinal mode tunable lasers
Esherick, Peter; Raymond, Thomas D.
1991-10-01
A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.
Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser.
Wang, P; Cooper, L J; Sahu, J K; Clarkson, W A
2006-01-15
A novel approach to achieving robust single-spatial-mode operation of cladding-pumped fiber lasers with multimode cores is reported. The approach is based on the use of a fiber geometry in which the core has a helical trajectory within the inner cladding to suppress laser oscillation on higher-order modes. In a preliminary proof-of-principle study, efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser with a 30 microm diameter core and a numerical aperture of 0.087 has been demonstrated. The laser yielded 60.4 W of output at 1043 nm in a beam with M2 < 1.4 for 92.6 W launched pump power from a diode stack at 976 nm. The slope efficiency at pump powers well above threshold was approximately 84%, which compares favorably with the slope efficiencies achievable with conventional straight-core Yb-doped double-clad fiber lasers.
Tunable single frequency fiber laser based on FP-LD injection locking.
Zhang, Aiqin; Feng, Xinhuan; Wan, Minggui; Li, Zhaohui; Guan, Bai-ou
2013-05-20
We propose and demonstrate a tunable single frequency fiber laser based on Fabry Pérot laser diode (FP-LD) injection locking. The single frequency operation principle is based on the fact that the output from a FP-LD injection locked by a multi-longitudinal-mode (MLM) light can have fewer longitudinal-modes number and narrower linewidth. By inserting a FP-LD in a fiber ring laser cavity, single frequency operation can be possibly achieved when stable laser oscillation established after many roundtrips through the FP-LD. Wavelength switchable single frequency lasing can be achieved by adjusting the tunable optical filter (TOF) in the cavity to coincide with different mode of the FP-LD. By adjustment of the drive current of the FP-LD, the lasing modes would shift and wavelength tunable operation can be obtained. In experiment, a wavelength tunable range of 32.4 nm has been obtained by adjustment of the drive current of the FP-LD and a tunable filter in the ring cavity. Each wavelength has a side-mode suppression ratio (SMSR) of at least 41 dB and a linewidth of about 13 kHz.
Single-longitudinal-mode Er:GGG microchip laser operating at 2.7 μm.
You, Zhenyu; Wang, Yan; Xu, Jinlong; Zhu, Zhaojie; Li, Jianfu; Wang, Hongyan; Tu, Chaoyang
2015-08-15
We reported on a diode-end-pumped single-longitudinal-mode microchip laser using a 600-μm-thick Er:GGG crystal at ∼2.7 μm, generating a maximum output power of 50.8 mW and the maximum pulsed energy of 0.306 mJ, with repetition rates of pumping light of 300, 200, and 100 Hz, respectively. The maximum slope efficiency of the laser was 20.1%. The laser was operated in a single-longitudinal mode centered at about 2704 nm with a FWHM of 0.42 nm. The laser had a fundamental beam profile and the beam quality parameter M(2) was measured as 1.46. These results indicate that the Er:GGG microchip laser is a potential compact mid-infrared laser source.
Single laser beam of spatial coherence from an array of GaAs lasers - Free-running mode
NASA Technical Reports Server (NTRS)
Philipp-Rutz, E. M.
1975-01-01
Spatially coherent radiation from a monolithic array of three GaAs lasers in a free-running mode is reported. The lasers, with their mirror faces antireflection coated, are operated in an external optical cavity built of spherical lenses and plane mirrors. The spatially coherent-beam formation makes use of the Fourier-transformation property of the internal lenses. Transverse mode control is accomplished by a spatial filter. The optical cavity is similar to that used for the phase-controlled mode of spatially coherent-beam formation; only the spatial filters are different. In the far field (when restored by an external lens), the intensities of the lasers in the array are concentrated in a single laser beam of spatial coherence, without any grating lobes. The far-field distribution of the laser array in the free-running mode differs significantly from the interference pattern of the phase-controlled mode. The modulation characteristics of the optical waveforms of the two modes are also quite different because modulation is related to the interaction of the spatial filter with the longitudinal modes of the laser array within the optical cavity. The modulation of the optical waveform of the free-running mode is nonperiodic, confirming that the fluctuations of the optical fields of the lasers are random.
Bonding performance of universal adhesives to er,cr:YSGG laser-irradiated enamel.
Ayar, Muhammet Kerim; Erdemir, Fatih
2017-04-01
Universal adhesives have been recently introduced for use as self-etch or etch-and-rinse adhesives depending on the dental substrate and clinical condition. However, their bonding effectiveness to laser-irradiated enamel is still not well-known. Thus, the aim of this study was to compare the shear bond strength (SBS) of universal adhesives (Single Bond Universal; Nova Compo-B Plus) applied to Er,Cr:YSGG laser-irradiated enamel with SBS of the same adhesives applied in self-etch and acid-etching modes, respectively. Crown segments of sixty bovine incisors were embedded into standardized acrylic blocks. Flattened enamel surfaces were prepared. Specimens were divided into six groups according to universal adhesives and application modes randomly (n = 10), as follows: Single Bond Universal/acid-etching mode; Nova Compo-B Plus/acid-etching mode; Single Bond Universal/self-etching mode; Nova Compo-B Plus/self-etching mode; and Single Bond Universal/Er,Cr:YSGG Laser-etching mode; Nova Compo-B Plus/Er,Cr:YSGG Laser-etching mode. After surface treatments, universal adhesives were applied onto surfaces. SBS was determined after storage in water for 24 h using a universal testing machine with a crosshead speed of 0.5 mm min -1 . Failure modes were evaluated using a stereomicroscope. Data was analyzed using two-way of analyses of variances (ANOVA) (p = 0.05). Two-way ANOVA revealed that adhesive had no effect on SBS (p = 0.88), but application mode significantly influenced SBS (p = 0.00). Acid-etching significantly increased SBS, whereas there are no significant differences between self-etch mode and laser-etching for both adhesives. The bond strength of universal adhesives may depend on application mode. Acid etching may significantly increase bond strength, while laser etching may provide similar bond strength when compared to self-etch mode. © 2016 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Connolly, J. C.; Carlin, D. B.; Ettenberg, M.
1989-01-01
A high power single spatial mode channeled substrate planar AlGaAs semiconductor diode laser was developed. The emission wavelength was optimized at 860 to 880 nm. The operating characteristics (power current, single spatial mode behavior, far field radiation patterns, and spectral behavior) and results of computer modeling studies on the performance of the laser are discussed. Reliability assessment at high output levels is included. Performance results on a new type of channeled substrate planar diode laser incorporating current blocking layers, grown by metalorganic chemical vapor deposition, to more effectively focus the operational current to the lasing region was demonstrated. The optoelectronic behavior and fabrication procedures for this new diode laser are discussed. The highlights include single spatial mode devices with up to 160 mW output at 8600 A, and quantum efficiencies of 70 percent (1 W/amp) with demonstrated operating lifetimes of 10,000 h at 50 mW.
Dual-wavelength single-frequency laser emission in asymmetric coupled microdisks
Wang, Haotian; Liu, Sheng; Chen, Lin; Shen, Deyuan; Wu, Xiang
2016-01-01
The gain and loss in a microcavity laser play an important role for the modulation of laser spectrum. We show that dual-wavelength single mode lasing can be achieved in an asymmetric coupled system consisted of two size-mismatched microdisks. The amount of eigenmodes in this coupled-microdisk system is reduced relying on the Vernier effect. Then a single mode is selected to lase by controlling the gain branching in the supermodes. The supermodes are formed by the coupling between different transverse whispering-gallery modes (WGMs). When the gain/loss status between the two mirodisks is changed through selectively pumping process, the modulated gain branching for various supermodes leads to the switchable single-frequency laser emission. The results obtained in this work will provide the further understand for the spectral modulation mechanism in the coupled microcavity laser system. PMID:27905506
NASA Technical Reports Server (NTRS)
Tedjojuwono, Ken K.; Hunter, William W., Jr.
1989-01-01
The transmission characteristics of two Ar(+) laser wavelengths through a twenty meter Panda type Polarization Preserving Single Mode Optical Fiber (PPSMOF) were measured. The measurements were done with both single and multi-longitudinal mode radiation. In the single longitudinal mode case, a degrading Stimulated Brillouin Scattering (SBS) is observed as a backward scattering loss. By choosing an optimum coupling system and manipulating the input polarization, the threshold of the SBS onset can be raised and the transmission efficiency can be increased.
NASA Astrophysics Data System (ADS)
Bogatov, Alexandr P.; Eliseev, P. G.; Luk'yanov, S. A.; Pak, G. T.; Petrakova, T. V.
1988-11-01
A nonmonotonic dependence of the emission line width on the power was observed for a single longitudinal mode of an AlGaAs heterojunction laser. This behavior could be due to the dependence of the waveguide coefficient of the amplitude-phase coupling on the nature of operation of the laser.
Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas
2014-03-01
We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.
NASA Astrophysics Data System (ADS)
Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas
2014-03-01
We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.
Injection-seeded operation of a Q-switched Cr,Tm,Ho:YAG laser
NASA Technical Reports Server (NTRS)
Henderson, Sammy W.; Hale, Charley P.; Magee, James R.
1991-01-01
Single-frequency Tm,Ho:YAG lasers operating near 2 microns are attractive sources for several applications including eye-safe laser radar (lidar) and pumping of AgGaSe2 parametric oscillators for efficient generation of longer wavelengths. As part of a program to develop a coherent lidar system using Tm,Ho:YAG lasers, a diode laser-pumped tunable CW single-longitudinal-mode (SLM) Cr:Tm:Ho:YAG laser and a flashlamp-pumped single-transverse-mode Q-switched Cr,Tm,Ho:YAG laser were developed. The CW laser was used to injection-seed the flashlamp-pumped laser, resulting in SLM Q-switched output. Operational characteristics of the CW and Q-switched lasers and injection-seeding results are reported.
Tunable all-fiber dissipative-soliton laser with a multimode interference filter.
Zhang, Lei; Hu, Jinmeng; Wang, Jianhua; Feng, Yan
2012-09-15
We report on a tunable all-fiber dissipative-soliton laser with a multimode interference filter that consists of a multimode fiber spliced between two single-mode fibers. By carefully selecting the fiber parameters, a filter with a central wavelength at 1032 nm and a bandwidth of 7.6 nm is constructed and used for spectral filtering in an all-normal-dispersion mode-locked ytterbium-doped fiber laser based on nonlinear polarization evolution. The laser delivers 31 mW of average output power with positively chirped 7 ps pulses. The repetition rate of the pulses is 15.3 MHz, and pulse energy is 2.1 nJ. Tunable dissipative-soliton over 12 nm is achieved by applying tension to the single-mode-multimode-single-mode filter.
Discrete mode laser diodes for FTTH/PON applications up to 10 Gbit/s
NASA Astrophysics Data System (ADS)
O'Carroll, John; Phelan, Richard; Kelly, Brian; Byrne, Diarmuid; Latkowski, Sylwester; Anandarajah, Prince M.; Barry, Liam P.
2012-06-01
Discrete Mode Laser Diodes (DMLDs) present an economic approach with a focus on high volume manufacturability of single mode lasers using a single step fabrication process. We report on a DMLD designed for operation in the 1550 nm window with high Side Mode Suppression Ratio (SMSR) over a wide temperature tuning range of -20 °C < T < 95 °C. Direct modulation rates as high as 10 Gbit/s are demonstrated at both 1550 nm and 1310 nm. Transmission experiments were also carried out over single mode fibre at both wavelengths. Using dispersion pre-compensation transmission from 0 to 60 km is demonstrated at 1550 nm with a maximum power penalty measured at 60 km of 3.6 dB.
NASA Astrophysics Data System (ADS)
Hsu, Yung; Yeh, Chien-Hung; Chow, Chi-Wai; Chang, Yuan-Chia; Cheng, Hao-Yun
2018-07-01
In the paper, a wavelength-tunable erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) oscillation is proposed and investigated. Here, a silicon-micro-ring-resonator can be applied in a laser cavity for tuning wavelength in the C-band range. To complete the SLM oscillation, an unpumped EDF-based saturable absorber is used to act as ultra-narrowband filter for suppressing other oscillation modes. Additionally, the output stabilities of power and wavelength in the proposed EDF ring laser are also executed and discussed.
Development of simplified external control techniques for broad area semiconductor lasers
NASA Technical Reports Server (NTRS)
Davis, Christopher C.
1993-01-01
The goal of this project was to injection lock a 500 mW broad area laser diode (BAL) with a single mode low power laser diode with injection beam delivery through a single mode optical fiber (SMF). This task was completed successfully with the following significant accomplishments: (1) injection locking of a BAL through a single-mode fiber using a master oscillator and integrated miniature optics; (2) generation of a single-lobed, high-power far-field pattern from the injection-locked BAL that steers with drive current; and (3) a comprehensive theoretical analysis of a model that describes the observed behavior of the injection locked oscillator.
Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber
Li, Wentao; Chen, Danping; Qinling, Zhou; Hu, Lili
2015-01-01
We have demonstrated a 45 μm core diameter Neodymium-doped all-solid silicate glass photonic crystal fiber laser with a single mode laser output. The structure parameters and modes information of the fiber are both demonstrated by theoretical calculations using Finite Difference Time Domain (FDTD) method and experimental measurements. Maximum 0.8 W output power limited by launched pump power has been generated in 1064 nm with laser beam quality factor M2 1.18. PMID:26205850
11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.
Okhrimchuk, Andrey G; Obraztsov, Petr A
2015-06-08
We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires-Tournois interferometer.
11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene
Okhrimchuk, Andrey G.; Obraztsov, Petr A.
2015-01-01
We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires–Tournois interferometer. PMID:26052678
Dual-color single-mode lasing in axially coupled organic nanowire resonators
Zhang, Chunhuan; Zou, Chang-Ling; Dong, Haiyun; Yan, Yongli; Yao, Jiannian; Zhao, Yong Sheng
2017-01-01
Miniaturized lasers with multicolor output and high spectral purity are of crucial importance for yielding more compact and more versatile photonic devices. However, multicolor lasers usually operate in multimode, which largely restricts their practical applications due to the lack of an effective mode selection mechanism that is simultaneously applicable to multiple wavebands. We propose a mutual mode selection strategy to realize dual-color single-mode lasing in axially coupled cavities constructed from two distinct organic self-assembled single-crystal nanowires. The unique mode selection mechanism in the heterogeneously coupled nanowires was elucidated experimentally and theoretically. With each individual nanowire functioning as both the laser source and the mode filter for the other nanowire, dual-color single-mode lasing was successfully achieved in the axially coupled heterogeneous nanowire resonators. Furthermore, the heterogeneously coupled resonators provided multiple nanoscale output ports for delivering coherent signals with different colors, which could greatly contribute to increasing the integration level of functional photonic devices. These results advance the fundamental understanding of the lasing modulation in coupled cavity systems and offer a promising route to building multifunctional nanoscale lasers for high-level practical photonic integrations. PMID:28785731
Diffusion-cooled high-power single-mode waveguide CO2 laser for transmyocardial revascularization
NASA Astrophysics Data System (ADS)
Berishvili, I. I.; Bockeria, L. A.; Egorov, E. N.; Golubev, Vladimir S.; Galushkin, Michail G.; Kheliminsky, A. A.; Panchenko, Vladislav Y.; Roshin, A. P.; Sigaev, I. Y.; Vachromeeva, M. N.; Vasiltsov, Victor V.; Yoshina, V. I.; Zabelin, Alexandre M.; Zelenov, Evgenii V.
1999-01-01
The paper presents the results on investigations and development of multichannel waveguide CO2 laser with diffusion cooling of active medium excited by discharge of audio-frequency alternating current. The description of high-power single-mode CO2 laser with average beam power up to 1 kW is presented. The result of measurement of the laser basic parameters are offered, as well as the outcomes of performances of the laser head with long active zone, operating in waveguide mode. As an example of application of these laser, various capabilities a description of the developed medical system 'Genom' used in the transmyocardial laser revascularization (TMLR) procedure and clinical results of the possibilities of the TMLR in the surgical treatment are presented.
1540-nm single frequency single-mode pulsed all fiber laser for coherent Doppler lidar
NASA Astrophysics Data System (ADS)
Zhang, Xin; Diao, Weifeng; Liu, Yuan; Liu, Jiqiao; Hou, Xia; Chen, Weibiao
2015-02-01
A single-mode single frequency eye-safe pulsed all fiber laser based on master oscillator power amplification structure is presented. This laser is composed of a narrow linewidth distributed laser diode seed laser and two-stage cascade amplifiers. 0.8 m longitudinally gradient strained erbium/ytterbium co-doped polarization-maintaining fiber with a core diameter of 10 μm is used as the gain fiber and two acoustic-optics modulators are adopted to enhance pulse extinction ratio. A peak power of 160 W and a pulse width of 200 ns at 10 kHz repetition rate are achieved with transform-limited linewidth and diffraction-limited beam quality. This laser will be employed in a compact short range coherent Doppler wind lidar.
Kerr-lens mode-locked Ti:Sapphire laser pumped by a single laser diode
NASA Astrophysics Data System (ADS)
Kopylov, D. A.; Esaulkov, M. N.; Kuritsyn, I. I.; Mavritskiy, A. O.; Perminov, B. E.; Konyashchenko, A. V.; Murzina, T. V.; Maydykovskiy, A. I.
2018-04-01
The performance of a Ti:sapphire laser pumped by a single 461 nm laser diode is presented for both the continuous-wave and the mode-locked regimes of operation. We introduce a simple astigmatism correction scheme for the laser diode beam consisting of two cylindrical lenses affecting the pump beam along the fast axis of the laser diode, which provides the mode-matching between the nearly square-shaped pump beam and the cavity mode. The resulting efficiency of the suggested Ti:Sapphire oscillator pumped by such a laser diode is analyzed for the Ti:sapphire crystals of 3 mm, 5 mm and 10 mm in length. We demonstrate that such a system provides the generation of ultrashort pulses up to 15 fs in duration with the repetition rate of 87 MHz, the average power being 170 mW.
A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser
NASA Astrophysics Data System (ADS)
Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.
2018-05-01
A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.
Griffin, Benjamin G; Arbabi, Amir; Peun Tan, Meng; Kasten, Ansas M; Choquette, Kent D; Goddard, Lynford L
2013-06-01
Previously reported simulations have suggested that depositing thin layers of metal over the surface of a single-mode, etched air hole photonic crystal (PhC) vertical-cavity surface-emitting laser (VCSEL) could potentially improve the laser's side-mode suppression ratio by introducing additional losses to the higher-order modes. This work demonstrates the concept by presenting the results of a 30 nm thin film of Cr deposited on the surface of an implant-confined PhC VCSEL. Both experimental measurements and simulation results are in agreement showing that the single-mode operation is improved at the same injection current ratio relative to threshold.
Single Longitudinal Mode, High Repetition Rate, Q-switched Ho:YLF Laser for Remote Sensing
NASA Technical Reports Server (NTRS)
Bai, Yingxin; Yu, Jirong; Petzar, Paul; Petros, M.; Chen, Songsheng; Trieu, Bo; Lee, Nyung; Singh, U.
2009-01-01
Ho:YLF/LuLiF lasers have specific applications for remote sensing such as wind-speed measurement and carbon dioxide (CO2) concentration measurement in the atmosphere because the operating wavelength (around 2 m) is located in the eye-safe range and can be tuned to the characteristic lines of CO2 absorption and there is strong backward scattering signal from aerosol (Mie scattering). Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of with a repetition rate of 5 Hz and pulse energy of 75 mJ [1]. For highly precise CO2 measurements with coherent detection technique, a laser with high repetition rate is required to averaging out the speckle effect [2]. In addition, laser efficiency is critically important for the air/space borne lidar applications, because of the limited power supply. A diode pumped Ho:Tm:YLF laser is difficult to efficiently operate in high repetition rate due to the large heat loading and up-conversion. However, a Tm:fiber laser pumped Ho:YLF laser with low heat loading can be operated at high repetition rates efficiently [3]. No matter whether wind-speed or carbon dioxide (CO2) concentration measurement is the goal, a Ho:YLF/LuLiF laser as the transmitter should operate in a single longitudinal mode. Injection seeding is a valid technique for a Q-switched laser to obtain single longitudinal mode operation. In this paper, we will report the new results for a single longitudinal mode, high repetition rate, Q-switched Ho:YLF laser. In order to avoid spectral hole burning and make injection seeding easier, a four mirror ring cavity is designed for single longitudinal mode, high repetition rate Q-switched Ho:YLF laser. The ramp-fire technique is chosen for injection seeding.
Single-mode Laser by Parity-time Symmetry Breaking
2014-11-21
solenoid -like Pds5B that reside in direct proximity to Wapl and the Smc3-Scc1 in- teraction interface (fig. S13), implying that Wapl and Pds5 control the...accepted 26 September 2014 10.1126/science.1256904 REPORTS ◥ OPTICS Single-mode laser by parity-time symmetry breaking Liang Feng,1* Zi Jing Wong,1...Ren-Min Ma,1* Yuan Wang,1,2 Xiang Zhang1,2† Effective manipulation of cavity resonant modes is crucial for emission control in laser physics and
2016-01-04
Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon Article in Scientific Reports · January 2016 DOI : 10.1038/srep18860 CITATIONS 5 READS...1Scientific RepoRts | 6:18860 | DOI : 10.1038/srep18860 www.nature.com/scientificreports Printed Large-Area Single-Mode Photonic Crystal Bandedge...bandgap group III-V materials on Si1,4–11 through wafer bonding, printing, and direct-growth. Most lasers demonstrated so far are edge-emitting
Large area single-mode parity-time-symmetric laser amplifiers.
Miri, Mohammad-Ali; LiKamWa, Patrik; Christodoulides, Demetrios N
2012-03-01
By exploiting recent developments associated with parity-time (PT) symmetry in optics, we here propose a new avenue in realizing single-mode large area laser amplifiers. This can be accomplished by utilizing the abrupt symmetry breaking transition that allows the fundamental mode to experience gain while keeping all the higher order modes neutral. Such PT-symmetric structures can be realized by judiciously coupling two multimode waveguides, one exhibiting gain while the other exhibits an equal amount of loss. Pertinent examples are provided for both semiconductor and fiber laser amplifiers. © 2012 Optical Society of America
Single-mode oscillation of a diode-pumped Nd:YAG microchip laser at 1835 nm
NASA Astrophysics Data System (ADS)
Lan, Jinglong; Cui, Qin; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping
2016-10-01
Single-mode oscillation of a diode-pumped conventional Nd:YAG laser at 1835 nm is demonstrated, for the first time to our knowledge, in the form of microchip configuration. The achieved maximum output power reaches 189 mW with slope efficiency of about 5.5% with respect to absorbed pump power. The laser spectra are measured with linewidth less than 0.08 nm indicating a single longitudinal mode. The output laser beam is also measured to be near diffraction-limited with M2 factors of about 1.2 and 1.5 in x and y directions. Using a mechanical chopper with 50% duty cycle, the maximum output power is improved to 253 mW with slope efficiency of about 9.7%.
GaSb-based single-mode distributed feedback lasers for sensing (Conference Presentation)
NASA Astrophysics Data System (ADS)
Gupta, James A.; Bezinger, Andrew; Lapointe, Jean; Poitras, Daniel; Aers, Geof C.
2017-02-01
GaSb-based tunable single-mode diode lasers can enable rapid, highly-selective and highly-sensitive absorption spectroscopy systems for gas sensing. In this work, single-mode distributed feedback (DFB) laser diodes were developed for the detection of various trace gases in the 2-3.3um range, including CO2, CO, HF, H2S, H2O and CH4. The lasers were fabricated using an index-coupled grating process without epitaxial regrowth, making the process significantly less expensive than conventional DFB fabrication. The devices are based on InGaAsSb/AlGaAsSb separate confinement heterostructures grown on GaSb by molecular beam epitaxy. DFB lasers were produced using a two step etch process. Narrow ridge waveguides were first defined by optical lithography and etched into the semiconductor. Lateral gratings were then defined on both sides of the ridge using electron-beam lithography and etched to produce the index-grating. Effective index modeling was used to optimize the ridge width, etch depths and the grating pitch to ensure single-lateral-mode operation and adequate coupling strength. The effective index method was further used to simulate the DFB laser emission spectrum, based on a transfer matrix model for light transmission through the periodic structure. The fabricated lasers exhibit single-mode operation which is tunable through the absorption features of the various target gases by adjustment of the drive current. In addition to the established open-path sensing applications, these devices have great potential for optoelectronic integrated gas sensors, making use of integrated photodetectors and possibly on-chip Si photonics waveguide structures.
Self-injection locked blue laser
NASA Astrophysics Data System (ADS)
Donvalkar, Prathamesh S.; Savchenkov, Anatoliy; Matsko, Andrey
2018-04-01
We demonstrate a 446.5 nm GaN semiconductor laser with sub-MHz linewidth. The linewidth reduction is achieved by locking the laser to a magnesium fluoride whispering gallery mode resonator characterized with 109 quality factor. Self-injection locking ensures single longitudinal mode operation of the laser.
Spatiotemporal mode-locking in multimode fiber lasers
NASA Astrophysics Data System (ADS)
Wright, Logan G.; Christodoulides, Demetrios N.; Wise, Frank W.
2017-10-01
A laser is based on the electromagnetic modes of its resonator, which provides the feedback required for oscillation. Enormous progress has been made toward controlling the interactions of longitudinal modes in lasers with a single transverse mode. For example, the field of ultrafast science has been built on lasers that lock many longitudinal modes together to form ultrashort light pulses. However, coherent superposition of longitudinal and transverse modes in a laser has received little attention. We show that modal and chromatic dispersions in fiber lasers can be counteracted by strong spatial and spectral filtering. This allows locking of multiple transverse and longitudinal modes to create ultrashort pulses with a variety of spatiotemporal profiles. Multimode fiber lasers thus open new directions in studies of nonlinear wave propagation and capabilities for applications.
Tunable multiwavelength Tm-doped fiber laser based on the multimode interference effect.
Zhang, Peng; Wang, Tianshu; Ma, Wanzhuo; Dong, Keyan; Jiang, Huilin
2015-05-20
A simple multiwavelength Tm-doped fiber laser at the 2 μm band based on multimode interference (MMI) is proposed and experimentally demonstrated. In this scheme, a 4 m Tm-doped single-mode fiber is pumped by a 1568 nm laser, and a single-mode-multimode-single-mode (SMS) fiber structure is used as an MMI filter in which the multimode fiber is used to tune the laser. Laser operation of up to three wavelengths is obtained based on the MMI filter. The wavelengths can be tuned by adjusting the polarization controller and rotating the multimode fiber in the SMS structure, and the tuning region is about 24 nm, i.e., 1892-1916 nm. The side-mode suppression ratio of the laser is about 54 dB. The 3 dB linewidth is less than 0.04 nm. Peak fluctuation at each wavelength is analyzed, and the results show that the power fluctuation is less than 3 dB around the average power.
Diode-end-pumped single-longitudinal-mode passively Q-switched Nd:GGG laser
NASA Astrophysics Data System (ADS)
Xue, Feng; Zhang, Sasa; Cong, Zhenhua; Huang, Qingjie; Guan, Chen; Wu, Qianwen; Chen, Hui; Bai, Fen; Liu, Zhaojun
2018-03-01
Diode-end-pumped passively Q-switched Nd:GGG laser in a ring cavity at 1062 nm was demonstrated. Single-longitudinal-mode laser linewidth less than 0.5 pm was accomplished by unidirectional operation. The maximum output pulse energy was 437 µJ and the pulse width was 43 ns when Cr4+:YAG with an initial transmission of 61% was used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji Wang; Yunjun Zhang; Aotuo Dong
2014-04-28
The active Q-switched and passive mode-locked Er{sup 3+}-doped all-fibre laser is presented. The fibre laser centre wavelength is located at 1563 nm and determined by the homemade singlemulti- single (SMS) in-line fibre filter. The laser spectrum width is nearly 0.1 nm. The active Q-switched mechanism relies on the polarisation state control using a piezoelectric to press a segment of passive fibre on the circular cavity. The nonlinear polarisation rotation technology is used to realise the passive self-started modelocked operation. In the passive mode-locked regimes, the output average power is 2.1 mW, repetition frequency is 11.96 MHz, and single pulse energymore » is 0.18 nJ. With the 100-Hz Q-switched regimes running, the output average power is 1.5 mW. The total Q-switched pulse width is 15 μs, and every Q-switched pulse is made up by several tens of mode-locked peak pulses. The calculated output pulse energy of the Q-switched fibre laser is about 15 μJ, and the energy of every mode-locked pulse is about 64–68 nJ during a Q-switched pulse taking into account the power fraction propagating between pulses. (lasers)« less
NASA Technical Reports Server (NTRS)
Ladany, I.; Hammer, J. M.
1980-01-01
A module developed for the generation of a stable single wavelength to be used for a fiber optic multiplexing scheme is described. The laser is driven with RZ pulses, and the temperature is stabilized thermoelectrically. The unit is capable of maintaining a fixed wavelength within about 6 A as the pulse duty cycle is changed between 0 and 100 percent. This is considered the most severe case, and much tighter tolerances are obtainable for constant input power coding schemes. Using a constricted double heterostructure laser, a wavelength shift of 0.083 A mA is obtained due to laser self-heating by a dc driving current. The thermoelectric unit is capable of maintaining a constant laser heat-sink temperature within 0.02 C. In addition, miniature lenses and couplers are described which allow efficient coupling of single wavelength modes of junction lasers to thin film optical waveguides. The design of the miniature cylinder lenses and the prism coupling techniques allow 2 mW of single wavelength mode junction laser light to b coupled into thin film waveguides using compact assemblies. Selective grating couplers are also studied.
Low-Loss Hollow Waveguide Fibers for Mid-Infrared Quantum Cascade Laser Sensing Applications
Patimisco, Pietro; Spagnolo, Vincenzo; Vitiello, Miriam S.; Scamarcio, Gaetano; Bledt, Carlos M.; Harrington, James A.
2013-01-01
We report on single mode optical transmission of hollow core glass waveguides (HWG) coupled with an external cavity mid-IR quantum cascade lasers (QCLs). The QCL mode results perfectly matched to the hybrid HE11 waveguide mode and the higher losses TE-like modes have efficiently suppressed by the deposited inner dielectric coating. Optical losses down to 0.44 dB/m and output beam divergence of ∼5 mrad were measured. Using a HGW fiber with internal core size of 300 μm we obtained single mode laser transmission at 10.54 μm and successful employed it in a quartz enhanced photoacoustic gas sensor setup. PMID:23337336
Diffractive Combiner of Single-Mode Pump Laser-Diode Beams
NASA Technical Reports Server (NTRS)
Liu, Duncan; Wilson, Daniel; Qiu, Yueming; Forouhar, Siamak
2007-01-01
An optical beam combiner now under development would make it possible to use the outputs of multiple single-mode laser diodes to pump a neodymium: yttrium aluminum garnet (Nd:YAG) nonplanar ring oscillator (NPRO) laser while ensuring that the laser operates at only a single desired frequency. Heretofore, an Nd:YAG NPRO like the present one has been pumped by a single multimode laser-diode beam delivered via an optical fiber. It would be desirable to use multiple pump laser diodes to increase reliability beyond that obtainable from a single pump laser diode. However, as explained below, simplistically coupling multiple multimode laser-diode beams through a fiber-optic combiner would entail a significant reduction in coupling efficiency, and lasing would occur at one or more other frequencies in addition to the single desired frequency. Figure 1 schematically illustrates the principle of operation of a laser-diode-pumped Nd:YAG NPRO. The laser beam path is confined in a Nd:YAG crystal by means of total internal reflections on the three back facets and a partial-reflection coating on the front facet. The wavelength of the pump beam - 808 nm - is the wavelength most strongly absorbed by the Nd:YAG crystal. The crystal can lase at a wavelength of either 1,064 nm or 1,319 nm - which one depending on the optical coating on the front facet. A thermal lens effect induced by the pump beam enables stable lasing in the lowest-order transverse electromagnetic mode (the TEM00 mode). The frequency of this laser is very stable because of the mechanical stability of the laser crystal and the unidirectional nature of the lasing. The unidirectionality is a result of the combined effects of (1) a Faraday rotation induced by an externally applied magnetic field and (2) polarization associated with non-normal incidence and reflection on the front facet.
High performance, low dissipation quantum cascade lasers across the mid-IR range.
Bismuto, Alfredo; Blaser, Stéphane; Terazzi, Romain; Gresch, Tobias; Muller, Antoine
2015-03-09
In this work, we present the development of low consumption quantum cascade lasers across the mid-IR range. In particular, short cavity single-mode lasers with optimised facet reflectivities have been fabricated from 4.5 to 9.2 μm. Threshold dissipated powers as low as 0.5 W were obtained in continuous wave operation at room temperature. In addition, the beneficial impact of reducing chip length on laser mounting yield is discussed. High power single-mode lasers from the same processed wafers are also presented.
Laterally Coupled Quantum-Dot Distributed-Feedback Lasers
NASA Technical Reports Server (NTRS)
Qui, Yueming; Gogna, Pawan; Muller, Richard; Maker, paul; Wilson, Daniel; Stintz, Andreas; Lester, Luke
2003-01-01
InAs quantum-dot lasers that feature distributed feedback and lateral evanescent- wave coupling have been demonstrated in operation at a wavelength of 1.3 m. These lasers are prototypes of optical-communication oscillators that are required to be capable of stable single-frequency, single-spatial-mode operation. A laser of this type (see figure) includes an active layer that comprises multiple stacks of InAs quantum dots embedded within InGaAs quantum wells. Distributed feedback is provided by gratings formed on both sides of a ridge by electron lithography and reactive-ion etching on the surfaces of an AlGaAs/GaAs waveguide. The lateral evanescent-wave coupling between the gratings and the wave propagating in the waveguide is strong enough to ensure operation at a single frequency, and the waveguide is thick enough to sustain a stable single spatial mode. In tests, the lasers were found to emit continuous-wave radiation at temperatures up to about 90 C. Side modes were found to be suppressed by more than 30 dB.
Passively mode-locked Raman fiber laser with 100 GHz repetition rate
NASA Astrophysics Data System (ADS)
Schröder, Jochen; Coen, Stéphane; Vanholsbeeck, Frédérique; Sylvestre, Thibaut
2006-12-01
We experimentally demonstrate the operation of a passively mode-locked Raman fiber ring laser with an ultrahigh repetition rate of 100GHz and up to 430mW of average output power. This laser constitutes a simple wavelength versatile pulsed optical source. Stable mode locking is based on dissipative four-wave mixing with a single fiber Bragg grating acting as the mode-locking element.
NASA Astrophysics Data System (ADS)
Yang, Zi-Qing; Huang, Tzu-Jung; Chang, Yao-Jen; Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang
2018-06-01
In this work, we propose and demonstrate a switchable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) output. Here, a dual-ring (DR) structure with an unpumped EDF of 2 m is designed to achieve SLM oscillation. Five fiber Bragg gratings (FBGs) are applied in the laser cavity serving as the reflective element to generate different dual-wavelength outputs. In the measurement, six sets of generated dual-wavelengths with various mode-spacing (Δλ) can be achieved via the five FBGs. Additionally, the stability performance of the proposed EDF DR laser is also demonstrated.
Laser to single-mode-fiber coupling: A laboratory guide
NASA Technical Reports Server (NTRS)
Ladany, I.
1992-01-01
All the information necessary to achieve reasonably efficient coupling of semiconductor lasers to single mode fibers is collected from the literature, reworked when necessary, and presented in a mostly tabular form. Formulas for determining the laser waist radius and the fiber mode radius are given. Imaging relations connecting these values with the object and image distances are given for three types of lenses: ball, hemisphere, and Gradient Index (GRIN). Sources for these lenses are indicated, and a brief discussion is given about ways of reducing feedback effects.
Kindness, S J; Jessop, D S; Wei, B; Wallis, R; Kamboj, V S; Xiao, L; Ren, Y; Braeuninger-Weimer, P; Aria, A I; Hofmann, S; Beere, H E; Ritchie, D A; Degl'Innocenti, R
2017-08-09
Active control of the amplitude and frequency of terahertz sources is an essential prerequisite for exploiting a myriad of terahertz applications in imaging, spectroscopy, and communications. Here we present a optoelectronic, external modulation technique applied to a terahertz quantum cascade laser which holds the promise of addressing a number of important challenges in this research area. A hybrid metamaterial/graphene device is implemented into an external cavity set-up allowing for optoelectronic tuning of feedback into a quantum cascade laser. We demonstrate powerful, all-electronic, control over the amplitude and frequency of the laser output. Full laser switching is performed by electrostatic gating of the metamaterial/graphene device, demonstrating a modulation depth of 100%. External control of the emission spectrum is also achieved, highlighting the flexibility of this feedback method. By taking advantage of the frequency dispersive reflectivity of the metamaterial array, different modes of the QCL output are selectively suppressed using lithographic tuning and single mode operation of the multi-mode laser is enforced. Side mode suppression is electrically modulated from ~6 dB to ~21 dB, demonstrating active, optoelectronic modulation of the laser frequency content between multi-mode and single mode operation.
Single-Mode, High Repetition Rate, Compact Ho:YLF Laser for Space-Borne Lidar Applications
NASA Technical Reports Server (NTRS)
Bai, Yingxin; Yu, Jirong; Wong, Teh-Hwa; Chen, Songsheng; Petros, Mulugeta; Singh, Upendra N.
2014-01-01
A single transverse/longitudinal mode, compact Q-switched Ho:YLF laser has been designed and demonstrated for space-borne lidar applications. The pulse energy is between 34-40 mJ for 100-200 Hz operation. The corresponding peak power is >1 MW.
Single steady frequency and narrow-linewidth external-cavity semiconductor laser
NASA Astrophysics Data System (ADS)
Zhao, Weirui; Jiang, Pengfei; Xie, Fuzeng
2003-11-01
A single longitudinal mode and narrow line width external cavity semiconductor laser is proposed. It is constructed with a semiconductor laser, collimator, a flame grating, and current and temperature control systems. The one facet of semiconductor laser is covered by high transmission film, and another is covered by high reflection film. The flame grating is used as light feedback element to select the mode of the semiconductor laser. The temperature of the constructed external cavity semiconductor laser is stabilized in order of 10-3°C by temperature control system. The experiments have been carried out and the results obtained - the spectral line width of this laser is compressed to be less than 1.4MHz from its original line-width of more than 1200GHz and the output stability (including power and mode) is remarkably enhanced.
978-nm square-wave in an all-fiber single-mode ytterbium-doped fiber laser
NASA Astrophysics Data System (ADS)
Li, Shujie; Xu, Lixin; Gu, Chun
2018-01-01
A 978 nm single mode passively mode-locked all-fiber laser delivering square-wave pulses was demonstrated using a figure-8 cavity and a 75 cm commercial double-clad ytterbium-doped fiber. We found the three-level system near 978 nm was able to operate efficiently under clad pumping, simultaneously oscillation around 1030 nm well inhibited. The optimized nonlinear amplifying loop mirror made the mode locking stable and performed the square-pulses shaping. To the best of our knowledge, it is the first time to report the square-wave pulse fiber laser operating at 980 nm. The spectral width of the 978 mode-locked square pulses was about 4 nm, far greater than that of the mode-locked square pulses around 1060 nm reported before, which would be helpful to deeply understand the various square-wave pulses' natures and forming mechanisms. Compared with modulated single-mode or multimode 980 nm LDs, this kind of 980 nm square-wave sources having higher brightness, more steeper rising and falling edge and shorter pulse width, might have potential applications in pumping nanosecond ytterbium or erbium fiber lasers and amplifiers.
NASA Astrophysics Data System (ADS)
Hempel, Martin; Röben, Benjamin; Niehle, Michael; Schrottke, Lutz; Trampert, Achim; Grahn, Holger T.
2017-05-01
The dynamical tuning due to rear facet illumination of single-mode, terahertz (THz) quantum-cascade lasers (QCLs) which employ distributed feedback gratings are compared to the tuning of single-mode QCLs based on two-section cavities. The THz QCLs under investigation emit in the range of 3 to 4.7 THz. The tuning is achieved by illuminating the rear facet of the QCL with a fiber-coupled light source emitting at 777 nm. Tuning ranges of 5.0 and 11.9 GHz under continuous-wave and pulsed operation, respectively, are demonstrated for a single-mode, two-section cavity QCL emitting at about 3.1 THz, which exhibits a side-mode suppression ratio better than -25 dB.
Zhang, Z X; Xu, Z W; Zhang, L
2012-11-19
We report the generation of tunable single- and dual-wavelength dissipative solitons in an all-normal-dispersion mode-locked Yb-doped fiber laser, to the best of our knowledge, for the first time. Besides single-wavelength mode-locking, dual-wavelength mode-locking was achieved using an in-line birefringence fiber filter with periodic multiple passbands, which not only allows multiple wavelengths to oscillate simultaneously but also performs spectrum modulation on highly chirped dissipative pulse. Furthermore, taking advantage of the tunability of the birefringence fiber filter, wavelength tuning for both single- and dual-wavelength dissipative soliton mode-locking was realized. The dual-wavelength operation is also switchable. The all-fiber dissipative laser with flexible outputs can meet diverse application needs.
Distributed Feedback Laser Based on Single Crystal Perovskite
NASA Astrophysics Data System (ADS)
Sun, Shang; Xiao, Shumin; Song, Qinghai
2017-06-01
We demonstrate a single crystal perovskite based, with grating-structured photoresist on top, highly polarized distributed feedback laser. A lower laser threshold than the Fabry-Perot mode lasers from the same single crystal CH3NH3PbBr3 microplate was obtained. Single crystal CH3NH3PbBr3 microplates was synthesized with one-step solution processed precipitation method. Once the photoresist on top of the microplate was patterned with electron beam, the device was realized. This one-step fabrication process utilized the advantage of single crystal to the greatest extend. The ultra-low defect density in single crystalline microplate offer an opportunity for lower threshold lasing action compare with poly-crystal perovskite films. In the experiment, the lasing action based on the distributed feedback grating design was found with lower threshold and higher intensity than the Fabry-Perot mode lasers supported by the flat facets of the same microplate.
NASA Astrophysics Data System (ADS)
Sin, Yongkun; Ayvazian, Talin; Brodie, Miles; Lingley, Zachary
2018-03-01
High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both terrestrial and space satellite communications systems. Since these lasers predominantly fail by catastrophic and sudden degradation due to catastrophic optical damage (COD), it is especially crucial for space satellite applications to investigate reliability, failure modes, precursor signatures of failure, and degradation mechanisms of these lasers. Our group reported a new failure mode in MM and SM InGaAs-AlGaAs strained QW lasers in 2009 and 2016, respectively. Our group also reported in 2017 that bulk failure due to catastrophic optical bulk damage (COBD) is the dominant failure mode of both SM and MM lasers that were subject to long-term life-tests. For the present study, we continued our physics of failure investigation by performing long-term life-tests followed by failure mode analysis (FMA) using nondestructive and destructive micro-analytical techniques. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs- AlGaAs strained QW lasers under ACC mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. We first employed electron beam induced current (EBIC) technique to identify failure modes of degraded SM lasers by observing dark line defects. All the SM failures that we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) and high-resolution TEM to further study dark line defects and dislocations in post-aged lasers. Keywor
Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser
Wen, Xin; Tang, Guowu; Yang, Qi; Chen, Xiaodong; Qian, Qi; Zhang, Qinyuan; Yang, Zhongmin
2016-01-01
Highly Tm3+ doped optical fibers are urgently desirable for 2.0 μm compact single-frequency fiber laser and high-repetition-rate mode-locked fiber laser. Here, we systematically investigated the optical parameters, energy transfer processes and thermal properties of Tm3+ doped barium gallo-germanate (BGG) glasses. Highly Tm3+ doped BGG glass single mode (SM) fibers were fabricated by the rod-in-tube technique. The Tm3+ doping concentration reaches 7.6 × 1020 ions/cm3, being the reported highest level in Tm3+ doped BGG SM fibers. Using ultra short (1.6 cm) as-drawn highly Tm3+ doped BGG SM fiber, a single-frequency fiber laser at 1.95 μm has been demonstrated with a maximum output power of 35 mW when in-band pumped by a home-made 1568 nm fiber laser. Additionally, a multilongitudinal-mode fiber laser at 1.95 μm has also been achieved in a 10 cm long as-drawn active fiber, yielding a maximum laser output power of 165 mW and a slope efficiency of 17%. The results confirm that the as-drawn highly Tm3+ doped BGG SM fibers are promising in applications that require high gain and high power from a short piece of active optical fiber. PMID:26828920
Huang, Jianhua; Chen, Yujin; Lin, Yanfu; Gong, Xinghong; Luo, Zundu; Huang, Yidong
2018-04-15
An Er:Yb:Lu 2 Si 2 O 7 microchip laser was constructed by placing a 1.2 mm thick, Y-cut Er:Yb:Lu 2 Si 2 O 7 microchip between two 1.2 mm thick sapphire crystals, in which input and output mirrors were directly deposited onto one face of each crystal. End-pumped by a continuous-wave 975.4 nm diode laser, a 1564 nm multi-longitudinal-mode laser with a maximum output power of 940 mW and slope efficiency of 20% was realized at an absorbed pump power of 5.5 W when the transmission of output mirror was 2.2%. When the transmission of the output mirror was increased to 6%, a 1537 nm single-longitudinal-mode laser with a maximum output power of 440 mW and slope efficiency of 12% was realized at an absorbed pump power of 4.3 W. The results indicate that the Er:Yb:Lu 2 Si 2 O 7 crystal is a promising microchip gain medium to realize a single-longitudinal-mode laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miah, M. J., E-mail: jarez.miah@tu-berlin.de; Posilovic, K.; Kalosha, V. P.
2014-10-13
High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060 nm range are investigated. Ridge waveguide (RW) lasers with 9 μm stripe width and 2.64 mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060 nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9° in lateral and 14° (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup −2}sr{supmore » −1} is obtained. 100 μm wide and 3 mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.« less
NASA Astrophysics Data System (ADS)
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-01
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al2O3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
Sáez-Rodriguez, D; Cruz, J L; Díez, A; Andrés, M V
2011-05-15
We present a fiber laser made in a single piece of conventional doped-core fiber that operates by combined feedback of the fundamental core mode LP((0,1)) and the high-order cladding mode LP((0,10)). The laser is an all-fiber structure that uses two fiber Bragg gratings and a long-period grating to select the modes circulating in the cavity; the laser emits at the coupling wavelength between the core mode LP((0,1)) and the counterpropagating cladding mode LP((0,10)) in the Bragg gratings. This work demonstrates the feasibility of high-order mode fiber lasers assisted by long-period gratings. © 2011 Optical Society of America
Single mode fibers with antireflective surface structures for high power laser applications
NASA Astrophysics Data System (ADS)
Busse, Lynda E.; Florea, Catalin M.; Shaw, L. Brandon; Aggarwal, Ishwar D.; Sanghera, Jasbinder S.
2014-03-01
We present results for increased transmission of ~99.5% in the near-IR through the end faces of silica single mode fibers by creating a random antireflective microstructure etched into the end face of the fiber. We demonstrate high laser damage thresholds for these fibers with AR structured surfaces.
Compact single mode tunable laser using a digital micromirror device.
Havermeyer, Frank; Ho, Lawrence; Moser, Christophe
2011-07-18
The wavelength tuning properties of a tunable external cavity laser based on multiplexed volume holographic gratings and a commercial micromirror device are reported. The 3x3x3 cm(3) laser exhibits single mode operation in single or multi colors between 776 nm and 783 nm with less than 7.5 MHz linewidth, 37 mW output power, 50 μs rise/fall time constant and a maximum switching rate of 0.66 KHz per wavelength. The unique discrete-wavelength-switching features of this laser are also well suited as a source for continuous wave Terahertz generation and three-dimensional metrology.
Automatic Rejection Of Multimode Laser Pulses
NASA Technical Reports Server (NTRS)
Tratt, David M.; Menzies, Robert T.; Esproles, Carlos
1991-01-01
Characteristic modulation detected, enabling rejection of multimode signals. Monitoring circuit senses multiple longitudinal mode oscillation of transversely excited, atmospheric-pressure (TEA) CO2 laser. Facility developed for inclusion into coherent detection laser radar (LIDAR) system. However, circuit described of use in any experiment where desireable to record data only when laser operates in single longitudinal mode.
Surface-Emitting Distributed Feedback Terahertz Quantum-Cascade Lasers in Metal-Metal Waveguides
NASA Technical Reports Server (NTRS)
Kumar, Sushil; Williams, Benjamin S.; Qin, Qi; Lee, Alan W. M.; Hu, Qing; Reno, John L.
2007-01-01
Single-mode surface-emitting distributed feedback terahertz quantumcascade lasers operating around 2.9 THz are developed in metal-metal waveguides. A combination of techniques including precise control of phase of reflection at the facets, and u e of metal on the sidewalls to eliminate higher-order lateral modes allow robust single-mode operation over a range of approximately 0.35 THz. Single-lobed far-field radiation pattern is obtained using a pi phase-shift in center of the second-order Bragg grating. A grating device operating at 2.93 THz lased up to 149 K in pulsed mode and a temperature tuning of 19 .7 GHz was observed from 5 K to 147 K. The same device lased up to 78 K in continuous-wave (cw) mode emitting more than 6 m W of cw power at 5 K. ln general, maximum temperature of pulsed operation for grating devices was within a few Kelvin of that of multi-mode Fabry-Perot ridge lasers
Li, Xiaohui; Wu, Kan; Sun, Zhipei; Meng, Bo; Wang, Yonggang; Wang, Yishan; Yu, Xuechao; Yu, Xia; Zhang, Ying; Shum, Perry Ping; Wang, Qi Jie
2016-01-01
Low phase noise mode-locked fiber laser finds important applications in telecommunication, ultrafast sciences, material science, and biology, etc. In this paper, two types of carbon nano-materials, i.e. single-wall carbon nanotube (SWNT) and graphene oxide (GO), are investigated as efficient saturable absorbers (SAs) to achieve low phase noise mode-locked fiber lasers. Various properties of these wall-paper SAs, such as saturable intensity, optical absorption and degree of purity, are found to be key factors determining the performance of the ultrafast pulses. Reduced-noise femtosecond fiber lasers based on such carbon-based SAs are experimentally demonstrated, for which the phase noise has been reduced by more than 10 dB for SWNT SAs and 8 dB for GO SAs at 10 kHz. To the best of our knowledge, this is the first investigation on the relationship between different carbon material based SAs and the phase noise of mode-locked lasers. This work paves the way to generate high-quality low phase noise ultrashort pulses in passively mode-locked fiber lasers. PMID:27126900
NASA Astrophysics Data System (ADS)
Sin, Yongkun; Lingley, Zachary; Brodie, Miles; Presser, Nathan; Moss, Steven C.
2017-02-01
High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both telecommunications and space satellite communications systems. However, little has been reported on failure modes and degradation mechanisms of high-power SM and MM InGaAs-AlGaAs strained QW lasers although it is crucial to understand failure modes and underlying degradation mechanisms in developing these lasers that meet lifetime requirements for space satellite systems, where extremely high reliability of these lasers is required. Our present study addresses the aforementioned issues by performing long-term life-tests followed by failure mode analysis (FMA) and physics of failure investigation. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs-AlGaAs strained QW lasers under ACC (automatic current control) mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. FMA was performed on failed SM lasers using electron beam induced current (EBIC). This technique allowed us to identify failure types by observing dark line defects. All the SM failures we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Our group previously reported that bulk failure or COBD (catastrophic optical bulk damage) is the dominant failure mode of MM InGaAs-AlGaAs strained QW lasers. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) processing and high-resolution TEM to further study dark line defects and dislocations in post-aged lasers. Our long-term life-test results and FMA results are reported.
Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.
Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A
2016-02-22
With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.
NASA Astrophysics Data System (ADS)
Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.
2018-03-01
A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.
Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser.
Moscoso-Mártir, Alvaro; Müller, Juliana; Hauck, Johannes; Chimot, Nicolas; Setter, Rony; Badihi, Avner; Rasmussen, Daniel E; Garreau, Alexandre; Nielsen, Mads; Islamova, Elmira; Romero-García, Sebastián; Shen, Bin; Sandomirsky, Anna; Rockman, Sylvie; Li, Chao; Sharif Azadeh, Saeed; Lo, Guo-Qiang; Mentovich, Elad; Merget, Florian; Lelarge, François; Witzens, Jeremy
2017-10-24
We experimentally investigate an optical link relying on silicon photonics transmitter and receiver components as well as a single section semiconductor mode-locked laser as a light source and a semiconductor optical amplifier for signal amplification. A transmitter based on a silicon photonics resonant ring modulator, an external single section mode-locked laser and an external semiconductor optical amplifier operated together with a standard receiver reliably supports 14 Gbps on-off keying signaling with a signal quality factor better than 7 for 8 consecutive comb lines, as well as 25 Gbps signaling with a signal quality factor better than 7 for one isolated comb line, both without forward error correction. Resonant ring modulators and Germanium waveguide photodetectors are further hybridly integrated with chip scale driver and receiver electronics, and their co-operability tested. These experiments will serve as the basis for assessing the feasibility of a silicon photonics wavelength division multiplexed link relying on a single section mode-locked laser as a multi-carrier light source.
Efficient single-mode (TEM{sub 00}) Nd : YVO{sub 4} laser with longitudinal 808-nm diode pumping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donin, V I; Yakovin, D V; Yakovin, M D
2013-10-31
A single-mode Nd : YVO{sub 4} laser with unidirectional longitudinal pumping by laser diodes with λ = 808 nm and a power of 40 W is studied. In the TEM{sub 00} mode, the output laser power is 24 W with the optical efficiency η{sub opt} = 57.1 % (slope efficiency 63.3 %), which, as far as we know, is the best result for Nd{sup 3+} : YVO{sub 4} lasers with longitudinal pumping at λ = 808 nm from one face of the active crystal. Estimates of thermal effects show that, using a Nd : YVO{sub 4} crystal (length 20 mm,more » diameter 3 mm, dopant concentration 0.27 at%) with two undoped ends and bidirectional diode pumping with a total power of 170 W, one can obtain an output power of ∼100 W in the TEM{sub 00} mode from one active element. (lasers)« less
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Chow, Chi-Wai; Chen, Jing-Heng
2017-02-01
In this demonstration, to achieve stabilized and wavelength-selectable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, a short length of ytterbium-doped fiber (YDF) is utilized to serve as a spatial multi-mode interference (MMI) inside a fiber cavity for suppressing multi-longitudinal-mode (MLM) significantly. In the measurement, the output powers and optical signal to noise ratios (OSNRs) of proposed EDF ring laser are measured between -9.85 and -5.71 dBm; and 38.03 and 47.95 dB, respectively, in the tuning range of 1530.0-1560.0 nm. In addition, the output SLM and stability performance are also analyzed and discussed experimentally.
Ultra-low noise dual-frequency VECSEL at telecom wavelength using fully correlated pumping.
Liu, Hui; Gredat, Gregory; De, Syamsundar; Fsaifes, Ihsan; Ly, Aliou; Vatré, Rémy; Baili, Ghaya; Bouchoule, Sophie; Goldfarb, Fabienne; Bretenaker, Fabien
2018-04-15
An ultra-low intensity and beatnote phase noise dual-frequency vertical-external-cavity surface-emitting laser is built at telecom wavelength. The pump laser is realized by polarization combining two single-mode fibered laser diodes in a single-mode fiber, leading to a 100% in-phase correlation of the pump noises for the two modes. The relative intensity noise is lower than -140 dB/Hz, and the beatnote phase noise is suppressed by 30 dB, getting close to the spontaneous emission limit. The role of the imperfect cancellation of the thermal effect resulting from unbalanced pumping of the two modes in the residual phase noise is evidenced.
Solid-Core Photonic Bandgap Fibers for Cladding-Pumped Raman Amplification
2011-06-03
L. Leick, J. Broeng, and S. Selleri, “Single-mode analysis of Yb- doped double-cladding distributed spectral filtering photonic crystal fibers ,” Opt... fiber amplifiers are analyzed theoretically as possible candidates for power scaling. An example fiber design with a mode field diameter of 46 µm and... doped fiber laser with true single-mode output using W-type structure,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2006
Moving target detection in flash mode against stroboscopic mode by active range-gated laser imaging
NASA Astrophysics Data System (ADS)
Zhang, Xuanyu; Wang, Xinwei; Sun, Liang; Fan, Songtao; Lei, Pingshun; Zhou, Yan; Liu, Yuliang
2018-01-01
Moving target detection is important for the application of target tracking and remote surveillance in active range-gated laser imaging. This technique has two operation modes based on the difference of the number of pulses per frame: stroboscopic mode with the accumulation of multiple laser pulses per frame and flash mode with a single shot of laser pulse per frame. In this paper, we have established a range-gated laser imaging system. In the system, two types of lasers with different frequency were chosen for the two modes. Electric fan and horizontal sliding track were selected as the moving targets to compare the moving blurring between two modes. Consequently, the system working in flash mode shows more excellent performance in motion blurring against stroboscopic mode. Furthermore, based on experiments and theoretical analysis, we presented the higher signal-to-noise ratio of image acquired by stroboscopic mode than flash mode in indoor and underwater environment.
Lateral mode control in edge-emitting lasers with modified mirrors
NASA Astrophysics Data System (ADS)
Payusov, A.; Serin, A.; Mukhin, I.; Shernyakov, Y.; Zadiranov, Y.; Maximov, M.; Gordeev, N.
2017-11-01
We present a study on lateral mode control in edge-emitting lasers with profiled mirror reflectivity. The object was to eliminate high-order lateral modes in conventional ridge-waveguide InAs/InGaAs QD (quantum dot) lasers with the stripe width of 10 μm. We have used a FIB (focused ion beam) technique to selectively etch windows in the AR (anti-reflection) facet coatings in order to introduce extra mirror losses for the high order modes. This approach allowed us to eliminate the first-order mode lasing without deterioration of the laser parameters. We suppose that further optimisation of the laser heterostructure and window designs may lead to a pure lateral single-mode lasing in the broadened ridge waveguides.
NASA Technical Reports Server (NTRS)
Linden, K. J.
1984-01-01
The development of tunable diode lasers operating in the 28 micrometers spectral region for use in infrared heterodyne spectrometers is reported. A process capable of yielding lasers emitting 500 micron W of multimode power, 112 micron W in a true single mode and true single mode operation at laser currents of up to 35% above threshold was developed. Results were obtained from narrow mesastripe (20 micrometer wide) short cavity (120 micrometer length) laser configurations. Six stripe geometry lasers, with a variety of cavity widths and lengths were delivered. The techniques to fabricate such devices was obtained and the long term reliability of such lasers by reproducible electrical and optical output characteristics fabrication from lasers are demonstrated.
Single-mode 140 nm swept light source realized by using SSG-DBR lasers
NASA Astrophysics Data System (ADS)
Fujiwara, N.; Yoshimura, R.; Kato, K.; Ishii, H.; Kano, F.; Kawaguchi, Y.; Kondo, Y.; Ohbayashi, K.; Oohashi, H.
2008-02-01
We demonstrate a single-mode and fast wavelength swept light source by using Superestrucuture grating distributed Bragg reflector (SSG-DBR) lasers for use in optical frequency-domain reflectometry optical coherence tomography. The SSG-DBR lasers provide single-mode operation resulting in high coherency. Response of the wavelength tuning is very fast; several nanoseconds, but there was an unintentional wavelength drift resulting from a thermal drift due to injecting tuning current. The dri1ft unfortunately requires long time to converge; more than a few milliseconds. For suppressing the wavelength drift, we introduced Thermal Drift Compensation mesa (TDC) parallel to the laser mesa with the spacing of 20 μm. By controlling TDC current to satisfy the total electric power injected into both the laser mesa and the TDC mesa, the thermal drift can be suppressed. In the present work, we fabricated 4 wavelength's kinds of SSG-DBR laser, which covers respective wavelength band; S-band (1496-1529 nm), C-band (1529-1564 nm), L --band (1564-1601 nm), and L +-band (1601-1639). We set the frequency channel of each laser with the spacing 6.25 GHz and 700 channels. The total frequency channel number is 2800 channels (700 ch × 4 lasers). We simultaneously operated the 4 lasers with a time interval of 500 ns/channel. A wavelength tuning range of more than 140 nm was achieved within 350 μs. The output power was controlled to be 10 mW for all channels. A single-mode, accurate, wide, and fast wavelength sweep was demonstrated with the SSG-DBR lasers having TDC mesa structure for the first time.
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-02
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at ~ 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al 2 O 3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
Wu, Jing; Ju, Youlun; Dai, Tongyu; Yao, Baoquan; Wang, Yuezhu
2017-10-30
We demonstrated an efficient and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect for application to measure atmospheric carbon dioxide (CO 2 ). Single-longitudinal-mode power at 2051.65 nm achieved 528 mW with the slope efficiency of 39.5% and the M 2 factor of 1.07, and the tunable range of about 178 GHz was obtained by inserting a Fabry-Perot (F-P) etalon with the thickness of 0.5 mm. In addition, the maximum single-longitudinal-mode power reached 1.5 W with the injected power of 528 mW at 2051.65 nm by master oscillator power amplifier (MOPA) technique. High efficiency and tunable single-longitudinal-mode based on Faraday effect around 2 μm has not been reported yet to the best of our knowledge.
Fabrication of graded index single crystal in glass
Veenhuizen, Keith; McAnany, Sean; Nolan, Daniel; Aitken, Bruce; Dierolf, Volkmar; Jain, Himanshu
2017-01-01
Lithium niobate crystals were grown in 3D through localized heating by femtosecond laser irradiation deep inside 35Li2O-35Nb2O5-30SiO2 glass. Laser scanning speed and power density were systematically varied to control the crystal growth process and determine the optimal conditions for the formation of single crystal lines. EBSD measurements showed that, in principle, single crystals can be grown to unlimited lengths using optimal parameters. We successfully tuned the parameters to a growth mode where nucleation and growth occur upon heating and ahead of the scanning laser focus. This growth mode eliminates the problem reported in previous works of non-uniform polycrystallinity because of a separate growth mode where crystallization occurs during cooling behind the scanning laser focus. To our knowledge, this is the first report of such a growth mode using a fs laser. The crystal cross-sections possessed a symmetric, smooth lattice misorientation with respect to the c-axis orientation in the center of the crystal. Calculations indicate the observed misorientation leads to a decrease in the refractive index of the crystal line from the center moving outwards, opening the possibility to produce within glass a graded refractive index single crystal (GRISC) optically active waveguide. PMID:28287174
Random fiber laser based on artificially controlled backscattering fibers.
Wang, Xiaoliang; Chen, Daru; Li, Haitao; She, Lijuan; Wu, Qiong
2018-01-10
The random fiber laser (RFL), which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previously reported RFLs are based on distributed feedback of Rayleigh scattering amplified through the stimulated Raman-Brillouin scattering effect in single-mode fibers, which require long-distance (tens of kilometers) single-mode fibers and high threshold, up to watt level, due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open-cavity RFL based on a segment of an artificially controlled backscattering single-mode fiber with a length of 210 m, 310 m, or 390 m. A fiber Bragg grating with a central wavelength of 1530 nm and a segment of artificially controlled backscattering single-mode fiber fabricated by using a femtosecond laser form the half-open cavity. The proposed RFL achieves thresholds of 25 mW, 30 mW, and 30 mW, respectively. Random lasing at a wavelength of 1530 nm and extinction ratio of 50 dB is achieved when a segment of 5 m erbium-doped fiber is pumped by a 980 nm laser diode in the RFL. A novel RFL with many short cavities has been achieved with low threshold.
High Energy, Single-Mode, All-Solid-State and Tunable UV Laser Transmitter
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Singh, Upendra N.; Hovis, FLoyd
2007-01-01
A high energy, single mode, all solid-state Nd:YAG laser primarily for pumping an UV converter is developed. Greater than 1 J/pulse at 50 HZ PRF and pulse widths around 22 ns have been demonstrated. Higher energy, greater efficiency may be possible. Refinements are known and practical to implement. Technology Demonstration of a highly efficient, high-pulse-energy, single mode UV wavelength generation using flash lamp pumped laser has been achieved. Greater than 90% pump depletion is observed. 190 mJ extra-cavity SFG; IR to UV efficiency > 21% (> 27% for 1 mJ seed). 160 mJ intra-cavity SFG; IR to UV efficiency up to 24% Fluence < 1 J/sq cm for most beams. The pump beam quality of the Nd:YAG pump laser is being refined to match or exceed the above UV converter results. Currently the Nd:YAG pump laser development is a technology demonstration. System can be engineered for compact packaging.
High performance mode locking characteristics of single section quantum dash lasers.
Rosales, Ricardo; Murdoch, S G; Watts, R T; Merghem, K; Martinez, Anthony; Lelarge, Francois; Accard, Alain; Barry, L P; Ramdane, Abderrahim
2012-04-09
Mode locking features of single section quantum dash based lasers are investigated. Particular interest is given to the static spectral phase profile determining the shape of the mode locked pulses. The phase profile dependence on cavity length and injection current is experimentally evaluated, demonstrating the possibility of efficiently using the wide spectral bandwidth exhibited by these quantum dash structures for the generation of high peak power sub-picosecond pulses with low radio frequency linewidths.
Single-mode surface plasmon distributed feedback lasers.
Karami Keshmarzi, Elham; Tait, R Niall; Berini, Pierre
2018-03-29
Single-mode surface plasmon distributed feedback (DFB) lasers are realized in the near infrared using a two-dimensional non-uniform long-range surface plasmon polariton structure. The surface plasmon mode is excited onto a 20 nm-thick, 1 μm-wide metal stripe (Ag or Au) on a silica substrate, where the stripe is stepped in width periodically, forming a 1st order Bragg grating. Optical gain is provided by optically pumping a 450 nm-thick IR-140 doped PMMA layer as the top cladding, which covers the entire length of the Bragg grating, thus creating a DFB laser. Single-mode lasing peaks of very narrow linewidth were observed for Ag and Au DFBs near 882 nm at room temperature. The narrow linewidths are explained by the low spontaneous emission rate into the surface plasmon lasing mode as well as the high quality factor of the DFB structure. The lasing emission is exclusively TM polarized. Kinks in light-light curves accompanied by spectrum narrowing were observed, from which threshold pump power densities can be clearly identified (0.78 MW cm-2 and 1.04 MW cm-2 for Ag and Au DFB lasers, respectively). The Schawlow-Townes linewidth for our Ag and Au DFB lasers is estimated and very narrow linewidths are predicted for the lasers. The lasers are suitable as inexpensive, recyclable and highly coherent sources of surface plasmons, or for integration with other surface plasmon elements of similar structure.
Cross correlation in the two-mode laser
NASA Astrophysics Data System (ADS)
Kennedy, T. A. B.; Swain, S.
1984-11-01
Thomas et al. proposed the generation of cross correlation between two laser fields interacting with a three-level system as a means of reducing noise and subsequently exploited this property in the observation of very narrow Ramsey fringes. Cross correlation has been discussed theoretically by Dalton and Knight and shown to have interesting effects in population trapping. For such effects to be important, the cross correlation coefficient must be as large as possible. The degree of correlation between the two modes of a two-mode laser is discussed using the approach of Scully and Lamb, and it is shown that it can be large. The linewidths of the two laser modes are evaluated. It is found that if the laser parameters for the two modes are equal, the two-mode linewidth is one half the value of the linewidth of the corresponding single-mode laser, well above threshold.
Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Ko, Hyunsung; Park, Jeong-Woo; Lee, Donghun; Jeon, Min Yong; Park, Kyung Hyun
2012-07-30
A widely tunable dual mode laser diode with a single cavity structure is demonstrated. This novel device consists of a distributed feedback (DFB) laser diode and distributed Bragg reflector (DBR). Micro-heaters are integrated on the top of each section for continuous and independent wavelength tuning of each mode. By using a single gain medium in the DFB section, an effective common optical cavity and common modes are realized. The laser diode shows a wide tunability of the optical beat frequency, from 0.48 THz to over 2.36 THz. Continuous wave THz radiation is also successfully generated with low-temperature grown InGaAs photomixers from 0.48 GHz to 1.5 THz.
TEM00 mode Nd:YAG solar laser by side-pumping a grooved rod
NASA Astrophysics Data System (ADS)
Vistas, Cláudia R.; Liang, Dawei; Almeida, Joana; Guillot, Emmanuel
2016-05-01
A simple TEM00 mode solar laser system with a grooved Nd:YAG rod pumped through a heliostat-parabolic mirror system is reported here. The radiation coupling capacity of a fused silica tube lens was combined with the multipass pumping ability of a 2 V-shaped cavity to provide efficient side-pumping along a 4.0 mm diameter grooved Nd:YAG single-crystal rod. TEM00 mode solar laser power of 3.4 W was measured by adopting an asymmetric large-mode laser resonant cavity. Record TEM00 mode solar laser collection efficiency of 3.4 W/m2and slope efficiency of 1.9% was achieved, which corresponds to 1.8 and 2.4 times more than the previous TEM00 mode Nd:YAG solar laser using the PROMES-CNRS heliostat-parabolic mirror system, respectively.
Single-mode operation of mushroom structure surface emitting lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.J.; Dziura, T.G.; Wang, S.C.
1991-01-01
Mushroom structure vertical cavity surface emitting lasers with a 0.6 {mu}m GaAs active layer sandwiched by two Al{sub 0.6{sup {minus}}}Ga{sub 0.4}As-Al{sub 0.08}Ga{sub 0.92}As multilayers as top and bottom mirrors exhibit 15 mA pulsed threshold current at 880 nm. Single longitudinal and single transverse mode operation was achieved on lasers with a 5 {mu}m diameter active region at current levels near 2 {times} I{sub th}. The light output above threshold current was linearly polarized with a polarization ratio of 25:1.
Fiber Laser Development for LISA
NASA Technical Reports Server (NTRS)
Numata, Kenji; Chen, Jeffrey R.
2009-01-01
We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable.
Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej
2015-01-12
We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogatov, A.P.; Eliseev, P.G.; Kobildzhanov, O.A.
1987-06-01
Investigations of intensity fluctuations in a single-frequency injection laser showed that they are due to beatings between coherent field and superluminescent spontaneous emission. It has been experimentally found that in the region of developed laser emission, the level of fluctuations is decreased with an increase of the output power, and so the relative spectral shift of external cavity superluminescent mode frequencies is dependent on the laser output power. The explanation of this phenomenon was made on the basis of the mechanism of a nonlinear interaction of a field in the active region of a laser diode.
Electrically tunable liquid crystal photonic bandgap fiber laser
NASA Astrophysics Data System (ADS)
Olausson, Christina B.; Scolari, Lara; Wei, Lei; Noordegraaf, Danny; Weirich, Johannes; Alkeskjold, Thomas T.; Hansen, Kim P.; Bjarklev, Anders
2010-02-01
We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040- 1065 nm by applying an electric field to the silicon assembly.
Pump-Induced, Dual-Frequency Switching in a Short-Cavity, Ytterbium-Doped Fiber Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, W.; Marciante, J.R.
2008-07-23
Using a short linear cavity composed of a section of highly ytterbium-doped fiber surrounded by two fiber Bragg gratings, dual frequency switching is achieved by tuning the pump power of the laser. The dual-frequency switching is generated by the thermal effects of the absorbed pump in the ytterbium-doped fiber. At each frequency, the laser shows single-longitudinal-mode behavior. In each single-mode regime, the optical signal-to-noise ratio of the laser is greater than 50 dB. The dual-frequency, switchable, fiber laser can be designed for various applications by the careful selection of the two gratings.
Apparatus And Methods For Launching And Receiving A Broad Wavelength Range Source
Von Drasek, William A.; Sonnenfroh, David; Allen, Mark G.; Stafford-Evans, Joy
2006-02-28
An apparatus and method for simultaneous detection of N gas species through laser radiation attenuation techniques is disclosed. Each of the N species has a spectral absorption band. N laser sources operate at a wavelength ?N in a spectral absorption band separated by the cutoff wavelength for single-mode transmission. Each laser source corresponds to a gas species and transmits radiation through an optical fiber constructed and arranged to provide single-mode transmission with minimal power loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markmann, Sergej, E-mail: sergej.markmann@ruhr-uni-bochum.de; Nong, Hanond, E-mail: nong.hanond@ruhr-uni-bochum.de; Hekmat, Negar
2015-09-14
We demonstrate by injection seeding that the spectral emission of a terahertz (THz) quantum cascade laser (QCL) can be modified with broad-band THz pulses whose bandwidths are greater than the QCL bandwidth. Two broad-band THz pulses delayed in time imprint a modulation on the single THz pulse spectrum. The resulting spectrum is used to injection seed the THz QCL. By varying the time delay between the THz pulses, the amplitude distribution of the QCL longitudinal modes is modified. By applying this approach, the QCL emission is reversibly switched from multi-mode to single mode emission.
Mode-locking evolution in ring fiber lasers with tunable repetition rate.
Korobko, D A; Fotiadi, A A; Zolotovskii, I O
2017-09-04
We have applied a simple approach to analyze behavior of the harmonically mode-locked fiber laser incorporating an adjustable Mach-Zehnder interferometer (MZI). Our model is able to describe key features of the laser outputs and explore limitations of physical mechanisms responsible for laser operation at different pulse repetition rates tuned over a whole GHz range. At low repetition rates the laser operates as a harmonically mode-locked soliton laser triggered by a fast saturable absorber. At high repetition rates the laser mode-locking occurs due to dissipative four-wave mixing seeded by MZI and gain spectrum filtering. However, the laser stability in this regime is rather low due to poor mode selectivity provided by MZI that is able to support the desired laser operation just near the lasing threshold. The use of a double MZI instead of a single MZI could improve the laser stability and extends the range of the laser tunability. The model predicts a gap between two repetitive rate ranges where pulse train generation is not supported.
Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya
2016-01-01
We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm. PMID:27346285
NASA Astrophysics Data System (ADS)
Griffel, Giora; Chen, Howard Z.; Grave, Ilan; Yariv, Amnon
1991-04-01
The operation of a novel multisection structure comprised of laterally coupled gain-guided semiconductor lasers is demonstrated. It is shown that tunable single longitudinal mode operation can be achieved with a high degree of frequency selectivity. The device has a tuning range of 14.5 nm, the widest observed to date in a monolithic device.
High single-spatial-mode pulsed power from 980 nm emitting diode lasers
NASA Astrophysics Data System (ADS)
Hempel, Martin; Tomm, Jens W.; Elsaesser, Thomas; Bettiati, Mauro
2012-11-01
Single-spatial-mode pulsed powers as high as 13 W and 20 W in 150 and 50 ns pulses, respectively, are reported for 980 nm emitting lasers. In terms of energy, single-spatial-mode values of up to 2 μJ within 150 ns pulses are shown. In this high-power pulsed operation, the devices shield themselves from facet degradation, being the main degradation source in continuous wave (cw) operation. Our results pave the way towards additional applications while employing available standard devices, which have originally been designed as very reliable cw fiber pumps.
Single transverse mode laser in a center-sunken and cladding-trenched Yb-doped fiber.
Liu, Yehui; Zhang, Fangfang; Zhao, Nan; Lin, Xianfeng; Liao, Lei; Wang, Yibo; Peng, Jinggang; Li, Haiqing; Yang, LuYun; Dai, NengLi; Li, Jinyan
2018-02-05
We report a novel center-sunken and cladding-trenched Yb-doped fiber, which was fabricated by a modified chemical vapor deposition process with a solution-doping technique. The simulation results showed that the fiber with a core diameter of 40 µm and a numerical aperture of 0.043 has a 1217 µm 2 effective mode area at 1080 nm. It is also disclosed that the leakage loss can be reduced lower than 0.01 dB/m for the LP 01 mode, while over 80 dB/m for the LP 11 mode by optimizing the bending radius as 14 cm. A 456 W laser output was observed in a MOPA structure. The laser slope efficiency was measured to be 79% and the M 2 was less than 1.1, which confirmed the single mode operation of the large mode area center-sunken cladding-trenched Yb-doped fiber.
High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, C.; Sigler, C.; Kirch, J. D.
2016-03-21
Grating-coupled surface-emitting (GCSE) lasers generally operate with a double-lobed far-field beam pattern along the cavity-length direction, which is a result of lasing being favored in the antisymmetric grating mode. We experimentally demonstrate a GCSE quantum-cascade laser design allowing high-power, nearly single-lobed surface emission parallel to the longitudinal cavity. A 2nd-order Au-semiconductor distributed-feedback (DFB)/distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric (longitudinal) grating mode by causing resonant coupling of the guided optical modemore » to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. Then, the antisymmetric modes are strongly absorbed by the metal in the grating, causing the symmetric mode to be favored to lase, which, in turn, produces a single-lobed beam over a range of grating duty-cycle values of 36%–41%. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of reflections from the device's cleaved ends. Peak pulsed output powers of ∼0.4 W were measured with nearly single-lobe beam-pattern (in the longitudinal direction), single-spatial-mode operation near 4.75 μm wavelength. Far-field measurements confirm a diffraction-limited beam pattern, in agreement with simulations, for a source-to-detector separation of 2 m.« less
Probing longitudinal modes evolution of a InGaN green laser diode
NASA Astrophysics Data System (ADS)
Chen, Yi-Hsi; Lin, Wei-Chen; Chen, Hong-Zui; Shy, Jow-Tsong; Chui, Hsiang-Chen
2018-06-01
This study aims to investigate the longitudinal mode evolution of a InGaN green laser diode. A spectrometer with a 3-pm resolution was employed to obtain the emission spectra of a green laser diode, at a wavelength of around 520 nm, as a function of applied current and temperature. The spectral behavior of the laser modes with applied current was investigated. Right above the lasing threshold, the green diode laser emitted single longitudinal mode output. With increasing applied current, the number of the longitudinal modes increased. Up to ten lasing modes oscillated within the entire gain profile when the applied currents were tuned to 2.2Ith. Subsequently, a multi-Lorentzian profile model was adopted to analyze the spectra and observe how the modes evolved with temperature and applied current.
Hu, Guoqing; Mizuguchi, Tatsuya; Zhao, Xin; Minamikawa, Takeo; Mizuno, Takahiko; Yang, Yuli; Li, Cui; Bai, Ming; Zheng, Zheng; Yasui, Takeshi
2017-01-01
A single, free-running, dual-wavelength mode-locked, erbium-doped fibre laser was exploited to measure the absolute frequency of continuous-wave terahertz (CW-THz) radiation in real time using dual THz combs of photo-carriers (dual PC-THz combs). Two independent mode-locked laser beams with different wavelengths and different repetition frequencies were generated from this laser and were used to generate dual PC-THz combs having different frequency spacings in photoconductive antennae. Based on the dual PC-THz combs, the absolute frequency of CW-THz radiation was determined with a relative precision of 1.2 × 10−9 and a relative accuracy of 1.4 × 10−9 at a sampling rate of 100 Hz. Real-time determination of the absolute frequency of CW-THz radiation varying over a few tens of GHz was also demonstrated. Use of a single dual-wavelength mode-locked fibre laser, in place of dual mode-locked lasers, greatly reduced the size, complexity, and cost of the measurement system while maintaining the real-time capability and high measurement precision. PMID:28186148
Low-cost, single-mode diode-pumped Cr:Colquiriite lasers.
Demirbas, Umit; Li, Duo; Birge, Jonathan R; Sennaroglu, Alphan; Petrich, Gale S; Kolodziejski, Leslie A; Kaertner, Franz X; Fujimoto, James G
2009-08-03
We present three Cr3+:Colquiriite lasers as low-cost alternatives to Ti:Sapphire laser technology. Single-mode laser diodes, which cost only $150 each, were used as pump sources. In cw operation, with approximately 520 mW of absorbed pump power, up to 257, 269 and 266 mW of output power and slope efficiencies of 53%, 62% and 54% were demonstrated for Cr:LiSAF, Cr:LiSGaF and Cr:LiCAF, respectively. Record cw tuning ranges from 782 to 1042 nm for Cr:LiSAF, 777 to 977 nm for Cr:LiSGaF, and 754 to 871 nm for Cr:LiCAF were demonstrated. In cw mode-locking experiments using semiconductor saturable absorber mirrors at 800 and 850 nm, Cr:Colquiriite lasers produced approximately 50-100 fs pulses with approximately 1-2.5 nJ pulse energies at approximately 100 MHz repetition rate. Electrical-to-optical conversion efficiencies of 8% in mode-locked operation and 12% in cw operation were achieved.
75 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nm.
Kotov, L V; Likhachev, M E; Bubnov, M M; Medvedkov, O I; Yashkov, M V; Guryanov, A N; Lhermite, J; Février, S; Cormier, E
2013-07-01
Optimization of Yb-free Er-doped fiber for lasers and amplifiers cladding pumped at 976 nm was performed in this Letter. The single-mode fiber design includes an increased core diameter of 34 μm and properly chosen erbium and co-dopant concentrations. We demonstrate an all-fiber high power laser and power amplifier based on this fiber with the record slope efficiency of 40%. To the best of our knowledge, the achieved output power of 75 W is the highest power reported for such lasers.
Laser beam combining and cleanup by stimulated Brillouin scattering in a multimode optical fiber.
Rodgers, B C; Russell, T H; Roh, W B
1999-08-15
A new technique for combining low-power laser beams has been demonstrated by use of semiconductor diode lasers. The technique, which is appropriate for any single-longitudinal-mode laser, is based on stimulated Brillouin scattering (SBS) in long multimode optical fibers. It produces a clean Gaussian-like beam that corresponds to the fundamental fiber mode, irrespective of the profile of the pump. Coherent as well as incoherent combining was demonstrated, and conversion slope efficiencies as high as 67% and 83% were shown to be achievable for the single-pass and ring-cavity SBS geometries, respectively.
Automated rejection of parasitic frequency sidebands in heterodyne-detection LIDAR applications
NASA Technical Reports Server (NTRS)
Esproles, Carlos; Tratt, David M.; Menzies, Robert T.
1989-01-01
A technique is described for the detection of the sporadic onset of multiaxial mode behavior of a normally single-mode TEA CO2 laser. The technique is implemented using primarily commercial circuit modules; it incorporates a peak detector that displays the RF detector output on a digital voltmeter, and a LED bar graph. The technique was successfully demonstrated with an existing coherent atmospheric LIDAR facility utilizing an injection-seeded single-mode TEA CO2 laser. The block schematic diagram is included.
NASA Technical Reports Server (NTRS)
Botez, D.
1981-01-01
Constricted double-heterojunction (CDH) diode lasers are presented as a class of nonplanar-substrate devices for which the lasing cavity is on the least resistive electrical path between the contact and the substrate. Various CDH structures are discussed while treating such topics as liquid-phase epitaxy over channeled substrates, lateral mode control, and current control in nonplanar-substrate devices. Ridge-guide CDH lasers with positive-index lateral mode confinement provides single-mode CW operation to 7 mW/facet at room temperature and to 3 mW/facet at 150 C, while exhibiting light-current characteristics with second-harmonic distortions as low as -57 dB below the fundamental level. Semileaky guide CDH lasers with an asymmetric leaky cavity provide single-mode operation to 15-20 mW/facet CW, and to 50 mW/facet at 50% duty cycle.
Single-shot spectroscopy of broadband Yb fiber laser
NASA Astrophysics Data System (ADS)
Suzuki, Masayuki; Yoneya, Shin; Kuroda, Hiroto
2017-02-01
We have experimentally reported on a real-time single-shot spectroscopy of a broadband Yb-doped fiber (YDF) laser which based on a nonlinear polarization evolution by using a time-stretched dispersive Fourier transformation technique. We have measured an 8000 consecutive single-shot spectra of mode locking and noise-like pulse (NLP), because our developed broadband YDF oscillator can individually operate the mode locking and NLP by controlling a pump LD power and angle of waveplates. A shot-to-shot spectral fluctuation was observed in NLP. For the investigation of pulse formation dynamics, we have measured the spectral evolution in an initial fluctuations of mode locked broadband YDF laser at an intracavity dispersion of 1500 and 6200 fs2 for the first time. In both case, a build-up time between cw and steady-state mode locking was estimated to be 50 us, the dynamics of spectral evolution between cw and mode locking, however, was completely different. A shot-to-shot strong spectral fluctuation, as can be seen in NLP spectra, was observed in the initial timescale of 20 us at the intracavity dispersion of 1500 fs2. These new findings would impact on understanding the birth of the broadband spectral formation in fiber laser oscillator.
Mode-locked Tm,Ho:KLu(WO(4))(2) laser at 2060 nm using InGaSb-based SESAMs.
Aleksandrov, Veselin; Gluth, Alexander; Petrov, Valentin; Buchvarov, Ivan; Steinmeyer, Günter; Paajaste, Jonna; Suomalainen, Soile; Härkönen, Antti; Guina, Mircea; Mateos, Xavier; Díaz, Francesc; Griebner, Uwe
2015-02-23
Passive mode-locking of a Tm,Ho:KLu(WO(4))(2) laser operating at 2060 nm using different designs of InGaAsSb quantum-well based semiconductor saturable absorber mirrors (SESAMs) is demonstrated. The self-starting mode-locked laser delivers pulse durations between 4 and 8 ps at a repetition rate of 93 MHz with maximum average output power of 155 mW. Mode-locking performance of a Tm,Ho:KLu(WO(4))(2) laser is compared for usage of a SESAM to a single-walled carbon nanotube saturable absorber.
Pump polarization insensitive and efficient laser-diode pumped Yb:KYW ultrafast oscillator.
Wang, Sha; Wang, Yan-Biao; Feng, Guo-Ying; Zhou, Shou-Huan
2016-02-01
We theoretically and experimentally report and evaluate a novel split laser-diode (LD) double-end pumped Yb:KYW ultrafast oscillator aimed at improving the performance of an ultrafast laser. Compared to a conventional unpolarized single-LD end-pumped ultrafast laser system, we improve the laser performance such as absorption efficiency, slope efficiency, cw mode-locking threshold, and output power by this new structure LD-pumped Yb:KYW ultrafast laser. Experiments were carried out with a 1 W output fiber-coupled LD. Experimental results show that the absorption increases from 38.7% to 48.4%, laser slope efficiency increases from 18.3% to 24.2%, cw mode-locking threshold decreases 12.7% from 630 to 550 mW in cw mode-locking threshold, and maximum output-power increases 28.5% from 158.4 to 221.5 mW when we switch the pump scheme from an unpolarized single-end pumping structure to a split LD double-end pumping structure.
Mode Behavior in Ultralarge Ring Lasers
NASA Astrophysics Data System (ADS)
Hurst, Robert B.; Dunn, Robert W.; Schreiber, K. Ulrich; Thirkettle, Robert J.; MacDonald, Graeme K.
2004-04-01
Contrary to expectations based on mode spacing, single-mode operation in very large He-Ne ring lasers may be achieved at intracavity power levels up to ~0.15 times the saturation intensity for the He-Ne transition. Homogeneous line broadening at a high total gas pressure of 4-6 Torr allows a single-peaked gain profile that suppresses closely spaced multiple modes. At startup, decay of initial multiple modes may take tens of seconds. The single remaining mode in each direction persists metastably as the cavity is detuned by many times the mode frequency spacing. A theoretical explanation requires the gain profile to be concave down and to satisfy an inequality related to slope and saturation at the operating frequency. Calculated metastable frequency ranges are greater than 150 MHz at 6 Torr and depend strongly on pressure. Examples of unusual stable mode configurations are shown, with differently numbered modes in the two directions and with multiple modes at a spacing of ~100 MHz.
Mode behavior in ultralarge ring lasers.
Hurst, Robert B; Dunn, Robert W; Schreiber, K Ulrich; Thirkettle, Robert J; MacDonald, Graeme K
2004-04-10
Contrary to expectations based on mode spacing, single-mode operation in very large He-Ne ring lasers may be achieved at intracavity power levels up to approximately0.15 times the saturation intensity for the He-Ne transition. Homogeneous line broadening at a high total gas pressure of 4-6 Torr allows a single-peaked gain profile that suppresses closely spaced multiple modes. At startup, decay of initial multiple modes may take tens of seconds. The single remaining mode in each direction persists metastably as the cavity is detuned by many times the mode frequency spacing. A theoretical explanation requires the gain profile to be concave down and to satisfy an inequality related to slope and saturation at the operating frequency. Calculated metastable frequency ranges are > 150 MHz at 6 Torr and depend strongly on pressure. Examples of unusual stable mode configurations are shown, with differently numbered modes in the two directions and with multiple modes at a spacing of approximately 100 MHz.
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2011-03-01
Optical nerve stimulation (ONS) has recently been reported as a potential alternative to electrical nerve stimulation. Continuous-wave (CW) laser stimulation of the prostate cavernous nerves (CN) in a rat model, in vivo, has also been demonstrated in our previous studies. The objective of this study is to present a new all-single-mode-fiber configuration for ONS with the laser operating in CW mode for potential diagnostic applications. An infrared pigtailed single-mode diode laser (λ = 1455 nm) was used in this study for noncontact ONS. This new all-fiber approach introduces several advantages including: (1) a less expensive and more compact ONS system, (2) elimination of alignment of optical components, and (3) an improved spatial beam profile. Successful optical stimulation of the rat CN using this new design was observed after the CN reached a threshold temperature of ~ 41 °C with response times as short as 3 s. Upon further study, this configuration may be useful for identification and preservation of the cavernous nerves during prostate cancer surgery.
Spectrally high performing quantum cascade lasers
NASA Astrophysics Data System (ADS)
Toor, Fatima
Quantum cascade (QC) lasers are versatile semiconductor light sources that can be engineered to emit light of almost any wavelength in the mid- to far-infrared (IR) and terahertz region from 3 to 300 mum [1-5]. Furthermore QC laser technology in the mid-IR range has great potential for applications in environmental, medical and industrial trace gas sensing [6-10] since several chemical vapors have strong rovibrational frequencies in this range and are uniquely identifiable by their absorption spectra through optical probing of absorption and transmission. Therefore, having a wide range of mid-IR wavelengths in a single QC laser source would greatly increase the specificity of QC laser-based spectroscopic systems, and also make them more compact and field deployable. This thesis presents work on several different approaches to multi-wavelength QC laser sources that take advantage of band-structure engineering and the uni-polar nature of QC lasers. Also, since for chemical sensing, lasers with narrow linewidth are needed, work is presented on a single mode distributed feedback (DFB) QC laser. First, a compact four-wavelength QC laser source, which is based on a 2-by-2 module design, with two waveguides having QC laser stacks for two different emission wavelengths each, one with 7.0 mum/11.2 mum, and the other with 8.7 mum/12.0 mum is presented. This is the first design of a four-wavelength QC laser source with widely different emission wavelengths that uses minimal optics and electronics. Second, since there are still several unknown factors that affect QC laser performance, results on a first ever study conducted to determine the effects of waveguide side-wall roughness on QC laser performance using the two-wavelength waveguides is presented. The results are consistent with Rayleigh scattering effects in the waveguides, with roughness effecting shorter wavelengths more than longer wavelengths. Third, a versatile time-multiplexed multi-wavelength QC laser system that emits at lambda = 10.8 mum for positive and lambda = 8.6 mum for negative polarity current with microsecond time delay is presented. Such a system is the first demonstration of a time and wavelength multiplexed system that uses a single QC laser. Fourth, work on the design and fabrication of a single-mode distributed feedback (DFB) QC laser emitting at lambda ≈ 7.7 mum to be used in a QC laser based photoacoustic sensor is presented. The DFB QC laser had a temperature tuning co-efficient of 0.45 nm/K for a temperature range of 80 K to 320 K, and a side mode suppression ratio of greater than 30 dB. Finally, study on the lateral mode patterns of wide ridge QC lasers is presented. The results include the observation of degenerate and non-degenerate lateral modes in wide ridge QC lasers emitting at lambda ≈ 5.0 mum. This study was conducted with the end goal of using wide ridge QC lasers in a novel technique to spatiospectrally combine multiple transverse modes to obtain an ultra high power single spot QC laser beam.
NASA Astrophysics Data System (ADS)
Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2007-07-01
We report on a sodium D2 resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.
Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2007-07-15
We report on a sodium D(2) resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.
Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers
NASA Astrophysics Data System (ADS)
Goodno, Gregory D.; Book, Lewis D.; Rothenberg, Joshua E.; Weber, Mark E.; Benjamin Weiss, S.
2011-11-01
Thulium-doped fiber lasers (TFLs) emitting retina-safe 2-μm wavelengths offer substantial power-scaling advantages over ytterbium-doped fiber lasers for narrow linewidth, single-mode operation. This article reviews the design and performance of a pump-limited, 600 W, single-mode, single-frequency TFL amplifier chain that balances thermal limitations against those arising from stimulated Brillouin scattering (SBS). A simple analysis of thermal and SBS limits is anchored with measurements on kilowatt class Tm and Yb fiber lasers to highlight the scaling advantage of Tm for narrow linewidth operation. We also report recent results on active phase-locking of a TFL amplifier to an optical reference as a precursor to further parallel scaling via coherent beam combining.
Ma, Yingjun; Wu, Li; Wu, Hehui; Chen, Weimin; Wang, Yanli; Gu, Shijie
2008-11-10
We present a single longitudinal mode, diode pumped Nd:YVO(4) microchip laser where a pair of quarter-wave plates (QWPs) sandwich Nd:YVO(4) and the principle axes of QWPs are oriented at 45 degrees to the c-axis of Nd:YVO(4). Three pieces of crystals were optically bonded together as a microchip without adhesive. Owing to large birefringence of Nd:YVO(4), two standing waves with orthogonal polarizations compensate their hole-burning effects with each other, which diminish total spatial hole-burning effects in Nd:YVO(4). The maximum pump power of greater than 25 times the threshold for single longitudinal mode operation has been theoretically shown and experimentally demonstrated. The power of output, slope efficiencies and temperature range of single longitudinal mode operation are greater than 730 mw (at 1.25 W pump), 60% and 30 degrees C, respectively.
Single-frequency tunable laser for pumping cesium frequency standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravleva, O V; Ivanov, Andrei V; Leonovich, A I
2006-08-31
A single-frequency tunable laser for pumping the cesium frequency standard is studied. It is shown experimentally that the laser emits at a single frequency despite the fact that a few longitudinal modes of the external cavity fall within the reflection band of a fibre Bragg grating (FBG) written in the optical fibre. The laser wavelength can be tuned by varying the pump current of the laser, its temperature, and the FBG temperature. The laser linewidth does not exceed 2 MHz for 10 mW of output power. (lasers)
Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej
2015-01-01
We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency. PMID:25587980
NASA Astrophysics Data System (ADS)
Feng, Suchun; Xu, Ou; Lu, Shaohua; Chen, Ming; Jian, Shuisheng
2009-08-01
Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber laser at room temperature is demonstrated. One fiber Bragg grating (FBG) directly written in a polarization-maintaining and photosensitive erbiumdoped fiber (PMPEDF) as the wavelength-selective component is used in a linear laser cavity. Due to the polarization hole burning (PHB) enhanced by the polarization-maintaining fiber Bragg grating (PMFBG), the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.202 nm by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a saturable absorber (SA). The optical signal-tonoise ratio (OSNR) of the laser is over 40 dB. The amplitude variation in nearly one and half an hour is less than 0.5 dB for both wavelengths.
NASA Astrophysics Data System (ADS)
Tempesta, Angela; Franco, Simonetta; Miccoli, Simona; Suppressa, Patrizia; De Falco, Vincenzo; Crincoli, Vito; Lacaita, Mariagrazia; Giuliani, Michele; Favia, Gianfranco
2014-01-01
Hereditary Haemorrhagic Telangiectasia (HHT) is a muco-cutaneous inherited disease. Symptoms are epistaxis, visceral arterio-venous malformations, multiple muco-cutaneous telangiectasia with the risk of number increasing enlargement, bleeding, and super-infection. The aim of this work is to show the dual Diode Laser efficacy in preventive treatment of Early Lesions (EL < 2mm) and therapeutic treatment of Advanced Lesions (AL < 2mm). 21 patients affected by HHT with 822 muco-cutaneous telangiectatic nodules have been treated in several sessions with local anaesthesia and cooling of treated sites. EL preventive treatment consists of single Laser impulse (fibre 320) in ultrapulsed mode (2 mm single point spot). AL therapeutic treatment consists of repeated Laser impulses in pulsed mode (on 200ms / off 400ms). According to the results, Diode Laser used in pulsed and ultra-pulsed mode is very effective as noninvasive treatment both in early and advanced oral and perioral telangiectasia.
Dynamics of ultra-broadband terahertz quantum cascade lasers for comb operation.
Li, Hua; Laffaille, Pierre; Gacemi, Djamal; Apfel, Marc; Sirtori, Carlo; Leonardon, Jeremie; Santarelli, Giorgio; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Faist, Jerome; Hänsel, Wolfgang; Holzwarth, Ronald; Barbieri, Stefano
2015-12-28
We present an experimental investigation of the multimode dynamics and the coherence of terahertz quantum cascade lasers emitting over a spectral bandwidth of ~1THz. The devices are studied in free-running and under direct RF modulation. Depending on the pump current we observe different regimes of operation, where RF spectra displaying single and multiple narrow beat-note signals alternate with spectra showing a single beat-note characterized by an intense phase-noise, extending over a bandwidth up to a few GHz. We investigate the relation between this phase-noise and the dynamics of the THz modes through the electro-optic sampling of the laser emission. We find that when the phase-noise is large, the laser operates in an unstable regime where the lasing modes are incoherent. Under RF modulation of the laser current such instability can be suppressed and the modes coherence recovered, while, simultaneously, generating a strong broadening of the THz emission spectrum.
NASA Astrophysics Data System (ADS)
Peng, Junsong; Zhan, Li; Gu, Zhaochang; Qian, Kai; Luo, Shouyu; Shen, Qishun
2012-03-01
We have experimentally demonstrated the direct generation of 128-fs pulses in an all-anomalous-dispersion all-fiber mode-locked laser. The laser is free of dispersion compensation in the cavity based on standard single mode fiber (SMF). The time-bandwidth product is 0.536. The laser is achieved by using two mode-lockers, one is nonlinear polarization rotation (NPR), and the other is nonlinear amplifying loop mirror. The coexistence of dual mode-locking mechanisms can decrease the cavity length to 12-m, and also results in producing high-quality pulses with a Gaussian shape both on the pulse profile and spectrum, but without Kelly sidebands.
Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser.
Kim, D J; Kim, J W
2015-02-01
A simple method for generating a Laguerre-Gaussian (LG) mode optical vortex beam with well-determined handedness in a single-frequency solid state laser end-pumped by a ring-shaped pump beam is reported. After investigating the intensity profile and the wavefront helicity of each longitudinal mode output to understand generation of the LG mode in a Nd:YVO4 laser resonator, selection of the wavefront handedness has been achieved simply by inserting and tilting an etalon in the resonator, which breaks the propagation symmetry of the Poynting vectors with opposite helicity. Simple calculation and the experimental results are discussed for supporting this selection mechanism.
Wenke, G; Zhu, Y
1983-12-01
The coupling of CSP lasers to single-mode fibers with different coupling structures made on the fiber face is investigated. In this case easy to make coupling arrangements such as tapers and microlenses, result in a high launching efficiency (approximately 2-dB loss), in contrast to launching from gain-guided lasers with strong astigmatism and a broader far-field pattern. Index-guiding lasers exhibit, however, a higher sensitivity to optical feedback. Laser output power and wavelength are changed due to reflections from the fiber tip. Critical distances exist which lead to a highly unstable laser spectrum. A comparison of the influence of various fiber faces on laser power and wavelength stability is presented. It is concluded that a tapered fiber end with a large working distance reduces the influence on the laser's performance.
NASA Technical Reports Server (NTRS)
Chen, Y. C.; Lee, K. K.
1993-01-01
The applications of Q-switched lasers are well known, for example, laser radar, laser remote sensing, satellite orbit determination, Moon orbit and 'moon quake' determination, satellite laser communication, and many nonlinear optics applications. Most of the applications require additional properties of the Q-switched lasers, such as single-axial and/or single-transverse mode, high repetition rate, stable pulse shape and pulse width, or ultra compact and rugged oscillators. Furthermore, space based and airborne lasers for lidar and laser communication applications require efficient, compact, lightweight, long-lived, and stable-pulsed laser sources. Diode-pumped solid-state lasers (DPSSL) have recently shown the potential for satisfying all of these requirements. We will report on the operating characteristics of a diode-pumped, monolithic, self-Q-switched Cr,Nd:YAG laser where the chromium ions act as a saturable absorber for the laser emission at 1064 nm. The pulse duration is 3.5 ns and the output is highly polarized with an extinction ratio of 700:1. It is further shown that the output is single-longitudinal-mode with transform-limited spectral line width without pulse-to-pulse mode competition. Consequently, the pulse-to-pulse intensity fluctuation is less than the instrument resolution of 0.25 percent. This self-stabilization mechanism is because the lasing mode bleaches the distributed absorber and establishes a gain-loss grating similar to that used in the distributed feedback semiconductor lasers. A repetition rate above 5 KHz has also been demonstrated. For higher power, this laser can be used for injection seeding an amplifier (or amplifier chain) or injection locking of a power oscillator pumped by diode lasers. We will discuss some research directions on the master oscillator for higher output energy per pulse as well as how to scale the output power of the diode-pumped amplifier(s) to multi-kilowatt average power.
Inter-comb synchronization by mode-to-mode locking
NASA Astrophysics Data System (ADS)
Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo
2016-08-01
Two combs of fiber femtosecond lasers are synchronized through the optical frequency reference created by injection-locking of a diode laser to a single comb mode. Maintaining a mHz-level narrow linewidth, the optical frequency reference permits two combs to be stabilized by mode-to-mode locking with a relative stability of 1.52 × 10-16 at 10 s with a frequency slip of 2.46 mHz. This inter-comb synchronization can be utilized for applications such as dual-comb spectroscopy or ultra-short pulse synthesis without extra narrow-linewidth lasers.
NASA Astrophysics Data System (ADS)
Scheuermann, Julian; Weih, Robert; Becker, Steffen; Fischer, Marc; Koeth, Johannes; Höfling, Sven
2018-01-01
An interband cascade laser multiemitter with single-mode distributed feedback (DFB) emission at two wavelengths is presented. Continuous-wave laser operation is measured from 0°C to 40°C with threshold currents of around 25 mA and output powers of around 9 mW at 20°C. The ridge waveguide DFB structures are monolithically integrated with a spacing of 70 μm and each is provided with an individual metal DFB grating to select specific single-mode wavelengths of interest for absorption spectroscopy. The emission windows at 3.92 and 4.01 μm are targeting hydrogen sulfide and sulfur dioxide, which are of importance for industrial applications since both gases are reagents of the Claus process in sulfur recovery units, recovering elemental sulfur from gaseous hydrogen sulfide.
Photonic Lantern Adaptive Spatial Mode Control in LMA Fiber Amplifiers using SPGD
2015-12-15
ll.mit.edu Abstract: We demonstrate adaptive-spatial mode control (ASMC) in few- moded double- clad large mode area (LMA) fiber amplifiers by using an...combination resulting in a single fundamental mode at the output is achieved. 2015 Optical Society of America OCIS codes: (140.3510) Lasers ...fiber; (140.3425) Laser stabilization; (060.2340) Fiber optics components; (110.1080) Active or adaptive optics; References and links 1. C
NASA Technical Reports Server (NTRS)
Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan; Krainak, Michael
2014-01-01
We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064 nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to 104 at 10 mHz. The PWECL's compactness and low cost make it a candidate to replace traditional Nd:YAG nonplanar ring oscillators and fiber lasers in applications that require a single longitudinal mode.
High energy passively mode-locked erbium-doped fiber laser at tens of kHz repetition rate
NASA Astrophysics Data System (ADS)
Chen, Jiong; Jia, Dongfang; Wang, Changle; Wang, Junlong; Wang, Zhaoying; Yang, Tianxin
2011-12-01
We demonstrate an ultra-long cavity all-fiber Erbium-doped fiber laser that is passively mode-locked by nonlinear polarization rotation. The length of the resonant cavity amounts to 4.046 km, which is achieved by incorporating a 4 km single mode fiber. The laser generates stable mode-locked pulses with a 50.90 kHz fundamental repetition rate. The maximum average power of output pulses is 2.73 mW, which corresponds to per-pulse energy of 53.63 nJ.
Single-longitudinal mode distributed-feedback fiber laser with low-threshold and high-efficiency
NASA Astrophysics Data System (ADS)
Jiang, Man; Zhou, Pu; Gu, Xijia
2018-01-01
Single-frequency fiber laser has attracted a lot of interest in recent years due to its numerous application potentials in telecommunications, LIDAR, high resolution sensing, atom frequency standard, etc. Phosphate glass fiber is one of the candidates for building compact high gain fiber lasers because of its capability of high-concentration of rare-earth ions doping in fiber core. Nevertheless, it is challenging for the integration of UV-written intra-core fiber Bragg gratings into the fiber laser cavity due to the low photosensitivity of phosphate glass fiber. The research presented in this paper will focus on demonstration of UV-written Bragg gratings in phosphate glass fiber and its application in direct-written short monolithic single-frequency fiber lasers. Strong π-phase shift Bragg grating structure is direct-inscribed into the Er/Yb co-doped gain fiber using an excimer laser, and a 5-cm-long phase mask is used to inscribe a laser cavity into the Er/Yb co-doped phosphate glass fibers. The phase mask is a uniform mask with a 50 μm gap in the middle. The fiber laser device emits output power of 10.44 mW with a slope efficiency of 21.5% and the threshold power is about 42.8 mW. Single-longitudinal mode operation is validated by radio frequency spectrum measurement. Moreover, the output spectrum at the highest power shows an excellent optical signal to noise ratio of about 70 dB. These results, to the best of our knowledge, show the lowest power threshold and highest efficiency among the reports that using the same structure to achieve single-longitudinal mode laser output.
Resonator modes and mode dynamics for an external cavity-coupled laser array
NASA Astrophysics Data System (ADS)
Nair, Niketh; Bochove, Erik J.; Aceves, Alejandro B.; Zunoubi, Mohammad R.; Braiman, Yehuda
2015-03-01
Employing a Fox-Li approach, we derived the cold-cavity mode structure and a coupled mode theory for a phased array of N single-transverse-mode active waveguides with feedback from an external cavity. We applied the analysis to a system with arbitrary laser lengths, external cavity design and coupling strengths to the external cavity. The entire system was treated as a single resonator. The effect of the external cavity was modeled by a set of boundary conditions expressed by an N-by-N frequency-dependent matrix relation between incident and reflected fields at the interface with the external cavity. The coupled mode theory can be adapted to various types of gain media and internal and external cavity designs.
Solid-state Yb : YAG amplifier pumped by a single-mode laser at 920 nm
NASA Astrophysics Data System (ADS)
Obronov, I. V.; Demkin, A. S.; Myasnikov, D. V.
2018-03-01
An optical amplifier scheme for ultrashort 1030-nm pulses is proposed based on an Yb : YAG crystal with axial pumping by a transverse single-mode laser at a wavelength of 920 nm. A small-signal gain up to 40 dB per pass with a high output beam quality is demonstrated. The maximum average power is 14 W with a slope efficiency exceeding 50%.
Hanson, Frank; Lasher, Mark
2010-06-01
We characterize and compare the effects of turbulence on underwater laser propagation with theory. Measurements of the coupling efficiency of the focused beam into a single-mode fiber are reported. A simple tip-tilt control system, based on the position of the image centroid in the focal plane, was shown to maintain good coupling efficiency for a beam radius equal to the transverse coherence length, r(0). These results are relevant to high bandwidth communication technology that requires good spatial mode quality.
Laser direct writing of complex radially varying single-mode polymer waveguide structures
NASA Astrophysics Data System (ADS)
Kruse, Kevin; Peng, Jie; Middlebrook, Christopher T.
2015-07-01
Increasing board-to-board and chip-to-chip computational data rates beyond 12.5 Gbs will require the use of single-mode polymer waveguides (WGs) that have high bandwidths and are able to be wavelength division multiplexed. Laser direct writing (LDW) of polymer WGs provides a scalable and reconfigurable maskless procedure compared to common photolithography fabrication. LDW of straights and radial curves are readily achieved using predefined drive commands of the two-axis direct drive linear stage system. Using the laser direct write process for advanced WG structures requires stage-drive programming techniques that account for specified polymer material exposure durations. Creating advanced structures such as WG S-bends into single-mode polymer WG builds provides designers with the ability to affect pitch control, optical coupling, and reduce footprint requirements. Fabrication of single-mode polymer WG segmented radial arcs is achieved through a smooth radial arc user-programmed defined mathematical algorithm. Cosine and raised-sine S-bends are realized through a segmentation method where the optimal incremental step length and bend dimensions are controlled to achieve minimal structure loss. Laser direct written S-bends are compared with previously published photolithographic S-bend results using theoretical bend loss models. Fabrication results show that LDW is a viable method in the fabrication of advanced polymer WG structures.
NASA Technical Reports Server (NTRS)
Hsieh, H.-H.; Fonstad, C. G.
1980-01-01
Distributed feedback (DFB) pulsed laser operation has been demonstrated in stripe geometry Pb(1-x)Sn(x)Te double-heterostructures grown by liquid-phase epitaxy. The grating structure of 0.79 micron periodicity operates in first order near 12.8 microns and was fabricated prior to the liquid-phase epitaxial growth using holographic exposure techniques. These DFB lasers had moderate thresholds, 3.6 kA/sq cm, and the output power versus current curves exhibited a sharp turn-on free of kinks. Clean, single-mode emission spectra, continuously tunable over a range in excess of 20 per cm, centered about 780 per cm (12.8 microns), and at an average rate of 1.2 per cm-K from 9 to 26 K, were observed. While weaker modes could at times be seen in the spectrum, substantially single-mode operation was obtained over the entire operating range and to over 10 times threshold.
Large tuning of narrow-beam terahertz plasmonic lasers operating at 78 K
Wu, Chongzhao; Jin, Yuan; Reno, John L.; ...
2016-12-19
A new tuning mechanism is demonstrated for single-mode metal-clad plasmonic lasers, in which the refractive-index of the laser’s surrounding medium affects the resonant-cavity mode in the same vein as the refractive-index of gain medium inside the cavity. Reversible, continuous, and mode-hop-free tuning of ~57 GHz is realized for single-mode narrow-beam terahertz plasmonic quantum-cascade lasers (QCLs), which is demonstrated at a much more practical temperature of 78 K. The tuning is based on post-process deposition/etching of a dielectric (silicon-dioxide) on a QCL chip that has already been soldered and wire-bonded onto a copper mount. This is a considerably larger tuning rangemore » compared to previously reported results for terahertz QCLs with directional far-field radiation patterns. The key enabling mechanism for tuning is a recently developed antenna-feedback scheme for plasmonic lasers, which leads to the generation of hybrid surface-plasmon-polaritons propagating outside the cavity of the laser with a large spatial extent. The effect of dielectric deposition on QCL’s characteristics is investigated in detail including that on maximum operating temperature, peak output power, and far-field radiation patterns. Single-lobed beam with low divergence (<7°) is maintained through the tuning range. The antenna-feedback scheme is ideally suited for modulation of plasmonic lasers and their sensing applications due to the sensitive dependence of spectral and radiative properties of the laser on its surrounding medium.« less
All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers.
Mao, Dong; He, Zhiwen; Lu, Hua; Li, Mingkun; Zhang, Wending; Cui, Xiaoqi; Jiang, Biqiang; Zhao, Jianlin
2018-04-01
We demonstrate a mode converter with an insertion loss of 0.36 dB based on mode coupling of tapered single-mode and two-mode fibers, and realize all-fiber flexible cylindrical vector lasers at 1550 nm. Attributing to the continuous distribution of a tangential electric field at taper boundaries, the laser is switchable between the radially and azimuthally polarized states by adjusting the input polarization. In the temporal domain, the operation is controllable among continuous-wave, Q-switched, and mode-locked statuses by changing the saturable absorber or pump strength. The duration of Q-switched radially/azimuthally polarized laser spans from 10.4/10.8 to 6/6.4 μs at the pump range of 38 to 58 mW, while that of the mode-locked pulse varies from 39.2/31.9 to 5.6/5.2 ps by controlling the laser bandwidth. The proposed laser combines the features of a cylindrical vector beam, a fiber laser, and an ultrafast pulse, providing a special and cost-effective source for practical applications.
Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers.
Lancaster, D G; Gross, S; Fuerbach, A; Heidepriem, H Ebendorff; Monro, T M; Withford, M J
2012-12-03
We report performance characteristics of a thulium doped ZBLAN waveguide laser that supports the largest fundamental modes reported in a rare-earth doped planar waveguide laser (to the best of our knowledge). The high mode quality of waveguides up to 45 um diameter (~1075 μm(2) mode-field area) is validated by a measured beam quality of M(2)~1.1 ± 0.1. Benefits of these large mode-areas are demonstrated by achieving 1.9 kW peak-power output Q-switched pulses. The 1.89 μm free-running cw laser produces 205 mW and achieves a 67% internal slope efficiency corresponding to a quantum efficiency of 161%. The 9 mm long planar chip developed for concept demonstration is rapidly fabricated by single-step optical processing, contains 15 depressed-cladding waveguides, and can operate in semi-monolithic or external cavity laser configurations.
Tunable microwave generation of a monolithic dual-wavelength distributed feedback laser.
Lo, Yen-Hua; Wu, Yu-Chang; Hsu, Shun-Chieh; Hwang, Yi-Chia; Chen, Bai-Ci; Lin, Chien-Chung
2014-06-02
The dynamic behavior of a monolithic dual-wavelength distributed feedback laser was fully investigated and mapped. The combination of different driving currents for master and slave lasers can generate a wide range of different operational modes, from single mode, period 1 to chaos. Both the optical and microwave spectrum were recorded and analyzed. The detected single mode signal can continuously cover from 15GHz to 50GHz, limited by photodetector bandwidth. The measured optical four-wave-mixing pattern indicates that a 70GHz signal can be generated by this device. By applying rate equation analysis, the important laser parameters can be extracted from the spectrum. The extracted relaxation resonant frequency is found to be 8.96GHz. With the full operational map at hand, the suitable current combination can be applied to the device for proper applications.
NASA Astrophysics Data System (ADS)
Taylor, Richard J. E.; Li, Guangrui; Ivanov, Pavlo; Childs, David T. D.; Stevens, Ben J.; Babazadeh, Nasser; Ignatova, Olesya; Hogg, Richard A.
2017-02-01
All-semiconductor photonic crystal surface-emitting lasers (PCSELs) operating in CW mode at room temperature and coherently coupled arrays of these lasers are reviewed. These PCSELs are grown via MOVPE on GaAs substrates and include QW active elements and GaAs/InGaP photonic crystal (PC) layer situated above this active zone. Atoms of triangular shapes have been shown to increase optical power from the PCSEL but are also shown to result in a competition between lasing modes. Simulation shows that the energy splitting of lasing modes is smaller for triangular atoms, than for circles making high power single-mode devices difficult to achieve. In this work we experimentally investigate the effect of lateral optical feedback introduced by a facet cleave along one or two perpendicular PCSEL edges. This cleavage plane is misaligned to the PC resulting in a periodic variation of facet phase along the side of the device. Results confirm that a single cleave selects the lowest threshold 2D lasing mode, resulting in a 20% reduction in threshold current and favours single-mode emission. The addition of a second cleave at right-angles to the first has no significant effect upon threshold current. The virgin device is shown to have a symmetric far-field (1 degree) whilst a single cleave produces a 1 degree divergence perpendicular to cleave and 5 degree parallel to cleave. The second orthogonal cleave results in the far field becoming symmetric again but with a divergence angle of 1 degree indicating that single-mode lasing is supported over a wider area.
Single-Mode, Distributed Feedback Interband Cascade Lasers
NASA Technical Reports Server (NTRS)
Frez, Clifford F. (Inventor); Borgentun, Carl E. (Inventor); Briggs, Ryan M. (Inventor); Bagheri, Mahmood (Inventor); Forouhar, Siamak (Inventor)
2016-01-01
Single-mode, distributed feedback interband cascade lasers (ICLs) using distributed-feedback gratings (e.g., lateral Bragg gratings) and methods of fabricating such ICLs are provided. The ICLs incorporate distributed-feedback gratings that are formed above the laser active region and adjacent the ridge waveguide (RWG) of the ICL. The ICLs may incorporate a double-ridge system comprising an optical confinement structure (e.g., a RWG) disposed above the laser active region that comprises the first ridge of the double ridge system, a DFB grating (e.g., lateral Bragg grating) disposed above the laser active region and adjacent the optical confinement structure, and an electric confinement structure that passes at least partially through the laser active region and that defines the boundary of the second ridge comprises and the termination of the DFB grating.
Nd- And Er-Doped Phosphate Glass For Fiber Laser.
NASA Astrophysics Data System (ADS)
Yamashita, Toshiharu T.
1990-02-01
Laser fibers prepared from Nd- and Er-doped phosphate glass possessing a large stimulated emission cross section have been investigated both in a single fiber and in a fiber bundle. In the single fiber, continuous wave oscillations were successfully obtained at 1.054 p.m and 1.366 µm on a high Nd-doped single-mode fiber of 10 mm in length and also at 1.535 pm in a Er-doped single-mode fiber, sensitized by Nd, Yb. Especially, a low threshold of 1 mw and a high slope-efficiency of 50% were achieved in 1.054 pm laser oscillation on a Nd-doped fiber, end-pumped with a laser diode. A fiber bundle of phosphate glass doped with 8 wt% Nd2O3 yielded an average output power of 100 W at 50 pps where the bundle was 4.6 mm in diameter and was side-pumped with flash lamps.
Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donin, V I; Yakovin, D V; Gribanov, A V
2015-12-31
The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the lasermore » field while the train contains single picosecond pulses. (control of laser radiation parameters)« less
Liquid detection with InGaAsP semiconductor lasers having multiple short external cavities.
Zhu, X; Cassidy, D T
1996-08-20
A liquid detection system consisting of a diode laser with multiple short external cavities (MSXC's) is reported. The MSXC diode laser operates single mode on one of 18 distinct modes that span a range of 72 nm. We selected the modes by setting the length of one of the external cavities using a piezoelectric positioner. One can measure the transmission through cells by modulating the injection current at audio frequencies and using phase-sensitive detection to reject the ambient light and reduce 1/f noise. A method to determine regions of single-mode operation by the rms of the output of the laser is described. The transmission data were processed by multivariate calibration techniques, i.e., partial least squares and principal component regression. Water concentration in acetone was used to demonstrate the performance of the system. A correlation coefficient of R(2) = 0.997 and 0.29% root-mean-square error of prediction are found for water concentration over the range of 2-19%.
Hollow core waveguide as mid-infrared laser modal beam filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patimisco, P.; Giglio, M.; Spagnolo, V.
2015-09-21
A novel method for mid-IR laser beam mode cleaning employing hollow core waveguide as a modal filter element is reported. The influence of the input laser beam quality on fiber optical losses and output beam profile using a hollow core waveguide with 200 μm-bore size was investigated. Our results demonstrate that even when using a laser with a poor spatial profile, there will exist a minimum fiber length that allows transmission of only the Gaussian-like fundamental waveguide mode from the fiber, filtering out all the higher order modes. This essentially single mode output is preserved also when the waveguide is bentmore » to a radius of curvature of 7.5 cm, which demonstrates that laser mode filtering can be realized even if a curved light path is required.« less
Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng
2014-09-22
A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.
Diode-Pumped Narrow Linewidth Multi-kW Metalized Yb Fiber Amplifier
2016-10-01
multi-kW Yb fiber amplifier in a bi-directional pumping configuration. Each pump outputs 2 kW in a 200 µm, 0.2 NA multi-mode fiber. Gold -coated...multi-mode instability, with 90% O-O efficiency 12 GHz Linewidth and M2 < 1.15. OCIS codes: (140.3510) Lasers , fiber; (140.3615) Lasers , ytterbium...060.2430) Fibers, single-mode. 1. INTRODUCTION Yb-doped fiber laser has experienced exponential growth over the past decade. The output power
Long-wavelength (1.3-1.5 micron) quantum dot lasers based on GaAs
NASA Astrophysics Data System (ADS)
Kovsh, Alexey R.; Ledentsov, Nikolai N.; Mikhrin, Sergei S.; Zhukov, Alexey E.; Livshits, Daniil A.; Maleev, Nikolay A.; Maximov, Mikhail V.; Ustinov, Victor M.; Gubenko, Alexey E.; Gadjiev, Igor M.; Portnoi, Efim L.; Wang, Jyh Shyang; Chi, Jim Y.; Ouyang, Donald N.; Bimberg, Dieter; Lott, James A.
2004-06-01
The molecular beam epitaxy of self-assembled quantum dots (QDs) has reached a level such that the principal advantages of QD lasers can now be fully realized. We overview the most important recent results achieved to date including excellent device performance of 1.3 μm broad area and ridge waveguide lasers (Jth<150A/cm2, Ith=1.4 mA, differential efficiency above 70%, CW 300 mW single lateral mode operation), suppression of non-linearity of QD lasers, which results to improved beam quality, reduced wavelength chirp and sensitivity to optical feedback. Effect of suppression of side wall recombination in QD lasers is also described. These effects give a possibility to further improve and simplify processing and fabrication of laser modules targeting their cost reduction. Recent realization of 2 mW single mode CW operation of QD VCSEL with all-semiconductor DBR is also presented. Long-wavelength QD lasers are promising candidate for mode-locking lasers for optical computer application. Very recently 1.7-ps-wide pulses at repetition rate of 20 GHz were obtained on mode-locked QD lasers with clear indication of possible shortening of pulse width upon processing optimization. First step of unification of laser technology for telecom range with QD-lasers grown on GaAs has been done. Lasing at 1.5 μm is achieved with threshold current density of 0.8 kA/cm2 and pulsed output power 7W.
Surface-emitting mid-infrared quantum cascade lasers with high-contrast photonic crystal resonators.
Xu, Gangyi; Colombelli, Raffaele; Braive, Remy; Beaudoin, Gregoire; Le Gratiet, Luc; Talneau, Anne; Ferlazzo, Laurence; Sagnes, Isabelle
2010-05-24
We have developed surface-emitting single-mode quantum cascade lasers which employ high-contrast photonic-crystal resonators. The devices operate on band-edge states of the photonic band-structure. The mode profile and polarization characteristics of the band-edge modes are calculated by three-dimensional finite-difference time-domain simulation. Experimentally, the spectral properties, the far-field patterns, and the polarization characteristics of the lasers are determined and compared with simulations. The good agreement between the simulations and the experiments confirms that the hexapolar mode at the Gamma-point band-edge gives rise to lasing. By using a novel and advanced fabrication method, deep and vertical PhC holes are fabricated with no metal redeposition on the sidewalls, which improves the laser performance with respect to the current status. The angular of the output beam is approximately 15 masculine, and the side mode suppression ratio of the single mode emission is about 25 dB. The threshold current density at 78 K and the maximum operation temperature are 7.6 kA/cm2 and 220 K, respectively. The performance is mainly limited by the loss induced by surface plasmon waveguide, which can be overcome by using an optimized dielectric waveguide structure.
NASA Astrophysics Data System (ADS)
Petrescu-Prahova, I. B.; Lazanu, S.; Lepşa, M.; Mihailovici, P.
1988-11-01
An investigation was made of the emission from GaAlAs large-optical-cavity (LOC) laser heterostructures with an active layer more than 2 μm thick. The far-field radiation pattern, representing a superposition of the fundamental and several higher-order transverse modes, had a central maximum. The gain, mirror losses, near- and far-field patterns of each propagation mode, as well as mode competition were analyzed on the basis of a simple model. The far-field pattern of single modes was determined by selecting separate spectral intervals from the total emission spectrum of the laser.
High power single mode 980 nm AlGaInAs/AlGaAs quantum well lasers with a very low threshold current
NASA Astrophysics Data System (ADS)
Zhen, Dong; Cuiluan, Wang; Hongqi, Jing; Suping, Liu; Xiaoyu, Ma
2013-11-01
To achieve low threshold current as well as high single mode output power, a graded index separate confinement heterostructure (GRIN-SCH) AlGaInAs/AlGaAs quantum well laser with an optimized ridge waveguide was fabricated. The threshold current was reduced to 8 mA. An output power of 76 mW was achieved at 100 mA current at room temperature, with a slope efficiency of 0.83 W/A and a horizon divergent angle of 6.3°. The maximum single mode output power of the device reached as high as 450 mW.
Wada, Kenji; Matsukura, Satoru; Tanaka, Amaka; Matsuyama, Tetsuya; Horinaka, Hiromichi
2015-09-07
A simple method to measure single-mode optical fiber lengths is proposed and demonstrated using a gain-switched 1.55-μm distributed feedback laser without a fast photodetector or an optical interferometer. From the variation in the amplified spontaneous emission noise intensity with respect to the modulation frequency of the gain switching, the optical length of a 1-km single-mode fiber immersed in water is found to be 1471.043915 m ± 33 μm, corresponding to a relative standard deviation of 2.2 × 10(-8). This optical length is an average value over a measurement time of one minute under ordinary laboratory conditions.
Smirnov, Sergey; Kobtsev, Sergey; Kukarin, Sergey; Ivanenko, Aleksey
2012-11-19
We show experimentally and numerically new transient lasing regime between stable single-pulse generation and noise-like generation. We characterize qualitatively all three regimes of single pulse generation per round-trip of all-normal-dispersion fiber lasers mode-locked due to effect of nonlinear polarization evolution. We study spectral and temporal features of pulses produced in all three regimes as well as compressibility of such pulses. Simple criteria are proposed to identify lasing regime in experiment.
Microring embedded hollow polymer fiber laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linslal, C. L., E-mail: linslal@gmail.com; Sebastian, S.; Mathew, S.
2015-03-30
Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.
Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers.
Arbabi, Amir; Briggs, Ryan M; Horie, Yu; Bagheri, Mahmood; Faraon, Andrei
2015-12-28
Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M2=1.02.
Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers
Arbabi, Amir; Briggs, Ryan M.; Horie, Yu; ...
2015-01-01
Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. We report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventionalmore » UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M² =1.02.« less
0.4 mJ quasi-continuously pumped picosecond Nd:GdVO4 laser with selectable pulse duration
NASA Astrophysics Data System (ADS)
Kubeček, V.; Jelínek, M.; Čech, M.; Hiršl, P.; Diels, J.-C.
2010-02-01
A quasi-continuously pumped picosecond oscillator-amplifier Nd:GdVO4 laser system based on two identical slabs in a single bounce geometry is reported. Pulse duration is from 160 to 55 ps resulting from the pulse shortening along the extended mode locked train from passively mode locked oscillator, which was measured directly from a single laser shot. The shortest 55 ps long cavity dumped single pulses from the oscillator with the energy of 15±1 μJ and the contrast better than 10-3 were amplified to the energy of 150 μJ with the contrast better than 10-3 after the single-pass amplification and to the energy of 400 μJ after the double-pass amplification.
Dual-wavelength laser with topological charge
NASA Astrophysics Data System (ADS)
Yu, Haohai; Xu, Miaomiao; Zhao, Yongguang; Wang, Yicheng; Han, Shuo; Zhang, Huaijin; Wang, Zhengping; Wang, Jiyang
2013-09-01
We demonstrate the simultaneous oscillation of different photons with equal orbital angular momentum in solid-state lasers for the first time to our knowledge. Single tunable Hermite-Gaussian (HG0,n) (0 ≤ n ≤ 7) laser modes with dual wavelength were generated using an isotropic cavity. With a mode-converter, the corresponding Laguerre-Gaussian (LG0,n) laser modes were obtained. The oscillating laser modes have two types of photons at the wavelengths of 1077 and 1081 nm and equal orbital angular momentum of nħ per photon. These results identify the possibility of simultaneous oscillation of different photons with equal and controllable orbital angular momentum. It can be proposed that this laser should have promising applications in many fields based on its compact structure, tunable orbital angular momentum, and simultaneous oscillation of different photons with equal orbital angular momentum.
High-resolution investigation of longitudinal modes of a GaN-based blue laser diode
NASA Astrophysics Data System (ADS)
Al-Basheer, Watheq; Aljalal, Abdulaziz; Gasmi, Khaled; Adigun, Taofeek O.
2017-05-01
Typical emission spectra of GaN-based blue laser diodes are known to have irregular shapes. Hence, well-resolved study of their spectra may help in understanding the origin of their spectral shapes irregularity. In this paper, the spectra of a commercial GaN-based blue laser diode are studied as a function of injection current and temperature using a spectrometer with highresolution of 0.003-nm over the spectral region 440 - 450 nm. The obtained laser spectra are used to track the longitudinal modes evolution as a function of operating currents and temperatures as well as to precisely map single mode operation. In addition, yielded laser spectra will be utilized to evaluate few parameters related to the laser diode, such as mode spacing, optical gain, slope efficiency and threshold current at certain temperature.
Effect of laser frequency noise on fiber-optic frequency reference distribution
NASA Technical Reports Server (NTRS)
Logan, R. T., Jr.; Lutes, G. F.; Maleki, L.
1989-01-01
The effect of the linewidth of a single longitude-mode laser on the frequency stability of a frequency reference transmitted over a single-mode optical fiber is analyzed. The interaction of the random laser frequency deviations with the dispersion of the optical fiber is considered to determine theoretically the effect on the Allan deviation (square root of the Allan variance) of the transmitted frequency reference. It is shown that the magnitude of this effect may determine the limit of the ultimate stability possible for frequency reference transmission on optical fiber, but is not a serious limitation to present system performance.
High Energy, Single-Mode, All-Solid-State Nd:YAG Laser
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Singh, Upendra N.; Hovis, Floyd
2006-01-01
In this paper, recent progress made in the design and development of an all-solid-state, single longitudinal mode, conductively cooled Nd:YAG laser operating at 1064 nm wavelength for UV lidar for ozone sensing applications is presented. Currently, this pump laser provides an output pulse energy of greater than 1.1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns. The spatial profile of the output beam is a rectangular super Gaussian. Electrical-to-optical system efficiency of greater than 7% and a minimum M(sup 2) value of less than 2 have been achieved.
Ter-Gabrielyan, N; Fromzel, V; Mu, X; Meissner, H; Dubinskii, M
2013-07-15
We demonstrated the continuous-wave operation of a resonantly pumped Er:YAG single-mode channel waveguide laser with diffraction-limited output and nearly quantum defect limited efficiency. Using a longitudinally core-pumped, nearly square (61.2 μm×61.6 μm) Er3+:YAG waveguide embedded in an undoped YAG cladding, an output power of 9.1 W with a slope efficiency of 92.8% (versus absorbed pump power) has been obtained. To the best of our knowledge, this optical-to-optical efficiency is the highest ever demonstrated for a channel waveguide laser.
NASA Technical Reports Server (NTRS)
Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan B.; Krainak, Michael A.
2014-01-01
We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064-nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Especially, using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to104 at 10 mHz. The PW-ECLs compactness and low cost make it a candidate to replace traditional Nd:YAGnon-planar ring oscillators and fiber lasers in applications which require a single longitudinal-mode.
A single-frequency double-pulse Ho:YLF laser for CO2-lidar
NASA Astrophysics Data System (ADS)
Kucirek, P.; Meissner, A.; Eiselt, P.; Höfer, M.; Hoffmann, D.
2016-03-01
A single-frequency q-switched Ho:YLF laser oscillator with a bow-tie ring resonator, specifically designed for highspectral stability, is reported. It is pumped with a dedicated Tm:YLF laser at 1.9 μm. The ramp-and-fire method with a DFB-diode laser as a reference is employed for generating single-frequency emission at 2051 nm. The laser is tested with different operating modes, including cw-pumping at different pulse repetition frequencies and gain-switched pumping. The standard deviation of the emission wavelength of the laser pulses is measured with the heterodyne technique at the different operating modes. Its dependence on the single-pass gain in the crystal and on the cavity finesse is investigated. At specific operating points the spectral stability of the laser pulses is 1.5 MHz (rms over 10 s). Under gain-switched pumping with 20% duty cycle and 2 W of average pump power, stable single-frequency pulse pairs with a temporal separation of 580 μs are produced at a repetition rate of 50 Hz. The measured pulse energy is 2 mJ (<2 % rms error on the pulse energy over 10 s) and the measured pulse duration is approx. 20 ns for each of the two pulses in the burst.
Li, Xiang; Wang, Hong; Qiao, Zhongliang; Guo, Xin; Wang, Wanjun; Ng, Geok Ing; Zhang, Yu; Xu, Yingqiang; Niu, Zhichuan; Tong, Cunzhu; Liu, Chongyang
2018-04-02
A two-section InGaSb/AlGaAsSb single quantum well (SQW) laser emitting at 2 μm is presented. By varying the absorber bias voltage with a fixed gain current at 130 mA, passive mode locking at ~18.40 GHz, Q-switched mode locking, and passive Q-switching are observed in this laser. In the Q-switched mode locking regimes, the Q-switched RF signal and mode locked RF signal coexist, and the Q-switched lasing and mode-locked lasing happen at different wavelengths. This is the first observation of these three pulsed working regimes in a GaSb-based diode laser. An analysis of the regime switching mechanism is given based on the interplay between the gain saturation and the saturable absorption.
Single Mode Fiber Optic Transceiver Using Short Wavelength Active Devices In Long Wavelength Fiber
NASA Astrophysics Data System (ADS)
Gillham, Frederick J.; Campbell, Daniel R.; Corke, Michael; Stowe, David W.
1990-01-01
Presently, single mode optical fiber technology is being utilized in systems to supply telephone service to the subscriber. However, in an attempt to be competitive with copper based systems, there are many development programs underway to determine the most cost effective solution while still providing a service that will either satisfy or be upgradeable to satisfy the demands of the consumer for the next 10 to 20 years. One such approach is to combine low cost laser transmitters and silicon receivers, which have been developed for the "compact disc" industry, with fiber that operates in the single mode regime at 1300 nm. In this paper, an optical transceiver will be presented, consisting of a compact disc laser, a silicon detector and a single mode coupler at 1300 nm. A possible system layout is presented which operates at 780 nm bi-directionally for POTS and upgradeable to 1300 nm for video services. There are several important design criteria that have to be considered in the development of such a system which will be addressed. These include: 1. Optimization of coupled power from laser to fiber while maintaining stable launched conditions over a wide range of environmental conditions. 2. Consideration of the multimode operation of the 1300 nm single mode fiber while operating in the 780 nm wavelength region. 3. Development of a low cost pseudo-wavelength division multiplexer for 1300 nm single mode/780 nm multimode operation and a low cost dual mode 50/50, 780 nm splitter using 1300 nm fiber. Details will be given of the design criteria and solution in terms of optimized design. Results of the performance of several prototype devices will be given with indications of the merits of this approach and where further development effort should be applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurin, I.; Bramati, A.; Giacobino, E.
2005-09-15
Semiconductor lasers are particularly well suited for the implementation of pump-noise suppression, yielding a reduction of the intensity noise in the laser. In this simple picture, the maximal amount of squeezing is equal to the quantum efficiency. However, experimental results on intensity noise reduction by pump-noise suppression are usually above this limit. This discrepancy suggests that additional noise sources must be involved. Here we successful y interpret the full noise behavior of a single-mode laser diode far above threshold by considering two excess noise sources: the leakage current fluctuations across the laser and the Petermann excess noise. We have estimatedmore » the contribution of each noise source using the results of the correlations between the laser output intensity noise and the voltage fluctuations across the laser diode (light-voltage correlations) and obtained good agreement between our theory and experimental results.« less
Bardella, Paolo; Columbo, Lorenzo Luigi; Gioannini, Mariangela
2017-10-16
Optical Frequency Comb (OFC) generated by semiconductor lasers are currently widely used in the extremely timely field of high capacity optical interconnects and high precision spectroscopy. In the last decade, several experimental evidences of spontaneous OFC generation have been reported in single section Quantum Dot (QD) lasers. Here we provide a physical understanding of these self-organization phenomena by simulating the multi-mode dynamics of a single section Fabry-Perot (FP) QD laser using a Time-Domain Traveling-Wave (TDTW) model that properly accounts for coherent radiation-matter interaction in the semiconductor active medium and includes the carrier grating generated by the optical standing wave pattern in the laser cavity. We show that the latter is the fundamental physical effect at the origin of the multi-mode spectrum appearing just above threshold. A self-mode-locking regime associated with the emission of OFC is achieved for higher bias currents and ascribed to nonlinear phase sensitive effects as Four Wave Mixing (FWM). Our results explain in detail the behaviour observed experimentally by different research groups and in different QD and Quantum Dash (QDash) devices.
Nonpolar InGaN/GaN Core-Shell Single Nanowire Lasers.
Li, Changyi; Wright, Jeremy B; Liu, Sheng; Lu, Ping; Figiel, Jeffrey J; Leung, Benjamin; Chow, Weng W; Brener, Igal; Koleske, Daniel D; Luk, Ting-Shan; Feezell, Daniel F; Brueck, S R J; Wang, George T
2017-02-08
We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core-shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core-shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core-shell nanowires, despite significantly shorter cavity lengths and reduced active region volume. Mode simulations show that due to the core-shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. The results show the viability of this p-i-n nonpolar core-shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV-visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.
Nonpolar InGaN/GaN core–shell single nanowire lasers
Li, Changyi; Wright, Jeremy Benjamin; Liu, Sheng; ...
2017-01-24
We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core–shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core–shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core–shell nanowires, despite significantly shorter cavity lengths and reducedmore » active region volume. Mode simulations show that due to the core–shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. Furthermore, the results show the viability of this p-i-n nonpolar core–shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV–visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.« less
Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals
Grivas, Christos; Li, Chunyong; Andreakou, Peristera; Wang, Pengfei; Ding, Ming; Brambilla, Gilberto; Manna, Liberato; Lagoudakis, Pavlos
2013-01-01
Whispering-gallery-mode resonators have been extensively used in conjunction with different materials for the development of a variety of photonic devices. Among the latter, hybrid structures, consisting of dielectric microspheres and colloidal core/shell semiconductor nanocrystals as gain media, have attracted interest for the development of microlasers and studies of cavity quantum electrodynamic effects. Here we demonstrate single-exciton, single-mode, spectrally tuned lasing from ensembles of optical antenna-designed, colloidal core/shell CdSe/CdS quantum rods deposited on silica microspheres. We obtain single-exciton emission by capitalizing on the band structure of the specific core/shell architecture that strongly localizes holes in the core, and the two-dimensional quantum confinement of electrons across the elongated shell. This creates a type-II conduction band alignment driven by coulombic repulsion that eliminates non-radiative multi-exciton Auger recombination processes, thereby inducing a large exciton–bi-exciton energy shift. Their ultra-low thresholds and single-mode, single-exciton emission make these hybrid lasers appealing for various applications, including quantum information processing. PMID:23974520
Dual-pulses and harmonic patterns of a square-wave soliton in passively mode-locked fiber laser
NASA Astrophysics Data System (ADS)
Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Zhang, Jing; Jia, Qingsong; Jiang, Huilin
2018-06-01
We demonstrate a square-wave soliton pulse passively mode-locked fiber laser. The mode-locked pulses are achieved by using a nonlinear amplifying loop mirror. Single-pulse operation at a fundamental repetition rate of 3.2 MHz is obtained. The optical spectrum presents the soliton feature of several sidebands. The pulse duration expands with increasing pump power, but the amplitude hardly varies. Pulse breaking occurs and a stable dual-pulse is obtained with a fixed interval of 48 ns. Harmonic mode-locked states can be achieved when the total pump power is higher than 740 mW. The harmonic pulses can also operate in both single-pulse and dual-pulse states.
Diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser at 2.06 μm.
Zhang, Xinlu; Zhang, Su; Xiao, Nana; Cui, Jinhui; Zhao, Jiaqun; Li, Li
2014-03-10
We report on a laser diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser near room temperature. For transmission of 5%, the maximum single frequency output power of 221 mW at 2064.4 nm was obtained by using two uncoated etalons. The single frequency Tm, Ho:LLF laser operated on the fundamental transverse mode with an M2 factor of 1.13, and the output frequency could be tuned continuously near 1.5 GHz by angle tuning only of the 1 mm thick etalon. Furthermore, the influence of output coupler transmission on the laser performance was also investigated. The single frequency laser can be used as a seed laser for coherent Doppler lidar and differential absorption lidar systems.
NASA Astrophysics Data System (ADS)
Asghar, Haroon; McInerney, John G.
2017-09-01
We demonstrate an asymmetric dual-loop feedback scheme to suppress external cavity side-modes induced in self-mode-locked quantum-dash lasers with conventional single and dual-loop feedback. In this letter, we achieved optimal suppression of spurious tones by optimizing the length of second delay time. We observed that asymmetric dual-loop feedback, with large (~8x) disparity in cavity lengths, eliminates all external-cavity side-modes and produces flat RF spectra close to the main peak with low timing jitter compared to single-loop feedback. Significant reduction in RF linewidth and reduced timing jitter was also observed as a function of increased second feedback delay time. The experimental results based on this feedback configuration validate predictions of recently published numerical simulations. This interesting asymmetric dual-loop feedback scheme provides simplest, efficient and cost effective stabilization of side-band free optoelectronic oscillators based on mode-locked lasers.
Heterogeneous Silicon III-V Mode-Locked Lasers
NASA Astrophysics Data System (ADS)
Davenport, Michael Loehrlein
Mode-locked lasers are useful for a variety of applications, such as sensing, telecommunication, and surgical instruments. This work focuses on integrated-circuit mode-locked lasers: those that combine multiple optical and electronic functions and are manufactured together on a single chip. While this allows production at high volume and lower cost, the true potential of integration is to open applications for mode-locked laser diodes where solid state lasers cannot fit, either due to size and power consumption constraints, or where small optical or electrical paths are needed for high bandwidth. Unfortunately, most high power and highly stable mode-locked laser diode demonstrations in scientific literature are based on the Fabry-Perot resonator design, with cleaved mirrors, and are unsuitable for use in integrated circuits because of the difficulty of producing integrated Fabry-Perot cavities. We use silicon photonics and heterogeneous integration with III-V gain material to produce the most powerful and lowest noise fully integrated mode-locked laser diode in the 20 GHz frequency range. If low noise and high peak power are required, it is arguably the best performing fully integrated mode-locked laser ever demonstrated. We present the design methodology and experimental pathway to realize a fully integrated mode-locked laser diode. The construction of the device, beginning with the selection of an integration platform, and proceeding through the fabrication process to final optimization, is presented in detail. The dependence of mode-locked laser performance on a wide variety of design parameters is presented. Applications for integrated circuit mode-locked lasers are also discussed, as well as proposed methods for using integration to improve mode-locking performance to beyond the current state of the art.
Mode Selection for a Single-Frequency Fiber Laser
NASA Technical Reports Server (NTRS)
Liu, Jian
2010-01-01
A superstructured fiber-grating-based mode selection filter for a single-frequency fiber laser eliminates all free-space components, and makes the laser truly all-fiber. A ring cavity provides for stable operations in both frequency and power. There is no alignment or realignment required. After the fibers and components are spliced together and packaged, there is no need for specially trained technicians for operation or maintenance. It can be integrated with other modules, such as telescope systems, without extra optical alignment due to the flexibility of the optical fiber. The filter features a narrow line width of 1 kHz and side mode suppression ratio of 65 dB. It provides a high-quality laser for lidar in terms of coherence length and signal-to-noise ratio, which is 20 dB higher than solid-state or microchip lasers. This concept is useful in material processing, medical equipment, biomedical instrumentation, and optical communications. The pulse-shaping fiber laser can be directly used in space, airborne, and satellite applications including lidar, remote sensing, illuminators, and phase-array antenna systems.
Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Cha, Yong-Ho; Jeong, Do-Young; Yeom, Dong-Il
2014-09-22
We demonstrate a dissipative soliton fiber laser with high pulse energy (>30 nJ) based on a single-walled carbon nanotube saturable absorber (SWCNT-SA). In-line SA that evanescently interacts with the high quality SWCNT/polymer composite film was fabricated under optimized conditions, increasing the damage threshold of the saturation fluence of the SA to 97 mJ/cm(2). An Er-doped mode-locked all-fiber laser operating at net normal intra-cavity dispersion was built including the fabricated in-line SA. The laser stably delivers linearly chirped pulses with a pulse duration of 12.7 ps, and exhibits a spectral bandwidth of 12.1 nm at the central wavelength of 1563 nm. Average power of the laser output is measured as 335 mW at an applied pump power of 1.27 W. The corresponding pulse energy is estimated to be 34 nJ at the fundamental repetition rate of 9.80 MHz; this is the highest value, to our knowledge, reported in all-fiber Er-doped mode-locked laser using an SWCNT-SA.
Louyer, Yann; Wallerand, Jean-Pierre; Himbert, Marc; Deneva, Margarita; Nenchev, Marin
2003-09-20
We demonstrate and investigate a peculiar mode of cw Yb3+-doped crystal laser operation when two emissions, at two independently tunable wavelengths, are simultaneously produced. Both emissions are generated from a single pumped volume and take place in either a single beam or spatially separated beams. The laser employs original two-channel cavities that use a passive self-injection-locking (PSIL) control to reduce intracavity loss. The advantages of the application of the PSIL technique and some limitations are shown. The conditions for two-wavelength multimode operation of the cw quasi-three-level diode-pumped Yb3+ lasers and the peculiarity of such an operation are carried out both theoretically and experimentally. The results reported are based on the example of a Yb3+:GGG laser but similar results are also obtained with a Yb3+:YAG laser. The laser operates in the 1023-1033-nm (1030-1040-nm) range with a total output power of 0.4 W. A two-wavelength, single longitudinal mode generation is also obtained.
Li, Yujia; Gao, Lei; Huang, Wei; Gao, Cong; Liu, Min; Zhu, Tao
2016-10-03
We report an all-fiber passively mode-locked laser based on a saturable absorber fabricated by filling short single-wall carbon nanotubes into cladding holes of grapefruit-type photonic crystal fiber. The single-wall carbon nanotube is insensitive to polarization of light for its one-dimensional structure, which suppresses the polarization dependence loss. Carbon nanotubes interact with photonic crystal fiber with ultra-weak evanescent field, which enhances the damage threshold of the saturable absorber and improves the operating stability. In our experiment, conventional soliton with a pulse duration of 1.003 ps and center wavelength of 1566.36 nm under a pump power of 240 mW is generated in a compact erbium-doped fiber laser cavity with net anomalous dispersion of -0.4102 ps2. The signal to noise ratio of the fundamental frequency component is ~80 dB. The maximum average output power of the mode-locked laser reaches 9.56 mW under a pump power of 360 mW. The output power can be further improved by a higher pump power.
High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments
NASA Technical Reports Server (NTRS)
Eegholm, Niels; Ott, Melanie; Stephen, Mark; Leidecker, Henning
2005-01-01
Semiconductor laser diodes emit coherent light by simulated emission generated inside the cavity formed by the cleaved end facets of a slab of semiconductor that is typically less than a millimeter in any dimension for single emitters. The diode is pumped by current injection in the p-n junction through the metallic contacts. Laser diodes emitting in the range of 0.8 micron to 1.06 micron have a wide variety of applications from pumping erbium doped fiber amplifiers, dual-clad fiber lasers, solid-state lasers used in telecom, aerospace, military, medical purposes and all the way to CD players, laser printers and other consumer and industrial products. Laser diode bars have many single emitters side by side and spaced approximately .5 mm on a single slab of semiconductor material approximately .5 mm x 10 mm. The individual emitters are connected in parallel maintaining the voltage at -2V but increasing the current to 50-100A/bar. Stacking these laser diode bars in multiple layers, 2 to 20+ high, yields high power laser diode arrays capable of emitting several hundreds of Watts. Electrically the bars are wired in series increasing the voltage by 2V/bar but maintaining the total current at 50-100A. These arrays are one of the enabling technologies for efficient, high power solid-state lasers. Traditionally these arrays are operated in QCW (Quasi CW) mode with pulse widths 10-200 (mu)s and with repetition rates of 10-200Hz. In QCW mode the wavelength and the output power of the laser reaches steady-state but the temperature does not. The advantage is a substantially higher output power than in CW mode, where the output power would be limited by the internal heating and hence the thermal and heat sinking properties of the device. The down side is a much higher thermal induced mechanical stress caused by the constant heating and cooling cycle inherent to the QCW mode.
NASA Technical Reports Server (NTRS)
Rutz, E. M.
1975-01-01
The peak pulse power was increased by operating an array of three homostructure Ga As lasers in the laser device. A spatial filter in the laser device selects the spatially coherent, free running, mode. The optical peak power is 5 watts, which is three times the peak power of a single laser in the array. The far-field distribution of the three laser array is a single Gaussian beam of spatial coherence without sidelobes or grating lobes. The length of the optical pulses of spatial coherence was increased to 200 ns by improved heat transfer from the p-n junctions of the lasers to the metal housing of the pulse transformer, and by doubling the core area and increasing the turns of the primary windings of the pulse transformer. The mechanical stability of the laser device was improved and the transition from mechanical alignment to electro-mechanical alignment control, was facilitated.
Mode selection and tuning of single-frequency short-cavity VECSELs
Serkland, Darwin K.; So, Haley M.; Peake, Gregory M.; ...
2018-03-05
Here, we report on mode selection and tuning properties of vertical-external-cavity surface-emitting lasers (VECSELs) containing coupled semiconductor and external cavities of total length less than 1 mm. Our goal is to create narrowlinewidth (<1MHz) single-frequency VECSELs that operate near 850 nm on a single longitudinal cavity resonance and tune versus temperature without mode hops. We have designed, fabricated, and measured VECSELs with external-cavity lengths ranging from 25 to 800 μm. Lastly, we compare simulated and measured coupled-cavity mode frequencies and discuss criteria for single mode selection.
NASA Astrophysics Data System (ADS)
Feng, Suchun; Xu, Ou; Lu, Shaohua; Ning, Tigang; Jian, Shuisheng
2009-06-01
Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating (PMFBG) is demonstrated. Due to the enhancement of the polarization hole burning (PHB) by the PMFBG, the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a compound-ring cavity and a saturable absorber (SA). The optical signal-to-noise ratio (OSNR) is over 45 dB. The amplitude variation in nearly one and half an hour is less than 0.2 dB.
Tunable and mode-locked laser action of Cr4+ in codoped forsterite Cr, Sc:Mg2SiO4
NASA Astrophysics Data System (ADS)
Sanina, V. V.; Mitrokhin, V. P.; Subbotin, K. A.; Lis, D. A.; Lis, O. N.; Ivanov, A. A.; Zharikov, E. V.
2018-01-01
The laser oscillation of tetravalent chromium and scandium codoped forsterite Cr4+,Sc:Mg2SiO4 single crystal has been demonstrated for the first time for continuous wave, tunable and mode-locked regimes. For comparison, the laser experiments have also been performed in the same configuration with the reference forsterite single crystal solely doped by chromium. The aim of scandium codoping is to inhibit the formation of parasitic trivalent chromium in the crystal. The crystal with scandium demonstrates a wider tuning range, lower lasing threshold and wider mode-locked lasing spectrum than those of the reference crystal, although the total lasing efficiency achieved by both crystals is nearly the same. The obtained results are discussed.
Carbon nanotube mode-locked vertical external-cavity surface-emitting laser
NASA Astrophysics Data System (ADS)
Seger, K.; Meiser, N.; Choi, S. Y.; Jung, B. H.; Yeom, D.-I.; Rotermund, F.; Okhotnikov, O.; Laurell, F.; Pasiskevicius, V.
2014-03-01
Mode-locking an optically pumped semiconductor disk laser has been demonstrated using low-loss saturable absorption containing a mixture of single-walled carbon nanotubes in PMM polymer. The modulator was fabricated by a simple spin-coating technique on fused silica substrate and was operating in transmission. Stable passive fundamental modelocking was obtained at a repetition rate of 613 MHz with a pulse length of 1.23 ps. The mode-locked semiconductor disk laser in a compact geometry delivered a maximum average output power of 136 mW at 1074 nm.
Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W.
2011-01-01
The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg–Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers. PMID:21731106
Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W
2011-01-01
The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.
Influence of mode-beating pulse on laser-induced plasma
NASA Astrophysics Data System (ADS)
Nishihara, M.; Freund, J. B.; Glumac, N. G.; Elliott, G. S.
2018-04-01
This paper addresses the influence of mode-beating pulse on laser-induced plasma. The second harmonic of a Nd:YAG laser, operated either with the single mode or multimode, was used for non-resonant optical breakdown, and subsequent plasma development was visualized using a streak imaging system. The single mode lasing leads to a stable breakdown location and smooth envelopment of the plasma boundary, while the multimode lasing, with the dominant mode-beating frequency of 500-800 MHz, leads to fluctuations in the breakdown location, a globally modulated plasma surface, and growth of local microstructures at the plasma boundary. The distribution of the local inhomogeneity was measured from the elastic scattering signals on the streak image. The distance between the local structures agreed with the expected wavelength of hydrodynamic instability development due to the interference between the surface excited wave and transmitted wave. A numerical simulation, however, indicates that the local microstructure could also be directly generated at the peaks of the higher harmonic components if the multimode pulse contains up to the eighth harmonic of the fundamental cavity mode.
Phase stabilization for mode locked lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, M.T.
A method is described for stabilizing a phase relationship between two mode locked lasers, comprising: driving through a power splitter the mode lockers of both lasers from a single stable radio frequency source; monitoring the phase of pulses from each laser utilizing a fast photodiode output of each laser; feeding the output of the fast photodiodes to a phase detector and comparator; measuring a relative phase difference between the lasers with a phase detector and comparator, producing a voltage output signal or phase error signal representing the phase difference; amplifying and filtering the voltage output signal with an amplifier andmore » loop filter; feeding the resulting output signal to a voltage controlled phase delay between the power splitter and one of the lasers; and delaying the RF drive to the one laser to achieve a desired phase relationship, between the two lasers.« less
High-Energy Passive Mode-Locking of Fiber Lasers
Ding, Edwin; Renninger, William H.; Wise, Frank W.; Grelu, Philippe; Shlizerman, Eli; Kutz, J. Nathan
2012-01-01
Mode-locking refers to the generation of ultrashort optical pulses in laser systems. A comprehensive study of achieving high-energy pulses in a ring cavity fiber laser that is passively mode-locked by a series of waveplates and a polarizer is presented in this paper. Specifically, it is shown that the multipulsing instability can be circumvented in favor of bifurcating to higher-energy single pulses by appropriately adjusting the group velocity dispersion in the fiber and the waveplate/polarizer settings in the saturable absorber. The findings may be used as practical guidelines for designing high-power lasers since the theoretical model relates directly to the experimental settings. PMID:22866059
Littrow-type external-cavity blue laser for holographic data storage.
Tanaka, Tomiji; Takahashi, Kazuo; Sako, Kageyasu; Kasegawa, Ryo; Toishi, Mitsuru; Watanabe, Kenjiro; Samuels, David; Takeya, Motonobu
2007-06-10
An external-cavity laser with a wavelength of 405 nm and an output of 80 mW has been developed for holographic data storage. The laser has three states: the first is a perfect single mode, whose coherent length is 14 m; the second is a three-mode state with a coherent length of 3 mm; and the third is a six-mode state with a coherent length of 0.3 mm. The first and second states are available for angular-multiplexing recording; all states are available for coaxial multiplexing recording. Due to its short wavelength, the recording density is higher than that of a 532 nm laser.
Holograms for laser diode: Single mode optical fiber coupling
NASA Technical Reports Server (NTRS)
Fuhr, P. L.
1982-01-01
The low coupling efficiency of semiconductor laser emissions into a single mode optical fibers place a severe restriction on their use. Associated with these conventional optical coupling techniques are stringent alignment sensitivities. Using holographic elements, the coupling efficiency may be increased and the alignment sensitivity greatly reduced. Both conventional and computer methods used in the generation of the holographic couplers are described and diagrammed. The reconstruction geometries used are shown to be somewhat restrictive but substantially less rigid than their conventional optical counterparts. Single and double hologram techniques are examined concerning their respective ease of fabrication and relative merits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serkland, Darwin K.; So, Haley M.; Peake, Gregory M.
Here, we report on mode selection and tuning properties of vertical-external-cavity surface-emitting lasers (VECSELs) containing coupled semiconductor and external cavities of total length less than 1 mm. Our goal is to create narrowlinewidth (<1MHz) single-frequency VECSELs that operate near 850 nm on a single longitudinal cavity resonance and tune versus temperature without mode hops. We have designed, fabricated, and measured VECSELs with external-cavity lengths ranging from 25 to 800 μm. Lastly, we compare simulated and measured coupled-cavity mode frequencies and discuss criteria for single mode selection.
Advances in tunable diode laser technology
NASA Technical Reports Server (NTRS)
Lo, W.
1980-01-01
The improvement of long-term reliability, the purification of mode properties, and the achievement of higher-temperature operation were examined. In reliability studies a slow increase in contact resistance during room temperature storage for lasers fabricated with In-Au or In-Pt contacts was observed. This increase is actually caused by the diffusion of In into the surface layer of laser crystals. By using a three layered structure of In-Au-Pt or In-Pt-Au, this mode of degradation was reduced. In characterizing the mode properties, it was found that the lasers emit in a highly localized, filamentary manner. For widestripe lasers the emission occurs near the corners of the junction. In order to achieve single-mode operation, stripe widths on the order of 8-10 micrometers are needed. Also, it was found that room temperature electroluminescence is possible near 4.6 micrometers.
NASA Technical Reports Server (NTRS)
Goldstein, B.; Pultz, G. N.; Carlin, D. B.; Slavin, S. E.; Ettenberg, M.
1988-01-01
The characterization of 8300 A lasers was broadened, especially in the area of beam quality. Modulation rates up to 2 Gbit/sec at output powers of 20 mW were observed, waveform fidelity was fully adequate for low BER data transmission, and wavefront measurements showed that phase aberrations were less than lamda/50. Also, individually addressable arrays of up to ten contiguous diode lasers were fabricated and tested. Each laser operates at powers up to 30 mW CW in single spatial mode. Shifting the operating wavelength of the basic CSP laser from 8300 A to 8650 A was accomplished by the addition of Si to the active region. Output power has reached 100 mW single mode, with excellent far field wave front properties. Operating life is currently approx. 1000 hrs at 35 mW CW. In addition, laser reliability, for operation at both 8300 A and 8650 A, has profited significantly from several developments in the processing procedures.
NASA Astrophysics Data System (ADS)
Skvortsov, M. I.; Wolf, A. A.; Dostovalov, A. V.; Vlasov, A. A.; Akulov, V. A.; Babin, S. A.
2018-03-01
A distributed feedback (DFB) fiber laser based on a 32-mm long pi-phase-shifted fiber Bragg grating inscribed using the femtosecond point-by-point technique in a single-mode erbium-doped optical fiber (CorActive EDF-L 1500) is demonstrated. The lasing power of the DFB laser reaches 0.7 mW at a wavelength of 1550 nm when pumped with a laser diode at a wavelength of 976 nm and power of 525 mW. The width of the lasing spectrum is 17 kHz. It is shown that the pi-phase-shifted fiber Bragg grating fs-inscribed in a non-PM fiber provides the selection of the single polarization mode of the DFB laser. DFB laser formation in a highly doped non-photosensitive optical fiber (CoreActive SCF-ER60-8/125-12) is also demonstrated.
Fiber laser refractometer based on tunable bandpass filter tailored FBG reflection
NASA Astrophysics Data System (ADS)
Zhao, Junfa; Wang, Juan; Zhang, Cheng; Xu, Wei; Sun, Xiaodong; Bai, Hua; Chen, Liying
2018-02-01
A fiber laser refractometer based on single-mode-no-core-single-mode (SNS) structure cascaded with a FBG is proposed and experimentally demonstrated. The output wavelength of the fiber laser keeps constant because the oscillating wavelength is only determined by the central wavelength of the FBG which is insensitive to the surrounding refractive index (SRI). However, the output power is sensitive to the SRI because the intracavity loss of the fiber laser varies with the SRI. A cost-effective power detection refractometer with reflective operation can be realized through measuring the variation of the fiber laser's output power. The refractometer has a sensitivity of 195.52 dB/RIU and 365.52 dB/RIU in the RI range of 1.3330-1.3687 and 1.3687-1.4135, respectively. Moreover, the refractometer can also be used for temperature measurement through discriminating the output wavelength of the fiber laser.
Fiber-based laser MOPA transmitter packaging for space environment
NASA Astrophysics Data System (ADS)
Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Numata, Kenji; Wu, Stewart; Gonzales, Brayler; Han, Lawrence; Fahey, Molly; Plants, Michael; Rodriguez, Michael; Allan, Graham; Abshire, James; Nicholson, Jeffrey; Hariharan, Anand; Mamakos, William; Bean, Brian
2018-02-01
NASA's Goddard Space Flight Center has been developing lidar to remotely measure CO2 and CH4 in the Earth's atmosphere. The ultimate goal is to make space-based satellite measurements with global coverage. We are working on maturing the technology readiness of a fiber-based, 1.57-micron wavelength laser transmitter designed for use in atmospheric CO2 remote-sensing. To this end, we are building a ruggedized prototype to demonstrate the required power and performance and survive the required environment. We are building a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture. The laser is a wavelength-locked, single frequency, externally modulated DBR operating at 1.57-micron followed by erbium-doped fiber amplifiers. The last amplifier stage is a polarization-maintaining, very-large-mode-area fiber with 1000 μm2 effective area pumped by a Raman fiber laser. The optical output is single-frequency, one microsecond pulses with >450 μJ pulse energy, 7.5 KHz repetition rate, single spatial mode, and < 20 dB polarization extinction.
NASA Astrophysics Data System (ADS)
Shi, Tiantian; Pan, Duo; Chang, Pengyuan; Shang, Haosen; Chen, Jingbiao
2018-04-01
Without exploiting any frequency selective elements, we have realized a highly integrated, single-mode, narrow-linewidth Nd:YAG 1064 nm laser, which is end-pumped by the 808.6 nm diode laser in an integrated invar cavity. It turns out that each 1064 nm laser achieves a most probable linewidth of 8.5 kHz by beating between two identical laser systems. The output power of the 1064 nm laser increases steadily as the 808.6 nm pump power is raised, which can be up to 350 mW. Moreover, the resonant wavelength of cavity grows continuously in a certain crystal temperature range. Such a 1064 nm laser will be frequency stabilized to an ultrastable cavity by using the Pound-Drever-Hall technique and used as the good cavity laser to lock the main cavity length of 1064/1470 nm good-bad cavity dual-wavelength active optical clock.
Ring laser having an output at a single frequency
Hackell, Lloyd A.
1991-01-01
A ring laser is disclosed that produces a single frequency of laser radiation in either the pulsed mode of operation or the continuous waveform (cw) mode of operation. The laser comprises a ring laser in a bowtie configuration, a birefringent gain material such as Nd:YLF, an improved optical diode that supports laser oscillation having a desired direction of travel and linear polarization, and a Q-switch. An output coupler (mirror) having a high reflectivity, such as 94%, is disclosed. Also disclosed is a self-seeded method of operation in which the laser can provide a pulse or a series of pulses of high power laser radiation at a consistent single frequency with a high degree of amplitude stability and temporal stability. In operation, the laser is operated in continuous waveform (cw) at a low power output with the Q-switch introducing a loss into the resonating cavity. Pumping is continued at a high level, causing the gain material to store energy. When a pulse is desired, the Q-switch is actuated to substantially reduce the losses so that a pulse can build up based on the low level cw oscillation. The pulse quickly builds, using the stored energy in the gain medium to provide a high power output pulse. The process may be repeated to provide a series of high power pulses of a consistent single frequency.
Study of the parameters of a single-frequency laser for pumping cesium frequency standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravleva, O V; Ivanov, A V; Kurnosov, V D
2008-04-30
A model for calculating the parameters of a laser diode with an external fibre cavity containing a fibre Bragg grating (FBG) is presented. It is shown that by using this model, it is possible to obtain single-mode lasing by neglecting the spectral burning of carriers. The regions of the laser-diode current and temperature and the FBG temperature in which the laser can be tuned to the D{sub 2} line of cesium are determined experimentally. (lasers and amplifiers)
Iodine-stabilized single-frequency green InGaN diode laser.
Chen, Yi-Hsi; Lin, Wei-Chen; Shy, Jow-Tsong; Chui, Hsiang-Chen
2018-01-01
A 520-nm InGaN diode laser can emit a milliwatt-level, single-frequency laser beam when the applied current slightly exceeds the lasing threshold. The laser frequency was less sensitive to diode temperature and could be finely tuned by adjusting the applied current. Laser frequency was stabilized onto a hyperfine component in an iodine transition through the saturated absorption spectroscopy. The uncertainty of frequency stabilization was approximately 8×10 -9 at a 10-s integration time. This compact laser system can replace the conventional green diode-pumped solid-state laser and applied as a frequency reference. A single longitudinal mode operational region with diode temperature, current, and output power was investigated.
Advanced specialty fiber designs for high power fiber lasers
NASA Astrophysics Data System (ADS)
Gu, Guancheng
The output power of fiber lasers has increased rapidly over the last decade. There are two major limiting factors, namely nonlinear effects and transverse mode instability, prohibiting the power scaling capability of fiber lasers. The nonlinear effects, originating from high optical intensity, primarily limit the peak power scaling. The mode instability, on the other hand, arises from quantum-defect driven heating, causing undesired mode coupling once the power exceeds the threshold and degradation of beam quality. The mode instability has now become the bottleneck for average output power scaling of fiber lasers. Mode area scaling is the most effective way to mitigate nonlinear effects. However, the use of large mode area may increase the tendency to support multiple modes in the core, resulting in lower mode instability threshold. Therefore, it is critical to maintain single mode operation in a large mode area fiber. Sufficient higher order mode suppression can lead to effective single-transverse-mode propagation. In this dissertation, we explore the feasibility of using specialty fiber to construct high power fiber lasers with robust single-mode output. The first type of fiber discussed is the resonantly-enhanced leakage channel fiber. Coherent reflection at the fiber outer boundary can lead to additional confinement especially for highly leaky HOM, leading to lower HOM losses than what are predicted by conventional finite element mothod mode solver considering infinite cladding. In this work, we conducted careful measurements of HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes and coating indexes were studied in comparison to simulations. This work demonstrates the limit of the simulation method commonly used in the large-mode-area fiber designs and the need for an improved approach. More importantly, this work also demonstrates that a deviation from circular fiber outer shape may be an effective method to mitigate HOM loss reduction from coherent reflection from fiber outer boundary. In an all-solid photonic bandgap fiber, modes are only guided due to anti-resonance of cladding photonic crystal lattice. This provides strongly mode-dependent guidance, leading to very high differential mode losses, which is essential for lasing far from the gain peak and suppression of stimulated Raman scattering. We will show that all-solid photonic bandgap fibers with effective mode area of 920microm2 can be made with excellent higher order mode suppression. We then demonstrate a 50microm-core-diameter Yb-doped all-solid photonic bandgap fiber laser. 75W output power has been generated with a diffraction-limited beam and an efficiency of 70% relative to the launched pump power. We have also experimentally confirmed that a robust single-mode regime exists near the high frequency edge of the bandgap. It is well known that incorporation of additional smaller cores in the cladding can be used to resonantly out-couple higher-order modes from a main core to suppress higher-order-mode propagation in the main core. Using a novel design with multiple coupled smaller cores in the cladding, we further scaled up the mode area and have successfully demonstrated a single-mode photonic bandgap fiber with record effective mode area of 2650microm2. Detailed numeric studies have been conducted for multiple cladding designs. For the optimal designs, the simulated minimum higher-order-mode losses are well over two orders of magnitudes higher than that of fundamental mode when expressed in dBs. We have also experimentally validated one of the designs. M 2<1.08 across the transmission band was demonstrated. Lowering quantum defect heating is another approach to mitigate mode instability. Highly-efficient high-power fiber lasers operating at wavelength below 1020nm are critical for tandem-pumping in >10kW fiber lasers to provide high pump brightness and low thermal loading. Using an ytterbium-doped-phosphosilicate double-clad leakage-channel fiber with 50microm core and 420microm cladding, we have achieved 70% optical-to-optical efficiency at 1018nm. The much larger cladding than those in previous reports demonstrates the much lower required pump brightness, a key for efficient kW operation. The demonstrated 1018nm fiber laser has ASE suppression of 41dB. This is higher than previous reports and further demonstrates the advantages of the fiber used. Limiting factors to efficiency are also systematically studied.
Multi-species detection using multi-mode absorption spectroscopy (MUMAS)
NASA Astrophysics Data System (ADS)
Northern, J. H.; Thompson, A. W. J.; Hamilton, M. L.; Ewart, P.
2013-06-01
The detection of multiple species using a single laser and single detector employing multi-mode absorption spectroscopy (MUMAS) is reported. An in-house constructed, diode-pumped, Er:Yb:glass micro-laser operating at 1,565 nm with 10 modes separated by 18 GHz was used to record MUMAS signals in a gas mixture containing C2H2, N2O and CO. The components of the mixture were detected simultaneously by identifying multiple transitions in each of the species. By using temperature- and pressure-dependent modelled spectral fits to the data, partial pressures of each species in the mixture were determined with an uncertainty of ±2 %.
New PbSnTe heterojunction laser diode structures with improved performance
NASA Technical Reports Server (NTRS)
Fonstad, C. G.; Kasemset, D.; Hsieh, H. H.; Rotter, S.
1980-01-01
Several recent advances in the state-of-the-art of lead tin telluride double heterojunction laser diodes are summarized. Continuous Wave operation to 120 K and pulsed operation to 166 K with single, lowest order transverse mode emission to in excess of four times threshold at 80 K were achieved in buried stripe lasers fabricated by liquid phase epitaxy in the lattice-matched system, lead-tin telluride-lead telluride selenide. At the same time, liquid phase epitaxy was used to produce PbSnTe distributed feedback lasers with much broader continuous single mode tuning ranges than are available from Fabry-Perot lasers. The physics and philosophy behind these advances is as important as the structures and performance of the specific devices embodying the advances, particularly since structures are continually being evolved and the performance continues to be improved.
Single Spatial-Mode Room-Temperature-Operated 3.0 to 3.4 micrometer Diode Lasers
NASA Technical Reports Server (NTRS)
Frez, Clifford F.; Soibel, Alexander; Belenky, Gregory; Shterengas, Leon; Kipshidze, Gela
2010-01-01
Compact, highly efficient, 3.0 to 3.4 m light emitters are in demand for spectroscopic analysis and identification of chemical substances (including methane and formaldehyde), infrared countermeasures technologies, and development of advanced infrared scene projectors. The need for these light emitters can be currently addressed either by bulky solid-state light emitters with limited power conversion efficiency, or cooled Interband Cascade (IC) semiconductor lasers. Researchers here have developed a breakthrough approach to fabrication of diode mid-IR lasers that have several advantages over IC lasers used for the Mars 2009 mission. This breakthrough is due to a novel design utilizing the strain-engineered quantum-well (QW) active region and quinternary barriers, and due to optimization of device material composition and growth conditions (growth temperatures and rates). However, in their present form, these GaSb-based laser diodes cannot be directly used as a part of sensor systems. The device spectrum is too broad to perform spectroscopic analysis of gas species, and operating currents and voltages are too high. In the current work, the emitters were fabricated as narrow-ridge waveguide index-guided lasers rather than broad stripe-gain guided multimode Fabry-Perot (FP) lasers as was done previously. These narrow-ridge waveguide mid-IR lasers exhibit much lower power consumptions, and can operate in a single spatial mode that is necessary for demonstration of single-mode distributed feedback (DBF) devices for spectroscopic applications. These lasers will enable a new generation of compact, tunable diode laser spectrometers with lower power consumption, reduced complexity, and significantly reduced development costs. These lasers can be used for the detection of HCN, C2H2, methane, and ethane.
Near-field analysis of metallic DFB lasers at telecom wavelengths.
Greusard, L; Costantini, D; Bousseksou, A; Decobert, J; Lelarge, F; Duan, G-H; De Wilde, Y; Colombelli, R
2013-05-06
We image in near-field the transverse modes of semiconductor distributed feedback (DFB) lasers operating at λ ≈ 1.3 μm and employing metallic gratings. The active region is based on tensile-strained InGaAlAs quantum wells emitting transverse magnetic polarized light and is coupled via an extremely thin cladding to a nano-patterned gold grating integrated on the device surface. Single mode emission is achieved, which tunes with the grating periodicity. The near-field measurements confirm laser operation on the fundamental transverse mode. Furthermore--together with a laser threshold reduction observed in the DFB lasers--it suggests that the patterning of the top metal contact can be a strategy to reduce the high plasmonic losses in this kind of systems.
Hybrid single mode lasers fabricated using Si/SiO2/SiON micromachined platforms
NASA Technical Reports Server (NTRS)
Ksendzov, A.; Mansour, K.
2003-01-01
We have devised a hybridization scheme that, given suitable Fabri-Perot (F-P) ain medium, allows us to fabricate small, mechanically robust single frequency lasers in a wide spectral range, limited only by the transparency of the SiON material.
Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D
2013-09-01
We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.
2017-01-01
LRASM) . . . . . . . . . . . . . . . . 26 Paveway II Laser-Guided Bomb (LGB) / Dual-Mode LGB (GBU-10/12/16) and Paveway III (GBU-24) LGB . . 26...system (INS) guidance kit to improve the precision of existing 500-pound, 1,000-pound, and 2,000-pound general-purpose and penetrator bombs in all...pound dual-mode weapon that couples the GPS/INS precision of the JDAM and laser-des- ignated accuracy of the laser-guided bomb into a single weapon
Cladding for transverse-pumped solid-state laser
NASA Technical Reports Server (NTRS)
Byer, Robert L. (Inventor); Fan, Tso Y. (Inventor)
1989-01-01
In a transverse pumped, solid state laser, a nonabsorptive cladding surrounds a gain medium. A single tranverse mode, namely the Transverse Electromagnetic (TEM) sub 00 mode, is provided. The TEM sub 00 model has a cross sectional diameter greater than a transverse dimension of the gain medium but less than a transverse dimension of the cladding. The required size of the gain medium is minimized while a threshold for laser output is lowered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slivken, S.; Sengupta, S.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu
2015-12-21
Wide electrical tuning and high continuous output power is demonstrated from a single mode quantum cascade laser emitting at a wavelength near 4.8 μm. This is achieved in a space efficient manner by integrating an asymmetric sampled grating distributed feedback tunable laser with an optical amplifier. An initial demonstration of high peak power operation in pulsed mode is demonstrated first, with >5 W output over a 270 nm (113 cm{sup −1}) spectral range. Refinement of the geometry leads to continuous operation with a single mode spectral coverage of 300 nm (120 cm{sup −1}) and a maximum continuous power of 1.25 W. The output beam is shown tomore » be nearly diffraction-limited, even at high amplifier current.« less
Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation
NASA Technical Reports Server (NTRS)
Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)
2001-01-01
Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.
NASA Astrophysics Data System (ADS)
Belotitskiĭ, V. I.; Kuzin, E. A.; Ovsyannikov, D. V.; Petrov, Mikhail P.
1990-07-01
An investigation was made of the influence of weak semiconductor laser radiation on the spectrum of stimulated Raman scattering in a single-mode optical waveguide pumped by a YAG:Nd3+ laser emitting at 1.06 μm. The scattered radiation power increased by a factor exceeding 10 at the semiconductor laser wavelength. A small-signal dynamic gain reached 47 dB. Simultaneous amplification was observed of several modes of multimode semiconductor laser radiation with an intermode spectral interval of 1.3 nm.
NASA Technical Reports Server (NTRS)
Briggs, Ryan M.; Frez, Clifford; Ksendzov, Alexander; Franz, Kale J.; Bagheri, Mahmood; Forouhar, Siamak
2012-01-01
We demonstrate single-mode laterally coupled distributed-feedback diode lasers at 2.05 microns employing low-loss etched gratings. Single-facet CW output exceeds 50 mW near room temperature with linewidth below 1 MHz over 10-ms observation times
NASA Astrophysics Data System (ADS)
Ahmad, H.; Jasim, A. A.
2017-07-01
A compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is proposed and experimentally demonstrated for C-band region multi-wavelength tuning and switching in a fiber laser. The CM-MZI is fabricated using a 9 μm single tapered silica optical microfiber fabricated by flame-drawing technique and exploits multi-mode interference to produce spatial mode beating and suppress mode competition of the homogeneous gain medium. The output wavelength spacing is immune to changes in the external environment, but can be changed from 1.5 nm to 1.4 nm by slightly modifying the path-length difference of the CM-MZI. The proposed laser is capable of generating single, dual, triple, quintuple, and sextuple stabilize wavelengths outputs over a range of more than 32 nm using polarization rotation (PR) and macro-bending. The lasers having a 3 dB line-width of less than ∼30 pm and peak-to-floor of about 55 dB at a pump power of 38 mW.
Sun, Xiankai; Yariv, Amnon
2008-06-09
We have developed a theory that unifies the analysis of the modal properties of surface-emitting chirped circular grating lasers. This theory is based on solving the resonance conditions which involve two types of reflectivities of chirped circular gratings. This approach is shown to be in agreement with previous derivations which use the characteristic equations. Utilizing this unified analysis, we obtain the modal properties of circular DFB, disk-, and ring- Bragg resonator lasers. We also compare the threshold gain, single mode range, quality factor, emission efficiency, and modal area of these types of circular grating lasers. It is demonstrated that, under similar conditions, disk Bragg resonator lasers have the highest quality factor, the highest emission efficiency, and the smallest modal area, indicating their suitability in low-threshold, high-efficiency, ultracompact laser design, while ring Bragg resonator lasers have a large single mode range, high emission efficiency, and large modal area, indicating their suitability for high-efficiency, large-area, high-power applications.
Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.
Akosman, Ahmet E; Sander, Michelle Y
2017-08-07
Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.
Applications of absorption spectroscopy using quantum cascade lasers.
Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli
2014-01-01
Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jian; Yang, Yanfu, E-mail: yangyanfu@hotmail.com; Zhang, Jianyu
We have proposed and demonstrated a novel switchable single-longitudinal-mode (SLM), dual-wavelength erbium-doped fiber laser (DWEDFL) assisted by Rayleigh backscattering (RBS) in a tapered fiber in a ring laser configuration. The RBS feedback in a tapered fiber is a key mechanism as linewidth narrowing for laser output. A compound laser cavity ensured that the EDFL operated in the SLM state and a saturable absorber (SA) is employed to form a gain grating for both filtering and improving wavelength stability. The fiber laser can output dual wavelengths simultaneously or operate at single wavelength in a switchable manner. Experiment results show that withmore » the proper SA, the peak power drift was improved from 1–2 dB to 0.31 dB and the optical signal to noise ratio was higher than 60 dB. Under the assistance of RBS feedback, the laser linewidths are compressed by around three times and the Lorentzian 3 dB linewidths of 445 Hz and 425 Hz are obtained at 1550 nm and 1554 nm, respectively.« less
Narrow line width dual wavelength semiconductor optical amplifier based random fiber laser
NASA Astrophysics Data System (ADS)
Shawki, Heba A.; Kotb, Hussein E.; Khalil, Diaa
2018-02-01
A novel narrow line-width Single longitudinal mode (SLM) dual wavelength random fiber laser of 20 nm separation between wavelengths of 1530 and 1550 nm is presented. The laser is based on Rayleigh backscattering in a standard single mode fiber of 2 Km length as distributed mirrors, and a semiconductor optical amplifier (SOA) as the optical amplification medium. Two optical bandpass filters are used for the two wavelengths selectivity, and two Faraday Rotator mirrors are used to stabilize the two lasing wavelengths against fiber random birefringence. The optical signal to noise ratio (OSNR) was measured to be 38 dB. The line-width of the laser was measured to be 13.3 and 14 KHz at 1530 and 1550 nm respectively, at SOA pump current of 370 mA.
1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D.; Bimberg, D.
2015-01-19
Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 tomore » 300 mA leads to 30 MHz frequency tuning.« less
Passive mode-locking of 3.25μm GaSb-based type-I quantum-well cascade diode lasers
NASA Astrophysics Data System (ADS)
Feng, Tao; Shterengas, Leon; Kipshidze, Gela; Hosoda, Takashi; Wang, Meng; Belenky, Gregory
2018-02-01
Passively mode-locked type-I quantum well cascade diode lasers emitting in the methane absorption band near 3.25 μm were designed, fabricated and characterized. The deep etched 5.5-μm-wide single spatial mode ridge waveguide design utilizing split-contact architecture was implemented. The devices with absorber to gain section length ratios of 11% and 5.5% were studied. Lasers with the longer absorber section ( 300 μm) generated smooth bell-shape-like emission spectrum with about 30 lasing modes at full-width-at-half-maximum level. Devices with reverse biased absorber section demonstrated stable radio frequency beat with nearly perfect Lorentzian shape over four orders of magnitude of intensity. The estimated pulse-to-pulse timing jitter was about 110 fs/cycle. Laser generated average power of more than 1 mW in mode-locked regime.
NASA Technical Reports Server (NTRS)
Ancellet, G. M.; Menzies, R. T.; Brothers, A. M.
1987-01-01
Longitudinal mode selection by injection has been demonstrated as a viable technique for TEA-CO2 lasers with pulse energies of a Joule or greater. Once reliable generation of single-longitudinal-mode (SLM) pulses is obtained, the characteristics and the causes of intrapulse frequency variation can be studied. These include the effect of the decaying plasma, the thermal gradient due to the energy dissipation associated with the laser mechanism itself, and the pressure shift of the center frequency of the laser transition. The use of the positive-branch unstable resonator as an efficient means of coupling a discharge with large spatial dimensions to an optical cavity mode introduces another concern: namely, what can be done to emphasize transverse mode discrimination in an unstable resonator cavity while maintaining high coupling efficiency. These issues are discussed in this paper, and relevant experimental results are included.
Saturable nonlinear dielectric waveguide with applications to broad-area semiconductor lasers.
Mehuys, D; Mittelstein, M; Salzman, J; Yariv, A
1987-11-01
Self-focusing in a passive dielectric waveguide with a saturable nonlinearity is studied. The eigensolutions constitute a good approximation to the lateral modes of broad-area semiconductor lasers under low-duty-cycle pulsed conditions. The laser modes are predicted to consist of adjacent filaments coupled in phase, leading to a single-lobed far field, and to be stable with increased current injection above saturation intensity. The ultimate filament spacing is inversely proportional to the threshold gain, and thus wider filaments are expected in low-threshold broad-area lasers.
NASA Astrophysics Data System (ADS)
Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Holzwarth, R.; Huang, G.
2011-09-01
We propose a method of synchronizing mode-locked lasers separated by hundreds of meters with the possibility of achieving sub-fs performance by locking the phases of corresponding lines in the optical comb spectrum. The optical phase from one comb line is transmitted to the remote laser over an interferometrically stabilized link by locking a single frequency laser to a comb line with high phase stability. We describe how these elements are integrated into a complete system and estimate the potential performance.
Design of hybrid laser structures with QD-RSOA and silicon photonic mirrors
NASA Astrophysics Data System (ADS)
Gioannini, Mariangela; Benedetti, Alessio; Bardella, Paolo; Bovington, Jock; Traverso, Matt; Siriani, Dominic; Gothoskar, Prakash
2018-02-01
We compare the design of three different single mode laser structures consisting in a Reflective Semiconductor Optical Amplifier coupled to a silicon photonic external cavity mirror. The three designs differ for the mirror structure and are compared in terms of SOA power consumption and side mode suppression ratio (SMSR). Assuming then a Quantum Dot active material, we simulate the best laser design using a numerical model that includes the peculiar physical characteristics of the QD gain medium. The simulated QD laser CW characteristics are shown and discussed.
NASA Astrophysics Data System (ADS)
Choi, Myoung-Taek
This dissertation explores various aspects and potential of optical pulse generation based on active, passive, and hybrid mode-locked quantum dot semiconductor lasers with target applications such as optical interconnect and high speed signal processing. Design guidelines are developed for the single mode operation with suppressed reflection from waveguide discontinuities. The device fabrication procedure is explained, followed by characteristics of FP laser, SOA, and monolithic two-section devices. Short pulse generation from an external cavity mode-locked QD two-section diode laser is studied. High quality, sub-picosecond (960 fs), high peak power (1.2 W) pulse trains are obtained. The sign and magnitude of pulse chirp were measured for the first time. The role of the self-phase modulation and the linewidth enhancement factor in QD mode-locked lasers is addressed. The noise performance of two-section mode-locked lasers and a SOA-based ring laser was investigated. Significant reduction of the timing jitter under hybrid mode-locked operation was achieved owing to more than one order of magnitude reduction of the linewidth in QD gain media. Ultralow phase noise performance (integrated timing jitter of a few fs at a 10 GHz repetition rate) was demonstrated from an actively mode-locked unidirectional ring laser. These results show that quantum dot mode-locked lasers are strong competitors to conventional semiconductor lasers in noise performance. Finally we demonstrated an opto-electronic oscillator (OEO) and coupled opto-electronic oscillators (COEO) which have the potential for both high purity microwave and low noise optical pulse generation. The phase noise of the COEO is measured by the photonic delay line frequency discriminator method. Based on this study we discuss the prospects of the COEO as a low noise optical pulse source.
15 ps quasi-continuously pumped passively mode-locked highly doped Nd:YAG laser in bounce geometry
NASA Astrophysics Data System (ADS)
Jelínek, M., Jr.; Kubeček, V.
2011-09-01
A semiconductor saturable absorber mirror mode-locking of a quasi-continuously pumped laser based on 2.4 at.% Nd:YAG slab in a bounce geometry was demonstrated and investigated. Output mode-locked and Q-switched train containing 15 pulses with total energy of 500 μJ was generated directly from the oscillator. The measured 15 ps pulse duration and excellent temporal stability ±2 ps are the best values for pure passively mode-locked and Q-switched Nd:YAG laser with the pulse pumping. Furthermore, using the cavity dumping technique, single 19 ps pulse with energy of 25 μJ was extracted directly from the oscillator.
NASA Astrophysics Data System (ADS)
Hou, L. P.; Haji, M.; Li, C.; Qiu, B. C.; Bryce, A. C.
2011-07-01
We present an 80-GHz λ ~ 1.55 μm passively colliding-pulse mode-locked laser based on a novel AlGaInAs/InP epitaxial structure, which consists of a strained 3-quantum-well active layer incorporated with a passive far-field reduction layer. The device generated 910 fs pulses with a state-of-art timing jitter value of 190 fs (4 - 80 MHz), while demonstrating a low divergence angle (12.7°×26.3°) with two fold butt coupling efficiency to a flat cleaved single mode fiber when compared with the conventional mode-locked laser.
High power infrared super-Gaussian beams: generation, propagation, and application
NASA Astrophysics Data System (ADS)
du Preez, Neil C.; Forbes, Andrew; Botha, Lourens R.
2008-10-01
In this paper we present the design of a CO2 laser resonator that produces as the stable transverse mode a super-Gaussian laser beam. The resonator makes use of an intra-cavity diffractive mirror and a flat output coupler, generating the desired intensity profile at the output coupler with a flat wavefront. We consider the modal build-up in such a resonator and show that such a resonator mode has the ability to extract more energy from the cavity that a standard cavity single mode beam (e.g., Gaussian mode cavity). We demonstrate the design experimentally on a high average power TEA CO2 laser for paint stripping applications.
A 980 nm pseudomorphic single quantum well laser for pumping erbium-doped optical fiber amplifiers
NASA Technical Reports Server (NTRS)
Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.
1990-01-01
The authors have fabricated ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs GRIN-SCH SQW (graded-index separate-confinement-heterostructure single-quantum-well) lasers, emitting at 980 nm, with a maximum output power of 240 mW from one facet and a 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. These lasers satisfy the requirements on efficient and compact pump sources for Er3+-doped fiber amplifiers.
NASA Astrophysics Data System (ADS)
Polynkin, Alexander; Polynkin, Pavel; Schülzgen, Axel; Mansuripur, Masud; Peyghambarian, N.
2005-02-01
We report over 2 W of single spatial-mode output power at 1.5 µm from an 8-cm-long, large-core phosphate fiber laser. The fiber has a numerical aperture of simeq 0.17 and a 25-µm-wide core, heavily doped with 1% Er+3 and 8% Yb+3. The laser utilizes a scalable evanescent-field-based pumping scheme and can be pumped by as many as eight individual multimode pigtailed diode laser sources at a wavelength of 975 nm. Nearly diffraction-limited laser output with a beam quality factor M^2 simeq 1.1 is achieved by use of a simple intracavity all-fiber spatial-mode filter. Both spectrally broadband and narrowband operation of the laser are demonstrated.
Rectified diode response of a multimode quantum cascade laser integrated terahertz transceiver.
Dyer, Gregory C; Norquist, Christopher D; Cich, Michael J; Grine, Albert D; Fuller, Charles T; Reno, John L; Wanke, Michael C
2013-02-25
We characterized the DC transport response of a diode embedded in a THz quantum cascade laser as the laser current was changed. The overall response is described by parallel contributions from the rectification of the laser field due to the non-linearity of the diode I-V and from thermally activated transport. Sudden jumps in the diode response when the laser changes from single mode to multi-mode operation, with no corresponding jumps in output power, suggest that the coupling between the diode and laser field depends on the spatial distribution of internal fields. The results demonstrate conclusively that the internal laser field couples directly to the integrated diode.
Huang, Yize; Jivraj, Jamil; Zhou, Jiaqi; Ramjist, Joel; Wong, Ronnie; Gu, Xijia; Yang, Victor X D
2016-07-25
A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis.
Kim, Chur; Kwon, Dohyeon; Kim, Dohyun; Choi, Sun Young; Cha, Sang Jun; Choi, Ki Sun; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon
2017-04-15
We demonstrate a new planar lightwave circuit (PLC)-based device, integrated with a 980/1550 wavelength division multiplexer, an evanescent-field-interaction-based saturable absorber, and an output tap coupler, which can be employed as a multi-functional element in mode-locked fiber lasers. Using this multi-functional PLC device, we demonstrate a simple, robust, low-noise, and polarization-maintaining mode-locked Er-fiber laser. The measured full-width at half-maximum bandwidth is 6 nm centered at 1555 nm, corresponding to 217 fs transform-limited pulse duration. The measured RIN and timing jitter are 0.22% [10 Hz-10 MHz] and 6.6 fs [10 kHz-1 MHz], respectively. Our results show that the non-gain section of mode-locked fiber lasers can be easily implemented as a single PLC chip that can be manufactured by a wafer-scale fabrication process. The use of PLC processes in mode-locked lasers has the potential for higher manufacturability of low-cost and robust fiber and waveguide lasers.
NASA Astrophysics Data System (ADS)
Chen, W. G.; Lou, S. Q.; Feng, S. C.; Wang, L. W.; Li, H. L.; Guo, T. Y.; Jian, S. S.
2009-11-01
Switchable multi-wavelength fiber ring laser with an in-fiber Mach-Zehnder interferometer incorporated into the ring cavity serving as wavelength-selective filter at room temperature is demonstrated. The filter is formed by splicing a section of few-mode photonic crystal fiber (PCF) and two segments of single mode fiber (SMF) with the air-holes on the both sides of PCF intentionally collapsed in the vicinity of the splices. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-, dual- and triple-wavelength lasing operations by exploiting polarization hole burning (PHB) effect.
Synchronizable Q-switched, mode-locked, and cavity-dumped ruby laser for plasma diagnostics
NASA Astrophysics Data System (ADS)
Houtman, H.; Meyer, J.
1985-06-01
We report on the design and operation of an optimized version of a Q-switched, mode-locked, and cavity-dumped ruby-laser oscillator. The modulator window is much narrower than that assumed in conventional active mode-lock theory, and is shown to yield much shorter pulses than the latter in cases where the number of round trips is restricted. To allow a high-power pulse (≊1 GW) to evolve in the oscillator, and to allow simple synchronization to a (˜100 ns fixed delay) CO2 laser, a limit of 23 round trips was chosen, but similar limits may be imposed by lasers having short-gain duration as in an excimer laser. Details are given on the single spark gap switching element and Pockels cells, with an analysis of their expected switching speeds, in order to establish the effectiveness of the modulator, as compared to conventional sinusoidally driven active mode lockers. Single pulses of 50-70 mJ are reliably cavity-dumped after only 100-ns delay (23 round trips) with pulse length adjustable from 50-100 ps with ±5-ps stability. Relative timing between the main (CO2) and probe (ruby) pulses allows a measurement accuracy of ±50 ps to be attained.
Synchronizable Q-switched, mode-locked, and cavity-dumped ruby laser for plasma diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houtman, H.; Meyer, J.
We report on the design and operation of an optimized version of a Q-switched, mode-locked, and cavity-dumped ruby-laser oscillator. The modulator window is much narrower than that assumed in conventional active mode-lock theory, and is shown to yield much shorter pulses than the latter in cases where the number of round trips is restricted. To allow a high-power pulse (roughly-equal1 GW) to evolve in the oscillator, and to allow simple synchronization to a (approx.100 ns fixed delay) CO/sub 2/ laser, a limit of 23 round trips was chosen, but similar limits may be imposed by lasers having short-gain duration asmore » in an excimer laser. Details are given on the single spark gap switching element and Pockels cells, with an analysis of their expected switching speeds, in order to establish the effectiveness of the modulator, as compared to conventional sinusoidally driven active mode lockers. Single pulses of 50--70 mJ are reliably cavity-dumped after only 100-ns delay (23 round trips) with pulse length adjustable from 50--100 ps with +- 5-ps stability. Relative timing between the main (CO/sub 2/) and probe (ruby) pulses allows a measurement accuracy of +- 50 ps to be attained.« less
Tahvili, M S; Du, L; Heck, M J R; Nötzel, R; Smit, M K; Bente, E A J M
2012-03-26
We present an investigation of passive and hybrid mode-locking in Fabry-Pérot type two-section InAs/InP(100) quantum dot lasers that show dual wavelength operation. Over the whole current and voltage range for mode-locking of these lasers, the optical output spectra show two distinct lobes. The two lobes provide a coherent bandwidth and are verified to lead to two synchronized optical pulses. The generated optical pulses are elongated in time due to a chirp which shows opposite signs over the two spectral lobes. Self-induced mode-locking in the single-section laser shows that the dual-wavelength spectra correspond to emission from ground state. In the hybrid mode-locking regime, a map of locking range is presented by measuring the values of timing jitter for several values of power and frequency of the external electrical modulating signal. An overview of the systematic behavior of InAs/InP(100) quantum dot mode-locked lasers is presented as conclusion.
Narrow-line, cw orange light generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings.
Chen, Y L; Chen, W W; Du, C E; Chang, W K; Wang, J L; Chung, T Y; Chen, Y H
2009-12-07
We report on the demonstration of a narrow-line, cw orange 593-nm laser achieved via intracavity sum-frequency generation (SFG) of a diode-pumped dual-wavelength (1064 and 1342 nm) Nd:YVO(4) laser using two volume Bragg grating (VBG) reflectors. At diode pump power of up to 3.6 W, the 593-nm intracavity SFG laser radiates at the single longitudinal mode of spectral linewidth as narrow as approximately 15 MHz. More than 23-mW single-longitudinal-mode or 40-mW, <8.5-GHz (10-pm) linewidth (at 4.2-W diode pump power) 593-nm orange lights can be obtained from this compact laser system. Spectral tuning of the orange light was performed via the temperature tuning of the two VBGs in this system, achieving an effective tuning rate of ~5 pm/degrees C.
NASA Astrophysics Data System (ADS)
Li, Shenping; Chan, K. T.
1999-05-01
A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a Fabry-Perot semiconductor modulator. The modulator played the simultaneous roles of an intensity mode locker and a tunable optical filter. Stable single- or dual-wavelength nearly transform-limited picosecond pulses at gigabit repetition rates were generated. Continuous wavelength tuning was achieved by simply controlling the temperature of the modulator. Pulse train with a repetition rate up to 19.93 GHz (eight times the driving frequency) was obtained by using rational harmonic mode-locking technique.
Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor
2012-05-10
We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomicmore » states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).« less
Pulsed ytterbium-doped fibre laser with a combined modulator based on single-wall carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khudyakov, D V; Borodkin, A A; Vartapetov, S K
2015-09-30
This paper describes an all-normal-dispersion pulsed ytterbium-doped fibre ring laser mode-locked by a nonlinear combined modulator based on single-wall carbon nanotubes. We have demonstrated 1.7-ps pulse generation at 1.04 μm with a repetition rate of 35.6 MHz. At the laser output, the pulses were compressed to 180 fs. We have examined an intracavity nonlinear modulator which utilises nonlinear polarisation ellipse rotation in conjunction with a saturable absorber in the form of a polymer-matrix composite film containing single-wall carbon nanotubes. (lasers)
2009-03-30
seeded with 15 W of single-frequency laser light at 1064 nm and cladding -pumped of 700 W in the forward direction and 300 W in the opposite direction...57-W single-mode phosphate fiber laser Our early studies of phosphate fiber lasers taught us that adding an air-hole to the inner cladding and... cladding -pumped with a fiber-coupled laser diode at 977 nm through a dichroic beam splitter placed on the OC side. The fiber ends were cooled using the
Dual-wavelength quantum cascade laser for trace gas spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jágerská, J.; Tuzson, B.; Mangold, M.
2014-10-20
We demonstrate a sequentially operating dual-wavelength quantum cascade laser with electrically separated laser sections, emitting single-mode at 5.25 and 6.25 μm. Based on a single waveguide ridge, this laser represents a considerable asset to optical sensing and trace gas spectroscopy, as it allows probing multiple gas species with spectrally distant absorption features using conventional optical setups without any beam combining optics. The laser capability was demonstrated in simultaneous NO and NO{sub 2} detection, reaching sub-ppb detection limits and selectivity comparable to conventional high-end spectroscopic systems.
Techniques for reducing and/or eliminating secondary modes in a dye laser oscillator
Hackel, Richard P.
1988-01-01
A dye laser master oscillator is disclosed herein. This oscillator is intended to provide a single mode output, that is, a primary beam of light of a specific wavelength, but also has the tendency to provide secondary modes, that is, secondary beams of light at different wavelengths and slightly off-axis with respect to the primary beam as a result of grazing incident reflections within the dye cell forming part of the master oscillator. Also disclosed herein are a number of different techniques for reducing or eliminating these secondary modes.
NASA Astrophysics Data System (ADS)
Gacheva, Lazarina I.; Deneva, Margarita A.; Kalbanov, Mihail H.; Nenchev, Marin N.
2008-12-01
We present two original, all optical techniques, to produce a narrowline laser light, fixed at the frequency of a chosen reference atomic absorption transition. The first type of systems is an essential improvement of our method 3,4 for laser spectral locking using a control by two frequency scanned, competitive injections with disturbed power ratio by the absorption at the reference line. The new development eliminates the narrowing limiting problem, related with the fixed laser longitudinal mode structure. We have proposed an original new technique for continuously tunable single mode laser operation in combination with synchronously and equal continuous tuning of the modes of the amplifier. By adapting the laser differential rate equations, the system is analyzed theoretically in details and is shown its feasibility. The results are in agreement with previous our experiments. The essential advantage, except simplicity of realization, is that the laser line can be of order of magnitude and more narrowed than the absorption linewidth. The second system is based of the laser amplifier arrangement with a gain knock-down from the competitive frequency scanned pulse, except at the wavelength of the desired absorption reference line. The essential advantages of the last system are that the problem of fixing laser mode presence is naturally avoided. The theoretical modeling and the numerical investigations show the peculiarity and advantages of the system proposed. The developed approaches are of interest for applications in spectroscopy, in DIAL monitoring of the atmospheric pollutants, in isotope separation system and potentially - for creation of simple, all optical, frequency standards for optical communications. Also, the continuously tunable single mode laser (and the combination with the simultaneously tunable amplifier) presents itself the interest for many practical applications in spectroscopy, metrology, and holography. We compare the action and the advantages of the two systems proposed.
NASA Astrophysics Data System (ADS)
Haidar, M. T.; Preu, S.; Cesar, J.; Paul, S.; Hajo, A. S.; Neumeyr, C.; Maune, H.; Küppers, F.
2018-01-01
Continuous-wave (CW) terahertz (THz) photomixing requires compact, widely tunable, mode-hop-free driving lasers. We present a single-mode microelectromechanical system (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) featuring an electrothermal tuning range of 64 nm (7.92 THz) that exceeds the tuning range of commercially available distributed-feedback laser (DFB) diodes (˜4.8 nm) by a factor of about 13. We first review the underlying theory and perform a systematic characterization of the MEMS-VCSEL, with particular focus on the parameters relevant for THz photomixing. These parameters include mode-hop-free CW tuning with a side-mode-suppression-ratio >50 dB, a linewidth as narrow as 46.1 MHz, and wavelength and polarization stability. We conclude with a demonstration of a CW THz photomixing setup by subjecting the MEMS-VCSEL to optical beating with a DFB diode driving commercial photomixers. The achievable THz bandwidth is limited only by the employed photomixers. Once improved photomixers become available, electrothermally actuated MEMS-VCSELs should allow for a tuning range covering almost the whole THz domain with a single system.
NASA Astrophysics Data System (ADS)
Otsuka, Kenju; Chu, Shu-Chun
2017-07-01
Selective excitation of Laguerre-Gauss modes (optical vortices: helical LG0,2 and LG0,1), reflecting their weak transverse cross-saturation of population inversions against a preceding higher-order Ince-Gauss (IG0,2) or Hermite-Gauss (HG2,1) mode, was observed in a thin-slice c-cut Nd:GdVO4 laser with wide-aperture laser-diode end pumping. Single-frequency coherent vector beams were generated through the transverse mode locking of a pair of orthogonally polarized IG2,0 and LG0,2 or HG2,1 and LG0,1 modes. Highly sensitive self-mixing rotational and translational Doppler velocimetry is demonstrated by using vortex and coherent vector beams.
Hybrid mode-locked erbium-doped all-fiber soliton laser with a distributed polarizer.
Chernykh, D S; Krylov, A A; Levchenko, A E; Grebenyukov, V V; Arutunyan, N R; Pozharov, A S; Obraztsova, E D; Dianov, E M
2014-10-10
A soliton-type erbium-doped all-fiber ring laser hybrid mode-locked with a co-action of arc-discharge single-walled carbon nanotubes (SWCNTs) and nonlinear polarization evolution (NPE) is demonstrated. For the first time, to the best of our knowledge, boron nitride-doped SWCNTs were used as a saturable absorber for passive mode-locking initiation. Moreover, the NPE was introduced through the implementation of the short-segment polarizing fiber. Owing to the NPE action in the laser cavity, significant pulse length shortening as well as pulse stability improvement were observed as compared with a SWCNTs-only mode-locked laser. The shortest achieved pulse width of near transform-limited solitons was 222 fs at the output average power of 9.1 mW and 45.5 MHz repetition frequency, corresponding to the 0.17 nJ pulse energy.
Chaotic dynamics and synchronization in microchip solid-state lasers with optoelectronic feedback.
Uchida, Atsushi; Mizumura, Keisuke; Yoshimori, Shigeru
2006-12-01
We experimentally observe the dynamics of a two-mode Nd:YVO4 microchip solid-state laser with optoelectronic feedback. The total laser output is detected and fed back to the injection current of the laser diode for pumping. Chaotic oscillations are observed in the microchip laser with optoelectronic self-feedback. We also observe the dynamics of two microchip lasers coupled mutually with optoelectronic link. The output of one laser is detected by a photodiode and the electronic signal converted from the laser output is sent to the pumping of the other laser. Chaotic fluctuation of the laser output is observed when the relaxation oscillation frequency is close to each other between the two microchip lasers. Synchronization of periodic wave form is also obtained when the microchip lasers have a single-longitudinal mode.
Discrete mode lasers for communications applications
NASA Astrophysics Data System (ADS)
Barry, L. P.; Herbert, C.; Jones, D.; Kaszubowska-Anandarajah, A.; Kelly, B.; O'Carroll, J.; Phelan, R.; Anandarajah, P.; Shi, K.; O'Gorman, J.
2009-02-01
The wavelength spectra of ridge waveguide Fabry Perot lasers can be modified by perturbing the effective refractive index of the guided mode along very small sections of the laser cavity. One way of locally perturbing the effective index of the lasing mode is by etching features into the ridge waveguide such that each feature has a small overlap with the transverse field profile of the unperturbed mode, consequently most of the light in the laser cavity is unaffected by these perturbations. A proportion of the propagating light is however reflected at the boundaries between the perturbed and the unperturbed sections. Suitable positioning of these interfaces allows the mirror loss spectrum of a Fabry Perot laser to be manipulated. In order to achieve single longitudinal mode emission, the mirror loss of a specified mode must be reduced below that of the other cavity modes. Here we review the latest results obtained from devices containing such features. These results clearly demonstrate that these devices exceed the specifications required for a number of FTTH and Datacomms applications, such as GEPON, LX4 and CWDM. As well as this we will also present initial results on the linewidth of these devices.
Symmetry-protected zero-mode laser with a tunable spatial profile
NASA Astrophysics Data System (ADS)
Ge, Li
Majorana zero modes in condense matter systems have attracted considerable interest in topological quantum computation. In contrast, while robust zero modes have been observed in various photonic lattices, it remains an open question whether they can be used for the same purpose. To advance significantly the state-of-the-art in zero-mode photonics, new inspirations are needed for a better design and control of photonic systems. Using the zero modes protected by non-Hermitian particle-hole symmetry in a photonic lattice and the spatial degrees of freedom they offer, we propose a single-mode, fixed-frequency, and spatially tunable zero-mode laser. The system does not need to have zero modes before a localized pump is applied; they are created by the spontaneous restoration of particle-hole symmetry. By modifying this process using different pump configurations, we present a versatile way to tune the spatial profile of our zero-mode laser, with its lasing frequency pinned at the zero energy. Such a zero-mode laser may find applications in telecommunication, where spatial encoding is held by some to be last frontier of signal processing. This project is supported by the NSF under Grant No. DMR-1506987.
High pressure gas laser technology for atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Javan, A.
1980-01-01
The development of a fixed frequency chirp-free and highly stable intense pulsed laser made for Doppler wind velocity measurements with accurate ranging is described. Energy extraction from a high pressure CO2 laser at a tunable single mode frequency is also examined.
Yue, J; She, C-Y; Williams, B P; Vance, J D; Acott, P E; Kawahara, T D
2009-04-01
With two cw single-mode Nd:YAG lasers at 1064 and 1319 nm and a periodically poled lithium niobate crystal, 11 mW of 2 kHz/100 ms bandwidth single-mode tunable 589 nm cw radiation has been detected using single-pass sum-frequency generation. The demonstrated conversion efficiency is approximately 3.2%[W(-1) cm(-1)]. This compact solid-state light source has been used in a solid-state-dye laser hybrid sodium fluorescence lidar transmitter to measure temperatures and winds in the upper atmosphere (80-105 km); it is being implemented into the transmitter of a mobile all-solid-state sodium temperature and wind lidar under construction.
Acoustic Levitator With Furnace And Laser Heating
NASA Technical Reports Server (NTRS)
Barmatz, Martin B.; Stoneburner, James D.
1991-01-01
Acoustic-levitation apparatus incorporates electrical-resistance furnace for uniform heating up to temperature of about 1,000 degrees C. Additional local heating by pair of laser beams raise temperature of sample to more than 1,500 degrees C. High temperature single-mode acoustic levitator generates cylindrical-mode accoustic resonance levitating sample. Levitation chamber enclosed in electrical-resistance furnace. Infrared beams from Nd:YAG laser provide additional local heating of sample. Designed for use in containerless processing of materials in microgravity or in normal Earth gravity.
NASA Astrophysics Data System (ADS)
Wang, T.; Liang, G.; Miao, X.; Zhou, X.; Li, Q.
2012-05-01
We demonstrate a simple dual-wavelength ring erbium-doped fiber laser operating in single-longitudinal-mode (SLM) at room temperature. A pair of reflection type short-period fiber Bragg gratings (FBGs), which have two different center wavelengths of 1545.072 and 1545.284 nm, are used as the wavelength-selective component of the laser. A segment of unpumped polarization maintaining erbium-doped fiber (PM-EDF) is acted as a narrow multiband filter. By turning the polarization controller (PC) to enhance the polarization hole burning (PHB), the single-wavelength and dual-wavelength laser oscillations are observed at 1545.072 and 1545.284 nm. The output power variation is less than 0.6 dB for both wavelengths over a five-minute period and the optical signal to noise ratio (OSNR) is greater than 50 dB. By beating the dual-wavelengths at a photodetector (PD), a microwave signal at 26.44 GHz is demonstrated.
Mid-infrared multi-mode absorption spectroscopy, MUMAS, using difference frequency generation
NASA Astrophysics Data System (ADS)
Northern, Henry; O'Hagan, Seamus; Hamilton, Michelle L.; Ewart, Paul
2015-03-01
Multi-mode absorption spectroscopy of ammonia and methane at 3.3 μm has been demonstrated using a source of multi-mode mid-infrared radiation based on difference frequency generation. Multi-mode radiation at 1.56 μm from a diode-pumped Er:Yb:glass laser was mixed with a single-mode Nd:YAG laser at 1.06 μm in a periodically poled lithium niobate crystal to produce multi-mode radiation in the region of 3.3 μm. Detection, by direct multi-mode absorption, of NH3 and CH4 is reported for each species individually and also simultaneously in mixtures allowing measurements of partial pressures of each species.
A new and efficient theoretical model to analyze chirped grating distributed feedback lasers
NASA Astrophysics Data System (ADS)
Arif, Muhammad
Threshold conditions of a distributed feedback (DFB) laser with a linearly chirped grating are investigated using a new and efficient method. DFB laser with chirped grating is found to have significant effects on the lasing characteristics. The coupled wave equations for these lasers are derived and solved using a power series method to obtain the threshold condition. A Newton- Raphson routine is used to solve the threshold conditions numerically to obtain threshold gain and lasing wavelengths. To prove the validity of this model, it is applied to both conventional index-coupled and complex- coupled DFB lasers. The threshold gain margins are calculated as functions of the ratio of the gain coupling to index coupling (|κg|/|κ n|), and the phase difference between the index and gain gratings. It was found that for coupling coefficient |κ|l < 0.9, the laser shows a mode degeneracy at particular values of the ratio |κ g|/|κn|, for cleaved facets. We found that at phase differences π/2 and 3π/2, between the gain and index grating, for an AR-coated complex-coupled laser, the laser becomes multimode and a different mode starts to lase. We also studied the effect of the facet reflectivity (both magnitude and phase) on the gain margin of a complex- coupled DFB laser. Although, the gain margin varies slowly with the magnitude of the facet reflectivity, it shows large variations as a function of the phase. Spatial hole burning was found to be minimum at phase difference nπ, n = 0, 1, ... and maximum at phase differences π/2 and 3π/2. The single mode gain margin of an index-coupled linearly chirped CG-DFB is calculated for different chirping factors and coupling constants. We found that there is clearly an optimum chirping for which the single mode gain margin is maximum. The gain margins were calculated also for different positions of the cavity center. The effect of the facet reflectivities and their phases on the gain margin was investigated. We found the gain margin is maximum and the Spatial Hole Burning (SHB) is minimum for the cavity center at the middle of the laser cavity. Effect of chirping on the threshold gain, gain margin and spatial hole burning (SHB) for different parameters, such as the coupling coefficients, facet reflectivities, etc., of these lasers are studied. Single mode yield of these lasers are calculated and compared with that of a uniform grating DFB laser.
NASA Technical Reports Server (NTRS)
Wilson, R. Gale
1994-01-01
The potential capabilities and limitations of single ball lenses for coupling laser diode radiation to single-mode optical fibers have been analyzed; parameters important to optical communications were specifically considered. These parameters included coupling efficiency, effective numerical apertures, lens radius, lens refractive index, wavelength, magnification in imaging the laser diode on the fiber, and defocus to counterbalance spherical aberration of the lens. Limiting numerical apertures in object and image space were determined under the constraint that the lens perform to the Rayleigh criterion of 0.25-wavelength (Strehl ratio = 0.80). The spherical aberration-defocus balance to provide an optical path difference of 0.25 wavelength units was shown to define a constant coupling efficiency (i.e., 0.56). The relative numerical aperture capabilities of the ball lens were determined for a set of wavelengths and associated fiber-core diameters of particular interest for single-mode fiber-optic communication. The results support general continuing efforts in the optical fiber communications industry to improve coupling links within such systems with emphasis on manufacturing simplicity, system packaging flexibility, relaxation of assembly alignment tolerances, cost reduction of opto-electronic components and long term reliability and stability.
1.9 THz Quantum-cascade Lasers with One-well Injector
NASA Technical Reports Server (NTRS)
Kumar, Sushil; Williams, Benjamin S.; Hu, Qing; Reno, John L.
2006-01-01
We report terahertz quantum-cascade lasers operating predominantly at 1.90 THz with side modes as low as 1.86 THz (lambda approx. equal to 161 micrometers, planck's constant omega approx. equal to 7.7 meV). This is the longest wavelength to date of any solid-state laser that operates without assistance of a magnetic field. Carriers are injected into the upper radiative state by using a single quantum-well injector, which resulted in a significant reduction of free-carrier losses. The laser operated up to a heat-sink temperature of 110 K in pulsed mode, 95 K in continuous wave (cw) mode, and the threshold current density at 5 K was approx. 140 A per square centimeters.
NASA Astrophysics Data System (ADS)
Aleshkina, Svetlana S.; Lipatov, Denis S.; Levchenko, Andrei E.; Medvedkov, Oleg I.; Bobkov, Konstantin K.; Bubnov, Mikhail M.; Guryanov, Alexei N.; Likhachev, Mikhail E.
2018-02-01
Monolithic 976 nm laser design based on a newly developed saddle-shaped Yb-doped fiber has been proposed. The fiber has central single-mode part with core diameter of about 12 μm and ultra-thin square-shaped clad with side of about 42x42 μm. At the both ends of the saddle-shaped fiber the core and the clad sizes were adiabatically increased up to 20/(70x70) μm and the fiber could be spliced with standard (80..125 μm clad) passive fibers using commercially available equipment. Single-mode laser at 976 nm based on the developed fiber has been fabricated and photodarkening-free operation with output power of 10.6 W, which is the record high for all-fiber laser schemes, has been demonstrated.
Narrow linewidth picosecond UV pulsed laser with mega-watt peak power.
Huang, Chunning; Deibele, Craig; Liu, Yun
2013-04-08
We demonstrate a master oscillator power amplifier (MOPA) burst mode laser system that generates 66 ps/402.5 MHz pulses with mega-watt peak power at 355 nm. The seed laser consists of a single frequency fiber laser (linewidth < 5 KHz), a high bandwidth electro-optic modulator (EOM), a picosecond pulse generator, and a fiber based preamplifier. A very high extinction ratio (45 dB) has been achieved by using an adaptive bias control of the EOM. The multi-stage Nd:YAG amplifier system allows a uniformly temporal shaping of the macropulse with a tunable pulse duration. The light output from the amplifier is converted to 355 nm, and over 1 MW peak power is obtained when the laser is operating in a 5-μs/10-Hz macropulse mode. The laser output has a transform-limited spectrum with a very narrow linewidth of individual longitudinal modes. The immediate application of the laser system is the laser-assisted hydrogen ion beam stripping for the Spallation Neutron Source (SNS).
InGaAsP/InP laser development for single-mode, high-data-rate communications
NASA Technical Reports Server (NTRS)
Ladany, I.; Levin, E. R.; Magee, C. W.; Smith, R. T.
1981-01-01
Materials studies as well as general and specific device development were carried out in the InGaAsP system. A comparison was made of three standard methods of evaluating substrate quality by means of dislocation studies. A cause of reduced yield of good wafers, the pullover of melt from one bin to the next, has been analyzed. Difficulties with reproducible zinc acceptor doping have been traced to segregation of zinc in the In/Zn alloy used for the doping source. Using EBIC measurments, the pn junction was shown to drift in location depending on factors not always under control. An analysis of contact structures by SIMS showed that the depth to which the sintered Au/Zn contact penetrates into the structure is typically 0.13 microns, or well within the cap layer and out of the p-type cladding and thus not deleterious to laser prformance. The problem of single-mode laser development was investigated and it was shown to be related to the growth habit over four different possible substrate configurations. The fabrication of constricted double heterojunctions, mesa stripe buried heterostructures, and buried heterostructures was discussed, and measurements were presented on the device properties of single-mode buried heterostructure lasers. Results include single spectral line emission at 3 mW and a threshold current of 60 mA.
NASA Technical Reports Server (NTRS)
Kozlovsky, W. J.; Gustafson, E. K.; Eckardt, R. C.; Byer, R. L.
1988-01-01
With the advent of new nonlinear materials and single-frequency pump sources, there is renewed interest in optical parametric oscillators (OPOs). A single-mode diode-laser-pumped monolithic Nd:YAG nonplanar ring laser that is both amplified and frequency doubled is used to pump a monolithic MgO:LiNbO3 pulsed singly resonant OPO. The OPO signal output was temperature tuned from 834 to 958 nm, producing an idler tuning from 1.47 to 1.2 microns. Efforts toward a CW all-solid-state doubly resonant OPO are also described.
Field mappers for laser material processing
NASA Astrophysics Data System (ADS)
Blair, Paul; Currie, Matthew; Trela, Natalia; Baker, Howard J.; Murphy, Eoin; Walker, Duncan; McBride, Roy
2016-03-01
The native shape of the single-mode laser beam used for high power material processing applications is circular with a Gaussian intensity profile. Manufacturers are now demanding the ability to transform the intensity profile and shape to be compatible with a new generation of advanced processing applications that require much higher precision and control. We describe the design, fabrication and application of a dual-optic, beam-shaping system for single-mode laser sources, that transforms a Gaussian laser beam by remapping - hence field mapping - the intensity profile to create a wide variety of spot shapes including discs, donuts, XY separable and rotationally symmetric. The pair of optics transform the intensity distribution and subsequently flatten the phase of the beam, with spot sizes and depth of focus close to that of a diffraction limited beam. The field mapping approach to beam-shaping is a refractive solution that does not add speckle to the beam, making it ideal for use with single mode laser sources, moving beyond the limits of conventional field mapping in terms of spot size and achievable shapes. We describe a manufacturing process for refractive optics in fused silica that uses a freeform direct-write process that is especially suited for the fabrication of this type of freeform optic. The beam-shaper described above was manufactured in conventional UV-fused silica using this process. The fabrication process generates a smooth surface (<1nm RMS), leading to laser damage thresholds of greater than 100J/cm2, which is well matched to high power laser sources. Experimental verification of the dual-optic filed mapper is presented.
NASA Technical Reports Server (NTRS)
Flamant, P. H.; Menzies, R. T.; Kavaya, M. J.; Oppenheim, U. P.
1983-01-01
A grating-tunable TEA-CO2 laser with an unstable resonator cavity, modified to allow injection of CW CO2 laser radiation at the resonant transition line by means of an intracavity NaCl window, has been used to study the coupling requirements for generation of single frequency pulses. The width and shape of the mode selection region, and the dependence of the gain-switched spike buildup time and the pulse shapes on the intensity and detuning frequency of the injected radiation are reported. Comparisons of the experimental results with previously reported mode selection behavior are discussed.
Tunable triple-wavelength mode-locked fiber laser with topological insulator Bi2Se3 solution
NASA Astrophysics Data System (ADS)
Guo, Bo; Yao, Yong
2016-08-01
We experimentally demonstrated a tunable triple-wavelength mode-locked erbium-doped fiber laser with few-layer topological insulator: Bi2Se3/polyvinyl alcohol solution. By properly adjusting the pump power and the polarization state, the single-, dual-, and triple-wavelength mode-locking operation could be stably initiated with a wavelength-tunable range (˜1 nm) and a variable wavelength spacing (1.7 or 2 nm). Meanwhile, it exhibits the maximum output power of 10 mW and pulse energy of 1.12 nJ at the pump power of 175 mW. The simple, low-cost triple-wavelength mode-locked fiber laser might be applied in various potential fields, such as optical communication, biomedical research, and sensing system.
Low-threshold photonic-band-edge laser using iron-nail-shaped rod array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jae-Hyuck; No, You-Shin; Hwang, Min-Soo
2014-03-03
We report the experimental demonstration of an optically pumped rod-type photonic-crystal band-edge laser. The structure consists of a 20 × 20 square lattice array of InGaAsP iron-nail-shaped rods. A single-mode lasing action is observed with a low threshold of ∼90 μW and a peak wavelength of 1451.5 nm at room temperature. Measurements of the polarization-resolved mode images and lasing wavelengths agree well with numerical simulations, which confirm that the observed lasing mode originates from the first Γ-point transverse-electric-like band-edge mode. We believe that this low-threshold band-edge laser will be useful for the practical implementation of nanolasers.
50 Mb/s, 220-mW Laser-Array Transmitter
NASA Technical Reports Server (NTRS)
Cornwell, Donald M., Jr.
1992-01-01
Laser transmitter based on injection locking produces single-wavelength, diffraction-limited, single-lobe beam. Output stage is array of laser diodes producing non-diffraction-limited, multi-mode beam in absence of injection locking. Suitable for both free-space and optical-fiber communication systems. Because beam from transmitter focused to spot as small as 5 micrometers, devices usable for reading and writing optical disks at increased information densities. Application also in remote sensing and ranging.
NASA Astrophysics Data System (ADS)
Nazaruk, D. E.; Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Vasil'ev, A. P.; Gladyshev, A. G.; Pavlov, M. M.; Blokhin, A. A.; Kulagina, M. M.; Vashanova, K. A.; Zadiranov, Yu M.; Fefelov, A. G.; Ustinov, V. M.
2014-12-01
A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Centeno, R.; Marchenko, D.; Mandon, J.
We present a high power, widely tunable, continuous wave external cavity quantum cascade laser designed for infrared vibrational spectroscopy of molecules exhibiting broadband and single line absorption features. The laser source exhibits single mode operation with a tunability up to 303 cm{sup −1} (∼24% of the center wavelength) at 8 μm, with a maximum optical output power of 200 mW. In combination with off-axis integrated output spectroscopy, trace-gas detection of broadband absorption gases such as acetone was performed and a noise equivalent absorption sensitivity of 3.7 × 10{sup −8 }cm{sup −1 }Hz{sup −1/2} was obtained.
Hohimer, John P.
1994-01-01
A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure.
Hohimer, J.P.
1994-06-07
A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure. 6 figs.
175 fs-long pulses from a high-power single-mode Er-doped fiber laser at 1550 nm
NASA Astrophysics Data System (ADS)
Elahi, Parviz; Kalaycıoğlu, Hamit; Li, Huihui; Akçaalan, Önder; Ilday, F. Ömer
2017-11-01
Development of Er-doped ultrafast lasers have lagged behind the corresponding developments in Yb- and Tm-doped lasers, in particular, fiber lasers. Various applications benefit from operation at a central wavelength of 1.5 μm and its second harmonic, including emerging applications such as 3D processing of silicon and 3D printing based on two-photon polymerization. We report a simple, robust fiber master oscillator power amplifier operating at 1.55 μm, implementing chirp pulse amplification using single-mode fibers for diffraction-limited beam quality. The laser generates 80 nJ pulses at a repetition rate of 43 MHz, corresponding to an average power of 3.5 W, which can be compressed down to 175 fs. The generation of short pulses was achieved using a design which is guided by numerical simulations of pulse propagation and amplification and manages to overturn gain narrowing with self-phase modulation, without invoking excessive Raman scattering processes. The seed source for the two-stage amplifier is a dispersion-managed passively mode-locked oscillator, which generates a ∼40 nm-wide spectrum and 1.7-ps linearly chirped pulses.
Laser performance and modeling of RE3+:YAG double-clad crystalline fiber waveguides
NASA Astrophysics Data System (ADS)
Li, Da; Lee, Huai-Chuan; Meissner, Stephanie K.; Meissner, Helmuth E.
2018-02-01
We report on laser performance of ceramic Yb:YAG and single crystal Tm:YAG double-clad crystalline fiber waveguide (CFW) lasers towards the goal of demonstrating the design and manufacturing strategy of scaling to high output power. The laser component is a double-clad CFW, with RE3+:YAG (RE = Yb, Tm respectively) core, un-doped YAG inner cladding, and ceramic spinel or sapphire outer cladding. Laser performance of the CFW has been demonstrated with 53.6% slope efficiency and 27.5-W stable output power at 1030-nm for Yb:YAG CFW, and 31.6% slope efficiency and 46.7-W stable output power at 2019-nm for Tm:YAG CFW, respectively. Adhesive-Free Bond (AFB®) technology enables a designable refractive index difference between core and inner cladding, and designable core and inner cladding sizes, which are essential for single transverse mode CFW propagation. To guide further development of CFW designs, we present thermal modeling, power scaling and design of single transverse mode operation of double-clad CFWs and redefine the single-mode operation criterion for the double-clad structure design. The power scaling modeling of double-clad CFW shows that in order to achieve the maximum possible output power limited by the physical properties, including diode brightness, thermal lens effect, and simulated Brillion scattering, the length of waveguide is in the range of 0.5 2 meters. The length of an individual CFW is limited by single crystal growth and doping uniformity to about 100 to 200 mm lengths, and also by availability of starting crystals and manufacturing complexity. To overcome the limitation of CFW lengths, end-to-end proximity-coupling of CFWs is introduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidler, Meinrad; Institute for Quantum Electronics, ETH Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich; Rauter, Patrick
2014-02-03
We demonstrate a multi-wavelength distributed feedback (DFB) quantum cascade laser (QCL) operating in a lensless external micro-cavity and achieve switchable single-mode emission at three distinct wavelengths selected by the DFB grating, each with a side-mode suppression ratio larger than 30 dB. Discrete wavelength tuning is achieved by modulating the feedback experienced by each mode of the multi-wavelength DFB QCL, resulting from a variation of the external cavity length. This method also provides a post-fabrication control of the lasing modes to correct for fabrication inhomogeneities, in particular, related to the cleaved facets position.
Extending Mode Areas of Single-mode All-solid Photonic Bandgap Fibers
2015-04-02
T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal ...Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006). 10. L. Dong, T. Wu, H. McKay, L. Fu...progress in mode area scaling of optical fibers. One notable area is in photonic crystal fibers (PCF) [3–5, 8, 9]. The short straight PCF rods used in
Optical stimulation of the prostate nerves: A potential diagnostic technique
NASA Astrophysics Data System (ADS)
Tozburun, Serhat
There is wide variability in sexual potency rates (9--86%) after nerve-sparing prostate cancer surgery due to limited knowledge of the location of the cavernous nerves (CN's) on the prostate surface, which are responsible for erectile function. Thus, preservation of the CN's is critical in preserving a man's ability to have spontaneous erections following surgery. Nerve-mapping devices, utilizing conventional Electrical Nerve Stimulation (ENS) techniques, have been used as intra-operative diagnostic tools to assist in preservation of the CN. However, these technologies have proven inconsistent and unreliable in identifying the CN's due to the need for physical contact, the lack of spatial selectivity, and the presence of electrical artifacts in measurements. Optical Nerve Stimulation (ONS), using pulsed infrared laser radiation, is studied as an alternative to ENS. The objective of this study is sevenfold: (1) to develop a laparoscopic laser probe for ONS of the CN's in a rat model, in vivo; (2) to demonstrate faster ONS using continuous-wave infrared laser radiation; (3) to describe and characterize the mechanism of successful ONS using alternative laser wavelengths; (4) to test a compact, inexpensive all-single-mode fiber configuration for optical stimulation of the rat CN studies; (5) to implement fiber optic beam shaping methods for comparison of Gaussian and flat-top spatial beam profiles during ONS; (6) to demonstrate successful ONS of CN's through a thin layer of fascia placed over the nerve and prostate gland; and (7) to verify the experimentally determined therapeutic window for safe and reliable ONS without thermal damage to the CN's by comparison with a computational model for thermal damage. A 5.5-Watt Thulium fiber laser operated at 1870 nm and two pigtailed, single mode, near-IR diode lasers (150-mW, 1455-nm laser and 500-mW, 1550-nm laser) were used for non-contact stimulation of the rat CN's. Successful laser stimulation, as measured by an intracavernous pressure (ICP) response in the penis, was achieved with the laser operating in CW mode. CW optical nerve stimulation provides a significantly faster ICP response time using a lower laser power laser than conventional pulsed stimulation. An all-single-mode fiber design was successfully tested in a rat model. The CN reached a threshold temperature of ˜ 42 °C, with response times as short as 3 s, and ICP responses in the rat penis of up to 50 mmHg compared to a baseline of 5--10 mmHg. Chemical etching of the distal single-mode-fiber tip produced a concave shape and transformed the Gaussian to a flat-top spatial beam profile, resulting in simplified alignment of the laser beam with the nerve. This novel, all-single-mode-fiber laser nerve stimulation system introduces several advantages including: (1) a less expensive and more compact ONS configuration; (2) elimination of alignment and cleaning bulk optical components; and (3) improved spatial beam profile for simplified alignment. For the fascia layers over the CN's (240--600 microm), the 1550 nm laser with an optical penetration depth of ˜ 930 microm in water was substituted for the 1455 nm laser. Successful ONS was achieved, for the first time, in fascia layers up to 450 microm thick which is critical for future clinical translation of this method for intra-operative identification and preservation of CN's during prostate cancer surgery. In order to define the upper limit of the therapeutic window for ONS of CN in a rat model, in vivo, identification of the thermal damage threshold for the CN after laser irradiation was investigated by direct comparison of the visible thermal damage data with a theoretical thermal damage calculation utilizing a standard Arrhenius integral model.
NASA Astrophysics Data System (ADS)
Grobnic, D.; Mihailov, S. J.; Ding, H.; Bilodeau, F.; Smelser, C. W.
2006-05-01
Multimode sapphire fibre Bragg gratings (SFBG) made with an ultrafast Ti:sapphire 800 nm laser and a phase mask were probed using a tapered single mode fibre of different taper diameters to produce single and low order mode reflection/transmission responses. A configuration made of an input single mode tapered fibre and multimode silica fibre used for output coupling was also tested and has delivered a filtered multimode transmission spectrum. The tapered coupling improved the spectral resolution of the SFBG. Such improvements facilitate the utilization of the SFBG as a high temperature sensor. Wavelength shifts of the single mode response were monitored as a function of temperature up to 1500 °C with no detectable degradation in the grating strength or hysteresis in the Bragg resonance.
NASA Astrophysics Data System (ADS)
Wu, Frank F.; Khizhnyak, Anatoliy; Markov, Vladimir
2010-02-01
We have realized a single frequency Q-switched Nd:YAG laser with precisely controllable lasing time and thus enabled synchronization of multi-laser systems. The use of injection seeding to the slave ring oscillator results in unidirectional Q-switched laser oscillation with suppression of bidirectional Q-switched oscillation that otherwise would be initiated from spontaneous emission if the seeding laser is not present. Under normal condition, the cavity is high in loss during the pumping period; then a Pockels cell opens the cavity to form the pulse build up, with a second Pockels cell to perform cavity dumping, generating the Q-switched pulse output with optimized characteristics. The two Pockels cells can be replaced by a single unit if an adjustable gated electrical pulse is applied to the Pockels cell in which the pulse front is used to open the cavity and the falling edge to dump the laser pulse. Proper selection of the pump parameters and Pockels-cell gating enables operation of the system in a mode in which the Q-switched pulse can be formed only under the seeding condition. The advantage of the realized regime is in stable laser operation with no need in adjustment of the seeded light wavelength and the mode of the cavity. It is found that the frequency of the Q-switched laser radiation matches well to the injected seeded laser mode. By using two-stage amplifiers, an output energy better than 300 mJ has been achieved in MOPA configuration without active control of the cavity length and with pulse width adjustability from several nanoseconds to 20 ns. The Q-switched oscillator operates not only at precisely controlled firing time but also can be tuned over wide range. This will enable multi-laser systems synchronization and frequency locking down each other if necessary.
NASA Technical Reports Server (NTRS)
Martin, R. D.; Forouhar, S.; Keo, S.; Lang, R. J.; Hunsperger, R. G.; Tiberio, R. C.; Chapman, P. F.
1995-01-01
Single-mode distributed feedback (DFB) laser diodes typically require a two-step epitaxial growth or use of a corrugated substrate. We demonstrate InGaAs-GaAs-AlGaAs DFB lasers fabricated from a single epitaxial growth using lateral evanescent coupling of the optical field to a surface grating etehed along the sides of the ridge. A CW threshold current of 25 mA and external quantum efficiency of 0.48 mW/mA per facet were measured for a 1 mm cavity length device with anti-reflection coated facets. Single-mode output powers as high as 11 mW per facet at 935 nm wavelength were attained. A coupling coefficient of at least 5.8/cm was calculated from the subthreshold spectrum taking into account the 2% residual facet reflectivity.
High power, electrically tunable quantum cascade lasers
NASA Astrophysics Data System (ADS)
Slivken, Steven; Razeghi, Manijeh
2016-02-01
Mid-infrared laser sources (3-14 μm wavelengths) which have wide spectral coverage and high output power are attractive for many applications. This spectral range contains unique absorption fingerprints of most molecules, including toxins, explosives, and nerve agents. Infrared spectroscopy can also be used to detect important biomarkers, which can be used for medical diagnostics by means of breath analysis. The challenge is to produce a broadband midinfrared source which is small, lightweight, robust, and inexpensive. We are currently investigating monolithic solutions using quantum cascade lasers. A wide gain bandwidth is not sufficient to make an ideal spectroscopy source. Single mode output with rapid tuning is desirable. For dynamic wavelength selection, our group is developing multi-section laser geometries with wide electrical tuning (hundreds of cm-1). These devices are roughly the same size as a traditional quantum cascade lasers, but tuning is accomplished without any external optical components. When combined with suitable amplifiers, these lasers are capable of multi-Watt single mode output powers. This manuscript will describe our current research efforts and the potential for high performance, broadband electrical tuning with the quantum cascade laser.
Tuning a Tetrahertz Wire Laser
NASA Technical Reports Server (NTRS)
Qin, Qi; Williams, Benjamin S.; Kumar, Sushil; Reno, John L.; Hu, Qing
2009-01-01
Tunable terahertz lasers are desirable in applications in sensing and spectroscopy because many biochemical species have strong spectral fingerprints at terahertz frequencies. Conventionally, the frequency of a laser is tuned in a similar manner to a stringed musical instrument, in which pitch is varied by changing the length of the string (the longitudinal component of the wave vector) and/ or its tension (the refractive index). However, such methods are difficult to implement in terahertz semiconductor lasers because of their poor outcoupling efficiencies. Here, we demonstrate a novel tuning mechanism based on a unique 'wire laser' device for which the transverse dimension w is much much less than lambda. Placing a movable object close to the wire laser manipulates a large fraction of the waveguided mode propagating outside the cavity, thereby tuning its resonant frequency. Continuous single-mode redshift and blueshift tuning is demonstrated for the same device by using either a dielectric or metallic movable object. In combination, this enables a frequency tuning of approximately equal to 137 GHz (3.6%) from a single laser device at approximately equal to 3.8 THz.
Single frequency 1083nm ytterbium doped fiber master oscillator power amplifier laser.
Huang, Shenghong; Qin, Guanshi; Shirakawa, Akira; Musha, Mitsuru; Ueda, Ken-Ichi
2005-09-05
Single frequency 1083nm ytterbium fiber master oscillator power amplifier system was demonstrated. The oscillator was a linear fiber cavity with loop mirror filter and polarization controller. The loop mirror with unpumped ytterbium fiber as a narrow bandwidth filter discriminated and selected laser longitudinal modes efficiently. Spatial hole burning effect was restrained by adjusting polarization controller appropriately in the linear cavity. The amplifier was 5 m ytterbium doped fiber pumped by 976nm pigtail coupled laser diode. The linewidth of the single frequency laser was about 2 KHz. Output power up to 177 mW was produced under the launched pump power of 332 mW.
Tunable self-seeded multi-wavelength Brillouin-erbium fiber laser based on few-mode fiber filter
NASA Astrophysics Data System (ADS)
Zou, Hui; Ma, Lei; Xiong, Hui; Zhang, Yun-shan; Liu, Chun-xiao
2017-11-01
A tunable self-seeded multi-wavelength Brillouin-erbium fiber laser (BEFL) is proposed and demonstrated based on a few-mode fiber filter (FMFF) with varying temperature. The FMFF configuration is a section of uncoated few-mode fiber (FMF) sandwiched between two up-tapers. As the temperature varies from 25 °C to 125 °C, the transmission spectrum of FMFF moves towards the longer wavelength. The self-excited Brillouin pump is internally achieved by cascaded stimulated Brillouin scattering (SBS) in the single mode fiber (SMF). Then employing the FMFF temperature variation characteristics in the ring cavity fiber laser, the multi-wavelength of the output laser can be tuned, and the tunable range is about 8.0 nm. The generation of up to 15 Brillouin Stokes wavelengths with 16 dB optical signal- to-noise ratio ( OSNR) is realized.
2-kW single-mode fiber laser employing bidirectional-pump scheme
NASA Astrophysics Data System (ADS)
Zhang, Fan; Zheng, Wenyou; Shi, Pengyang; Zhang, Xinhai
2018-01-01
2kW single-mode fiber laser with two cascade home-made cladding light strippers (CLSs) by employing bidirectionalpump scheme has been demonstrated. 2.009 kW signal power is obtained when pump power is 2.63 kW and the slope efficiency is 76.6%. Raman Stokes light is less than -47 dB at 2.009 kW even with a 10-m delivery fiber with core/inner cladding diameter of 20/400um. The beam quality M2<=1.2 and the spectral FWHM bandwidth is 4.34nm. There is no transverse mode instability and the output power stability of +/-0.14% is achieved by special thermal management for a more uniform temperature distribution on the Yb-doped gain fiber.
Coupling effects in the modal emission of colloidal quantum dot microdisk lasers.
NASA Astrophysics Data System (ADS)
Lafalce, Evan; Zheng, Qingji; Lin, Chunhao; Smith, Marcus; Malak, Sidney; Jung, Jaehan; Yoon, Young; Lin, Zhiqun; Tsukruk, Vladimir; Vardeny, Z. Valy
Solution-processed semiconductors such as colloidal quantum dots (CQD) are particularly suited materials for monolithic fabrication of laser microstructures because of their ease of fabrication and compatibility with conventional lithographic techniques. We use the functionality of core/alloyed-shell CQDs to fabricate microdisk lasers of variable size and study the resulting whispering-gallery mode laser emission. In particular we study the effects of near-field coupling on resonant modes of pairs of these lasers with sub-micrometer spacing. We demonstrate the occurrence of lasing modes that originate from the interaction between two such microdisks by means of varying the spatial distribution and magnitude of the gain and loss in the coupled-pair. The transition from emission of modes localized on a single disk to those of the interacting pair is accompanied by coalescence of eigen-frequencies and pump-induced turn-off of lasing, highlighting the role of parity-time symmetry and exceptional point physics. This work was funded by AFOSR through MURI Grant RA 9550-14-1-0037.
Development of a compact laser-based single photon ionization time-of-flight mass spectrometer
NASA Astrophysics Data System (ADS)
Tonokura, Kenichi; Kanno, Nozomu; Yamamoto, Yukio; Yamada, Hiroyuki
2010-02-01
We have developed a compact, laser-based, single photon ionization time-of-flight mass spectrometer (SPI-TOF-MS) for on-line monitoring of trace organic species. To obtain the mass spectrum, we use a nearly fragmentation-free SPI technique with 10.5 eV (118 nm) vacuum ultraviolet laser pulses generated by frequency tripling of the third harmonic of an Nd:YAG laser. The instrument can be operated in a linear TOF-MS mode or a reflectron TOF-MS mode in the coaxial design. We designed ion optics to optimize detection sensitivity and mass resolution. For data acquisition, the instrument is controlled using LabVIEW control software. The total power requirement for the vacuum unit, control electronics unit, ion optics, and detection system is approximately 100 W. We achieve a detection limit of parts per billion by volume (ppbv) for on-line trace analysis of several organic compounds. A mass resolution of 800 at about 100 amu is obtained for reflectron TOF-MS mode in a 0.35 m long instrument. The application of on-line monitoring of diesel engine exhaust was demonstrated.
Mode structure of a quantum cascade laser
NASA Astrophysics Data System (ADS)
Bogdanov, A. A.; Suris, R. A.
2011-03-01
We analyze the mode structure of a quantum cascade laser (QCL) cavity considering the surface plasmon-polariton modes and familiar modes of hollow resonator jointly, within a single model. We present a comprehensive mode structure analysis of the laser cavity, varying its geometric parameters and free electron concentration inside cavity layers within a wide range. Our analysis covers, in particular, the cases of metal-insulator-metal and insulator-metal-insulator waveguides. We discuss the phenomenon of negative dispersion for eigenmodes in detail and explain the nature of this phenomenon. We specify a waveguide parameters domain in which negative dispersion exists. The mode structure of QCL cavity is considered in the case of the anisotropic electrical properties of the waveguide materials. We show that anisotropy of the waveguide core results in propagation of Langmuir modes that are degenerated in the case of the isotropic core. Comparative analysis of optical losses due to free carrier absorption is presented for different modes within the frequency range from terahertz to ultraviolet frequencies.
Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Wong, Jia Haur; Wu, Kan; Liu, Huan Huan; Ouyang, Chunmei; Wang, Honghai; Aditya, Sheel; Shum, Ping; Fu, Songnian; Kelleher, E. J. R.; Chernov, A.; Obraztsova, E. D.
2011-04-01
Polarization Rotation Locked Vector Solitons (PRLVSs) are experimentally observed for the first time in a fiber ring laser passively mode-locked by a single-wall carbon nanotube (SWCNT) saturable absorber. Period-doubling of these solitons at certain birefringence values has also been observed. We show that fine adjustment to the intracavity birefringence can swing the PRLVSs from period-doubled to period-one state without simultaneous reduction in the pump strength. The timing jitter for both states has also been measured experimentally and discussed analytically using the theoretical framework provided by the Haus model.
Tunable mode and line selection by injection in a TEA CO2 laser
NASA Technical Reports Server (NTRS)
Menzies, R. T.; Flamant, P. H.; Kavaya, M. J.; Kuiper, E. N.
1984-01-01
Tunable mode selection by injection in pulsed CO2 lasers is examined, and both analytical and numerical models are used to compute the required injection power for a variety of experimental cases. These are treated in two categories: mode selection at a desired frequency displacement from the center frequency of a transition line in a dispersive cavity and mode (and line) selection at the center frequency of a selected transition line in a nondispersive cavity. The results point out the potential flexibility of pulsed injection in providing wavelength tunable high-energy single-frequency pulses.
Titanium-doped sapphire laser research and design study
NASA Technical Reports Server (NTRS)
Moulton, Peter F.
1987-01-01
Three main topics were considered in this study: the fundamental laser parameters of titanium-doped sapphire, characterization of commercially grown material, and design of a tunable, narrow-linewidth laser. Fundamental parameters investigated included the gain cross section, upper-state lifetime as a function of temperature and the surface-damage threshold. Commercial material was found to vary widely in the level of absorption of the laser wavelength with the highest absorption in Czochralski-grown crystals. Several Yi:sapphire lasers were constructed, including a multimode laser with greater than 50mJ of output energy and a single-transverse-mode ring laser, whose spectral and temporal characteristics were completely characterized. A design for a narrow-linewidth (single-frequency) Ti:sapphire laser was developed, based on the results of the experimental work. The design involves the use of a single-frequency, quasi-cw master oscillator, employed as an injection source for a pulsed ring laser.
Facet-embedded thin-film III-V edge-emitting lasers integrated with SU-8 waveguides on silicon.
Palit, Sabarni; Kirch, Jeremy; Huang, Mengyuan; Mawst, Luke; Jokerst, Nan Marie
2010-10-15
A thin-film InGaAs/GaAs edge-emitting single-quantum-well laser has been integrated with a tapered multimode SU-8 waveguide onto an Si substrate. The SU-8 waveguide is passively aligned to the laser using mask-based photolithography, mimicking electrical interconnection in Si complementary metal-oxide semiconductor, and overlaps one facet of the thin-film laser for coupling power from the laser to the waveguide. Injected threshold current densities of 260A/cm(2) are measured with the reduced reflectivity of the embedded laser facet while improving single mode coupling efficiency, which is theoretically simulated to be 77%.
NASA Technical Reports Server (NTRS)
Kim, Kyong H.; Choi, Young S.; Barnes, Norman P.; Hess, Robert V.; Bair, Clayton H.; Brockman, Philip
1993-01-01
Flash-lamp-pumped normal-mode and Q-switched 2.1-micron laser operations of Ho:Tm:Cr:YAG crystals have been evaluated under a wide variety of experimental conditions in order to determine an optimum lasing condition and to characterize the laser outputs. Q-switched laser-output energies equal to, or in some cases exceeding the normal-mode laser energies, were obtained in the form of a strong single spike through an optimization of the opening time of a lithium niobate Q switch. The increase of the normal-mode laser slope efficiency was observed with the increase of the Tm concentration from 2.5 to 4.5 at. pct at operating temperatures from 120 K to near room temperature. Laser transitions were observed only at 2.098 and 2.091 microns under various conditions. The 2.091-micron laser transition appeared to be dominant at high-temperature operations with low-reflective-output couplers.
Pulsed Submillimeter Laser Program.
1979-05-15
number of interrelated subsystems required for a heterodyning FIR radar were investigated. The work focused on optically pumped FIR lasers which... laser pressure. Figure 9 illustrates the effect on optical shape of raising laser pressure. It can be seen that considerable pulse shortening occurs as...range in which single transverse mode operation of a TE CO2 laser has been achieved. For the purposes of this program the optical cavity was
NASA Astrophysics Data System (ADS)
Frank, Milan; Jelínek, Michal; Kubeček, Václav
2015-01-01
In this paper the operation of pulsed diode-pumped Nd:GdVO4 laser oscillator in bounce geometry passively modelocked using semiconductor saturable absorber mirror (SAM), generating microjoule level picosecond pulses at wavelength of 1063 nm, is reported. Optimization of the output coupling for generation either Q-switched mode locked pulse trains or cavity dumped single pulses with maximum energy was performed, which resulted in extraction of single pulses as short as 10 ps and energy of 20 uJ. In comparison with the previous results obtained with this Nd:GdVO4 oscillator and saturable absorber in transmission mode, the achieved pulse duration is five times shorter. Using different absorbers and parameters of single pulse extraction enables generation of the pulses with duration up to 100 ps with the energy in the range from 10 to 20 μJ.
Patimisco, Pietro; Sampaolo, Angelo; Mihai, Laura; Giglio, Marilena; Kriesel, Jason; Sporea, Dan; Scamarcio, Gaetano; Tittel, Frank K; Spagnolo, Vincenzo
2016-04-13
We demonstrated low-loss and single-mode laser beam delivery through hollow-core waveguides (HCWs) operating in the 3.7-7.6 μm spectral range. The employed HCWs have a circular cross section with a bore diameter of 200 μm and metallic/dielectric internal coatings deposited inside a glass capillary tube. The internal coatings have been produced to enhance the spectral response of the HCWs in the range 3.5-12 µm. We demonstrated Gaussian-like outputs throughout the 4.5-7.6 µm spectral range. A quasi single-mode output beam with only small beam distortions was achieved when the wavelength was reduced to 3.7 μm. With a 15-cm-long HCW and optimized coupling conditions, we measured coupling efficiencies of >88% and transmission losses of <1 dB in the investigated infrared spectral range.
Long-wavelength vertical-cavity laser research at Gore
NASA Astrophysics Data System (ADS)
Jayaraman, Vijaysekhar; Geske, J. C.; MacDougal, Michael H.; Peters, Frank H.; Lowes, Ted D.; Char, T. T.; Van Deusen, Dale R.; Goodnough, T.; Donhowe, Mark N.; Kilcoyne, Sean P.; Welch, David J.
1999-04-01
Vertical cavity surface emitting lasers (VCSELs) operating near 1310 or 1550 nm have been the subject of intensive research by multiple groups for several years. In the past year at Gore, we have demonstrated the first 1300 nm VCSELs which operate with useful power, high modulation rate, and low voltage over the commercial temperature range of 0 - 70 degree(s)C. These results have been achieved using a new structure in which an 850 nm VCSEL optical pump is integrated with the 1300 nm VCSEL. Electrical drive is applied to the 850 nm pump, and 1300 nm light is emitted from the integrated structure. This approach has resulted in over a milliwatt of single transverse mode power at room temperature, and several hundred microwatts of single transverse mode power at 70 degree(s)C. In addition, these devices demonstrate multi-gigabit modulation and excellent coupling efficiency to single-mode fiber.
Transition of lasing modes in polymeric opal photonic crystal resonating cavity.
Shi, Lan-Ting; Zheng, Mei-Ling; Jin, Feng; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming
2016-06-10
We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81 μJ/pulse for single mode lasing emission and 2.25 μJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.
Humidity sensor based on intracavity sensing of fiber ring laser
NASA Astrophysics Data System (ADS)
Shi, Jia; Xu, Wei; Xu, Degang; Wang, Yuye; Zhang, Chao; Yan, Chao; Yan, Dexian; He, Yixin; Tang, Longhuang; Zhang, Weihong; Yao, Jianquan
2017-10-01
A humidity sensor based on the intracavity sensing of a fiber ring laser is proposed and experimentally demonstrated. In the fiber ring laser, a humidity-sensitive fiber-optic multimode interferometer (MMI), fabricated by the single-mode-no-core-single-mode (SNCS) fiber coated with Agarose, works as the wavelength-selective filter for intracavity wavelength-modulated humidity sensing. The experiment shows that the lasing wavelength of the fiber laser has a good linear response to ambient humidity from 35%RH to 95%RH. The humidity sensitivity of -68 pm/%RH is obtained with a narrow 3 dB bandwidth less than 0.09 nm and a high signal-to-noise ratio (SNR) ˜60 dB. The time response of the sensor has been measured to be as fast as 93 ms. The proposed sensor possesses a good stability and low temperature cross-sensitivity.
NASA Astrophysics Data System (ADS)
Mohammed, D. Z.; Khaleel, Wurood Abdulkhaleq; Al-Janabi, A. H.
2017-12-01
Ferro-oxide (Fe3O4) nanoparticles were used as a saturable absorber (SA) for a passively Q-switched erbium doped fiber laser (EDFL) with ring cavity. The Q-switching operation was achieved at a pump threshold of 80 mW. The proposed fiber laser produces stable pulses train of repetition rate ranging from 25 kHz to 80 kHz as the pump power increases from threshold to 342 mW. The minimum recorded pulse width was 2.7 μs at 342 mW. The C-band tunability operation was performed using single mode-multimode-single mode fiber (SM-MM-SM) structure. The laser exhibited a total tuning range of 7 nm, maximum sensitivity of 106.9 nm, optical signal to noise ratio (OSNR) of 38 dB and 3-dB linewidth of 0.06 nm.
Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature
NASA Astrophysics Data System (ADS)
Bousseksou, A.; Chassagneux, Y.; Coudevylle, J. R.; Colombelli, R.; Sirtori, C.; Patriarche, G.; Beaudoin, G.; Sagnes, I.
2009-08-01
We report distributed-feedback surface-plasmon quantum cascade lasers operating at λ ≈7.6μm. The distributed feedback is obtained by the sole patterning of the top metal contact on a surface plasmon waveguide. Single mode operation with more than 30dB side mode suppression ratio is obtained in pulsed mode and at room temperature. A careful experimental study confirms that by varying the grating duty cycle, one can reduce the waveguide losses with respect to standard, unpatterned surface-plasmon devices. This allows one to reduce the laser threshold current of more than a factor of 2 in the 200-300K temperature range. This approach may lead to a fabrication technology for midinfrared distributed-feedback lasers based on a very simple processing.
Okhrimchuk, Andrey; Mezentsev, Vladimir; Shestakov, Alexander; Bennion, Ian
2012-02-13
A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.
High power industrial picosecond laser from IR to UV
NASA Astrophysics Data System (ADS)
Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François
2013-02-01
Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.
Terahertz plasmonic laser radiating in an ultra-narrow beam
Wu, Chongzhao; Khanal, Sudeep; Reno, John L.; ...
2016-07-07
Plasmonic lasers (spasers) generate coherent surface plasmon polaritons (SPPs) and could be realized at subwavelength dimensions in metallic cavities for applications in nanoscale optics. Plasmonic cavities are also utilized for terahertz quantum-cascade lasers (QCLs), which are the brightest available solid-state sources of terahertz radiation. A long standing challenge for spasers that are utilized as nanoscale sources of radiation, is their poor coupling to the far-field radiation. Unlike conventional lasers that could produce directional beams, spasers have highly divergent radiation patterns due to their subwavelength apertures. Here, we theoretically and experimentally demonstrate a new technique for implementing distributed feedback (DFB) thatmore » is distinct from any other previously utilized DFB schemes for semiconductor lasers. The so-termed antenna-feedback scheme leads to single-mode operation in plasmonic lasers, couples the resonant SPP mode to a highly directional far-field radiation pattern, and integrates hybrid SPPs in surrounding medium into the operation of the DFB lasers. Experimentally, the antenna-feedback method, which does not require the phase matching to a well-defined effective index, is implemented for terahertz QCLs, and single-mode terahertz QCLs with a beam divergence as small as 4°×4° are demonstrated, which is the narrowest beam reported for any terahertz QCL to date. Moreover, in contrast to a negligible radiative field in conventional photonic band-edge lasers, in which the periodicity follows the integer multiple of half-wavelengths inside the active medium, antenna-feedback breaks this integer limit for the first time and enhances the radiative field of the lasing mode. Terahertz lasers with narrow-beam emission will find applications for integrated as well as standoff terahertz spectroscopy and sensing. Furthermore, the antenna-feedback scheme is generally applicable to any plasmonic laser with a Fabry–Perot cavity irrespective of its operating wavelength and could bring plasmonic lasers closer to practical applications.« less
Parity–time-symmetric circular Bragg lasers: a proposal and analysis
Gu, Jiahua; Xi, Xiang; Ma, Jingwen; Yu, Zejie; Sun, Xiankai
2016-01-01
We propose a new type of semiconductor lasers by implementing the concept of parity–time symmetry in a two-dimensional circular Bragg grating structure, where both the real and imaginary parts of the refractive index are modulated along the radial direction. The laser modal properties are analyzed with a transfer-matrix method and are verified with numerical simulation of a practical design. Compared with conventional distributed-feedback lasers with modulation of only the real part of refractive index, the parity–time-symmetric circular Bragg lasers feature reduced threshold and enhanced modal discrimination, which in combination with the intrinsic circularly symmetric, large emission aperture are clear advantages in applications that require mode-hop-free, high-power, single-mode laser operation. PMID:27892933
Spectrally resolved far-fields of terahertz quantum cascade lasers.
Brandstetter, Martin; Schönhuber, Sebastian; Krall, Michael; Kainz, Martin A; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron M; Strasser, Gottfried; Unterrainer, Karl
2016-10-31
We demonstrate a convenient and fast method to measure the spectrally resolved far-fields of multimode terahertz quantum cascade lasers by combining a microbolometer focal plane array with an FTIR spectrometer. Far-fields of fundamental TM0 and higher lateral order TM1 modes of multimode Fabry-Pérot type lasers have been distinguished, which very well fit to the results obtained by a 3D finite-element simulation. Furthermore, multimode random laser cavities have been investigated, analyzing the contribution of each single laser mode to the total far-field. The presented method is thus an important tool to gain in-depth knowledge of the emission properties of multimode laser cavities at terahertz frequencies, which become increasingly important for future sensing applications.
Broadband tunable mid-IR Cr2+:CdSe lasers for medical applications
NASA Astrophysics Data System (ADS)
Tarabrin, Mikhail K.; Lasarev, Vladimir A.; Tomilov, Sergey M.; Karasik, Valery E.; Tuchin, Valery V.
2018-04-01
Currently, lasers are widely used for surgery, medical diagnostics and oncology research. Unfortunately, most of the used laser sources have a significant drawback - the lack of operating wavelength tuning possibility, which imposes significant limitations on the investigation of biological tissues spectral properties and searching for the optimal mode of their treatment. Comparison between different promising mid-IR sources was made. We report on development of mid-infrared (mid-IR) tunable lasers based on the Cr2+:CdSe single-crystals. These lasers operate in CW mode with the maximum output power of up to 2 W and possible tuning range from 2.2 to 3.6 μm.
Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1999-01-01
Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by two methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback. We coupled a nominal 935 run-wavelength Fabry-Perot laser diode to an ultra narrow band (18 pm) FBG. When tuned by varying its temperature, the laser wavelength is pulled toward the centerline of the Bragg grating, and the spectrum of the laser output is seen to fall into three discrete stability regimes as measured by the side-mode suppression ratio.
Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors.
Mansuripur, Tobias S; Menzel, Stefan; Blanchard, Romain; Diehl, Laurent; Pflügl, Christian; Huang, Yong; Ryou, Jae-Hyun; Dupuis, Russell D; Loncar, Marko; Capasso, Federico
2012-10-08
We demonstrate a three-section, electrically pulsed quantum cascade laser which consists of a Fabry-Pérot section placed between two sampled grating distributed Bragg reflectors. The device is current-tuned between ten single modes spanning a range of 0.46 μm (63 cm(-1)), from 8.32 to 8.78 μm. The peak optical output power exceeds 280 mW for nine of the modes.
Completely monolithic linearly polarized high-power fiber laser oscillator
NASA Astrophysics Data System (ADS)
Belke, Steffen; Becker, Frank; Neumann, Benjamin; Ruppik, Stefan; Hefter, Ulrich
2014-03-01
We have demonstrated a linearly polarized cw all-in-fiber oscillator providing 1 kW of output power and a polarization extinction ratio (PER) of up to 21.7 dB. The design of the laser oscillator is simple and consists of an Ytterbium-doped polarization maintaining large mode area (PLMA) fiber and suitable fiber Bragg gratings (FBG) in matching PLMA fibers. The oscillator has nearly diffraction-limited beam quality (M² < 1.2). Pump power is delivered via a high power 6+1:1 pump coupler. The slope efficiency of the laser is 75 %. The electro/optical efficiency of the complete laser system is ~30 % and hence in the range of Rofin's cw non-polarized fiber lasers. Choosing an adequate bending diameter for the Yb-doped PLMA fiber, one polarization mode as well as higher order modes are sufficiently supressed1. Resulting in a compact and robust linearly polarized high power single mode laser without external polarizing components. Linearly polarized lasers are well established for one dimensional cutting or welding applications. Using beam shaping optics radially polarized laser light can be generated to be independent from the angle of incident to the processing surface. Furthermore, high power linearly polarized laser light is fundamental for nonlinear frequency conversion of nonlinear materials.
NASA Astrophysics Data System (ADS)
Chen, Wei-Guo; Lou, Shu-Qin; Wang, Li-Wen; Li, Hong-Lei; Guo, Tieying; Jian, Shui-Sheng
2010-03-01
The switchable dual-wavelength erbium-doped fiber laser (EDFL) with a two-mode photonic crystal fiber (PCF) loop mirror and a chirped fiber Bragg grating (CFBG) at room temperature is proposed and experimentally demonstrated. The two-mode PCF loop mirror is formed by inserting a piece of two-mode PCF into a Sagnac loop mirror, with the air-holes of the PCF intentionally collapsing at the splices. By adjusting the state of the polarization controller (PC) appropriately, the laser can be switched between the stable single- and dual-wavelength operations by means of the polarization hole burning (PHB) and spectral hole burning (SHB) effects.
NASA Astrophysics Data System (ADS)
Bulushev, A. G.; Dianov, Evgenii M.; Kuznetsov, A. V.; Okhotnikov, O. G.; Paramonov, Vladimir M.; Tsarev, Vladimir A.
1990-05-01
A study was made of the use of single-mode fiber ring interferometers in narrowing the emission lines of semiconductor lasers and increasing the optical radiation power. Efficient coupling of radiation, emitted by a multifrequency injection laser with an external resonator, into a fiber ring interferometer was achieved both under cw and mode-locking conditions. Matching of the optical lengths of the external resonator and the fiber interferometer made it possible to determine the mode width for this laser. A method for generation of optical pulses in a fiber ring interferometer from cw frequency modulated radiation was developed.
Lateral modes of broad area semiconductor lasers - Theory and experiment
NASA Technical Reports Server (NTRS)
Lang, Robert J.; Larsson, Anders G.; Cody, Jeffrey G.
1991-01-01
Calculations of the lateral modes of an ideal broad area laser, including the nonlinear interaction between the carriers and the optical field, are made. The results include periodically modulated near fields and single- and double-lobed far fields similar to those previously measured. The unsaturable losses are higher and quantum efficiencies are lower than those determined from plane-wave approximations. Broad area InGaAs-GaAlAs-GaAs quantum-well lasers were fabricated and measured and found to closely agree with the theory in near, far, and spectrally resolved near fields. An occultation experiment on the far field confirms previously predicted unstable resonatorlike modes with V-shaped fronts.
Zhang, Qian; Yang, Dong; Qi, Jia; Cheng, Ya; Gong, Qihuang; Li, Yan
2017-06-12
We report single scan transverse writing of depressed cladding waveguides inside ZBLAN glass with the longitudinally oriented annular ring-shaped focal intensity distribution of the femtosecond laser. The entire region of depressed cladding at the cross section, where a negative change of refraction index is induced, can be modified simultaneously with the ring-shaped focal intensity profile. The fabricated waveguides exhibit good single guided mode.
Eye safe high power laser diode in the 1410-1550nm range
NASA Astrophysics Data System (ADS)
Boucart, Julien; de Largy, Brian; Kearley, Mark; Lichtenstein, Norbert
2010-02-01
The demand for high power lasers emitting in the 14xx-15xxnm range is growing for applications in fields such as medical or homeland security. We demonstrate high power laser diodes with emission at 1430, 1470 and 1560 nm. Single multimode emitters at 1470nm emit about 3.5W in CW operation. Power conversion efficiency can reach values as high as 38.5%. With this base material, single and multi-emitter fiber coupled modules are built. Additionally, bars on passive and microchannel coolers are fabricated that deliver 25W and 38W respectively in CW mode, while obtaining more than 80 W in pulsed mode. All reliability tests show an outstanding stability of the material with no signs of wearout after 3750 hrs under strong acceleration conditions.
Planar waveguide nanolaser configured by dye-doped hybrid nanofilm on substrate
NASA Astrophysics Data System (ADS)
Tikhonov, E. A.; Yashchuk, V. P.; Telbiz, G. M.
2018-04-01
Dye-doped hybrid silicate/titanium nanofilms on the glass substrate structures of asymmetrical waveguides were studied by way of laser systems. The threshold, spatial and spectral features of the laser oscillation of genuine and hollow waveguides were determined. The pattern of stimulated radiation included two concurrent processes: single-mode waveguide lasing and lateral small divergence emission. Comparison of the open angle of the lateral beams and grazing angles of the waveguide lasing mode provides an insight into the effect of leaky mode emission followed by Lummer-Gehrcke interference.
High power operation of cladding pumped holmium-doped silica fibre lasers.
Hemming, Alexander; Bennetts, Shayne; Simakov, Nikita; Davidson, Alan; Haub, John; Carter, Adrian
2013-02-25
We report the highest power operation of a resonantly cladding-pumped, holmium-doped silica fibre laser. The cladding pumped all-glass fibre utilises a fluorine doped glass layer to provide low loss cladding guidance of the 1.95 µm pump radiation. The operation of both single mode and large-mode area fibre lasers was demonstrated, with up to 140 W of output power achieved. A slope efficiency of 59% versus launched pump power was demonstrated. The free running emission was measured to be 2.12-2.15 µm demonstrating the potential of this architecture to address the long wavelength operation of silica based fibre lasers with high efficiency.
Monolithic single mode interband cascade lasers with wide wavelength tunability
NASA Astrophysics Data System (ADS)
von Edlinger, M.; Weih, R.; Scheuermann, J.; Nähle, L.; Fischer, M.; Koeth, J.; Kamp, M.; Höfling, S.
2016-11-01
Monolithic two-section interband cascade lasers offering a wide wavelength tunability in the wavelength range around 3.7 μm are presented. Stable single mode emission in several wavelength channels was realized using the concept of binary superimposed gratings and two-segment Vernier-tuning. The wavelength selective elements in the two segments were based on specially designed lateral metal grating structures defined by electron beam lithography. A dual-step dry etch process provided electrical separation between the segments. Individual current control of the segments allowed wavelength channel selection as well as continuous wavelength tuning within channels. A discontinuous tuning range extending over 158 nm in up to six discrete wavelength channels was achieved. Mode hop free wavelength tuning up to 14 nm was observed within one channel. The devices can be operated in continuous wave mode up to 30 °C with the output powers of 3.5 mW around room temperature.
NASA Astrophysics Data System (ADS)
Grobnic, Dan; Mihailov, Stephen J.; Ding, H.; Bilodeau, F.; Smelser, Christopher W.
2005-05-01
Multimode sapphire fiber Bragg gratings (SFBG) made with an IR femtosecond laser and a phase mask were probed using tapered single mode fibers of different taper diameters producing single and low order mode reflection/transmission responses. A configuration made of an input single mode tapered fiber and multimode silica fiber used for output coupling was also tested and has delivered a filtered multimode transmission spectrum. The tapered coupling improved the spectral resolution of the SFBG as compared to its multimode responses previously reported. Such improvements facilitate the utilization of the SFBG as a high temperature sensor. Wavelength shifts of the single mode response were monitored as a function of temperature up to 1500 °C and were consistent with the measurement obtained from the multimode response published previously.
5-nJ Femtosecond Ti3+:sapphire laser pumped with a single 1 W green diode
NASA Astrophysics Data System (ADS)
Muti, Abdullah; Kocabas, Askin; Sennaroglu, Alphan
2018-05-01
We report a Kerr-lens mode-locked, extended-cavity femtosecond Ti3+:sapphire laser directly pumped at 520 nm with a 1 W AlInGaN green diode. To obtain energy scaling, the short x-cavity was extended with a q-preserving multi-pass cavity to reduce the pulse repetition rate to 5.78 MHz. With 880 mW of incident pump power, we obtained as high as 90 mW of continuous-wave output power from the short cavity by using a 3% output coupler. In the Kerr-lens mode-locked regime, the extended cavity produced nearly transform-limited 95 fs pulses at 776 nm. The resulting energy and peak power of the pulses were 5.1 nJ and 53 kW, respectively. To our knowledge, this represents the highest pulse energy directly obtained to date from a mode-locked, single-diode-pumped Ti3+:sapphire laser.
Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing.
Yang, Weijia; Corbari, Costantino; Kazansky, Peter G; Sakaguchi, Koichi; Carvalho, Isabel C S
2008-09-29
Single mode, low loss waveguides were fabricated in high index bismuth borate glass by femtosecond laser direct writing. A specific set of writing parameters leading to waveguides perfectly mode matched to standard single-mode fibers at 1.55 microm with an overall insertion loss of approximately 1 dB and with propagation loss below 0.2 dB/cm was identified. Photonic components such as Y-splitters and directional couplers were also demonstrated. A close agreement between their performances and theoretical predictions based upon the characterization of the waveguide properties is shown. Finally, the nonlinear refractive index of the waveguides has been measured to be 6.6 x 10(-15) cm(2)/W by analyzing self-phase modulation of the propagating femtosecond laser pulse at the wavelength of 1.46 microm. Broadening of the transmitted light source as large as 500 nm was demonstrated through a waveguide with the length of 1.8 cm.
Suppression of thermal transients in advanced LIGO interferometers using CO2 laser preheating
NASA Astrophysics Data System (ADS)
Jaberian Hamedan, V.; Zhao, C.; Ju, L.; Blair, C.; Blair, D. G.
2018-06-01
In high optical power interferometric gravitational wave detectors, such as Advanced LIGO, the thermal effects due to optical absorption in the mirror coatings and the slow thermal response of fused silica substrate cause time dependent changes in the mirror profile. After locking, high optical power builds up in the arm cavities. Absorption induced heating causes optical cavity transverse mode frequencies to drift over a period of hours, relative to the fundamental mode. At high optical power this can cause time dependent transient parametric instability, which can lead to interferometer disfunction. In this paper, we model the use of CO2 laser heating designed to enable the interferometer to be maintained in a thermal condition such that transient changes in the mirrors are greatly reduced. This can minimize transient parametric instability and compensate dark port power fluctuations. Modeling results are presented for both single compensation where a CO2 laser acting on one test mass per cavity, and double compensation using one CO2 laser for each test mass. Using parameters of the LIGO Hanford Observatory X-arm as an example, single compensation allows the maximum mode frequency shift to be limited to 6% of its uncompensated value. However, single compensation causes transient degradation of the contrast defect. Double compensation minimise contrast defect degradation and reduces transients to less than 1% if the CO2 laser spot is positioned within 2 mm of the cavity beam position.
Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.
2008-01-01
In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of <2. The single frequency UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.
NASA Astrophysics Data System (ADS)
Vitshas, A. A.; Zelentsov, A. G.; Lopota, V. A.; Menakhin, V. P.; Panchenko, V. P.; Soroka, A. M.
2014-02-01
The results of the experimental and theoretical investigations aimed at determining the characteristics and features of precision slot cutting with a large number of calibers in sheets of low-carbon steel using the radiation of a single-mode fiber laser with pulse power up to 1 kW are presented. The description of the experimental installation, performance conditions of investigations, and variable parameters are described. Precision cutting of low-carbon steel up to 10 mm with the number of calibers ranging from 30 to 70 at a slot width of ≈60 μm is performed for the first time. Such cutting occurs only in the pulsed-periodic mode using single-mode radiation with a pulse duration of 2-3 ms, a pulse ratio of 2-4, and oxygen, whose influence differs in principle both in various cut regions over the sheet thickness and from cutting with a CO2 laser. The cutting velocity (100-50 mm/min) of sheet steel up to thicknesses of 10 mm with deep channeling, roughness parameters, hardness of the cut surface, which insignificantly (by ≈20%) exceeds the hardness of untreated steel, the phase structure of steel, and the scales of their varying inside metal are measured. The efficiency (≈3%) of precision cutting and the efficiency of transportation of radiation (25%) in large-caliber slot orifices in the "waveguide" mode are determined by the experimental data. The useful specific energy contribution of the laser radiation is w l = N l/( hbv) ≈ 2 × 1012 J/m2 for all studied thicknesses of sheet samples accurate to 20%. A qualitative model of the laser-oxygen precision cutting with deep channeling, which explains the cyclic and interrupting character of cutting and necessity of using oxygen as the cutting gas, is proposed.
NASA Astrophysics Data System (ADS)
Arutyunyan, R. V.; Baranov, V. Yu; Bol'shov, Leonid A.; Dolgov, V. A.; Malyuta, D. D.; Mezhevov, V. S.; Semak, V. V.
1988-03-01
An experimental investigation was made of the dynamics of the loss of the melt as a result of interaction with single-mode CO2 laser radiation pulses of 5-35 μs duration. The dynamics of splashing of the melt during irradiation with short pulses characterized by a Gaussian intensity distribution differed from that predicted by models in which the distribution of the vapor pressure was assumed to be radially homogeneous.
Fabrication and performance of tuneable single-mode VCSELs emitting in the 750- to 1000-nm range
NASA Astrophysics Data System (ADS)
Grabherr, Martin; Wiedenmann, Dieter; Jaeger, Roland; King, Roger
2005-03-01
The growing demand on low cost high spectral purity laser sources at specific wavelengths for applications like tuneable diode laser absorption spectroscopy (TDLAS) and optical pumping of atomic clocks can be met by sophisticated single-mode VCSELs in the 760 to 980 nm wavelength range. Equipped with micro thermo electrical cooler (TEC) and thermistor inside a small standard TO46 package, the resulting wavelength tuning range is larger than +/- 2.5 nm. U-L-M photonics presents manufacturing aspects, device performance and reliability data on tuneable single-mode VCSELs at 760, 780, 794, 852, and 948 nm lately introduced to the market. According applications are O2 sensing, Rb pumping, Cs pumping, and moisture sensing, respectively. The first part of the paper dealing with manufacturing aspects focuses on control of resonance wavelength during epitaxial growth and process control during selective oxidation for current confinement. Acceptable resonance wavelength tolerance is as small as +/- 1nm and typical aperture size of oxide confined single-mode VCSELs is 3 &mum with only few hundred nm tolerance. Both of these major production steps significantly contribute to yield on wafer values. Key performance data for the presented single-mode VCSELs are: >0.5 mW of optical output power, >30 dB side mode suppression ratio, and extrapolated 10E7 h MTTF at room temperature based on several millions of real test hours. Finally, appropriate fiber coupling solutions will be presented and discussed.
Mode-resolved frequency comb interferometry for high-accuracy long distance measurement
van den Berg, Steven. A.; van Eldik, Sjoerd; Bhattacharya, Nandini
2015-01-01
Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phased array, the frequency comb modes are resolved spectrally to the level of an individual mode. Having the frequency comb stabilized against an atomic clock, thousands of accurately known wavelengths are available for interferometry. From the spectrally resolved output of a Michelson interferometer a distance is derived. The presented measurement method combines spectral interferometry, white light interferometry and multi-wavelength interferometry in a single scheme. Comparison with a fringe counting laser interferometer shows an agreement within <10−8 for a distance of 50 m. PMID:26419282
2014-02-26
through RF filtering . Subsequently, this modulated signal is used in a cutback experiment with a passive fiber . Studies describing enhancement factors...to filter out higher order modes [3]. However, in order to maintain single-mode (diffraction limited) operation, conventional step-index fiber core...Letters 36, 2686-2688 (2011). [3] J. P. Koplaw, D. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Optics Letters
The Laser Guide Star System for Adaptive Optics at Subaru Telescope
NASA Astrophysics Data System (ADS)
Hayano, Y.; Saito, Y.; Ito, M.; Saito, N.; Akagawa, K.; Takazawa, A.; Ito, M.; Wada, S.; Takami, H.; Iye, M.
We report on the current status of developing the new laser guide star (LGS) system for the Subaru adaptive optics (AO) system. We have three major subsystems: the laser unit, the relay optical fiber and the laser launching telescope. A 4W-class all-solid-state 589nm laser has been developed as a light source for sodium laser guide star. We use two mode-locked Nd:YAG lasers operated at the wavelength of 1064nm and 1319nm to generate sum-frequency conversion into 589nm. The side-LD pumped configuration is used for the mode-locked Nd:YAG lasers. We have carefully considered the thermal lens effect in the cavity to achieve a high beam quality with TEM00; M2 = 1.06. The mode-locked frequency is selected at 143 MHz. We obtained the output powers of 16.5 W and 5.0 W at 1064nm and 1319 nm. Sum frequency generated by mixing two synchronized Nd:YAG mode-locked pulsed beams is precisely tuned to the sodium D2 line by thermal control of the etalon in the 1064nm Nd:YAG laser by observing the maximum fluorescence intensity of heated sodium vapor cell. The maximum output power at 589.159 nm reaches to 4.6 W using a PPMgOSLT crystal as a nonlinear optical crystal. And the output power can be maintained within a stability of +/- 1.2% for more than 3 days without optical damage. We developed a single-mode photonic crystal fiber (PCF) to relay the laser beam from laser clean room, in which the laser unit is located on the Nasmyth platform, to the laser launching telescope mounted behind the secondary mirror of Subaru Telescope. The photonic crystal fiber has solid pure silica core with the mode field diameter of 14 micron, which is relatively larger than that of the conventional step-index type single mode fiber. The length of the PCF is 35m and transmission loss due to the pure silica is 10dB/km at 589nm, which means PCF transmits 92% of the laser beam. We have preliminary achieved 75% throughput in total. Small mode-locked pulse width in time allows us to transmit the high-power laser beam with no suffer from the non-linear scatter effect, i.e. stimulated Brillouin scatter, in the PCF. The laser launching telescope (LLT) has an output clear aperture as 50 cm. It is classical Cassegrain type optical configuration with tertiary mirror to insert the laser beam from the side. The wavefront error is designed to be 60 to 70nm. The LLT is a copy product what European Southern Observatory has been designed for the laser guide star system at Very Large Telescope. We succeeded to launch the laser beam to the sky on October 12, 2006. After several tests on the sky, we succeeded to get an image of the laser guide star with the size of more than 10 arc second. The larger size of the laser guide star is caused by the large optical aberration on the primary mirror of LLT due to the heat stress generated at the trigonal support points. We are making a plan to repair this problem during June and the second laser launching test will start around this summer.
Huang, Zhihua; Lin, Honghuan; Xu, Dangpeng; Li, Mingzhong; Wang, Jianjun; Deng, Ying; Zhang, Rui; Zhang, Yongliang; Tian, Xiaocheng; Wei, Xiaofeng
2013-07-15
Collective laser coupling of the fiber array in the inertial confinement fusion (ICF) laser driver based on the concept of fiber amplification network (FAN) is researched. The feasible parameter space is given for laser coupling of the fundamental, second and third harmonic waves by neglecting the influence of the frequency conversion on the beam quality under the assumption of beam quality factor conservation. Third harmonic laser coupling is preferred due to its lower output energy requirement from a single fiber amplifier. For coplanar fiber array, the energy requirement is around 0.4 J with an effective mode field diameter of around 500 μm while maintaining the fundamental mode operation which is more than one order of magnitude higher than what can be achieved with state-of-the-art technology. Novel waveguide structure needs to be developed to enlarge the fundamental mode size while mitigating the catastrophic self-focusing effect.
Optics & Opto-Electronic Systems
1988-06-01
its reflection by the 13 cavity boundaries, and its reabsorption by the atom. Multimode corrections to the single-mode Jaynes - Cummings model are...walls. Transients in the Micromaser C. R. Stroud, Jr. The Jaynes - Cummings model of a single two-lev3l atom interacting with a single field mode of a...increasing laser intensity and to be as large as 22 bits/sec. A standard model of self- pumped phase conjugation due to four- wave mixing has been
200-W single frequency laser based on short active double clad tapered fiber
NASA Astrophysics Data System (ADS)
Pierre, Christophe; Guiraud, Germain; Yehouessi, Jean-Paul; Santarelli, Giorgio; Boullet, Johan; Traynor, Nicholas; Vincont, Cyril
2018-02-01
High power single frequency lasers are very attractive for a wide range of applications such as nonlinear conversion, gravitational wave sensing or atom trapping. Power scaling in single frequency regime is a challenging domain of research. In fact, nonlinear effect as stimulated Brillouin scattering (SBS) is the primary power limitation in single frequency amplifiers. To mitigate SBS, different well-known techniques has been improved. These techniques allow generation of several hundred of watts [1]. Large mode area (LMA) fibers, transverse acoustically tailored fibers [2], coherent beam combining and also tapered fiber [3] seem to be serious candidates to continue the power scaling. We have demonstrated the generation of stable 200W output power with nearly diffraction limited output, and narrow linewidth (Δν<30kHz) by using a tapered Yb-doped fiber which allow an adiabatic transition from a small purely single mode input to a large core output.
USSR and Eastern Europe Scientific Abstracts, Physics and Mathematics, Number 38
1977-12-23
used to optimize the parameters of ultrashort pulse lasers , particularly in the single- pulse mode. Figures 1; references 5: 3 Russian, 2 Western. USSR...reflection of intense laser emission from dense clusters of relativistic electrons is severely re- stricted by fuzziness of the interface for real clusters ...The most widely used method of forming ultrashort pulses of elec- tromagnetic radiation at the present time is self-mode locking by means of
Beam Shaped Single Mode Spiral Lasers
2011-12-31
θ// =30° in the plane of the cavity. The measured far-field profiles were in good agreement with simulations (C. Yan et al. Applied Physics Letters...gallery mode lasers with elliptical notched resonators The PI discovered that elliptical resonators with a notch at the boundary support in- plane ...model system, an in- plane beam divergence as small as 6 degrees with a peak optical power of ~ 5 mW at room temperature was been demonstrated. The
Non-Hermitian engineering of single mode two dimensional laser arrays
Teimourpour, Mohammad H.; Ge, Li; Christodoulides, Demetrios N.; El-Ganainy, Ramy
2016-01-01
A new scheme for building two dimensional laser arrays that operate in the single supermode regime is proposed. This is done by introducing an optical coupling between the laser array and lossy pseudo-isospectral chains of photonic resonators. The spectrum of this discrete reservoir is tailored to suppress all the supermodes of the main array except the fundamental one. This spectral engineering is facilitated by employing the Householder transformation in conjunction with discrete supersymmetry. The proposed scheme is general and can in principle be used in different platforms such as VCSEL arrays and photonic crystal laser arrays. PMID:27698355
System, Apparatus and Method Employing a Dual Head Laser
NASA Technical Reports Server (NTRS)
Coyle, Donald B. (Inventor); Stysley, Paul R. (Inventor); Poulios, Demetrios (Inventor)
2015-01-01
A system, apparatus and method employing a laser with a split-head, V-assembly gain material configuration. Additionally, the present invention is directed to techniques to better dissipate or remove unwanted energies in laser operations. The present invention is also directed to techniques for better collimated laser beams, with single spatial mode quality (TEM00), with improved efficiency, in extreme environments, such as in outer space.
NASA Astrophysics Data System (ADS)
Rai, Padmnabh; Mohapatra, Dipti R.; Hazra, K. S.; Misra, D. S.; Ghatak, Jay; Satyam, P. V.
2008-03-01
The Raman spectra of the multi-walled carbon nanotubes are studied with the laser power of 5-20 mW. We observe the Raman bands at ˜1352, 1581, 1607, and 2700 cm -1 with 5 mW laser power. As the laser power is increased to 10, 15 and 20 mW, the radial breathing modes (RBMs) of the single wall carbon nanotubes (SWNTs) appear in the range 200-610 cm -1. The diameter corresponding to the highest RBM is ˜0.37 nm, the lowest reported so far. The RBMs are attributed to the local synthesis of the SWNTs at the top surface of the samples at higher laser power.
Carrier-envelope frequency stabilization of a Ti:sapphire oscillator using different pump lasers.
Vernaleken, Andreas; Schmidt, Bernhard; Wolferstetter, Martin; Hänsch, Theodor W; Holzwarth, Ronald; Hommelhoff, Peter
2012-07-30
We investigate the suitability of various commercially available pump lasers for operation with a carrier-envelope offset frequency stabilized Ti:sapphire oscillator. Although the tested pump lasers differ in their setup and properties (e.g., single vs. multi-mode), we find that they are all well-suited for the purpose. The residual rms phase noise (integrated between 20 Hz and 5 MHz) of the stabilized oscillator is found to be below 160 mrad with each pump laser, corresponding to less than 1/40 of an optical cycle. Differences in performance vary slightly. In particular, our results indicate that the latest generation of multi-mode pump lasers can be used for applications where precise phase control of the oscillator is strictly required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitriev, A K; Konovalov, A N; Ul'yanov, V A
2014-04-28
We report an experimental study of the self-mixing effect in a single-mode multifrequency erbium fibre laser when radiation backscattered from an external moving object arrives at its cavity. To eliminate resulting chaotic pulsations in the laser, we have proposed a technique for suppressing backscattered radiation through the use of multimode fibre for radiation delivery. The multifrequency operation of the laser has been shown to lead to strong fluctuations of the amplitude of the Doppler signal and a nonmonotonic variation of the amplitude with distance to the scattering object. In spite of these features, the self-mixing signal was detected with amore » high signal-to-noise ratio (above 10{sup 2}) when the radiation was scattered by a rotating disc, and the Doppler frequency shift, evaluated as the centroid of its spectrum, had high stability (0.15%) and linearity relative to the rotation rate. We conclude that the self-mixing effect in this type of fibre laser can be used for measuring the velocity of scattering objects and in Doppler spectroscopy for monitoring the laser evaporation of materials and biological tissues. (control of laser radiation parameters)« less
High-power diode-pumped solid-state lasers for optical space communications
NASA Technical Reports Server (NTRS)
Koechner, Walter; Burnham, Ralph; Kasinski, Jeff; Bournes, Pat; Dibiase, Don; Le, Khoa; Marshall, Larry; Hays, Alan
1991-01-01
The design and performance of a large diode-pumped multi-stage Nd:YAG laser system for space and airborne applications will be described. The laser operates at a repetition rate of 40 Hz and produces an output either at 1.064 micron or 532 nm with an average power in the Q-switched mode of 30 W at the fundamental and 20 W at the second harmonic wavelength. The output beam is diffraction limited (TEM 00 mode) and can optionally also be operated in a single longitudinal mode. The output energy ranges from 1.25 Joule/pulse in the free lasing mode, 0.75 Joule in a 17 nsec Q-switched pulse, to 0.5 Joules/pulse at 532 nm. The overall electrical efficiency for the Q-switched second harmonic output is 4.
NASA Astrophysics Data System (ADS)
Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Gironi, Gianna; Suetta, Enrico
2017-11-01
This paper describes energetic, spatial, temporal and spectral characterization measurements of the Engineering Qualification Model (EQM) of the Laser Transmitter Assembly (TXA) used in the ALADIN instrument currently under development for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The EQM is equivalent to the Flight Model, with the exception of some engineering grade components. The Laser Transmitter Assembly, based on a diode pumped tripled Nd:YAG laser, is used to generate laser pulses at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz during bursts. It is capable to operate in Single Longitudinal Mode and to be tuned over 25 GHz range. An internal "network" of sensors has been implemented inside the laser architecture to allow "in flight" monitoring of transmitter. Energy in excess of 100 mJ, with a spatial beam quality factor (M2) lower than 3, a spectral linewidth less than 50 MHz with a frequency stability better than 4 MHz on short term period have been measured on the EQM. Most of the obtained results are well within the expected values and match the Instrument requirements. They constitute an important achievement, showing the absence of major critical areas in terms of performance and the capability to obtain them in a rugged and compact structure suitable for space applications. The EQM will be submitted in the near future to an Environmental test campaign.
A pulsed single-frequency Nd:GGG/BaWO4 Raman laser
NASA Astrophysics Data System (ADS)
Liu, Zhaojun; Men, Shaojie; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Zhang, Huaijin
2018-04-01
A single-frequency pulsed laser at 1178.3 nm was demonstrated in a crystalline Raman laser. A crystal combination of Nd:GGG and BaWO4 was selected to realize Raman conversion from a 1062.5 nm fundamental wave to a 1178.3 nm Stokes wave. An entangled cavity was specially designed to form an intracavity Raman configuration. Single-longitudinal-mode operation was realized by introducing two Fabry-Perot etalons into the Raman laser cavity. This laser operated at a pulse repetition rate of 50 Hz with 2 ms long envelopes containing micro pulses at a 30 kHz repetition rate. The highest output power was 41 mW with the micro pulse duration of 15 ns. The linewidth was measured to be less than 130 MHz.
Optical Material Researches for Frontier Optical Ceramics and Visible Fiber Laser Technologies
2016-07-07
technology of visible fiber laser, Pr-doped waterproof fluoro-aluminate glass fiber (Pr:WPFGF) laser. The significant achievements are as follows; 1...greater than 1-W and multi-color visible fiber laser oscillations, 2) visible laser pulse generation in a Pr-doped waterproof fluoride glass fiber ...for more high power operation, fabrication of a Pr-doped double-clad structured waterproof fluoride glass fiber with a single-mode beam. These results
High efficiency single transverse mode photonic band crystal lasers with low vertical divergence
NASA Astrophysics Data System (ADS)
Zhao, Shaoyu; Qu, Hongwei; Liu, Yun; Li, Lunhua; Chen, Yang; Zhou, Xuyan; Lin, Yuzhe; Liu, Anjin; Qi, Aiyi; Zheng, Wanhua
2016-10-01
High efficiency 980 nm longitudinal photonic band crystal (PBC) edge emitting laser diodes are designed and fabricated. The calculated results show that eight periods of Al0.1Ga0.9As and Al0.25Ga0.75As layer pairs can reduce the vertical far field divergence to 10.6° full width at half maximum (FWHM). The broad area (BA) lasers show a very high internal quantum efficiency ηi of 98% and low internal loss αi of 1.92 cm-1. Ridge waveguide (RW) lasers with 3 mm cavity length and 5um strip width provide 430 mW stable single transverse mode output at 500 mA injection current with power conversion efficiency (PCE) of 47% under continuous wave (CW) mode. A maximum PCE of 50% is obtained at the 300 mA injection current. A very low vertical far field divergence of 9.4° is obtained at 100 mA injection. At 500 mA injection, the vertical far field divergence increases to 11°, the beam quality factors M2 values are 1.707 in vertical direction and 1.769 in lateral direction.
Jung, Yongmin; Brambilla, Gilberto; Richardson, David J
2008-09-15
We report the use of a sub-wavelength optical wire (SOW) with a specifically designed transition region as an efficient tool to filter higher-order modes in multimode waveguides. Higher-order modes are effectively suppressed by controlling the transition taper profile and the diameter of the sub-wavelength optical wire. As a practical example, single-mode operation of a standard telecom optical fiber over a broad spectral window (400 approximately 1700 nm) was demonstrated with a 1microm SOW. The ability to obtain robust and stable single-mode operation over a very broad range of wavelengths offers new possibilities for mode control within fiber devices and is relevant to a range of application sectors including high performance fiber lasers, sensors, photolithography, and optical coherence tomography systems.
NASA Astrophysics Data System (ADS)
Lim, Daniel J.; Ki, Hyungson; Mazumder, Jyoti
2006-06-01
A fundamental study on the Q-switched diode-pumped solid-state laser interaction with silicon was performed both experimentally and numerically. Single pulse drilling experiments were conducted on N-type silicon wafers by varying the laser intensity from 108-109 W cm-2 to investigate how the mass removal mechanism changes depending on the laser intensity. Hole width and depth were measured and surface morphology was studied using scanning electron microscopy. For the numerical model study, Ki et al's self-consistent continuous-wave laser drilling model (2001 J. Phys. D: Appl. Phys. 34 364-72) was modified to treat the solidification phenomenon between successive laser pulses. The model has the capabilities of simulating major interaction physics, such as melt flow, heat transfer, evaporation, homogeneous boiling, multiple reflections and surface evolution. This study presents some interesting results on how the mass removal mode changes as the laser intensity increases.
Heavily Yb-doped phosphate large-mode area all-solid photonic crystal fiber operating at 990 nm
NASA Astrophysics Data System (ADS)
Wang, Longfei; He, Dongbing; Feng, Suya; Yu, Chunlei; Hu, Lili; Qiu, Jianrong; Chen, Danping
2015-07-01
We demonstrate, for the first time to our knowledge, a 16 wt.% Yb-doped phosphate large-mode area all-solid photonic crystal fiber (AS-PCF) laser operating at 990 nm. By carefully tailoring the absorption and emission properties of the active glass and designing the structure of AS-PCF, the excitation of the 990 nm laser and the depression of the laser above 1 µm can be easily realized even without any wavelength-selective optics. The single-mode behavior of PCF with a 35 µm doped core, the largest core diameter of approximately 1 µm in phosphate fiber, is theoretically investigated by finite-difference time-domain method and experimentally confirmed.
Analytical coupled-wave model for photonic crystal surface-emitting quantum cascade lasers.
Wang, Zhixin; Liang, Yong; Yin, Xuefan; Peng, Chao; Hu, Weiwei; Faist, Jérôme
2017-05-15
An analytical coupled-wave model is developed for surface-emitting photonic-crystal quantum cascade lasers (PhC-QCLs). This model provides an accurate and efficient analysis of full three-dimensional device structure with large-area cavity size. Various laser properties of interest including the band structure, mode frequency, cavity loss, mode intensity profile, and far field pattern (FFP), as well as their dependence on PhC structures and cavity size, are investigated. Comparison with numerical simulations confirms the accuracy and validity of our model. The calculated FFP and polarization profile well explain the previously reported experimental results. In particular, we reveal the possibility of switching the lasing modes and generating single-lobed FFP by properly tuning PhC structures.
NASA Astrophysics Data System (ADS)
Sakakibara, Youichi; Rozhin, Aleksey G.; Kataura, Hiromichi; Achiba, Yohji; Tokumoto, Madoka
2005-04-01
We fabricated single-wall carbon nanotube (SWNT)/poly(vinylalcohol) (PVA) nanocomposite freestanding films and examined their application in devices in which the saturable absorption of SWNTs at near-infrared optical telecommunication wavelengths can be utilized. In a passively mode-locked fiber laser, we integrated a 30-μm-thick SWNT/PVA film into a fiber connection adaptor with the film sandwiched by a pair of fiber ferrules. A ring fiber laser with a SWNT/PVA saturable absorber was operated very easily in the mode-locked short-pulse mode with a pulse width of about 500 fs. Reproducible stable device performance was confirmed. In examining noise suppression for optical amplifiers, mixed light of semiconductor amplified spontaneous emission (ASE) source and 370 fs laser pulses was passed through a 100-μm-thick SWNT/PVA film. The transmission loss of the femtosecond pulse light was smaller than that of the ASE light. This proved that the SWNT/PVA film has the ability to suppress ASE noise.
Frequency stabilization in injection controlled pulsed CO2 lasers
NASA Technical Reports Server (NTRS)
Menzies, Robert T.; Ancellet, Gerard M.
1987-01-01
Longitudinal mode selection by injection has been demonstrated as a viable technique for tailoring a TEA-CO2 laser with pulse energies of a Joule or greater to fit the requirements of a coherent lidar transmitter. Once reliable generation of single-longitudinal-mode (SLM) pulses is obtained, one can study the intrapulse frequency variation and attempt to determine the sources of frequency sweeping, or chirp. These sources include the effect of the decaying plasma, the thermal gradient due to the energy dissipation associated with the laser mechanism itself, and the pressure shift of the center frequency of the laser transition. The use of the positive-branch unstable resonator as an efficient means of coupling a discharge with transverse spatial dimensions of the order of centimeters to an optical cavity mode introduces another concern: namely, what can be done to emphasize transverse mode discrimination in an unstable resonator cavity while maintaining high coupling efficiency. These issues are briefly discussed in the paper, and representative experimental examples are included.
Phase-front measurements of an injection-locked AlGaAs laser-diode array
NASA Technical Reports Server (NTRS)
Cornwell, Donald M., Jr.; Rall, Jonathan A. R.; Abshire, James B.
1989-01-01
The phase-front quality of the primary spatial lobe emitted from an injection-locked gain-guided AlGaAs laser-diode array is measured by using an equal-path, phase-shifting Mach-Zehnder interferometer. Root-mean-square phase errors of 0.037 + or - 0.003 wave are measured for the single spatial lobe, which contained 240-mW cw output power in a single longitudinal mode. This phase-front quality corresponds to a Strehl ratio of S = 0.947, which results in a 0.23-dB power loss from the single lobe's ideal diffraction-limited power. These values are comparable with those measured for single-stripe index-guided AlGaAs lasers.
Multi-Watt Average Power Nanosecond Microchip Laser and Power Scalability Estimates
NASA Technical Reports Server (NTRS)
Konoplev, Oleg A.; Vasilyev, Alexey A.; Seas, Antonios A.; Yu, Anthony W.; Li, Steven X.; Shaw, George B.; Stephen, Mark A.; Krainak, Michael A.
2011-01-01
We demonstrated up to 2 W average power, CW-pumped, passively- Q-switched, 1.5 ns monolithic MCL with single-longitudinal mode-operation. We discuss laser design issues to bring the average power to 5-1 OW and beyond.
Photonic bandgap single-mode optical fibre with ytterbium-doped silica glass core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egorova, O N; Semenov, S L; Vel'miskin, V V
2011-01-24
A photonic bandgap fibre with an ytterbium-doped silica glass core is fabricated and investigated. The possibility of implementing single-mode operation of such fibres in a wide spectral range at a large (above 20 {mu}m) mode field diameter makes them promising for fibre lasers and amplifiers. To ensure a high quality of the beam emerging from the fibre, particular attention is paid to increasing the optical homogeneity of the ytterbium-doped core glass. (optical fibres)
Fabrication of longitudinally arbitrary shaped fiber tapers
NASA Astrophysics Data System (ADS)
Nold, J.; Plötner, M.; Böhme, S.; Sattler, B.; deVries, O.; Schreiber, T.; Eberhardt, R.; Tünnermann, A.
2018-02-01
We present our current results on the fabrication of arbitrary shaped fiber tapers on our tapering rig using a CO2-laser as heat source. Single mode excitation of multimode fibers as well as changing the fiber geometry in an LPG-like fashion is presented. It is shown that this setup allows for reproducible fabrication of single-mode excitation tapers to extract the fundamental mode (M2 < 1.1) from a 30 μm core having an NA of 0.09.
Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter†‡
Wu, Ting-Hsiang; Chen, Yue; Park, Sung-Yong; Hong, Jason; Teslaa, Tara; Zhong, Jiang F.; Di Carlo, Dino; Teitell, Michael A.
2014-01-01
We report a high speed and high purity pulsed laser triggered fluorescence activated cell sorter (PLACS) with a sorting throughput up to 20 000 mammalian cells s−1 with 37% sorting purity, 90% cell viability in enrichment mode, and >90% purity in high purity mode at 1500 cells s−1 or 3000 beads s−1. Fast switching (30 μs) and a small perturbation volume (~90 pL) is achieved by a unique sorting mechanism in which explosive vapor bubbles are generated using focused laser pulses in a single layer microfluidic PDMS channel. PMID:22361780
Spectral dynamics of square pulses in passively mode-locked fiber lasers
NASA Astrophysics Data System (ADS)
Semaan, Georges; Komarov, Andrey; Niang, Alioune; Salhi, Mohamed; Sanchez, François
2018-02-01
We investigate experimentally and numerically the spectral dynamics of square pulses generated in passively mode-locked fiber lasers under the dissipative soliton resonance. The features of the transition from the single-peak spectral profile to the doublet spectrum with increasing pump power are studied. The used master equation takes into account the gain saturation, the quadratic frequency dispersion of the gain and the refractive index, and the cubic-quintic nonlinearity of the losses and refractive index. Experimental data are obtained for an Er:Yb-doped fiber ring laser. The theoretical and experimental results are in good agreement with each other.
Recent Advances of VCSEL Photonics
NASA Astrophysics Data System (ADS)
Koyama, Fumio
2006-12-01
A vertical-cavity surface emitting laser (VCSEL) was invented 30 years ago. A lot of unique features can be expected, such as low-power consumption, wafer-level testing, small packaging capability, and so on. The market of VCSELs has been growing up rapidly in recent years, and they are now key devices in local area networks using multimode optical fibers. Also, long wavelength VCSELs are currently attracting much interest for use in single-mode fiber metropolitan area and wide area network applications. In addition, a VCSEL-based disruptive technology enables various consumer applications such as a laser mouse and laser printers. In this paper, the recent advance of VCSEL photonics will be reviewed, which include the wavelength extension of single-mode VCSELs and their wavelength integration/control. Also, this paper explores the potential and challenges for new functions of VCSELs toward optical signal processing.
Forty-five degree backscattering-mode nonlinear absorption imaging in turbid media.
Cui, Liping; Knox, Wayne H
2010-01-01
Two-color nonlinear absorption imaging has been previously demonstrated with endogenous contrast of hemoglobin and melanin in turbid media using transmission-mode detection and a dual-laser technology approach. For clinical applications, it would be generally preferable to use backscattering mode detection and a simpler single-laser technology. We demonstrate that imaging in backscattering mode in turbid media using nonlinear absorption can be obtained with as little as 1-mW average power per beam with a single laser source. Images have been achieved with a detector receiving backscattered light at a 45-deg angle relative to the incoming beams' direction. We obtain images of capillary tube phantoms with resolution as high as 20 microm and penetration depth up to 0.9 mm for a 300-microm tube at SNR approximately 1 in calibrated scattering solutions. Simulation results of the backscattering and detection process using nonimaging optics are demonstrated. A Monte Carlo-based method shows that the nonlinear signal drops exponentially as the depth increases, which agrees well with our experimental results. Simulation also shows that with our current detection method, only 2% of the signal is typically collected with a 5-mm-radius detector.
Circular lasers for telecommunications and rf/photonics applications
NASA Astrophysics Data System (ADS)
Griffel, Giora
2000-04-01
Following a review of ring resonator research in the past decade we shall report a novel bi-level etching technique that permits the use of standard photolithography for coupling to deeply-etched ring resonator structures. The technique is employed to demonstrate InGaAsP laterally- coupled racetrack ring resonators laser with record low threshold currents of 66 mA. The racetrack laser have curved sections of 150 micrometers radius with negligible bending loss. The lasers operate CW single mode up to nearly twice threshold with a 26 dB side-mode-suppression ratio. We shall also present a transfer matrix formalism for the analysis of ring resonator arrays and indicate application examples for flat band filter synthesis.
Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency.
Zhang, Jun; Fromzel, Viktor; Dubinskii, Mark
2011-03-14
We report the results of our power scaling experiments with resonantly cladding-pumped Er-doped eye-safe large mode area (LMA) fiber laser. While using commercial off-the-shelf LMA fiber we achieved over 88 W of continuous-wave (CW) single transverse mode power at ~1590 nm while pumping at 1532.5 nm. Maximum observed optical-to-optical efficiency was 69%. This result presents, to the best of our knowledge, the highest power reported from resonantly-pumped Yb-free Er-doped LMA fiber laser, as well as the highest efficiency ever reported for any cladding-pumped Er-doped laser, either Yb-co-doped or Yb-free.
Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance.
Bader, Markus J; Pongratz, Thomas; Khoder, Wael; Stief, Christian G; Herrmann, Thomas; Nagele, Udo; Sroka, Ronald
2015-04-01
In vitro investigations of Ho:YAG laser-induced stone fragmentation were performed to identify potential impacts of different pulse durations on stone fragmentation characteristics. A Ho:YAG laser system (Swiss LaserClast, EMS S.A., Nyon, Switzerland) with selectable long or short pulse mode was tested with regard to its fragmentation and laser hardware compatibility properties. The pulse duration is depending on the specific laser parameters. Fragmentation tests (hand-held, hands-free, single-pulse-induced crater) on artificial BEGO stones were performed under reproducible experimental conditions (fibre sizes: 365 and 200 µm; laser settings: 10 W through combinations of 0.5, 1, 2 J/pulse and 20, 10, 5 Hz, respectively). Differences in fragmentation rates between the two pulse duration regimes were detected with statistical significance for defined settings. Hand-held and motivated Ho:YAG laser-assisted fragmentation of BEGO stones showed no significant difference between short pulse mode and long pulse mode, neither in fragmentation rates nor in number of fragments and fragment sizes. Similarly, the results of the hands-free fragmentation tests (with and without anti-repulsion device) showed no statistical differences between long pulse and short pulse modes. The study showed that fragmentation rates for long and short pulse durations at identical power settings remain at a comparable level. Longer holmium laser pulse duration reduces stone pushback. Therefore, longer laser pulses may result in better clinical outcome of laser lithotripsy and more convenient handling during clinical use without compromising fragmentation effectiveness.
Carbon nanotube polymer composites for photonic devices
NASA Astrophysics Data System (ADS)
Scardaci, V.; Rozhin, A. G.; Hennrich, F.; Milne, W. I.; Ferrari, A. C.
2007-03-01
We report the fabrication of high optical quality single wall carbon nanotube polyvinyl alcohol composites and their application in nanotube based photonic devices. These show a broad absorption of semiconductor tubes centred at ∼1.55 μm, the spectral range of interest for optical communications. The films are used as mode-lockers in an erbium doped fibre laser, achieving ∼700 fs mode-locked pulses. Raman spectroscopy shows no damage after a long time continuous laser operation.
Electrically-pumped compact hybrid silicon microring lasers for optical interconnects.
Liang, Di; Fiorentino, Marco; Okumura, Tadashi; Chang, Hsu-Hao; Spencer, Daryl T; Kuo, Ying-Hao; Fang, Alexander W; Dai, Daoxin; Beausoleil, Raymond G; Bowers, John E
2009-10-26
We demonstrate an electrically-pumped hybrid silicon microring laser fabricated by a self-aligned process. The compact structure (D = 50 microm) and small electrical and optical losses result in lasing threshold as low as 5.4 mA and up to 65 degrees C operation temperature in continuous-wave (cw) mode. The spectrum is single mode with large extinction ratio and small linewidth observed. Application as on-chip optical interconnects is discussed from a system perspective.
Coupled opto-electronic oscillator
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor); Maleki, Lute (Inventor)
1999-01-01
A coupled opto-electronic oscillator that directly couples a laser oscillation with an electronic oscillation to simultaneously achieve a stable RF oscillation at a high frequency and ultra-short optical pulsation by mode locking with a high repetition rate and stability. Single-mode selection can be achieved even with a very long opto-electronic loop. A multimode laser can be used to pump the electronic oscillation, resulting in a high operation efficiency. The optical and the RF oscillations are correlated to each other.
NASA Astrophysics Data System (ADS)
Garnache, Arnaud; Myara, Mikhaël.; Laurain, A.; Bouchier, Aude; Perez, J. P.; Signoret, P.; Sagnes, I.; Romanini, D.
2017-11-01
We present a highly coherent semiconductor laser device formed by a ½-VCSEL structure and an external concave mirror in a millimetre high finesse stable cavity. The quantum well structure is diode-pumped by a commercial single mode GaAs laser diode system. This free running low noise tunable single-frequency laser exhibits >50mW output power in a low divergent circular TEM00 beam with a spectral linewidth below 1kHz and a relative intensity noise close to the quantum limit. This approach ensures, with a compact design, homogeneous gain behaviour and a sufficiently long photon lifetime to reach the oscillation-relaxation-free class-A regime, with a cut off frequency around 10MHz.
Patimisco, Pietro; Sampaolo, Angelo; Mihai, Laura; Giglio, Marilena; Kriesel, Jason; Sporea, Dan; Scamarcio, Gaetano; Tittel, Frank K.; Spagnolo, Vincenzo
2016-01-01
We demonstrated low-loss and single-mode laser beam delivery through hollow-core waveguides (HCWs) operating in the 3.7–7.6 μm spectral range. The employed HCWs have a circular cross section with a bore diameter of 200 μm and metallic/dielectric internal coatings deposited inside a glass capillary tube. The internal coatings have been produced to enhance the spectral response of the HCWs in the range 3.5–12 µm. We demonstrated Gaussian-like outputs throughout the 4.5–7.6 µm spectral range. A quasi single-mode output beam with only small beam distortions was achieved when the wavelength was reduced to 3.7 μm. With a 15-cm-long HCW and optimized coupling conditions, we measured coupling efficiencies of >88% and transmission losses of <1 dB in the investigated infrared spectral range. PMID:27089343
Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit
2015-12-28
An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.
Yin, Mojuan; Huang, Shenghong; Lu, Baole; Chen, Haowei; Ren, Zhaoyu; Bai, Jintao
2013-09-20
A high-slope-efficiency single-frequency (SF) ytterbium-doped fiber laser, based on a Sagnac loop mirror filter (LMF), was demonstrated. It combined a simple linear cavity with a Sagnac LMF that acted as a narrow-bandwidth filter to select the longitudinal modes. And we introduced a polarization controller to restrain the spatial hole burning effect in the linear cavity. The system could operate at a stable SF oscillating at 1064 nm with the obtained maximum output power of 32 mW. The slope efficiency was found to be primarily dependent on the reflectivity of the fiber Bragg grating. The slope efficiency of multi-longitudinal modes was higher than 45%, and the highest slope efficiency of the single longitudinal mode we achieved was 33.8%. The power stability and spectrum stability were <2% and <0.1%, respectively, and the signal-to-noise ratio measured was around 60 dB.
Nowak, Krzysztof M; Ohta, Takeshi; Suganuma, Takashi; Yokotsuka, Toshio; Fujimoto, Junichi; Mizoguchi, Hakaru
2012-12-01
Quantum cascade laser (QCL) is a very attractive seed source for a multikilowatt pulsed CO2 lasers applied for driving extreme ultraviolet emitting plasmas. In this Letter, we investigate output beam properties of a QCL designed to address P18 and P20 lines of 10.6 micron band of CO2 molecule. In particular, output beam quality and stability are investigated for the first time. A well-defined linear polarization and a single-mode operation enabled a use of phase retrieval method for full description of QCL output beam. A direct, multi-image numerical phase retrieval technique was developed and successfully applied to the measured intensity patterns of a QCL beam. Very good agreement between the measured and reconstructed beam profiles was observed at distances ranging from QCL aperture to infinity, proving a good understanding of the beam propagation. The results also confirm a high spatial coherence and high stability of the beam parameters, the features expected from an excellent seed source.
Resonantly diode laser pumped 1.6-μm Er:YAG laser
NASA Astrophysics Data System (ADS)
Garbuzov, Dmitri; Kudryashov, Igor; Dubinskii, Mark
2005-06-01
We report what is believed to be the first demonstration of direct resonant diode pumping of a 1.6-mm Er3+-doped bulk solid-state laser (DPSSL). The most of the results is obtained with pumping Er:YAG by the single mode diode laser packaged in fibered modules. The fibered modules, emitting at 1470 nm and 1530 nm wavelength with and without fiber grating (FBG) stabilization, have been used in pumping experiments. The very first results on high power DPSSL operation achieved with diode array pumping also will be presented. The highest absorbed photon conversion efficiency of 26% has been obtained for Er:YAG DPSSL using the 1470-nm single-mode module. Analysis of the DPSSL input-output characteristics suggests that the obtained slope efficiency can be increased at least up to 40% through the reduction of intracavity losses and pumping efficiency improvement. Diode pumped SSL (DPSSL) operates at a wavelength of 1617 nm and 1645 nm.
Self-corrected chip-based dual-comb spectrometer.
Hébert, Nicolas Bourbeau; Genest, Jérôme; Deschênes, Jean-Daniel; Bergeron, Hugo; Chen, George Y; Khurmi, Champak; Lancaster, David G
2017-04-03
We present a dual-comb spectrometer based on two passively mode-locked waveguide lasers integrated in a single Er-doped ZBLAN chip. This original design yields two free-running frequency combs having a high level of mutual stability. We developed in parallel a self-correction algorithm that compensates residual relative fluctuations and yields mode-resolved spectra without the help of any reference laser or control system. Fluctuations are extracted directly from the interferograms using the concept of ambiguity function, which leads to a significant simplification of the instrument that will greatly ease its widespread adoption and commercial deployment. Comparison with a correction algorithm relying on a single-frequency laser indicates discrepancies of only 50 attoseconds on optical timings. The capacities of this instrument are finally demonstrated with the acquisition of a high-resolution molecular spectrum covering 20 nm. This new chip-based multi-laser platform is ideal for the development of high-repetition-rate, compact and fieldable comb spectrometers in the near- and mid-infrared.
All-fiber 7x1 signal combiner for incoherent laser beam combining
NASA Astrophysics Data System (ADS)
Noordegraaf, D.; Maack, M. D.; Skovgaard, P. M. W.; Johansen, J.; Becker, F.; Belke, S.; Blomqvist, M.; Laegsgaard, J.
2011-02-01
We demonstrate an all-fiber 7x1 signal combiner for incoherent laser beam combining. This is a potential key component for reaching several kW of stabile laser output power. The combiner couples the output from 7 single-mode (SM) fiber lasers into a single multi-mode (MM) fiber. The input signal fibers have a core diameter of 17 μm and the output MM fiber has a core diameter of 100 μm. In a tapered section light gradually leaks out of the SM fibers and is captured by a surrounding fluorine-doped cladding. The combiner is tested up to 2.5 kW of combined output power and only a minor increase in device temperature is observed. At an intermediate power level of 600 W a beam parameter product (BPP) of 2.22 mm x mrad is measured, corresponding to an M2 value of 6.5. These values are approaching the theoretical limit dictated by brightness conservation.
High-power all-fiber ultra-low noise laser
NASA Astrophysics Data System (ADS)
Zhao, Jian; Guiraud, Germain; Pierre, Christophe; Floissat, Florian; Casanova, Alexis; Hreibi, Ali; Chaibi, Walid; Traynor, Nicholas; Boullet, Johan; Santarelli, Giorgio
2018-06-01
High-power ultra-low noise single-mode single-frequency lasers are in great demand for interferometric metrology. Robust, compact all-fiber lasers represent one of the most promising technologies to replace the current laser sources in use based on injection-locked ring resonators or multi-stage solid-state amplifiers. Here, a linearly polarized high-power ultra-low noise all-fiber laser is demonstrated at a power level of 100 W. Special care has been taken in the study of relative intensity noise (RIN) and its reduction. Using an optimized servo actuator to directly control the driving current of the pump laser diode, we obtain a large feedback bandwidth of up to 1.3 MHz. The RIN reaches - 160 dBc/Hz between 3 and 20 kHz.
Low-NA single-mode LMA photonic crystal rod fiber amplifier
NASA Astrophysics Data System (ADS)
Alkeskjold, Thomas Tanggaard; Laurila, Marko; Scolari, Lara; Broeng, Jes
2011-02-01
Enabling Single-Mode (SM) operation in Large-Mode-Area (LMA) fiber amplifiers and lasers is critical, since a SM output ensures high beam quality and excellent pointing stability. In this paper, we demonstrate and test a new design approach for achieving ultra-low NA SM rod fibers by using a spatially Distributed Mode Filter (DMF). This approach achieves SM performance in a short and straight rod fiber and allows preform tolerances to be compensated during draw. A low-NA SM rod fiber amplifier having a mode field diameter of ~60μm at 1064nm and a pump absorption of 27dB/m at 976nm is demonstrated.
Single-beam Denisyuk holograms recording with pulsed 30Hz RGB laser
NASA Astrophysics Data System (ADS)
Zacharovas, Stanislovas; Bakanas, Ramūnas; Stankauskas, Algimantas
2016-03-01
It is well known fact that holograms can be recorded either by continuous wave (CW) laser, or by single pulse coming from pulsed laser. However, multi-pulse or multiple-exposure holograms were used only in interferometry as well as for information storage. We have used Geola's single longitudinal mode pulsed RGB laser to record Denisyuk type holograms. We successfully recorded objects situated at the distance of more than 30cm, employing the multi-pulse working regime of the laser. To record Denisyuk hologram we have used 50 ns duration 440, 660nm wavelength and 35ns duration 532nm wavelength laser pulses at the repetition rate of 30Hz. As photosensitive medium we have used Slavich-Geola PFG-03C glass photoplate. Radiations with different wavelengths were mixed into "white" beam, collimated and directed onto the photoplate. For further objects illumination an additional flat silver coated mirror was used.
Multipoint fiber-optic laser-ultrasonic actuator based on fiber core-opened tapers.
Tian, Jiajun; Dong, Xiaolong; Gao, Shimin; Yao, Yong
2017-11-27
In this study, a novel fiber-optic, multipoint, laser-ultrasonic actuator based on fiber core-opened tapers (COTs) is proposed and demonstrated. The COTs were fabricated by splicing single-mode fibers using a standard fiber splicer. A COT can effectively couple part of a core mode into cladding modes, and the coupling ratio can be controlled by adjusting the taper length. Such characteristics are used to obtain a multipoint, laser-ultrasonic actuator with balanced signal strength by reasonably controlling the taper lengths of the COTs. As a prototype, we constructed an actuator that generated ultrasound at four points with a balanced ultrasonic strength by connecting four COTs with coupling ratios of 24.5%, 33.01%, 49.51%, and 87.8% in a fiber link. This simple-to-fabricate, multipoint, laser-ultrasonic actuator with balanced ultrasound signal strength has potential applications in fiber-optic ultrasound testing technology.
Koplow, Jeffrey P.; Kliner, Dahy; Goldberg, Lew
2002-12-17
A multi-mode gain fiber is provided which affords substantial improvements in the maximum pulse energy, peak power handling capabilities, average output power, and/or pumping efficiency of fiber amplifier and laser sources while maintaining good beam quality (comparable to that of a conventional single-mode fiber source). These benefits are realized by coiling the multimode gain fiber to induce significant bend loss for all but the lowest-order mode(s).
X-rays only when you want them: optimized pump–probe experiments using pseudo-single-bunch operation
Hertlein, M. P.; Scholl, A.; Cordones, A. A.; Lee, J. H.; Engelhorn, K.; Glover, T. E.; Barbrel, B.; Sun, C.; Steier, C.; Portmann, G.; Robin, D. S.
2015-01-01
Laser pump–X-ray probe experiments require control over the X-ray pulse pattern and timing. Here, the first use of pseudo-single-bunch mode at the Advanced Light Source in picosecond time-resolved X-ray absorption experiments on solutions and solids is reported. In this mode the X-ray repetition rate is fully adjustable from single shot to 500 kHz, allowing it to be matched to typical laser excitation pulse rates. Suppressing undesired X-ray pulses considerably reduces detector noise and improves signal to noise in time-resolved experiments. In addition, dose-induced sample damage is considerably reduced, easing experimental setup and allowing the investigation of less robust samples. Single-shot X-ray exposures of a streak camera detector using a conventional non-gated charge-coupled device (CCD) camera are also demonstrated. PMID:25931090
X-rays only when you want them: Optimized pump–probe experiments using pseudo-single-bunch operation
Hertlein, M. P.; Scholl, A.; Cordones, A. A.; ...
2015-04-02
Laser pump–X-ray probe experiments require control over the X-ray pulse pattern and timing. Here, the first use of pseudo-single-bunch mode at the Advanced Light Source in picosecond time-resolved X-ray absorption experiments on solutions and solids is reported. In this mode the X-ray repetition rate is fully adjustable from single shot to 500 kHz, allowing it to be matched to typical laser excitation pulse rates. Suppressing undesired X-ray pulses considerably reduces detector noise and improves signal to noise in time-resolved experiments. In addition, dose-induced sample damage is considerably reduced, easing experimental setup and allowing the investigation of less robust samples. Single-shotmore » X-ray exposures of a streak camera detector using a conventional non-gated charge-coupled device (CCD) camera are also demonstrated.« less
Monolithic solid-state lasers for spaceflight
NASA Astrophysics Data System (ADS)
Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth
2015-02-01
A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.
240 GHz pedestal-free colliding-pulse mode-locked laser with a wide operation range
NASA Astrophysics Data System (ADS)
Hou, L.; Haji, M.; Marsh, J. H.
2014-11-01
A 240 GHz, sixth-harmonic monolithic ~1.55 μm colliding-pulse mode-locked laser is reported using a three-quantum-well active layer design and a passive far-field reduction layer. The device emits 0.88 ps pulses with a peak power of 65 mW and intermediate longitudinal modes suppressed by >30 dB. The device demonstrates a wide operation range compared to the conventional five-quantum-well design as well as having a low divergence angle (12.7° × 26.3°), granting a twofold improvement in butt-coupling efficiency into a flat cleaved single-mode fibre.
Compact Hybrid Laser Rod and Laser System
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Busch, George E. (Inventor); Amzajerdian, Farzin (Inventor)
2017-01-01
A hybrid fiber rod includes a fiber core and inner and outer cladding layers. The core is doped with an active element. The inner cladding layer surrounds the core, and has a refractive index substantially equal to that of the core. The outer cladding layer surrounds the inner cladding layer, and has a refractive index less than that of the core and inner cladding layer. The core length is about 30 to 2000 times the core diameter. A hybrid fiber rod laser system includes an oscillator laser, modulating device, the rod, and pump laser diode(s) energizing the rod from opposite ends. The rod acts as a waveguide for pump radiation but allows for free-space propagation of laser radiation. The rod may be used in a laser resonator. The core length is less than about twice the Rayleigh range. Degradation from single-mode to multi-mode beam propagation is thus avoided.
Paasch, Uwe; Wagner, Justinus A; Paasch, Hartmut W
2015-01-01
Alexandrite (755 nm) and diode lasers (800-810 nm) are commonly used for hair removal. The alexandrite laser technology is somewhat cumbersome whereas new diode lasers are more robust. Recently, alexandrite-like 755 nm wavelength diodes became available. To compare the efficacy, tolerability, and subject satisfaction of a 755 nm diode laser operated in conventional (HR) and non-conventional in-motion (SHR) modes with a conventional scanned alexandrite 755 nm laser for chest and axillary hair removal. A prospective, single-center, proof of principle study was designed to evaluate the safety, efficacy and handling of a 755 nm diode laser system in comparison to a standard alexandrite 755 nm scanning hair removal laser. The new 755 nm diode is suitable to be used in SHR and HR mode and has been tested for its safety, efficacy and handling in a volunteer with success. Overall, both systems showed a high efficacy in hair reduction (88.8% 755 nm diode laser vs. 77.7% 755 nm alexandrite laser). Also, during the study period, no severe adverse effects were reported. The new 755 nm diode laser is as effective and safe as the traditional 755 nm alexandrite laser. Additionally, treatment with the 755 nm diode laser with HR and SHR modes was found to be less painful.
NASA Astrophysics Data System (ADS)
Saito, Norihito; Akagawa, Kazuyuki; Kato, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2006-12-01
We report an all-solid-state coherent 589 nm light source in single-pass sum-frequency generation (SFG) with actively mode-locked Nd:YAG lasers for the realization of sodium lidar and laser guide star adaptive optics. The Nd:YAG lasers are constructed as a LD-side-pumped configuration and are operated at 1064 and 1319 nm for 589 nm light generation in SFG. Output powers of 16.5 and 5.3 W at 1064 and 1319 nm are obtained with two pumping chambers. Each chamber consisted of three 80-W-LD arrays. Single transverse mode TEM 00; M2 ~1.1 is achieved with adjustment of cavity length considering thermal lens effect with increase of input LD power. The cavity length is set to approximately 1 m. Accordingly the mode-locked lasers are operated at a repetition rate of approximately 150 MHz. Synchronization of two pulse trains at 1064 and 1319 nm is accomplished by control of phase difference between two radio frequencies input in acousto-optic mode-lockers. Then temporal delay is controlled with a resolution of 37 ps/degree. Pump beams are mixed in periodically poled stoichiometric lithium tantalate (PPSLT) without an antireflection coating. The effective aperture and length of the crystal are 0.5 × 2 mm2 and 15 mm. When input intensity is set at 5.6 MW/cm , an average output power of 4.6 W is obtained at 589.159 nm. Precise tuning to the sodium D II line is accomplished by thermal control of etalons set in the Nd:YAG lasers. The output power at 589.159 nm is stably maintained within +/-1.2% for 8 hours.
Single linearly polarized, widely and freely tunable two wavelengths Yb3+-doped fiber laser
NASA Astrophysics Data System (ADS)
Liu, Dongfeng; Wang, Chinhua
2010-01-01
We report a novel single linearly polarized, widely, freely and continuously tunable two wavelengths Yb3+-doped fiber laser. The laser generates stable arbitrary two wavelengths output between 1003.1 and 1080.7 nm peak wavelengths simultaneously with a 346.0 mW CW power by using polarization beam splitting (PBS) for separation of two wavelengths. Each lasing line shows a single polarization with a polarization extinction ratio of >20 dB under different pump levels. The central and the interval of the two wavelengths can be tuned smoothly and independently in the entire gain region of >70 nm of PM Yb3+-doped single mode fiber. Strongly enhanced polarization-hole burning (PHB) phenomena in polarization maintain (PM) Yb3+-doped fiber was observed in the tunable two wavelengths Yb3+-doped fiber laser.
Index-antiguided planar waveguide lasers with large mode area
NASA Astrophysics Data System (ADS)
Liu, Yuanye
The on-going research and application interests with high power large-mode-area (LMA) waveguide lasers, especially in fiber geometry, at the beginning of this century drive the development of many novel waveguide designs. Index antiguiding, proposed by Siegman in 2003, is among one of them. The goal for index antiguiding is to introduce transversal modal loss with the relative simple waveguide design while maintain single transverse mode operation for good beam quality. The idea which is selectively support of fundamental mode is facilitated by involving certain level of signal regeneration inside the waveguide core. Since the modal loss is closed associated with waveguide design parameters such as core size and refractive index, the amount of gain inside the core provides active control of transverse modes inside index-antiguiding waveguide. For example, fundamental transverse mode inside such waveguide can be excited and propagate lossless when sufficient optical gain is provided. This often requires doped waveguide core and optical pumping at corresponding absorption band. However, the involvement of optical pumping also has its consequences. Phenomena such as thermal-optic effect and gain spatial hole-burning which are commonly found in bulk lasers request attention when scaling up output power with LMA index-antiguided waveguide amplifiers and resonators. In response, three key challenges of index-antiguided planar waveguide lasers, namely, guiding mechanism, power efficiency and transverse mode discrimination, are analyzed theoretically and experimentally in this dissertation. Experiments are based on two index-antiguided planar waveguide chips, whose core thickness are 220 microm and 400 microm respectively. The material of waveguide core is 1% Neodymium-doped Yttrium Aluminium garnet, or Nd:YAG while the cladding is made from Terbium Gallium garnet, or TGG. Due to the face pumping and limited pump power, it is found, with 220 microm-thick-core chip, that the guidance of the fundamental transverse mode along two orthogonal directions in a transverse plane is different. Along the bounded direction, index antiguiding prevails with negligible thermal refractive focusing while along the unbounded direction, the lasing mode is guided by thermal refractive focusing with negligible quadratic gain focusing. It is also founded that the quadratic thermal focusing will dominate the mode guidance in 220 microm chip with the help of additional pump. All these discovery calls for an active thermal control. The modal discriminative loss, though beneficial for transverse mode control, yet reduces the lasing efficiency. To model it, a 3-D lasing output power calculation model is developed based on spatial rate equations. The simulation results show good agreement with experiment data where slope efficiency curve are measured using multiple output couplers. The 10% slope efficiency with respect to incident pump power is the highest slope efficiency recorded in index-antiguided waveguide continuous-wave lasers. The model indicates more efficient pump absorption can facilitate further power scaling. The role of the modal discriminative loss in transverse mode competition is discussed. A theoretical model based on Rigrod analysis and spatial hole-burning is developed. The simulation shows reasonable agreement with experiment results in both chips. The single fundamental mode operation up to 10 times above the lasing threshold for 220 microm chip is achieved, which is limited by the incident pump power. However, as the core size increases, the modal distributed loss due to the index antiguiding is found to be less effective in transverse mode control. Other modal loss is needed to facilitate the suppression of higher-order modes. Based on the model, a strategy is proposed aiming to maximize the single mode output. It is also noted that the transverse mode competition model is also suitable for other lasers system with well-defined modal loss. Based on the models and experiment data, the index-antiguided planar waveguide lasers are proved to be capable of maintaining large-mode-area single transverse mode operation with the potential of power scaling. However, it is also shown that proper waveguide design is essential. The remaining challenges are the material choices for waveguide fabrication, especially for high power applications.
Coupled ridge waveguide distributed feedback quantum cascade laser arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying-Hui; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn; Yan, Fang-Liang
2015-04-06
A coupled ridge waveguide quantum cascade laser (QCL) array consisting of fifteen elements with parallel integration was presented. In-phase fundamental mode operation in each element is secured by both the index-guided nature of the ridge and delicate loss management by properly designed geometries of the ridges and interspaces. Single-lobe lateral far-field with a nearly diffraction limited beam pattern was obtained. By incorporating a one-dimensional buried distributed feedback grating, the in-phase-operating coupled ridge waveguide QCL design provides an efficient solution to obtaining high output power and stable single longitudinal mode emission. The simplicity of this structure and fabrication process makes thismore » approach attractive to many practical applications.« less
Single mode terahertz quantum cascade amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Y., E-mail: yr235@cam.ac.uk; Wallis, R.; Shah, Y. D.
2014-10-06
A terahertz (THz) optical amplifier based on a 2.9 THz quantum cascade laser (QCL) structure has been demonstrated. By depositing an antireflective coating on the QCL facet, the laser mirror losses are enhanced to fully suppress the lasing action, creating a THz quantum cascade (QC) amplifier. Terahertz radiation amplification has been obtained, by coupling a separate multi-mode THz QCL of the same active region design to the QC amplifier. A bare cavity gain is achieved and shows excellent agreement with the lasing spectrum from the original QCL without the antireflective coating. Furthermore, a maximum optical gain of ∼30 dB with single-modemore » radiation output is demonstrated.« less
The Dual Wavelength UV Transmitter Development for Space Based Ozone DIAL Measurements
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.
2008-01-01
The objective of this research is to develop efficient 1-micron to UV wavelength conversion technology to generate tunable, single mode, pulsed UV wavelengths of 320 nm and 308 nm. The 532 nm wavelength radiation is generated by a 1064 nm Nd:YAG laser through second harmonic generation. The 532 nm pumps an optical parametric oscillator (OPO) to generate 803 nm. The 320 nm is generated by sum frequency generation (SFG) of 532 nm and 803 nm wavelengths The hardware consists of a conductively cooled, 1 J/pulse, single mode Nd:YAG pump laser coupled to an efficient RISTRA OPO and SFG assembly-Both intra and extra-cavity approaches are examined for efficiency.
Highly efficient 400 W near-fundamental-mode green thin-disk laser.
Piehler, Stefan; Dietrich, Tom; Rumpel, Martin; Graf, Thomas; Ahmed, Marwan Abdou
2016-01-01
We report on the efficient generation of continuous-wave, high-brightness green laser radiation. Green lasers are particularly interesting for reliable and reproducible deep-penetration welding of copper or for pumping Ti:Sa oscillators. By intracavity second-harmonic generation in a thin-disk laser resonator designed for fundamental-mode operation, an output power of up to 403 W is demonstrated at a wavelength of 515 nm with almost diffraction-limited beam quality. The unprecedented optical efficiency of 40.7% of green output power with respect to the pump power of the thin-disk laser is enabled by the intracavity use of a highly efficient grating waveguide mirror, which combines the functions of wavelength stabilization and spectral narrowing, as well as polarization selection in a single element.
Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing
NASA Astrophysics Data System (ADS)
Zhang, Ya-nan; Zhang, Lebin; Han, Bo; Peng, Huijie; Zhou, Tianmin; Lv, Ri-qing
2018-06-01
A hydrogen sensor based on erbium-doped fiber ring laser with modal interferometer is proposed. A single mode-multimode-single mode (SMS) modal interferometer structure coated with Pd/WO3 film is used as the sensing head, due to that it is easy to be fabricated and low cost. The sensing structure is inserted into an erbium-doped fiber ring laser in order to solve the problem of spectral confusion and improve the detection limit of the hydrogen sensor based on the SMS modal interferometer. The SMS sensing structure is acted as a fiber band-pass filter. When hydrogen concentration around the sensor is changed, it will induce the refractive index and strain variations of the Pd/WO3 film, and then shift the resonant spectrum of the SMS modal interferometer as well as the laser wavelength of the fiber ring laser. Therefore, the hydrogen concentration can be measured by monitoring the wavelength shift of the laser, which has high intensity and narrow full width half maximum. Experimental results demonstrate that the sensor has high sensitivity of 1.23 nm/%, low detection limit of 0.017%, good stability and excellent repeatability.
NASA Technical Reports Server (NTRS)
Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.
1988-01-01
56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.
Intracavity doubling of cw LD pumped Nd:S-FAP laser with KTP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Shaojun; Sun Lianke; Wang Qingpu
In this paper the lasing performance of a intracavity doubling of CW diode-laser end-pumped Nd{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F, Nd:S-FAP, laser with KTP crystal was reported. The authors measured the single output performance of the green laser: the pumping threshold was 8mW; when the pumping light of 210mW was absorbed, the maximum single output at 529.7nm was 4.4mW (TEM{sub 00} mode), corresponding to a total conversion efficiency 2.1%. The comparison between experimental results and theoretical calculation was also discussed in this paper.
NASA Astrophysics Data System (ADS)
Zhou, Yuxin; Wang, Xin; Tang, Zijuan; Lou, Shuqin
2018-05-01
In this paper, a switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer is proposed. The in-line Mach–Zehnder interferometer is fabricated by splicing a large-core fiber between two segments of single mode fibers, in which the first splicing point is tapered and the second splicing point is connected directly. By carefully rotating the polarization controller, switchable single-, dual-, triple- and quad-wavelength lasing outputs can be obtained with a side mode suppression ratio higher than 50 dB. The maximal peak power difference of multi-wavelength lasing is 3.67 dB, demonstrating a good power equalization performance. Furthermore, the proposed laser is proven to be very stable at room temperature. The wavelength shifts and peak power fluctuations are less than 0.02 nm and 1.3 dB over half an hour. In addition, stable quintuple-wavelength lasing with a side mode suppression ratio higher than 50 dB can also be realized when the filter length is changed.
Self-mode-locked AlGaInP-VECSEL
NASA Astrophysics Data System (ADS)
Bek, R.; Großmann, M.; Kahle, H.; Koch, M.; Rahimi-Iman, A.; Jetter, M.; Michler, P.
2017-10-01
We report the mode-locked operation of an AlGaInP-based semiconductor disk laser without a saturable absorber. The active region containing 20 GaInP quantum wells is used in a linear cavity with a curved outcoupling mirror. The gain chip is optically pumped by a 532 nm laser, and mode-locking is achieved by carefully adjusting the pump spot size. For a pump power of 6.8 W, an average output power of up to 30 mW is reached at a laser wavelength of 666 nm. The pulsed emission is characterized using a fast oscilloscope and a spectrum analyzer, demonstrating stable single-pulse operation at a repetition rate of 3.5 GHz. Intensity autocorrelation measurements reveal a FWHM pulse duration of 22 ps with an additional coherence peak on top, indicating noise-like pulses. The frequency spectrum, as well as the Gaussian beam profile and the measured beam propagation factor below 1.1, shows no influence of higher order transverse modes contributing to the mode-locked operation.
NASA Astrophysics Data System (ADS)
Crump, P.; Decker, J.; Winterfeldt, M.; Fricke, J.; Maaßdorf, A.; Erbert, G.; Tränkle, G.
2015-03-01
High power broad-area diode lasers are the most efficient source of optical energy, but cannot directly address many applications due to their high lateral beam parameter product BPP = 0.25 × ΘL 95%× W95% (ΘL95% and W95% are emission angle and aperture at 95% power content), with BPP > 3 mm×mrad for W95%~90μm. We review here progress within the BRIDLE project, that is developing diode lasers with BPP < 2 mm×mrad for use in direct metal cutting systems, where the highest efficiencies and powers are required. Two device concepts are compared: narrow-stripe broad-area (NBA) and tapered lasers (TPL), both with monolithically integrated gratings. NBAs use W95% ~ 30 μm to cut-off higher order lateral modes and reduce BPP. TPLs monolithically combine a single mode region at the rear facet with a tapered amplifier, restricting the device to one lateral mode for lowest BPP. TPLs fabricated using ELoD (Extremely Low Divergence) epitaxial designs are shown to operate with BPP below 2mm×mrad, but at cost of low efficiency (<35%, due to high threshold current). In contrast, NBAs operate with BPP < 2 mm×mrad, but maintain efficiency >50% to output of > 7 W, so are currently the preferred design. In studies to further reduce BPP, lateral resonant anti-guiding structures have also been assessed. Optimized anti-guiding designs are shown to reduce BPP by 1 mm×mrad in conventional 90 μm stripe BA-lasers, without power penalty. In contrast, no BPP improvement is observed in NBA lasers, even though their spectrum indicates they are restricted to single mode operation. Mode filtering alone is therefore not sufficient, and further measures will be needed for reduced BPP.
Rusu, M; Kivistö, Samuli; Gawith, C; Okhotnikov, O
2005-10-17
We report on successful realization of a picosecond visible-continuum source embedding a single mode fiber taper. The output of ytterbium mode-locked fiber laser was frequency doubled in a periodically-polled lithium niobate (PPLN) crystal to produce green pump light. Spectral brightness of the white light generated in the tapered fiber was improved by limiting the broadening just to the visible wavelengths. The influence of taper parameters, particularly the dispersion, on white light spectrum has been studied.
NASA Astrophysics Data System (ADS)
Rusu, M.; Kivistö, Samuli; Gawith, C. B. E.; Okhotnikov, O. G.
2005-10-01
We report on successful realization of a picosecond visible-continuum source embedding a single mode fiber taper. The output of ytterbium mode-locked fiber laser was frequency doubled in a periodically-polled lithium niobate (PPLN) crystal to produce green pump light. Spectral brightness of the white light generated in the tapered fiber was improved by limiting the broadening just to the visible wavelengths. The influence of taper parameters, particularly the dispersion, on white light spectrum has been studied.
Dropout dynamics in pulsed quantum dot lasers due to mode jumping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolovskii, G. S.; Dudelev, V. V.; Deryagin, A. G.
2015-06-29
We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The originmore » of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes.« less
NASA Astrophysics Data System (ADS)
Shramenko, Mikhail V.; Chamorovskiy, Alexander; Lyu, Hong-Chou; Lobintsov, Andrei A.; Karnowski, Karol; Yakubovich, Sergei D.; Wojtkowski, Maciej
2015-03-01
Tunable semiconductor laser for 1025-1095 nm spectral range is developed based on the InGaAs semiconductor optical amplifier and a narrow band-pass acousto-optic tunable filter in a fiber ring cavity. Mode-hop-free sweeping with tuning speeds of up to 104 nm/s was demonstrated. Instantaneous linewidth is in the range of 0.06-0.15 nm, side-mode suppression is up to 50 dB and polarization extinction ratio exceeds 18 dB. Optical power in output single mode fiber reaches 20 mW. The laser was used in OCT system for imaging a contact lens immersed in a 0.5% intra-lipid solution. The cross-section image provided the imaging depth of more than 5mm.
Loranger, Sébastien; Lambin-Iezzi, Victor; Wahbeh, Mamoun; Kashyap, Raman
2016-04-15
Distributed feedback (DFB) fiber Bragg gratings (FBG) are widely used as narrow-band filters and single-mode cavities for lasers. Recently, a nonlinear generation has been shown in 10-20 cm DFB gratings in a highly nonlinear fiber. First, we show in this Letter a novel fabrication technique of ultra-long DFBs in a standard fiber (SMF-28). Second, we demonstrate nonlinear generation in such gratings. A particular inscription technique was used to fabricate all-in-phase ultra-long FBG and to implement reproducible phase shift to form a DFB mode. We demonstrate stimulated Brillouin scattering (SBS) emission from this DFB mode and characterize the resulting laser. It seems that such a SBS based DFB laser stabilizes a pump's jittering and reduces its linewidth.
Photonic Molecule Lasers Revisited
NASA Astrophysics Data System (ADS)
Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.
2014-05-01
Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.
NASA Astrophysics Data System (ADS)
Bayrakli, Ismail; Erdogan, Yasar Kemal
2018-06-01
The present paper focuses on development of a compact photo-acoustic sensor using inexpensive components for glucose analysis. An amplitude-stabilized wavelength-tunable single-mode external cavity diode laser operating around 1050 nm was realized and characterized for the use of laser beam as an excitation light source. In the established setup, a fine tuning range of 9 GHz was achieved. The glucose solution was obtained by diluting D-glucose in sterile water. The acoustic signal generated by the optical excitation was detected via a chip piezoelectric film transducer. A detection limit of 50 mM (900 mg/dl) was achieved. The device may be of great interest for its applications in medicine and health monitoring. The sensor is promising for non-invasive in vivo glucose measurements from interstitial fluid.
Study of gain-coupled distributed feedback laser based on high order surface gain-coupled gratings
NASA Astrophysics Data System (ADS)
Gao, Feng; Qin, Li; Chen, Yongyi; Jia, Peng; Chen, Chao; Cheng, LiWen; Chen, Hong; Liang, Lei; Zeng, Yugang; Zhang, Xing; Wu, Hao; Ning, Yongqiang; Wang, Lijun
2018-03-01
Single-longitudinal-mode, gain-coupled distributed feedback (DFB) lasers based on high order surface gain-coupled gratings are achieved. Periodic surface metal p-contacts with insulated grooves realize gain-coupled mechanism. To enhance gain contrast in the quantum wells without the introduction of effective index-coupled effect, groove length and depth were well designed. Our devices provided a single longitudinal mode with the maximum CW output power up to 48.8 mW/facet at 971.31 nm at 250 mA without facet coating, 3dB linewidth (<3.2 pm) and SMSR (>39 dB). Optical bistable characteristic was observed with a threshold current difference. Experimentally, devices with different cavity lengths were contrasted on power-current and spectrum characteristics. Due to easy fabrication technique and stable performance, it provides a method of fabricating practical gain-coupled distributed feedback lasers for commercial applications.
Spagnolo, Vincenzo; Patimisco, Pietro; Borri, Simone; Scamarcio, Gaetano; Bernacki, Bruce E; Kriesel, Jason
2012-11-01
A sensitive spectroscopic sensor based on a hollow-core fiber-coupled quantum cascade laser (QCL) emitting at 10.54 μm and quartz enhanced photoacoustic spectroscopy (QEPAS) technique is reported. The design and realization of mid-IR fiber and coupler optics has ensured single-mode QCL beam delivery to the QEPAS sensor. The collimation optics was designed to produce a laser beam of significantly reduced beam size and waist so as to prevent illumination of the quartz tuning fork and microresonator tubes. SF(6) was selected as the target gas. A minimum detection sensitivity of 50 parts per trillion in 1 s was achieved with a QCL power of 18 mW, corresponding to a normalized noise-equivalent absorption of 2.7×10(-10) W·cm(-1)/Hz(1/2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spagnolo, V.; Patimisco, P.; Borri, Simone
2012-10-23
A sensitive spectroscopic sensor based on a hollow-core fiber-coupled quantum cascade laser (QCL) emitting at 10.54 µm and quartz enhanced photoacoustic spectroscopy (QEPAS) technique is reported. The design and realization of mid-infrared fiber and coupler optics has ensured single-mode QCL beam delivery to the QEPAS sensor . The collimation optics was designed to produce a laser beam of significantly reduced beam size and waist so as to prevent illumination of the quartz tuning fork and micro-resonator tubes. SF6 was selected as the target gas. A minimum detection sensitivity of 50 parts per trillion in 1 s was achieved with amore » QCL power of 18 mW, corresponding to a normalized noise-equivalent absorption of 2.7x10-10 W•cm-1/Hz1/2.« less
NASA Astrophysics Data System (ADS)
Song, Chaoqun; Dong, Shiyun; Yan, Shixing; He, Jiawu; Xu, Binshi; He, Peng
2017-10-01
Ultra-narrow gap laser welding is a novel method for thick high strength aluminum alloy plate for its lower heat input, less deformation and higher efficiency. To obtain a perfect welding quality, it is vital to control the more complex droplet transfer behavior under the influence of ultra-narrow gap groove. This paper reports the effects of gap width of groove on droplet transfer behavior in ultra-narrow gap laser welding of 7A52 aluminum alloy plates by a high speed camera, using an ER 5356 filler wire. The results showed that the gap width had directly effects on droplet transfer mode and droplet shape. The droplet transfer modes were, in order, both-sidewall transfer, single-sidewall transfer, globular droplet transfer and bridging transfer, with different droplet shape and transition period, as the gap width increased from 2 mm to 3.5mm. The effect of gap width on lack of fusion was also studied to analyze the cause for lack of fusion at the bottom and on the sidewall of groove. Finally, with a 2.5 mm U-type parallel groove, a single-pass joint with no lack of fusion and other macro welding defects was successfully obtained in a single-sidewall transfer mode.
Design of a low-bending-loss large-mode-area photonic crystal fiber
NASA Astrophysics Data System (ADS)
Napierala, Marek; Beres-Pawlik, Elzbieta; Nasilowski, Tomasz; Mergo, Pawel; Berghmans, Francis; Thienpont, Hugo
2012-04-01
We present a design of a photonic crystal fiber for high power laser and amplifier applications. Our fiber comprises a core with a diameter larger than 60 μm and exhibits single mode operation when the fiber is bent around a 10 cm radius at a wavelength of 1064 nm. Single mode guidance is enforced by the high loss of higher order modes which exceeds 80 dB/m whereas the loss of the fundamental mode (FM) is lower than 0.03 dB/m. The fiber can therefore be considered as an active medium for compact high power fiber lasers and amplifiers with a nearly diffraction limited beam output. We also analyze our fiber in terms of tolerance to manufacturing imperfections. To do so we employ a statistical design methodology. This analysis reveals those crucial parameters of the fiber that have to be controlled precisely during the fabrication process not to deteriorate the fiber performance. Finally we show that the fiber can be fabricated according to our design and we present experimental results that confirm the expected fiber performance.
Cleaved-coupled nanowire lasers
Gao, Hanwei; Fu, Anthony; Andrews, Sean C.; Yang, Peidong
2013-01-01
The miniaturization of optoelectronic devices is essential for the continued success of photonic technologies. Nanowires have been identified as potential building blocks that mimic conventional photonic components such as interconnects, waveguides, and optical cavities at the nanoscale. Semiconductor nanowires with high optical gain offer promising solutions for lasers with small footprints and low power consumption. Although much effort has been directed toward controlling their size, shape, and composition, most nanowire lasers currently suffer from emitting at multiple frequencies simultaneously, arising from the longitudinal modes native to simple Fabry–Pérot cavities. Cleaved-coupled cavities, two Fabry–Pérot cavities that are axially coupled through an air gap, are a promising architecture to produce single-frequency emission. The miniaturization of this concept, however, imposes a restriction on the dimensions of the intercavity gaps because severe optical losses are incurred when the cross-sectional dimensions of cavities become comparable to the lasing wavelength. Here we theoretically investigate and experimentally demonstrate spectral manipulation of lasing modes by creating cleaved-coupled cavities in gallium nitride (GaN) nanowires. Lasing operation at a single UV wavelength at room temperature was achieved using nanoscale gaps to create the smallest cleaved-coupled cavities to date. Besides the reduced number of lasing modes, the cleaved-coupled nanowires also operate with a lower threshold gain than that of the individual component nanowires. Good agreement was found between the measured lasing spectra and the predicted spectral modes obtained by simulating optical coupling properties. This agreement between theory and experiment presents design principles to rationally control the lasing modes in cleaved-coupled nanowire lasers. PMID:23284173
Spectrally tailored supercontinuum generation from single-mode-fiber amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Qiang; Guo, Zhengru; Zhang, Qingshan
Spectral filtering of an all-normal-dispersion Yb-doped fiber laser was demonstrated effective for broadband supercontinuum generation in the picosecond time region. The picosecond pump pulses were tailored in spectrum with 1 nm band-pass filter installed between two single-mode fiber amplifiers. By tuning the spectral filter around 1028 nm, four-wave mixing was initiated in a photonic crystal fiber spliced with single-mode fiber, as manifested by the simultaneous generation of Stokes wave at 1076 nm and anti-Stokes wave at 984 nm. Four-wave mixing took place in cascade with the influence of stimulated Raman scattering and eventually extended the output spectrum more than 900 nm of 10 dB bandwidth.more » This technique allows smooth octave supercontinuum generation by using simple single-mode fiber amplifiers rather than complicated multistage large-mode-area fiber amplifiers.« less
Interferometric measurement of refractive index modification in a single mode microfiber
NASA Astrophysics Data System (ADS)
Ahmed, Farid; Ahsani, Vahid; Jun, Martin B. G.
2017-02-01
Efficient and cost effective measurement of the refractive index profile in an optical fiber is a significant technical job to design and manufacture in-fiber photonic devices and communication systems. For instance, to design fiber gratings, it is required to estimate the refractive index modulation to be inscribed by the fabrication apparatus such as ultraviolet or infrared lasers. Mach-Zehnder interferometer (MZI) based quantification of refractive index change written in single mode microfiber by femtosecond laser radiation is presented in this study. The MZI is constructed by splicing a microfiber (core diameter: 3.75 μm, cladding diameter: 40 μm) between standard single mode fibers. To measure the RI inscribed by infrared femtosecond laser, 200 μm length of the core within the MZI was scanned with laser radiation. As the higher index was written within 200 μm length of the core, the transmission spectrum of the interferometer displayed a corresponding red shift. The observed spectral shift was used to calculate the amount of refractive index change inscribed by the femtosecond irradiation. For the MZI length of 3.25 mm, and spectral shift of 0.8 nm, the calculated refractive index was found to be 0.00022. The reported results display excellent agreement between theory and experimental findings. Demonstrated method provides simple yet very effective on-site measurement of index change in optical fibers. Since the MZI can be constructed in diverse fiber types, this technique offers flexibility to quantify index change in various optical fibers.
Frequency Stabilization of a Single Mode Terahertz Quantum Cascade Laser to the Kilohertz Level
2009-04-27
analog locking circuit was shown to stabilize the beat signal between a 2.408 THz quantum cascade laser and a CH2DOH THz CO2 optically pumped...codes: (140.5965) Semiconductor lasers , quantum cascade; (140.3425) Laser stabilization; (300.3700) Linewidth; (040.2840) Heterodyne . References...Reno, “Frequency and phase - lock control of a 3 THz quantum cascade laser ,” Opt. Lett. 30, 1837-1839 (2005). 10. D. Rabanus, U. U. Graf, M. Philipp
NASA Astrophysics Data System (ADS)
Pu, Tao; Wang, Wei wei
2018-01-01
In order to apply optical injection effect in Microwave Photonics system, The red-shift effect of the cavity mode of the DFB semiconductor laser under single-frequency optical injection is studied experimentally, and the red-shift curve of the cavity mode is measured. The wavelength-selective amplification property of the DFB semiconductor laser under multi-frequency optical injection is also investigated, and the gain curves for the injected signals in different injection ratios are measured in the experiment. A novel and simple structure to implement a single-passband MPF with wideband tunability based on the wavelength-selective amplification of a DFB semiconductor laser under optical injection is proposed and experimentally demonstrated. MPFs with center frequency tuned from 13 to 41 GHz are realized in the experiment. A wideband and frequency-tunable optoelectronic oscillator based on a directly modulated distributed feedback (DFB) semiconductor laser under optical injection is proposed and experimentally demonstrated. By optical injection, the relaxation oscillation frequency of the DFB laser is enhanced and its high modulation efficiency makes the loop oscillate without the necessary of the electrical filter. An experiment is performed; microwave signals with frequency tuned from 5.98 to 15.22 GHz are generated by adjusting the injection ratio and frequency detuning between the master and slave lasers.
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Stahl, Charlotte S. D.; Hutchens, Thomas C.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2013-03-01
Successful identification of the cavernous nerves (CN's) during radical prostatectomy requires detection of the CN's through a thin layer of overlying fascia. This study explores the 1490 nm infrared (IR) diode laser wavelength for rapid and deep subsurface CN stimulation in a rat model, in vivo. A 150-mW, 1490-nm diode laser providing an optical penetration depth of 520 μm was used to stimulate the CN's in 8 rats through a single mode fiber optic probe with 1-mm-diameter spot and 15 s irradiation time. Successful ONS was judged by an intracavernous pressure response (ICP) in the rat penis. Subsurface ONS at 1490 nm was also compared with previous studies using 1455 and 1550 nm IR diode laser wavelengths. ONS was observed through fascia layers up to 380 μm thick using an incident laser power of 50 mW. ICP response times as short as 4.6 +/- 0.2 s were recorded using higher laser powers bust still below the nerve damage threshold. The 1490-nm diode laser represents a compact, low cost, high power, and high quality infrared light source for use in ONS. This wavelength provides deeper optical penetration than 1455 nm and more rapid and efficient nerve stimulation than 1550 nm.
Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes.
Li, Diao; Jussila, Henri; Wang, Yadong; Hu, Guohua; Albrow-Owen, Tom; C T Howe, Richard; Ren, Zhaoyu; Bai, Jintao; Hasan, Tawfique; Sun, Zhipei
2018-02-09
Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively. Our results provide a novel light source for various applications requiring variable wavelength or pulse duration.
NASA Astrophysics Data System (ADS)
Dvoretskiy, D. A.; Sazonkin, S. G.; Voropaev, V. S.; Negin, M. A.; Leonov, S. O.; Pnev, A. B.; Karasik, V. E.; Denisov, L. K.; Krylov, A. A.; Davydov, V. A.; Obraztsova, E. D.
2016-11-01
Regimes of ultrashort pulse generation in an erbium-doped all-fibre ring laser with hybrid mode locking based on single-wall carbon - boron nitride nanotubes and the nonlinear Kerr effect in fibre waveguides are studied. Stable dechirped ultrashort pulses are obtained with a duration of ˜ 90 {\\text{fs}}, a repetition rate of ˜ 42.2 {\\text{MHz}}, and an average output power of ˜ 16.7 {\\text{mW}}, which corresponds to a pulse energy of ˜ 0.4 {\\text{nJ}} and a peak laser power of ˜ 4.4 {\\text{kW}}.
Linear laser diode arrays for improvement in optical disk recording for space stations
NASA Technical Reports Server (NTRS)
Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.
1990-01-01
The design and fabrication of individually addressable laser diode arrays for high performance magneto-optic recording systems are presented. Ten diode arrays with 30 mW cW light output, linear light vs. current characteristics and single longitudinal mode spectrum were fabricated using channel substrate planar (CSP) structures. Preliminary results on the inverse CSP structure, whose fabrication is less critically dependent on device parameters than the CSP, are also presented. The impact of systems parameters and requirements, in particular, the effect of feedback on laser design is assessed, and techniques to reduce feedback or minimize its effect on systems performance, including mode-stabilized structures, are evaluated.
Output Power Limitations and Improvements in Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers.
Tandoi, Giuseppe; Ironside, Charles N; Marsh, John H; Bryce, A Catrina
2012-03-01
We report a novel approach for increasing the output power in passively mode locked semiconductor lasers. Our approach uses epitaxial structures with an optical trap in the bottom cladding that enlarges the vertical mode size to scale the pulse saturation energy. With this approach we demonstrate a very high peak power of 9.8 W per facet, at a repetition rate of 6.8 GHz and with pulse duration of 0.71 ps. In particular, we compare two GaAs/AlGaAs epilayer designs, a double quantum well design operating at 830 nm and a single quantum well design operating at 795 nm, with vertical mode sizes of 0.5 and 0.75 μm, respectively. We show that a larger mode size not only shifts the mode locking regime of operation towards higher powers, but also produces other improvements in respect of two main failure mechanisms that limit the output power: the catastrophic optical mirror damage and the catastrophic optical saturable absorber damage. For the 830 nm material structure, we also investigate the effect of non-absorbing mirrors on output power and mode locked operation of colliding pulse mode locked lasers.
Output Power Limitations and Improvements in Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers
Tandoi, Giuseppe; Ironside, Charles N.; Marsh, John H.; Bryce, A. Catrina
2013-01-01
We report a novel approach for increasing the output power in passively mode locked semiconductor lasers. Our approach uses epitaxial structures with an optical trap in the bottom cladding that enlarges the vertical mode size to scale the pulse saturation energy. With this approach we demonstrate a very high peak power of 9.8 W per facet, at a repetition rate of 6.8 GHz and with pulse duration of 0.71 ps. In particular, we compare two GaAs/AlGaAs epilayer designs, a double quantum well design operating at 830 nm and a single quantum well design operating at 795 nm, with vertical mode sizes of 0.5 and 0.75 μm, respectively. We show that a larger mode size not only shifts the mode locking regime of operation towards higher powers, but also produces other improvements in respect of two main failure mechanisms that limit the output power: the catastrophic optical mirror damage and the catastrophic optical saturable absorber damage. For the 830 nm material structure, we also investigate the effect of non-absorbing mirrors on output power and mode locked operation of colliding pulse mode locked lasers. PMID:23843678
Two-Color Pump-Probe Measurement of Photonic Quantum Correlations Mediated by a Single Phonon
NASA Astrophysics Data System (ADS)
Anderson, Mitchell D.; Tarrago Velez, Santiago; Seibold, Kilian; Flayac, Hugo; Savona, Vincenzo; Sangouard, Nicolas; Galland, Christophe
2018-06-01
We propose and demonstrate a versatile technique to measure the lifetime of the one-phonon Fock state using two-color pump-probe Raman scattering and spectrally resolved, time-correlated photon counting. Following pulsed laser excitation, the n =1 phonon Fock state is probabilistically prepared by projective measurement of a single Stokes photon. The detection of an anti-Stokes photon generated by a second, time-delayed laser pulse probes the phonon population with subpicosecond time resolution. We observe strongly nonclassical Stokes-anti-Stokes correlations, whose decay maps the single phonon dynamics. Our scheme can be applied to any Raman-active vibrational mode. It can be modified to measure the lifetime of n ≥1 Fock states or the phonon quantum coherences through the preparation and detection of two-mode entangled vibrational states.
Two-Color Pump-Probe Measurement of Photonic Quantum Correlations Mediated by a Single Phonon.
Anderson, Mitchell D; Tarrago Velez, Santiago; Seibold, Kilian; Flayac, Hugo; Savona, Vincenzo; Sangouard, Nicolas; Galland, Christophe
2018-06-08
We propose and demonstrate a versatile technique to measure the lifetime of the one-phonon Fock state using two-color pump-probe Raman scattering and spectrally resolved, time-correlated photon counting. Following pulsed laser excitation, the n=1 phonon Fock state is probabilistically prepared by projective measurement of a single Stokes photon. The detection of an anti-Stokes photon generated by a second, time-delayed laser pulse probes the phonon population with subpicosecond time resolution. We observe strongly nonclassical Stokes-anti-Stokes correlations, whose decay maps the single phonon dynamics. Our scheme can be applied to any Raman-active vibrational mode. It can be modified to measure the lifetime of n≥1 Fock states or the phonon quantum coherences through the preparation and detection of two-mode entangled vibrational states.
Fini, John M; Nicholson, Jeffrey W
2013-08-12
Fibers with symmetric bend compensated claddings are proposed, and demonstrate performance much better than conventional designs. These fibers can simultaneously achieve complete HOM suppression, negligible bend loss, and mode area >1000 square microns. The robust single-modedness of these fibers offers a path to overcoming mode instability limits on high-power amplifiers and lasers. The proposed designs achieve many of the advantages of our previous (asymmetric) bend compensation strategy in the regime of moderately large area, and are much easier to fabricate and utilize.
Yang, Heewon; Kim, Hyoji; Shin, Junho; Kim, Chur; Choi, Sun Young; Kim, Guang-Hoon; Rotermund, Fabian; Kim, Jungwon
2014-01-01
We show that a 1.13 GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz-10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be directly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-wall carbon nanotube-coated mirrors. To our knowledge, this is the lowest-timing-jitter optical pulse train with gigahertz repetition rate ever measured. If this pulse train is used for direct sampling of 565 MHz signals (Nyquist frequency of the pulse train), the jitter level demonstrated would correspond to the projected effective-number-of-bit of 17.8, which is much higher than the thermal noise limit of 50 Ω load resistance (~14 bits).
Mid-infrared performance of single mode chalcogenide fibers
NASA Astrophysics Data System (ADS)
Cook, Justin; Sincore, Alex; Tan, Felix; El Halawany, Ahmed; Riggins, Anthony; Shah, Lawrence; Abouraddy, Ayman F.; Richardson, Martin C.; Schepler, Kenneth L.
2018-02-01
Due to the intrinsic absorption edge in silica near 2.4 μm, more exotic materials are required to transmit laser power in the IR such as fluoride or chalcogenide glasses (ChGs). In particular, ChG fibers offer broad IR transmission with low losses < 1 dB/m. Here, we report on the performance of in-house drawn multi-material chalcogenide fibers at four different infrared wavelengths: 2053 nm, 2520 nm and 4550 nm. Polymer clad ChG fibers were drawn with 12.3 μm and 25 μm core diameters. Testing at 2053 nm was accomplished using a > 15 W, CW Tm:fiber laser. Power handling up to 10.2 W with single mode beam quality has been demonstrated, limited only by the available Tm:fiber output power. Anti-reflective coatings were successfully deposited on the ChG fiber facets, allowing up to 90.6% transmission with 12.2 MW/cm2 intensity on the facet. Single mode guidance at 4550 nm was also demonstrated using a quantum cascade laser (QCL). A custom optical system was constructed to efficiently couple the 0.8 NA QCL radiation into the 0.2 NA ChG fiber, allowing for a maximum of 78% overlap between the QCL radiation and fundamental mode of the fiber. With an AR-coated, 25 μm core diameter fiber, >50 mW transmission was demonstrated with > 87% transmission. Finally, we present results on fiber coupling from a free space Cr:ZnSe resonator at 2520 nm.
NASA Astrophysics Data System (ADS)
O'Brien, Thomas R.; Kesler, Benjamin; Dallesasse, John M.
2017-02-01
Top emission 850-nm vertical-cavity surface-emitting lasers (VCSELs) demonstrating transverse mode selection via impurity-induced disordering (IID) are presented. The IID apertures are fabricated via closed ampoule zinc diffusion. A simple 1-D plane wave model based on the intermixing of Group III atoms during IID is presented to optimize the mirror loss of higher-order modes as a function of IID strength and depth. In addition, the impact of impurity diffusion into the cap layer of the lasers is shown to improve contact resistance. Further investigation of the mode-dependent characteristics of the device imply an increase in the thermal impedance associated with the fraction of IID contained within the oxide aperture. The optimization of the ratio of the IID aperture to oxide aperture is experimentally determined. Single fundamental mode output of 1.6 mW with 30 dBm side mode suppression ratio is achieved by a 3.0 μm oxide-confined device with an IID aperture of 1.3 μm indicating an optimal IID aperture size of 43% of the oxide aperture.
High-Power Single-Mode 2.65-micron InGaAsSb/AlInGaAsSb Diode Lasers
NASA Technical Reports Server (NTRS)
Frez, Clifford F.; Briggs, Ryan M.; Forouhar, Siamak; Borgentun, Carl E.; Gupta, James
2013-01-01
Central to the advancement of both satellite and in-situ science are improvements in continuous-wave and pulsed infrared laser systems coupled with integrated miniaturized optics and electronics, allowing for the use of powerful, single-mode light sources aboard both satellite and unmanned aerial vehicle platforms. There is a technological gap in supplying adequate laser sources to address the mid-infrared spectral window for spectroscopic characterization of important atmospheric gases. For high-power applications between 2 to 3 micron, commercial laser technologies are unsuitable because of limitations in output power. For instance, existing InP-based laser systems developed for fiber-based telecommunications cannot be extended to wavelengths longer than 2 micron. For emission wavelengths shorter than 3 micron, intersubband devices, such as infrared quantum cascade lasers, become inefficient due to band-offset limitations. To date, successfully demonstrated singlemode GaSb-based laser diodes emitting between 2 and 3 micron have employed lossy metal Bragg gratings for distributed- feedback coupling, which limits output power due to optical absorption. By optimizing both the quantum well design and the grating fabrication process, index-coupled distributed-feedback 2.65-micron lasers capable of emitting in excess of 25 mW at room temperature have been demonstrated. Specifically, lasers at 3,777/cm (2.65 micron) have been realized to interact with strong absorption lines of HDO and other isotopologues of H2O. With minor modifications of the optical cavity and quantum well designs, lasers can be fabricated at any wavelength within the 2-to-3-micron spectral window with similar performance. At the time of this reporting, lasers with this output power and wavelength accuracy are not commercially available. Monolithic ridge-waveguide GaSb lasers were fabricated that utilize secondorder lateral Bragg gratings to generate single-mode emission from InGaAsSb/ AlInGaAsSb multi-quantum well structures. The device fabrication utilizes etched index-coupled gratings in the top AlGaAsSb cladding of the laser chip along the ridge waveguide, whereas commercial lasers that emit close to this wavelength include loss-coupled metal gratings that limit the output power of the laser. Semiconductor-laser-based spectrometers can be used to replace gas sensors currently used in industry and government. With the availability of high-power laser sources at mid-infrared wavelengths, sensors can target strong fundamental gas absorption lines to maximize instrument sensitivity.
Operation of Ho:YAG ultrafast laser inscribed waveguide lasers.
McDaniel, Sean; Thorburn, Fiona; Lancaster, Adam; Stites, Ronald; Cook, Gary; Kar, Ajoy
2017-04-20
We report fabrication and operation of multi-watt level waveguide lasers utilizing holmium-doped yttrium aluminum garnet (Ho:YAG). The waveguides were fabricated using ultrafast laser inscription, which relies on a chirped pulse ytterbium fiber laser to create depressed cladding structures inside the material. A variety of waveguides were created inside the Ho:YAG samples. We demonstrate output powers of ∼2 W from both a single-mode 50 μm waveguide laser and a multimode 80 μm waveguide laser. In addition, laser action from a co-doped Yb:Ho:YAG sample under in-band pumping conditions was demonstrated.
Evolution of the Novalux extended cavity surface-emitting semiconductor laser (NECSEL)
NASA Astrophysics Data System (ADS)
McInerney, John G.
2016-03-01
Novalux Inc was an enterprise founded by Aram Mooradian in 1998 to commercialise a novel electrically pumped vertical extended cavity semiconductor laser platform, initially aiming to produce pump lasers for optical fiber telecommunication networks. Following successful major investment in 2000, the company developed a range of single- and multi-mode 980 nm pump lasers emitting from 100-500 mW with excellent beam quality and efficiency. This rapid development required solution of several significant problems in chip and external cavity design, substrate and DBR mirror optimization, thermal engineering and mode selection. Output coupling to single mode fiber was exceptional. Following the collapse of the long haul telecom market in late 2001, a major reorientation of effort was undertaken, initially to develop compact 60-100 mW hybrid monolithically integrated pumplets for metro/local amplified networks, then to frequency-doubled blue light emitters for biotech, reprographics and general scientific applications. During 2001-3 I worked at Novalux on a career break from University College Cork, first as R&D Director managing a small group tasked with producing new capabilities and product options based on the NECSEL platform, including high power, pulsed and frequency doubled versions, then in 2002 as Director of New Product Realization managing the full engineering team, leading the transition to frequency doubled products.
NASA Astrophysics Data System (ADS)
Teamir, Tesfay; Elahi, Parviz; Makey, Ghaith; Fatih, Ilday
Passive mode-locking, resulting in self-organized formation of femtoseconds-long laser pulses, constitutes a far-from-equilibrium steady state. Mode-locking is not only important for laser technology, but also of fundamental interest for broad class of systems. Despite numerous studies on their nonlinear dynamics, there is little understanding of the transitions that intrinsic noise can induce. We show that transitions between single-DS and multi-DS states can be triggered. Near critical points, DS states are observed to repeatedly exchange energy among themselves, form DS clusters with varying or vibrating temporal separation, often followed by random transformations among different states. This critical behavior appears to be caused by soliton-soliton or soliton-generated dispersive wave interactions. Irrespective of the specifics of the state, the measured noise level of the laser starts at a moderate value, is then reduced, as the DS's energy is increased. Further increases in power (nonlinearity) drives it towards a noisy critical state, where creation or annihilation of pulses occurs just before a new steady state is formed. These noise-induced transitions between steady states can shed light on the thermodynamics of far-from-equilibrium systems. TàBITAK (113F319) and ERC CoG (617521).
Thapa, Rajesh; Gattass, Rafael R; Nguyen, Vinh; Chin, Geoff; Gibson, Dan; Kim, Woohong; Shaw, L Brandon; Sanghera, Jasbinder S
2015-11-01
We demonstrate a low-loss, repeatable, and robust splice between single-mode silica fiber and single-mode chalcogenide (CHG) fiber. These splices are particularly difficult to create because of the significant difference in the two fibers' glass transition temperatures (∼1000°C) as well as the large difference in the coefficients of thermal expansion between the fibers (∼20×10(-6)/°C). With 90% light coupled through the silica-CHG fiber splice, predominantly in the fundamental circular-symmetric mode, into the core of the CHG fiber and with 0.5 dB of splice loss measured around the wavelength of 2.5 μm, after correcting only for the Fresnel loss, the silica-CHG splice offers excellent beam quality and coupling efficiency. The tensile strength of the splice is greater than 12 kpsi, and the laser damage threshold is greater than 2 W (CW) and was limited by the available laser pump power. We also utilized this splicing technique to demonstrate 2 to 4.5 μm ultrabroadband supercontinuum generation in a monolithic all-fiber system comprising a CHG fiber and a high peak power 2 μm pulsed Raman-shifted thulium fiber laser. This is a major development toward compact form factor commercial applications of soft-glass mid-IR fibers.
Numerical study of the properties of optical vortex array laser tweezers.
Kuo, Chun-Fu; Chu, Shu-Chun
2013-11-04
Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications.
Observation of laser beam profile progression inside an extended laser cavity
NASA Astrophysics Data System (ADS)
Wu, Frank F.; Farrell, Thomas C.
2013-03-01
This report presents the result of the laser beam profile progression in target-in-the-loop (TIL) system. This simulation experiment is to verify whether it is possible to form a tight hot spot similar to a single transversal mode in an extended laser cavity. Therefore, it is very important to observe the progression of the laser profile at a laser cavity mirror when a seeded high energy laser pulse is injected into the TIL system. The extended laser cavity is formed with a high reflectivity mirror on one end and an optical phase conjugated mirror as the second mirror, with potential disturbance media inside. The laser oscillation occurs only when it is triggered with a single frequency high energy laser pulse to overcome the threshold condition. With a laser cavity length of around 11 meters and a seeded laser pulse of 10 ns, we have been able to acquire and distinguish the laser beam profiles of each round-trip. Inserting a scattering media and other distortion elements can simulate atmospheric effects.
Multiwavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber
NASA Astrophysics Data System (ADS)
Ramzia Salem, A. M.; Al-Mansoori, M. H.; Hizam, H.; Mohd Noor, S. B.; Abu Bakar, M. H.; Mahdi, M. A.
2011-05-01
A multiwavelength laser comb using a bismuth-based erbium-doped fiber and 50 m photonic crystal fiber is demonstrated in a ring cavity configuration. The fiber laser is solely pumped by a single 1455 nm Raman pump laser to exploit its higher power delivery compared to that of a single-mode laser diode pump. At 264 mW Raman pump power and 1 mW Brillouin pump power, 38 output channels in the L-band have been realized with an optical signal-to-noise ratio above 15 dB and a Stokes line spacing of 0.08 nm. The laser exhibits a tuning range of 12 nm and produces stable Stokes lines across the tuning range between Brillouin pump wavelengths of 1603 nm and 1615 nm.
Blin, Stéphane; Vaudel, Olivier; Besnard, Pascal; Gabet, Renaud
2009-05-25
Bistabilities between a steady (or pulsating, chaotic) and different pulsating regimes are investigated for an optically injected semi-conductor laser. Both numerical and experimental studies are reported for continuous-wave single-mode semiconductor distributed-feedback lasers emitting at 1.55 microm. Hysteresis are driven by either changing the optically injected power or the frequency difference between both lasers. The effect of the injected laser pumping rate is also examined. Systematic mappings of the possible laser outputs (injection locking, bimodal, wave mixing, chaos or relaxation oscillations) are carried out. At small pumping rates (1.2 times threshold), only locking and bimodal regimes are observed. The extent of the bistable area is either 11 dB or 35 GHz, depending on the varying parameters. At high pumping rates (4 times threshold), numerous injection regimes are observed. Injection locking and its bistabilities are also reported for secondary longitudinal modes.
Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping
NASA Astrophysics Data System (ADS)
Arbabzadah, E. A.; Damzen, M. J.
2016-06-01
We report the investigation of an Alexandrite laser end-pumped by a fibre-coupled red diode laser module. Power, efficiency, spatial, spectral, and wavelength tuning performance are studied as a function of pump and laser cavity parameters. It is the first demonstration, to our knowledge, of greater than 1 W power and also highest laser slope efficiency (44.2%) in a diode-pumped Alexandrite laser with diffraction-limited TEM00 mode operation. Spatial quality was excellent with beam propagation parameter M 2 ~ 1.05. Wavelength tuning from 737-796 nm was demonstrated using an intracavity birefringent tuning filter. Using a novel double pass end-pumping scheme to get efficient absorption of both polarisation states of the scrambled fibre-delivered diode pump, a total output coupled power of 1.66 W is produced in TEM00 mode with 40% slope efficiency.
NASA Astrophysics Data System (ADS)
Bamba, Motoaki; Ogawa, Tetsuo
2016-03-01
We investigate theoretically the light amplification by stimulated emission of radiation (laser) in the ultrastrong light-matter interaction regime under the two-level and single-mode approximations. The conventional picture of the laser is broken under the ultrastrong interaction. Instead, we must explicitly discuss the dynamics of the electric field and of the magnetic one distinctively, which make the "laser" qualitatively different from the conventional laser. We found that the laser generally accompanies odd-order harmonics of the electromagnetic fields both inside and outside the cavity and a synchronization with an oscillation of atomic population. A bistability is also demonstrated. However, since our model is quite simplified, we got quantitatively different results from the Hamiltonians in the velocity and length forms of the light-matter interaction, while the appearance of the multiple harmonics and the bistability is qualitatively reliable.
Telecom-Wavelength Bottom-up Nanobeam Lasers on Silicon-on-Insulator.
Kim, Hyunseok; Lee, Wook-Jae; Farrell, Alan C; Balgarkashi, Akshay; Huffaker, Diana L
2017-09-13
Semiconductor nanowire lasers are considered promising ultracompact and energy-efficient light sources in the field of nanophotonics. Although the integration of nanowire lasers onto silicon photonic platforms is an innovative path toward chip-scale optical communications and photonic integrated circuits, operating nanowire lasers at telecom-wavelengths remains challenging. Here, we report on InGaAs nanowire array lasers on a silicon-on-insulator platform operating up to 1440 nm at room temperature. Bottom-up photonic crystal nanobeam cavities are formed by growing nanowires as ordered arrays using selective-area epitaxy, and single-mode lasing by optical pumping is demonstrated. We also show that arrays of nanobeam lasers with individually tunable wavelengths can be integrated on a single chip by the simple adjustment of the lithographically defined growth pattern. These results exemplify a practical approach toward nanowire lasers for silicon photonics.