Single-mode glass waveguide technology for optical interchip communication on board level
NASA Astrophysics Data System (ADS)
Brusberg, Lars; Neitz, Marcel; Schröder, Henning
2012-01-01
The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a hybrid packaging process and design issues are discussed.
Silicone polymer waveguide bridge for Si to glass optical fibers
NASA Astrophysics Data System (ADS)
Kruse, Kevin L.; Riegel, Nicholas J.; Middlebrook, Christopher T.
2015-03-01
Multimode step index polymer waveguides achieve high-speed, (<10 Gb/s) low bit-error-rates for onboard and embedded circuit applications. Using several multimode waveguides in parallel enables overall capacity to reach beyond 100 Gb/s, but the intrinsic bandwidth limitations due to intermodal dispersion limit the data transmission rates within multimode waveguides. Single mode waveguides, where intermodal dispersion is not present, have the potential to further improve data transmission rates. Single mode waveguide size is significantly less than their multimode counterparts allowing for greater density of channels leading to higher bandwidth capacity per layer. Challenges in implementation of embedded single mode waveguides within printed circuit boards involves mass production fabrication techniques to create precision dimensional waveguides, precision alignment tolerances necessary to launch a mode, and effective coupling between adjoining waveguides and devices. An emerging need in which single mode waveguides can be utilized is providing low loss fan out techniques and coupling between on-chip transceiver devices containing Si waveguide structures to traditional single mode optical fiber. A polymer waveguide bridge for Si to glass optical fibers can be implemented using silicone polymers at 1310 nm. Fabricated and measured prototype devices with modeling and simulation analysis are reported for a 12 member 1-D tapered PWG. Recommendations and designs are generated with performance factors such as numerical aperture and alignment tolerances.
Transverse single-mode edge-emitting lasers based on coupled waveguides.
Gordeev, Nikita Yu; Payusov, Alexey S; Shernyakov, Yuri M; Mintairov, Sergey A; Kalyuzhnyy, Nikolay A; Kulagina, Marina M; Maximov, Mikhail V
2015-05-01
We report on the transverse single-mode emission from InGaAs/GaAs quantum well edge-emitting lasers with broadened waveguide. The lasers are based on coupled large optical cavity (CLOC) structures where high-order vertical modes of the broad active waveguide are suppressed due to their resonant tunneling into a coupled single-mode passive waveguide. The CLOC lasers have shown stable Gaussian-shaped vertical far-field profiles with a reduced divergence of ∼22° FWHM (full width at half-maximum) in CW (continuous-wave) operation.
Large-core single-mode rib SU8 waveguide using solvent-assisted microcontact molding.
Huang, Cheng-Sheng; Wang, Wei-Chih
2008-09-01
This paper describes a novel fabrication technique for constructing a polymer-based large-core single-mode rib waveguide. A negative tone SU8 photoresist with a high optical transmission over a large wavelength range and stable mechanical properties was used as a waveguide material. A waveguide was constructed by using a polydimethylsiloxane stamp combined with a solvent-assisted microcontact molding technique. The effects on the final pattern's geometry of four different process conditions were investigated. Optical simulations were performed using beam propagation method software. Single-mode beam propagation was observed at the output of the simulated waveguide as well as the actual waveguide through the microscope image.
NASA Astrophysics Data System (ADS)
Tsarev, Andrei V.
2007-08-01
A new type of optical waveguides in silicon-on-insulator nanostructures is proposed and studied. Their optical properties are simulated by the beam propagation method and discussed. A new design in the form of heterogeneous waveguide structures is based on the production of additionally heavily doped p+-regions on the sides of a multimode stripe waveguide (the silicon core cross section is ~200 nm × 16 μm). Such doping provides the 'single-mode' behaviour of the heterogeneous waveguide due to the decrease in the optical losses for the fundamental mode and increase in losses for higher-order modes. Single-mode heterogeneous waveguides can be used as base waveguides in photonic and integrated optical elements.
Tapered waveguides for guided wave optics.
Campbell, J C
1979-03-15
Strip waveguides having half-paraboloid shaped tapers that permit efficient fiber to waveguide coupling have been fabricated by Ag ion exchange in soda-lime glass. A reduction in the input coupling loss has been accomplished by tailoring the diffusion to provide a gradual transition from a single-mode waveguide to a multimode waveguide having cross-sectional dimensions comparable to the core diameter of a single-mode fiber. Waveguides without tapers exhibit an attenuation of 1.0 dB/cm and an input coupling loss of 0.6 dB. The additional loss introduced by the tapered region is 0.5 dB. By way of contrast, an input coupling loss of 2.4 dB is obtained by coupling directly to a single-mode waveguide, indicating a net improvement of 1.3 dB for the tapered waveguides.
Cutoff-mesa isolated rib optical waveguide for III-V heterostructure photonic integrated circuits
Vawter, Gregory A.; Smith, Robert E.
1998-01-01
A cutoff mesa rib waveguide provides single-mode performance regardless of any deep etches that might be used for electrical isolation between integrated electrooptic devices. Utilizing a principle of a cutoff slab waveguide with an asymmetrical refractive index profile, single mode operation is achievable with a wide range of rib widths and does not require demanding etch depth tolerances. This new waveguide design eliminates reflection effects, or self-interference, commonly seen when conventional rib waveguides are combined with deep isolation etches and thereby reduces high order mode propagation and crosstalk compared to the conventional rib waveguides.
Cutoff-mesa isolated rib optical waveguide for III-V heterostructure photonic integrated circuits
Vawter, G.A.; Smith, R.E.
1998-04-28
A cutoff mesa rib waveguide provides single-mode performance regardless of any deep etches that might be used for electrical isolation between integrated electrooptic devices. Utilizing a principle of a cutoff slab waveguide with an asymmetrical refractive index profile, single mode operation is achievable with a wide range of rib widths and does not require demanding etch depth tolerances. This new waveguide design eliminates reflection effects, or self-interference, commonly seen when conventional rib waveguides are combined with deep isolation etches and thereby reduces high order mode propagation and crosstalk compared to the conventional rib waveguides. 7 figs.
NASA Astrophysics Data System (ADS)
Belov, A. V.; Kurkov, Andrei S.; Chikolini, A. V.
1990-08-01
An offset method is modified to allow an analysis of the distribution of fields in a single-mode fiber waveguide without recourse to the Gaussian approximation. A new approximation for the field is obtained for fiber waveguides with a step refractive index profile and a special analysis employing the Hankel transformation is applied to waveguides with a distributed refractive index. The field distributions determined by this method are compared with the corresponding distributions calculated from the refractive index of a preform from which the fibers are drawn. It is shown that these new approaches can be used to determine the dimensions of a mode spot defined in different ways and to forecast the dispersion characteristics of single-mode fiber waveguides.
NASA Astrophysics Data System (ADS)
Belov, A. V.; Kurkov, Andrei S.; Chikolini, A. V.
1989-02-01
A method was developed for calculating the effective cutoff length, the size of a mode spot, and the chromatic dispersion over the profile of the refractive index (measured in the preform stage) of single-mode fiber waveguides with a depressed cladding. The results of such calculations are shown to agree with the results of measurements of these quantities.
Gas Sensors Based on Single-Arm Waveguide Interferometers
NASA Technical Reports Server (NTRS)
Sarkisov, Sergey; Curley, Michael; Diggs, Darnell; Adamovsky, Grigory
1998-01-01
Various optical technologies can be implemented in chemical sensing. Sensitive, rugged, and compact systems will be more likely built using interferometric waveguide sensors. Currently existing sensors comprise dual-arm systems with external reference arm, dual-arm devices with internal reference arm such as integrated Mach-Zehnder interferometer, and single-arm systems which employ the interference between different waveguide modes. These latter ones are the most compact and rugged but still sensitive enough to monitor volatile pollutants such as NH3 coming out of industrial refrigerators and fertilizer plants and stocks, NO, NO2, SO2, emitted by industrial burning processes. Single-arm devices in planar waveguide configuration most frequently use two orthogonally polarized modes TE (sub i) and TM (sub i) of the same order i. Sensing effect is based on the difference in propagation conditions for the modes caused by the environment. However, dual-mode single-order interferometers still have relatively low sensitivity with respect to the environment related changes in the waveguide core because of small difference between propagation constants of TE (sub i) and TM (sub i) modes of the same order. Substantial sensitivity improvement without significant complication can be achieved for planar waveguide interferometers using modes of different orders with much greater difference between propagation constants.
Novel spot size converter for coupling standard single mode fibers to SOI waveguides
NASA Astrophysics Data System (ADS)
Sisto, Marco Michele; Fisette, Bruno; Paultre, Jacques-Edmond; Paquet, Alex; Desroches, Yan
2016-03-01
We have designed and numerically simulated a novel spot size converter for coupling standard single mode fibers with 10.4μm mode field diameter to 500nm × 220nm SOI waveguides. Simulations based on the eigenmode expansion method show a coupling loss of 0.4dB at 1550nm for the TE mode at perfect alignment. The alignment tolerance on the plane normal to the fiber axis is evaluated at +/-2.2μm for <=1dB excess loss, which is comparable to the alignment tolerance between two butt-coupled standard single mode fibers. The converter is based on a cross-like arrangement of SiOxNy waveguides immersed in a 12μm-thick SiO2 cladding region deposited on top of the SOI chip. The waveguides are designed to collectively support a single degenerate mode for TE and TM polarizations. This guided mode features a large overlap to the LP01 mode of standard telecom fibers. Along the spot size converter length (450μm), the mode is first gradually confined in a single SiOxNy waveguide by tapering its width. Then, the mode is adiabatically coupled to a SOI waveguide underneath the structure through a SOI inverted taper. The shapes of SiOxNy and SOI tapers are optimized to minimize coupling loss and structure length, and to ensure adiabatic mode evolution along the structure, thus improving the design robustness to fabrication process errors. A tolerance analysis based on conservative microfabrication capabilities suggests that coupling loss penalty from fabrication errors can be maintained below 0.3dB. The proposed spot size converter is fully compliant to industry standard microfabrication processes available at INO.
Negredo, F; Blaicher, M; Nesic, A; Kraft, P; Ott, J; Dörfler, W; Koos, C; Rockstuhl, C
2018-06-01
Photonic wire bonds, i.e., freeform waveguides written by 3D direct laser writing, emerge as a technology to connect different optical chips in fully integrated photonic devices. With the long-term vision of scaling up this technology to a large-scale fabrication process, the in situ optimization of the trajectory of photonic wire bonds is at stake. A prerequisite for the real-time optimization is the availability of a fast loss estimator for single-mode waveguides of arbitrary trajectory. Losses occur because of the bending of the waveguides and at transitions among sections of the waveguide with different curvatures. Here, we present an approach that resides on the fundamental mode approximation, i.e., the assumption that the photonic wire bonds predominantly carry their energy in a single mode. It allows us to predict in a quick and reliable way the pertinent losses from pre-computed modal properties of the waveguide, enabling fast design of optimum paths.
Mode selection in square resonator microlasers for widely tunable single mode lasing.
Tang, Ming-Ying; Sui, Shao-Shuai; Yang, Yue-De; Xiao, Jin-Long; Du, Yun; Huang, Yong-Zhen
2015-10-19
Mode selection in square resonator semiconductor microlasers is demonstrated by adjusting the width of the output waveguide coupled to the midpoint of one side. The simulation and experimental results reveal that widely tunable single mode lasing can be realized in square resonator microlasers. Through adjusting the width of the output waveguide, the mode interval of the high-Q modes can reach four times of the longitudinal mode interval. Therefore, mode hopping can be efficiently avoided and the lasing wavelength can be tuned continuously by tuning the injection current. For a 17.8-μm-side-length square microlaser with a 1.4-μm-width output waveguide, mode-hopping-free single-mode operation is achieved with a continuous tuning range of 9.2 nm. As a result, the control of the lasing mode is realized for the square microlasers.
Single Mode Optical Waveguide Design Investigation.
1981-07-10
AD-AI04 584 CORNING GLASS WORKS NY F/G 20/6 SINGLE MODE OPTICAL WAVEGUIDE DESIGN INVESTIGATION. (7 N JUL 81 V A BHAGAVATJLA, R A WESTWIG. D B KECK...Contract N00173-8O-C-0563 / V. A./Bhagavatula R. A..Westwig D. B.!Keck Corning Glass Works Corning, New York H> July 1,0, 1981 CL 8m NA Single Mode Optical...Waveguide Design Inve-tigation Progress Report 3 1. Sumpry 1.1 ,A total of six fibers have been fabricated with parameters fitting the design matrix
Integrated-Optic Wavelength Multiplexer In Glass Fabricated By A Charge Controlled Ion Exchange
NASA Astrophysics Data System (ADS)
Klein, R.; Jestel, D.; Lilienhof, H. J.; Rottman, F.; Voges, E.
1989-02-01
Integrated-optic wavelength division multiplexing (WDM) is commonly used in communication systems. These WDM-devices are also well suited to build up optical fiber networks for both intensity and interferometric sensor types. The operation principle of our wavelength division multiplexing devise is based on the wavelength dependent two-mode interference in a two-moded waveguide, which is coupled adiabatically to the single-mode input and output strip waveguides. The single-mode input and output waveguides are connected via two Y-branches ( "'kJ- 1° branching angle ) with a two-moded intersection region. The ratio of the light powers in the single-mode output waveguides depends on wavelength . The two-mode interference within the two-moded center waveguide leads to an almost wavelength periodic transmission caracteristic . Dual-channel multiplexers/demultiplexers were fabricated by a charge controlled field assisted pottasium exchange in B-270 glass (Desag). The devices have a typical channel separation of 30 - 40 nm and a far-end crosstalk attenuation of better than 16 dB. The operation wavelength regions of the fabricated devices are 0.6 - 0.8 µm and 1.3 - 1.6 µm, respectively.
NASA Astrophysics Data System (ADS)
Belov, A. V.; Kurkov, Andrei S.; Miroshnichenko, S. I.; Semenov, V. A.
1989-11-01
A comparison was made of the calculated and measured radiative losses suffered by the fundamental and first higher modes in real waveguide structures with a depressed cladding. It was found that in determination of the operating range of single-mode waveguides with a depressed cladding it is essential to allow not only for the increase in the losses due to leaking of the fundamental HE11 mode at long wavelengths, but also for the shift of the cutoff wavelength of the first higher HE21 mode for shorter wavelengths.
Fabrication of raised and inverted SU8 polymer waveguides
NASA Astrophysics Data System (ADS)
Holland, Anthony S.; Mitchell, Arnan; Balkunje, Vishal S.; Austin, Mike W.; Raghunathan, Mukund K.
2005-01-01
Polymer films with high optical transmission have been investigated for making optical devices for several years. SU8 photoresist and optical adhesives have been investigated for use as thin films for optical devices, not what they were originally designed for. Optical adhesives are typically a one component thermoset polymer and are convenient to use for making thin film optical devices such as waveguides. They are prepared in minutes as thin films unlike SU8, which has to be carefully thermally cured over several hours for optimum results. However SU8 can be accurately patterned to form the geometry of structures required for single mode optical waveguides. SU8 in combination with the lower refractive index optical adhesive films such as UV15 from Master Bond are used to form single and multi mode waveguides. SU8 is photopatternable but we have also used dry etching of the SU8 layer or the other polymer layers e.g. UV15 to form the ribs, ridges or trenches required to guide single modes of light. Optical waveguides were also fabricated using only optical adhesives of different refractive indices. The resolution obtainable is poorer than with SU8 and hence multi mode waveguides are obtained. Loss measurements have been obtained for waveguides of different geometries and material combinations. The process for making polymer waveguides is demonstrated for making large multi mode waveguides and microfluidic channels by scaling the process up in size.
Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode.
Kim, Guk-Hyun; Lee, Yong-Hee; Shinya, Akihiko; Notomi, Masaya
2004-12-27
Coupling characteristics between the single-cell hexapole mode and the triangular-lattice photonic crystal slab waveguide mode is studied by the finite-difference time-domain method. The single-cell hexapole mode has a high quality factor (Q) of 3.3Chi106 and a small modal volume of 1.18(lambda/n)3. Based on the symmetry, three representative types of coupling geometries (shoulder-couple, butt-couple and side-couple structures) are selected and tested. The coupling efficiency shows strong dependence on the transverse overlap of the cavity mode and the waveguide mode over the region of the waveguide. The shoulder-couple structure shows best coupling characteristics among three tested structures. For example, two shouldercouple waveguides and a hexapole cavity result in a high performance resonant-tunneling-filter with Q of 9.7Chi105 and transmittance of 0.48. In the side-couple structure, the coupling strength is much weaker than that of the shoulder-couple structure because of the poor spatial overlap between the mode profiles. In the direct-couple structure, the energy transfer from the cavity to the waveguide is prohibited because of the symmetry mismatch and no coupling is observed.
Brillouin scattering in planar waveguides. II. Experiments
NASA Astrophysics Data System (ADS)
Chiasera, A.; Montagna, M.; Moser, E.; Rossi, F.; Tosello, C.; Ferrari, M.; Zampedri, L.; Caponi, S.; Gonçalves, R. R.; Chaussedent, S.; Monteil, A.; Fioretto, D.; Battaglin, G.; Gonella, F.; Mazzoldi, P.; Righini, G. C.
2003-10-01
Silica-titania planar waveguides of different thicknesses and compositions have been produced by radio-frequency sputtering and dip coating on silica substrates. Waveguides were also produced by silver exchange on a soda-lime silicate glass substrate. Brillouin scattering of the samples has been studied by coupling the exciting laser beam with a prism to different transverse-electric (TE) modes of the waveguides, and collecting the scattered light from the front surface. In multimode waveguides, the spectra depend on the m mode of excitation. For waveguides with a step index profile, two main peaks due to longitudinal phonons are present, apart from the case of the TE0 excitation, where a single peak is observed. The energy separation between the two peaks increases with the mode index. In graded-index waveguides, m-1 peaks of comparable intensities are observed. The spectra are reproduced very well by a model which considers the space distribution of the exciting field in the mode, a simple space dependence of the elasto-optic coefficients, through the value of the refraction index, and neglects the refraction of phonons. A single-fit parameter, i.e., the longitudinal sound velocity, is used to calculate as many spectra as is the number of modes in the waveguide.
Reconfigurable optical interconnection network for multimode optical fiber sensor arrays
NASA Technical Reports Server (NTRS)
Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.
1992-01-01
A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.
Passive estimation of the waveguide invariant per pair of modes.
Le Gall, Yann; Bonnel, Julien
2013-08-01
In many oceanic waveguides, acoustic propagation is characterized by a parameter called waveguide invariant. This property is used in many passive and active sonar applications where knowledge of the waveguide invariant value is required. The waveguide invariant is classically considered as scalar but several studies show that it is better modeled by a distribution because of its dependence on frequency and mode pairs. This paper presents a new method for estimating the waveguide invariant distribution. Using the noise radiated by a distant ship and a single hydrophone, the proposed methodology allows estimating the waveguide invariant for each pair of modes in shallow water. Performance is evaluated on simulated data.
Lierstuen, L O; Sudbø, A S
1995-02-20
The butt-coupling loss between different tapered rectangular waveguides and a standard single-mode optical fiber has been calculated. Losses as low as 0.16 dB can be reached for waveguides with a refractive-index contrast in the range of 0.5% to 1.96%. The fabrication tolerances are such that practical devices with coupling losses below 0.25 dB are feasible.
Beach, Raymond J.; Dawson, Jay W.; Messerly, Michael J.; Barty, Christopher P. J.
2012-12-18
Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.
NASA Astrophysics Data System (ADS)
Belov, A. V.; Kurkov, Andrei S.; Musatov, A. G.; Semenov, V. A.
1990-12-01
Experimental and theoretical investigations were made of the influence of external thermal effects on the dispersive characteristics of single-mode fiber waveguides with different shapes and parameters of the refractive index profile. The temperature coefficients of the group delay were determined. The temperature dependences of the dispersion coefficient (dD/dT = 1.6 × 10-3 and 4.3 × 10-3 ps.nm-1 km-1 K-1, respectively) and of the zero-dispersion wavelength (dλ0/dT = 1.9 × 10-2 and 8.5 × 10-2 nm/K, respectively) were determined at two working wavelengths of 1.3 and 1.55 μm for single-mode fiber waveguides with typical parameters.
Single-mode fibers to single-mode waveguides coupling with minimum Fresnel back-reflection
NASA Astrophysics Data System (ADS)
Sneh, Anat; Ruschin, Shlomo; Marom, Emanuel
1991-04-01
Slantly polished fibers and waveguides coupling as a means for achieving both low optical power reflection and efficient power transmission is proposed. Return losses exceeding -70 dB can be obtained in fiber-to-Lithium Niobate waveguides operating at ) = 0.633 jm and ) = 1.3 pm by polishing the fiber at an angle of 6°. A phase matching condition between the propagation constants ,8 and the polishing angles in the fiber and the waveguide: fl(fiber)sincx(fiber) = fl(waveguide)sina(waveguide) must be fulifiled in order to enable efficient power coupling. Polishing angle tolerances of approximately lO are allowed for a maximum of 1 dB decrease in the coupling efficiency.
Planar waveguide nanolaser configured by dye-doped hybrid nanofilm on substrate
NASA Astrophysics Data System (ADS)
Tikhonov, E. A.; Yashchuk, V. P.; Telbiz, G. M.
2018-04-01
Dye-doped hybrid silicate/titanium nanofilms on the glass substrate structures of asymmetrical waveguides were studied by way of laser systems. The threshold, spatial and spectral features of the laser oscillation of genuine and hollow waveguides were determined. The pattern of stimulated radiation included two concurrent processes: single-mode waveguide lasing and lateral small divergence emission. Comparison of the open angle of the lateral beams and grazing angles of the waveguide lasing mode provides an insight into the effect of leaky mode emission followed by Lummer-Gehrcke interference.
Polymer taper bridge for silicon waveguide to single mode waveguide coupling
NASA Astrophysics Data System (ADS)
Kruse, Kevin; Middlebrook, Christopher T.
2016-03-01
Coupling of optical power from high-density silicon waveguides to silica optical fibers for signal routing can incur high losses and often requires complex end-face preparation/processing. Novel coupling device taper structures are proposed for low coupling loss between silicon photonic waveguides and single mode fibers are proposed and devices are fabricated and measured in terms of performance. Theoretical mode conversion models for waveguide tapers are derived for optimal device structure design and performance. Commercially viable vertical and multi-layer taper designs using polymer waveguide materials are proposed as innovative, cost-efficient, and mass-manufacturable optical coupling devices. The coupling efficiency for both designs is determined to evaluate optimal device dimensions and alignment tolerances with both silicon rib waveguides and silicon nanowire waveguides. Propagation loss as a function of waveguide roughness and metallic loss are determined and correlated to waveguide dimensions to obtain total insertion loss for the proposed taper designs. Multi-layer tapers on gold-sputtered substrates are fabricated through photolithography as proof-of-concept devices and evaluated for device loss optimization. Tapered waveguide coupling loss with Si WGs (2.74 dB) was experimentally measured with high correlation to theoretical results.
Puthillath, Padmakumar; Galan, Jose M; Ren, Baiyang; Lissenden, Cliff J; Rose, Joseph L
2013-05-01
Ultrasonic guided wave inspection of structures containing adhesively bonded joints requires an understanding of the interaction of guided waves with geometric and material discontinuities or transitions in the waveguide. Such interactions result in mode conversion with energy being partitioned among the reflected and transmitted modes. The step transition between an aluminum layer and an aluminum-adhesive-aluminum multi-layer waveguide is analyzed as a model structure. Dispersion analysis enables assessment of (i) synchronism through dispersion curve overlap and (ii) wavestructure correlation. Mode-pairs in the multi-layer waveguide are defined relative to a prescribed mode in a single layer as being synchronized and having nearly perfect wavestructure matching. Only a limited number of mode-pairs exist, and each has a unique frequency range. A hybrid model based on semi-analytical finite elements and the normal mode expansion is implemented to assess mode conversion at a step transition in a waveguide. The model results indicate that synchronism and wavestructure matching is associated with energy transfer through the step transition, and that the energy of an incident wave mode in a single layer is transmitted almost entirely to the associated mode-pair, where one exists. This analysis guides the selection of incident modes that convert into transmitted modes and improve adhesive joint inspection with ultrasonic guided waves.
Low-Loss Hollow Waveguide Fibers for Mid-Infrared Quantum Cascade Laser Sensing Applications
Patimisco, Pietro; Spagnolo, Vincenzo; Vitiello, Miriam S.; Scamarcio, Gaetano; Bledt, Carlos M.; Harrington, James A.
2013-01-01
We report on single mode optical transmission of hollow core glass waveguides (HWG) coupled with an external cavity mid-IR quantum cascade lasers (QCLs). The QCL mode results perfectly matched to the hybrid HE11 waveguide mode and the higher losses TE-like modes have efficiently suppressed by the deposited inner dielectric coating. Optical losses down to 0.44 dB/m and output beam divergence of ∼5 mrad were measured. Using a HGW fiber with internal core size of 300 μm we obtained single mode laser transmission at 10.54 μm and successful employed it in a quartz enhanced photoacoustic gas sensor setup. PMID:23337336
Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya
2016-01-01
We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm. PMID:27346285
NASA Astrophysics Data System (ADS)
Novak, Joseph
Optical biological sensors are widely used in the fields of medical testing, water treatment and safety, gene identification, and many others due to advances in nanofabrication technology. This work focuses on the design of fiber-coupled Mach-Zehnder Interferometer (MZI) based biosensors fabricated on silicon-on-insulator (SOI) wafer. Silicon waveguide sensors are designed with multimode and single-mode dimensions. Input coupling efficiency is investigated by design of various taper structures. Integration processing and packaging is performed for fiber attachment and enhancement of input coupling efficiency. Optical guided-wave sensors rely on single-mode operation to extract an induced phase-shift from the output signal. A silicon waveguide MZI sensor designed and fabricated for both multimode and single-mode dimensions. Sensitivity of the sensors is analyzed for waveguide dimensions and materials. An s-bend structure is designed for the multimode waveguide to eliminate higher-order mode power as an alternative to single-mode confinement. Single-mode confinement is experimentally demonstrated through near field imaging of waveguide output. Y-junctions are designed for 3dB power splitting to the MZI arms and for power recombination after sensing to utilize the interferometric function of the MZI. Ultra-short 10microm taper structures with curved geometries are designed to improve insertion loss from fiber-to-chip without significantly increasing device area and show potential for applications requiring misalignment tolerance. An novel v-groove process is developed for self-aligned integration of fiber grooves for attachment to sensor chips. Thermal oxidation at temperatures from 1050-1150°C during groove processing creates an SiO2 layer on the waveguide end facet to protect the waveguide facet during integration etch processing without additional e-beam lithography processing. Experimental results show improvement of insertion loss compared to dicing preparation and Focused Ion Beam methods using the thermal oxidation process.
An All-Dielectric Coaxial Waveguide.
Ibanescu; Fink; Fan; Thomas; Joannopoulos
2000-07-21
An all-dielectric coaxial waveguide that can overcome problems of polarization rotation and pulse broadening in the transmission of optical light is presented here. It consists of a coaxial waveguiding region with a low index of refraction, bounded by two cylindrical, dielectric, multilayer, omnidirectional reflecting mirrors. The waveguide can be designed to support a single mode whose properties are very similar to the unique transverse electromagnetic mode of a traditional metallic coaxial cable. The new mode has radial symmetry and a point of zero dispersion. Moreover, because the light is not confined by total internal reflection, the waveguide can guide light around very sharp corners.
11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.
Okhrimchuk, Andrey G; Obraztsov, Petr A
2015-06-08
We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires-Tournois interferometer.
11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene
Okhrimchuk, Andrey G.; Obraztsov, Petr A.
2015-01-01
We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires–Tournois interferometer. PMID:26052678
Ter-Gabrielyan, N; Fromzel, V; Mu, X; Meissner, H; Dubinskii, M
2013-07-15
We demonstrated the continuous-wave operation of a resonantly pumped Er:YAG single-mode channel waveguide laser with diffraction-limited output and nearly quantum defect limited efficiency. Using a longitudinally core-pumped, nearly square (61.2 μm×61.6 μm) Er3+:YAG waveguide embedded in an undoped YAG cladding, an output power of 9.1 W with a slope efficiency of 92.8% (versus absorbed pump power) has been obtained. To the best of our knowledge, this optical-to-optical efficiency is the highest ever demonstrated for a channel waveguide laser.
ATE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions
NASA Astrophysics Data System (ADS)
Wei, Pei-Kuen; Wang, Way-Seen
1994-02-01
A new TE-TM mode splitter with an asymmetric Y-junction structure fabricated by diffusing different materials into y-cut lithium niobate is presented. Randomly polarized light launched into a titanium indiffused waveguide is split into TE and TM modes by two different single-polarization waveguides. The ordinary-polarized waveguide is made by nickel indiffusion and the extraordinary-polarized waveguide by magnesium-oxide induced lithium outdiffusion. The measured extinction ratios are greater than 20 dB for both TE and TM modes. The devices operate over a wide wavelength range and have a large fabrication tolerance.
NASA Astrophysics Data System (ADS)
Samanta, Swagata; Dey, Pradip Kumar; Banerji, Pallab; Ganguly, Pranabendu
2017-01-01
A study regarding the validity of effective-index based matrix method (EIMM) for the fabricated SU-8 channel waveguides is reported. The design method is extremely fast compared to other existing numerical techniques, such as, BPM and FDTD. In EIMM, the effective index method was applied in depth direction of the waveguide and the resulted lateral index profile was analyzed by a transfer matrix method. By EIMM one can compute the guided mode propagation constants and mode profiles for each mode for any dimensions of the waveguides. The technique may also be used to design single mode waveguide. SU-8 waveguide fabrication was carried out by continuous-wave direct laser writing process at 375 nm wavelength. The measured propagation losses of these wire waveguides having air and PDMS as superstrates were 0.51 dB/mm and 0.3 dB/mm respectively. The number of guided modes, obtained theoretically as well as experimentally, for air-cladded waveguide was much more than that of PDMS-cladded waveguide. We were able to excite the isolated fundamental mode for the later by precise fiber positioning, and mode image was recorded. The mode profiles, mode indices, and refractive index profiles were extracted from this mode image of the fundamental mode which matched remarkably well with the theoretical predictions.
Quantum interference between transverse spatial waveguide modes.
Mohanty, Aseema; Zhang, Mian; Dutt, Avik; Ramelow, Sven; Nussenzveig, Paulo; Lipson, Michal
2017-01-20
Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing.
Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates.
Wang, Yipei; Ma, Yaoguang; Guo, Xin; Tong, Limin
2012-08-13
Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates are investigated using a finite-element method. Au and Ag are selected as plasmonic materials for nanowire waveguides with diameters down to 5-nm-level. Typical dielectric materials with relatively low to high refractive indices, including magnesium fluoride (MgF2), silica (SiO2), indium tin oxide (ITO) and titanium dioxide (TiO2), are used as supporting substrates. Basic waveguiding properties, including propagation constants, power distributions, effective mode areas, propagation distances and losses are obtained at the typical plasmonic resonance wavelength of 660 nm. Compared to that of a freestanding nanowire, the mode area of a substrate-supported nanowire could be much smaller while maintaining an acceptable propagation length. For example, the mode area and propagation length of a 100-nm-diameter Ag nanowire with a MgF2 substrate are about 0.004 μm2 and 3.4 μm, respectively. The dependences of waveguiding properties on geometric and material parameters of the nanowire-substrate system are also provided. Our results may provide valuable references for waveguiding dielectric-supported metal nanowires for practical applications.
Nanoscale devices based on plasmonic coaxial waveguide resonators
NASA Astrophysics Data System (ADS)
Mahigir, A.; Dastmalchi, P.; Shin, W.; Fan, S.; Veronis, G.
2015-02-01
Waveguide-resonator systems are particularly useful for the development of several integrated photonic devices, such as tunable filters, optical switches, channel drop filters, reflectors, and impedance matching elements. In this paper, we introduce nanoscale devices based on plasmonic coaxial waveguide resonators. In particular, we investigate threedimensional nanostructures consisting of plasmonic coaxial stub resonators side-coupled to a plasmonic coaxial waveguide. We use coaxial waveguides with square cross sections, which can be fabricated using lithography-based techniques. The waveguides are placed on top of a silicon substrate, and the space between inner and outer coaxial metals is filled with silica. We use silver as the metal. We investigate structures consisting of a single plasmonic coaxial resonator, which is terminated either in a short or an open circuit, side-coupled to a coaxial waveguide. We show that the incident waveguide mode is almost completely reflected on resonance, while far from the resonance the waveguide mode is almost completely transmitted. We also show that the properties of the waveguide systems can be accurately described using a single-mode scattering matrix theory. The transmission and reflection coefficients at waveguide junctions are either calculated using the concept of the characteristic impedance or are directly numerically extracted using full-wave three-dimensional finite-difference frequency-domain simulations.
Index-antiguided planar waveguide lasers with large mode area
NASA Astrophysics Data System (ADS)
Liu, Yuanye
The on-going research and application interests with high power large-mode-area (LMA) waveguide lasers, especially in fiber geometry, at the beginning of this century drive the development of many novel waveguide designs. Index antiguiding, proposed by Siegman in 2003, is among one of them. The goal for index antiguiding is to introduce transversal modal loss with the relative simple waveguide design while maintain single transverse mode operation for good beam quality. The idea which is selectively support of fundamental mode is facilitated by involving certain level of signal regeneration inside the waveguide core. Since the modal loss is closed associated with waveguide design parameters such as core size and refractive index, the amount of gain inside the core provides active control of transverse modes inside index-antiguiding waveguide. For example, fundamental transverse mode inside such waveguide can be excited and propagate lossless when sufficient optical gain is provided. This often requires doped waveguide core and optical pumping at corresponding absorption band. However, the involvement of optical pumping also has its consequences. Phenomena such as thermal-optic effect and gain spatial hole-burning which are commonly found in bulk lasers request attention when scaling up output power with LMA index-antiguided waveguide amplifiers and resonators. In response, three key challenges of index-antiguided planar waveguide lasers, namely, guiding mechanism, power efficiency and transverse mode discrimination, are analyzed theoretically and experimentally in this dissertation. Experiments are based on two index-antiguided planar waveguide chips, whose core thickness are 220 microm and 400 microm respectively. The material of waveguide core is 1% Neodymium-doped Yttrium Aluminium garnet, or Nd:YAG while the cladding is made from Terbium Gallium garnet, or TGG. Due to the face pumping and limited pump power, it is found, with 220 microm-thick-core chip, that the guidance of the fundamental transverse mode along two orthogonal directions in a transverse plane is different. Along the bounded direction, index antiguiding prevails with negligible thermal refractive focusing while along the unbounded direction, the lasing mode is guided by thermal refractive focusing with negligible quadratic gain focusing. It is also founded that the quadratic thermal focusing will dominate the mode guidance in 220 microm chip with the help of additional pump. All these discovery calls for an active thermal control. The modal discriminative loss, though beneficial for transverse mode control, yet reduces the lasing efficiency. To model it, a 3-D lasing output power calculation model is developed based on spatial rate equations. The simulation results show good agreement with experiment data where slope efficiency curve are measured using multiple output couplers. The 10% slope efficiency with respect to incident pump power is the highest slope efficiency recorded in index-antiguided waveguide continuous-wave lasers. The model indicates more efficient pump absorption can facilitate further power scaling. The role of the modal discriminative loss in transverse mode competition is discussed. A theoretical model based on Rigrod analysis and spatial hole-burning is developed. The simulation shows reasonable agreement with experiment results in both chips. The single fundamental mode operation up to 10 times above the lasing threshold for 220 microm chip is achieved, which is limited by the incident pump power. However, as the core size increases, the modal distributed loss due to the index antiguiding is found to be less effective in transverse mode control. Other modal loss is needed to facilitate the suppression of higher-order modes. Based on the model, a strategy is proposed aiming to maximize the single mode output. It is also noted that the transverse mode competition model is also suitable for other lasers system with well-defined modal loss. Based on the models and experiment data, the index-antiguided planar waveguide lasers are proved to be capable of maintaining large-mode-area single transverse mode operation with the potential of power scaling. However, it is also shown that proper waveguide design is essential. The remaining challenges are the material choices for waveguide fabrication, especially for high power applications.
General technique for the integration of MIC/MMIC'S with waveguides
NASA Technical Reports Server (NTRS)
Geller, Bernard D. (Inventor); Zaghloul, Amir I. (Inventor)
1987-01-01
A technique for packaging and integrating of a microwave integrated circuit (MIC) or monolithic microwave integrated circuit (MMIC) with a waveguide uses a printed conductive circuit pattern on a dielectric substrate to transform impedance and mode of propagation between the MIC/MMIC and the waveguide. The virtually coplanar circuit pattern lies on an equipotential surface within the waveguide and therefore makes possible single or dual polarized mode structures.
Lysevych, M; Tan, H H; Karouta, F; Fu, L; Jagadish, C
2013-04-08
In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabanenkov, M. Yu., E-mail: barab@iptm.ru; Vyatkin, A. F.; Volkov, V. T.
2015-12-15
Single-mode submicrometer-thick strip waveguides on silicon-on-insulator substrates, fabricated by silicon-planar-technology methods are considered. To solve the problem of 1.5-µm wavelength radiation input-output and its frequency filtering, strip diffraction gratings and two-dimensional photonic crystals are integrated into waveguides. The reflection and transmission spectra of gratings and photonic crystals are calculated. The waveguide-mode-attenuation coefficient for a polycrystalline silicon waveguide is experimentally estimated.
FIBER AND INTEGRATED OPTICS: Excitation of leaky modes in a system of coupled waveguides
NASA Astrophysics Data System (ADS)
Usievich, B. A.; Nurligareev, J. Kh; Sychugov, V. A.; Golant, K. M.
2007-06-01
A system of coupled single-mode waveguides with the number M of guided modes lower than the number N of single-mode waveguides is studied. Leaky modes in this system are investigated in detail. It is shown, in particular, that these modes can be excited by light incident on the side surface of the system when the reflection coefficient vanishes. It is found that the angular dependence of the coefficient of reflection from the side surface of the system can be used to refine the dispersion curve for leaky modes. It is shown that light incident at a grazing angle can propagate in the system in the direction considerably different from the propagation direction of a beam incident from a substrate, even in the case of a small difference in the refractive indices.
NASA Astrophysics Data System (ADS)
Asadi, Reza; Ouyang, Zhengbiao
2018-03-01
A new mechanism for out-of-plane coupling into a waveguide is presented and numerically studied based on nonlinear scattering of a single nano-scale Graphene layer inside the waveguide. In this mechanism, the refractive index nonlinearity of Graphene and nonhomogeneous light intensity distribution occurred due to the interference between the out-of-plane incident pump light and the waveguide mode provide a virtual grating inside the waveguide, coupling the out-of-plane pump light into the waveguide. It has been shown that the coupling efficiency has two distinct values with high contrast around a threshold pump intensity, providing suitable condition for digital optical applications. The structure operates at a resonance mode due to band edge effect, which enhances the nonlinearity and decreases the required threshold intensity.
Multi/demulti-plexer based on transverse mode conversion in photonic crystal waveguides.
Zhou, Wen; Zhuang, Yuyang; Ji, Ke; Chen, He-ming
2015-09-21
A novel mode multiplexer and demultiplexer (MMUX/DEMMUX) based on 2-D photonic crystal (PC) at 1550 nm is proposed. The PC-based mode MMUX/DEMMUX including mode conversion function with a single-mode and multi-mode waveguides can be realized by quasi phase-matching TE(0) & TE(1) modes of two waveguides. 2DFinite-Difference-Time-Domain and beam propagation methods are used for simulation. The results show that PC-based mode MMUX/DEMMUX has the potential for high-capacity MDM optical communication systems with a low insertion loss (<0.36dB), low mode crosstalk (< -20.9 dB) and wide bandwidth (~100 nm).
NASA Astrophysics Data System (ADS)
Goncharenko, I. A.
1990-04-01
The shift formula method is used to obtain analytic expressions which provide estimates of the influence of nonlinearity on the parameters of fiber waveguide modes. Depending on the sign of the nonlinear susceptibility of the waveguide core, the nonlinearity can improve or impair (right down to complete loss) the waveguiding properties of fibers. The optical power at which a fiber loses its guiding properties is constant far from the cutoff, but rises steeply near the critical cutoff frequency. The nonlinearity can be used to vary the zero dispersion wavelength and the range of single-mode operation of a fiber waveguide.
Investigation of single lateral mode for 852nm diode lasers with ridge waveguide design
NASA Astrophysics Data System (ADS)
Liu, Chu; Guan, Baolu; Mi, Guoxin; Liao, Yiru; Liu, Zhenyang; Li, Jianjun; Xu, Chen
2016-11-01
852nm Narrow linewidth lasers can be widely used in the field of ultra-fine spectrum measurement, Cs atomic clock control, satellite and optical fiber communication and so on. Furthermore, the stability of the single lateral mode is a very important condition to guarantee the narrow linewidth lasers. Here we investigate experimentally the influence of the narrow ridge structure and asymmetrical waveguide design on the stability single lateral mode of an 852nm diode laser. According to the waveguide theoretical analysis, ridge mesa etch depth (Δη , related to the refractive index difference of parallel to the junction) and ridge mesa width (the narrower the more control force to low order mode) are the main elements for lateral modes. In this paper, we designed different structures to investigate and verify major factors for lateral mode by experiment, and to confirm our thought. Finally, the 5μm mesa ridge laser, 800nm etch depth, with groove structure obtains excellent steady single lateral mode output by 150mA operating current and 30°C temperature. The optical spectrum FWHM is 0.5nm and side mode suppression ratio is 27dBm with uncoated. The laser with 1mm cavity length showed the threshold current of 50mA, a lasing wavelength of λ = 852.6nm, slope efficiency of above 0.7mW/mA. We accomplished single lateral mode of ridge waveguide edge-emitting lasers which can also be used as a laser source in the ultra-narrow linewidth external cavity laser system.
Hollow core waveguide as mid-infrared laser modal beam filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patimisco, P.; Giglio, M.; Spagnolo, V.
2015-09-21
A novel method for mid-IR laser beam mode cleaning employing hollow core waveguide as a modal filter element is reported. The influence of the input laser beam quality on fiber optical losses and output beam profile using a hollow core waveguide with 200 μm-bore size was investigated. Our results demonstrate that even when using a laser with a poor spatial profile, there will exist a minimum fiber length that allows transmission of only the Gaussian-like fundamental waveguide mode from the fiber, filtering out all the higher order modes. This essentially single mode output is preserved also when the waveguide is bentmore » to a radius of curvature of 7.5 cm, which demonstrates that laser mode filtering can be realized even if a curved light path is required.« less
NASA Astrophysics Data System (ADS)
Wang, Yue; Shen, Xiao-Liang; Zheng, Rui-Lin; Guo, Hai-Tao; Lv, Peng; Liu, Chun-Xiao
2018-01-01
Ion implantation has demonstrated to be an efficient and reliable technique for the fabrication of optical waveguides in a diversity of transparent materials. Photo-thermal-refractive glass (PTR) is considered to be durable and stable holographic recording medium. Optical planar waveguide structures in the PTR glasses were formed, for the first time to our knowledge, by the C3+-ion implantation with single-energy (6.0 MeV) and double-energy (5.5+6.0 MeV), respectively. The process of the carbon ion implantation was simulated by the stopping and range of ions in matter code. The morphologies of the waveguides were recorded by a microscope operating in transmission mode. The guided beam distributions of the waveguides were measured by the end-face coupling technique. Comparing with the single-energy implantation, the double-energy implantation improves the light confinement for the dark-mode spectrum. The guiding properties suggest that the carbon-implanted PTR glass waveguides have potential for the manufacture of photonic devices.
Single-polarization hollow-core square photonic bandgap waveguide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eguchi, Masashi, E-mail: megu@ieee.org; Tsuji, Yasuhide, E-mail: y-tsuji@mmm.muroran-it.ac.jp
Materials with a periodic structure have photonic bandgaps (PBGs), in which light can not be guided within certain wavelength ranges; thus light can be confined within a low-index region by the bandgap effect. In this paper, rectangular-shaped hollow waveguides having waveguide-walls (claddings) using the PBG have been discussed. The design principle for HE modes of hollow-core rectangular PBG waveguides with a Bragg cladding consisting of alternating high- and low-index layers, based on a 1D periodic multilayer approximation for the Bragg cladding, is established and then a novel single-polarization hollow-core square PBG waveguide using the bandgap difference between two polarized wavesmore » is proposed. Our results demonstrated that a single-polarization guiding can be achieved by using the square Bragg cladding structure with different layer thickness ratios in the mutually orthogonal directions and the transmission loss of the guided mode in a designed hollow-core square PBG waveguide is numerically estimated to be 0.04 dB/cm.« less
NASA Astrophysics Data System (ADS)
Liao, Zeyang; Nha, Hyunchul; Zubairy, M. Suhail
2016-11-01
We develop a general dynamical theory for studying a single-photon transport in a one-dimensional (1D) waveguide coupled to multiple emitters which can be either identical or nonidentical. In this theory, both the effects of the waveguide and non-waveguide vacuum modes are included. This theory enables us to investigate the propagation of an emitter excitation or an arbitrary single-photon pulse along an array of emitters coupled to a 1D waveguide. The dipole-dipole interaction induced by the non-waveguide modes, which is usually neglected in the literature, can significantly modify the dynamics of the emitter system as well as the characteristics of the output field if the emitter separation is much smaller than the resonance wavelength. Nonidentical emitters can also strongly couple to each other if their energy difference is less than or of the order of the dipole-dipole energy shift. Interestingly, if their energy difference is close but nonzero, a very narrow transparency window around the resonance frequency can appear which does not occur for identical emitters. This phenomenon may find important applications in quantum waveguide devices such as optical switches and ultranarrow single-photon frequency comb generator.
InGaAsP/InP optical waveguide switch operated by a carrier-induced change in the refractive index
NASA Astrophysics Data System (ADS)
Mikami, O.; Nakagome, H.
1985-11-01
Waveguided semiconductor optical switches operated by a carrier-induced change in the refractive-index associated with the plasma dispersion are proposed. InGaAsP/InP four-port switches having two intersecting single-mode channel waveguides are fabricated by selective liquid-phase epitaxy and investigated at 1.5 microns wavelength. Optical switching is observed as a result of mode interference in the waveguide intersection region.
Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D
2013-09-01
We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.
NASA Astrophysics Data System (ADS)
Brusberg, Lars; Lang, Günter; Schröder, Henning
2011-01-01
The proposed novel packaging approach merges micro-system packaging and glass integrated optics. It provides 3D optical single-mode intra system links to bridge the gap between novel photonic integrated circuits and the glass fibers for inter system interconnects. We introduce our hybrid 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip links. Optical mirrors and lenses provide optical mode matching for photonic IC assemblies and optical fiber interconnects. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties as reviewed in the paper. That makes it perfect for micro-system packaging. The adopted planar waveguide process based on ion-exchange technology is capable for high-volume manufacturing. This ion-exchange process and the optical propagation are described in detail for thin glass substrates. An extensive characterization of all basic circuit elements like straight and curved waveguides, couplers and crosses proves the low attenuation of the optical circuit elements.
Vertically-tapered optical waveguide and optical spot transformer formed therefrom
Bakke, Thor; Sullivan, Charles T.
2004-07-27
An optical waveguide is disclosed in which a section of the waveguide core is vertically tapered during formation by spin coating by controlling the width of an underlying mesa structure. The optical waveguide can be formed from spin-coatable materials such as polymers, sol-gels and spin-on glasses. The vertically-tapered waveguide section can be used to provide a vertical expansion of an optical mode of light within the optical waveguide. A laterally-tapered section can be added adjacent to the vertically-tapered section to provide for a lateral expansion of the optical mode, thereby forming an optical spot-size transformer for efficient coupling of light between the optical waveguide and a single-mode optical fiber. Such a spot-size transformer can also be added to a III-V semiconductor device by post processing.
Okhrimchuk, Andrey; Mezentsev, Vladimir; Shestakov, Alexander; Bennion, Ian
2012-02-13
A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.
Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing.
Yang, Weijia; Corbari, Costantino; Kazansky, Peter G; Sakaguchi, Koichi; Carvalho, Isabel C S
2008-09-29
Single mode, low loss waveguides were fabricated in high index bismuth borate glass by femtosecond laser direct writing. A specific set of writing parameters leading to waveguides perfectly mode matched to standard single-mode fibers at 1.55 microm with an overall insertion loss of approximately 1 dB and with propagation loss below 0.2 dB/cm was identified. Photonic components such as Y-splitters and directional couplers were also demonstrated. A close agreement between their performances and theoretical predictions based upon the characterization of the waveguide properties is shown. Finally, the nonlinear refractive index of the waveguides has been measured to be 6.6 x 10(-15) cm(2)/W by analyzing self-phase modulation of the propagating femtosecond laser pulse at the wavelength of 1.46 microm. Broadening of the transmitted light source as large as 500 nm was demonstrated through a waveguide with the length of 1.8 cm.
NASA Astrophysics Data System (ADS)
Grudinin, A. B.; Dianov, Evgenii M.; Korobkin, D. V.; Prokhorov, A. M.; Semenov, V. A.; Khrushchev, I. Yu
1990-08-01
An experimental investigation was made of the process of amplification of femtosecond pulses in single-mode fiber waveguides activated with erbium ions. The amplified pulses were compressed from 80 to 55 fs in the course of their propagation. The energy of the pulses was estimated to be 5 nJ. The maximum gain was 26 dB.
Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides
Navarro-Cía, Miguel; Wu, Jiang; Liu, Huiyun; Mitrofanov, Oleg
2016-01-01
Coaxial waveguides exhibit no dispersion and therefore can serve as an ideal channel for transmission of broadband THz pulses. Implementation of THz coaxial waveguide systems however requires THz beams with radially-polarized distribution. We demonstrate the launching of THz pulses into coaxial waveguides using the effect of THz pulse generation at semiconductor surfaces. We find that the radial transient photo-currents produced upon optical excitation of the surface at normal incidence radiate a THz pulse with the field distribution matching the mode of the coaxial waveguide. In this simple scheme, the optical excitation beam diameter controls the spatial profile of the generated radially-polarized THz pulse and allows us to achieve efficient coupling into the TEM waveguide mode in a hollow coaxial THz waveguide. The TEM quasi-single mode THz waveguide excitation and non-dispersive propagation of a short THz pulse is verified experimentally by time-resolved near-field mapping of the THz field at the waveguide output. PMID:27941845
Optical sensor in planar configuration based on multimode interference
NASA Astrophysics Data System (ADS)
Blahut, Marek
2017-08-01
In the paper a numerical analysis of optical sensors based on multimode interference in planar one-dimensional step-index configuration is presented. The structure consists in single-mode input and output waveguides and multimode waveguide which guide only few modes. Material parameters discussed refer to a SU8 polymer waveguide on SiO2 substrate. The optical system described will be designed to the analysis of biological substances.
Generation of single- and two-mode multiphoton states in waveguide QED
NASA Astrophysics Data System (ADS)
Paulisch, V.; Kimble, H. J.; Cirac, J. I.; González-Tudela, A.
2018-05-01
Single- and two-mode multiphoton states are the cornerstone of many quantum technologies, e.g., metrology. In the optical regime, these states are generally obtained combining heralded single photons with linear optics tools and post-selection, leading to inherent low success probabilities. In a recent paper [A. González-Tudela et al., Phys. Rev. Lett. 118, 213601 (2017), 10.1103/PhysRevLett.118.213601], we design several protocols that harness the long-range atomic interactions induced in waveguide QED to improve fidelities and protocols of single-mode multiphoton emission. Here, we give full details of these protocols, revisit them to simplify some of their requirements, and also extend them to generate two-mode multiphoton states, such as Yurke or NOON states.
Zhang, Qian; Yang, Dong; Qi, Jia; Cheng, Ya; Gong, Qihuang; Li, Yan
2017-06-12
We report single scan transverse writing of depressed cladding waveguides inside ZBLAN glass with the longitudinally oriented annular ring-shaped focal intensity distribution of the femtosecond laser. The entire region of depressed cladding at the cross section, where a negative change of refraction index is induced, can be modified simultaneously with the ring-shaped focal intensity profile. The fabricated waveguides exhibit good single guided mode.
Sub-wavelength grating mode transformers in silicon slab waveguides.
Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J
2009-10-12
We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.
Single-Arm Double-Mode Double-Order Planar Waveguide Interferometric Sensor
NASA Technical Reports Server (NTRS)
Sarkisov, Sergey S.
2000-01-01
We have met the goals stated in section one for the project. We have demonstrated the feasibility of a single-arm double-mode double-order waveguide interferometer as a cost efficient alternative to an optical chemical sensor. Experimental prototype was built as a dye-doped polymer waveguide with propagating modes of orders <<0>> and <<1>> of the same TM polarization. The prototype demonstrated sensitivity to ammonia of the order of 200 ppm per one full oscillation of the signal. Sensor based on polyimide doped with BCP can operate at elevated temperature up to 150 C. Upon the future funding, we are planning to optimize the light source, material and the design in order to achieve sensitivity of the order of 1 ppm per full oscillations.
Diffusion-cooled high-power single-mode waveguide CO2 laser for transmyocardial revascularization
NASA Astrophysics Data System (ADS)
Berishvili, I. I.; Bockeria, L. A.; Egorov, E. N.; Golubev, Vladimir S.; Galushkin, Michail G.; Kheliminsky, A. A.; Panchenko, Vladislav Y.; Roshin, A. P.; Sigaev, I. Y.; Vachromeeva, M. N.; Vasiltsov, Victor V.; Yoshina, V. I.; Zabelin, Alexandre M.; Zelenov, Evgenii V.
1999-01-01
The paper presents the results on investigations and development of multichannel waveguide CO2 laser with diffusion cooling of active medium excited by discharge of audio-frequency alternating current. The description of high-power single-mode CO2 laser with average beam power up to 1 kW is presented. The result of measurement of the laser basic parameters are offered, as well as the outcomes of performances of the laser head with long active zone, operating in waveguide mode. As an example of application of these laser, various capabilities a description of the developed medical system 'Genom' used in the transmyocardial laser revascularization (TMLR) procedure and clinical results of the possibilities of the TMLR in the surgical treatment are presented.
Waveguide mode converter and method using same
Moeller, Charles P.
1990-01-01
A waveguide mode converter converts electromagnetic power being transmitted in a TE.sub.0n or a TM.sub.0n mode, where n is an integer, to an HE.sub.11 mode. The conversion process occurs in a single stage without requiring the power to pass through any intermediate modes. The converter comprises a length of circular corrugated waveguide formed in a multiperiod periodic curve. The period of the curve is selected to couple the desired modes and decouple undesired modes. The corrugation depth is selected to control the phase propagation constant, or wavenumbers, of the input and output modes, thereby preventing coherent coupling to competing modes. In one embodiment, both the period and amplitude of the curve may be selectively adjusted, thereby allowing the converter to be tuned to maximize the conversion efficiency.
Particle-in-cell simulation of multipactor discharge on a dielectric in a parallel-plate waveguide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakharov, A. S., E-mail: sakharov-as@mail.ru; Ivanov, V. A.; Konyzhev, M. E.
2016-06-15
An original 2D3V (two-dimensional in coordinate space and three-dimensional in velocity space) particle-in-cell code has been developed for simulation of multipactor discharge on a dielectric in a parallelplate metal waveguide with allowance for secondary electron emission (SEE) from the dielectric surface and waveguide walls, finite temperature of secondary electrons, electron space charge, and elastic and inelastic scattering of electrons from the dielectric and metal surfaces. The code allows one to simulate all stages of the multipactor discharge, from the onset of the electron avalanche to saturation. It is shown that the threshold for the excitation of a single-surface multipactor onmore » a dielectric placed in a low-profile waveguide with absorbing walls increases as compared to that in the case of an unbounded dielectric surface due to escape of electrons onto the waveguide walls. It is found that, depending on the microwave field amplitude and the SEE characteristics of the waveguide walls, the multipactor may operate in two modes. In the first mode, which takes place at relatively low microwave amplitudes, a single-surface multipactor develops only on the dielectric, the surface of which acquires a positively potential with respect to the waveguide walls. In the second mode, which occurs at sufficiently high microwave intensities, a single-surface multipactor on the dielectric and a two-surface multipactor between the waveguide walls operate simultaneously. In this case, both the dielectric surface and the interwall space acquire a negative potential. It is shown that electron scattering from the dielectric surface and waveguide walls results in the appearance of high-energy tails in the electron distribution function.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rengstl, U.; Schwartz, M.; Herzog, T.
2015-07-13
We present an on-chip beamsplitter operating on a single-photon level by means of a quasi-resonantly driven InGaAs/GaAs quantum dot. The single photons are guided by rib waveguides and split into two arms by an evanescent field coupler. Although the waveguides themselves support the fundamental TE and TM modes, the measured degree of polarization (∼90%) reveals the main excitation and propagation of the TE mode. We observe the preserved single-photon nature of a quasi-resonantly excited quantum dot by performing a cross-correlation measurement on the two output arms of the beamsplitter. Additionally, the same quantum dot is investigated under resonant excitation, wheremore » the same splitting ratio is observed. An autocorrelation measurement with an off-chip beamsplitter on a single output arm reveal the single-photon nature after evanescent coupling inside the on-chip splitter. Due to their robustness, adjustable splitting ratio, and their easy implementation, rib waveguide beamsplitters with embedded quantum dots provide a promising step towards fully integrated quantum circuits.« less
Direct and Inverse Techniques of Guided-Mode Resonance Filters Designs
NASA Technical Reports Server (NTRS)
Tibuleac, Sorin; Magnusson, Robert; Maldonado, Theresa A.; Zuffada, Cinzia
1997-01-01
Guided-mode resonances arise in single or multilayer waveguides where one or more homogeneous layers are replaced by diffraction gratings (Fig. 1.) The diffractive element enables an electromagnetic wave incident on a waveguide grating to be coupled to the waveguide modes supportable by the structure in the absence of the modulation (i.e. the difference between the high and low dielectric constants of the grating) at specific values of the wavelength and incident angle. The periodic modulation of the guide makes the structure leaky, preventing sustained propagation of modes in the waveguide and coupling the waves out into the substrate and cover. As the wavelength is varied around resonance a rapid variation in the intensities of the external propagating waves occurs. By selecting a grating period small enough to eliminate the higher-order propagating waves, an increase in the zero-order intensities up to 100% can result. The pronounced frequency selectivity of guided-mode resonances in dielectric waveguide gratings can be applied to design high-efficiency reflection and transmission filters [1-3].
Mode structure of a quantum cascade laser
NASA Astrophysics Data System (ADS)
Bogdanov, A. A.; Suris, R. A.
2011-03-01
We analyze the mode structure of a quantum cascade laser (QCL) cavity considering the surface plasmon-polariton modes and familiar modes of hollow resonator jointly, within a single model. We present a comprehensive mode structure analysis of the laser cavity, varying its geometric parameters and free electron concentration inside cavity layers within a wide range. Our analysis covers, in particular, the cases of metal-insulator-metal and insulator-metal-insulator waveguides. We discuss the phenomenon of negative dispersion for eigenmodes in detail and explain the nature of this phenomenon. We specify a waveguide parameters domain in which negative dispersion exists. The mode structure of QCL cavity is considered in the case of the anisotropic electrical properties of the waveguide materials. We show that anisotropy of the waveguide core results in propagation of Langmuir modes that are degenerated in the case of the isotropic core. Comparative analysis of optical losses due to free carrier absorption is presented for different modes within the frequency range from terahertz to ultraviolet frequencies.
NASA Technical Reports Server (NTRS)
Gadi, Jagannath; Yalamanchili, Raj; Shahid, Mohammad
1995-01-01
The need for high efficiency components has grown significantly due to the expanding role of fiber optic communications for various applications. Integrated optics is in a state of metamorphosis and there are many problems awaiting solutions. One of the main problems being the lack of a simple and efficient method of coupling single-mode fibers to thin-film devices for integrated optics. In this paper, optical coupling between a single-mode fiber and a uniform and tapered thin-film waveguide is theoretically modeled and analyzed. A novel tapered structure presented in this paper is shown to produce perfect match for power transfer.
On-chip electrically controlled routing of photons from a single quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentham, C.; Coles, R. J.; Royall, B.
2015-06-01
Electrical control of on-chip routing of photons emitted by a single InAs/GaAs self-assembled quantum dot (SAQD) is demonstrated in a photonic crystal cavity-waveguide system. The SAQD is located inside an H1 cavity, which is coupled to two photonic crystal waveguides. The SAQD emission wavelength is electrically tunable by the quantum-confined Stark effect. When the SAQD emission is brought into resonance with one of two H1 cavity modes, it is preferentially routed to the waveguide to which that mode is selectively coupled. This proof of concept provides the basis for scalable, low-power, high-speed operation of single-photon routers for use in integratedmore » quantum photonic circuits.« less
NASA Astrophysics Data System (ADS)
Giglio, Marilena; Patimisco, Pietro; Sampaolo, Angelo; Kriesel, Jason M.; Tittel, Frank K.; Spagnolo, Vincenzo
2018-01-01
We report single-mode midinfrared laser beam delivery through a 50-cm-long tapered hollow-core waveguide (HCW) having bore diameter linearly increasing from 200 to 260 μm. We performed theoretical calculations to identify the best HCW-laser coupling conditions in terms of optical losses and single-mode fiber output. To validate our modeling, we coupled the HCW with an interband cascade laser and four quantum cascade lasers with their emission wavelengths spanning 3.5 to 7.8 μm, using focusing lenses with different focal lengths. With the best coupling conditions, we achieved single-mode output in the investigated 3.5 to 7.8 μm spectral range, with minimum transmission losses of 1.27 dB at 6.2 μm.
NASA Astrophysics Data System (ADS)
Gelikonov, V. M.; Leonov, V. I.; Novikov, M. A.
1989-09-01
An analysis is made of the characteristics of the transformation of the polarization of light in the course of a round trip in a single-mode fiber waveguide. The Poincaré equivalence theorems are generalized for a round trip through such fibers. An investigation is reported of round-trip anisotropic properties which can be used to compensate for a regular and an irregular anisotropy of a fiber waveguide. A description is given of a compensation system containing a Faraday cell and an experimental check of the theoretical conclusions is reported.
FIBER OPTICS: Method of calculation of the propagation constant for guided modes
NASA Astrophysics Data System (ADS)
Ardasheva, L. I.; Sadykov, Nail R.; Chernyakov, V. E.
1992-09-01
A new method of calculating the propagation constants and wave eigenfunctions of guided modes is proposed for axisymmetric translationally invariant fiber-optic waveguides with arbitrary refractive index profiles. The method is based on solving a parabolic scalar wave equation. A comparison is made between the numerical solution under steady-state conditions and the eigenfunctions of single-mode and multimode waveguides.
ERIC Educational Resources Information Center
Ruddock, Ivan S.
2009-01-01
The derivation and description of the modes in optical waveguides and fibres are reviewed. The version frequently found in undergraduate textbooks is shown to be incorrect and misleading due to the assumption of an axial ray of light corresponding to the lowest order mode. It is pointed out that even the lowest order must still be represented in…
Laterally Coupled Quantum-Dot Distributed-Feedback Lasers
NASA Technical Reports Server (NTRS)
Qui, Yueming; Gogna, Pawan; Muller, Richard; Maker, paul; Wilson, Daniel; Stintz, Andreas; Lester, Luke
2003-01-01
InAs quantum-dot lasers that feature distributed feedback and lateral evanescent- wave coupling have been demonstrated in operation at a wavelength of 1.3 m. These lasers are prototypes of optical-communication oscillators that are required to be capable of stable single-frequency, single-spatial-mode operation. A laser of this type (see figure) includes an active layer that comprises multiple stacks of InAs quantum dots embedded within InGaAs quantum wells. Distributed feedback is provided by gratings formed on both sides of a ridge by electron lithography and reactive-ion etching on the surfaces of an AlGaAs/GaAs waveguide. The lateral evanescent-wave coupling between the gratings and the wave propagating in the waveguide is strong enough to ensure operation at a single frequency, and the waveguide is thick enough to sustain a stable single spatial mode. In tests, the lasers were found to emit continuous-wave radiation at temperatures up to about 90 C. Side modes were found to be suppressed by more than 30 dB.
Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression
Huang, S.-W.; Liu, H.; Yang, J.; Yu, M.; Kwong, D.-L.; Wong, C. W.
2016-01-01
High-Q microresonator is perceived as a promising platform for optical frequency comb generation, via dissipative soliton formation. In order to achieve a higher quality factor and obtain the necessary anomalous dispersion, multi-mode waveguides were previously implemented in Si3N4 microresonators. However, coupling between different transverse mode families in multi-mode waveguides results in periodic disruption of dispersion and quality factor, and consequently causes perturbation to dissipative soliton formation and amplitude modulation to the corresponding spectrum. Careful choice of pump wavelength to avoid the mode crossing region is thus critical in conventional Si3N4 microresonators. Here, we report a novel design of Si3N4 microresonator in which single-mode operation, high quality factor, and anomalous dispersion are attained simultaneously. The novel microresonator is consisted of uniform single-mode waveguides in the semi-circle region, to eliminate bending induced mode coupling, and adiabatically tapered waveguides in the straight region, to avoid excitation of higher order modes. The intrinsic quality factor of the microresonator reaches 1.36 × 106 while the group velocity dispersion remains to be anomalous at −50 fs2/mm. With this novel microresonator, we demonstrate that broadband phase-locked Kerr frequency combs with flat and smooth spectra can be generated by pumping at any resonances in the optical C-band. PMID:27181420
Polymer waveguides for electro-optical integration in data centers and high-performance computers.
Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan
2015-02-23
To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.
NASA Technical Reports Server (NTRS)
Megie, G.; Menzies, R. T.
1979-01-01
The tunable single-longitudinal-mode operation of a TEA CO2 laser by an injection technique using a CW waveguide laser as the master oscillator is reported. With the experimental arrangement described, in which the waveguide laser frequency is tuned to correspond to one of the oscillating longitudinal modes of the TEA laser, single-longitudinal-mode operation was achieved with no apparent reduction in the TEA output energy, on various CO2 lines with frequency offsets from the line center as large as 300 MHz. The capability of this technique for high-resolution spectroscopy or atmospheric lidar studies is demonstrated by the recording of the absorption spectrum of a strong ozone line.
Spectral engineering for circular-side square microlasers.
Weng, Hai-Zhong; Yang, Yue-De; Xiao, Jin-Long; Hao, You-Zeng; Huang, Yong-Zhen
2018-04-16
Spectral engineering has been demonstrated for the circular-side square microlasers with an output waveguide butt-coupled to one vertex. By carefully optimizing deformation parameter and waveguide connection angle, undesired high-order transverse modes are suppressed while the mode Q factors and the transverse-mode intervals are enhanced simultaneously for the low-order transverse modes. Dual-mode lasing with pure lasing spectra is realized experimentally for the circular-side square microlasers with side lengths of 16 μm, and the transverse mode intervals can be adjusted from 0.54 to 5.4 nm by changing the deformation parameter. Due to the enhanced mode confinement, single-mode lasing with a side-mode suppression-ratio of 36 dB is achieved for a 10μm-side-length circular-side square microlaser with a 1.5μm-wide waveguide.
Low-loss single mode light waveguides in polymer
NASA Astrophysics Data System (ADS)
Sieber, Heinrich; Boehm, Hans-Jürgen; Hollenbach, Uwe; Mohr, Jürgen; Ostrzinski, Ute; Pfeiffer, Karl; Szczurowski, Marcin; Urbanczyk, Waclaw
2012-06-01
We report on the development of a UV-lithography manufacturing process for low loss single mode light waveguides in a novel polymer and the characterization of the fabricated components in a broad wavelength range from 808 nm to 1550 nm. The main focus of this work lies in providing a quick and cost efficient production technique for single mode waveguides and low loss integrated optical circuits. To achieve this goal we chose a novel photo-structurable polymer host-guest-system consisting of SU8 and a low refractive dopant monomer. Near and far-field measurements at different wavelengths show that the mode propagating within a well designed integrated waveguide structure and the mode of a standard fiber can exhibit a mode overlap value of approximately 1 and suffer only very low coupling losses. We demonstrate excess loss of 0.14 dB/cm for 808 nm, 0.33 dB/cm for 1310 nm and 2.86 dB/cm for 1550 nm. Typical insertion loss values of straight waveguides with a length of 36 mm are 0.9 dB for 808 nm, 1.5 dB for 1310 nm and 10.4 dB for 1550 nm. Polarization dependent loss was found to be less than 0.2 dB on sets of test structures of 36 mm length. We measured material attenuation in the novel polymer material before cross-linking of approximately 0.04 dB/cm for 808 nm and around 0.20 dB/cm for 1310 nm respectively. The presented production technique is suitable to provide low loss and low cost integrated optical circuits for sensor and communication applications in a broad wavelength range.
Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers.
Lancaster, D G; Gross, S; Fuerbach, A; Heidepriem, H Ebendorff; Monro, T M; Withford, M J
2012-12-03
We report performance characteristics of a thulium doped ZBLAN waveguide laser that supports the largest fundamental modes reported in a rare-earth doped planar waveguide laser (to the best of our knowledge). The high mode quality of waveguides up to 45 um diameter (~1075 μm(2) mode-field area) is validated by a measured beam quality of M(2)~1.1 ± 0.1. Benefits of these large mode-areas are demonstrated by achieving 1.9 kW peak-power output Q-switched pulses. The 1.89 μm free-running cw laser produces 205 mW and achieves a 67% internal slope efficiency corresponding to a quantum efficiency of 161%. The 9 mm long planar chip developed for concept demonstration is rapidly fabricated by single-step optical processing, contains 15 depressed-cladding waveguides, and can operate in semi-monolithic or external cavity laser configurations.
Integration of a terahertz quantum cascade laser with a hollow waveguide
Wanke, Michael C [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM
2012-07-03
The present invention is directed to the integration of a quantum cascade laser with a hollow waveguide on a chip to improve both the beam pattern and manufacturability. By coupling the QCL output into a single-mode rectangular waveguide the radiation mode structure can be known and the propagation, manipulation, and broadcast of the QCL radiation can then be entirely controlled by well-established rectangular waveguide techniques. By controlling the impedance of the interface, enhanced functions, such as creating amplifiers, efficient coupling to external cavities, and increasing power output from metal-metal THz QCLs, are also enabled.
Polarization-dependent plasmonic splitter based on low-loss polymer optical materials
NASA Astrophysics Data System (ADS)
Qian, Guang; Fu, Xing-Chang; Zhang, Li-Jiang; Liu, Yi-Ran; Zhao, Ning; Zhang, Tong
2018-01-01
A polarization-dependent optical beam splitter consisting of a straight long-range surface plasmon polariton (LRSPP) waveguide and an S-bend polymer waveguide was designed, fabricated and measured in this paper. At the splitting section, the two different waveguides are vertically coupled. The measurenment results show that the splitter operated in dual-channel mode at TM polarization, and single-channel mode at TE polarization. In addition, the polymer waveguide and LRSPP waveguide in the splitter exhibit low propagation loss of 0.51 dB/cm and 1.7 dB/cm, respectively. The hybrid beam splitter has wide potential applications in three dimensional (3D) multilayer photonic integrated circuits (PICs).
Single Mode Optical Waveguide Design Study.
1981-11-23
AD-I7g62 CORNING GLASS WORKS NY FIG 20/6 ADA0 21 SINGLE MODE OPTICAL WAVEGUIDE DESIGN STUDY.(U) NOV 81 V A BHAGAVATJLA. D B KECK, R A WESTWIG N00173...Ralph A. Westwig Corning Glass Works ’ 1 / Research and Development-Division Sullivan Park Corning, New York Th document ha bern c -yro vd Spubc rlea...Authors: Venkata A. Bhagavatula Donald B. Keck Ralph A. Westwig Corning Glass Works Research and Development Division Sullivan Park Corning, New York 11
Silicon single mode waveguide modulator based upon switchable Bragg reflector
NASA Astrophysics Data System (ADS)
Azogui, Jonathan; Ramon, Yonathan; Businaro, Luca; Ciasca, Gabriele; Gerardino, Annamaria; Zalevsky, Zeev
2018-02-01
In this paper we present the development of an electro optical "Bragg" modulator for telecommunication, in both design and fabrication. The device consists from a regular single mode silicon waveguide (WG) in which an effective Bragg reflector is "turned on" within the WG by means of external bias, due to the plasma dispersion effect, in which the (complexed) refractive index is affected by carrier concentration within the Silicon. Three different strategies are presented for both design and fabrication.
Coupled ridge waveguide distributed feedback quantum cascade laser arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying-Hui; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn; Yan, Fang-Liang
2015-04-06
A coupled ridge waveguide quantum cascade laser (QCL) array consisting of fifteen elements with parallel integration was presented. In-phase fundamental mode operation in each element is secured by both the index-guided nature of the ridge and delicate loss management by properly designed geometries of the ridges and interspaces. Single-lobe lateral far-field with a nearly diffraction limited beam pattern was obtained. By incorporating a one-dimensional buried distributed feedback grating, the in-phase-operating coupled ridge waveguide QCL design provides an efficient solution to obtaining high output power and stable single longitudinal mode emission. The simplicity of this structure and fabrication process makes thismore » approach attractive to many practical applications.« less
NASA Astrophysics Data System (ADS)
Puscas, Liliana A.; Galatus, Ramona V.; Puscas, Niculae N.
In this article, we report a theoretical study concerning some statistical parameters which characterize the single- and double-pass Er3+-doped Ti:LiNbO3 M-mode straight waveguides. For the derivation and the evaluation of the Fano factor, the statistical fluctuation and the spontaneous emission factor we used a quasi two-level model in the small gain approximation and the unsaturated regime. The simulation results show the evolution of these parameters under various pump regimes and waveguide lengths. The obtained results can be used for the design of complex rare earth-doped integrated circuits.
Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems
NASA Astrophysics Data System (ADS)
Nguyen, Victor; Montalbo, Trisha; Manolatou, Christina; Agarwal, Anu; Hong, Ching-yin; Yasaitis, John; Kimerling, L. C.; Michel, Jurgen
2006-02-01
A coupler to efficiently transfer broadband light from a single-mode optical fiber to a single-mode high-index contrast waveguide has been fabricated on a silicon substrate. We utilized a novel coupling scheme, with a vertically asymmetric design consisting of a stepwise parabolic graded index profile combined with a horizontal taper, to simultaneously confine light in both directions. Coupling efficiency has been measured as a function of the device dimensions. The optimal coupling efficiency is achieved for structures whose length equals the focal distance of the graded index and whose input width is close to the mode field diameter of the fiber. The fabricated structure is compact, robust and highly efficient, with an insertion loss of 2.2dB at 1550nm. The coupler exhibits less than 1dB variation in coupling efficiency in the measured spectral range from 1520nmto1620nm. The lowest insertion loss of 1.9dB is measured at 1540nm. The coupler design offers highly efficient coupling for single mode waveguides of core indices up to 2.2.
NASA Astrophysics Data System (ADS)
Burckel, David Bruce
One of the anticipated advantages of photonic crystal waveguides is the ability to tune waveguide dispersion and propagation characteristics to achieve desired properties. The majority of research into photonic crystal waveguides centers around high index contrast photonic crystal waveguides with complete in-plane bandgaps in the photonic crystal cladding. This work focuses on linear photonic crystal waveguides in moderate index materials, with insufficient index contrast to guarantee a complete in-plane bandgap. Using a technique called Interferometric Lithography (IL) as well as standard semiconductor processing steps, a process flow for creating large area (˜cm 2), linear photonic crystal waveguides in a spin-deposited photocurable polymer is outlined. The study of such low index contrast photonic crystal waveguides offers a unique opportunity to explore the mechanisms governing waveguide confinement and photonic crystal behavior in general. Results from two optical characterization experiments are provided. In the first set of experiments, rhodamine 590 organic laser dye was incorporated into the polymer prior to fabrication of the photonic crystal slab. Emission spectra from waveguide core modes exhibit no obvious spectral selectivity owing to variation in the periodicity or geometry of the photonic crystal. In addition, grating coupled waveguides were fabricated, and a single frequency diode laser was coupled into the waveguide in order to study the transverse mode structure. To this author's knowledge, the optical mode profile images are the first taken of photonic crystal slab waveguides, exhibiting both simple low order mode structure as well as complex high order mode structure inconsistent with effective index theory. However, no obvious correlation between the mode structure and photonic crystal period or geometry was evident. Furthermore, in both the laser dye-doped and grating coupled waveguides, low loss waveguiding was observed regardless of wavelength to period ratio. These optical results indicated a need for a deeper understanding of the confinement/guiding mechanisms in such waveguide structures. A simplification of the full 2-D problem to a more tractable "tilted 1-D" geometry led to the proposal of a new waveguide geometry, Generalized Transverse Bragg Waveguides (GTBW), as well as a new propagation mode characterized by spatial variation in both the transverse direction as well as the direction of propagation. GTBW demonstrate many of the same dispersion tunability traits exhibited in complete bandgap photonic crystal waveguides, under more modest fabrication demands, and moreover provide much insight into photonic crystal waveguide modes of all types. Generalized Transverse Bragg Waveguides are presented in terms of the standard physical properties associated with waveguides, including the dispersion relation, expressions for the spatial field profile, and the concepts of phase and group velocity. In addition, the proposal of at least one obvious application, semiconductor optical amplifiers, is offered.
Passive fiber alignment to single-mode plastic waveguides fabricated by injection molding
NASA Astrophysics Data System (ADS)
Pompe, Guido; Lehmacher, Stefan; Rudolph, Stefan; Kalveram, Stefan; Joenck, Matthias; Neyer, Andreas
1998-04-01
Passive fibre-waveguide coupling is a promising alternative to expensive active coupling in single-mode fibre-optics. The idea to utilize replication techniques in transparent polymeric materials for waveguide and alignment structure fabrication has led to the SIGA-process (Silizium, Galvanik und Abformung) which allows a cost effective production of low loss polymer waveguides in the near IR. Major difficulties in passive fibre coupling are caused by the high lateral alignment accuracy (of about 1 micrometer) in fibre positioning. In the SIGA process, the exact position of the V- grooves relative to the waveguide trenches is defined by the etch mask for the silicon master wafer. The width of the V- grooves is determined by the KOH etching time. It is controlled precisely at various stages in the etching process by means of a microscope based piezo driven measurement system with a resolution better than 0.5 micrometer, thus allowing a final vertical precision of fibre positioning of 350 nm. In order to specify the capability of our technology we have measured the position of dozens of fibres glued into V- grooves. The result was that an amount of 55% of the fibre cores was closer than 1.5 micrometer to the waveguide centre. As the experience has shown, a two-step process for the fabrication of passively fibre coupled waveguides is necessary. First, the waveguides are produced by filling the waveguide trenches with an IR-transparent monomer and by polymerizing it using UV curing. The waveguides are inspected with visible and IR light by clamping a fibre ribbon mechanically into the integrated plastic V-grooves. In a second step the fibre ribbon is fixed irreversibly in the V- grooves. By that way we have reached an insertion loss of 3.5 dB at 1300nm and 1550nm for passively coupled 22mm single mode waveguides. Most of the losses are attributed to waveguide imperfections. More details concerning the coupling losses and the device performances will be reported at the conference.
Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides
NASA Astrophysics Data System (ADS)
Kremmel, Johannes; Lamprecht, Tobias; Crameri, Nino; Michler, Markus
2017-02-01
A silicon device to simplify the coupling of multiple single-mode fibers to embedded single-mode waveguides has been developed. The silicon device features alignment structures that enable a passive alignment of fibers to integrated waveguides. For passive alignment, precisely machined V-grooves on a silicon device are used and the planar lightwave circuit board features high-precision structures acting as a mechanical stop. The approach has been tested for up to eight fiber-to-waveguide connections. The alignment approach, the design, and the fabrication of the silicon device as well as the assembly process are presented. The characterization of the fiber-to-waveguide link reveals total coupling losses of (0.45±0.20 dB) per coupling interface, which is significantly lower than the values reported in earlier works. Subsequent climate tests reveal that the coupling losses remain stable during thermal cycling but increases significantly during an 85°C/85 Rh-test. All applied fabrication and bonding steps have been performed using standard MOEMS fabrication and packaging processes.
30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide.
Feng, Ning-Ning; Feng, Dazeng; Liao, Shirong; Wang, Xin; Dong, Po; Liang, Hong; Kung, Cheng-Chih; Qian, Wei; Fong, Joan; Shafiiha, Roshanak; Luo, Ying; Cunningham, Jack; Krishnamoorthy, Ashok V; Asghari, Mehdi
2011-04-11
We demonstrate a compact waveguide-based high-speed Ge electro-absorption (EA) modulator integrated with a single mode 3 µm silicon-on-isolator (SOI) waveguide. The Ge EA modulator is based on a horizontally-oriented p-i-n structure butt-coupled with a deep-etched silicon waveguide, which transitions adiabatically to a shallow-etched single mode large core SOI waveguide. The demonstrated device has a compact active region of 1.0 × 45 µm(2), a total insertion loss of 2.5-5 dB and an extinction ratio of 4-7.5 dB over a wavelength range of 1610-1640 nm with -4V(pp) bias. The estimated Δα/α value is in the range of 2-3.3. The 3 dB bandwidth measurements show that the device is capable of operating at more than 30 GHz. Clear eye-diagram openings at 12.5 Gbps demonstrates large signal modulation at high transmission rate. © 2011 Optical Society of America
Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode.
Martinez, Nicholas J D; Gehl, Michael; Derose, Christopher T; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S
2017-07-10
We examine gated-Geiger mode operation of an integrated waveguide-coupled Ge-on-Si lateral avalanche photodiode (APD) and demonstrate single photon detection at low dark count for this mode of operation. Our integrated waveguide-coupled APD is fabricated using a selective epitaxial Ge-on-Si growth process resulting in a separate absorption and charge multiplication (SACM) design compatible with our silicon photonics platform. Single photon detection efficiency and dark count rate is measured as a function of temperature in order to understand and optimize performance characteristics in this device. We report single photon detection of 5.27% at 1310 nm and a dark count rate of 534 kHz at 80 K for a Ge-on-Si single photon avalanche diode. Dark count rate is the lowest for a Ge-on-Si single photon detector in this range of temperatures while maintaining competitive detection efficiency. A jitter of 105 ps was measured for this device.
Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator
Zhang, Tong; Qian, Guang; Wang, Yang-Yang; Xue, Xiao-Jun; Shan, Feng; Li, Ruo-Zhou; Wu, Jing-Yuan; Zhang, Xiao-Yang
2014-01-01
Optical gyroscopes with high sensitivity are important rotation sensors for inertial navigation systems. Here, we present the concept of integrated resonant optical gyroscope constructed by active long-range surface plasmon-polariton (LRSPP) waveguide resonator. In this gyroscope, LRSPP waveguide doped gain medium is pumped to compensate the propagation loss, which has lower pump noise than that of conventional optical waveguide. Peculiar properties of single-polarization of LRSPP waveguide have been found to significantly reduce the polarization error. The metal layer of LRSPP waveguide is electro-optical multiplexed for suppression of reciprocal noises. It shows a limited sensitivity of ~10−4 deg/h, and a maximum zero drift which is 4 orders of magnitude lower than that constructed by conventional single-mode waveguide. PMID:24458281
Temporal waveguides for optical pulses
Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.
2016-05-12
Here we discuss, temporal total internal reflection (TIR), in analogy to the conventional TIR of an optical beam at a dielectric interface, is the total reflection of an optical pulse inside a dispersive medium at a temporal boundary across which the refractive index changes. A pair of such boundaries separated in time acts as the temporal analog of planar dielectric waveguides. We study the propagation of optical pulses inside such temporal waveguides, both analytically and numerically, and show that the waveguide supports a finite number of temporal modes. We also discuss how a single-mode temporal waveguide can be created inmore » practice. In contrast with the spatial case, the confinement can occur even when the central region has a lower refractive index.« less
FRET enhancement in aluminum zero-mode waveguides.
de Torres, Juan; Ghenuche, Petru; Moparthi, Satish Babu; Grigoriev, Victor; Wenger, Jérôme
2015-03-16
Zero-mode waveguides (ZMWs) can confine light into attoliter volumes, which enables single molecule fluorescence experiments at physiological micromolar concentrations. Of the fluorescence spectroscopy techniques that can be enhanced by ZMWs, Förster resonance energy transfer (FRET) is one of the most widely used in life sciences. Combining zero-mode waveguides with FRET provides new opportunities to investigate biochemical structures or follow interaction dynamics at micromolar concentrations with single-molecule resolution. However, prior to any quantitative FRET analysis on biological samples, it is crucial to establish first the influence of the ZMW on the FRET process. Here, we quantify the FRET rates and efficiencies between individual donor-acceptor fluorophore pairs that diffuse into aluminum zero-mode waveguides. Aluminum ZMWs are important structures thanks to their commercial availability and the large amount of literature that describe their use for single-molecule fluorescence spectroscopy. We also compared the results between ZMWs milled in gold and aluminum, and found that although gold has a stronger influence on the decay rates, the lower losses of aluminum in the green spectral region provide larger fluorescence brightness enhancement factors. For both aluminum and gold ZMWs, we observed that the FRET rate scales linearly with the isolated donor decay rate and the local density of optical states. Detailed information about FRET in ZMWs unlocks their application as new devices for enhanced single-molecule FRET at physiological concentrations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Dianov, Evgenii M.; Zubov, Vladimir A.; Putilin, A. N.
1995-02-01
An analysis is made of a variant of a system for spatial—temporal transformation of spatially one-dimensional information for its transfer along a single-mode fibre waveguide. Information is coupled into a fibre by a waveguide hologram. This hologram forms a light-beam structure which matches the fibre-guided mode. A report is given of the use of ion-exchange planar glass waveguides as waveguide holograms. An amorphous chalcogenide semiconductor film or a photoresist was deposited by evaporation on such a planar waveguide. Reconstruction of the waveguide hologram made it possible to achieve a high read rate, up to 1011 pixels per second, when a short radiation pulse was used. Multisectioned injection semiconductor lasers, operating under Q-switching conditions, were used as the radiation sources.
A Broadband Terahertz Waveguide T-Junction Variable Power Splitter.
Reichel, Kimberly S; Mendis, Rajind; Mittleman, Daniel M
2016-06-29
In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting.
A Broadband Terahertz Waveguide T-Junction Variable Power Splitter
Reichel, Kimberly S.; Mendis, Rajind; Mittleman, Daniel M.
2016-01-01
In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting. PMID:27352772
Building an LO source at 1036 GHz for a receiver
NASA Technical Reports Server (NTRS)
Erickson, Neal R.
1995-01-01
The goal of the UMass work on this grant was to build an LO source at 1036 GHz for a receiver which was to be built at JPL. The 1 THz source will consist of a high power Gunn oscillator at 86 GHz followed by a cascaded pair of planar diode doublers and finally a whisker contacted tripler. All multipliers will use single mode waveguide mounts. This use of single mode waveguide even for the final mount is a departure from the original plan, and reflects the progress that has been made in fabricating small structures. The advantages to the use of waveguide over a quasi-optical approach are that the complete system is much more compact, and much easier to use.
FIBER AND INTEGRATED OPTICS: New method for determination of the parameters of a channel waveguide
NASA Astrophysics Data System (ADS)
Galechyan, M. G.; Dianov, Evgenii M.; Lyndin, N. M.; Sychugov, V. A.; Tishchenko, A. V.; Usievich, B. A.
1992-02-01
A new method for the determination of the parameters of channel integrated optical waveguides is proposed. This method is based on measuring the spectral transmission of a system comprising the investigated waveguide and single-mode fiber waveguides, which are brought into contact with the channel waveguide. The results are reported of an investigation of two channel waveguides formed in glass by a variety of methods and characterized by different refractive index profiles. The proposed method is found to be suitable for determination of the parameters of the refractive index profile of the investigated channel waveguides.
Distributed temperature sensors development using an stepped-helical ultrasonic waveguide
NASA Astrophysics Data System (ADS)
Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan
2018-04-01
This paper presents the design and development of the distributed ultrasonic waveguide temperature sensors using some stepped-helical structures. Distributed sensing has several applications in various industries (oil, glass, steel) for measurement of physical parameters such as level, temperature, viscosity, etc. This waveguide incorporates a special notch or bend for obtaining ultrasonic wave reflections from the desired locations (Gage-lengths) where local measurements are desired. In this paper, a multi-location measurement wave-guide, with a measurement capability of 18 locations in a single wire, has been fabricated. The distribution of these sensors is both in the axial as well as radial directions using a stepped-helical spring configuration. Also, different high temperature materials have been chosen for the wave-guide. Both lower order axi-symmetric guided ultrasonic modes (L(0,1) and T(0,1)) were employed. These wave modes were generated/received (pulse-echo approach) using conventional longitudinal and shear transducers, respectively. Also, both the wave modes were simultaneously generated/received and compared using shear transducer for developing the distributed helical wave-guide sensors. The effect of dispersion of the wave modes due to curvature effects will also be discussed.
Scalable electro-photonic integration concept based on polymer waveguides
NASA Astrophysics Data System (ADS)
Bosman, E.; Van Steenberge, G.; Boersma, A.; Wiegersma, S.; Harmsma, P.; Karppinen, M.; Korhonen, T.; Offrein, B. J.; Dangel, R.; Daly, A.; Ortsiefer, M.; Justice, J.; Corbett, B.; Dorrestein, S.; Duis, J.
2016-03-01
A novel method for fabricating a single mode optical interconnection platform is presented. The method comprises the miniaturized assembly of optoelectronic single dies, the scalable fabrication of polymer single mode waveguides and the coupling to glass fiber arrays providing the I/O's. The low cost approach for the polymer waveguide fabrication is based on the nano-imprinting of a spin-coated waveguide core layer. The assembly of VCSELs and photodiodes is performed before waveguide layers are applied. By embedding these components in deep reactive ion etched pockets in the silicon substrate, the planarity of the substrate for subsequent layer processing is guaranteed and the thermal path of chip-to-substrate is minimized. Optical coupling of the embedded devices to the nano-imprinted waveguides is performed by laser ablating 45 degree trenches which act as optical mirror for 90 degree deviation of the light from VCSEL to waveguide. Laser ablation is also implemented for removing parts of the polymer stack in order to mount a custom fabricated connector containing glass fiber arrays. A demonstration device was built to show the proof of principle of the novel fabrication, packaging and optical coupling principles as described above, combined with a set of sub-demonstrators showing the functionality of the different techniques separately. The paper represents a significant part of the electro-photonic integration accomplishments in the European 7th Framework project "Firefly" and not only discusses the development of the different assembly processes described above, but the efforts on the complete integration of all process approaches into the single device demonstrator.
Low-index discontinuity terahertz waveguides
NASA Astrophysics Data System (ADS)
Nagel, Michael; Marchewka, Astrid; Kurz, Heinrich
2006-10-01
A new type of dielectric THz waveguide based on recent approaches in the field of integrated optics is presented with theoretical and experimental results. Although the guiding mechanism of the low-index discontinuity (LID) THz waveguide is total internal reflection, the THz wave is predominantly confined in the virtually lossless low-index air gap within a high-index dielectric waveguide due to the continuity of electric flux density at the dielectric interface. Attenuation, dispersion and single-mode confinement properties of two LID structures are discussed and compared with other THz waveguide solutions. The new approach provides an outstanding combination of high mode confinement and low transmission losses currently not realizable with any other metal-based or photonic crystal approach. These exceptional properties might enable the breakthrough of novel integrated THz systems or endoscopy applications with sub-wavelength resolution.
Efficient channel-waveguide laser in Nd:GGG at 1.062 μm wavelength
NASA Astrophysics Data System (ADS)
Gerhardt, R.; Kleine-Börger, J.; Beilschmidt, L.; Frommeyer, M.; Dötsch, H.; Gather, B.
1999-08-01
Channel waveguide lasers in crystals of neodymium-doped gadolinium-gallium-garnet are realized. They are based on single-mode rib waveguides prepared by liquid phase epitaxy. By this growth technique the incorporation of certain impurities, which may cause severe quenching, is inevitable. The dominant quenching process could be identified and eliminated. Channel waveguides with extremely low losses, down to 0.25 dB/cm for both TE and TM modes, are fabricated by ion-beam etching. As a result, low thresholds of 5 mW and high slope efficiencies of 48% at the laser wavelength of 1.062 μm could be achieved when pumping at a wavelength of 807 nm.
NASA Astrophysics Data System (ADS)
Arutyunyan, Z. É.; Grudinin, A. B.; Gur'yanov, A. N.; Gusovskiĭ, D. D.; Dianov, Evgenii M.; Ignat'ev, S. V.; Smirnov, O. B.
1990-10-01
A technology of fabrication of anisotropic single-mode fiber waveguides with an elliptic stress-inducing cladding and a circular core was developed. This technology was used to make fiber waveguides with a birefringence (1-3) × 10 - 4, a coefficient representing the coupling between the polarization modes h = (5-7) × 10 - 5 m - 1, and optical losses a = 0.5 dB/km in the vicinity of 1.6 μm. A comparison was made of the experimental data with the results of a theoretical analysis. It was found that certain mechanisms restricted the ability of these waveguides to maintain a constant polarization of the injected linearly polarized radiation.
High sensitivity waveguide micro-displacement sensor based on intermodal interference
NASA Astrophysics Data System (ADS)
Ji, Lanting; He, Guobing; Gao, Yang; Xu, Yan; Liang, Honglei; Sun, Xiaoqiang; Wang, Xibin; Yi, Yunji; Chen, Changming; Wang, Fei; Zhang, Daming
2017-11-01
An optical waveguide displacement sensor according to core-cladding modes interference is theoretically proposed and experimentally demonstrated. Ultraviolet sensitive SU-8 polymer on silica is used as the guiding layer. It is covered by a 12 nm thick planar gold grating. The air gap sensing head which consists of the waveguide end and the single-mode fiber facet can realize the displacement detection by monitoring the wavelength dip shifting in transmission spectra. Cladding modes propagating in the exposed SU-8 can be effectively excited by the end-fire coupling because of the mode field mismatch between the SU-8 waveguide and lead-in fiber. A sinusoidal pattern transmission spectrum in C-band with the depth of over 14 dB can be observed due to the interference between the core and cladding modes. Peaks in the transmission spectrum vary continuously with the position offset of input fiber facet from the center of waveguide end. Both the sensitivity and the stability of sensing are enhanced by the introduction of nanometric gold gratings. The fabricated displacement sensor exhibits a high sensitivity of 2.3 nm μm-1, promising potentials for micromechanical processing and integrated optics application.
NASA Astrophysics Data System (ADS)
Liu, Yan; Guan, Yefeng; Li, Hai; Luo, Zhihuan; Mai, Zhijie
2017-08-01
We study families of stationary nonlinear localized modes and composite gray and anti-gray solitons in a one-dimensional linear waveguide array with dual phase-flip nonlinear point defects. Unstaggered fundamental and dipole bright modes are studied when the defect nonlinearity is self-focusing. For the fundamental modes, symmetric and asymmetric nonlinear modes are found. Their stable areas are studied using different defect coefficients and their total power. For the nonlinear dipole modes, the stability conditions of this type of mode are also identified by different defect coefficients and the total power. When the defect nonlinearity is replaced by the self-defocusing one, staggered fundamental and dipole bright modes are created. Finally, if we replace the linear waveguide with a full nonlinear waveguide, a new type of gray and anti-gray solitons, which are constructed by a kink and anti-kink pair, can be supported by such dual phase-flip defects. In contrast to the usual gray and anti-gray solitons formed by a single kink, their backgrounds on either side of the gray hole or bright hump have the same phase.
Linslal, C L; Mohan, P M S; Halder, A; Gangopadhyay, T K
2012-06-01
The core-mode cutoff plays a major role in evanescent field absorption based sensors. A method has been proposed to calculate the core-mode cutoff by solving the eigenvalue equations of a weakly guiding three layer optical waveguide graphically. The variation of normalized waveguide parameter (V) is also calculated with different wavelengths at core-mode cutoff. At the first step, theoretical analysis of tapered fiber parameters has been performed for core-mode cutoff. The taper angle of an adiabatic tapered fiber is also analyzed using the length-scale criterion. Secondly, single-mode tapered fiber has been developed to make a precision sensor element suitable for chemical detection. Finally, the sensor element has been used to detect absorption peak of ethylenediamine. Results are presented in which an absorption peak at 1540 nm is observed.
Surface-Emitting Distributed Feedback Terahertz Quantum-Cascade Lasers in Metal-Metal Waveguides
NASA Technical Reports Server (NTRS)
Kumar, Sushil; Williams, Benjamin S.; Qin, Qi; Lee, Alan W. M.; Hu, Qing; Reno, John L.
2007-01-01
Single-mode surface-emitting distributed feedback terahertz quantumcascade lasers operating around 2.9 THz are developed in metal-metal waveguides. A combination of techniques including precise control of phase of reflection at the facets, and u e of metal on the sidewalls to eliminate higher-order lateral modes allow robust single-mode operation over a range of approximately 0.35 THz. Single-lobed far-field radiation pattern is obtained using a pi phase-shift in center of the second-order Bragg grating. A grating device operating at 2.93 THz lased up to 149 K in pulsed mode and a temperature tuning of 19 .7 GHz was observed from 5 K to 147 K. The same device lased up to 78 K in continuous-wave (cw) mode emitting more than 6 m W of cw power at 5 K. ln general, maximum temperature of pulsed operation for grating devices was within a few Kelvin of that of multi-mode Fabry-Perot ridge lasers
Atom-field dressed states in slow-light waveguide QED
NASA Astrophysics Data System (ADS)
Calajó, Giuseppe; Ciccarello, Francesco; Chang, Darrick; Rabl, Peter
2016-03-01
We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are currently being developed in the optical and microwave regimes.
Waveguides in Thin Film Polymeric Materials
NASA Technical Reports Server (NTRS)
Sakisov, Sergey; Abdeldayem, Hossin; Venkateswarlu, Putcha; Teague, Zedric
1996-01-01
Results on the fabrication of integrated optical components in polymeric materials using photo printing methods will be presented. Optical waveguides were fabricated by spin coating preoxidized silicon wafers with organic dye/polymer solution followed by soft baking. The waveguide modes were studied using prism coupling technique. Propagation losses were measured by collecting light scattered from the trace of a propagation mode by either scanning photodetector or CCD camera. We observed the formation of graded index waveguides in photosensitive polyimides after exposure of UV light from a mercury arc lamp. By using a theoretical model, an index profile was reconstructed which is in agreement with the profile reconstructed by the Wentzel-Kramers-Brillouin calculation technique using a modal spectrum of the waveguides. Proposed mechanism for the formation of the graded index includes photocrosslinking followed by UV curing accompanied with optical absorption increase. We also developed the prototype of a novel single-arm double-mode interferometric sensor based on our waveguides. It demonstrates high sensitivity to the chance of ambient temperature. The device can find possible applications in aeropropulsion control systems.
Waveguide structures in anisotropic nonlinear crystals
NASA Astrophysics Data System (ADS)
Li, Da; Hong, Pengda; Meissner, Helmuth E.
2017-02-01
We report on the design and manufacturing parameters of waveguiding structures of anisotropic nonlinear crystals that are employed for harmonic conversions, using Adhesive-Free Bonding (AFB®). This technology enables a full range of predetermined refractive index differences that are essential for the design of single mode or low-mode propagation with high efficiency in anisotropic nonlinear crystals which in turn results in compact frequency conversion systems. Examples of nonlinear optical waveguides include periodically bonded walk-off corrected nonlinear optical waveguides and periodically poled waveguide components, such as lithium triborate (LBO), beta barium borate (β-BBO), lithium niobate (LN), potassium titanyl phosphate (KTP), zinc germanium phosphide (ZGP) and silver selenogallate (AGSE). Simulation of planar LN waveguide shows that when the electric field vector E lies in the k-c plane, the power flow is directed precisely along the propagation direction, demonstrating waveguiding effect in the planar waveguide. Employment of anisotropic nonlinear optical waveguides, for example in combination with AFB® crystalline fiber waveguides (CFW), provides access to the design of a number of novel high power and high efficiency light sources spanning the range of wavelengths from deep ultraviolet (as short as 200 nm) to mid-infrared (as long as about 18 μm). To our knowledge, the technique is the only generally applicable one because most often there are no compatible cladding crystals available to nonlinear optical cores, especially not with an engineer-able refractive index difference and large mode area.
Facet-embedded thin-film III-V edge-emitting lasers integrated with SU-8 waveguides on silicon.
Palit, Sabarni; Kirch, Jeremy; Huang, Mengyuan; Mawst, Luke; Jokerst, Nan Marie
2010-10-15
A thin-film InGaAs/GaAs edge-emitting single-quantum-well laser has been integrated with a tapered multimode SU-8 waveguide onto an Si substrate. The SU-8 waveguide is passively aligned to the laser using mask-based photolithography, mimicking electrical interconnection in Si complementary metal-oxide semiconductor, and overlaps one facet of the thin-film laser for coupling power from the laser to the waveguide. Injected threshold current densities of 260A/cm(2) are measured with the reduced reflectivity of the embedded laser facet while improving single mode coupling efficiency, which is theoretically simulated to be 77%.
NASA Astrophysics Data System (ADS)
Kalinauskaite, Eimante; Murphy, Anthony; McAuley, Ian; Trappe, Neil A.; Bracken, Colm P.; McCarthy, Darragh N.; Doherty, Stephen; Gradziel, Marcin L.; O'Sullivan, Creidhe; Maffei, Bruno; Lamarre, Jean-Michel A.; Ade, Peter A. R.; Savini, Giorgio
2016-07-01
Multimode horn antennas can be utilized as high efficiency feeds for bolometric detectors, providing increased throughput and sensitivity over single mode feeds, while also ensuring good control of beam pattern characteristics. Multimode horns were employed in the highest frequency channels of the European Space Agency Planck Telescope, and have been proposed for future terahertz instrumentation, such as SAFARI for SPICA. The radiation pattern of a multimode horn is affected by the details of the coupling of the higher order waveguide modes to the bolometer making the modeling more complicated than in the case of a single mode system. A typical cavity coupled bolometer system can be most efficiently simulated using mode matching, typically with smooth walled waveguide modes as the basis and computing an overall scattering matrix for the horn-waveguide-cavity system that includes the power absorption by the absorber. In this paper we present how to include a cavity coupled bolometer, modelled as a thin absorbing film with particular interest in investigating the cavity configuration for optimizing power absorption. As an example, the possible improvements from offsetting the axis of a cylindrically symmetric absorbing cavity from that of a circular waveguide feeding it (thus trapping more power in the cavity) are discussed. Another issue is the effect on the optical efficiency of the detectors of the presence of any gaps, through which power can escape. To model these effects required that existing in-house mode matching software, which calculates the scattering matrices for axially symmetric waveguide structures, be extended to be able to handle offset junctions and free space gaps. As part of this process the complete software code 'PySCATTER' was developed in Python. The approach can be applied to proposed terahertz systems, such as SPICASAFARI.
Single mode, broad-waveguide ARROW-type semiconductor diode lasers
NASA Astrophysics Data System (ADS)
Al-Muhanna, Abdulrahman Ali
A broad transverse waveguide (low confinement) concept is used to achieve a record-high spatially incoherent cw output power of 11W for InGaAs active devices (λ = 0.97 μm) from 100μm wide-stripe and 2mm-long devices with low internal loss, α1 = 1cm-1, and high characteristic temperatures, T0 = 210K, and T1 = 1800K. A detailed above-threshold analysis reveals that reduction in gain spatial hole burning (GSHB) is possible in ARROW-type structures by using a low transverse confinement factor; consequently, a wider ARROW-core can be utilized. By incorporating both a broad-waveguide concept as well as an asymmetric structure in the transverse direction, and an ARROW-type structure in the lateral direction, a novel single-spatial mode diode laser with improved performance is obtained. Devices with low transverse confinement factor (Γ ~ 1%) and a core-region width of 7.8 μm achieved 510mW single-spatial mode pulsed output power (λ = 0.946 μm) with a full- width at half-maximum (FWHM) of the lateral far-field pattern of 4.7°.
Operation of Ho:YAG ultrafast laser inscribed waveguide lasers.
McDaniel, Sean; Thorburn, Fiona; Lancaster, Adam; Stites, Ronald; Cook, Gary; Kar, Ajoy
2017-04-20
We report fabrication and operation of multi-watt level waveguide lasers utilizing holmium-doped yttrium aluminum garnet (Ho:YAG). The waveguides were fabricated using ultrafast laser inscription, which relies on a chirped pulse ytterbium fiber laser to create depressed cladding structures inside the material. A variety of waveguides were created inside the Ho:YAG samples. We demonstrate output powers of ∼2 W from both a single-mode 50 μm waveguide laser and a multimode 80 μm waveguide laser. In addition, laser action from a co-doped Yb:Ho:YAG sample under in-band pumping conditions was demonstrated.
NASA Technical Reports Server (NTRS)
Ladany, I.; Hammer, J. M.
1980-01-01
A module developed for the generation of a stable single wavelength to be used for a fiber optic multiplexing scheme is described. The laser is driven with RZ pulses, and the temperature is stabilized thermoelectrically. The unit is capable of maintaining a fixed wavelength within about 6 A as the pulse duty cycle is changed between 0 and 100 percent. This is considered the most severe case, and much tighter tolerances are obtainable for constant input power coding schemes. Using a constricted double heterostructure laser, a wavelength shift of 0.083 A mA is obtained due to laser self-heating by a dc driving current. The thermoelectric unit is capable of maintaining a constant laser heat-sink temperature within 0.02 C. In addition, miniature lenses and couplers are described which allow efficient coupling of single wavelength modes of junction lasers to thin film optical waveguides. The design of the miniature cylinder lenses and the prism coupling techniques allow 2 mW of single wavelength mode junction laser light to b coupled into thin film waveguides using compact assemblies. Selective grating couplers are also studied.
Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode
NASA Astrophysics Data System (ADS)
Yuan, Sheng-Nan; Fang, Yun-Tuan
2017-10-01
In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA < 0.09a; only dielectric waveguide modes occur for rA > 0.25a; two kinds of modes coexist for 0.09a < rA < 0.25a. The plasmonic waveguide mode has advantages in achieving slow light.
Femtosecond laser inscribed cladding waveguide lasers in Nd:LiYF4 crystals
NASA Astrophysics Data System (ADS)
Li, Shi-Ling; Huang, Ze-Ping; Ye, Yong-Kai; Wang, Hai-Long
2018-06-01
Depressed circular cladding, buried waveguides were fabricated in Nd:LiYF4 crystals with an ultrafast Yb-doped fiber master-oscillator power amplifier laser. Waveguides were optimized by varying the laser writing conditions, such as pulse energy, focus depth, femtosecond laser polarization and scanning velocity. Under optical pump at 799 nm, cladding waveguides showed continuous-wave laser oscillation at 1047 nm. Single- and multi-transverse modes waveguide laser were realized by varying the waveguide diameter. The maximum output power in the 40 μm waveguide is ∼195 mW with a slope efficiency of 34.3%. The waveguide lasers with hexagonal and cubic cladding geometry were also realized.
Design and fabrication of N x N optical couplers based on organic polymer optical waveguides
NASA Astrophysics Data System (ADS)
Krchnavek, Robert R.; Rode, Daniel L.
1994-08-01
In this report, we examine the design and fabrication of a planar, 10x10 optical coupler utilizing photopolymerizable organic polymers. Background information on the theory of operation of the coupler culminating in a set of design equations is presented. The details of the material processing are described, including the preparation of monomer mixtures that result in single-mode polymer waveguides (lambda = 1300 nm) that have core dimensions approximately equal to those of single-mode fiber. This is necessary to insure high coupling efficiency between the planar device and optical fiber. A unique method of aligning and attaching optical fibers to the coupler is demonstrated. This method relies on patterned alignment ways, a transcision cut, and single-mode D-fiber. A theoretical analysis of the in situ monitoring technique used to fabricate the single-mode D-fiber is presented and compared favorably with the experimental results. Finally, the 10x10 coupler is characterized. We have measured an excess loss of approximately 8 dB.
Quantum light in novel systems
NASA Astrophysics Data System (ADS)
Rai, Amit
2011-12-01
In this thesis we have focused on the study of various systems which are presently widely studied in different areas of quantum optics and quantum information sciences. These, for example, include the coupled system of photonic waveguides which are known to be highly efficient in manipulating the flow of light. The Hamiltonian describing the evolution of field mode in coupled waveguides is effectively identical to the well-known tight binding Hamiltonian used in solid state physics. The advantage of waveguide system is the possibility to control various interactions by design and their low decoherence rate. The excellent stability offered by coupled waveguides has led to the observation of many key coherent effects such as quantum walk, Bloch oscillation, and discrete Talbot effect. For example, Bloch oscillations have been investigated in coupled waveguides using coherent beam of light. We wanted to inquire whether coherent phenomena such as Bloch oscillations can be possible with incoherent single photon sources. We discovered that Bloch oscillations are indeed possible with single photons provided we prepare single photons in a W state. Moreover, coupled waveguides also find applications in the field of quantum information processing. Since entanglement plays a prominent role in all these applications, it is important to understand the entanglement dynamics in these structures. We considered the case of squeezed input in one of the waveguide and showed that one can generate entanglement between the waveguide modes. We further continued our work on the entanglement generation in coupled waveguides by incorporating the effect of loss in the waveguide structure for the squeezed and photon number input states. We considered relevant experimental parameters and showed that waveguide structures are reasonably robust against the effect of loss. Another system which has attracted a great deal of interest is the optomechanical system. We consider an optomechanical system where an optical cavity mode is coupled to the square of the position of a mechanical oscillator. The optomechanical system can then be regarded as a quantum optical spring, i.e., a spring whose spring constant depends on the quantum state of another system. In particular, we consider the situation where the field inside the cavity is in a coherent state and the oscillator is prepared in its ground state. The quantized nature of the field produces new features in the optomechanical system.
Silicon Photonics: All-Optical Devices for Linear and Nonlinear Applications
NASA Astrophysics Data System (ADS)
Driscoll, Jeffrey B.
Silicon photonics has grown rapidly since the first Si electro-optic switch was demonstrated in 1987, and the field has never grown more quickly than it has over the past decade, fueled by milestone achievements in semiconductor processing technologies for low loss waveguides, high-speed Si modulators, Si lasers, Si detectors, and an enormous toolbox of passive and active integrated devices. Silicon photonics is now on the verge of major commercialization breakthroughs, and optical communication links remain the force driving integrated and Si photonics towards the first commercial telecom and datacom transceivers; however other potential and future applications are becoming uncovered and refined as researchers reveal the benefits of manipulating photons on the nanoscale. This thesis documents an exploration into the unique guided-wave and nonlinear properties of deeply-scaled high-index-contrast sub-wavelength Si waveguides. It is found that the tight confinement inherent to single-mode channel waveguides on the silicon-on-insulator platform lead to a rich physics, which can be leveraged for new devices extending well beyond simple passive interconnects and electro-optic devices. The following chapters will concentrate, in detail, on a number of unique physical features of Si waveguides and extend these attributes towards new and interesting devices. Linear optical properties and nonlinear optical properties are investigated, both of which are strongly affected by tight optical confinement of the guided waveguide modes. As will be shown, tight optical confinement directly results in strongly vectoral modal components, where the electric and magnetic fields of the guided modes extend into all spatial dimensions, even along the axis of propagation. In fact, the longitudinal electric and magnetic field components can be just as strong as the transverse fields, directly affecting the modal group velocity and energy transport properties since the longitudinal fields are shown to contribute no time-averaged momentum. Furthermore, the vectoral modal components, in conjunction with the tensoral nature of the third-order susceptibility of Si, lead to nonlinear properties which are dependent on waveguide orientation with respect to the Si parent crystal and the construction of the modal electric field components. This consideration is used to maximize effective nonlinearity and realize nonlinear Kerr gratings along specific waveguide trajectories. Tight optical confinement leads to a natural enhancement of the intrinsically large effective nonlinearty of Si waveguides, and in fact, the effective nonlinearty can be made to be almost 106 times greater in Si waveguides than that of standard single-mode fiber. Such a large nonlinearity motivates chip-scale all-optical signal processing techniques. Wavelength conversion by both four-wave-mixing (FWM) and cross-phase-modulation (XPM) will be discussed, including a technique that allows for enhanced broadband discrete FWM over arbitrary spectral spans by modulating both the linear and nonlinear waveguide properties through periodic changes in waveguide geometry. This quasi-phase-matching approach has very real applications towards connecting mature telecom sources detectors and components to other spectral regimes, including the mid-IR. Other signal processing techniques such as all-optical modulation format conversion via XPM will also be discussed. This thesis will conclude by looking at ways to extend the bandwidth capacity of Si waveguide interconnects on chip. As the number of processing cores continues to scale as a means for computational performance gains, on-chip link capacity will become an increasingly important issue. Metallic traces have severe limitations and are envisioned to eventually bow to integrated photonic links. The aggregate bandwidth supported by a single waveguide link will therefore become a crucial consideration as integrated photonics approaches the CPU. One way to increase aggregate bandwidth is to utilize different eigen-modes of a multimode waveguide, and integrated waveguide mode-muxes and demuxes for achieving simultaneous mode-division-multiplexing and wavelength-division-multiplexing will be demonstrated.
Two-mode division multiplexing in a silicon-on-insulator ring resonator.
Dorin, Bryce A; Ye, Winnie N
2014-02-24
Mode-division multiplexing (MDM) is an emerging multiple-input multiple-output method, utilizing multimode waveguides to increase channel numbers. In the past, silicon-on-insulator (SOI) devices have been primarily focused on single-mode waveguides. We present the design and fabrication of a two-mode SOI ring resonator for MDM systems. By optimizing the device parameters, we have ensured that each mode is treated equally within the ring. Using adiabatic Bezier curves in the ring bends, our ring demonstrated a signal-to-crosstalk ratio above 18 dB for both modes at the through and drop ports. We conclude that the ring resonator has the potential for filtering and switching for MDM systems on SOI.
Ultrafocused Electromagnetic Field Pulses with a Hollow Cylindrical Waveguide
NASA Astrophysics Data System (ADS)
Maurer, P.; Prat-Camps, J.; Cirac, J. I.; Hänsch, T. W.; Romero-Isart, O.
2017-07-01
We theoretically show that a dipole externally driven by a pulse with a lower-bounded temporal width, and placed inside a cylindrical hollow waveguide, can generate a train of arbitrarily short and focused electromagnetic pulses. The waveguide encloses vacuum with perfect electric conducting walls. A dipole driven by a single short pulse, which is properly engineered to exploit the linear spectral filtering of the cylindrical hollow waveguide, excites longitudinal waveguide modes that are coherently refocused at some particular instances of time, thereby producing arbitrarily short and focused electromagnetic pulses. We numerically show that such ultrafocused pulses persist outside the cylindrical waveguide at distances comparable to its radius.
Acoustic one-way mode conversion and transmission by sonic crystal waveguides
NASA Astrophysics Data System (ADS)
Ouyang, Shiliang; He, Hailong; He, Zhaojian; Deng, Ke; Zhao, Heping
2016-09-01
We proposed a scheme to achieve one-way acoustic propagation and even-odd mode switching in two mutually perpendicular sonic crystal waveguides connected by a resonant cavity. The even mode in the entrance waveguide is able to switch to the odd mode in the exit waveguide through a symmetry match between the cavity resonant modes and the waveguide modes. Conversely, the odd mode in the exit waveguide is unable to be converted into the even mode in the entrance waveguide as incident waves and eigenmodes are mismatched in their symmetries at the waveguide exit. This one-way mechanism can be applied to design an acoustic diode for acoustic integration devices and can be used as a convertor of the acoustic waveguide modes.
Organic-inorganic hybrid material SUNCONNECT® for photonic integrated circuit
NASA Astrophysics Data System (ADS)
Nawata, Hideyuki; Oshima, Juro; Kashino, Tsubasa
2018-02-01
In this paper, we report the feature and properties about organic-inorganic hybrid material, "SUNCONNECT®" for photonic integrated circuit. "SUNCONNECT®" materials have low propagation loss at 1310nm (0.29dB/cm) and 1550nm (0.45dB/cm) respectively. In addition, the material has high thermal resistance both high temperature annealing test at 300°C and also 260°C solder heat resistance test. For actual device application, high reliability is required. 85°C /85% test was examined by using multi-mode waveguide. As a result, it indicated that variation of insertion loss property was not changed significantly after high temperature / high humidity test. For the application to photonic integrated circuit, it was demonstrated to fabricate polymer optical waveguide by using three different methods. Single-micron core pattern can be fabricated on cladding layer by using UV lithography with proximity gap exposure. Also, single-mode waveguide can be also fabricated with over cladding. On the other hands, "Mosquito method" and imprint method can be applied to fabricate polymer optical waveguide. Remarkably, these two methods can fabricate gradedindex type optical waveguide without using photo mask. In order to evaluate the optical performance, NFP's observation, measurement of insertion loss and propagation loss by cut-back methods were carried out by using each waveguide sample.
On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source.
Tonndorf, Philipp; Del Pozo-Zamudio, Osvaldo; Gruhler, Nico; Kern, Johannes; Schmidt, Robert; Dmitriev, Alexander I; Bakhtinov, Anatoly P; Tartakovskii, Alexander I; Pernice, Wolfram; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf
2017-09-13
Fully integrated quantum technology based on photons is in the focus of current research, because of its immense potential concerning performance and scalability. Ideally, the single-photon sources, the processing units, and the photon detectors are all combined on a single chip. Impressive progress has been made for on-chip quantum circuits and on-chip single-photon detection. In contrast, nonclassical light is commonly coupled onto the photonic chip from the outside, because presently only few integrated single-photon sources exist. Here, we present waveguide-coupled single-photon emitters in the layered semiconductor gallium selenide as promising on-chip sources. GaSe crystals with a thickness below 100 nm are placed on Si 3 N 4 rib or slot waveguides, resulting in a modified mode structure efficient for light coupling. Using optical excitation from within the Si 3 N 4 waveguide, we find nonclassicality of generated photons routed on the photonic chip. Thus, our work provides an easy-to-implement and robust light source for integrated quantum technology.
Low loss hollow-core waveguide on a silicon substrate
NASA Astrophysics Data System (ADS)
Yang, Weijian; Ferrara, James; Grutter, Karen; Yeh, Anthony; Chase, Chris; Yue, Yang; Willner, Alan E.; Wu, Ming C.; Chang-Hasnain, Connie J.
2012-07-01
Optical-fiber-based, hollow-core waveguides (HCWs) have opened up many new applications in laser surgery, gas sensors, and non-linear optics. Chip-scale HCWs are desirable because they are compact, light-weight and can be integrated with other devices into systems-on-a-chip. However, their progress has been hindered by the lack of a low loss waveguide architecture. Here, a completely new waveguiding concept is demonstrated using two planar, parallel, silicon-on-insulator wafers with high-contrast subwavelength gratings to reflect light in-between. We report a record low optical loss of 0.37 dB/cm for a 9-μm waveguide, mode-matched to a single mode fiber. Two-dimensional light confinement is experimentally realized without sidewalls in the HCWs, which is promising for ultrafast sensing response with nearly instantaneous flow of gases or fluids. This unique waveguide geometry establishes an entirely new scheme for low-cost chip-scale sensor arrays and lab-on-a-chip applications.
Planar waveguide integrated spatial filter array
NASA Astrophysics Data System (ADS)
Ai, Jun; Dimov, Fedor; Lyon, Richard; Rakuljic, Neven; Griffo, Chris; Xia, Xiaowei; Arik, Engin
2013-09-01
An innovative integrated spatial filter array (iSFA) was developed for the nulling interferometer for the detection of earth-like planets and life beyond our solar system. The coherent iSFA comprised a 2D planar lightwave circuit (PLC) array coupled with a pair of 2D lenslet arrays in a hexagonal grid to achieve the optimum fill factor and throughput. The silica-on-silicon waveguide mode field diameter and numerical aperture (NA) were designed to match with the Airy disc and NA of the microlens for optimum coupling. The lenslet array was coated with a chromium pinhole array at the focal plane to pass the single-mode waveguide but attenuate the higher modes. We assembled a 32 by 30 array by stacking 32 chips that were produced by photolithography from a 6-in. silicon wafer. Each chip has 30 planar waveguides. The PLC array is inherently polarization-maintaining (PM) and requires much less alignment in contrast to a fiber array, where each PM fiber must be placed individually and oriented correctly. The PLC array offers better scalability than the fiber bundle array for large arrays of over 1,000 waveguides.
Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Grace, Karen M [Los Alamos, NM; Grace, Wynne K [Los Alamos, NM; Shreve, Andrew P [Santa Fe, NM
2009-06-02
An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.
Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Shively, John E [Arcadia, CA; Li, Lin [Monrovia, CA
2009-06-02
An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.
NASA Technical Reports Server (NTRS)
Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan; Krainak, Michael
2014-01-01
We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064 nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to 104 at 10 mHz. The PWECL's compactness and low cost make it a candidate to replace traditional Nd:YAG nonplanar ring oscillators and fiber lasers in applications that require a single longitudinal mode.
Patimisco, Pietro; Sampaolo, Angelo; Mihai, Laura; Giglio, Marilena; Kriesel, Jason; Sporea, Dan; Scamarcio, Gaetano; Tittel, Frank K; Spagnolo, Vincenzo
2016-04-13
We demonstrated low-loss and single-mode laser beam delivery through hollow-core waveguides (HCWs) operating in the 3.7-7.6 μm spectral range. The employed HCWs have a circular cross section with a bore diameter of 200 μm and metallic/dielectric internal coatings deposited inside a glass capillary tube. The internal coatings have been produced to enhance the spectral response of the HCWs in the range 3.5-12 µm. We demonstrated Gaussian-like outputs throughout the 4.5-7.6 µm spectral range. A quasi single-mode output beam with only small beam distortions was achieved when the wavelength was reduced to 3.7 μm. With a 15-cm-long HCW and optimized coupling conditions, we measured coupling efficiencies of >88% and transmission losses of <1 dB in the investigated infrared spectral range.
Lateral mode control in edge-emitting lasers with modified mirrors
NASA Astrophysics Data System (ADS)
Payusov, A.; Serin, A.; Mukhin, I.; Shernyakov, Y.; Zadiranov, Y.; Maximov, M.; Gordeev, N.
2017-11-01
We present a study on lateral mode control in edge-emitting lasers with profiled mirror reflectivity. The object was to eliminate high-order lateral modes in conventional ridge-waveguide InAs/InGaAs QD (quantum dot) lasers with the stripe width of 10 μm. We have used a FIB (focused ion beam) technique to selectively etch windows in the AR (anti-reflection) facet coatings in order to introduce extra mirror losses for the high order modes. This approach allowed us to eliminate the first-order mode lasing without deterioration of the laser parameters. We suppose that further optimisation of the laser heterostructure and window designs may lead to a pure lateral single-mode lasing in the broadened ridge waveguides.
NASA Astrophysics Data System (ADS)
Mirza, Imran M.; Schotland, John C.
2018-05-01
We study single photon transport in a one-dimensional disordered lattice of three-level atoms coupled to an optical waveguide. In particular, we study atoms of \\Lambda-type that are capable of exhibiting electromagnetically induced transparency (EIT) and separately consider disorder in the atomic positions and transition frequencies. We mainly address the question of how preferential emission into waveguide modes (chirality) can influence the formation of spatially localized states. Our work has relevance to experimental studies of cold atoms coupled to nanoscale waveguides and has possible applications to quantum communications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, E.; Floether, F. F.; Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE
Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using themore » on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.« less
NASA Astrophysics Data System (ADS)
Majumder, Saikat; Jha, Amit Kr.; Biswas, Aishik; Banerjee, Debasmita; Ganguly, Dipankar; Chakraborty, Rajib
2017-08-01
Horizontal spot size converter required for horizontal light coupling and vertical bridge structure required for vertical integration are designed on high index contrast SOI platform in order to form more compact integrated photonic circuits. Both the structures are based on the concept of multimode interference. The spot size converter can be realized by successive integration of multimode interference structures with reducing dimension on horizontal plane, whereas the optical bridge structure consists of a number of vertical multimode interference structure connected by single mode sections. The spot size converter can be modified to a spot profile converter when the final single mode waveguide is replaced by a slot waveguide. Analysis have shown that by using three multimode sections in a spot size converter, an Gaussian input having spot diameter of 2.51 μm can be converted to a spot diameter of 0.25 μm. If the output single mode section is replaced by a slot waveguide, this input profile can be converted to a flat top profile of width 50 nm. Similarly, vertical displacement of 8μm is possible by using a combination of two multimode sections and three single mode sections in the vertical bridge structure. The analyses of these two structures are carried out for both TE and TM modes at 1550 nm wavelength using the semi analytical matrix method which is simple and fast in computation time and memory. This work shows that the matrix method is equally applicable for analysis of horizontally as well as vertically integrated photonic circuit.
NASA Astrophysics Data System (ADS)
Atsumi, Yuki; Yoshida, Tomoya; Omoda, Emiko; Sakakibara, Youichi
2017-09-01
A surface optical coupler based on a vertically curved Si waveguide was designed for coupling with high-numerical aperture single-mode optical fibers with a mode-field diameter of 5 µm. This coupler has a quite small device size, with a height of approximately 12 µm, achieved by introducing an effective spot-size converter configured with the combination of an extremely short Si exponential-inverse taper and a dome-structured SiO2 lens formed on the coupler top. The designed coupler shows high-efficiency optical coupling, with a loss of 0.8 dB for TE polarized light, as well as broad-band coupling with a 0.5-dB-loss band of 420 nm.
NASA Astrophysics Data System (ADS)
Arutyunyan, Z. É.; Grudinin, A. B.; Gur'yanov, A. N.; Gusovskiĭ, D. D.; Dianov, Evgenii M.; Ignat'ev, S. V.; Smirnov, O. B.; Khrushchev, I. Yu
1990-01-01
An experimental investigation was made of the polarization characteristics of anisotropic fiber waveguides with an elliptic stress-inducing cladding, operating in a wide spectral range. The maximum birefringence amounted to 3.4 × 10 - 4, the minimum mode coupling parameter was 2.5 × 10 - 5 m - 1 (λ = 1.1 μm), and the minimum losses were 0.7 dB/km (λ = 1.5 μm). A qualitative comparison was made with the theoretical data.
Zhang, De-Long; Zhang, Pei; Zhou, Hao-Jiang; Pun, Edwin Yue-Bun
2008-10-01
We have demonstrated the possibility that near-stoichiometric Ti:LiNbO(3) strip waveguides are fabricated by carrying out vapor transport equilibration at 1060 degrees C for 12 h on a congruent LiNbO(3) substrate with photolithographically patterned 4-8 microm wide, 115 nm thick Ti strips. Optical characterizations show that these waveguides are single mode at 1.5 microm and show a waveguide loss of 1.3 dB/cm for TM mode and 1.1 dB/cm for TE mode. In the width/depth direction of the waveguide, the mode field follows the Gauss/Hermite-Gauss function. Secondary-ion-mass spectrometry (SIMS) was used to study Ti-concentration profiles in the depth direction and on the surface of the 6 microm wide waveguide. The result shows that the Ti profile follows a sum of two error functions along the width direction and a complementary error function in the depth direction. The surface Ti concentration, 1/e width and depth, and mean diffusivities along the width and depth directions of the guide are similar to 3.0 x 10(21) cm(-3), 3.8 microm, 2.6 microm, 0.30 and 0.14 microm(2)/h, respectively. Micro-Raman analysis was carried out on the waveguide endface to characterize the depth profile of Li composition in the guiding layer. The results show that the depth profile of Li composition also follows a complementary error function with a 1/e depth of 3.64 microm. The mean ([Li(Li)]+[Ti(Li)])/([Nb(Nb)]+[Ti(Nb)]) ratio in the waveguide layer is about 0.98. The inhomogeneous Li-composition profile results in a varied substrate index in the guiding layer. A two-dimensional refractive index profile model in the waveguide is proposed by taking into consideration the varied substrate index and assuming linearity between Ti-induced index change and Ti concentration. The net waveguide surface index increments at 1545 nm are 0.0114 and 0.0212 for ordinary and extraordinary rays, respectively. Based upon the constructed index model, the fundamental mode field profile was calculated using the beam propagation method, and the mode sizes and effective index versus the Ti-strip width were calculated for three lower TM and TE modes using the variational method. An agreement between theory and experiment is obtained.
Design of thin-film photonic crystal waveguides
NASA Astrophysics Data System (ADS)
Silvestre, E.; Pottage, J. M.; Russell, P. St. J.; Roberts, P. J.
2000-08-01
We present numerical designs for single-mode leak-free photonic crystal waveguides exhibiting strongly anisotropic spatial and temporal dispersion. These structures may be produced quite simply by drilling regular arrays of holes into thin films of high refractive index, and permit the realization of highly compact optical elements and wavelength division multiplexing devices.
Broadband infrared light emitting waveguides based on UV curable PbS quantum dot composites
NASA Astrophysics Data System (ADS)
Shen, Kai; Baig, Sarfaraz; Jiang, Guomin; Paik, Young-hun; Kim, Sung Jin; Wang, Michael R.
2018-02-01
We present herein the active PbS-photopolymer waveguide fabricated by vacuum assisted microfluidic (VAM) soft lithography technique. The PbS Quantum Dots (QDs) were synthesized using colloidal chemistry methods with tunable sizes and emission wavelengths, resulting in efficient light emission around 1000 nm center wavelength. The PbS QDs have demonstrated much better solubility in our newly synthesized UV curable polymer than SU-8 photoresist, verified by Photoluminescence (PL) testing. Through refractive index control, the PbS QDs-polymer core material and polymer cladding material can efficiently confine the infrared emitting light with a broad spectral bandwidth of 180 nm. Both single-mode and multi-mode light emitting waveguides have been realized.
Modal Filters for Infrared Interferometry
NASA Technical Reports Server (NTRS)
Ksendzov, Alexander; MacDonald, Daniel R.; Soibel, Alexander
2009-01-01
Modal filters in the approximately equal to 10-micrometer spectral range have been implemented as planar dielectric waveguides in infrared interferometric applications such as searching for Earth-like planets. When looking for a small, dim object ("Earth") in close proximity to a large, bright object ("Sun"), the interferometric technique uses beams from two telescopes combined with a 180 phase shift in order to cancel the light from a brighter object. The interferometer baseline can be adjusted so that, at the same time, the light from the dimmer object arrives at the combiner in phase. This light can be detected and its infrared (IR) optical spectra can be studied. The cancellation of light from the "Sun" to approximately equal to 10(exp 6) is required; this is not possible without special devices-modal filters- that equalize the wavefronts arriving from the two telescopes. Currently, modal filters in the approximately equal to 10-micrometer spectral range are implemented as single- mode fibers. Using semiconductor technology, single-mode waveguides for use as modal filters were fabricated. Two designs were implemented: one using an InGaAs waveguide layer matched to an InP substrate, and one using InAlAs matched to an InP substrate. Photon Design software was used to design the waveguides, with the main feature all designs being single-mode operation in the 10.5- to 17-micrometer spectral range. Preliminary results show that the filter's rejection ratio is 26 dB.
Waveguide image-slicers for ultrahigh resolution spectroscopy
NASA Astrophysics Data System (ADS)
Beckert, Erik; Strassmeier, Klaus G.; Woche, Manfred; Eberhardt, Ramona; Tünnermann, Andreas; Andersen, Michael
2008-07-01
Waveguide image-slicer prototypes with resolutions up to 310.000 for the fiber fed PEPSI echelle spectrograph at the LBT and single waveguide thicknesses of down to 30 μm have been manufactured. The waveguides were macroscopically prepared, stacked up to an order of 7 and thinned back to square stack cross sections. A high filling ratio was achieved by realizing homogenous adhesive gaps of 4.6 μm, using index matching adhesives for TIR within the waveguides. The image-slicer stacks can be used in immersion mode and are miniaturized to be implemented in a set of four, measurements indicate an overall efficiency of above 80% for them.
Competition and transformation of modes of unidirectional air waveguide
NASA Astrophysics Data System (ADS)
Sun, Yu-xin; Kong, Xiang-kun; Fang, Yun-tuan
2016-10-01
In order to study the mode excitation of the unidirectional air waveguide, we place a line source at different positions in the waveguide. The source position plays an important role in determining the result of the competition of the even mode and the odd mode. For the source at the edge of the waveguide, the odd mode gets advantage over the even mode. As a result, the odd mode is excited, but the even mode is suppressed. For the source at the center of the waveguide, the even mode is excited, but the odd mode is suppressed. With two sources at two edges of the waveguide, the even mode is released because the two odd modes are canceled.
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.
1995-01-01
To determine the feasibility of coupling the output of an optical fiber to a rib waveguide in a temperature environment ranging from 20 C to 300 C, a theoretical calculation of the coupling efficiency between the two was investigated. This is a significant problem which needs to be addressed to determine whether an integrated optic device can function in a harsh temperature environment. Because the behavior of the integrated-optic device is polarization sensitive, a polarization-preserving optic fiber, via its elliptical core, was used to couple light with a known polarization into the device. To couple light energy efficiently from an optical fiber into a channel waveguide, the design of both components should provide for well-matched electric field profiles. The rib waveguide analyzed was the light input channel of an integrated-optic pressure sensor. Due to the complex geometry of the rib waveguide, there is no analytical solution to the wave equation for the guided modes. Approximation or numerical techniques must be utilized to determine the propagation constants and field patterns of the guide. In this study, three solution methods were used to determine the field profiles of both the fiber and guide: the effective-index method (EIM), Marcatili's approximation, and a Fourier method. These methods were utilized independently to calculate the electric field profile of a rib channel waveguide and elliptical fiber at two temperatures, 20 C and 300 C. These temperatures were chosen to represent a nominal and a high temperature that the device would experience. Using the electric field profile calculated from each method, the theoretical coupling efficiency between the single-mode optical fiber and rib waveguide was calculated using the overlap integral and results of the techniques compared. Initially, perfect alignment was assumed and the coupling efficiency calculated. Then, the coupling efficiency calculation was repeated for a range of transverse offsets at both temperatures. Results of the calculation indicate a high coupling efficiency can be achieved when the two components were properly aligned. The coupling efficiency was more sensitive to alignment offsets in the y direction than the x, due to the elliptical modal profile of both components. Changes in the coupling efficiency over temperature were found to be minimal.
NASA Astrophysics Data System (ADS)
Mart, Cody W.
In this dissertation, high-power ytterbium-doped fiber amplifiers designed with advanced waveguide concepts are characterized and power scaled. Fiber waveguides utilizing cladding microstructures to achieve wave guidance via the photonic bandgap (PBG) effect and a combination of PBG and modified total internal reflection (MTIR) have been proposed as viable single-mode waveguides. Such novel structures allow larger core diameters (>35 ?m diameters) than conventional step-index fibers while still maintaining near-diffraction limited beam quality. These microstructured fibers are demonstrated as robust single-mode waveguides at low powers and are power scaled to realize the thermal power limits of the structure. Here above a certain power threshold, these coiled few-mode fibers have been shown to be limited by modal instability (MI); where energy is dynamically transferred between the fundamental mode and higher-order modes. Nonlinear effects such as stimulated Brillouin scattering (SBS) are also studied in these fiber waveguides as part of this dissertation. Suppressing SBS is critical towards achieving narrow optical bandwidths (linewidths) necessary for efficient fiber amplifier beam combining. Towards that end, new effects that favorably reduce acoustic wave dispersion to increase the SBS threshold are discovered and reported. The first advanced waveguide examined is a Yb-doped 50/400 mum diameter core/clad PBGF. The PBGF is power scaled with a single-frequency 1064 nm seed to an MI-limited 410 W with 79% optical-to-optical efficiency and near-diffraction limited beam quality (M-Squared < 1.25) before MI onset. To this author's knowledge, this represents 2.4x improvement in power output from a PBGF amplifier without consideration for linewidth and a 16x improvement in single-frequency power output from a PBGF amplifier. During power scaling of the PBGF, a remarkably low Brillouin response was elicited from the fiber even when the ultra large diameter 50 mum core is accounted for in the SBS threshold equation. Subsequent interrogation of the Brillouin response in a pump probe Brillouin gain spectrum diagnostic estimated a Brillouin gain coefficient, gB, of 0.62E-11 m/W; which is 4x reduced from standard silica-based fiber. A finite element numerical model that solves the inhomogenous Helmholtz equation that governs the acoustic and optical coupling in SBS is utilized to verify experimental results with an estimated gB = 0.68E-11 m/W. Consequently, a novel SBS-suppression mechanism based on inclusion of sub-optical wavelength acoustic features in the core is proposed. The second advanced waveguide analyzed is a 35/350 mum diameter core/clad fiber that achieved wave guidance via both PBG and MTIR, and is referred to as a hybrid fiber. The waveguide benefits mutually from the amenable properties of PBG and MTIR wave guidance because robust single-mode propagation with minimal confinement loss is assured due to MTIR effects, and the waveguide spectrally filters unwanted wavelengths via the PBG effect. The waveguide employs annular Yb-doped gain tailoring to reduce thermal effects and mitigate MI. Moreover, it is designed to suppress Raman processes for a 1064 nm signal by attenuating wavelengths > 1110 nm via the PBG effect. When seeded with a 1064 nm signal deterministically broadened to ˜1 GHz, the hybrid fiber was power scaled to a MI-limited 820 W with 78% optical-to-optical efficiency and near diffraction limited beam quality of M_Squared ˜1.2 before MI onset. This represents a 14x improvement in power output from a hybrid fiber, and demonstrates that this type of fiber amplifier is a quality candidate for further power scaling for beam combining.
NASA Technical Reports Server (NTRS)
Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan B.; Krainak, Michael A.
2014-01-01
We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064-nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Especially, using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to104 at 10 mHz. The PW-ECLs compactness and low cost make it a candidate to replace traditional Nd:YAGnon-planar ring oscillators and fiber lasers in applications which require a single longitudinal-mode.
A Comparison of Single-Molecule Emission in Aluminum and Gold Zero-Mode Waveguides
Martin, William Elliott; Srijanto, Bernadeta R.; Collier, C. Patrick; ...
2016-08-06
We characterized the effect of gold and aluminum zero-mode waveguides (ZMWs) on the brightness of immobilized single emitters by probing fluorophores that absorb in the green and red regions of the visible spectrum. Aluminum ZMWs enhance the emission of Atto565 fluorophores upon green excitation, but they do not enhance the emission of Atto647N fluorophores upon red excitation. Gold ZMWs increase emission of both fluorophores with Atto647N showing enhancement that is threefold higher than that observed for Atto565. Our work indicates that 200 nm gold ZMWs are better suited for single-molecule fluorescence studies in the red region of the visible spectrum,more » while aluminum appears more suited for the green region of the visible spectrum.« less
A Comparison of Single-Molecule Emission in Aluminum and Gold Zero-Mode Waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, William Elliott; Srijanto, Bernadeta R.; Collier, C. Patrick
We characterized the effect of gold and aluminum zero-mode waveguides (ZMWs) on the brightness of immobilized single emitters by probing fluorophores that absorb in the green and red regions of the visible spectrum. Aluminum ZMWs enhance the emission of Atto565 fluorophores upon green excitation, but they do not enhance the emission of Atto647N fluorophores upon red excitation. Gold ZMWs increase emission of both fluorophores with Atto647N showing enhancement that is threefold higher than that observed for Atto565. Our work indicates that 200 nm gold ZMWs are better suited for single-molecule fluorescence studies in the red region of the visible spectrum,more » while aluminum appears more suited for the green region of the visible spectrum.« less
Synthesis and Characterization of Germanium Dioxide - Dioxide Waveguides
NASA Astrophysics Data System (ADS)
Chen, Din-Guo
The increasing use of single mode fibers in local -area networks (LAN) and customer premises networks (CPN) will increase the need for passive optical components, such as branching devices, mixers, etc. Integrated optical devices are potentially ideal for these applications, provided that they can be made compatible with single mode fibers. The use of GeO_2 as the core dopant and SiO_2 as the substrate ensures that these waveguides will have virtually identical characteristics to single mode fibers. Additionally, glasses in the form of waveguides have recently been used to study various nonlinear optical phenomena, which provide great potential applications such as data storage and information processing. The present study has for the first time demonstrated the feasibility of employing both sol-gel multiple dip -coating and low pressure chemical vapor deposition (LPCVD) in the production of GeO_2-SiO _2 waveguiding films with various germania contents. The thin film characteristics were studied by various analytical techniques (e.g. ellipsometry, waveguiding Raman spectroscopy, FTIR, XPS, SEM/TEM, etc.). The composition dependence of the linear refractive index of GeO _2-SiO_2 films follows that predicted by the Lorenz-Lorenz model. Vibrational spectroscopy revealed the existence of Si-O-Ge linkages in GeO_2-SiO_2 glass network. The addition of GeO_2 in SiO_2 caused a decrease in the size of both the D1 and D2 defect bands in the SiO _2 Raman spectra. The structure of the LPCVD film appears to be dominated by D1 and D2 defect bands. Using a three-prism loss measurement technique, the propagation losses were found to be 3.31 dB/cm and 2.59dB/cm for sol-gel and LPCVD films, respectively. These losses are attributed to various scattering processes in the films. The mode indices of the waveguide were measured using a prism coupling technique. The measured mode indices were found to agree with the calculated value based upon a step-index profile assumption. The theoretical electromagnetic field distribution profiles for a step-index planar waveguide has been calculated and compared to the experimentally measured mode profiles using a near field technique. The nonlinear refractive indices of the sol-gel films (GeO_2-SiO_2 and GeO_2-TiO_2 ) were measured using a THG interferometry fringe technique. The relation between n_{ rm 2THG} and n_1 was found to follow that predicted by the empirical BGO model. An additive model was used to calculate the linear refractive indices, Abbe numbers, and n_1 dispersion curves of the films.
Numerical model of the polymer electro-optic waveguide
NASA Astrophysics Data System (ADS)
Fan, Guofang; Li, Yuan; Han, Bing; Wang, Qi; Liu, Xinhou; Zhen, Zhen
2012-09-01
A numerical design model is presented for the polymer waveguide in an electro-optic modulator. The effective index method is used to analyze the height of the core waveguide and rib waveguide, an improved Marcatili method is presented to design the rib waveguide width in order to keep the strong single mode operation and have a good match with the standard fiber. Also, the thickness of the upper cladding layer is discussed through calculating the effective index of the multilayer planar waveguide structure has been obtained by setting the optical loss due to the metallic absorption to an acceptable value (<0.1 dB/cm). As a consequence, we take the EO polymer waveguide structure of UV15:CLD/APC:UFC170 as an example, an optimized design is reported.
Multi Reflection of Lamb Wave Emission in an Acoustic Waveguide Sensor
Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael
2013-01-01
Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid—liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner. PMID:23447010
Multi reflection of Lamb wave emission in an acoustic waveguide sensor.
Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael
2013-02-27
Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid-liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.
Integrated optical components in thin films of polymers
NASA Technical Reports Server (NTRS)
Sarkisov, Sergey; Abdeldayem, Hossin; Venkateswarlu, Putcha; Teague, Zedric
1995-01-01
The results will be reported on the study of integrated optical components based on nonlinear optical polymeric films. Polymers poly(methyl methacrylate) (PMMA) and polyimide (PI) doped with organic laser dyes 4-dicyanomethylene-2-methyl-6-p dimethylaminostyryl-4H pyran (DCM) and 1, 3, 5, 7, 8 - pentamethyl-2,6 -diethyl-pyrromethene -BF2-complex (Pyrommethene 567, PM-567) were selected as materials for light guiding films. Additionally, UV polymerized polydiacetylene (PDA) on glass substrate was used as a waveguide material. Optical waveguides were fabricated using spin coating of preoxidized silicon wafers (1.5 micrometer silicon oxide layer) with organic dye/polymer solution followed by soft baking. the modes in slab waveguides were studied using prism coupling techniques. Measured values of mode coupling angles in multimode waveguides were used to calculate film thickness and refractive index for different polarizations. Refractive index anisotropy was found in PDA waveguide. The optimal conditions of spin coating for single mode waveguide fabrication were estimated. Propagation losses were measured by collecting the light scattered from the trace of a propagating mode either by scanning photo detector or by CCD camera. Different types of light coupling techniques were used including end-dire coupling, prism and grating coupling. Mechanical printing technique was developed for coupling grating fabrication resulting in gratings with 4% diffraction efficiency. The gratings demonstrated good stability with diffraction efficiency relaxation rate 2.4 dB/hour at a temperature approximately 15-20 C below glass transition point. Dye doped waveguides were transversally pumped with frequency doubled Nd:YAG Q-switched laser producing intensive light emission with apparent 6 kW/sq cm pump threshold and spectrum narrowing near 617 nm peak in the case of DCM doped waveguide. PM-567 doped waveguide pumped with CW Ar(+) laser (514 nm wavelength) far below threshold (0.1 W/sq.cm pump power) demonstrated emission spectrum narrowing near 616 nm peak with 18% power conversion slope efficiency. In this case emission spectrum modification was caused by the enhanced light absorption along the direction of propagating waveguide modes. Changing length, thickness, and other morphlogical waveguide parameters one can modify emission spectrum in predictable direction. The results show that polymeric waveguides, especially based on high temperature polymers such as Pl, can be used to produce a varietiy of active and passive silicon compatible integrated optical components for aerospace applications.
Photosensitivity study of GeS2 chalcogenide glass under femtosecond laser pulses irradiation
NASA Astrophysics Data System (ADS)
Ayiriveetil, Arunbabu; Sabapathy, Tamilarasan; Kar, Ajoy K.; Asokan, Sundarrajan
2015-07-01
The present study discusses the photosensitivity of GeS2 chalcogenide glass in response to irradiation with femtosecond pulses at 1047 nm. Bulk GeS2 glasses are prepared by conventional melt quenching technique and the amorphous nature of the glass is confirmed using X-ray diffraction. Ultrafast laser inscription technique is used to fabricate the straight channel waveguides in the glass. Single scan and multi scan waveguides are inscribed in GeS2 glasses of length 0.65 cm using a master oscillator power amplifier Yb doped fiber laser (IMRA μjewel D400) with different pulse energy and translation speed. Diameters of the inscribed waveguides are measured and its dependence on the inscription parameters such as translation speed and pulse energy is studied. Butt coupling method is used to characterize the loss measurement of the inscribed optical waveguides. The mode field image of the waveguides is captured using CCD camera and compared with the mode field image of a standard SMF-28 fibers.
Waveguides with Absorbing Boundaries: Nonlinearity Controlled by an Exceptional Point and Solitons
NASA Astrophysics Data System (ADS)
Midya, Bikashkali; Konotop, Vladimir V.
2017-07-01
We reveal the existence of continuous families of guided single-mode solitons in planar waveguides with weakly nonlinear active core and absorbing boundaries. Stable propagation of TE and TM-polarized solitons is accompanied by attenuation of all other modes, i.e., the waveguide features properties of conservative and dissipative systems. If the linear spectrum of the waveguide possesses exceptional points, which occurs in the case of TM polarization, an originally focusing (defocusing) material nonlinearity may become effectively defocusing (focusing). This occurs due to the geometric phase of the carried eigenmode when the surface impedance encircles the exceptional point. In its turn, the change of the effective nonlinearity ensures the existence of dark (bright) solitons in spite of focusing (defocusing) Kerr nonlinearity of the core. The existence of an exceptional point can also result in anomalous enhancement of the effective nonlinearity. In terms of practical applications, the nonlinearity of the reported waveguide can be manipulated by controlling the properties of the absorbing cladding.
Integrated optical refractometer based on bend waveguide with air trench structure
NASA Astrophysics Data System (ADS)
Ryu, Jin Hwa; Park, Jaehoon; Kang, Chan-mo; Son, Youngdal; Do, Lee-Mi; Baek, Kyu-Ha
2015-07-01
This study proposed a novel optical sensor based on a refractometer integrating a bend waveguide and a trench structure. The optical sensor is a planar lightwave circuit (PLC) device involving a bend waveguide with maximum optical loss. A trench structure was aligned with the partially exposed core layer's sidewall of the bend waveguide, providing a quantitative measurement condition. The insertion losses of the proposed 1 x 2 single-mode optical splitter-type sensor were 4.38 dB and 8.67 dB for the reference waveguide and sensing waveguide, respectively, at a wavelength of 1,550 nm. The optical loss of the sensing waveguide depends on the change in the refractive index of the material in contact with the trench, but the reference waveguide had stable optical propagating characteristic regardless of the variations of the refractive index.
Single transverse mode protein laser
NASA Astrophysics Data System (ADS)
Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat
2017-12-01
Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.
Optical interconnects based on VCSELs and low-loss silicon photonics
NASA Astrophysics Data System (ADS)
Aalto, Timo; Harjanne, Mikko; Karppinen, Mikko; Cherchi, Matteo; Sitomaniemi, Aila; Ollila, Jyrki; Malacarne, Antonio; Neumeyr, Christian
2018-02-01
Silicon photonics with micron-scale Si waveguides offers most of the benefits of submicron SOI technology while avoiding most of its limitations. In particular, thick silicon-on-insulator (SOI) waveguides offer 0.1 dB/cm propagation loss, polarization independency, broadband single-mode (SM) operation from 1.2 to >4 µm wavelength and ability to transmit high optical powers (>1 W). Here we describe the feasibility of Thick-SOI technology for advanced optical interconnects. With 12 μm SOI waveguides we demonstrate efficient coupling between standard single-mode fibers, vertical-cavity surface-emitting lasers (VCSELs) and photodetectors (PDs), as well as wavelength multiplexing in small footprint. Discrete VCSELs and PDs already support 28 Gb/s on-off keying (OOK), which shows a path towards 50-100 Gb/s bandwidth per wavelength by using more advanced modulation formats like PAM4. Directly modulated VCSELs enable very power-efficient optical interconnects for up to 40 km distance. Furthermore, with 3 μm SOI waveguides we demonstrate extremely dense and low-loss integration of numerous optical functions, such as multiplexers, filters, switches and delay lines. Also polarization independent and athermal operation is demonstrated. The latter is achieved by using short polymer waveguides to compensate for the thermo-optic effect in silicon. New concepts for isolator integration and polarization rotation are also explained.
NASA Astrophysics Data System (ADS)
Covey, John; Chen, Ray T.
2014-03-01
Grating couplers are ideal for coupling into the tightly confined propagation modes of semiconductor waveguides. In addition, nonlinear optics has benefited from the sub-diffraction limit confinement of horizontal slot waveguides. By combining these two advancements, slot-based nonlinear optics with mode areas less than 0.02 μm2 can become as routine as twisting fiber connectors together. Surface normal fiber alignment to a chip is also highly desirable from time, cost, and manufacturing considerations. To meet these considerable design challenges, a custom genetic algorithm is created which, starting from purely random designs, creates a unique four stage grating coupler for two novel horizontal slot waveguide platforms. For horizontal multiple-slot waveguides filled with silicon nanocrystal, a theoretical fiber-towaveguide coupling efficiency of 68% is obtained. For thin silicon waveguides clad with optically active silicon nanocrystal, known as cover-slot waveguides, a theoretical fiber-to-waveguide coupling efficiency of 47% is obtained, and 1 dB and 3 dB theoretical bandwidths of 70 nm and 150 nm are obtained, respectively. Both waveguide platforms are fabricated from scratch, and their respective on-chip grating couplers are experimentally measured from a standard single mode fiber array that is mounted surface normally. The horizontal multiple-slot grating coupler achieved an experimental 60% coupling efficiency, and the horizontal cover-slot grating coupler achieved an experimental 38.7% coupling efficiency, with an extrapolated 1 dB bandwidth of 66 nm. This report demonstrates the promise of genetic algorithm-based design by reducing to practice the first large bandwidth vertical grating coupler to a novel silicon nanocrystal horizontal cover-slot waveguide.
Dry-film polymer waveguide for silicon photonics chip packaging.
Hsu, Hsiang-Han; Nakagawa, Shigeru
2014-09-22
Polymer waveguide made by dry film process is demonstrated for silicon photonics chip packaging. With 8 μm × 11.5 μm core waveguide, little penalty is observed up to 25 Gbps before or after the light propagate through a 10-km long single-mode fiber (SMF). Coupling loss to SMF is 0.24 dB and 1.31 dB at the polymer waveguide input and output ends, respectively. Alignment tolerance for 0.5 dB loss increase is +/- 1.0 μm along both vertical and horizontal directions for the coupling from the polymer waveguide to SMF. The dry-film polymer waveguide demonstrates promising performance for silicon photonics chip packaging used in next generation optical multi-chip module.
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.; Beheim, Glenn
1995-01-01
The effective-index method and Marcatili's technique were utilized independently to calculate the electric field profile of a rib channel waveguide. Using the electric field profile calculated from each method, the theoretical coupling efficiency between a single-mode optical fiber and a rib waveguide was calculated using the overlap integral. Perfect alignment was assumed and the coupling efficiency calculated. The coupling efficiency calculation was then repeated for a range of transverse offsets.
2007-11-01
waveguide approach in which a right-angled gadolinium gallium garnet (GGG) glass prism of index 1.965 at 633 nm is used to couple light from a HeNe laser of...SPARROW sensor consists of two planar, single mode aluminum oxide waveguides separated vertically by a lower refractive index silicon dioxide layer...and high stability could be formed on aluminum oxide, the binding of an alkyl carboxylic acid, stearic acid (n-octadecanoic acid), was investigated
Comparison of Two Acoustic Waveguide Methods for Determining Liner Impedance
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Watson, Willie R.; Tracy, Maureen B.; Parrott, Tony L.
2001-01-01
Acoustic measurements taken in a flow impedance tube are used to assess the relative accuracy of two waveguide methods for impedance eduction in the presence of grazing flow. The aeroacoustic environment is assumed to contain forward and backward-traveling acoustic waves, consisting of multiple modes, and uniform mean flow. Both methods require a measurement of the complex acoustic pressure profile over the length of the test liner. The Single Mode Method assumes that the sound pressure level and phase decay-rates of a single progressive mode can be extracted from this measured complex acoustic pressure profile. No a priori assumptions are made in the Finite Element. Method regarding the modal or reflection content in the measured acoustic pressure profile. The integrity of each method is initially demonstrated by how well their no-flow impedances match those acquired in a normal incidence impedance tube. These tests were conducted using ceramic tubular and conventional perforate liners. Ceramic tubular liners were included because of their impedance insensitivity to mean flow effects. Conversely, the conventional perforate liner was included because its impedance is known to be sensitive to mean flow velocity effects. Excellent comparisons between impedance values educed with the two waveguide methods in the absence of mean flow and the corresponding values educed with the normal incident impedance tube were observed. The two methods are then compared for mean flow Mach numbers up to 0.5, and are shown to give consistent results for both types of test liners. The quality of the results indicates that the Single Mode Method should be used when the measured acoustic pressure profile is clearly dominated by a single progressive mode, and the Finite Element Method should be used for all other cases.
Compact waveguide circular polarizer
Tantawi, Sami G.
2016-08-16
A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.
Multi-resolution waveguide image slicer for the PEPSI instrument
NASA Astrophysics Data System (ADS)
Beckert, Erik; Strassmeier, Klaus G.; Woche, Manfred; Harnisch, Gerd; Hornaff, Marcel; Weber, Michael; Barnes, Stuart
2016-07-01
A waveguide image slicer with resolutions up to 270.000 (planned: 300.000) for the fiber fed PEPSI echelle spectrograph at the LBT and single waveguide thicknesses of down to 70 μm has been manufactured and tested. The waveguides were macroscopically prepared, stacked up to an order of seven and thinned back to square stack cross sections. A high filling ratio was achieved by realizing homogenous adhesive gaps of 3.6 μm, using index matching adhesives for TIR within the waveguides. The image slicer stacks are used in immersion mode and are miniaturized to enable implementation in a set of 2x8. The overall efficiency is between 92 % and 96 %.
Saturable nonlinear dielectric waveguide with applications to broad-area semiconductor lasers.
Mehuys, D; Mittelstein, M; Salzman, J; Yariv, A
1987-11-01
Self-focusing in a passive dielectric waveguide with a saturable nonlinearity is studied. The eigensolutions constitute a good approximation to the lateral modes of broad-area semiconductor lasers under low-duty-cycle pulsed conditions. The laser modes are predicted to consist of adjacent filaments coupled in phase, leading to a single-lobed far field, and to be stable with increased current injection above saturation intensity. The ultimate filament spacing is inversely proportional to the threshold gain, and thus wider filaments are expected in low-threshold broad-area lasers.
Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons
NASA Astrophysics Data System (ADS)
Xu, Jun Jun; Yin, Jia Yuan; Zhang, Hao Chi; Cui, Tie Jun
2016-03-01
We propose a splitter feeding network for array radiations of spoof surface plasmon polaritons (SPPs), which are guided by ultrathin corrugated metallic strips. Based on the coupled mode theory, SPP fields along a single waveguide in a certain frequency range can be readily coupled into two adjacent branch waveguides with the same propagation constants. We propose to load U-shaped particles anti-symmetrically at the ends of such two branch waveguides, showing a high integration degree of the feeding network. By controlling linear phase modulations produced by the U-shaped particle chain, we demonstrate theoretically and experimentally that the SPP fields based on bound modes can be efficiently radiated to far fields in broadside direction. The proposed method shows that the symmetry of electromagnetic field modes can be exploited to the SPP transmission network, providing potential solutions to compact power dividers and combiners for microwave and optical devices and systems.
Coupler for coupling gyrotron whispering gallery mode RF into HE11 waveguide
Neilson, Jeffrey M
2015-02-24
A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second mode converting reflector is substantially circular.
Waveguide-mode polarization gaps in square spiral photonic crystals
NASA Astrophysics Data System (ADS)
Liu, Rong-Juan; John, Sajeev; Li, Zhi-Yuan
2015-09-01
We designed waveguide channels in two types of square spiral photonic crystals. Wide polarization gaps, in which only one circular polarization wave is allowed while the other counter-direction circular polarization wave is forbidden, can be opened up on the waveguide modes within the fundamental photonic band gap according to the calculation of band structures and transmission spectra. This phenomenon is ascribed to the chirality of the waveguide and is independent of the chirality of the background photonic crystal. Moreover, the transmission spectra show a good one-way property of the waveguide channels. The chiral quality factor demonstrates the handedness of the allowed and impeded chiral waveguide modes, and further proved the property of the waveguide-mode polarization gap. Such waveguides with waveguide-mode polarization gap are a good candidate for one-way waveguides with robust backscattering-immune transport.
Patimisco, Pietro; Sampaolo, Angelo; Mihai, Laura; Giglio, Marilena; Kriesel, Jason; Sporea, Dan; Scamarcio, Gaetano; Tittel, Frank K.; Spagnolo, Vincenzo
2016-01-01
We demonstrated low-loss and single-mode laser beam delivery through hollow-core waveguides (HCWs) operating in the 3.7–7.6 μm spectral range. The employed HCWs have a circular cross section with a bore diameter of 200 μm and metallic/dielectric internal coatings deposited inside a glass capillary tube. The internal coatings have been produced to enhance the spectral response of the HCWs in the range 3.5–12 µm. We demonstrated Gaussian-like outputs throughout the 4.5–7.6 µm spectral range. A quasi single-mode output beam with only small beam distortions was achieved when the wavelength was reduced to 3.7 μm. With a 15-cm-long HCW and optimized coupling conditions, we measured coupling efficiencies of >88% and transmission losses of <1 dB in the investigated infrared spectral range. PMID:27089343
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miah, M. J., E-mail: jarez.miah@tu-berlin.de; Posilovic, K.; Kalosha, V. P.
2014-10-13
High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060 nm range are investigated. Ridge waveguide (RW) lasers with 9 μm stripe width and 2.64 mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060 nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9° in lateral and 14° (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup −2}sr{supmore » −1} is obtained. 100 μm wide and 3 mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.« less
Microstructured optical fibers for terahertz waveguiding regime by using an analytical field model
NASA Astrophysics Data System (ADS)
Sharma, Dinesh Kumar; Sharma, Anurag; Tripathi, Saurabh Mani
2017-12-01
Microstructured optical fibres (MOFs) are seen as novel optical waveguide for the potential applications in the terahertz (THz) band as they provide a flexible route towards THz waveguiding. Using the analytical field model (Sharma et al., 2014) developed for index-guiding MOFs with hexagonal lattice of circular air-holes in the photonic crystal cladding; we aim to study the propagation characteristics such as effective index, near and the far-field radiation patterns and its evolution from near-to-far-field domain, spot size, effective mode area, and the numerical aperture at the THz regime. Further, we present an analytical field expression for the next higher-order mode of the MOF for studying the modal properties at terahertz frequencies. Also, we investigate the mode cut-off conditions for identifying the single-mode operation range at THz frequencies. Emphasis is put on studying the coupling characteristics of MOF geometries for efficient mode coupling. Comparisons with available experimental and numerical simulation results, e.g., those based on the full-vector finite element method (FEM) and the finite-difference frequency-domain (FDFD) method have been included.
On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom
Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can
2016-01-01
In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process. PMID:27321821
On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom.
Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can
2016-06-20
In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process.
Coupling of individual quantum emitters to channel plasmons.
Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J; Bozhevolnyi, Sergey I; Quidant, Romain
2015-08-07
Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.
NASA Astrophysics Data System (ADS)
Rai, Buddhi; McGurn, Arthur R.
2015-02-01
Photonic crystal and split ring resonator (SRR) metamaterial waveguides with Kerr nonlinear dielectric impurities are studied. The transmission coefficients for two guided modes of different frequencies scattering from the Kerr impurities are computed. The systems are shown to exhibit multiple transmission coefficient solutions arising from the Kerr nonlinearity. Multiple transmission coefficients occur when different input intensities into a waveguide result in the same transmitted output intensities past its nonlinear impurities. (In the case of a single incident guided mode the multiplicity of transmission coefficients is known as optical bistability.) The analytical conditions under which the transmission coefficients are single and multiple valued are determined, and specific examples of both single and multiple valued transmission coefficient scattering are presented. Both photonic crystal and split ring resonator systems are studied as the Kerr nonlinearity enters the photonic crystal and SRR systems in different ways. This allows for an interesting comparison of the differences in behaviors of these two types of system which are described by distinctly different mathematical structures. Both the photonic crystal and SRR models used in the calculations are based on a difference equation approach to the system dynamics. The difference equation approach has been extensively employed in previous papers to model the basic properties of these systems. The paper is a continuation of work on the optical bistability of single guided modes interacting with Kerr impurities in photonic crystals originally considered by McGurn [Chaos 13, 754 (2003), 10.1063/1.1568691] and work on the resonant scattering from Kerr impurities in photonic crystal waveguides considered by McGurn [J. Phys.: Condens. Matter 16, S5243 (2004), 10.1088/0953-8984/16/44/021]. It generalizes this work making the extension to the more complex interaction of two guided modes at different frequencies. It extends the two guided mode treatment by McGurn [Organ. Electron. 8, 227 (2007), 10.1016/j.orgel.2006.06.008] which was limited to a special case of one of the photonic crystal systems considered here.
Integrated nanoplasmonic quantum interfaces for room-temperature single-photon sources
NASA Astrophysics Data System (ADS)
Peyskens, Frédéric; Englund, Dirk; Chang, Darrick
2017-12-01
We describe a general analytical framework of a nanoplasmonic cavity-emitter system interacting with a dielectric photonic waveguide. Taking into account emitter quenching and dephasing, our model directly reveals the single-photon extraction efficiency η as well as the indistinguishability I of photons coupled into the waveguide mode. Rather than minimizing the cavity modal volume, our analysis predicts an optimum modal volume to maximize η that balances waveguide coupling and spontaneous emission rate enhancement. Surprisingly, our model predicts that near-unity indistinguishability is possible, but this requires a much smaller modal volume, implying a fundamental performance trade-off between high η and I at room temperature. Finally, we show that maximizing η I requires that the system has to be driven in the weak coupling regime because quenching effects and decreased waveguide coupling drastically reduce η in the strong coupling regime.
Himei, Yusuke; Qiu, Jianrong; Nakajima, Sotohiro; Sakamoto, Akihiko; Hirao, Kazuyuki
2004-12-01
Novel optical attenuation fibers were fabricated by the irradiation of a focused infrared femtosecond pulsed laser onto the core of a silica glass single-mode optical fiber. Optical attenuation at a wavelength of 1.55 microm proportionally increased with increasing numbers of irradiation points and was controllable under laser irradiation conditions. The single-mode property of the waveguide and the mode-field diameter of the optical fiber were maintained after irradiation of the femtosecond laser. It is suggested that the attenuation results from optical scattering at photoinduced spots formed inside the fiber core.
Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides.
Papes, Martin; Cheben, Pavel; Benedikovic, Daniel; Schmid, Jens H; Pond, James; Halir, Robert; Ortega-Moñux, Alejandro; Wangüemert-Pérez, Gonzalo; Ye, Winnie N; Xu, Dan-Xia; Janz, Siegfried; Dado, Milan; Vašinek, Vladimír
2016-03-07
Fiber-chip edge couplers are extensively used in integrated optics for coupling of light between planar waveguide circuits and optical fibers. In this work, we report on a new fiber-chip edge coupler concept with large mode size for silicon photonic wire waveguides. The coupler allows direct coupling with conventional cleaved optical fibers with large mode size while circumventing the need for lensed fibers. The coupler is designed for 220 nm silicon-on-insulator (SOI) platform. It exhibits an overall coupling efficiency exceeding 90%, as independently confirmed by 3D Finite-Difference Time-Domain (FDTD) and fully vectorial 3D Eigenmode Expansion (EME) calculations. We present two specific coupler designs, namely for a high numerical aperture single mode optical fiber with 6 µm mode field diameter (MFD) and a standard SMF-28 fiber with 10.4 µm MFD. An important advantage of our coupler concept is the ability to expand the mode at the chip edge without leading to high substrate leakage losses through buried oxide (BOX), which in our design is set to 3 µm. This remarkable feature is achieved by implementing in the SiO 2 upper cladding thin high-index Si 3 N 4 layers. The Si 3 N 4 layers increase the effective refractive index of the upper cladding near the facet. The index is controlled along the taper by subwavelength refractive index engineering to facilitate adiabatic mode transformation to the silicon wire waveguide while the Si-wire waveguide is inversely tapered along the coupler. The mode overlap optimization at the chip facet is carried out with a full vectorial mode solver. The mode transformation along the coupler is studied using 3D-FDTD simulations and with fully-vectorial 3D-EME calculations. The couplers are optimized for operating with transverse electric (TE) polarization and the operating wavelength is centered at 1.55 µm.
Single-photon non-linear optics with a quantum dot in a waveguide
NASA Astrophysics Data System (ADS)
Javadi, A.; Söllner, I.; Arcari, M.; Hansen, S. Lindskov; Midolo, L.; Mahmoodian, S.; Kiršanskė, G.; Pregnolato, T.; Lee, E. H.; Song, J. D.; Stobbe, S.; Lodahl, P.
2015-10-01
Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.
Nguyen, Huu-Dat; Ródenas, Airán; Vázquez de Aldana, Javier R; Martín, Guillermo; Martínez, Javier; Aguiló, Magdalena; Pujol, Maria Cinta; Díaz, Francesc
2017-02-20
We report mid-infrared LiNbO3 depressed-index microstructured cladding waveguides fabricated by three-dimensional laser writing showing low propagation losses (~1.5 dB/cm) at 3.68 µm wavelength for both the transverse electric and magnetic polarized modes, a feature previously unachieved due to the strong anisotropic properties of this type of laser microstructured waveguides and which is of fundamental importance for many photonic applications. Using a heuristic modeling-testing iteration design approach which takes into account cladding induced stress-optic index changes, the fabricated cladding microstructure provides low-loss single mode operation for the mid-IR for both orthogonal polarizations. The dependence of the localized refractive index changes within the cladding microstructure with post-fabrication thermal annealing processes was also investigated, revealing its complex dependence of the laser induced refractive index changes on laser fabrication conditions and thermal post-processing steps. The waveguide modes properties and their dependence on thermal post-processing were numerically modeled and fitted to the experimental values by systematically varying three fundamental parameters of this type of waveguides: depressed refractive index values at sub-micron laser-written tracks, track size changes, and piezo-optic induced refractive index changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilson, Jeffrey M.
A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second modemore » converting reflector is substantially circular.« less
NASA Astrophysics Data System (ADS)
Bogatov, Alexandr P.; Eliseev, P. G.; Luk'yanov, S. A.; Pak, G. T.; Petrakova, T. V.
1988-11-01
A nonmonotonic dependence of the emission line width on the power was observed for a single longitudinal mode of an AlGaAs heterojunction laser. This behavior could be due to the dependence of the waveguide coefficient of the amplitude-phase coupling on the nature of operation of the laser.
Polarization preserving single mode fiber optic coupler
NASA Technical Reports Server (NTRS)
Nelson, M. D.; Goss, W. C.
1982-01-01
A technique is described for fabrication of etched single mode fiber optical waveguide couplers which preserve the polarization state to within 0.0001. The coupling ratio is tunable over a broad range (0-9 percent) during fabrication. Back-coupling is less than 0.001, insertion loss is less than 1.5 dB, and coupling ratio thermal coefficient is about 1 percent per degree C.
NASA Astrophysics Data System (ADS)
Shmal'ko, A. V.; Gordova, M. R.; Lamekin, V. F.; Nikolaev, I. V.; Sakharov, V. V.; Smirnov, V. L.; Polyantsev, A. S.
1990-01-01
A method for selection and calculation of the parameters of axisymmetric and anamorphic graded-index lenses for optical matching devices is developed and tested. These devices are intended for detachable connectors joining single-mode fibers to strip optical waveguides and are characterized by a greater tolerance to a mismatch between these waveguides. An experimental study is reported of a prototype of an optical matching device based on graded-index lenses characterized by insertion losses from 1-3 dB.
Vawter, G. Allen; Hadley, G. Ronald
1997-01-01
An integrated optical XY coupler having two converging input waveguide arms meeting in a central section and a central output waveguide arm and two diverging flanking output waveguide arms emanating from the central section. In-phase light from the input arms constructively interfers in the central section to produce a single mode output in the central output arm with the rest of the light being collected in the flanking output arms. Crosstalk between devices on a substrate is minimized by this collection of the out-of-phase light by the flanking output arms of the XY coupler.
Vawter, G.A.; Hadley, G.R.
1997-05-06
An integrated optical XY coupler having two converging input waveguide arms meeting in a central section and a central output waveguide arm and two diverging flanking output waveguide arms emanating from the central section. In-phase light from the input arms constructively interferes in the central section to produce a single mode output in the central output arm with the rest of the light being collected in the flanking output arms. Crosstalk between devices on a substrate is minimized by this collection of the out-of-phase light by the flanking output arms of the XY coupler. 9 figs.
Bisschop, Suzanne; Guille, Antoine; Van Thourhout, Dries; Hens, Zeger; Brainis, Edouard
2015-06-01
Single-photon (SP) sources are important for a number of optical quantum information processing applications. We study the possibility to integrate triggered solid-state SP emitters directly on a photonic chip. A major challenge consists in efficiently extracting their emission into a single guided mode. Using 3D finite-difference time-domain simulations, we investigate the SP emission from dipole-like nanometer-sized inclusions embedded into different silicon nitride (SiNx) photonic nanowire waveguide designs. We elucidate the effect of the geometry on the emission lifetime and the polarization of the emitted SP. The results show that highly efficient and polarized SP sources can be realized using suspended SiNx slot-waveguides. Combining this with the well-established CMOS-compatible processing technology, fully integrated and complex optical circuits for quantum optics experiments can be developed.
NASA Astrophysics Data System (ADS)
Mizutani, Akio; Eto, Yohei; Kikuta, Hisao
2017-12-01
A grating coupler with a trapezoidal hole array was designed and fabricated for perfectly vertical light coupling between a single-mode optical fiber and a silicon waveguide on a silicon-on-insulator (SOI) substrate. The grating coupler with an efficiency of 53% was computationally designed at a 1.1-µm-thick buried oxide (BOX) layer. The grating coupler and silicon waveguide were fabricated on the SOI substrate with a 3.0-µm-thick BOX layer by a single full-etch process. The measured coupling efficiency was 24% for TE-polarized light at 1528 nm wavelength, which was 0.69 times of the calculated coupling efficiency for the 3.0-µm-thick BOX layer.
A compressive-sensing Fourier-transform on-chip Raman spectrometer
NASA Astrophysics Data System (ADS)
Podmore, Hugh; Scott, Alan; Lee, Regina
2018-02-01
We demonstrate a novel compressive sensing Fourier-transform spectrometer (FTS) for snapshot Raman spectroscopy in a compact format. The on-chip FTS consists of a set of planar-waveguide Mach-Zehnder interferometers (MZIs) arrayed on a photonic chip, effecting a discrete Fourier-transform of the input spectrum. Incoherence between the sampling domain (time), and the spectral domain (frequency) permits compressive sensing retrieval using undersampled interferograms for sparse spectra such as Raman emission. In our fabricated device we retain our chosen bandwidth and resolution while reducing the number of MZIs, e.g. the size of the interferogram, to 1/4th critical sampling. This architecture simultaneously reduces chip footprint and concentrates the interferogram in fewer pixels to improve the signal to noise ratio. Our device collects interferogram samples simultaneously, therefore a time-gated detector may be used to separate Raman peaks from sample fluorescence. A challenge for FTS waveguide spectrometers is to achieve multi-aperture high throughput broadband coupling to a large number of single-mode waveguides. A multi-aperture design allows one to increase the bandwidth and spectral resolution without sacrificing optical throughput. In this device, multi-aperture coupling is achieved using an array of microlenses bonded to the surface of the chip, and aligned with a grid of vertically illuminated waveguide apertures. The microlens array accepts a collimated beam with near 100% fill-factor, and the resulting spherical wavefronts are coupled into the single-mode waveguides using 45& mirrors etched into the waveguide layer via focused ion-beam (FIB). The interferogram from the waveguide outputs is imaged using a CCD, and inverted via l1-norm minimization to correctly retrieve a sparse input spectrum.
Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.
2007-02-20
The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.
Radiation patterns of multimode feed-horn-coupled bolometers for FAR-IR space applications
NASA Astrophysics Data System (ADS)
Kalinauskaite, Eimante; Murphy, J. Anthony; McAuley, Ian; Trappe, Neal A.; McCarthy, Darragh N.; Bracken, Colm P.; Doherty, Stephen; Gradziel, Marcin L.; O'Sullivan, Créidhe; Wilson, Daniel; Peacocke, Tully; Maffei, Bruno; Lamarre, Jean-Michel; Ade, Peter A. R.; Savini, Giorgio
2017-02-01
A multimode horn differs from a single mode horn in that it has a larger sized waveguide feeding it. Multimode horns can therefore be utilized as high efficiency feeds for bolometric detectors, providing increased throughput and sensitivity over single mode feeds, while also ensuring good control of the beam pattern characteristics. Although a cavity mounted bolometer can be modelled as a perfect black body radiator (using reciprocity in order to calculate beam patterns), nevertheless, this is an approximation. In this paper we present how this approach can be improved to actually include the cavity coupled bolometer, now modelled as a thin absorbing film. Generally, this is a big challenge for finite element software, in that the structures are typically electrically large. However, the radiation pattern of multimode horns can be more efficiently simulated using mode matching, typically with smooth-walled waveguide modes as the basis and computing an overall scattering matrix for the horn-waveguide-cavity system. Another issue on the optical efficiency of the detectors is the presence of any free space gaps, through which power can escape. This is best dealt with treating the system as an absorber. Appropriate reflection and transmission matrices can be determined for the cavity using the natural eigenfields of the bolometer cavity system. We discuss how the approach can be applied to proposed terahertz systems, and also present results on how the approach was applied to improve beam pattern predictions on the sky for the multi-mode HFI 857GHz channel on Planck.
Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas
Alfaro-Mozaz, F. J.; Alonso-González, P.; Vélez, S.; Dolado, I.; Autore, M.; Mastel, S.; Casanova, F.; Hueso, L. E.; Li, P.; Nikitin, A. Y.; Hillenbrand, R.
2017-01-01
Polaritons in layered materials—including van der Waals materials—exhibit hyperbolic dispersion and strong field confinement, which makes them highly attractive for applications including optical nanofocusing, sensing and control of spontaneous emission. Here we report a near-field study of polaritonic Fabry–Perot resonances in linear antennas made of a hyperbolic material. Specifically, we study hyperbolic phonon–polaritons in rectangular waveguide antennas made of hexagonal boron nitride (h-BN, a prototypical van der Waals crystal). Infrared nanospectroscopy and nanoimaging experiments reveal sharp resonances with large quality factors around 100, exhibiting atypical modal near-field patterns that have no analogue in conventional linear antennas. By performing a detailed mode analysis, we can assign the antenna resonances to a single waveguide mode originating from the hybridization of hyperbolic surface phonon–polaritons (Dyakonov polaritons) that propagate along the edges of the h-BN waveguide. Our work establishes the basis for the understanding and design of linear waveguides, resonators, sensors and metasurface elements based on hyperbolic materials and metamaterials. PMID:28589941
Trapped modes in a non-axisymmetric cylindrical waveguide
NASA Astrophysics Data System (ADS)
Lyapina, A. A.; Pilipchuk, A. S.; Sadreev, A. F.
2018-05-01
We consider acoustic wave transmission in a non-axisymmetric waveguide which consists of a cylindrical resonator and two cylindrical waveguides whose axes are shifted relatively to each other by an azimuthal angle Δϕ. Under variation of the resonator's length L and fixed Δϕ we find bound states in the continuum (trapped modes) due to full destructive interference of resonant modes leaking into the waveguides. Rotation of the waveguide adds complex phases to the coupling strengths of the resonator eigenmodes with the propagating modes of the waveguides tuning Fano resonances to give rise to a wave faucet. Under variation of Δϕ with fixed resonator's length we find symmetry protected trapped modes. For Δϕ ≠ 0 these trapped modes contribute to the scattering function supporting high vortical acoustic intensity spinning inside the resonator. The waveguide rotation brings an important feature to the scattering and provides an instrument for control of acoustic transmittance and wave trapping.
Laser direct writing of complex radially varying single-mode polymer waveguide structures
NASA Astrophysics Data System (ADS)
Kruse, Kevin; Peng, Jie; Middlebrook, Christopher T.
2015-07-01
Increasing board-to-board and chip-to-chip computational data rates beyond 12.5 Gbs will require the use of single-mode polymer waveguides (WGs) that have high bandwidths and are able to be wavelength division multiplexed. Laser direct writing (LDW) of polymer WGs provides a scalable and reconfigurable maskless procedure compared to common photolithography fabrication. LDW of straights and radial curves are readily achieved using predefined drive commands of the two-axis direct drive linear stage system. Using the laser direct write process for advanced WG structures requires stage-drive programming techniques that account for specified polymer material exposure durations. Creating advanced structures such as WG S-bends into single-mode polymer WG builds provides designers with the ability to affect pitch control, optical coupling, and reduce footprint requirements. Fabrication of single-mode polymer WG segmented radial arcs is achieved through a smooth radial arc user-programmed defined mathematical algorithm. Cosine and raised-sine S-bends are realized through a segmentation method where the optimal incremental step length and bend dimensions are controlled to achieve minimal structure loss. Laser direct written S-bends are compared with previously published photolithographic S-bend results using theoretical bend loss models. Fabrication results show that LDW is a viable method in the fabrication of advanced polymer WG structures.
Harmonically mode-locked erbium-doped waveguide laser
NASA Astrophysics Data System (ADS)
Fanto, Michael L.; Malowicki, John E.; Bussjager, Rebecca J.; Johns, Steven T.; Vettese, Elizabeth K.; Hayduk, Michael J.
2004-08-01
The generation of ultrastable picosecond pulses in the 1550 nm range is required for numerous applications that include photonic analog-to-digital converter systems and high-bit rate optical communication systems. Mode-locked erbium-doped fiber ring lasers (EDFLs) are typically used to generate pulses at this wavelength. In addition to timing stability and output power, the physical size of the laser cavity is of primary importance to the Air Force. The length of the erbium (Er)-doped fiber used as the gain medium may be on the order of meters or even tens of meters which adds complexity to packaging. However, with the recent advancements in the production of multi-component glasses, higher doping concentrations can be achieved as compared to silicate glasses. Even more recent is the introduction of Er-doped multi-component glass waveguides, thus allowing the overall footprint of the gain medium to be reduced. We have constructed a novel harmonically mode-locked fiber ring laser using the Er-doped multi-component glass waveguide as the gain medium. The performance characteristics of this Er-doped waveguide laser (EDWL) including pulse width, spectral width, harmonic suppression, optical output power, laser stability and single sideband residual phase noise will be discussed in this paper.
Adiabatic/diabatic polarization beam splitter
DeRose, Christopher; Cai, Hong
2017-09-12
The various presented herein relate to an on-chip polarization beam splitter (PBS), which is adiabatic for the transverse magnetic (TM) mode and diabatic for the transverse electric (TE) mode. The PBS comprises a through waveguide and a cross waveguide, wherein an electromagnetic beam comprising TE mode and TM mode components is applied to an input port of the through waveguide. The PBS can be utilized to separate the TE mode component from the TM mode component, wherein the TE mode component exits the PBS via an output port of the through waveguide, and the TM mode component exits the PBS via an output port of the cross waveguide. The PBS has a structure that is tolerant to manufacturing variations and exhibits high polarization extinction ratios over a wide bandwidth.
Surface-emitting mid-infrared quantum cascade lasers with high-contrast photonic crystal resonators.
Xu, Gangyi; Colombelli, Raffaele; Braive, Remy; Beaudoin, Gregoire; Le Gratiet, Luc; Talneau, Anne; Ferlazzo, Laurence; Sagnes, Isabelle
2010-05-24
We have developed surface-emitting single-mode quantum cascade lasers which employ high-contrast photonic-crystal resonators. The devices operate on band-edge states of the photonic band-structure. The mode profile and polarization characteristics of the band-edge modes are calculated by three-dimensional finite-difference time-domain simulation. Experimentally, the spectral properties, the far-field patterns, and the polarization characteristics of the lasers are determined and compared with simulations. The good agreement between the simulations and the experiments confirms that the hexapolar mode at the Gamma-point band-edge gives rise to lasing. By using a novel and advanced fabrication method, deep and vertical PhC holes are fabricated with no metal redeposition on the sidewalls, which improves the laser performance with respect to the current status. The angular of the output beam is approximately 15 masculine, and the side mode suppression ratio of the single mode emission is about 25 dB. The threshold current density at 78 K and the maximum operation temperature are 7.6 kA/cm2 and 220 K, respectively. The performance is mainly limited by the loss induced by surface plasmon waveguide, which can be overcome by using an optimized dielectric waveguide structure.
Giant nonlinear interaction between two optical beams via a quantum dot embedded in a photonic wire
NASA Astrophysics Data System (ADS)
Nguyen, H. A.; Grange, T.; Reznychenko, B.; Yeo, I.; de Assis, P.-L.; Tumanov, D.; Fratini, F.; Malik, N. S.; Dupuy, E.; Gregersen, N.; Auffèves, A.; Gérard, J.-M.; Claudon, J.; Poizat, J.-Ph.
2018-05-01
Optical nonlinearities usually appear for large intensities, but discrete transitions allow for giant nonlinearities operating at the single-photon level. This has been demonstrated in the last decade for a single optical mode with cold atomic gases, or single two-level systems coupled to light via a tailored photonic environment. Here, we demonstrate a two-mode giant nonlinearity with a single semiconductor quantum dot (QD) embedded in a photonic wire antenna. We exploit two detuned optical transitions associated with the exciton-biexciton QD level scheme. Owing to the broadband waveguide antenna, the two transitions are efficiently interfaced with two free-space laser beams. The reflection of one laser beam is then controlled by the other beam, with a threshold power as low as 10 photons per exciton lifetime (1.6 nW ). Such a two-color nonlinearity opens appealing perspectives for the realization of ultralow-power logical gates and optical quantum gates, and could also be implemented in an integrated photonic circuit based on planar waveguides.
Demonstration of acoustic waveguiding and tight bending in phononic crystals
Ghasemi Baboly, M.; Raza, A.; Brady, J.; ...
2016-10-31
The systematic design, fabrication, and characterization of an isolated, single-mode, 90° bend phononic crystal (PnC) waveguide are presented. A PnC consisting of a 2D square array of circular air holes in an aluminum substrate is used, and waveguides are created by introducing a line defect in the PnC lattice. A high transmission coefficient is observed (–1 dB) for the straight sections of the waveguide, and an overall 2.3 dB transmission loss is observed (a transmission coefficient of 76%) for the 90° bend. Further optimization of the structure may yield higher transmission efficiencies. Lastly, this manuscript shows the complete design processmore » for an engineered 90° bend PnC waveguide from inception to experimental demonstration.« less
Zero-mode clad waveguides for performing spectroscopy with confined effective observation volumes
Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.
2005-07-12
The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Bo; Zeng, Yong Quan; Liang, Guozhen
2015-09-14
We report our progress in the development of broadly tunable single-mode slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design. The electroluminescence spectrum of the continuum-to-continuum active region design has a full width at half maximum of 440 cm{sup −1} at center wavelength ∼10 μm at room temperature (300 K). Devices using the optimized slot waveguide structure and the continuum-to-continuum design can be tuned continuously with a lasing emission over 42 cm{sup −1}, from 9.74 to 10.16 μm, at room temperature by using only current tuning scheme, together with a side mode suppression ratio of above 15 dB within the whole tuning range.
A submillimeter tripler using a quasi-waveguide structure
NASA Technical Reports Server (NTRS)
Erickson, Neal R.; Cortes-Medellin, German
1992-01-01
A new type of frequency multiplier structure is being developed which is suitable for application at frequencies above 1 THz. This structure preserves some of the properties of waveguide for mode control, yet is not truly single mode. The device resembles a sectoral horn, with a varactor diode mounted near the throat. Input and output coupling are through the same aperture, requiring a quasi-optical diplexer. Initial tests are directed at building a tripler at 500 GHz, for comparison with waveguide structures. The diplexer is a blazed diffraction grating with appropriate focusing optics. Model studies show that the impedance match to a varactor should be good, and initial tests of the beam patterns of the prototype indicate that optical coupling efficiency should be very high. The structure also has the potential for use as a fundamental mixer, or as a third harmonic mixer.
Fully suspended slot waveguide platform
NASA Astrophysics Data System (ADS)
Zhou, Wen; Cheng, Zhenzhou; Wu, Xinru; Sun, Xiankai; Tsang, Hon Ki
2018-02-01
A fully suspended slot waveguide (FSSWG) platform, including straight slot waveguides, 90° bends, high-Q racetrack resonators, and strip-to-slot mode converters, is demonstrated for broadband and low-loss operation in the mid-infrared spectral region. The proposed FSSWG platform has inherent merits of a broad spectral range of transparency which is limited only by the absorption of silicon, strong light-analyte interaction, good mechanical stability, and single lithography step fabrication process. By using asymmetric FSSWGs, the propagation loss, bending loss, and intrinsic optical Q factor are demonstrated to be 2.8 dB/cm, 0.15 dB/90°, and 12 600, respectively. The average conversion efficiency of a mode converter is 95.4% over a bandwidth of 170 nm and 97.0% at 2231 nm. The FSSWG platform would be promising for a long-range and cavity-enhanced light-analyte interaction.
NASA Astrophysics Data System (ADS)
Mutter, Kussay N.; Jafri, Zubir M.; Tan, Kok Chooi
2016-04-01
In this paper, the simulation and design of a waveguide for water turbidity sensing are presented. The structure of the proposed sensor uses a 2x2 array of multimode interference (MMI) coupler based on micro graphene waveguide for high sensitivity. The beam propagation method (BPM) are used to efficiently design the sensor structure. The structure is consist of an array of two by two elements of sensors. Each element has three sections of single mode for field input tapered to MMI as the main core sensor without cladding which is graphene based material, and then a single mode fiber as an output. In this configuration MMI responses to any change in the environment. We validate and present the results by implementing the design on a set of sucrose solution and showing how these samples lead to a sensitivity change in the sensor based on the MMI structures. Overall results, the 3D design has a feasible and effective sensing by drawing topographical distribution of suspended particles in the water.
Novel Waveguide Structures in the Terahertz Frequency Range
NASA Astrophysics Data System (ADS)
Mbonye, Marx
Over the last decade, considerable research interest has peaked in realizing an efficient Terahertz (THz) waveguide for potential applications in imaging, sensing, and communications applications. Two of the promising candidates are the two-wire waveguide and the parallel-plate waveguide (PPWG). I present theoretical and experimental evidence that show that the two-wire waveguide supports low loss terahertz pulse propagation, and illustrate that the mode pattern at the end of the waveguide resembles that of a dipole. In comparison to the weakly guided Sommerfeld wave of a single wire waveguide, this two-wire structure exhibits much lower bending losses. I also observe that a commercial 300-Ohm two-wire TVantenna cable can be used for guiding frequency components of up to 0.2 THz, although these cables are generally designed to operate only up to about 800 MHz. The parallel-plate waveguide is another promising candidate that would make an efficient THz waveguide, since it has relatively low Ohmic losses. The transverse electromagnetic mode (TEM) of this waveguide has been generally preferred since it has no cutoff frequency, and therefore no group velocity dispersion. Utilizing this TEM mode, I study the reflection of THz radiation at the end of a PPWG, due to the impedance mismatch between the propagating transverse-electromagnetic mode and the free-space background. I find that for a PPWG with uniformly spaced plates, the reflection coefficient at the output face increases as the plate separation decreases, consistent with predictions by early low frequency ray optical theory. I observe this same trend in tapered PPWGs, when the input separation is fixed, and the output separation is varied. In another study, I investigate how to minimize diffraction losses in PPWGs by using plates with slightly concave surfaces. Using a simple "bouncing plane wave" analysis, I demonstrate how to determine an ideal radius of curvature for a waveguide operating at a given THz frequency. I perform a detailed experimental and simulation study that illustrates, for a waveguide with a plate separation of 1 cm, one can inhibit the diffraction around a frequency of 0.1 THz, when the surface has a curvature of 6.7 cm. Using much longer PPWGs (about 170cm), I reliably measure the overall losses in a PPWG with a radius of curvature of R=6.7 cm, and find it to be less than 1db/m around the design frequency (of 0.1 THz). This is very close to the lowest achieved loss to date with any terahertz waveguide.
NASA Astrophysics Data System (ADS)
Kang, Jian; Takagi, Shinichi; Takenaka, Mitsuru
2018-04-01
We present the design methodology for Ge passive components including single-mode waveguide, grating couplers, multimode interferometer (MMI) couplers, and micro-ring resonators on the Ge-on-insulator wafer at a 1.95 µm wavelength. Characterizations of the fabricated Ge passive devices reveal a good consistence between the experimental and simulation results. By using the Ge micro-ring device, we also reveal that the thermo-optic coefficient in the Ge strip waveguide is 5.74 × 10-4/°C, which is much greater than that in Si.
Toward photostable multiplex analyte detection on a single mode planar optical waveguide
NASA Astrophysics Data System (ADS)
Mukundan, Harshini; Xie, Hongzhi; Anderson, Aaron; Grace, W. Kevin; Martinez, Jennifer S.; Swanson, Basil
2009-02-01
We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.
Matrix method for two-dimensional waveguide mode solution
NASA Astrophysics Data System (ADS)
Sun, Baoguang; Cai, Congzhong; Venkatesh, Balajee Seshasayee
2018-05-01
In this paper, we show that the transfer matrix theory of multilayer optics can be used to solve the modes of any two-dimensional (2D) waveguide for their effective indices and field distributions. A 2D waveguide, even composed of numerous layers, is essentially a multilayer stack and the transmission through the stack can be analysed using the transfer matrix theory. The result is a transfer matrix with four complex value elements, namely A, B, C and D. The effective index of a guided mode satisfies two conditions: (1) evanescent waves exist simultaneously in the first (cladding) layer and last (substrate) layer, and (2) the complex element D vanishes. For a given mode, the field distribution in the waveguide is the result of a 'folded' plane wave. In each layer, there is only propagation and absorption; at each boundary, only reflection and refraction occur, which can be calculated according to the Fresnel equations. As examples, we show that this method can be used to solve modes supported by the multilayer step-index dielectric waveguide, slot waveguide, gradient-index waveguide and various plasmonic waveguides. The results indicate the transfer matrix method is effective for 2D waveguide mode solution in general.
Lapointe, Jerome; Ledemi, Yannick; Loranger, Sébastien; Iezzi, Victor Lambin; Soares de Lima Filho, Elton; Parent, Francois; Morency, Steeve; Messaddeq, Younes; Kashyap, Raman
2016-01-15
As2S3 glass has a unique combination of optical properties, such as wide transparency in the infrared region and a high nonlinear coefficient. Recently, intense research has been conducted to improve photonic devices using thin materials. In this Letter, highly uniform rectangular single-index and 2 dB/m loss step-index optical tapes have been drawn by the crucible technique. Low-loss (<0.15 dB/cm) single-mode waveguides in chalcogenide glass tapes have been fabricated using femtosecond laser writing. Optical backscatter reflectometry has been used to study the origin of the optical losses. A detailed study of the laser writing process in thin glass is also presented to facilitate a repeatable waveguide inscription recipe.
Nonlinear optical coupler using a doped optical waveguide
Pantell, Richard H.; Sadowski, Robert W.; Digonnet, Michel J. F.; Shaw, Herbert J.
1994-01-01
An optical mode coupling apparatus includes an Erbium-doped optical waveguide in which an optical signal at a signal wavelength propagates in a first spatial propagation mode and a second spatial propagation mode of the waveguide. The optical signal propagating in the waveguide has a beat length. The coupling apparatus includes a pump source of perturbational light signal at a perturbational wavelength that propagates in the waveguide in the first spatial propagation mode. The perturbational signal has a sufficient intensity distribution in the waveguide that it causes a perturbation of the effective refractive index of the first spatial propagation mode of the waveguide in accordance with the optical Kerr effect. The perturbation of the effective refractive index of the first spatial propagation mode of the optical waveguide causes a change in the differential phase delay in the optical signal propagating in the first and second spatial propagation modes. The change in the differential phase delay is detected as a change in the intensity distribution between two lobes of the optical intensity distribution pattern of an output signal. The perturbational light signal can be selectively enabled and disabled to selectively change the intensity distribution in the two lobes of the optical intensity distribution pattern.
Laser performance and modeling of RE3+:YAG double-clad crystalline fiber waveguides
NASA Astrophysics Data System (ADS)
Li, Da; Lee, Huai-Chuan; Meissner, Stephanie K.; Meissner, Helmuth E.
2018-02-01
We report on laser performance of ceramic Yb:YAG and single crystal Tm:YAG double-clad crystalline fiber waveguide (CFW) lasers towards the goal of demonstrating the design and manufacturing strategy of scaling to high output power. The laser component is a double-clad CFW, with RE3+:YAG (RE = Yb, Tm respectively) core, un-doped YAG inner cladding, and ceramic spinel or sapphire outer cladding. Laser performance of the CFW has been demonstrated with 53.6% slope efficiency and 27.5-W stable output power at 1030-nm for Yb:YAG CFW, and 31.6% slope efficiency and 46.7-W stable output power at 2019-nm for Tm:YAG CFW, respectively. Adhesive-Free Bond (AFB®) technology enables a designable refractive index difference between core and inner cladding, and designable core and inner cladding sizes, which are essential for single transverse mode CFW propagation. To guide further development of CFW designs, we present thermal modeling, power scaling and design of single transverse mode operation of double-clad CFWs and redefine the single-mode operation criterion for the double-clad structure design. The power scaling modeling of double-clad CFW shows that in order to achieve the maximum possible output power limited by the physical properties, including diode brightness, thermal lens effect, and simulated Brillion scattering, the length of waveguide is in the range of 0.5 2 meters. The length of an individual CFW is limited by single crystal growth and doping uniformity to about 100 to 200 mm lengths, and also by availability of starting crystals and manufacturing complexity. To overcome the limitation of CFW lengths, end-to-end proximity-coupling of CFWs is introduced.
Plasmon-assisted optical vias for photonic ASICS
Skogen, Erik J.; Vawter, Gregory A.; Tauke-Pedretti, Anna
2017-03-21
The present invention relates to optical vias to optically connect multilevel optical circuits. In one example, the optical via includes a surface plasmon polariton waveguide, and a first optical waveguide formed on a first substrate is coupled to a second optical waveguide formed on a second substrate by the surface plasmon polariton waveguide. In some embodiments, the first optical waveguide includes a transition region configured to convert light from an optical mode to a surface plasmon polariton mode or from a surface plasmon polariton mode to an optical mode.
Low-loss silicide/silicon plasmonic ribbon waveguides for mid- and far-infrared applications.
Cho, Sang-Yeon; Soref, Richard A
2009-06-15
We report low-loss silicide/silicon plasmonic ribbon waveguides for mid- and far-IR applications. The composite modes in silicide ribbon waveguides offer a low-loss and highly confined mode profile, giving excellent plasmon waveguiding for long-wavelength applications. The calculated propagation loss of the composite long-range surface-plasmon polariton mode at a wavelength of 100 microm is 2.18 dB/cm with a mode height of less than 30 microm. The results presented provide important design guidelines for silicide/Si plasmon waveguides.
Large area single-mode parity-time-symmetric laser amplifiers.
Miri, Mohammad-Ali; LiKamWa, Patrik; Christodoulides, Demetrios N
2012-03-01
By exploiting recent developments associated with parity-time (PT) symmetry in optics, we here propose a new avenue in realizing single-mode large area laser amplifiers. This can be accomplished by utilizing the abrupt symmetry breaking transition that allows the fundamental mode to experience gain while keeping all the higher order modes neutral. Such PT-symmetric structures can be realized by judiciously coupling two multimode waveguides, one exhibiting gain while the other exhibits an equal amount of loss. Pertinent examples are provided for both semiconductor and fiber laser amplifiers. © 2012 Optical Society of America
Spatial mode discriminator based on leaky waveguides
NASA Astrophysics Data System (ADS)
Xu, Jing; Liu, Jialing; Shi, Hongkang; Chen, Yuntian
2018-06-01
We propose a conceptually simple and experimentally compatible configuration to discriminate the spatial mode based on leaky waveguides, which are inserted in-between the transmission link. The essence of such a spatial mode discriminator is to introduce the leakage of the power flux on purpose for detection. Importantly, the leaky angle of each individual spatial mode with respect to the propagation direction are different for non-degenerated modes, while the radiation patterns of the degenerated spatial modes in the plane perpendicular to the propagation direction are also distinguishable. Based on these two facts, we illustrate the operation principle of the spatial mode discriminators via two concrete examples; a w-type slab leaky waveguide without degeneracy, and a cylindrical leaky waveguide with degeneracy. The correlation between the leakage angle and the spatial mode distribution for a slab leaky waveguide, as well as differences between the in-plane radiation patterns of degenerated modes in a cylindrical leaky waveguide, are verified numerically and analytically. Such findings can be readily useful in discriminating the spatial modes for optical communication or optical sensing.
Broadband arrayed waveguide grating multiplexers on indium phosphide
NASA Astrophysics Data System (ADS)
Rausch, Kameron
2005-11-01
Coarse Wavelength Division Multiplexing (CWDM) is becoming a popular way to increase the optical throughput of fibers for short to medium haul networks at a reduced cost. The International Telecommunications Union (ITU) has defined the CWDM network to consist of eighteen channels with channel spacings of 20 nm starting at 1270 nm and ending at 1610 nm. Four and eight channel AWGs suitable for CWDM were fabricated using a versatile S-shape design novel to InP. The standard horseshoe layout will not work on semiconductor for AWGs with a free spectral range (FSR) larger than 30 nm. The AWG design provides operation insensitive to thermal and polarization fluctuations; which is key for low cost operation and packaging. It will be shown that, refractive index changes over the large operating wavelength band produced negligible effects in the transmission spectrum. Standard AWG design assumes refractive index is a constant over the operating wavelength band. As a result, the output waveguide separations are held constant on the second star coupler. As the channel number increases, secondary focal dispersion caused from a changing refractive index can have detrimental effects on performance. A new design method will be introduced which includes refractive index dispersion by allowing the output waveguide separations to vary. The new design is consistent with standard design but is applicable in materials with a linear index dispersion over an arbitrarily large wavelength band. Lastly, a method for increasing the transmission using multimode waveguides is discussed. Traditionally, single mode waveguides are required in order to prevent higher order waveguide modes creating ghost images in the output spectrum. Using bend loss and waveguide junction offsets, higher order modes can be filtered from the output, thereby eliminating ghost images and at the same time, increase transmission.
High-efficiency power transfer for silicon-based photonic devices
NASA Astrophysics Data System (ADS)
Son, Gyeongho; Yu, Kyoungsik
2018-02-01
We demonstrate an efficient coupling of guided light of 1550 nm from a standard single-mode optical fiber to a silicon waveguide using the finite-difference time-domain method and propose a fabrication method of tapered optical fibers for efficient power transfer to silicon-based photonic integrated circuits. Adiabatically-varying fiber core diameters with a small tapering angle can be obtained using the tube etching method with hydrofluoric acid and standard single-mode fibers covered by plastic jackets. The optical power transmission of the fundamental HE11 and TE-like modes between the fiber tapers and the inversely-tapered silicon waveguides was calculated with the finite-difference time-domain method to be more than 99% at a wavelength of 1550 nm. The proposed method for adiabatic fiber tapering can be applied in quantum optics, silicon-based photonic integrated circuits, and nanophotonics. Furthermore, efficient coupling within the telecommunication C-band is a promising approach for quantum networks in the future.
Microwave Spectroscopy of a Single Permalloy Chiral Metamolecule on a Coplanar Waveguide
NASA Astrophysics Data System (ADS)
Kodama, Toshiyuki; Kusanagi, Yusaku; Okamoto, Satoshi; Kikuchi, Nobuaki; Kitakami, Osamu; Tomita, Satoshi; Hosoito, Nobuyoshi; Yanagi, Hisao
2018-05-01
We investigate the microwave spectroscopies of a micrometer-sized single permalloy (Py) chiral structure on coplanar waveguides (CPWs). Under an external dc magnetic field applied in a direction perpendicular to the microwave propagation, the Py chiral structure loaded on the center of the CPW signal line shows Kittel-mode ferromagnetic resonance. Contrastingly, the structure on the signal-line edge highlights two additional resonances: spin-wave resonance at a higher frequency, and unique resonance at a lower frequency of approximately 7.8 GHz. The resonance signal at 7.8 GHz originates from magnetically induced, geometry-driven resonance, although the resonance frequency does not depend on the external magnetic field. Moreover, the displacement of the Py structures on the signal line results in nonreciprocal microwave transmission, which is traced back to the edge-guide mode.
Design and Fabrication of NxN Optical Couplers Based on Organic Polymer Opti al WaveGuides
1994-08-01
lOxlO optical coupler utilizing photopolymerizable organic polymers. Background information on the theory of operation of the coupler culminating in a...Channel Waveguides Based on Photopolymerizable Di/Tri Acrylates," in Optoelecwonic Interconnects Ii, Ray T. Chen, John A. Neff, Editors, Proc. SPIE 2153, pp...demonstrated that acrylic polymers can be used to fabricate single-mode optical wavguides. The resins that we have formulated are photopolymerizable
Integrated optics technology study
NASA Technical Reports Server (NTRS)
Chen, B.; Findakly, T.; Innarella, R.
1982-01-01
The status and near term potential of materials and processes available for the fabrication of single mode integrated electro-optical components are discussed. Issues discussed are host material and orientation, waveguide formation, optical loss mechanisms, wavelength selection, polarization effects and control, laser to integrated optics coupling fiber optic waveguides to integrated optics coupling, sources, and detectors. Recommendations of the best materials, technology, and processes for fabrication of integrated optical components for communications and fiber gyro applications are given.
Transfer of micro and nano-photonic silicon nanomembrane waveguide devices on flexible substrates.
Ghaffari, Afshin; Hosseini, Amir; Xu, Xiaochuan; Kwong, David; Subbaraman, Harish; Chen, Ray T
2010-09-13
This paper demonstrates transfer of optical devices without extra un-patterned silicon onto low-cost, flexible plastic substrates using single-crystal silicon nanomembranes. Employing this transfer technique, stacking two layers of silicon nanomembranes with photonic crystal waveguide in the first layer and multi mode interference couplers in the second layer is shown, respectively. This technique is promising to realize high density integration of multilayer hybrid structures on flexible substrates.
Waveguides for performing spectroscopy with confined effective observation volumes
Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.
2006-03-14
The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.
Ong, Jun Rong; Ang, Thomas Y L; Sahin, Ezgi; Pawlina, Bryan; Chen, G F R; Tan, D T H; Lim, Soon Thor; Png, Ching Eng
2017-11-01
We report on the design and experimental demonstration of a broadband silicon polarization beam splitter (PBS) with a high extinction ratio (ER)≥30 dB. This was achieved using triple-bent-waveguide directional coupling in a single PBS, and cascaded PBS topology. For the single PBS, the bandwidths for an ER≥30 dB are 20 nm for the quasi-TE mode, and 70 nm for the quasi-TM mode when a broadband light source (1520-1610 nm) was employed. The insertion loss (IL) varies from 0.2 to 1 dB for the quasi-TE mode and 0.2-2 dB for the quasi-TM mode. The cascaded PBS improved the bandwidth of the quasi-TE mode for an ER≥30 dB to 90 nm, with a low IL of 0.2-2 dB. To the best of our knowledge, our PBS system is one of the best broadband PBSs with an ER as high as ∼42 dB and a low IL below 1 dB around the central wavelength, and experimentally demonstrated using edge-coupling.
Nanoscale Plasmonic V-Groove Waveguides for the Interrogation of Single Fluorescent Bacterial Cells.
Lotan, Oren; Bar-David, Jonathan; Smith, Cameron L C; Yagur-Kroll, Sharon; Belkin, Shimshon; Kristensen, Anders; Levy, Uriel
2017-09-13
We experimentally demonstrate the interrogation of an individual Escherichia coli cell using a nanoscale plasmonic V-groove waveguide. Several different configurations were studied. The first involved the excitation of the cell in a liquid environment because it flows on top of the waveguide nanocoupler, while the obtained fluorescence is coupled into the waveguide and collected at the other nanocoupler. The other two configurations involved the positioning of the bacterium within the nanoscale waveguide and its excitation in a dry environment either directly from the top or through waveguide modes. This is achieved by taking advantage of the waveguide properties not only for light guiding but also as a mechanical tool for trapping the bacteria within the V-grooves. The obtained results are supported by a set of numerical simulations, shedding more light on the mechanism of excitation. This demonstration paves the way for the construction of an efficient bioplasmonic chip for diverse cell-based sensing applications.
A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals
NASA Astrophysics Data System (ADS)
Zhang, Lu; Fan, Ya-Xian; Liu, Huan; Han, Xu; Lu, Wen-Qiang; Tao, Zhi-Yong
2018-04-01
A magnetically tunable, non-Bragg defect mode (NBDM) was created in the terahertz frequency range by inserting a defect in the middle of a periodically corrugated waveguide filled with liquid crystals (LCs). In the periodic waveguide, non-Bragg gaps beyond the Bragg ones, which appear in the transmission spectra, are created by different transverse mode resonances. The transmission spectra of the waveguide containing a defect showed that a defect mode was present inside the non-Bragg gap. The NBDM has quite different features compared to the Bragg defect mode, which includes more complex, high-order guided wave modes. In our study, we filled the corrugated waveguide with LCs to realize the tunability of the NBDM. The simulated results showed that the NBDM in a corrugated waveguide filled with LCs can be used in filters, sensors, switches, and other terahertz integrated devices.
Shaping ultrafast laser inscribed optical waveguides using a deformable mirror.
Thomson, R R; Bockelt, A S; Ramsay, E; Beecher, S; Greenaway, A H; Kar, A K; Reid, D T
2008-08-18
We use a two-dimensional deformable mirror to shape the spatial profile of an ultrafast laser beam that is then used to inscribe structures in a soda-lime silica glass slide. By doing so we demonstrate that it is possible to control the asymmetry of the cross section of ultrafast laser inscribed optical waveguides via the curvature of the deformable mirror. When tested using 1.55 mum light, the optimum waveguide exhibited coupling losses of approximately 0.2 dB/facet to Corning SMF-28 single mode fiber and propagation losses of approximately 1.5 dB.cm(-1). This technique promises the possibility of combining rapid processing speeds with the ability to vary the waveguide cross section along its length.
Fiber-Drawn Metamaterial for THz Waveguiding and Imaging
NASA Astrophysics Data System (ADS)
Atakaramians, Shaghik; Stefani, Alessio; Li, Haisu; Habib, Md. Samiul; Hayashi, Juliano Grigoleto; Tuniz, Alessandro; Tang, Xiaoli; Anthony, Jessienta; Lwin, Richard; Argyros, Alexander; Fleming, Simon C.; Kuhlmey, Boris T.
2017-09-01
In this paper, we review the work of our group in fabricating metamaterials for terahertz (THz) applications by fiber drawing. We discuss the fabrication technique and the structures that can be obtained before focusing on two particular applications of terahertz metamaterials, i.e., waveguiding and sub-diffraction imaging. We show the experimental demonstration of THz radiation guidance through hollow core waveguides with metamaterial cladding, where substantial improvements were realized compared to conventional hollow core waveguides, such as reduction of size, greater flexibility, increased single-mode operating regime, and guiding due to magnetic and electric resonances. We also report recent and new experimental work on near- and far-field THz imaging using wire array metamaterials that are capable of resolving features as small as λ/28.
Yuan, Dengpeng; Dong, Ying; Liu, Yujin; Li, Tianjian
2015-01-01
A high-sensitivity Mach-Zehnder interferometer (MZI) biochemical sensing platform based on Silicon-in-insulator (SOI) rib waveguide with large cross section is proposed in this paper. Based on the analyses of the evanescent field intensity, the mode polarization and cross section dimensions of the SOI rib waveguide are optimized through finite difference method (FDM) simulation. To realize high-resolution MZI read-out configuration based on the SOI rib waveguide, medium-filled trenches are employed and their performances are simulated through two-dimensional finite-difference-time domain (2D-FDTD) method. With the fundamental EH-polarized mode of the SOI rib waveguide with a total rib height of 10 μm, an outside rib height of 5 μm and a rib width of 2.5 μm at the operating wavelength of 1550 nm, when the length of the sensitive window in the MZI configuration is 10 mm, a homogeneous sensitivity of 7296.6%/refractive index unit (RIU) is obtained. Supposing the resolutions of the photoelectric detectors connected to the output ports are 0.2%, the MZI sensor can achieve a detection limit of 2.74 × 10−6 RIU. Due to high coupling efficiency of SOI rib waveguide with large cross section with standard single-mode glass optical fiber, the proposed MZI sensing platform can be conveniently integrated with optical fiber communication systems and (opto-) electronic systems, and therefore has the potential to realize remote sensing, in situ real-time detecting, and possible applications in the internet of things. PMID:26343678
Jung, Yongmin; Brambilla, Gilberto; Richardson, David J
2008-09-15
We report the use of a sub-wavelength optical wire (SOW) with a specifically designed transition region as an efficient tool to filter higher-order modes in multimode waveguides. Higher-order modes are effectively suppressed by controlling the transition taper profile and the diameter of the sub-wavelength optical wire. As a practical example, single-mode operation of a standard telecom optical fiber over a broad spectral window (400 approximately 1700 nm) was demonstrated with a 1microm SOW. The ability to obtain robust and stable single-mode operation over a very broad range of wavelengths offers new possibilities for mode control within fiber devices and is relevant to a range of application sectors including high performance fiber lasers, sensors, photolithography, and optical coherence tomography systems.
Integration of a photonic crystal polarization beam splitter and waveguide bend.
Zheng, Wanhua; Xing, Mingxin; Ren, Gang; Johnson, Steven G; Zhou, Wenjun; Chen, Wei; Chen, Lianghui
2009-05-11
In this work, we present the design of an integrated photonic-crystal polarization beam splitter (PC-PBS) and a low-loss photonic-crystal 60 degrees waveguide bend. Firstly, the modal properties of the PC-PBS and the mechanism of the low-loss waveguide bend are investigated by the two-dimensional finite-difference time-domain (FDTD) method, and then the integration of the two devices is studied. It shows that, although the individual devices perform well separately, the performance of the integrated circuit is poor due to the multi-mode property of the PC-PBS. By introducing deformed airhole structures, a single-mode PC-PBS is proposed, which significantly enhance the performance of the circuit with the extinction ratios remaining above 20 dB for both transverse-electric (TE) and transverse-magnetic (TM) polarizations. Both the specific result and the general idea of integration design are promising in the photonic crystal integrated circuits in the future.
Generation and transfer of single photons on a photonic crystal chip.
Englund, Dirk; Faraon, Andrei; Zhang, Bingyang; Yamamoto, Yoshihisa; Vucković, Jelena
2007-04-30
We present a basic building block of a quantum network consisting of a quantum dot coupled to a source cavity, which in turn is coupled to a target cavity via a waveguide. The single photon emission from the high-Q/V source cavity is characterized by twelve-fold spontaneous emission (SE) rate enhancement, SE coupling efficiency beta ~ 0.98 into the source cavity mode, and mean wavepacket indistinguishability of ~67%. Single photons are efficiently transferred into the target cavity via the waveguide, with a target/source field intensity ratio of 0.12 +/- 0.01. This system shows great promise as a building block of future on-chip quantum information processing systems.
NASA Astrophysics Data System (ADS)
Klimov, M. S.; Sychugov, V. A.; Tishchenko, A. V.
1992-02-01
An analysis is made of the process of light emission from a corrugated waveguide into air and into a substrate in a noncollinear geometry, i.e., when the direction along which the waveguide mode propagates does not coincide with the plane in which the emitted wave lies. Calculations show that when a TE mode is excited in a corrugated waveguide by a light beam with the TM polarization incident from air on the waveguide at a grazing angle, one can achieve a high waveguide excitation efficiency (~ 60%) if the waveguide mode propagates along the normal to the plane of incidence.
Conductance dips and spin precession in a nonuniform waveguide with spin–orbit coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyshev, A. I., E-mail: malyshev@phys.unn.ru; Kozulin, A. S.
An infinite waveguide with a nonuniformity, a segment of finite length with spin–orbit coupling, is considered in the case when the Rashba and Dresselhaus parameters are identical. Analytical expressions have been derived in the single-mode approximation for the conductance of the system for an arbitrary initial spin state. Based on numerical calculations with several size quantization modes, we have detected and described the conductance dips arising when the waves are localized in the nonuniformity due to the formation of an effective potential well in it. We show that allowance for the evanescent modes under carrier spin precession in an effectivemore » magnetic field does not lead to a change in the direction of the average spin vector at the output of the system.« less
Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature
NASA Astrophysics Data System (ADS)
Bousseksou, A.; Chassagneux, Y.; Coudevylle, J. R.; Colombelli, R.; Sirtori, C.; Patriarche, G.; Beaudoin, G.; Sagnes, I.
2009-08-01
We report distributed-feedback surface-plasmon quantum cascade lasers operating at λ ≈7.6μm. The distributed feedback is obtained by the sole patterning of the top metal contact on a surface plasmon waveguide. Single mode operation with more than 30dB side mode suppression ratio is obtained in pulsed mode and at room temperature. A careful experimental study confirms that by varying the grating duty cycle, one can reduce the waveguide losses with respect to standard, unpatterned surface-plasmon devices. This allows one to reduce the laser threshold current of more than a factor of 2 in the 200-300K temperature range. This approach may lead to a fabrication technology for midinfrared distributed-feedback lasers based on a very simple processing.
Tapered rib fiber coupler for semiconductor optical devices
Vawter, Gregory A.; Smith, Robert Edward
2001-01-01
A monolithic tapered rib waveguide for transformation of the spot size of light between a semiconductor optical device and an optical fiber or from the fiber into the optical device. The tapered rib waveguide is integrated into the guiding rib atop a cutoff mesa type semiconductor device such as an expanded mode optical modulator or and expanded mode laser. The tapered rib acts to force the guided light down into the mesa structure of the semiconductor optical device instead of being bound to the interface between the bottom of the guiding rib and the top of the cutoff mesa. The single mode light leaving or entering the output face of the mesa structure then can couple to the optical fiber at coupling losses of 1.0 dB or less.
Waveguiding and bending modes in a plasma photonic crystal bandgap device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, B., E-mail: bwang17@stanford.edu; Cappelli, M. A.
2016-06-15
Waveguiding and bending modes are investigated in a fully tunable plasma photonic crystal. The plasma device actively controls the propagation of free space electromagnetic waves in the S to X band of the microwave spectrum. An array of discharge plasma tubes form a square crystal lattice exhibiting a well-defined bandgap, with individual active switching of the plasma elements to allow for waveguiding and bending modes to be generated dynamically. We show, through simulations and experiments, the existence of transverse electric (TE) mode waveguiding and bending modes.
Analysis of hybrid dielectric-plasmonic slot waveguide structures with 3D Fourier Modal Methods
NASA Astrophysics Data System (ADS)
Ctyroky, J.; Kwiecien, P.; Richter, I.
2013-03-01
Recently, plasmonic waveguides have been intensively studied as promising basic building blocks for the construction of extremely compact photonic devices with subwavelength characteristic dimensions. A number of different types of plasmonic waveguide structures have been recently proposed, theoretically analyzed, and their properties experimentally verified. The fundamental trade-off in the design of plasmonic waveguides for potential application in information technologies lies in the contradiction between their mode field confinement and propagation loss: the higher confinement, the higher loss, and vice versa. Various definitions of figures of merit of plasmonic waveguides have been also introduced for the characterization of their properties with a single quantity. In this contribution, we theoretically analyze one specific type of a plasmonic waveguide - the hybrid dielectric-loaded plasmonic waveguide, or - as we call it in this paper - the hybrid dielectric-plasmonic slot waveguide, which exhibits very strong field confinement combined with acceptable losses allowing their application in some integrated plasmonic devices. In contrast to the structures analyzed previously, our structure makes use of a single low-index dielectric only. We first define the effective area of this waveguide type, and using waveguide parameters close to the optimum we analyze several waveguide devices as directional couplers, multimode interference couplers (MMI), and the Mach-Zehnder interferometer based on the MMI couplers. For the full-vector 3D analysis of these structures, we use modelling tools developed in-house on the basis of the Fourier Modal Method (FMM). Our results thus serve to a dual purpose: they confirm that (i) these structures represent promising building blocks of plasmonic devices, and (ii) our FMM codes are capable of efficient 3D vector modelling of plasmonic waveguide devices.
GaSb-based single-mode distributed feedback lasers for sensing (Conference Presentation)
NASA Astrophysics Data System (ADS)
Gupta, James A.; Bezinger, Andrew; Lapointe, Jean; Poitras, Daniel; Aers, Geof C.
2017-02-01
GaSb-based tunable single-mode diode lasers can enable rapid, highly-selective and highly-sensitive absorption spectroscopy systems for gas sensing. In this work, single-mode distributed feedback (DFB) laser diodes were developed for the detection of various trace gases in the 2-3.3um range, including CO2, CO, HF, H2S, H2O and CH4. The lasers were fabricated using an index-coupled grating process without epitaxial regrowth, making the process significantly less expensive than conventional DFB fabrication. The devices are based on InGaAsSb/AlGaAsSb separate confinement heterostructures grown on GaSb by molecular beam epitaxy. DFB lasers were produced using a two step etch process. Narrow ridge waveguides were first defined by optical lithography and etched into the semiconductor. Lateral gratings were then defined on both sides of the ridge using electron-beam lithography and etched to produce the index-grating. Effective index modeling was used to optimize the ridge width, etch depths and the grating pitch to ensure single-lateral-mode operation and adequate coupling strength. The effective index method was further used to simulate the DFB laser emission spectrum, based on a transfer matrix model for light transmission through the periodic structure. The fabricated lasers exhibit single-mode operation which is tunable through the absorption features of the various target gases by adjustment of the drive current. In addition to the established open-path sensing applications, these devices have great potential for optoelectronic integrated gas sensors, making use of integrated photodetectors and possibly on-chip Si photonics waveguide structures.
NASA Astrophysics Data System (ADS)
Dianov, Evgenii M.; Kuznetsov, A. V.; Makarenko, A. Yu; Okhotnikov, O. G.; Prokhorov, A. M.; Shcherbakov, E. A.
1990-12-01
Single-mode fiber waveguides were used in constructing a Michelson interferometer with a 50-km difference between its arm lengths. An analysis was made of its resolving power as a function of the parameters of the optical part and of the characteristics of the electronic apparatus used in the system. The width of a spectral emission line of a semiconductor laser with a distributed Rayleigh fiber resonator was determined.
Integrated optics technology study
NASA Technical Reports Server (NTRS)
Chen, B.
1982-01-01
The materials and processes available for the fabrication of single mode integrated electrooptical components are described. Issues included in the study are: (1) host material and orientation, (2) waveguide formation, (3) optical loss mechanisms, (4) wavelength selection, (5) polarization effects and control, (6) laser to integrated optics coupling,(7) fiber optic waveguides to integrated optics coupling, (8) souces, (9) detectors. The best materials, technology and processes for fabrication of integrated optical components for communications and fiber gyro applications are recommended.
Investigation of semiconductor clad optical waveguides
NASA Technical Reports Server (NTRS)
Batchman, T. E.; Mcwright, G.
1981-01-01
The properties of semiconductor-clad optical waveguides based on glass substrates were investigated. Computer modeling studies on four-layer silicon-clad planar dielectric waveguides indicated that the attenuation and mode index should behave as exponentially damped sinusoids as the silicon thickness is decreased below one micrometer. This effect can be explained as a periodic coupling between the guided modes of the lossless structure and the lossy modes supported by the high refractive index silicon. The computer studies also show that both the attenuation and mode index of the propagating mode are significantly altered by conductivity charges in the silicon. Silicon claddings were RF sputtered onto AgNO3-NaNO3 ion exchanged waveguides and preliminary measurements of attenuation were made. An expression was developed which predicts the attenuation of the silicon clad waveguide from the attenuation and phase characteristics of a silicon waveguide. Several applications of these clad waveguides are suggested and methods for increasing the photo response of the RF sputtered silicon films are described.
NASA Astrophysics Data System (ADS)
Kivshar', Yu S.; Konotop, V. V.
1990-12-01
A study is made of the propagation of soliton pulses in single-mode fiber waveguides with a birefringence that gives rise to a nonlinear interaction between the polarizations and to a difference between their group velocities. It is shown that a vector soliton decays if a parameter representing the birefringence intensity exceeds a certain critical value. The case when the birefringence can be described by a random function is of special interest. It is demonstrated that fluctuations of the birefringence then split the vector solitons into separate polarizations and the characteristic distance governing such splitting is calculated analytically.
Active polarisation control of a quantum cascade laser using tuneable birefringence in waveguides.
Dhirhe, D; Slight, T J; Holmes, B M; Ironside, C N
2013-10-07
We discuss the design, modelling, fabrication and characterisation of an integrated tuneable birefringent waveguide for quantum cascade lasers. We have fabricated quantum cascade lasers operating at wavelengths around 4450 nm that include polarisation mode converters and a differential phase shift section. We employed below laser threshold electroluminescence to investigate the single pass operation of the integrated device. We use a theory based on the electro-optic properties of birefringence in quantum cascade laser waveguides combined with a Jones matrix based description to gain an understanding of the electroluminescence results. With the quantum cascade lasers operating above threshold we demonstrated polarisation control of the output.
Index matching of TE and TM modes in organic multilayer waveguides
NASA Astrophysics Data System (ADS)
Thompson, Jonathan; Schmitzer, Heidrun; Wagner, Hans Peter
We investigate transverse electric (TE) and magnetic (TM) mode propagation in organic multilayers consisting of aluminum quinoline (Alq3) and perylenetetracarboxylic dianhydride (PTCDA). In particular, we analyze two multilayer waveguides, Alq3-PTCDA-Alq3 and PTCDA-Alq3-PTCDA, engineered to give index matching according to modeling. The waveguides were grown on a glass substrate via organic molecular beam deposition. Fabry-Perot oscillations observed from reflection measurements were used to confirm the individual layer thicknesses. We were able to observe refractive index matching between TE0 and TE1, as well as TE2 and TE3 modes for the PTCDA-Alq3-PTCDA waveguide due to the light propagation through the top and bottom PTCDA layers, respectively. In addition, we were able to match TE1 and TM1, as well as TE3 and TM3 modes in the Alq3-PTCDA-Alq3 multilayer due to the birefringence of the PTCDA layer. Furthermore, we are able to create mode matching for a range of wavelengths due to the similar effective refractive index dispersion of different waveguide modes. The ability to phase match different waveguide modes opens a wide range of potential applications including polarization-insensitive propagation and mode switching by adding a thin magnetic metal film within the waveguide and applying an external magnetic field.
Suppression of Higher Order Modes in an Array of Cavities Using Waveguides
NASA Astrophysics Data System (ADS)
Shashkov, Ya. V.; Sobenin, N. P.; Bazyl, D. S.; Kaminskiy, V. I.; Mitrofanov, A. A.; Zobov, M. M.
An application of additional harmonic cavities operating at multiplies of the main RF system frequency of 400 MHz is currently under discussionin the framework of the High Luminosity LHC upgrade program [1,2]. A structure consisting of two 800 MHz single cell superconducting cavities with grooved beam pipes coupled by drift tubes has been suggested for implementation. However, it is desirable to increase the number of single cells installed in one cryomodule in order to decrease the number of transitions between "warm" and "cold" parts of the collider vacuum chamber. Unfortunately, it can lead to the appearance of higher order modes (HOM) trapped between the cavities. In order to solve this problem the methods of HOM damping with rectangular waveguides connected to the drift tubes were investigated and compared. We describe the results obtained for arrays of 2, 4 and 8 cavitiesin this paper.
Intrinsic cavity QED and emergent quasinormal modes for a single photon
NASA Astrophysics Data System (ADS)
Dong, H.; Gong, Z. R.; Ian, H.; Zhou, Lan; Sun, C. P.
2009-06-01
We propose a special cavity design that is constructed by terminating a one-dimensional waveguide with a perfect mirror at one end and doping a two-level atom at the other. We show that this atom plays the intrinsic role of a semitransparent mirror for single-photon transports such that quasinormal modes emerge spontaneously in the cavity system. This atomic mirror has its reflection coefficient tunable through its level spacing and its coupling to the cavity field, for which the cavity system can be regarded as a two-end resonator with a continuously tunable leakage. The overall investigation predicts the existence of quasibound states in the waveguide continuum. Solid-state implementations based on a dc-superconducting quantum interference device circuit and a defected line resonator embedded in a photonic crystal are illustrated to show the experimental accessibility of the generic model.
Waveguides for performing enzymatic reactions
Levene; Michael J. , Korlach; Jonas , Turner; Stephen W. , Craighead; Harold G. , Webb; Watt W.
2007-11-06
The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode wave guide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.
NASA Technical Reports Server (NTRS)
Botez, D.; Connolly, J. C.
1982-01-01
A new terraced lateral wave confining structure is obtained by liquid phase epitaxy over channeled substrates misoriented perpendicular to the channels' direction. Single spatial and longitudinal mode CW operation is achieved to 50 mW from one facet, in large spot sizes (2 x 7.5 micron, 1/e squared points in intensity) and narrow beams (6 deg x 23 deg), full width half-power). At 70 C ambient temperature CW lasing is obtained to 15 mW from one facet. Weak mode confinement in an asymmetric lateral waveguides provides discrimination against high-order mode oscillation.
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.; Weisshaar, Andreas; Li, Jian; Beheim, Glenn
1995-01-01
To determine the feasibility of coupling the output of a single-mode optical fiber into a single-mode rib waveguide in a temperature varying environment, a theoretical calculation of the coupling efficiency between the two was investigated. Due to the complex geometry of the rib guide, there is no analytical solution to the wave equation for the guided modes, thus, approximation and/or numerical techniques must be utilized to determine the field patterns of the guide. In this study, three solution methods were used for both the fiber and guide fields; the effective-index method (EIM), Marcatili's approximation, and a Fourier method. These methods were utilized independently to calculate the electric field profile of each component at two temperatures, 20 C and 300 C, representing a nominal and high temperature. Using the electric field profile calculated from each method, the theoretical coupling efficiency between an elliptical-core optical fiber and a rib waveguide was calculated using the overlap integral and the results were compared. It was determined that a high coupling efficiency can be achieved when the two components are aligned. The coupling efficiency was more sensitive to alignment offsets in the y direction than the x, due to the elliptical modal field profile of both components. Changes in the coupling efficiency over temperature were found to be minimal.
Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides.
Nguyen, Huu-Dat; Ródenas, Airán; Vázquez de Aldana, Javier R; Martínez, Javier; Chen, Feng; Aguiló, Magdalena; Pujol, Maria Cinta; Díaz, Francesc
2016-04-04
Mid-infrared lithium niobate cladding waveguides have great potential in low-loss on-chip non-linear optical instruments such as mid-infrared spectrometers and frequency converters, but their three-dimensional femtosecond-laser fabrication is currently not well understood due to the complex interplay between achievable depressed index values and the stress-optic refractive index changes arising as a function of both laser fabrication parameters, and cladding arrangement. Moreover, both the stress-field anisotropy and the asymmetric shape of low-index tracks yield highly birefringent waveguides not useful for most applications where controlling and manipulating the polarization state of a light beam is crucial. To achieve true high performance devices a fundamental understanding on how these waveguides behave and how they can be ultimately optimized is required. In this work we employ a heuristic modelling approach based on the use of standard optical characterization data along with standard computational numerical methods to obtain a satisfactory approximate solution to the problem of designing realistic laser-written circuit building-blocks, such as straight waveguides, bends and evanescent splitters. We infer basic waveguide design parameters such as the complex index of refraction of laser-written tracks at 3.68 µm mid-infrared wavelengths, as well as the cross-sectional stress-optic index maps, obtaining an overall waveguide simulation that closely matches the measured mid-infrared waveguide properties in terms of anisotropy, mode field distributions and propagation losses. We then explore experimentally feasible waveguide designs in the search of a single-mode low-loss behaviour for both ordinary and extraordinary polarizations. We evaluate the overall losses of s-bend components unveiling the expected radiation bend losses of this type of waveguides, and finally showcase a prototype design of a low-loss evanescent splitter. Developing a realistic waveguide model with which robust waveguide designs can be developed will be key for exploiting the potential of the technology.
NASA Astrophysics Data System (ADS)
He, Guobing; Gao, Yang; Xu, Yan; Ji, Lanting; Sun, Xiaoqiang; Wang, Xibin; Yi, Yunji; Chen, Changming; Wang, Fei; Zhang, Daming; Wu, Yuanda
2018-05-01
A polymer mode multiplexer based on asymmetric couplers is theoretically designed and experimentally demonstrated. The proposed X-junction coupler is formed by waveguides overlapped with different crossing angles in the vertical direction. A beam propagation method is adopted to optimize the dimensional parameters of the mode multiplexer to convert LP01 mode of two lower waveguides to LP11a and LP21a mode of the upper waveguide. The ultraviolet lithography and wet chemical etching are used in the fabrication process. A conversion ratio over 98% for both LP11a and LP21a mode in the wavelength range from 1530 to 1570 nm are experimentally demonstrated. This mode multiplexer has potential in broadband mode-division multiplexing transmission systems.
Compact cladding-pumped planar waveguide amplifier and fabrication method
Bayramian, Andy J.; Beach, Raymond J.; Honea, Eric; Murray, James E.; Payne, Stephen A.
2003-10-28
A low-cost, high performance cladding-pumped planar waveguide amplifier and fabrication method, for deployment in metro and access networks. The waveguide amplifier has a compact monolithic slab architecture preferably formed by first sandwich bonding an erbium-doped core glass slab between two cladding glass slabs to form a multi-layer planar construction, and then slicing the construction into multiple unit constructions. Using lithographic techniques, a silver stripe is deposited and formed at a top or bottom surface of each unit construction and over a cross section of the bonds. By heating the unit construction in an oven and applying an electric field, the silver stripe is then ion diffused to increase the refractive indices of the core and cladding regions, with the diffusion region of the core forming a single mode waveguide, and the silver diffusion cladding region forming a second larger waveguide amenable to cladding pumping with broad area diodes.
Design of a terahertz parametric oscillator based on a resonant cavity in a terahertz waveguide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, K., E-mail: k-saito@material.tohoku.ac.jp; Oyama, Y.; Tanabe, T.
We demonstrate ns-pulsed pumping of terahertz (THz) parametric oscillations in a quasi-triply resonant cavity in a THz waveguide. The THz waves, down converted through parametric interactions between the pump and signal waves at telecom frequencies, are confined to a GaP single mode ridge waveguide. By combining the THz waveguide with a quasi-triply resonant cavity, the nonlinear interactions can be enhanced. A low threshold pump intensity for parametric oscillations can be achieved in the cavity waveguide. The THz output power can be maximized by optimizing the quality factors of the cavity so that an optical to THz photon conversion efficiency, η{submore » p}, of 0.35, which is near the quantum-limit level, can be attained. The proposed THz optical parametric oscillator can be utilized as an efficient and monochromatic THz source.« less
Single Mode SU8 Polymer Based Mach-Zehnder Interferometer for Bio-Sensing Application
NASA Astrophysics Data System (ADS)
Boiragi, Indrajit; Kundu, Sushanta; Makkar, Roshan; Chalapathi, Krishnamurthy
2011-10-01
This paper explains the influence of different parameters to the sensitivity of an optical waveguide Mach-Zehnder Interferometer (MZI) for real time detection of biomolecules. The sensing principle is based on the interaction of evanescence field with the biomolecules that get immobilized on sensing arm. The sensitivity has been calculated by varying the sensing window length, wavelength and concentration of bio-analyte. The maximum attainable sensitivity for the preferred design is the order of 10-8 RIU at 840 nm wavelength with a sensing window length of 1cm. All the simulation work has been carried out with Opti-BPMCAD for the optimization of MZI device parameters. The SU8 polymers are used as a core and clad material to fabricate the waveguide. The refractive index of cladding layer is optimized by varying the curing temperature for a fixed time period and the achieved index difference between core and clad is Δn = 0.0151. The fabricated MZI device has been characterized with LASER beam profiler at 840 nm wavelength. This study demonstrates the effectiveness of the different parameter to the sensitivity of a single mode optical waveguide Mach-Zehnder Interferometer for bio-sensing application.
High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders
NASA Astrophysics Data System (ADS)
Tantawi, Sami G.; Tamura, Fumihiko
2000-04-01
We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.
24-Way Radial Power Combiner/Divider for 31 to 36 GHz
NASA Technical Reports Server (NTRS)
Epp, Larry; Hoppe, Daniel; Khan, Abdur; Kelley, Daniel
2008-01-01
The figure shows a prototype radial power-combining waveguide structure, capable of operation at frequencies from 31 to 36 GHz, that features an unusually large number (N = 24) of combining (input) ports. The combination of wide-band operation and large N is achieved by incorporating several enhancements over a basic radial power-combiner design. In addition, the structure can be operated as a power divider by reversing the roles of the input and output ports. In this structure, full-height waveguides at the combining ports are matched in impedance to reduced-height radial waveguides inside the combiner base. This match is effected by impedance-transforming stepped waveguide sections. This matching scheme is essential to achievement of large N because N is limited by the height of the waveguides in the base. Power is coupled from the 24 reduced- height radial waveguides into the TE01 mode of a circular waveguide in the base with the help of a matching post at the bottom of the base. ( TE signifies transverse electric, the first subscript is the azimuthal mode number, and the second subscript is the radial mode number.) More specifically, the matching post matches the reflections from the walls of the 24 reduced-height waveguides and enables the base design to exceed the bandwidth requirement. After propagating along the circular waveguide, the combined power is coupled, via a mode transducer, to a rectangular waveguide output port. The mode transducer is divided into three sections, each sized and shaped as part of an overall design to satisfy the mode-conversion and output-coupling requirements while enabling the circular waveguide to be wide enough for combining the 24 inputs over the frequency range of 31 to 36 GHz. During the design process, it was found that two different rectangular waveguide outputs could be accommodated through modification of only the first section of the mode converter, thereby enabling operation in multiple frequency ranges.
A Cryogenic Waveguide Mount for Microstrip Circuit and Material Characterization
NASA Technical Reports Server (NTRS)
U-yen, Kongpop; Brown, Ari D.; Moseley, Samuel H.; Noroozian, Omid; Wollack, Edward J.
2016-01-01
A waveguide split-block fixture used in the characterization of thin-film superconducting planar circuitry at millimeter wavelengths is described in detail. The test fixture is realized from a pair of mode converters, which transition from rectangular-waveguide to on-chip microstrip-line signal propagation via a stepped ridge-guide impedance transformer. The observed performance of the W-band package at 4.2K has a maximum in-band transmission ripple of 2dB between 1.53 and 1.89 times the waveguide cutoff frequency. This metrology approach enables the characterization of superconducting microstrip test structures as a function temperature and frequency. The limitations of the method are discussed and representative data for superconducting Nb and NbTiN thin film microstrip resonators on single-crystal Si dielectric substrates are presented.
Reversed Cherenkov-transition radiation in a waveguide partly filled with a left-handed medium
NASA Astrophysics Data System (ADS)
Alekhina, Tatiana Yu.; Tyukhtin, Andrey V.
2018-04-01
We analyze the electromagnetic field of a charged particle that moves uniformly in a circular waveguide and crosses a boundary between a vacuum area and an area filled with a left-handed medium exhibiting resonant frequency dispersion. The investigation of the waveguide mode components is performed analytically and numerically. The reversed Cherenkov radiation in the filled area of the waveguide and the reversed Cherenkov-transition radiation (RCTR) in the vacuum area are analyzed. The conditions for the excitation of RCTR are obtained. It is shown that the number of modes of RCTR is always finite; in particular, under certain conditions, the RCTR is composed of the first waveguide mode only. Plots of the typical fields of the excited waveguide mode are presented.
Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth.
Mercante, Andrew J; Shi, Shouyuan; Yao, Peng; Xie, Linli; Weikle, Robert M; Prather, Dennis W
2018-05-28
We present a thin film crystal ion sliced (CIS) LiNbO 3 phase modulator that demonstrates an unprecedented measured electro-optic (EO) response up to 500 GHz. Shallow rib waveguides are utilized for guiding a single transverse electric (TE) optical mode, and Au coplanar waveguides (CPWs) support the modulating radio frequency (RF) mode. Precise index matching between the co-propagating RF and optical modes is responsible for the device's broadband response, which is estimated to extend even beyond 500 GHz. Matching the velocities of these co-propagating RF and optical modes is realized by cladding the modulator's interaction region in a thin UV15 polymer layer, which increases the RF modal index. The fabricated modulator possesses a tightly confined optical mode, which lends itself to a strong interaction between the modulating RF field and the guided optical carrier; resulting in a measured DC half-wave voltage of 3.8 V·cm -1 . The design, fabrication, and characterization of our broadband modulator is presented in this work.
Ibanescu, Mihai; Joannopoious, John D.; Fink, Yoel; Johnson, Steven G.; Fan, Shanhui
2005-06-21
Optical components including a laser based on a dielectric waveguide extending along a waveguide axis and having a refractive index cross-section perpendicular to the waveguide axis, the refractive index cross-section supporting an electromagnetic mode having a zero group velocity for a non-zero wavevector along the waveguide axis.
Resonator modes and mode dynamics for an external cavity-coupled laser array
NASA Astrophysics Data System (ADS)
Nair, Niketh; Bochove, Erik J.; Aceves, Alejandro B.; Zunoubi, Mohammad R.; Braiman, Yehuda
2015-03-01
Employing a Fox-Li approach, we derived the cold-cavity mode structure and a coupled mode theory for a phased array of N single-transverse-mode active waveguides with feedback from an external cavity. We applied the analysis to a system with arbitrary laser lengths, external cavity design and coupling strengths to the external cavity. The entire system was treated as a single resonator. The effect of the external cavity was modeled by a set of boundary conditions expressed by an N-by-N frequency-dependent matrix relation between incident and reflected fields at the interface with the external cavity. The coupled mode theory can be adapted to various types of gain media and internal and external cavity designs.
Mode Conversion Behavior of Guided Wave in a Pipe Inspection System Based on a Long Waveguide.
Sun, Feiran; Sun, Zhenguo; Chen, Qiang; Murayama, Riichi; Nishino, Hideo
2016-10-19
To make clear the mode conversion behavior of S0-mode lamb wave and SH0-plate wave converting to the longitudinal mode guided wave and torsional mode guided wave in a pipe, respectively, the experiments were performed based on a previous built pipe inspection system. The pipe was wound with an L-shaped plate or a T-shaped plate as the waveguide, and the S0-wave and SH0-wave were excited separately in the waveguide. To carry out the objective, a meander-line coil electromagnetic acoustic transducer (EMAT) for S0-wave and a periodic permanent magnet (PPM) EMAT for SH0-wave were developed and optimized. Then, several comparison experiments were conducted to compare the efficiency of mode conversion. Experimental results showed that the T(0,1) mode, L(0,1) mode, and L(0,2) mode guided waves can be successfully detected when converted from the S0-wave or SH0-wave with different shaped waveguides. It can also be inferred that the S0-wave has a better ability to convert to the T(0,1) mode, while the SH0-wave is easier to convert to the L(0,1) mode and L(0,2) mode, and the L-shaped waveguide has a better efficiency than T-shaped waveguide.
A technique for detecting and locating polarisation nonuniformities in an anisotropic optical fibre
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdin, V V; Konstantinov, Yurii A; Pervadchuk, Vladimir P
2013-06-30
One of the most important requirements for optical fibres as waveguiding media is uniformity. Polarisation-maintaining anisotropic fibres contain a special type of nonuniformity, which leads to polarisation cross-talk: optical power is transferred from one polarisation mode to the orthogonal mode. In this paper, we report a technique for detecting and locating such nonuniformities in a PANDA anisotropic single-mode fibre using polarised reflectometry. (fiber optics)
Design and analysis of a silicon-based antiresonant reflecting optical waveguide chemical sensor
NASA Astrophysics Data System (ADS)
Remley, Kate A.; Weisshaar, Andreas
1996-08-01
The design of a silicon-based antiresonant reflecting optical waveguide (ARROW) chemical sensor is presented, and its theoretical performance is compared with that of a conventional structure. The use of an ARROW structure permits incorporation of a thick guiding region for efficient coupling to a single-mode fiber. A high-index overlay is added to fine tune the sensitivity of the ARROW chemical sensor. The sensitivity of the sensor is presented, and design trade-offs are discussed.
Superradiance for Atoms Trapped along a Photonic Crystal Waveguide
NASA Astrophysics Data System (ADS)
Goban, A.; Hung, C.-L.; Hood, J. D.; Yu, S.-P.; Muniz, J. A.; Painter, O.; Kimble, H. J.
2015-08-01
We report observations of superradiance for atoms trapped in the near field of a photonic crystal waveguide (PCW). By fabricating the PCW with a band edge near the D1 transition of atomic cesium, strong interaction is achieved between trapped atoms and guided-mode photons. Following short-pulse excitation, we record the decay of guided-mode emission and find a superradiant emission rate scaling as Γ¯SR∝N ¯Γ1 D for average atom number 0.19 ≲N ¯≲2.6 atoms, where Γ1 D/Γ'=1.0 ±0.1 is the peak single-atom radiative decay rate into the PCW guided mode, and Γ' is the radiative decay rate into all the other channels. These advances provide new tools for investigations of photon-mediated atom-atom interactions in the many-body regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayn, I.; Mouradian, S.; Li, L.
2014-11-24
A scalable approach for integrated photonic networks in single-crystal diamond using triangular etching of bulk samples is presented. We describe designs of high quality factor (Q = 2.51 × 10{sup 6}) photonic crystal cavities with low mode volume (V{sub m} = 1.062 × (λ/n){sup 3}), which are connected via waveguides supported by suspension structures with predicted transmission loss of only 0.05 dB. We demonstrate the fabrication of these structures using transferred single-crystal silicon hard masks and angular dry etching, yielding photonic crystal cavities in the visible spectrum with measured quality factors in excess of Q = 3 × 10{sup 3}.
Corrugated Waveguide Mode Content Analysis Using Irradiance Moments
Jawla, Sudheer K.; Shapiro, Michael A.; Idei, Hiroshi; Temkin, Richard J.
2015-01-01
We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture. Unlike the phase retrieval method, this method does not use or determine the phase distribution at the waveguide aperture. The new method was benchmarked numerically by comparison with sample mode mixtures. The results predict less than ±0.7% error bar in the retrieval of the mode content. The method was also tested using high-resolution experimental data from beams radiated from 63.5 mm and 19 mm corrugated waveguides at 170 and 250 GHz, respectively. The results showed a very good agreement of the mode content retrieved using the irradiance moment method versus the phase retrieval technique. The irradiance moment method is most suitable for cases where the modal power is primarily in the fundamental HE11 mode, with <8% of the power in high-order modes. PMID:25821260
NASA Astrophysics Data System (ADS)
Esayan, G. L.; Krivoshlykov, S. G.
1989-08-01
A method of coherent states is used to describe the process of Rayleigh scattering in a multimode graded-index waveguide with a quadratic refractive-index profile. Explicit expressions are obtained for the coefficients representing excitation of Gaussian-Hermite backscattering modes in two cases of practical importance: excitation of a waveguide by an extended noncoherent light source and selective excitation of different modes at the entry to a waveguide. An analysis is also made of the coefficients of coupling between forward and backward modes. Explicit expressions for the coefficients representing capture of backscattered radiation by a waveguide are obtained for two special cases of excitation (extended light source and zeroth mode).
As₂S₃-silica double-nanospike waveguide for mid-infrared supercontinuum generation.
Xie, Shangran; Tani, Francesco; Travers, John C; Uebel, Patrick; Caillaud, Celine; Troles, Johann; Schmidt, Markus A; Russell, Philip St J
2014-09-01
A double-nanospike As2S3-silica hybrid waveguide structure is reported. The structure comprises nanotapers at input and output ends of a step-index waveguide with a subwavelength core (1 μm in diameter), with the aim of increasing the in-coupling and out-coupling efficiency. The design of the input nanospike is numerically optimized to match both the diameter and divergence of the input beam, resulting in efficient excitation of the fundamental mode of the waveguide. The output nanospike is introduced to reduce the output beam divergence and the strong endface Fresnel reflection. The insertion loss of the waveguide is measured to be ∼2 dB at 1550 nm in the case of free-space in-coupling, which is ∼7 dB lower than the previously reported single-nanospike waveguide. By pumping a 3-mm-long waveguide at 1550 nm using a 60-fs fiber laser, an octave-spanning supercontinuum (from 0.8 to beyond 2.5 μm) is generated at 38 pJ input energy.
Efficient On-chip Optical Microresonator for Optical Comb Generation: Design and Fabrication
NASA Astrophysics Data System (ADS)
Han, Kyunghun
An optical frequency comb is a series of equally spaced frequency components. It has gained much attention since Nobel physics prize was awarded John L. Hall and Theodor W. Hansch for their contribution to the optical frequency comb technique in 2005. The optical frequency comb has been extensively studied because of its precision as a tool for spectroscopy, and is now widely used in bio- and chemical sensors, optical clocks, mode-locked dark pulse generation, soliton generation, and optical communication. Recently, thanks to the developments in nanotechnology, the optical frequency comb generation is made possible at a chip-scale level with microresonators. However, because the threshold power of the optical frequency comb generation is beyond the capability of the on-chip laser source, efficient microresonator is required. Here, we demonstrate an ultra-compact and highly efficient strip-slot direct mode coupler, aiming to achieve slotted silicon microresonator cladded with nonlinear polymer Poly-DDMEBT in SOI platform. As an application of the strip-slot direct mode coupling, a double slot fiber-to-chip edge coupler is demonstrated showing 2 dB insertion loss reduction compared to the conventional single tip edge coupler. For silicon nitride platform, we investigated evanescent wave coupling of microresonator, focusing on bus waveguide geometry optimization. The optimized waveguide width offers an efficient excitation of a fundamental mode in the resonator waveguide. This investigation can benefit low threshold comb generation by enhancing the extinction ratio. We experimentally demonstrated the high Q-factor micro-ring resonator with intrinsic Q of 12.6 million as well as the single FSR comb generation with 63 mW.
High power single mode 980 nm AlGaInAs/AlGaAs quantum well lasers with a very low threshold current
NASA Astrophysics Data System (ADS)
Zhen, Dong; Cuiluan, Wang; Hongqi, Jing; Suping, Liu; Xiaoyu, Ma
2013-11-01
To achieve low threshold current as well as high single mode output power, a graded index separate confinement heterostructure (GRIN-SCH) AlGaInAs/AlGaAs quantum well laser with an optimized ridge waveguide was fabricated. The threshold current was reduced to 8 mA. An output power of 76 mW was achieved at 100 mA current at room temperature, with a slope efficiency of 0.83 W/A and a horizon divergent angle of 6.3°. The maximum single mode output power of the device reached as high as 450 mW.
NASA Astrophysics Data System (ADS)
Hor, Yew Fong
2002-08-01
This thesis involves the design, fabrication and characterization of an integrated optical waveguide sensor. Prior to fabrication, design parameters of the waveguide need to be determined and optimized. The waveguide parameters such as waveguide dimension and the refractive index of the core and cladding are obtained from the single-mode cutoff frequency calculated using either analytical or numerical methods. In this thesis, details of analytical calculations to determine the cutoff frequency in terms of the waveguide parameters will be presented. The method discussed here is Marcatili's approximation. The purpose is to solve the scalar wave equation derived from Maxwell's equations because it describes the mode properties inside the waveguides. The Finite Element Method is used to simulate the electric and magnetic fields inside the waveguides and to determine the propagation characteristics in optical waveguides. This method is suited for problems involving complicated geometries and variable index of refraction. Fabrication of the Integrated Mach-Zehnder Interferometer sensor involves several important standard processes such as Chemical Vapor Deposition (CVD) for thin film fabrication, photolithography for mask transfer, and etching for ridge waveguide formation. The detailed fabrication procedures of the tested Mach-Zehnder Interferometer sensors are discussed. After completion of the sensor fabrication processes, the characterizations were carried out for the thin film of SiO2 and PSG, the waveguides and the Y-junction separately. The waveguides were analyzed to make sure that the sensors are working as expected. The experimental testing on the separated waveguide portions of the first batch Integrated Mach-Zehnder Interferometer (MZI) sensors are described. These testing procedures were also performed for the subsequent fabricated batches of the integrated MZI sensors until optimum performance is achieved. A new concept has been proposed for chemical sensing applications. The novelty of the approach is mainly based on utilizing the multi-wavelength or broadband source instead of single wavelength input to the integrated MZI. The shifting of output spectra resulting from the interference has shown the ability of the MZI to analyze the different concentrations of a chemical analyte. The sensitivity of the sensor is also determined from the plot of intensity versus concentration, which is around 0.013 (%ml)-1 and 0.007 (%ml)-l for the white light source and the 1.5 mum broadband source, respectively, while the lowest detectable concentration of ethanol for the sensor detection is around 8% using a intensity variation method and 0.6% using a peak wavelength variation method.
On-chip optical mode conversion based on dynamic grating in photonic-phononic hybrid waveguide
Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang
2015-01-01
We present a scheme for reversible and tunable on-chip optical mode conversion based on dynamic grating in a hybrid photonic-phononic waveguide. The dynamic grating is built up through the acousto-optic effect and the theoretical model of the optical mode conversion is developed by considering the geometrical deformation and refractive index change. Three kinds of mode conversions are able to be realized using the same hybrid waveguide structure in a large bandwidth by only changing the launched acoustic frequency. The complete mode conversion can be achieved by choosing a proper acoustic power under a given waveguide length. PMID:25996236
NASA Astrophysics Data System (ADS)
Garichev, V. P.; Krivoshlykov, S. G.; Jahn, I.-U.
1990-08-01
An experimental investigation was made of energy transfer between the lowest axially symmetric modes in a multimode graded-index fiber waveguide as a function of the amplitude of periodic bending of its axis. Selective excitation and detection of given modes in a waveguide was induced with the aid of synthesized holograms. The experimental curves were in satisfactory agreement with the results of a theoretical calculation and confirmed that the sensitivity of a mode to bending of the axis of a graded-index waveguide increased on increase in the mode number.
Simulation of light propagation in the thin-film waveguide lens
NASA Astrophysics Data System (ADS)
Malykh, M. D.; Divakov, D. V.; Sevastianov, L. A.; Sevastianov, A. L.
2018-04-01
In this paper we investigate the solution of the problem of modeling the propagation of electromagnetic radiation in three-dimensional integrated optical structures, such as waveguide lenses. When propagating through three-dimensional waveguide structures the waveguide modes can be hybridized, so the mathematical model of their propagation must take into account the connection of TE- and TM-mode components. Therefore, an adequate consideration of hybridization of the waveguide modes is possible only in vector formulation of the problem. An example of three-dimensional structure that hybridizes waveguide modes is the Luneburg waveguide lens, which also has focusing properties. If the waveguide lens has a radius of the order of several tens of wavelengths, its variable thickness at distances of the order of several wavelengths is almost constant. Assuming in this case that the electromagnetic field also varies slowly in the direction perpendicular to the direction of propagation, one can introduce a small parameter characterizing this slow varying and decompose the solution in powers of the small parameter. In this approach, in the zeroth approximation, scalar diffraction problems are obtained, the solution of which is less resource-consuming than the solution of vector problems. The calculated first-order corrections of smallness describe the connection of TE- and TM-modes, so the solutions obtained are weakly-hybridized modes. The formulation of problems and methods for their numerical solution in this paper are based on the authors' research on waveguide diffraction on a lens in a scalar formulation.
NASA Astrophysics Data System (ADS)
Davydova, Evgeniya I.; Drakin, A. E.; Eliseev, P. G.; Pak, G. T.; Popovichev, V. V.; Uspenskiĭ, M. B.; Khlopotin, S. E.; Shishkin, Viktor A.
1992-10-01
An optical model is constructed for a GaAlAs/GaAs stripe-geometry laser heterostructure with a ridge-waveguide configuration in the p-type emitter layer. This waveguide configuration provides lateral optical confinement. The directional characteristics of the output are found as a function of the parameters of the structure. The quantum-well active layer is in a three-layer waveguide (in a separate-confinement structure). Laser structures were fabricated experimentally by MOCVD epitaxy followed by ion-chemical etching and vacuum deposition of zinc selenide on the mesa stripes. Low-threshold lasers with a cw, single-frequency power up to 40 μW were obtained. In single-spatial-mode operation, a power up to 80 μW was achieved at a wavelength of 780 nm. Windows of ZnSe were grown on the laser facets to improve the optical strength.
Long-range propagation of plasmon and phonon polaritons in hyperbolic-metamaterial waveguides
NASA Astrophysics Data System (ADS)
Babicheva, Viktoriia E.
2017-12-01
We study photonic multilayer waveguides that include layers of materials and metamaterials with a hyperbolic dispersion (HMM). We consider the long-range propagation of plasmon and phonon polaritons at the dielectric-HMM interface in different waveguide geometries (single boundary or different layers of symmetric cladding). In contrast to the traditional analysis of geometrical parameters, we make an emphasis on the optical properties of constituent materials: solving dispersion equations, we analyze how dielectric and HMM permittivities affect propagation length and mode size of waveguide eigenmodes. We derive figures of merit that should be used for each waveguide in a broad range of permittivity values as well as compare them with plasmonic waveguides. We show that the conventional plasmonic quality factor, which is the ratio of real to imaginary parts of permittivity, is not applicable to the case of waveguides with complex structure. Both telecommunication wavelengths and mid-infrared spectral ranges are of interest considering recent advances in van der Waals materials, such as hexagonal boron nitride. We evaluate the performance of the waveguides with hexagonal boron nitride in the range where it possesses hyperbolic dispersion (wavelength 6.3-7.3 μm), and we show that these waveguides with natural hyperbolic properties have higher propagation lengths than metal-based HMM waveguides.
Linear guided waves in a hyperbolic planar waveguide. Dispersion relations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyashko, E I; Maimistov, A I
2015-11-30
We have theoretically investigated waveguide modes propagating in a planar waveguide formed by a layer of an isotropic dielectric surrounded by hyperbolic media. The case, when the optical axis of hyperbolic media is perpendicular to the interface, is considered. Dispersion relations are derived for the cases of TE and TM waves. The differences in the characteristics of a hyperbolic and a conventional dielectric waveguide are found. In particular, it is shown that in hyperbolic waveguides for each TM mode there are two cut-off frequencies and the number of propagating modes is always limited. (metamaterials)
High Performance Hermetic Package For LiNbO3 Electro-Optic Waveguide Devices
NASA Astrophysics Data System (ADS)
Preston, K. R.; Macdonald, B. M.; Harmon, R. A.; Ford, C. W.; Shaw, R. N.; Reid, I.; Davidson, J. H.; Beaumont, A. R.; Booth, R. C.
1989-02-01
A high performance fibre-tailed package for LiNbO3 electro-optic waveguide devices is described. The package is based around a hermetic metal submodule which contains no epoxy or other organic materials. The LiNbO3 chip is mounted using a soldering technique, and laser welding is used for fibre fixing to give stable, low loss optical coupling to single mode fibres. Optical reflections are minimised by the use of antireflective coatings on the fibre ends and waveguide facets. High speed electrical connections are made via coplanar glass-sealed leadthroughs to LiNb03 travelling wave devices, and packaged device operation to frequencies in excess of 4GHz is demonstrated.
Theory of absorption integrated optical sensor of gaseous materials
NASA Astrophysics Data System (ADS)
Egorov, A. A.
2010-10-01
The eigen and noneigen (leaky) modes of a three-layer planar integrated optical waveguide are described. The dispersion relation of a three-layer planar waveguide and other dependences are derived, and the cutoff conditions are analyzed. The diagram of propagation constants of the guided and radiation modes of an irregular asymmetric three-layer waveguide and the dependence of the electric field amplitudes of radiation modes of substrate on vertical coordinate in a tantalum integrated optical waveguide are presented. The operating principles of an absorption integrated optical waveguide sensor are investigated. The dependences of sensitivity of an integrated optical waveguide sensor on the sensory cell length, the coupling efficiency of the laser radiation into the waveguide, the absorption cross-section of the studied material, and the level of additive statistical noise are investigated. Some of the prospective areas of application of integrated-optical waveguide sensors are outlined.
Analysis and synthesis of (SAR) waveguide phased array antennas
NASA Astrophysics Data System (ADS)
Visser, H. J.
1994-02-01
This report describes work performed due to ESA contract No. 101 34/93/NL/PB. Started is with a literature study on dual polarized waveguide radiators, resulting in the choice for the open ended square waveguide. After a thorough description of the mode matching infinite waveguide array analysis method - including finiteness effects - that forms the basis for all further described analysis and synthesis methods, the accuracy of the analysis software is validated by comparison with measurements on two realized antennas. These antennas have centered irises in the waveguide apertures and a dielectric wide angle impedance matching sheet in front of the antenna. A synthesis method, using simulated annealing and downhill simplex, is described next and different antenna designs, based on the analysis of a single element in an infinite array environment, are presented. Next, designs of subarrays are presented. Shown is the paramount importance of including the array environment in the design of a subarray. A microstrip patch waveguide exciter and subarray feeding network are discussed and the depth of the waveguide radiator is estimated. Chosen is a rectangular grid array with waveguides of 2.5 cm depth without irises and without dielectric sheet, grouped in linear 8 elements subarrays.
Characterization of a multimode coplanar waveguide parametric amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simoen, M., E-mail: simoen@chalmers.se; Krantz, P.; Bylander, Jonas
2015-10-21
We characterize a Josephson parametric amplifier based on a flux-tunable quarter-wavelength resonator. The fundamental resonance frequency is ∼1 GHz, but we use higher modes of the resonator for our measurements. An on-chip tuning line allows for magnetic flux pumping of the amplifier. We investigate and compare degenerate parametric amplification, involving a single mode, and nondegenerate parametric amplification, using a pair of modes. We show that we reach quantum-limited noise performance in both cases.
Radiation Losses Due to Tapering of a Double-Core Optical Waveguide
NASA Technical Reports Server (NTRS)
Lyons, Donald R.; Khet, Myat; Pencil, Eric (Technical Monitor)
2001-01-01
The theoretical model we designed parameterizes the power losses as a function of .the profile shape for a tapered, single mode, optical dielectric coupler. The focus of this project is to produce a working model that determines the power losses experienced by the fibers when light crosses a taper region. This phenomenon can be examined using coupled mode theory. The optical directional coupler consists of a parallel, dual-channel, waveguide with minimal spacing between the channels to permit energy exchange. Thus, power transfer is essentially a function of the taper profile. To find the fields in the fibers, the approach used was that of solving the Helmholtz equation in cylindrical coordinates involving Bessel and modified Bessel functions depending on the location.
Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition.
Seo, Min-Kyo; Kang, Ju-Hyung; Kim, Myung-Ki; Ahn, Byeong-Hyeon; Kim, Ju-Young; Jeong, Kwang-Yong; Park, Hong-Gyu; Lee, Yong-Hee
2009-04-13
A wavelength-scale cavity is generated by printing a carbonaceous nano-block on a photonic-crystal waveguide. The nanometer-size carbonaceous block is grown at a pre-determined region by the electron-beam-induced deposition method. The wavelength-scale photonic-crystal cavity operates as a single mode laser, near 1550 nm with threshold of approximately 100 microW at room temperature. Finite-difference time-domain computations show that a high-quality-factor cavity mode is defined around the nano-block with resonant wavelength slightly longer than the dispersion-edge of the photonic-crystal waveguide. Measured near-field images exhibit photon distribution well-localized in the proximity of the printed nano-block. Linearly-polarized emission along the vertical direction is also observed.
Filtering effect of SiO2 optical waveguide ring resonator applied to optoelectronic oscillator.
Chen, Jiamin; Zheng, Yongqiu; Xue, Chenyang; Zhang, Chengfei; Chen, Yi
2018-05-14
Single-mode oscillation is crucial to the practicality of optoelectronic oscillator (OEO). Due to the limited by bandwidth and precision of radio frequency (RF) filters, it is difficult to be achieved for the OEO based on the long fiber-optic delay line. So instead of the long fiber-optic delay line, SiO 2 optical waveguide ring resonator (OWRR) with high-Q and mode selection is first presented to be applied to OEO. The OEOs based on the minimum loop and SiO 2 OWRR are constructed. The oscillation characteristics of the minimum loop OEO and the transmission characteristics of the SiO 2 OWRR are simulated by MATLAB, respectively. The filtering effect of the SiO 2 OWRR applied to the OEO is verified theoretically by comparing these simulation results. Subsequently, the contrastive experiments of the above two OEOs on oscillation modes are carried out. The oscillation mode spacing of 40.32 MHz and 2.137 GHz are obtained. These results show that the SiO 2 OWRR can function as an excellent 'filter' in the minimum loop of the OEO. Moreover, the side mode suppression ratio and the phase noise of the OEO have been improved. Our experimental results demonstrate that the OEO adopting SiO 2 OWRR is feasible to achieve the single-mode oscillation and obtain better performance microwave signals.
Multichannel waveguides for the simultaneous detection of disease biomarkers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukundan, Harshini; Price, Dominique Z; Grace, Wynne K
2009-01-01
The sensor team at the Los Alamos National Laboratory has developed a waveguide-based optical biosensor that has previously been used for the detection of biomarkers associated with diseases such as tuberculosis, breast cancer, anthrax and influenza in complex biological samples (e.g., serum and urine). However, no single biomarker can accurately predict disease. To address this issue, we developed a multiplex assay for the detection of components of the Bacillus anthracis lethal toxin on single mode planar optical waveguides with tunable quantum dots as the fluorescence reporter. This limited ability to multiplex is still insufficient for accurate detection of disease ormore » for monitoring prognosis. In this manuscript, we demonstrate for the first time, the design, fabrication and successful evaluation of a multichannel planar optical waveguide for the simultaneous detection of at least three unknown samples in quadruplicate. We demonstrate the simultaneous, rapid (30 min), quantitative (with internal standard) and sensitive (limit of detection of 1 pM) detection of protective antigen and lethal factor of Bacillus anthracis in complex biological samples (serum) using specific monoclonal antibodies labeled with quantum dots as the fluorescence reporter.« less
Quantum State Transfer via Noisy Photonic and Phononic Waveguides
NASA Astrophysics Data System (ADS)
Vermersch, B.; Guimond, P.-O.; Pichler, H.; Zoller, P.
2017-03-01
We describe a quantum state transfer protocol, where a quantum state of photons stored in a first cavity can be faithfully transferred to a second distant cavity via an infinite 1D waveguide, while being immune to arbitrary noise (e.g., thermal noise) injected into the waveguide. We extend the model and protocol to a cavity QED setup, where atomic ensembles, or single atoms representing quantum memory, are coupled to a cavity mode. We present a detailed study of sensitivity to imperfections, and apply a quantum error correction protocol to account for random losses (or additions) of photons in the waveguide. Our numerical analysis is enabled by matrix product state techniques to simulate the complete quantum circuit, which we generalize to include thermal input fields. Our discussion applies both to photonic and phononic quantum networks.
Effects of design geometry on SU8 polymer waveguides
NASA Astrophysics Data System (ADS)
Holland, Anthony S.; Balkunje, Vishal S.; Mitchell, Arnan; Austin, Michael W.; Raghunathan, Mukund K.; Kostovski, Gorgi
2005-02-01
The spin-on photoresist SU8 from MicroChem has a relatively high refractive index (n=1.57 at 1550nm) compared with other polymers. It is stable and has high optical transmission at optical communication wavelengths. In this paper we study rib waveguides fabricated using SU8 as the core layer and thermoset polymers UV15 (n=1.50 at 1550nm) from Master Bond and NOA61 (n=1.54 at 1550nm) from Gentec as the cladding layers. The rib height is varied from 0.3 to 1.7μm high. This is part of the SU8 layer sandwiched between the cladding layers. The waveguides are tested to determine the effects of varying this geometry for single mode optical transmission. The lengths of the waveguides were 1.5 cm to 5 cm.
NASA Astrophysics Data System (ADS)
Sun, DeGui
2013-09-01
In a silicon-on-insulator (SOI) waveguide corner mirror (WCM) structure, with the quantum process of a frustrated total internal reflection (FTIR) phenomenon and the time delay principle in the two-dimensional potential barrier tunneling process of a mass of particles, we derive an accurate physical model for the Goos-Hanchen (GH) shift of optical guided-mode in the FTIR process, and in principle match the GH shift jumping states with the independent guided-modes. Then, we propose and demonstrate a new regime of 1 × N digital optical switches with a matching state between the free-carrier dispersion (FCD) based refractive index modulation (RIM) of silicon to create a GH shift jumping function of a photonic signal at the reflecting interface and the independent guided-modes in the FTIR process, where a MOS-capacitor type electro-optic modulation regime is proposed and discussed to realize an effective FCD-based RIM. At the critical matching state, i.e., the incident of an optical beam is at the vicinity of Brewster angle in the WCM, a mini-change of refractive index of waveguide material can cause a great jump of GH shift along the FTIR reflecting interface, and further a 1 × N digital optical switching process could be realized. For a 350-500 nm single-mode rib waveguide made on the 220 nm CMOS-compatible SOI substrate and with the FCD effect based RIM of silicon crystal, a concentration variation of 1018-1019 cm-3 has caused a 0.5-2.5 μm GH shift of reflected beam, which is at 2-5 times of a mode-size and hence radically convinces an optical switching function with a 1 × 3-1 × 10 scale.
FIBER AND INTEGRATED OPTICS: Waveguide characteristics of real optical strip waveguides
NASA Astrophysics Data System (ADS)
Shmal'ko, A. V.; Frolov, V. V.
1990-01-01
A study is reported of the influence of the parameters of real thin-film optical strip waveguides on their waveguide characteristics (propagation constants, localization of the mode field, etc.) allowing for the presence of transition layers in a transverse cross section of the base planar waveguide, for the real geometry of this section (which is nearly trapezoidal), and for the thickness of the guiding strip. Analytic expressions are obtained for the optical confinement coefficient and the effective mode format of a weakly guiding symmetric strip waveguide. It is shown that the coefficient representing the fundamental E11x(y) mode is practically independent of the relative thickness t /h (h is the thickness of the base planar waveguide) of the guiding strip provided t /h>=0.5. The corrections to the normalized effective refractive indices of the base planar and strip waveguides are found in order to allow for the real geometry and for the refractive index profile in the strip waveguide.
Flip-chip light emitting diode with resonant optical microcavity
Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.
2005-11-29
A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.
Copper nanorod array assisted silicon waveguide polarization beam splitter.
Kim, Sangsik; Qi, Minghao
2014-04-21
We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology.
NASA Astrophysics Data System (ADS)
Belovolov, M. I.; Vitrik, O. B.; Dianov, Evgenii M.; Kulchin, Yurii N.; Obukh, V. F.
1989-11-01
An investigation was made of modulation of the phase and polarization of modes in a few-mode fiber waveguide subjected to axial deformation. The simplest and most convenient (for analysis) controlled interference pattern was obtained on addition, at the exit from a waveguide, of the fields of two modes of different order or of components of two orthogonally polarized waves of the same mode when an additional phase shift between these waves was induced by deformation. The two investigated schemes were suitable for the construction of simple and highly sensitive sensors capable of detecting small strains with characteristics which could be varied by suitable selection of the waveguide parameters and of the signal processing method.
Cao, Cong; Duan, Yu-Wen; Chen, Xi; Zhang, Ru; Wang, Tie-Jun; Wang, Chuan
2017-07-24
Quantum router is a key element needed for the construction of future complex quantum networks. However, quantum routing with photons, and its inverse, quantum decoupling, are difficult to implement as photons do not interact, or interact very weakly in nonlinear media. In this paper, we investigate the possibility of implementing photonic quantum routing based on effects in cavity quantum electrodynamics, and present a scheme for single-photon quantum routing controlled by the other photon using a hybrid system consisting of a single nitrogen-vacancy (NV) center coupled with a whispering-gallery-mode resonator-waveguide structure. Different from the cases in which classical information is used to control the path of quantum signals, both the control and signal photons are quantum in our implementation. Compared with the probabilistic quantum routing protocols based on linear optics, our scheme is deterministic and also scalable to multiple photons. We also present a scheme for single-photon quantum decoupling from an initial state with polarization and spatial-mode encoding, which can implement an inverse operation to the quantum routing. We discuss the feasibility of our schemes by considering current or near-future techniques, and show that both the schemes can operate effectively in the bad-cavity regime. We believe that the schemes could be key building blocks for future complex quantum networks and large-scale quantum information processing.
Novel Waveguide Architectures for Light Sources in Silicon Photonics
NASA Astrophysics Data System (ADS)
Tummidi, Ravi Sekhar
Of the many challenges which are threatening to derail the success trend set by Moore's Law, perhaps the most prominent one is the "Interconnect Bottleneck". The metallic interconnections which carry inter-chip and intra-chip signals are increasingly proving to be inadequate to carry the enormous amount of data due to band-width limitations, cross talk and increased latency. A silicon based optical interconnect is showing enormous promise to address this issue in a cost effective manner by leveraging the extremely matured CMOS fabrication infrastructure. An optical interconnect system consists of a low loss waveguide, modulator, photo detector and a light source. Of these the only component yet to be demonstrated in silicon is a CMOS compatible electrically pumped silicon based laser. The present work is our endeavor towards the goal of a practical light source in silicon. To this end we have focused our efforts on horizontal slot waveguide which consists of a nm thin low index silica layer sandwiched between two high index silicon layers. Such a structure provides an exceptionally high confinement for the TM-like mode in the thin silica slot. The shallow ridge profile of the waveguide allows in principle for lateral electrical access to the core of the waveguide for excitation of the slot embedded gain material like erbium or nano-crystal sensitized erbium using tunneling, polarization transfer or transport. Low losses in the proposed structure are paramount due to the low gain expectation (˜1dB/cm) from CMOS compatible gain media. This dissertation details the novel techniques conceived to mitigate the severe lateral radiation leakage loss of the TM-like mode in these waveguides and resonators using "Magic Widths" and "Magic Radii" designs. New fabrication techniques are discussed which were developed to achieve ultra-smooth waveguide surfaces to substantially reduce the scattering induced losses in the Silicon-on-Insulator (SOI) high index contrast system. This enabled us to achieve resonators with Qs of 1.6x106 for the TE-like mode in non-slot configurations and 3x105 for the TM-like mode in full slot configuration, the highest yet reported for this type of structure and close to our design requirements for a laser. Erbium was incorporated into the silica slot just 8.3 nm thick and photoluminescence was observed in full waveguide configuration. A simple phenomenological model based on spontaneous emission into a waveguide mode was developed, which predicted >10x Purcell enhancement of the luminescence decay in these slot waveguides even in the absence of a resonator, a result also yielded by a rigorous quantum electrodynamic analysis. These enhanced spontaneous emission rates were experimentally verified using time resolved photoluminescence decay and luminescence power measurements. The results so far indicate that these slot structures could be the enablers for very efficient LEDs due to the highly preferential characteristic of the spontaneous emission to go into the single guided mode. The future goal will be to harness this behavior for novel silicon photonic light sources.
Optical properties of new wide heterogeneous waveguides with thermo optical shifters.
De Leonardis, Francesco; Tsarev, Andrei V; Passaro, Vittorio M
2008-12-22
We present analysis and simulation of novel silicon-on-insulator (SOI) heterogeneous waveguides with thermo-optic phase shifters. New structure design contains a p-n junction on both sides of SOI ridge waveguide with 220 nm x 35 microm silicon core. Strongly mode-dependent optical losses (by additional free charge absorption) provide quasi-singe-mode behavior of wide waveguide with mode size approximately 10 microm. Local heater produces an efficient phase shifting by small temperature increase (DeltaT approximately 2K), switching power (< 40 mW) and switching time (< 10 micros). Mode optical losses are significantly decreased at high heating (DeltaT approximately 120 K).
Waves in a plane graphene - dielectric waveguide structure
NASA Astrophysics Data System (ADS)
Evseev, Dmitry A.; Eliseeva, Svetlana V.; Sementsov, Dmitry I.
2017-10-01
The features of the guided TE modes propagation have been investigated on the basis of computer simulations in a planar structure consisting of a set of alternating layers of dielectric and graphene. Within the framework of the effective medium approximation, the dispersion relations have been received for symmetric and antisymmetric waveguide modes, determined by the frequency range of their existence. The wave field distribution by structure, frequency dependences of the constants of propagation and transverse components of the wave vectors, as well as group and phase velocities of waveguide modes have been obtained, the effect of the graphene part in a structure on the waveguide mode behavior has been shown.
Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers.
Ben Bakir, B; Descos, A; Olivier, N; Bordel, D; Grosse, P; Augendre, E; Fulbert, L; Fedeli, J M
2011-05-23
We report the first demonstration of an electrically driven hybrid silicon/III-V laser based on adiabatic mode transformers. The hybrid structure is formed by two vertically superimposed waveguides separated by a 100-nm-thick SiO2 layer. The top waveguide, fabricated in an InP/InGaAsP-based heterostructure, serves to provide optical gain. The bottom Si-waveguides system, which supports all optical functions, is constituted by two tapered rib-waveguides (mode transformers), two distributed Bragg reflectors (DBRs) and a surface-grating coupler. The supermodes of this hybrid structure are controlled by an appropriate design of the tapers located at the edges of the gain region. In the middle part of the device almost all the field resides in the III-V waveguide so that the optical mode experiences maximal gain, while in regions near the III-V facets, mode transformers ensure an efficient transfer of the power flow towards Si-waveguides. The investigated device operates under quasi-continuous wave regime. The room temperature threshold current is 100 mA, the side-mode suppression ratio is as high as 20 dB, and the fiber-coupled output power is ~7 mW.
Selection of lasing direction in single mode semiconductor square ring cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jin-Woong; Kim, Kyoung-Youm; Moon, Hee-Jong
We propose and demonstrate a selection scheme of lasing direction by imposing a loss imbalance structure into the single mode square ring cavity. The control of the traveling direction is realized by introducing a taper-step section in one of the straight waveguides of the square ring cavity. It was shown by semi-analytic calculation that the taper-step section in the cavity provides effective loss imbalance between two travelling directions as the round trip repeats. Various kinds of square cavities were fabricated using InGaAsP/InGaAs multiple quantum well semiconductor materials in order to test the direction selectivity while maintaining the single mode. Wemore » also measured the pump power dependent lasing spectra to investigate the maintenance property of the lasing direction. The experimental results demonstrated that the proposed scheme is an efficient means for a unidirectional lasing in a single mode laser.« less
NASA Astrophysics Data System (ADS)
Sun, Chengwei; Rong, Kexiu; Gan, Fengyuan; Chu, Saisai; Gong, Qihuang; Chen, Jianjun
2017-09-01
Polarization beam splitters (PBSs) are one of the key components in the integrated photonic circuits. To increase the integration density, various complex hybrid plasmonic structures have been numerically designed to shrink the footprints of the PBSs. Here, to decrease the complexity of the small hybrid structures and the difficulty of the hybrid micro-nano fabrications, the radiation losses are utilized to experimentally demonstrate an ultra-small, broadband, and efficient PBS in a simple bending hybrid plasmonic waveguide structure. The hybrid plasmonic waveguide comprising a dielectric strip on the metal surface supports both the transverse-magnetic (TM) and transverse-electric (TE) waveguide modes. Because of the different field confinements, the TE waveguide mode has larger radiation loss than the TM waveguide mode in the bending hybrid strip waveguide. Based on the different radiation losses, the two incident waveguide modes of orthogonal polarization states are efficiently split in the proposed structure with a footprint of only about 2.2 × 2.2 μm2 on chips. Since there is no resonance or interference in the splitting process, the operation bandwidth is as broad as Δλ = 70 nm. Moreover, the utilization of the strongly confined waveguide modes instead of the bulk free-space light (with the spot size of at least a few wavelengths) as the incident source considerably increases the coupling efficiency, resulting in a low insertion loss of <3 dB.
NASA Technical Reports Server (NTRS)
Park, A.; Dominek, A. K.
1990-01-01
Constitutive parameter extraction from S parameter data using a rectangular waveguide whose cross section is partially filled with a material sample as opposed to being completely filled was examined. One reason for studying a partially filled geometry is to analyze the effect of air gaps between the sample and fixture for the extraction of constitutive parameters. Air gaps can occur in high temperature parameter measurements when the sample was prepared at room temperature. Single port and two port measurement approaches to parameter extraction are also discussed.
Crab Cavity and Cryomodule Prototype Development for the Advanced Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H; Ciovati, G; Clemens, W A
2011-03-01
We review the single-cell, superconducting crab cavity designs for the short-pulse x-ray (SPX) project at the Advanced Photon Source (APS). The 'on-cell' waveguide scheme is expected to have a more margin for the impedance budget of the APS storage ring, as well as offering a more compact design compared with the original design consisting of a low order mode damping waveguide on the beam pipe. We will report recent fabrication progress, cavity test performance on original and alternate prototypes, and concept designs and analysis for various cryomodule components.
Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers
NASA Astrophysics Data System (ADS)
Xu, Lin; Chen, Xia; Li, Chao; Tsang, Hon Ki
2011-04-01
We propose and demonstrate a bi-wavelength two dimensional (2D) waveguide grating coupler on silicon-on-insulator which has efficient coupling of optical light with two-wavelength bands independently between standard optical single mode fibers and nanophotonic waveguides. The details of design are described and the measurement results as well as system performance are experimentally characterized. The bi-wavelength grating coupler can be used as wavelength-division-multiplexing (WDM) splitter/combiner for monolithically silicon integrated transceivers, potentially meeting the low cost requirements for future WDM passive optical network (PON).
Distributed-feedback Terahertz Quantum-cascade Lasers with Laterally Corrugated Metal Waveguides
NASA Technical Reports Server (NTRS)
Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.
2005-01-01
We report the demonstration of distributed-feedback terahertz quantum-cascade lasers based on a first-order grating fabricated via a lateral corrugation in a double-sided metal ridge waveguide. The phase of the facet reflection was precisely set by lithographically defined facets by dry etching. Single-mode emission was observed at low to moderate injection currents, although multimode emission was observed far beyond threshold owing to spatial hole burning. Finite-element simulations were used to calculate the modal and threshold characteristics for these devices, with results in good agreement with experiments.
Femtosecond-laser-written Tm:KLu(WO4)2 waveguide lasers.
Kifle, Esrom; Mateos, Xavier; de Aldana, Javier Rodríguez Vázquez; Ródenas, Airan; Loiko, Pavel; Choi, Sun Yung; Rotermund, Fabian; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc
2017-03-15
Depressed-index channel waveguides with a circular and photonic crystal cladding structures are prepared in a bulk monoclinic Tm:KLu(WO4)2 crystal by 3D direct femtosecond laser writing. The channel waveguide structures are characterized and laser operation is achieved using external mirrors. In the continuous-wave mode, the maximum output power of 46 mW is achieved at 1912 nm corresponding to a slope efficiency of 15.2% and a laser threshold of only 21 mW. Passive Q-switching of a waveguide with a circular cladding is realized using single-walled carbon nanotubes. Stable 7 nJ/50 ns pulses are achieved at a repetition rate of 1.48 MHz. This first demonstration of ∼2 μm fs-laser-written waveguide lasers based on monoclinic double tungstates is promising for further lasers of this type doped with Tm3+ and Ho3+ ions.
Thermocapillary Technique for Shaping and Fabricating Optical Ribbon Waveguides
NASA Astrophysics Data System (ADS)
Fiedler, Kevin; Troian, Sandra
The demand for ever increasing bandwidth and higher speed communication has ushered the next generation optoelectronic integrated circuits which directly incorporate polymer optical waveguide devices. Polymer melts are very versatile materials which have been successfully cast into planar single- and multimode waveguides using techniques such as embossing, photolithography and direct laser writing. In this talk, we describe a novel thermocapillary patterning method for fabricating waveguides in which the free surface of an ultrathin molten polymer film is exposed to a spatially inhomogeneous temperature field via thermal conduction from a nearby cooled mask pattern held in close proximity. The ensuring surface temperature distribution is purposely designed to pool liquid selectively into ribbon shapes suitable for optical waveguiding, but with rounded and not rectangular cross sectional areas due to capillary forces. The solidified waveguide patterns which result from this non-contact one step procedure exhibit ultrasmooth interfaces suitable for demanding optoelectronic applications. To complement these studies, we have also conducted finite element simulations for quantifying the influence of non-rectangular cross-sectional shapes on mode propagation and losses. Kf gratefully acknowledges support from a NASA Space Technology Research Fellowship.
Multi-layer topological transmissions of spoof surface plasmon polaritons.
Pan, Bai Cao; Zhao, Jie; Liao, Zhen; Zhang, Hao Chi; Cui, Tie Jun
2016-03-04
Spoof surface plasmon polaritons (SPPs) in microwave frequency provide a high field confinement in subwavelength scale and low-loss and flexible transmissions, which have been widely used in novel transmission waveguides and functional devices. To play more important roles in modern integrated circuits and systems, it is necessary and helpful for the SPP modes to propagate among different layers of devices and chips. Owing to the highly confined property and organized near-field distribution, we show that the spoof SPPs could be easily transmitted from one layer into another layer via metallic holes and arc-shaped transitions. Such designs are suitable for both the ultrathin and flexible single-strip SPP waveguide and double-strip SPP waveguide for active SPP devices. Numerical simulations and experimental results demonstrate the broadband and high-efficiency multi-layer topological transmissions with controllable absorption that is related to the superposition area of corrugated metallic strips. The transmission coefficient of single-strip SPP waveguide is no worse than -0.8 dB within frequency band from 2.67 GHz to 10.2 GHz while the transmission of double-strip SPP waveguide keeps above -1 dB within frequency band from 2.26 GHz to 11.8 GHz. The proposed method will enhance the realizations of highly complicated plasmonic integrated circuits.
FIBER AND INTEGRATED OPTICS: Propagation of radiation in a light-induced active waveguide
NASA Astrophysics Data System (ADS)
Afanas'ev, Anatolii A.; Samson, B. A.; Drits, V. V.; Yukhimenko, S. I.; Yakite, R. V.
1990-10-01
An investigation is reported of the properties of the normal modes of an active light-induced waveguide. It is shown that, in contrast to a dielectric waveguide, the presence of the active component may increase considerably the number of the normal modes and the angles of their scattering. In the case of an active light-induced waveguide in the form of a thin filament the normal modes exist and are amplified only in the case when the nonlinear correction to the refractive index is positive.
Subwavelength hybrid terahertz waveguides.
Nam, Sung Hyun; Taylor, Antoinette J; Efimov, Anatoly
2009-12-07
We introduce and present general properties of hybrid terahertz waveguides. Weakly confined Zenneck waves on a metal-dielectric interface at terahertz frequencies can be transformed to a strongly confined yet low-loss subwavelength mode through coupling with a photonic mode of a nearby high-index dielectric strip. We analyze confinement, attenuation, and dispersion properties of this mode. The proposed design is suitable for planar integration and allows easy fabrication on chip scale. The superior waveguiding properties at terahertz frequencies could enable the hybrid terahertz waveguides as building blocks for terahertz integrated circuits.
Discrete mode lasers for communications applications
NASA Astrophysics Data System (ADS)
Barry, L. P.; Herbert, C.; Jones, D.; Kaszubowska-Anandarajah, A.; Kelly, B.; O'Carroll, J.; Phelan, R.; Anandarajah, P.; Shi, K.; O'Gorman, J.
2009-02-01
The wavelength spectra of ridge waveguide Fabry Perot lasers can be modified by perturbing the effective refractive index of the guided mode along very small sections of the laser cavity. One way of locally perturbing the effective index of the lasing mode is by etching features into the ridge waveguide such that each feature has a small overlap with the transverse field profile of the unperturbed mode, consequently most of the light in the laser cavity is unaffected by these perturbations. A proportion of the propagating light is however reflected at the boundaries between the perturbed and the unperturbed sections. Suitable positioning of these interfaces allows the mirror loss spectrum of a Fabry Perot laser to be manipulated. In order to achieve single longitudinal mode emission, the mirror loss of a specified mode must be reduced below that of the other cavity modes. Here we review the latest results obtained from devices containing such features. These results clearly demonstrate that these devices exceed the specifications required for a number of FTTH and Datacomms applications, such as GEPON, LX4 and CWDM. As well as this we will also present initial results on the linewidth of these devices.
Nano-optical imaging of WS e 2 waveguide modes revealing light-exciton interactions
Fei, Z.; Scott, M. E.; Gosztola, D. J.; ...
2016-08-01
We report on a nano-optical imaging study of WSe 2 thin flakes with scanning near-field optical microscopy (NSOM). The NSOM technique allows us to visualize in real space various waveguide photon modes inside WSe 2. By tuning the excitation laser energy, we are able to map the entire dispersion of these waveguide modes both above and below the A exciton energy of WSe 2. We found that all the modes interact strongly with WSe 2 excitons. The outcome of the interaction is that the observed waveguide modes shift to higher momenta right below the A exciton energy. At higher energies,more » on the other hand, these modes are strongly damped due to adjacent B excitons or band-edge absorptions. Lastly, the mode-shifting phenomena are consistent with polariton formation in WSe 2.« less
Fabrication of optical waveguides using laser direct writing method
NASA Astrophysics Data System (ADS)
Cho, Sung H.; Kim, Jung Min; Kim, Jae G.; Chang, Won S.; Lee, Eung S.
2004-09-01
Laser direct writing (LDW) process is developed using 3-rd harmonic Diode Pumped Solid State Laser (DPSSL) with the near UV wavelength of 355 nm. Photo-sensitive curable polymer is irradiated by UV laser and developed using polymer solvent to obtain quasi-3D patterns. We performed basic experiments for the various process conditions such as laser power, writing speed, laser focus, and optical polymer property to get the optimal conditions. This process could be applied to fabricate a single-mode waveguide without expensive mask projection method. Experimentally, the patterns of trapezoidal shape were manufactured into dimension of 8.4μm width and 7.5μm height. Propagation loss of planar waveguide was 1.42 dB/cm at wavelength of 1,550 nm.
Multilayered photonic integration on SOI platform using waveguide-based bridge structure
NASA Astrophysics Data System (ADS)
Majumder, Saikat; Chakraborty, Rajib
2018-06-01
A waveguide based structure on silicon on insulator platform is proposed for vertical integration in photonic integrated circuits. The structure consists of two multimode interference couplers connected by a single mode (SM) section which can act as a bridge over any other underlying device. Two more SM sections acts as input and output of the first and second multimode couplers respectively. Potential application of this structure is in multilayered photonic links. It is shown that the efficiency of the structure can be improved by making some design modifications. The entire simulation is done using effective-index based matrix method. The feature size chosen are comparable to waveguides fabricated previously so as to fabricate the proposed structure easily.
Optical Waveguides Written in Silicon with Femtosecond Laser
NASA Astrophysics Data System (ADS)
Pavlov, Ihor; Tokel, Onur; Pavlova, Svitlana; Kadan, Viktor; Makey, Ghaith; Turnali, Ahmed; Ilday, Omer
Silicon is one of the most widely used materials in modern technology, ranging from electronics and Si-photonics to microfluidic and sensor applications. Despite the long history of Si-based devices, and the strong demand for opto-electronical integration, 3D Si laser processing technology is still challenging. Recently, nanosecond-pulsed laser was used to fabricate embedded holographic elements in Si. However, until now, there was no demonstration of femtosecond-laser-written optical elements inside Si. In this paper, we present optical waveguides written deep inside Si with 1.5 um femtosecond laser. The laser beam, with 2 uJ pulse energy and 350 fs pulse duration focused inside Si sample, produces permanent modification of Si. By moving the lens along the beam direction we were able to produce optical waveguides up to 5 mm long. The diameter of the waveguide is measured to be 10 um. The waveguides were characterized with both optical shadowgraphy and far field imaging after CW light coupling. We observed nearly single mode propagation of light inside of the waveguide. The obtained difference of refractive index inside of the waveguide, is 2.5*10-4. TUBITAK Grant 113M930, TUBITAK Grant 114F256.
Lu, Zhaolin; Prather, Dennis W
2004-08-01
We present a method for parallel coupling from a single-mode fiber, or fiber ribbon, into a silicon-on-insulator waveguide for integration with silicon optoelectronic circuits. The coupler incorporates the advantages of the vertically tapered waveguides and prism couplers, yet offers the flexibility of planar integration. The coupler can be fabricated by use of either wafer polishing technology or gray-scale photolithography. When optimal coupling is achieved in our experimental setup, the coupler can be packaged by epoxy bonding to form a fiber-waveguide parallel coupler or connector. Two-dimensional electromagnetic calculation predicts a coupling efficiency of 77% (- 1.14-dB insertion loss) for a silicon-to-silicon coupler with a uniform tunnel layer. The coupling efficiency is experimentally achieved to be 46% (-3.4-dB insertion loss), excluding the loss in silicon and the reflections from the input surface and the output facet.
Copper nanorod array assisted silicon waveguide polarization beam splitter
Kim, Sangsik; Qi, Minghao
2014-01-01
We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology. PMID:24787839
Mode conversion in metal-insulator-metal waveguide with a shifted cavity
NASA Astrophysics Data System (ADS)
Wang, Yueke; Yan, Xin
2018-01-01
We propose a method, which is utilized to achieve the plasmonic mode conversion in metal-insulator-metal (MIM) waveguide, theoretically. Our proposed structure is composed of bus waveguides and a shifted cavity. The shifted cavity can choose out a plasmonic mode (a- or s-mode) when it is in Fabry-Perot (FP) resonance. The length of the shifted cavity L is carefully chosen, and our structure can achieve the mode conversion between a- and s-mode in the communication region. Besides, our proposed structure can also achieve plasmonic mode-division multiplexing. All the numerical simulations are carried on by the finite element method to verify our design.
Atom detection and photon production in a scalable, open, optical microcavity.
Trupke, M; Goldwin, J; Darquié, B; Dutier, G; Eriksson, S; Ashmore, J; Hinds, E A
2007-08-10
A microfabricated Fabry-Perot optical resonator has been used for atom detection and photon production with less than 1 atom on average in the cavity mode. Our cavity design combines the intrinsic scalability of microfabrication processes with direct coupling of the cavity field to single-mode optical waveguides or fibers. The presence of the atom is seen through changes in both the intensity and the noise characteristics of probe light reflected from the cavity input mirror. An excitation laser passing transversely through the cavity triggers photon emission into the cavity mode and hence into the single-mode fiber. These are first steps toward building an optical microcavity network on an atom chip for applications in quantum information processing.
Screech Tones of Supersonic Jets from Bevelled Rectangular Nozzles
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Shen, Hao; Raman, Ganesh
1997-01-01
It is known experimentally that an imperfectly expanded rectangular jet from a thin-lip convergent nozzle emits only a single dominant screech tone. The frequency of the screech tone decreases continuously with increase in jet Mach number. However, for a supersonic jet issued from a bevelled nozzle or a convergent-divergent nozzle with straight side walls, the shock cell structure and the screech frequency pattern are fairly complicated and have not been predicted before. In this paper, it is shown that the shock cell structures of these jets can be decomposed into waveguide modes of the jet flow. The screech frequencies are related to the higher-order waveguide modes following the weakest-link screech tone theory. The measured screech frequencies are found to compare well with the predicted screech frequency curves.
Optical clock signal distribution and packaging optimization
NASA Astrophysics Data System (ADS)
Wu, Linghui
Polymer-based waveguides for optoelectronic interconnects and packagings were fabricated by a fabrication process that is compatible with the Si CMOS packaging process. An optoelectronic interconnection layer (OIL) for the high-speed massive clock signal distribution for the Cray T-90 supercomputer board employing optical multimode channel waveguides in conjunction with surface-normal waveguide grating couplers and a 1-to-2 3 dB splitter was constructed. Equalized optical paths were realized using an optical H-tree structure having 48 optical fanouts. This device could be increased to 64 without introducing any additional complications. A 1-to-48 fanout H-tree structure using Ultradel 9000D series polyimide was fabricated. The propagation loss and splitting loss have been measured as 0.21 dB/cm and 0.4 dB/splitter at 850 nm. The power budget was discussed, and the H-tree waveguide fully satisfies the power budget requirement. A tapered waveguide coupler was employed to match the mode profile between the single-mode fiber and the multimode channel waveguides of the OIL. A thermo-optical based multimode switch was designed, fabricated, and tested. The finite difference method was used to simulate the thermal distribution in the polymer waveguide. Both stable and transient conditions have been calculated. The thermo-optical switch was fabricated and tested. The switching speed of 1 ms was experimentally confirmed, fitting well with the simulation results. Thermo-optic switching for randomly polarized light at wavelengths of 850 nm was experimental confirmed, as was a stable attenuation of 25 dB. The details of tapered waveguide fabrication were investigated. Compression-molded 3-D tapered waveguides were demonstrated for the first time. Not only the vertical depth variation but also the linear dimensions of the molded waveguides were well beyond the limits of what any other conventional waveguide fabrication method is capable of providing. Molded waveguides with vertical depths of 100 mum at one end and 5 mum at the other end and lengths of 1.0 cm were fabricated using a photolime gel polymer. A propagation loss of 0.5 dB/cm was achieved when light was coupled from the 5 mum x 5 mum end to the 100 mum x 100 mum end and that of 1.1 dB/cm was observed when light was coupled from the 100 mum x 100 mum end to the 5 mum x 5 mum. By confining the energy to the fundamental mode when coupling from the large end to the small end, low-loss packaging can be achieved bi-directionally. 3-D compression-molded polymeric waveguides present a promising solution to bridging the huge dynamic range of different optoelectronic device-depths varying from a few microns to several hundred microns.
NASA Astrophysics Data System (ADS)
Belianko, A. E.; Doilnitsyna, O. A.; Lipatov, N. I.; Pashinin, P. P.; Prokhorov, A. M.
1985-07-01
Consideration is given to the effect of surface polaritons induced by the rough walls of a hallow channel on the mode propagation constants of a dielectric waveguide. The mode propagation characteristics of the waveguide were analyzed within the framework of conventional geometric optics theory, and the results are compared with phenomenological data concerning the wave reflection from a statistically uneven surface. The dielectric permittivity function of the uneven surface had a small imaginary component and a negative real component. It is shown that statistical irregularities associated with the walls of the guiding channel can lead to enhanced damping in the waveguide modes.
Optical Sensors Based on Single on Arm Thin Film Waveguide Interferometer
NASA Technical Reports Server (NTRS)
Sarkisov, S. S.; Diggs, D.; Curley, M.; Adamovsky, Grigory (Technical Monitor)
2000-01-01
Single-arm dual-mode optical waveguide interferometer utilizes interference between two modes of different order. Sensing effect results from the change in propagation conditions of the modes caused by the environment. The waveguide is made as an open asymmetric structure containing a dye-doped polymer film onto a quartz substrate. It is more sensitive to the change of environment than its conventional polarimetric analog using orthogonal modes (TE and TM) of the same order. The sensor still preserves the option of operating in polarimetric regime using a variety of mode combinations such as TE(sub 0)/TM(sub 0) (conventional) TE(sub 0)/TM(sub 1), TE(sub 1)/TM(sub 0), or TE(sub 1)/TM(sub 1) but can also work in nonpolarimetric regime using combinations TE(sub 0)/TE(sub 1) or TM(sub 0)/TM(sub 1). Utilization of different mode combinations simultaneously makes the device more versatile. Application of the sensor to gas sensing is based on doping polymer film with an organic indicator dye targeting a particular gaseous reagent. Change of the optical absorption spectrum of the dye caused by the gaseous pollutant results in change of the reactive index of the dye-doped polymer film that can be detected by the sensor. As indicator dyes we utilize Bromocresol Purple doped into polymer poly(methyl) methacrylate that is sensitive to small concentrations of ammonia. The indicator dye demonstrated an irreversible increase in optical absorption near the peak at 350 nm being exposed to 5% ammonia in pure nitrogen at 600 Torr. The dye also showed reversible growth of the absorption peak near 600 nm after exposure to a vapor of standard medical ammonia spirit (65% alcohol). We have built a breadboard prototype of the sensor with He-Ne laser as a light source and with a single mode fiber input and a multimode fiber output. The prototype showed a sensitivity to temperature change of the order of 2 C per 2pi phase shift. The sensitivity of the sensor to the presence of dTy ammonia is not less than 300 ppm per 2pi phase shift. The proposed sensor can be used as a robust stand-alone instrument for continuous environment pollution monitoring.
Ultrafast laser inscription of 3D components for spatial multiplexing
NASA Astrophysics Data System (ADS)
Thomson, Robert R.
2016-02-01
The thirst for bandwidth in telecommunications networks is becoming ever larger due to bandwidth hungry applications such as video-on-demand. To further increase the bandwidth capacity, engineers are now seeking to imprint information on the last remaining degree of freedom of the lightwave carrier - space. This has given rise to the field of Space Division Multiplexing (SDM). In essence, the concept of SDM simple; we aim to use the different spatial modes of an optical fibre as multiplexed data transmission channels. These modes could either be in the form of separate singlemodes in a multicore optical fibre, individual spatial modes of a multimode fibre, or indeed the individual spatial modes of a multimode multicore optical fibre. Regardless of the particular "flavour" of SDM in question, it is clear that significant interfacing issues exist between the optical fibres used in SDM and the conventional single-mode planar lightwave circuits that are essential to process the light (e.g. arrayed waveguide gratings and splitters), and efficient interconnect technologies will be required. One fabrication technology that has emerged as a possible route to solve these interconnection issues is ultrafast laser inscription (ULI), which relies on the use of focused ultrashort laser pulses to directly inscribe three-dimensional waveguide structures inside a bulk dielectric. In this paper, I describe some of the work that has been conducted around the world to apply the unique waveguide fabrication capabilities of ULI to the development of 3D photonic components for applications in SDM.
Hanzawa, Nobutomo; Saitoh, Kuimasa; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Koshiba, Masanori; Yamamoto, Fumihiko
2013-11-04
We proposed a PLC-based mode multi/demultiplexer (MUX/DEMUX) with an asymmetric parallel waveguide for mode division multiplexed (MDM) transmission. The mode MUX/DEMUX including a mode conversion function with an asymmetric parallel waveguide can be realized by matching the effective indices of the LP(01) and LP(11) modes of two waveguides. We report the design of a mode MUX/DEMUX that can support C-band WDM-MDM transmission. The fabricated mode MUX/DEMUX realized a low insertion loss of less than 1.3 dB and high a mode extinction ratio that exceeded 15 dB. We used the fabricated mode MUX/DEMUX to achieve a successful 2 mode x 4 wavelength x 10 Gbps transmission over a 9 km two-mode fiber with a penalty of less than 1 dB.
High-performance 16-way Ku-band radial power combiner based on the TE01-circular waveguide mode
NASA Astrophysics Data System (ADS)
Montejo-Garai, José R.; Saracho-Pantoja, Irene O.; Ruiz-Cruz, Jorge A.; Rebollar, Jesús M.
2018-03-01
This work presents a 16-way Ku-band radial power combiner for high power and high frequency applications, using the very low loss TE01 circular waveguide mode. The accomplished design shows an excellent performance: the experimental prototype has a return loss better than 30 dB, with a balance for the amplitudes of (±0.15 dB) and (±2.5°) for the phases, in a 16.7% fractional bandwidth (2 GHz centered at 12 GHz). For obtaining these outstanding specifications, required, for instance, in high-frequency amplification or on plasma systems, a rigorous step-by-step procedure is presented. First, a high-purity mode transducer has been designed, from the TE10 mode in the rectangular waveguide to the TE01 mode in the circular waveguide, with very high attenuation (>50 dB) for the other propagating and evanescent modes in the circular waveguide. This transducer has been manufactured and measured in a back-to-back configuration, validating the design process. Second, an E-plane 16-way radial power divider has been designed, where the power is coupled from the 16 non-reduced-height radial standard waveguides into the TE01 circular waveguide mode, improving the insertion loss response and removing the usual tapered transformers of previous designs limiting the power handling. Finally, both the transducer and the divider have been assembled to make the final radial combiner. The prototype has been carefully manufactured, showing very good agreement between the measurements and the full-wave simulations.
Refractive index sensor based on a polymer fiber directional coupler for low index sensing.
Lee, Kwang Jo; Liu, Xiaoqi; Vuillemin, Nelly; Lwin, Richard; Leon-Saval, Sergio G; Argyros, Alexander; Kuhlmey, Boris T
2014-07-14
We propose, numerically analyze and experimentally demonstrate a novel refractive index sensor specialized for low index sensing. The device is based on a directional coupler architecture implemented in a single microstructured polymer optical fiber incorporating two waveguides within it: a single-mode core and a satellite waveguide consisting of a hollow high-index ring. This hollow channel is filled with fluid and the refractive index of the fluid is detected through changes to the wavelength at which resonant coupling occurs between the two waveguides. The sensor design was optimized for both higher sensitivity and lower detection limit, with simulations and experiments demonstrating a sensitivity exceeding 1.4 × 10(3) nm per refractive index unit. Simulations indicate a detection limit of ~2 × 10(-6) refractive index units is achievable. We also numerically investigate the performance for refractive index changes localized at the surface of the holes, a case of particular importance for biosensing.
Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms
NASA Astrophysics Data System (ADS)
Sayrin, Clément; Junge, Christian; Mitsch, Rudolf; Albrecht, Bernhard; O'Shea, Danny; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno
2015-10-01
The realization of nanophotonic optical isolators with high optical isolation even at ultralow light levels and low optical losses is an open problem. Here, we employ the link between the local polarization of strongly confined light and its direction of propagation to realize low-loss nonreciprocal transmission through a silica nanofiber at the single-photon level. The direction of the resulting optical isolator is controlled by the spin state of cold atoms. We perform our experiment in two qualitatively different regimes, i.e., with an ensemble of cold atoms where each atom is weakly coupled to the waveguide and with a single atom strongly coupled to the waveguide mode. In both cases, we observe simultaneously high isolation and high forward transmission. The isolator concept constitutes a nanoscale quantum optical analog of microwave ferrite resonance isolators, can be implemented with all kinds of optical waveguides and emitters, and might enable novel integrated optical devices for fiber-based classical and quantum networks.
Integrated amorphous silicon-aluminum long-range surface plasmon polariton (LR-SPP) waveguides
NASA Astrophysics Data System (ADS)
Sturlesi, Boaz; Grajower, Meir; Mazurski, Noa; Levy, Uriel
2018-03-01
We demonstrate the design, fabrication, and experimental characterization of a long range surface plasmon polariton waveguide that is compatible with complementary metal-oxide semiconductor backend technology. The structure consists of a thin aluminum strip embedded in amorphous silicon. This configuration offers a symmetric environment in which surface plasmon polariton modes undergo minimal loss. Furthermore, the plasmonic mode profile matches the modes of the dielectric (amorphous silicon) waveguide, thus allowing efficient coupling between silicon photonics and plasmonic platforms. The propagation length of the plasmonic waveguide was measured to be about 27 μm at the telecom wavelength around 1550 nm, in good agreement with numerical simulations. As such, the waveguide features both tight mode confinement and decent propagation length. On top of its photonic properties, placing a metal within the structure may also allow for additional functionalities such as photo-detection, thermo-optic tuning, and electro-optic control to be implemented.
Modes in light wave propagating in semiconductor laser
NASA Technical Reports Server (NTRS)
Manko, Margarita A.
1994-01-01
The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.
Navarro-Cía, Miguel; Vitiello, Miriam S; Bledt, Carlos M; Melzer, Jeffrey E; Harrington, James A; Mitrofanov, Oleg
2013-10-07
A low-loss and low-dispersive optical-fiber-like hybrid HE₁₁ mode is developed within a wide band in metallic hollow waveguides if their inner walls are coated with a thin dielectric layer. We investigate terahertz (THz) transmission losses from 0.5 to 5.5 THz and bending losses at 2.85 THz in a polystyrene-lined silver waveguides with core diameters small enough (1 mm) to minimize the number of undesired modes and to make the waveguide flexible, while keeping the transmission loss of the HE₁₁ mode low. The experimentally measured loss is below 10 dB/m for 2 < ν < 2.85 THz (~4-4.5 dB/m at 2.85 THz) and it is estimated to be below 3 dB/m for 3 < ν < 5 THz according to the numerical calculations. At ~1.25 THz, the waveguide shows an absorption peak of ~75 dB/m related to the transition between the TM₁₁-like mode and the HE₁₁ mode. Numerical modeling reproduces the measured absorption spectrum but underestimates the losses at the absorption peak, suggesting imperfections in the waveguide walls and that the losses can be reduced further.
Extraordinary optical transmission inside a waveguide: spatial mode dependence.
Reichel, Kimberly S; Lu, Peter Y; Backus, Sterling; Mendis, Rajind; Mittleman, Daniel M
2016-12-12
We study the influence of the input spatial mode on the extraordinary optical transmission (EOT) effect. By placing a metal screen with a 1D array of subwavelength holes inside a terahertz (THz) parallel-plate waveguide (PPWG), we can directly compare the transmission spectra with different input waveguide modes. We observe that the transmitted spectrum depends strongly on the input mode. A conventional description of EOT based on the excitation of surface plasmons is not predictive in all cases. Instead, we utilize a formalism based on impedance matching, which accurately predicts the spectral resonances for both TEM and non-TEM input modes.
JPRS Report, Science & Technology. USSR: Physics & Mathematics
1987-10-29
Pulse Holography (S. D. Nikolayev, I. 0. Starobogatov; OPTIKA I SPEKTROSKOPIYA, No 5, Nov 86) 22 NUCLEAR PHYSICS Masses of Vector and Quasi-Scalar...86) 32 Anomalous Evolution of Optical Solitons (S. 0. Yelyutin, A. I. Maymistov; OPTIKA I SPEKTROSKOPIYA, No 5, Nov 86) • ."’. 33 Four-Level...of Polarization Modes in Birefringent Single-Mode Fiber-Optic Waveguide (F. A. Shatalov; OPTIKA I SPEKTROSKOPIYA, No 2, Feb 87)..’.. 3U High
Enhancement and inhibition of light tunneling mediated by resonant mode conversion.
Kartashov, Yaroslav V; Vysloukh, Victor A; Torner, Lluis
2014-02-15
We show that the rate at which light tunnels between neighboring multimode waveguides can be drastically increased or reduced by the presence of small longitudinal periodic modulations of the waveguide properties that stimulate resonant conversion between the eigenmodes of each waveguide. Such a conversion, available only in multimode guiding structures, leads to periodic power transfer into higher-order modes, whose tails may considerably overlap with neighboring waveguides. As a result, the effective coupling constant for neighboring waveguides may change by several orders of magnitude upon small variations in the longitudinal modulation parameters.
Differential InP HEMT MMIC Amplifiers Embedded in Waveguides
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Schlecht, Erich; Samoska, Lorene
2009-01-01
Monolithic microwave integrated-circuit (MMIC) amplifiers of a type now being developed for operation at frequencies of hundreds of gigahertz contain InP high-electron-mobility transistors (HEMTs) in a differential configuration. The differential configuration makes it possible to obtain gains greater than those of amplifiers having the single-ended configuration. To reduce losses associated with packaging, the MMIC chips are designed integrally with, and embedded in, waveguide packages, with the additional benefit that the packages are compact enough to fit into phased transmitting and/or receiving antenna arrays. Differential configurations (which are inherently balanced) have been used to extend the upper limits of operating frequencies of complementary metal oxide/semiconductor (CMOS) amplifiers to the microwave range but, until now, have not been applied in millimeter- wave amplifier circuits. Baluns have traditionally been used to transform from single-ended to balanced configurations, but baluns tend to be lossy. Instead of baluns, finlines are used to effect this transformation in the present line of development. Finlines have been used extensively to drive millimeter- wave mixers in balanced configurations. In the present extension of the finline balancing concept, finline transitions are integrated onto the affected MMICs (see figure). The differential configuration creates a virtual ground within each pair of InP HEMT gate fingers, eliminating the need for inductive vias to ground. Elimination of these vias greatly reduces parasitic components of current and the associated losses within an amplifier, thereby enabling more nearly complete utilization of the full performance of each transistor. The differential configuration offers the additional benefit of multiplying (relative to the single-ended configuration) the input and output impedances of each transistor by a factor of four, so that it is possible to use large transistors that would otherwise have prohibitively low impedances. Yet another advantage afforded by the virtual ground of the differential configuration is elimination of the need for a ground plane and, hence, elimination of the need for back-side metallization of the MMIC chip. In turn, elimination of the back-side metallization simplifies fabrication, reduces parasitic capacitances, and enables mounting of the MMIC in the electric-field plane ("E-plane") of a waveguide. E-plane mounting is consistent with (and essential for the utility of) the finline configuration, in which transmission lines lie on a dielectric sheet in the middle of a broad side of the waveguide. E-plane mounting offers a combination of low loss and ease of assembly because no millimeter-wave wire bonds or transition substrates are required. Moreover, because there is no ground plane behind the MMIC, the impedance for the detrimental even (single-ended) mode is high, suppressing coupling to that mode. Still another advantage of E-plane mounting is that the fundamental waveguide mode is inherently differential, eliminating the need for a balun to excite the differential mode.
Propagating modes in gain-guided optical fibers.
Siegman, A E
2003-08-01
Optical fibers in which gain-guiding effects are significant or even dominant compared with conventional index guiding may become of practical interest for future high-power single-mode fiber lasers. I derive the propagation characteristics of symmetrical slab waveguides and cylindrical optical fibers having arbitrary amounts of mixed gain and index guiding, assuming a single uniform transverse profile for both the gain and the refractive-index steps. Optical fibers of this type are best characterized by using a complex-valued v-squared parameter in place of the real-valued v parameter commonly used to describe conventional index-guided optical fibers.
NASA Astrophysics Data System (ADS)
Mrejen, Michael; Suchowski, Haim; Bachelard, Nicolas; Wang, Yuan; Zhang, Xiang
2017-07-01
High-speed Silicon Photonics calls for solutions providing a small footprint, high density, and minimum crosstalk, as exemplified by the recent development of integrated optical modulators. Yet, the performances of such modulators are hindered by intrinsic material losses, which results in low energy efficiency. Using the concept of Adiabatic Elimination, here, we introduce a scheme allowing for the low-loss modulation in densely packed waveguides. Our system is composed of two waveguides, whose coupling is mediated by an intermediate third waveguide. The signal is carried by the two outer modes, while the active control of their coupling is achieved via the intermediate dark mode. The modulation is performed by the manipulation of the central-waveguide mode index, leaving the signal-carrying waveguides unaffected by the loss. We discuss how Adiabatic Elimination provides a solution for mitigating signal losses and designing relatively compact, broadband, and energy-efficient integrated optical modulators.
Spectrally high performing quantum cascade lasers
NASA Astrophysics Data System (ADS)
Toor, Fatima
Quantum cascade (QC) lasers are versatile semiconductor light sources that can be engineered to emit light of almost any wavelength in the mid- to far-infrared (IR) and terahertz region from 3 to 300 mum [1-5]. Furthermore QC laser technology in the mid-IR range has great potential for applications in environmental, medical and industrial trace gas sensing [6-10] since several chemical vapors have strong rovibrational frequencies in this range and are uniquely identifiable by their absorption spectra through optical probing of absorption and transmission. Therefore, having a wide range of mid-IR wavelengths in a single QC laser source would greatly increase the specificity of QC laser-based spectroscopic systems, and also make them more compact and field deployable. This thesis presents work on several different approaches to multi-wavelength QC laser sources that take advantage of band-structure engineering and the uni-polar nature of QC lasers. Also, since for chemical sensing, lasers with narrow linewidth are needed, work is presented on a single mode distributed feedback (DFB) QC laser. First, a compact four-wavelength QC laser source, which is based on a 2-by-2 module design, with two waveguides having QC laser stacks for two different emission wavelengths each, one with 7.0 mum/11.2 mum, and the other with 8.7 mum/12.0 mum is presented. This is the first design of a four-wavelength QC laser source with widely different emission wavelengths that uses minimal optics and electronics. Second, since there are still several unknown factors that affect QC laser performance, results on a first ever study conducted to determine the effects of waveguide side-wall roughness on QC laser performance using the two-wavelength waveguides is presented. The results are consistent with Rayleigh scattering effects in the waveguides, with roughness effecting shorter wavelengths more than longer wavelengths. Third, a versatile time-multiplexed multi-wavelength QC laser system that emits at lambda = 10.8 mum for positive and lambda = 8.6 mum for negative polarity current with microsecond time delay is presented. Such a system is the first demonstration of a time and wavelength multiplexed system that uses a single QC laser. Fourth, work on the design and fabrication of a single-mode distributed feedback (DFB) QC laser emitting at lambda ≈ 7.7 mum to be used in a QC laser based photoacoustic sensor is presented. The DFB QC laser had a temperature tuning co-efficient of 0.45 nm/K for a temperature range of 80 K to 320 K, and a side mode suppression ratio of greater than 30 dB. Finally, study on the lateral mode patterns of wide ridge QC lasers is presented. The results include the observation of degenerate and non-degenerate lateral modes in wide ridge QC lasers emitting at lambda ≈ 5.0 mum. This study was conducted with the end goal of using wide ridge QC lasers in a novel technique to spatiospectrally combine multiple transverse modes to obtain an ultra high power single spot QC laser beam.
NASA Astrophysics Data System (ADS)
Harrington, James A.; Bledt, Carlos M.; Kriesel, Jason M.
2011-03-01
Spectroscopy in the long-wave infrared (LWIR) wavelength region (8 to 12 μm) is useful for detecting trace chemical compounds, such as those indicative of weapons of mass destruction (WMD). To enable the development of field portable systems for anti-proliferation efforts, current spectroscopy systems need to be made more robust, convenient, and practical (e.g., miniaturized). Hollow glass waveguides have been used with a Quantum Cascade Laser source for the delivery of single-mode laser radiation from 9 to 10 μm. The lowest loss measured for a straight, 484 μm-bore guide was 0.44 dB/m at 10 μm. The smallest 300 μm-bore waveguide transmitted singlemode radiation even while bent to radii less than 30 cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, Viktor I; Panchenko, Vladislav Ya; Seminogov, V N
We report the fabrication of narrowband frequency-selective filters for the 1.5-{mu}m telecom window, which include a single-mode polymer waveguide with a submicron Bragg grating inscribed by a helium-cadmium laser. The filters have a reflectance R > 98 % and a nearly rectangular reflection band with a bandwidth {Delta}{lambda}{approx}0.4nm. They can be used as components of optical multiplexers/demultiplexers for combining and separating signals in high-speed dense wavelength-division multiplexed optical fibre communication systems. (laser components)
Deterministic quantum state transfer between remote qubits in cavities
NASA Astrophysics Data System (ADS)
Vogell, B.; Vermersch, B.; Northup, T. E.; Lanyon, B. P.; Muschik, C. A.
2017-12-01
Performing a faithful transfer of an unknown quantum state is a key challenge for enabling quantum networks. The realization of networks with a small number of quantum links is now actively pursued, which calls for an assessment of different state transfer methods to guide future design decisions. Here, we theoretically investigate quantum state transfer between two distant qubits, each in a cavity, connected by a waveguide, e.g., an optical fiber. We evaluate the achievable success probabilities of state transfer for two different protocols: standard wave packet shaping and adiabatic passage. The main loss sources are transmission losses in the waveguide and absorption losses in the cavities. While special cases studied in the literature indicate that adiabatic passages may be beneficial in this context, it remained an open question under which conditions this is the case and whether their use will be advantageous in practice. We answer these questions by providing a full analysis, showing that state transfer by adiabatic passage—in contrast to wave packet shaping—can mitigate the effects of undesired cavity losses, far beyond the regime of coupling to a single waveguide mode and the regime of lossless waveguides, as was proposed so far. Furthermore, we show that the photon arrival probability is in fact bounded in a trade-off between losses due to non-adiabaticity and due to coupling to off-resonant waveguide modes. We clarify that neither protocol can avoid transmission losses and discuss how the cavity parameters should be chosen to achieve an optimal state transfer.
Design and analysis of optical waveguide elements in planar geometry
NASA Astrophysics Data System (ADS)
Mirkov, Mirko Georgiev
1998-10-01
This dissertation presents the theoretical analysis and practical design considerations for planar optical waveguide devices. The analysis takes into account both transverse dimensions of the waveguides and is based on the supermode theory combined with the resonance method for determination of the propagation constants and field profiles of the supermodes. An improved accuracy has been achieved by including the corrections due to the fields in the corner regions of the waveguides using perturbation theory. The following two classes of devices have been analyzed in detail. Curved rectangular waveguides are a common element in an integrated optics circuit. The theoretical analysis in this work shows that some commonly used approximations for determination of the propagation constants of the quasi-modes of the bent waveguides are not necessary. Specifically the imaginary part of the mode propagation constant, which determines the power loss, is calculated exactly using the resonance method, combined with a two- dimensional optimization routine for determination of the real and the imaginary parts of the propagation constants. Subsequently, the results are corrected for the effects of the fields in the corner regions. The latter corrections have not been previously computed and are shown to be significant. Power splitters are another common element of an integrated optical circuit. A new 'bend-free' splitter is suggested and analyzed. The new splitter design consists of only straight parallel channels, which considerably simplify both the analysis and the fabrication of the device. It is shown that a single design parameter determines the power splitting ratio, which can take any given value. The intrinsic power loss in the proposed splitter is minimal, which makes it an attractive alternative to the conventional Y-splitters. The accurate methods of analysis of planar optical waveguides developed in the present work can easily be applied to other integrated optic devices consisting of rectangular waveguides.
Integrated polymer polarization rotator based on tilted laser ablation
NASA Astrophysics Data System (ADS)
Poulopoulos, Giannis; Kalavrouziotis, Dimitrios; Missinne, Jeroen; Bosman, Erwin; Van Steenberge, Geert; Apostolopoulos, Dimitrios; Avramopoulos, Hercules
2017-02-01
The ubiquitous need for compact, low-cost and mass production photonic devices, for next generation photonic enabled applications, necessitates the development of integrated components exhibiting functionalities that are, to date, carried out by free space elements or standard fiber equipment. The polarization rotator is a typical example of such tendency, as it is a crucial part of the PBS operation of future transceiver modules that leverage polarization multiplexing schemes for increasing the optical network capacity. Up to now, a variety of integrated polarization rotating concepts has been proposed and reported, relying, mainly, on special waveguide crossection configurations for achieving the rotation. Nevertheless, most of those concepts employ SiPh or III-V integration platforms, significantly increasing the fabrication complexity required for customizing the waveguide crossection, which in turn leads to either prohibitively increased cost or compromised quality and performance. In this manuscript we demonstrate the extensive design of a low-cost integrated polymer polarization rotator employing a right-trapezoidal waveguide interfaced to standard square polymer waveguides. First the crossection of the waveguide is defined by calculating and analyzing the components of the hybrid modes excited in the waveguide structure, using a Finite Difference mode solver. Mode overlaps between the fundamental polymer mode and each hybrid mode reveal the optimum lateral offset between the square polymer and the trapezoidal waveguide that ensures both minimum interface loss and maximized polarization rotation performance. The required trapezoidal waveguide length is obtained through EigenMode Expansion (EME) propagation simulations, while more than 95% maximum theoretical conversion efficiency is reported over the entire C-band, resulting to more than 13dB polarization extinction ratio. The polarization rotator design relies on the development of angled polymer waveguide sidewalls, employing the tilted laser ablation technology, currently available at CMST. Therefore, the aforementioned simulation steps adhere fully to the respective design rules, taking into account the anticipated fabrication variations
Wedge Waveguides and Resonators for Quantum Plasmonics
2015-01-01
Plasmonic structures can provide deep-subwavelength electromagnetic fields that are useful for enhancing light–matter interactions. However, because these localized modes are also dissipative, structures that offer the best compromise between field confinement and loss have been sought. Metallic wedge waveguides were initially identified as an ideal candidate but have been largely abandoned because to date their experimental performance has been limited. We combine state-of-the-art metallic wedges with integrated reflectors and precisely placed colloidal quantum dots (down to the single-emitter level) and demonstrate quantum-plasmonic waveguides and resonators with performance approaching theoretical limits. By exploiting a nearly 10-fold improvement in wedge-plasmon propagation (19 μm at a vacuum wavelength, λvac, of 630 nm), efficient reflectors (93%), and effective coupling (estimated to be >70%) to highly emissive (∼90%) quantum dots, we obtain Ag plasmonic resonators at visible wavelengths with quality factors approaching 200 (3.3 nm line widths). As our structures offer modal volumes down to ∼0.004λvac3 in an exposed single-mode waveguide–resonator geometry, they provide advantages over both traditional photonic microcavities and localized-plasmonic resonators for enhancing light–matter interactions. Our results confirm the promise of wedges for creating plasmonic devices and for studying coherent quantum-plasmonic effects such as long-distance plasmon-mediated entanglement and strong plasmon–matter coupling. PMID:26284499
Wan, W J; Li, H; Cao, J C
2018-01-22
The authors present an experimental investigation of radio frequency modulation on pulsed terahertz quantum cascade lasers (QCLs) emitting around 4.3 THz. The QCL chip used in this work is based on a resonant phonon design which is able to generate a 1.2 W peak power at 10 K from a 400-µm-wide and 4-mm-long laser with a single plasmon waveguide. To enhance the radio frequency modulation efficiency and significantly broaden the terahertz spectra, the QCLs are also processed into a double-metal waveguide geometry with a Silicon lens out-coupler to improve the far-field beam quality. The measured beam patterns of the double-metal QCL show a record low divergence of 2.6° in vertical direction and 2.4° in horizontal direction. Finally we perform the inter-mode beat note and terahertz spectra measurements for both single plasmon and double-metal QCLs working in pulsed mode. Since the double-metal waveguide is more suitable for microwave signal transmission, the radio frequency modulation shows stronger effects on the spectral broadening for the double-metal QCL. Although we are not able to achieve comb operation in this work for the pulsed lasers due to the large phase noise, the homogeneous spectral broadening resulted from the radio frequency modulation can be potentially used for spectroscopic applications.
Polarization modulation based on the hybrid waveguide of graphene sandwiched structure
NASA Astrophysics Data System (ADS)
Yang, Junbo; Chen, Dingbo; Zhang, Jingjing; Zhang, Zhaojian; Huang, Jie
2017-09-01
Polarization beam splitter (PBS) plays an important role to realize beam control and modulation. A novel hybrid structure of graphene sandwiched waveguide is proposed to fulfill polarization manipulation and selection based on the refractive index engineering techniques. The fundamental mode of TM cannot be supported in this case. However, both TE and TM mode are excited and transmitting in the hybrid waveguide if the design parameters, including the waveguide width and the waveguide height, are changed. The incident wavelength largely affects the effective index, which results in supporting/not supporting the TM mode. The proposed design exhibits high extinction ratio, compact in size, flexible to control, compatible with CMOS process, and easy to be integrated with other optoelectronic devices, allowing it to be used in optical communication and optical information processing.
New biorthogonality relations for inhomogeneous biisotropic planar waveguides
NASA Astrophysics Data System (ADS)
Topa, Antonio L.; Paiva, Carlos R.; Barbosa, Afonso M.
1994-04-01
Using a linear operator formalism this paper presents new biorthogonality relations for the hybrid modes supported by planar waveguides inhomogeneously filled with general biisotropic media. In the special case of lossless biisotropic media, the linear operator is self-adjoint, the original and adjoint waveguides are identical, and new orthogonality relations can be derived. As an example of application, the radiation modes of a grounded nonreciprocal and lossless biisotropic slab waveguide are analyzed in terms of a pair of incident transverse electric (ITE) and incident transverse magnetic (ITM) continuous modes, which have the advantage of being mutually orthogonal and of having a clear physical interpretation.
Coherent ultra-violet to near-infrared generation in silica ridge waveguides
Yoon Oh, Dong; Yang, Ki Youl; Fredrick, Connor; Ycas, Gabriel; Diddams, Scott A.; Vahala, Kerry J.
2017-01-01
Short duration, intense pulses of light can experience dramatic spectral broadening when propagating through lengths of optical fibre. This continuum generation process is caused by a combination of nonlinear optical effects including the formation of dispersive waves. Optical analogues of Cherenkov radiation, these waves allow a pulse to radiate power into a distant spectral region. In this work, efficient and coherent dispersive wave generation of visible to ultraviolet light is demonstrated in silica waveguides on a silicon chip. Unlike fibre broadeners, the arrays provide a wide range of emission wavelength choices on a single, compact chip. This new capability is used to simplify offset frequency measurements of a mode-locked frequency comb. The arrays can also enable mode-locked lasers to attain unprecedented tunable spectral reach for spectroscopy, bioimaging, tomography and metrology. PMID:28067233
Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement
NASA Astrophysics Data System (ADS)
Selvaraja, Shankar Kumar; Bogaerts, Wim; Van Thourhout, Dries
2011-04-01
Single mode silicon photonic wire waveguides allow low-loss sharp micro-bends, which enables compact photonic devices and circuits. The circuit compactness is achieved at the cost of loss induced by micro-bends, which can seriously affect the device performance. The bend loss strongly depends on the bend radius, polarization, waveguide dimension and profile. In this paper, we present the effect of waveguide profile on the bend loss. We present waveguide profile improvement with optimized etch chemistry and the role of etch chemistry in adapting the etch profile of silicon is investigated. We experimentally demonstrate that by making the waveguide sidewalls vertical, the bend loss can be reduced up to 25% without affecting the propagation loss of the photonic wires. The bend loss of a 2 μm bend has been reduced from 0.039dB/90° bend to 0.028dB/90° bend by changing the sidewall angle from 81° to 90°, respectively. The propagation loss of 2.7 ± 0.1dB/cm and 3 ± 0.09dB/cm was observed for sloped and vertical photonic wires respectively was obtained.
Pass-Band Characteristics of an L-Shaped Waveguide in a Diamond Structure Photonic Crystal
NASA Astrophysics Data System (ADS)
Chen, Shibin; Ma, Jingcun; Yao, Yunshi; Liu, Xin; Lin, Ping
2018-06-01
The conduction characteristics of a L-shaped waveguide in a diamond structure photonic crystal is investigated in this paper. The waveguides were fabricated with titanium dioxide ceramic via 3-D printing and sintering. The effects of the position and size of line defects on the transmission characteristics are first simulated using a finite-difference time-domain method. The simulated results show that, when the length of the rectangular defect equals the lattice constant, multiple extended modes are generated. When the centers of the single unit cell of the diamond structure and the line defect waveguide coincide, higher transmission efficiency in the line defect can be achieved. In addition, the corner of the L-shaped waveguide was optimized to reduce reflection loss at the turning point using the arc transition of the large diameter. Our experimental results indicate that L-shaped waveguides with an optimized photonic band gap structure and high-K materials can produce a pass-band between 13.8 GHz and 14.4 GHz and increase transmission efficiency. The computed results agree with the experimental results. Our results may help the integration of microwave devices in the future and possibly enable new applications of photonic crystals.
Mendis, Rajind; Mittleman, Daniel M
2009-08-17
We present a comprehensive experimental study comparing the propagation characteristics of the virtually unknown TE(1) mode to the well-known TEM mode of the parallel-plate waveguide (PPWG), for THz pulse applications. We demonstrate that it is possible to overcome the undesirable effects caused by the TE(1) mode's inherent low-frequency cutoff, making it a viable THz wave-guiding option, and that for certain applications, the TE(1) mode may even be more desirable than the TEM mode. This study presents a whole new dimension to the THz technological capabilities offered by the PPWG, via the possible use of the TE(1) mode. (c) 2009 Optical Society of America
Zero-mode waveguide nanophotonic structures for single molecule characterization
NASA Astrophysics Data System (ADS)
Crouch, Garrison M.; Han, Donghoon; Bohn, Paul W.
2018-05-01
Single-molecule characterization has become a crucial research tool in the chemical and life sciences, but limitations, such as limited concentration range, inability to control molecular distributions in space, and intrinsic phenomena, such as photobleaching, present significant challenges. Recent developments in non-classical optics and nanophotonics offer promising routes to mitigating these restrictions, such that even low affinity (K D ~ mM) biomolecular interactions can be studied. Here we introduce and review specific nanophotonic devices used to support single molecule studies. Optical nanostructures, such as zero-mode waveguides (ZMWs), are usually fabricated in thin gold or aluminum films and serve to confine the observation volume of optical microspectroscopy to attoliter to zeptoliter volumes. These simple nanostructures allow individual molecules to be isolated for optical and electrochemical analysis, even when the molecules of interest are present at high concentration (µM–mM) in bulk solution. Arrays of ZMWs may be combined with optical probes such as single molecule fluorescence, single molecule fluorescence resonance energy transfer, and fluorescence correlation spectroscopy for distributed analysis of large numbers of single-molecule reactions or binding events in parallel. Furthermore, ZMWs may be used as multifunctional devices, for example by combining optical and electrochemical functions in a single discrete architecture to achieve electrochemical ZMWs. In this review, we will describe the optical properties, fabrication, and applications of ZMWs for single-molecule studies, as well as the integration of ZMWs into systems for chemical and biochemical analysis.
Terahertz orbital angular momentum modes with flexible twisted hollow core antiresonant fiber
NASA Astrophysics Data System (ADS)
Stefani, Alessio; Fleming, Simon C.; Kuhlmey, Boris T.
2018-05-01
THz radiation is a more commonplace in research laboratories as well as in everyday life, with applications ranging from body scanners at airport security to short range wireless communications. In the optical domain, waveguides and other devices to manipulate radiation are well established. This is not yet the case in the THz regime because of the strong interaction of THz radiation with matter, leading to absorption, and the millimeter size of the wavelength and therefore of the required waveguides. We propose the use of a new material, polyurethane, for waveguides that allows high flexibility, overcoming the problem that large sizes otherwise result in rigid structures. With this material, we realize antiresonant hollow-core waveguides and we use the flexibility of the material to mechanically twist the waveguide in a tunable and reversible manner, with twist periods as short as tens of wavelengths. Twisting the waveguide, we demonstrate the generation of modes carrying orbital angular momentum. We use THz time domain spectroscopy to measure and clearly visualize the vortex nature of the mode, which is difficult in the optical domain. The proposed waveguide is a new platform offering new perspectives for THz guidance and particularly mode manipulation. The demonstrated ability to generate modes with an orbital angular momentum within a waveguide, in a controllable manner, will be beneficial to both fundamental, e.g., matter-radiation interaction, and applied, e.g., THz telecommunications, advances of THz research and technology. Moreover, this platform is not limited to the THz domain and could be scaled for other electromagnetic wavelengths.
Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths
NASA Astrophysics Data System (ADS)
Fohrmann, Lena Simone; Sommer, Gerrit; Pitruzzello, Giampaolo; Krauss, Thomas F.; Petrov, Alexander Yu.; Eich, Manfred
2017-09-01
Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC) mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.
NASA Astrophysics Data System (ADS)
Kultavewuti, Pisek
Polarization-entangled photon pair states (PESs) are indispensable in several quantum protocols that should be implemented in an integrated photonic circuit for realizing a practical quantum technology. Preparing such states in integrated waveguides is in fact a challenge due to polarization mode dispersion. Unlike other conventional ways that are plagued with complications in fabrication or in state generation, in this thesis, the scheme based on parallel spontaneous four-wave mixing processes of two polarization waveguide modes is thoroughly studied in theory and experimentation for the polarization entanglement generation. The scheme in fact needs the modal dispersion, contradictory to the general perception, as revealed by a full quantum mechanical framework. The proper modal dispersion balances the effects of temporal walk-off and state factorizability. The study also shows that the popular standard platform such as a silicon-on-insulator wafer is far from suitable to implement the proposed simple generation technique. Proven by the quantum state tomography, the technique produces a highly-entangled state with a maximum concurrence of 0.97 +/- 0:01 from AlGaAs waveguides. In addition, the devices directly generated Bell states with an observed fidelity of 0.92 +/- 0:01 without any post-generation compensating steps. Novel suspended device structures, including their components, are then investigated numerically and experimentally characterized in pursuit of finding the geometry with the optimal dispersion property. The 700 nm x 1100 nm suspended rectangular waveguide is identified as the best geometry with a predicted maximum concurrence of 0.976 and a generation bandwidth of 3.3 THz. The suspended waveguide fabrication procedure adds about 15 dB/cm and 10 dB/cm of propagation loss to the TE and TM mode respectively, on top of the loss in corresponding full-cladding waveguides. Bridges, which structurally support the suspended waveguides, are optimized using the particle swarm algorithm to maximize the power transmission, and they were experimentally verified. This work greatly simplifies the generation of the PES and identifies a novel device structure suitable for such the PES generation. In combination with the reported promising advances in interferometric components and single photon detectors implemented in AlGaAs, the result of this thesis represents a step toward realizing a complete integrated quantum photonic circuit empowered by polarization-based protocols.
Three-mode all-optical (de)multiplexing on a SOI chip
NASA Astrophysics Data System (ADS)
Le, Yan-Si; Wang, Zhi; Li, Zhi-Yong; Li, Ying; Li, Qiang; Cui, Can; Wu, Chong-Qing
2018-01-01
An on-chip three-mode division multiplexing circuit using a simple ADC-based TE0 & TE1 & TE2 (de)multiplexer is demonstrated to improve the link capacity of on-chip optical interconnects. The proposed (de)multiplexer does not contain any tapered waveguide which is different from the previous mode (de)multiplexer based on ADCs. Here, we choose multimode waveguide width first and then confirm corresponding width of the other two waveguides. Thus the bus waveguide without any tapers can not only reduce complexity of (de)multiplexer but also reduce difficulty of the fabrication. Our simulation results show that the hybrid multiplexer has relatively low loss and low crosstalk about -40 dB, -26.99 dB and -28.72 dB for each mode around 1550 nm with a width-variation w =± 25 nm. These properties make the proposed mode-(de)multiplexer suitable for application in high-capacity data transmission.
NASA Astrophysics Data System (ADS)
Shams El-Din, M. A.
2018-04-01
The UV-laser lithographic method is used for the preparation of Polymeric integrated-optical waveguides in a planar polymer chip. The waveguide samples are irradiated by an excimer laser of wavelength 248 nm with different doses and with the same fluencies. The refractive index depth profile for the waveguides, in the first zone is found to have a parabolic shape and Gaussian shape in the second one that can be determined by Mach-Zehnder interferometer. Both the mode field distribution and the effective mode indices for the first zone only are determined by making use of the theoretical mode and the experimental data. It is found that the model field distribution is strongly dependent on the refractive indices for each zone.
Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhen; Gao, Fei; Zhang, Baile, E-mail: blzhang@ntu.edu.sg
2016-01-25
We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find usemore » in the design of integrated surface-wave devices with suppressed crosstalk.« less
Astley, Victoria; Reichel, Kimberly S; Jones, Jonathan; Mendis, Rajind; Mittleman, Daniel M
2012-09-10
We use the mode-matching technique to study parallel-plate waveguide resonant cavities that are filled with a dielectric. We apply the generalized scattering matrix theory to calculate the power transmission through the waveguide-cavities. We compare the analytical results to experimental data to confirm the validity of this approach.
Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides.
Astley, Victoria; McCracken, Blake; Mendis, Rajind; Mittleman, Daniel M
2011-04-15
We describe an experimental and theoretical characterization of rectangular resonant cavities integrated into parallel-plate waveguides, using terahertz pulses. When the waveguide is excited with the lowest-order transverse-electric mode, these cavities exhibit resonances with narrow linewidths. Broadband transmission spectra are compared with the results of mode-matching calculations, for various cavity dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidabras, Jason W.; Anderson, James R.; Mainali, Laxman
Experimental results have been reported on an oversize rectangular waveguide assembly operating nominally at 94 GHz. It was formed using commercially available WR28 waveguide as well as a pair of specially designed tapers with a hyperbolic-cosine shape from WR28 to WR10 waveguide [R. R. Mett et al., Rev. Sci. Instrum. 82, 074704 (2011)]. The oversize section reduces broadband insertion loss for an Electron Paramagnetic Resonance (EPR) probe placed in a 3.36 T magnet. Hyperbolic-cosine tapers minimize reflection of the main mode and the excitation of unwanted propagating waveguide modes. Oversize waveguide is distinguished from corrugated waveguide, overmoded waveguide, or quasi-opticmore » techniques by minimal coupling to higher-order modes. Only the TE{sub 10} mode of the parent WR10 waveguide is propagated. In the present work, a new oversize assembly with a gradual 90° twist was implemented. Microwave power measurements show that the twisted oversize waveguide assembly reduces the power loss in the observe and pump arms of a W-band bridge by an average of 2.35 dB and 2.41 dB, respectively, over a measured 1.25 GHz bandwidth relative to a straight length of WR10 waveguide. Network analyzer measurements confirm a decrease in insertion loss of 2.37 dB over a 4 GHz bandwidth and show minimal amplitude distortion of approximately 0.15 dB. Continuous wave EPR experiments confirm these results. The measured phase variations of the twisted oversize waveguide assembly, relative to an ideal distortionless transmission line, are reduced by a factor of two compared to a straight length of WR10 waveguide. Oversize waveguide with proper transitions is demonstrated as an effective way to increase incident power and the return signal for broadband EPR experiments. Detailed performance characteristics, including continuous wave experiment using 1 μM 2,2,6,6-tetramethylpiperidine-1-oxyl in aqueous solution, provided here serve as a benchmark for other broadband low-loss probes in millimeter-wave EPR bridges.« less
NASA Astrophysics Data System (ADS)
Beltran Madrigal, Josslyn; Berthel, Martin; Gardillou, Florent; Tellez Limon, Ricardo; Couteau, Christophe; Barbier, Denis; Drezet, Aurelien; Salas-Montiel, Rafael; Huant, Serge; Blaize, Sylvain
2015-09-01
Several works have already shown that the excitation of plasmonic structures through waveguides enables a strong light confinement and low propagation losses [1]. This kind of excitation is currently exploited in areas such as biosensing [2], nanocircuits[3] and spectroscopy[4]. Efficient excitation of surface plasmon modes (SPP) with guided modes supported by high-index-contrast waveguides, such as silicon-on-insulator waveguides, had already been shown [1,5], however, the use of weak-confined guided modes of an ion exchanged waveguide on glass as a source of excitation of SPP represents a scientific and technological breakthrough. This is because the integration of plasmonic structures into low-index-contrast waveguide increases the bandwidth of operation and compatibility with conventional optical fibers. In this work, we describe how an adiabatic tapered coupler formed by an intermediate high-index-contrast layer placed between a plasmonic structure and an ion-exchanged waveguide decreases the mismatch between effective indices, size, and shape of the guided modes. This hybrid structure concentrates the electromagnetic energy from the micrometer to the nanometer scale with low coupling losses to radiative modes. The electromagnetic mode confined to the high-index-contrast waveguide then works as an efficient source of SPP supported by metallic nanostructures placed on its surface. We theoretically studied the modal properties and field distribution along the adiabatic coupler structure. In addition, we fabricated a high-index-contrast waveguide by electron beam lithography and thermal evaporation on top of an ion-exchanged waveguide on glass. This structure was characterized with the use of near field scanning optical microscopy (NSOM). Numerical simulations were compared with the experimental results. [1] N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, and H. Rigneault, and J. Wenger, J. Phys. Chem. C 114, 16250 (2010). [2] P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, Opt. Express 14, 7063 (2006).] [3] A. A. Reiserer, J.-S. Huang, B. Hecht, and T. Brixner. Opt. Express 18(11), 11810-11820 (2010). [4] R. Salas-Montiel, A. Apuzzo, C. Delacour, Z. Sedaghat, A. Bruyant et al. Appl. Phys Lett 100, 231109 (2012) [5] A. Apuzzo M. Févier, M. Salas-Montiel et al. Nano letters, 13, 1000-1006
Terahertz light-emitting graphene-channel transistor toward single-mode lasing
NASA Astrophysics Data System (ADS)
Yadav, Deepika; Tamamushi, Gen; Watanabe, Takayuki; Mitsushio, Junki; Tobah, Youssef; Sugawara, Kenta; Dubinov, Alexander A.; Satou, Akira; Ryzhii, Maxim; Ryzhii, Victor; Otsuji, Taiichi
2018-03-01
A distributed feedback dual-gate graphene-channel field-effect transistor (DFB-DG-GFET) was fabricated as a current-injection terahertz (THz) light-emitting laser transistor. We observed a broadband emission in a 1-7.6-THz range with a maximum radiation power of 10 μW as well as a single-mode emission at 5.2 THz with a radiation power of 0.1 μW both at 100 K when the carrier injection stays between the lower cutoff and upper cutoff threshold levels. The device also exhibited peculiar nonlinear threshold-like behavior with respect to the current-injection level. The LED-like broadband emission is interpreted as an amplified spontaneous THz emission being transcended to a single-mode lasing. Design constraints on waveguide structures for better THz photon field confinement with higher gain overlapping as well as DFB cavity structures with higher Q factors are also addressed towards intense, single-mode continuous wave THz lasing at room temperature.
Integrated five-port non-blocking optical router based on mode-selective property
NASA Astrophysics Data System (ADS)
Jia, Hao; Zhou, Ting; Fu, Xin; Ding, Jianfeng; Zhang, Lei; Yang, Lin
2018-05-01
In this paper, we propose and demonstrate a five-port optical router based on mode-selective property. It utilizes different combinations of four spatial modes at input and output ports as labels to distinguish its 20 routing paths. It can direct signals from the source port to the destination port intelligently without power consumption and additional switching time to realize various path steering. The proposed architecture is constructed by asymmetric directional coupler based mode-multiplexers/de-multiplexers, multimode interference based waveguide crossings and single-mode interconnect waveguides. The broad optical bandwidths of these constituents make the device suitable to combine with wavelength division multiplexing signal transmission, which can effectively increase the data throughput. Measurement results show that the insertion loss of its 20 routing paths are lower than 8.5 dB and the optical signal-to-noise ratios are larger than 16.3 dB at 1525-1565 nm. To characterize its routing functionality, a 40-Gbps data transmission with bit-error-rate (BER) measurement is implemented. The power penalties for the error-free switching (BER<10-9) are 1.0 dB and 0.8 dB at 1545 nm and 1565 nm, respectively.
Waveguide modes of 1D photonic crystals in a transverse magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylgacheva, D. A., E-mail: sylgacheva.darjja@physics.msu.ru; Khokhlov, N. E.; Kalish, A. N.
2016-11-15
We analyze waveguide modes in 1D photonic crystals containing layers magnetized in the plane. It is shown that the magnetooptical nonreciprocity effect emerges in such structures during the propagation of waveguide modes along the layers and perpendicularly to the magnetization. This effect involves a change in the phase velocity of the mode upon reversal of the direction of magnetization. Comparison of the effects in a nonmagnetic photonic crystal with an additional magnetic layer and in a photonic crystal with magnetic layers shows that the magnitude of this effect is several times larger in the former case in spite of themore » fact that the electromagnetic field of the modes in the latter case is localized in magnetic regions more strongly. This is associated with asymmetry of the dielectric layers contacting with the magnetic layer in the former case. This effect is important for controlling waveguide structure modes with the help of an external magnetic field.« less
Xu, Yin; Xiao, Jinbiao
2016-01-20
A compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides is proposed and characterized. For the input TM mode, it is first transferred into the cross strip waveguide using a tapered directional coupler (DC), and then efficiently rotated to the corresponding TE mode using an L-shaped bending polarization rotator (PR). Finally, the TE mode for slot waveguide at the output end is obtained with the help of a strip-to-slot mode converter. By contrast, for the input TE mode, it almost passes through the slot waveguide directly and outputs at the bar end with nearly neglected coupling due to a large mode mismatch. Moreover, an additional S-bend connecting the tapered DC and bending PR is used to enhance the performance. Results show that a total device length of 19.6 μm is achieved, where the crosstalk (CT) and polarization conversion loss are, respectively -26.09 and 0.54 dB, for the TM mode, and the CT and insertion loss are, respectively, -22.21 and 0.41 dB, for the TE mode, both at 1.55 μm. The optical bandwidth is approximately 50 nm with a CT<-20 dB. In addition, fabrication tolerances and field evolution are also presented.
Resonant tunneling effects on cavity-embedded metal film caused by surface-plasmon excitation.
Lan, Yung-Chiang; Chang, Che-Jung; Lee, Peng-Hsiao
2009-01-01
We investigate cavity-modulated resonant tunneling through a silver film with periodic grooves on both surfaces. A strip cavity embedded in the film affects tunneling frequencies via a coupling mode and waveguide mode. In the coupling mode, both the resonant tunneling through the gap between the groove and the cavity and the cavity itself form an entire resonant structure. In the waveguide mode, however, the cavity functions as a surface-plasmon waveguide. Hence, tunneling frequencies are close to resonant absorption frequencies of the groove structure and are irrelevant to cavity properties.
Polarization Dependent Whispering Gallery Modes in Microspheres
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory (Inventor); Wrbanek, Susan Y. (Inventor)
2016-01-01
A tunable resonant system is provided and includes a microsphere that receives an incident portion of a light beam generated via a light source, the light beam having a fundamental mode, a waveguide medium that transmits the light beam from the light source to the microsphere, and a polarizer disposed in a path of the waveguide between the light source and the microsphere. The incident portion of the light beam creates a fundamental resonance inside the microsphere. A change in a normalized frequency of the wavelength creates a secondary mode in the waveguide and the secondary mode creates a secondary resonance inside the microsphere.
NASA Astrophysics Data System (ADS)
Schröder, H.; Neitz, M.; Schneider-Ramelow, M.
2018-02-01
Due to its optical transparency and superior dielectric properties glass is regarded as a promising candidate for advanced applications as active photonic interposer for mid-board-optics and optical PCB waveguide integration. The concepts for multi-mode and single-mode photonic system integration are discussed and related demonstration project results will be presented. A hybrid integrated photonic glass body interposer with integrated optical lenses for multi-mode data communication wavelength of 850 nm have been realized. The paper summarizes process developments which allow cost efficient metallization of TGV. Electro-optical elements like photodiodes and VCSELs can be directly flip-chip mounted on the glass substrate according to the desired lens positions. Furthermore results for a silicon photonic based single-mode active interposer integration onto a single mode glass made EOCB will be compared in terms of packaging challenges. The board level integration strategy for both of these technological approaches and general next generation board level integration concepts for photonic interposer will be introductorily discussed.
A 980 nm pseudomorphic single quantum well laser for pumping erbium-doped optical fiber amplifiers
NASA Technical Reports Server (NTRS)
Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.
1990-01-01
The authors have fabricated ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs GRIN-SCH SQW (graded-index separate-confinement-heterostructure single-quantum-well) lasers, emitting at 980 nm, with a maximum output power of 240 mW from one facet and a 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. These lasers satisfy the requirements on efficient and compact pump sources for Er3+-doped fiber amplifiers.
Ultra-fast pulse propagation in nonlinear graphene/silicon ridge waveguide
NASA Astrophysics Data System (ADS)
Liu, Ken; Zhang, Jian Fa; Xu, Wei; Zhu, Zhi Hong; Guo, Chu Cai; Li, Xiu Jian; Qin, Shi Qiao
2015-11-01
We report the femtosecond laser propagation in a hybrid graphene/silicon ridge waveguide with demonstration of the ultra-large Kerr coefficient of graphene. We also fabricated a slot-like graphene/silicon ridge waveguide which can enhance its effective Kerr coefficient 1.5 times compared with the graphene/silicon ridge waveguide. Both transverse-electric-like (TE-like) mode and transverse-magnetic-like (TM-like) mode are experimentally measured and numerically analyzed. The results show nonlinearity dependence on mode polarization not in graphene/silicon ridge waveguide but in slot-like graphene/silicon ridge waveguide. Great spectral broadening was observed due to self-phase modulation (SPM) after propagation in the hybrid waveguide with length of 2 mm. Power dependence property of the slot-like hybrid waveguide is also measured and numerically analyzed. The results also confirm the effective Kerr coefficient estimation of the hybrid structures. Spectral blue shift of the output pulse was observed in the slot-like graphene/silicon ridge waveguide. One possible explanation is that the blue shift was caused by the ultra-fast free carrier effect with the optical absorption of the doped graphene. This interesting effect can be used for soliton compression in femtosecond region. We also discussed the broadband anomalous dispersion of the Kerr coefficient of graphene.
NASA Astrophysics Data System (ADS)
Sohn, Kyung-Rak; Song, Jae-Won
2002-03-01
Using a side-polished single-mode fiber covered with a polished LiNbO 3 overlay and an intermediate coupling layer, tunable fiber-optic comb filters are demonstrated. The device behaviors based on the modal properties of the fiber and the planar LiNbO 3 waveguide are analyzed by two dimensional beam propagation methods (2-D BPM) and discussed the role of an intermediate coupling layer in terms of coupling efficiency. We also show that the thermo-optic effects of this layer can be utilized to tune the comb filter. When the polished x-cut LiNbO 3 with 200 μm thickness is used as a multimode overlay waveguide, the comb output spectra with free spectral range of 4 nm are measured in 1550 nm wavelength range. The tuning rate as a function of the refractive index of an intermediate coupling layer, Δλ/ Δnb, is about -0.129 nm/-0.001. The experimental results are in good agreement with the calculated results.
Takushima, Y; Shin, S Y; Chung, Y C
2007-10-29
We propose and investigate a ribbon waveguide for difference-frequency generation of terahertz (THz) wave from infrared light sources. The proposed ribbon waveguide is composed of a nonlinear optic crystal and has a thickness less than the wavelength of the THz wave to support the surface-wave mode in the THz region. By utilizing the waveguide dispersion of the surface-wave mode, the phase matching condition between infrared pump, idler and THz waves can be realized in the collinear configuration. Owing to the weak mode confinement of the THz wave, the absorption coefficient can also be reduced. We design the ribbon waveguide which uses LiNbO(3) crystal and discuss the phase-matching condition for DFG of THz wave. Highly efficient THz-wave generation is confirmed by numerical simulations.
NASA Astrophysics Data System (ADS)
Scheuermann, Julian; Weih, Robert; Becker, Steffen; Fischer, Marc; Koeth, Johannes; Höfling, Sven
2018-01-01
An interband cascade laser multiemitter with single-mode distributed feedback (DFB) emission at two wavelengths is presented. Continuous-wave laser operation is measured from 0°C to 40°C with threshold currents of around 25 mA and output powers of around 9 mW at 20°C. The ridge waveguide DFB structures are monolithically integrated with a spacing of 70 μm and each is provided with an individual metal DFB grating to select specific single-mode wavelengths of interest for absorption spectroscopy. The emission windows at 3.92 and 4.01 μm are targeting hydrogen sulfide and sulfur dioxide, which are of importance for industrial applications since both gases are reagents of the Claus process in sulfur recovery units, recovering elemental sulfur from gaseous hydrogen sulfide.
Effectively Single-Mode Self-Recovering Ultrafast Nonlinear Nanowire Surface Plasmons
NASA Astrophysics Data System (ADS)
Tuniz, Alessandro; Weidlich, Stefan; Schmidt, Markus A.
2018-04-01
We report on a regime for surface-plasmon propagation, which is robust to defects and effectively single mode, and we exploit it for accessing the ultrafast nonlinear response of gold on centimeter-long subwavelength-diameter cylindrical nanowires. The hybrid plasmonic-photonic platform is formed by a gold nanowire, monolithically integrated into the core of an optical fiber. We show that, despite the dual-waveguide nature of this structure, the long-range surface plasmon is the only effectively propagating mode in the near infrared, which self-recovers in the presence of gaps via a light-recapturing effect. This self-recovery overcomes detrimental effects of wire discontinuities and enables measurements of the ultrafast nonlinearity of gold, which we perform for a 28-fs pulse duration.
Sah, Parimal; Das, Bijoy Krishna
2018-03-20
It has been shown that a fundamental mode adiabatically launched into a multimode SOI waveguide with submicron grating offers well-defined flat-top bandpass filter characteristics in transmission. The transmitted spectral bandwidth is controlled by adjusting both waveguide and grating design parameters. The bandwidth is further narrowed down by cascading two gratings with detuned parameters. A semi-analytical model is used to analyze the filter characteristics (1500 nm≤λ≤1650 nm) of the device operating in transverse-electric polarization. The proposed devices were fabricated with an optimized set of design parameters in a SOI substrate with a device layer thickness of 250 nm. The pass bandwidth of waveguide devices integrated with single-stage gratings are measured to be ∼24 nm, whereas the device with two cascaded gratings with slightly detuned periods (ΔΛ=2 nm) exhibits a pass bandwidth down to ∼10 nm.
NASA Astrophysics Data System (ADS)
Valyaev, A. B.; Krivoshlykov, S. G.
1989-06-01
It is shown that the problem of investigating the mode composition of a partly coherent radiation beam in a randomly inhomogeneous medium can be reduced to a study of evolution of the energy of individual modes and of the coefficients of correlations between the modes. General expressions are obtained for the coupling coefficients of modes in a parabolic waveguide with a random microbending of the axis and an analysis is made of their evolution as a function of the excitation conditions. An estimate is obtained of the distance in which a steady-state energy distribution between the modes is established. Explicit expressions are obtained for the correlation function in the case when a waveguide is excited by off-axial Gaussian beams or Gauss-Hermite modes.
Slow waves in microchannel metal waveguides and application to particle acceleration
NASA Astrophysics Data System (ADS)
Steinhauer, L. C.; Kimura, W. D.
2003-06-01
Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO2 lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ˜0.6 mm). The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.
Moenster, Mathias; Steinmeyer, Günter; Iliew, Rumen; Lederer, Falk; Petermann, Klaus
2006-11-15
For optical fibers exhibiting a radially symmetric refractive index profile, there exists an analytical relation that connects waveguide dispersion and the Petermann-II mode field radius. We extend the usefulness of this relation to the nonradially symmetric case of microstructure fibers in the anomalous dispersion regime, yielding a simple relation between dispersion and effective mode field area. Assuming a Gaussian mode distribution, we derive a fundamental upper limit for the effective mode field area that is required to obtain a certain amount of anomalous waveguide dispersion. This relation is demonstrated to show excellent agreement for fiber designs suited for supercontinuum generation and soliton lasers in the near infrared.
NASA Astrophysics Data System (ADS)
Hedayatian, F.; Salem, M. K.; Saviz, S.
2018-01-01
In this study, microwave radiation is used to excite hybrid modes in a radially inhomogeneous cold plasma-filled cylindrical waveguide in the presence of external static magnetic field applied along the waveguide axis. The analytical expressions for EH0l field components, which accelerate an injected electron in the waveguide, are calculated. To study the effects of radial inhomogeneity on the electron dynamics and its acceleration, a model based on the Bessel-Fourier expansion is used while considering hybrid modes E H0 l(l =1 ,2 ,3 ,4 ) inside the waveguide, and the results are compared with the homogeneous plasma waveguide. The numerical results show that the field components related to the coupled EH0l modes are amplified due to radial inhomogeneity, which leads to an increase in the electron's energy gain. It is found that, if the waveguide is filled with radially inhomogeneous plasma, the electron acquires a higher energy gain while covering a shorter distance along the waveguide length (60 MeV energy gain in 1.1 cm distance along the waveguide length), so, a waveguide with a lesser length and a higher energy gain can be designed. The effects of radial inhomogeneity are studied on the deflection angle, the radial position, and the trajectory of an electron in the waveguide. The effects of the initial phase of the wave, injection point of the electron, and microwave power density are also investigated on the electron's energy gain. It is shown that the present model is applicable to both homogeneous and radially inhomogeneous plasma waveguides.
Adaptive slit beam shaping for direct laser written waveguides.
Salter, P S; Jesacher, A; Spring, J B; Metcalf, B J; Thomas-Peter, N; Simmonds, R D; Langford, N K; Walmsley, I A; Booth, M J
2012-02-15
We demonstrate an improved method for fabricating optical waveguides in bulk materials by means of femtosecond laser writing. We use an LC spatial light modulator (SLM) to shape the beam focus by generating adaptive slit illumination in the pupil of the objective lens. A diffraction grating is applied in a strip across the SLM to simulate a slit, with the first diffracted order mapped onto the pupil plane of the objective lens while the zeroth order is blocked. This technique enables real-time control of the beam-shaping parameters during writing, facilitating the fabrication of more complicated structures than is possible using nonadaptive methods. Waveguides are demonstrated in fused silica with a coupling loss to single-mode fibers in the range of 0.2 to 0.5 dB and propagation loss <0.4 dB/cm.
NASA Astrophysics Data System (ADS)
Sultana, Jakeya; Islam, Md. Saiful; Atai, Javid; Islam, Muhammad Rakibul; Abbott, Derek
2017-07-01
We demonstrate a photonic crystal fiber with near-zero flattened dispersion, ultralower effective material loss (EML), and negligible confinement loss for a broad spectrum range. The use of cyclic olefin copolymer Topas with improved core confinement significantly reduces the loss characteristics and the use of higher air filling fraction results in flat dispersion characteristics. The properties such as dispersion, EML, confinement loss, modal effective area, and single-mode operation of the fiber have been investigated using the full-vector finite element method with the perfectly matched layer absorbing boundary conditions. The practical implementation of the proposed fiber is achievable with existing fabrication techniques as only circular-shaped air holes have been used to design the waveguide. Thus, it is expected that the proposed terahertz waveguide can potentially be used for flexible and efficient transmission of terahertz waves.
Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Othman, Mohamed A. K.; Veysi, Mehdi; Capolino, Filippo
2016-03-15
We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventionalmore » Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.« less
Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG
Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping
2016-01-01
Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm. PMID:27535577
Directional emissivity from two-dimensional infrared waveguide arrays
NASA Astrophysics Data System (ADS)
Burckel, D. Bruce; Davids, Paul S.; Finnegan, Patrick S.; Figueiredo, Pedro N.; Ginn, James C.
2015-09-01
Fabrication and optical characterization of surfaces covered with open-ended metallic waveguides are presented along with numerical modeling of these structures. Both modeling and measurement of the structures indicate that the 2-D array of 3D metallic waveguides modify both the direction and spectral content of the emissivity, resulting in directionality normal to the surface due to the optical axis of the waveguides and spectrally narrow emissivity due to the lateral dimensions of the waveguides. Furthermore, the optical behavior of these structures is placed in the broader context of other structured emission/absorption surfaces such as organ pipe modes, surface plasmon modes, and coherent thermal emission from gratings.
Propagation of THz pulses in rectangular subwavelength dielectric waveguides
NASA Astrophysics Data System (ADS)
Lu, Yao; Wu, Qiang; Zhang, Qi; Wang, Ride; Zhao, Wenjuan; Zhang, Deng; Pan, Chongpei; Qi, Jiwei; Xu, Jingjun
2018-06-01
Rectangular subwavelength waveguides are necessary for the development of micro/nanophotonic devices and on-chip platforms. Using a time-resolved imaging system, we studied the transient properties and the propagation modes of THz pulses in rectangular subwavelength dielectric waveguides. The dynamic process of THz pulses was systematically recorded to a movie. In addition, an anomalous group velocity dispersion was demonstrated in rectangular subwavelength waveguides. By using the effective index method, we theoretically calculated the modes in rectangular subwavelength waveguides, which agree well with the experiments and simulations. This work provides the opportunity to improve the analysis and design of the integrated platforms and photonic devices.
Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej
2015-01-12
We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency.
Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers.
Barclay, Paul E; Fu, Kai-Mei; Santori, Charles; Beausoleil, Raymond G
2009-06-08
A design for an ultra-high Q photonic crystal nanocavity engineered to interact with nitrogen-vacancy (NV) centers located near the surface of a single crystal diamond sample is presented. The structure is based upon a nanowire photonic crystal geometry, and consists of a patterned high refractive index thin film, such as gallium phosphide (GaP), supported by a diamond substrate. The nanocavity supports a mode with quality factor Q > 1.5 x 10(6) and mode volume V < 0.52(lambda/nGaP)(3), and promises to allow Purcell enhanced collection of spontaneous emission from an NV located more than 50 nm below the diamond surface. The nanowire photonic crystal waveguide can be used to efficiently couple light into and out of the cavity, or as an efficient broadband collector of NV phonon sideband emission. The proposed structures can be fabricated using existing materials and processing techniques.
NASA Astrophysics Data System (ADS)
Ducariu, A.; Constantin, G. C.; Puscas, N. N.
2005-08-01
In the small gain approximation and the unsaturated regime in this paper we report some original results concerning the evaluation of the Fano factor, statistical fluctuation and spontaneous emission factor which characterize the photon statistics on the number of excited modes, dopant concentration and power pumping in the single and double pass Er3+ - doped LiNbO, straight waveguide amplifiers pumped near 1484 nm using erfc, Gaussian and constant profile of the Er3+ ions in LiNbO, crystal. We demonstrated that for 50 mW input pump power the Poisson photon statistics are maintained in the above mentioned amplifiers for concentrations of the Er ions smaller than l026 m-3 and also high gains and low noise figures are achievable. The obtained results can be used for the design of optoelectronic integrated circuits.
Design of bent waveguide semiconductor lasers using nonlinear equivalent chirp
NASA Astrophysics Data System (ADS)
Li, Lianyan; Shi, Yuechun; Zhang, Yunshan; Chen, Xiangfei
2018-01-01
Reconstruction equivalent chirp (REC) technique is widely used in the design and fabrication of semiconductor laser arrays and tunable lasers with low cost and high wavelength accuracy. Bent waveguide is a promising method to suppress the zeroth order resonance, which is an intrinsic problem in REC technique. However, it may introduce basic grating chirp and deteriorate the single longitudinal mode (SLM) property of the laser. A nonlinear equivalent chirp pattern is proposed in this paper to compensate the grating chirp and improve the SLM property. It will benefit the realization of low-cost Distributed feedback (DFB) semiconductor laser arrays with accurate lasing wavelength.
NASA Astrophysics Data System (ADS)
Wang, Kai; Cao, Qing; Zhang, Huifang; Shen, Pengcheng; Xing, Lujing
2018-06-01
Based on the TE01 mode of a rectangular metal waveguide and the Gaussian mode of a fiber, we propose the cos-Gaussian mode of a terahertz rectangular metal waveguide filled with multiple slices of dielectric. First, we consider a rectangular metal waveguide filled with an ideal graded-index dielectric along one direction. Furthermore, we replace the graded-index dielectric with multiple slices of dielectric according to the effective medium theory. The modal field, the effective index, and the coupling efficiency of this waveguide are investigated. It is found that the approximately linearly polarized electric field is Gaussian along one dimensionality and cosine along the other one. In addition, the low loss and high coupling efficiency with a Gaussian beam can be acquired at 0.9 THz. By optimization, the coupling efficiency could reach 88.5%.
Mode-independent attenuation in evanescent-field sensors
NASA Astrophysics Data System (ADS)
Gnewuch, Harald; Renner, Hagen
1995-03-01
Generally, the total power attenuation in multimode evanescent-field sensor waveguides is nonproportional to the bulk absorbance because the modal attenuation constants differ. Hence a direct measurement is difficult and is additionally aggravated because the waveguide absorbance is highly sensitive to the specific launching conditions at the waveguide input. A general asymptotic formula for the modal power attenuation in strongly asymmetric inhomogeneous planar waveguides with arbitrarily distributed weak absorption in the low-index superstrate is derived. Explicit expressions for typical refractive-index profiles are given. Except when very close to the cutoff, the predicted asymptotic attenuation behavior agrees well with exact calculations. The ratio of TM versus TE absorption has been derived to be (2 - n0 2/nf2 ) for arbitrary profiles. Waveguides with a linear refractive-index profile show mode-independent attenuation coefficients within each polarization. Further, the asymptotic sensitivity is independent of the wavelength, so that it should be possible to directly measure the spectral variation of the bulk absorption. The mode independence of the attenuation has been verified experimentally for a second-order polynomial profile, which is close to a linear refractive-index distribution. In contrast, the attenuation in the step-profile waveguide has been found to depend strongly on the mode number, as predicted by theory. A strong spread of the modal attenuation coefficients is also predicted for the parabolic-profile waveguide sensor.
Modal analysis and cut-off conditions of multichannel surface-acoustic-waveguide structures.
Griffel, G; Golan, G; Ruschin, S; Seidman, A; Croitoru, N
1988-01-01
Multichannel guides for surface acoustic waves can improve the efficiency of SAW (surface acoustic-wave) devices significantly. Focusing, steering, and modulating the propagating acoustical modes can be achieved similarly to optical waveguided devices. A general formulation is presented for the analysis of the lateral waveguiding properties of Rayleigh modes in surfaces loaded with deposited strips of different materials. General expressions are obtained for the number of modes and cutoff conditions in these structures. As examples of applications, a simple directional coupler and an electrically controlled coupler are proposed.
NASA Astrophysics Data System (ADS)
Chernushich, A. P.; Shkerdin, G. N.; Shukin, Yu M.
1992-10-01
The angular distribution of the reflection coefficient of an asymmetric multilayer planar structure containing a thin metal film and a planar optical waveguide has been found by accurate numerical calculations. There are resonances in the reflection coefficient associated with hybrid modes of the structure. The cases of strong and weak coupling of the surface polariton modes with the waveguide modes are discussed. The results of the numerical analysis agree with solutions of Maxwell's equations for a multilayer planar structure.
Bias-free spin-wave phase shifter for magnonic logic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louis, Steven; Tyberkevych, Vasyl; Slavin, Andrei
2016-06-15
A design of a magnonic phase shifter operating without an external bias magnetic field is proposed. The phase shifter uses a localized collective spin wave mode propagating along a domain wall “waveguide” in a dipolarly-coupled magnetic dot array with a chessboard antiferromagnetic (CAFM) ground state. It is demonstrated numerically that the remagnetization of a single magnetic dot adjacent to the domain wall waveguide introduces a controllable phase shift in the propagating spin wave mode without significant change to the mode amplitude. It is also demonstrated that a logic XOR gate can be realized in the same system.
FIBER AND INTEGRATED OPTICS: Bandgap modes in a coupled waveguide array
NASA Astrophysics Data System (ADS)
Usievich, B. A.; Nurligareev, D. Kh; Svetikov, V. V.; Sychugov, V. A.
2009-08-01
This work examines a waveguide array that consists of ten Nb2O5/SiO2 double layers and supports a 0.63-μm surface wave. The deposition of a Nb2O5 capping layer on top of the waveguide array enables a marked increase in the wave field intensity on its surface. The efficiency of surface-wave excitation in the Kretschmann configuration can be optimised by adjusting the number of double layers. We analyse the behaviour of the Bragg mode in relation to the thickness of the layer exposed to air and the transition of this mode from the second allowed band to the first through the bandgap of the system. In addition, the conventional leaky mode converts to a surface mode and then to a guided mode.
Coupling Ideality of Integrated Planar High-Q Microresonators
NASA Astrophysics Data System (ADS)
Pfeiffer, Martin H. P.; Liu, Junqiu; Geiselmann, Michael; Kippenberg, Tobias J.
2017-02-01
Chip-scale optical microresonators with integrated planar optical waveguides are useful building blocks for linear, nonlinear, and quantum-optical photonic devices alike. Loss reduction through improving fabrication processes results in several integrated microresonator platforms attaining quality (Q ) factors of several millions. Beyond the improvement of the quality factor, the ability to operate the microresonator with high coupling ideality in the overcoupled regime is of central importance. In this regime, the dominant source of loss constitutes the coupling to a single desired output channel, which is particularly important not only for quantum-optical applications such as the generation of squeezed light and correlated photon pairs but also for linear and nonlinear photonics. However, to date, the coupling ideality in integrated photonic microresonators is not well understood, in particular, design-dependent losses and their impact on the regime of high ideality. Here we investigate design-dependent parasitic losses described by the coupling ideality of the commonly employed microresonator design consisting of a microring-resonator waveguide side coupled to a straight bus waveguide, a system which is not properly described by the conventional input-output theory of open systems due to the presence of higher-order modes. By systematic characterization of multimode high-Q silicon nitride microresonator devices, we show that this design can suffer from low coupling ideality. By performing 3D simulations, we identify the coupling to higher-order bus waveguide modes as the dominant origin of parasitic losses which lead to the low coupling ideality. Using suitably designed bus waveguides, parasitic losses are mitigated with a nearly unity ideality and strong overcoupling (i.e., a ratio of external coupling to internal resonator loss rate >9 ) are demonstrated. Moreover, we find that different resonator modes can exchange power through the coupler, which, therefore, constitutes a mechanism that induces modal coupling, a phenomenon known to distort resonator dispersion properties. Our results demonstrate the potential for significant performance improvements of integrated planar microresonators for applications in quantum optics and nonlinear photonics achievable by optimized coupler designs.
NASA Astrophysics Data System (ADS)
Ma, Xing; Wang, Jun; Cheng, Zhuo; Yang, Zeyuan; Hu, Haiyang; Wang, Wei; Yin, Haiying; Huang, Yongqing; Ren, Xiaomin
2018-07-01
We report a structure design of 1.55 μm square microcavity lasers monolithically integrated on GaAs substrates. The mode characteristics of the microcavity lasers are numerically investigated by three-dimensional finite-difference time-domain method. The dependences of the high-quality factor modes on the side length of the microcavity, the width of the output waveguide and the etching depth are investigated in detail. The results demonstrate, for the microcavity structure with the side length of 12 μm, the output waveguide width of 1.0 μm and the etching depth of 3.55 μm, it is optimal to excite high-quality factor modes around wavelength of 1.55 μm. The mode wavelength and the mode quality factor are 1547.46 nm and 2416.28, respectively. The quality factor degrades rapidly with the waveguide width increasing, and increases with increasing etching depth.
Method of adiabatic modes in studying problems of smoothly irregular open waveguide structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevastianov, L. A., E-mail: sevast@sci.pfu.edu.ru; Egorov, A. A.; Sevastyanov, A. L.
2013-02-15
Basic steps in developing an original method of adiabatic modes that makes it possible to solve the direct and inverse problems of simulating and designing three-dimensional multilayered smoothly irregular open waveguide structures are described. A new element in the method is that an approximate solution of Maxwell's equations is made to obey 'inclined' boundary conditions at the interfaces between themedia being considered. These boundary conditions take into account the obliqueness of planes tangent to nonplanar boundaries between the media and lead to new equations for coupled vector quasiwaveguide hybrid adiabatic modes. Solutions of these equations describe the phenomenon of 'entanglement'more » of two linear polarizations of an irregular multilayered waveguide, the appearance of a new mode in an entangled state, and the effect of rotation of the polarization plane of quasiwaveguide modes. The efficiency of the method is demonstrated by considering the example of numerically simulating a thin-film generalized waveguide Lueneburg lens.« less
NASA Astrophysics Data System (ADS)
Goncharenko, I. A.
1989-07-01
The method of shift formulas is applied to anisotropic dielectric waveguides capable of conserving a given state of polarization of the transmitted signal. Equations are derived for calculation of the propagation constants and of the dispersion of the fundamental modes in waveguides with an anisotropic permittivity and a noncircular shape of the transverse cross section. Distributions of electric and magnetic fields of these modes are obtained in a transverse cross section of the waveguide. It is shown that under the influence of the anisotropy of the dielectric an energy spot describing the distribution of the mode field becomes of an ellipse with its axes oriented along the coordinates coinciding with the principal axes of the permittivity tensor.
Mechanisms and Methods for Selective Wavelength Filtering
NASA Technical Reports Server (NTRS)
Tuma, Margaret (Inventor); Brown, Thomas G. (Inventor); Gruhlke, Russell (Inventor)
2007-01-01
An optical filter includes a dielectric waveguide layer, supporting waveguide modes at specific wavelengths and receiving incident light, a corrugated film layer, composed of one of a metal and a semiconductor and positioned adjacent to a second surface of the waveguide layer and a sensor layer, wherein the sensor layer is capable of absorbing optical energy and generating a corresponding electrical signal. The metal film layer supports a plurality of plasmons, the plurality of plasmons producing a first field and is excited by a transverse mode of the waveguide modes at a wavelength interval. The first field penetrates the sensor layer and the sensor layer generates an electrical signal corresponding to an intensity of received incident light within the wavelength interval.
Thomas, Philip A; Auton, Gregory H; Kundys, Dmytro; Grigorenko, Alexander N; Kravets, Vasyl G
2017-03-24
We propose a hybrid plasmonic device consisting of a planar dielectric waveguide covering a gold nanostripe array fabricated on a gold film and investigate its guiding properties at telecom wavelengths. The fundamental modes of a hybrid device and their dependence on the key geometric parameters are studied. A communication length of 250 μm was achieved for both the TM and TE guided modes at telecom wavelengths. Due to the difference between the TM and TE light propagation associated with the diffractive plasmon excitation, our waveguides provide polarization separation. Our results suggest a practical way of fabricating metal-nanostripes-dielectric waveguides that can be used as essential elements in optoelectronic circuits.
Thomas, Philip A.; Auton, Gregory H.; Kundys, Dmytro; Grigorenko, Alexander N.; Kravets, Vasyl G.
2017-01-01
We propose a hybrid plasmonic device consisting of a planar dielectric waveguide covering a gold nanostripe array fabricated on a gold film and investigate its guiding properties at telecom wavelengths. The fundamental modes of a hybrid device and their dependence on the key geometric parameters are studied. A communication length of 250 μm was achieved for both the TM and TE guided modes at telecom wavelengths. Due to the difference between the TM and TE light propagation associated with the diffractive plasmon excitation, our waveguides provide polarization separation. Our results suggest a practical way of fabricating metal-nanostripes-dielectric waveguides that can be used as essential elements in optoelectronic circuits. PMID:28338060
NASA Astrophysics Data System (ADS)
Ye, J.; Shi, J.; De Hoop, M. V.
2017-12-01
We develop a robust algorithm to compute seismic normal modes in a spherically symmetric, non-rotating Earth. A well-known problem is the cross-contamination of modes near "intersections" of dispersion curves for separate waveguides. Our novel computational approach completely avoids artificial degeneracies by guaranteeing orthonormality among the eigenfunctions. We extend Wiggins' and Buland's work, and reformulate the Sturm-Liouville problem as a generalized eigenvalue problem with the Rayleigh-Ritz Galerkin method. A special projection operator incorporating the gravity terms proposed by de Hoop and a displacement/pressure formulation are utilized in the fluid outer core to project out the essential spectrum. Moreover, the weak variational form enables us to achieve high accuracy across the solid-fluid boundary, especially for Stoneley modes, which have exponentially decaying behavior. We also employ the mixed finite element technique to avoid spurious pressure modes arising from discretization schemes and a numerical inf-sup test is performed following Bathe's work. In addition, the self-gravitation terms are reformulated to avoid computations outside the Earth, thanks to the domain decomposition technique. Our package enables us to study the physical properties of intersection points of waveguides. According to Okal's classification theory, the group velocities should be continuous within a branch of the same mode family. However, we have found that there will be a small "bump" near intersection points, which is consistent with Miropol'sky's observation. In fact, we can loosely regard Earth's surface and the CMB as independent waveguides. For those modes that are far from the intersection points, their eigenfunctions are localized in the corresponding waveguides. However, those that are close to intersection points will have physical features of both waveguides, which means they cannot be classified in either family. Our results improve on Okal's classification, demonstrating that dispersion curves from independent waveguides should be considered to break at intersection points.
Dielectric Metasurface as a Platform for Spatial Mode Conversion in Nanoscale Waveguides.
Ohana, David; Desiatov, Boris; Mazurski, Noa; Levy, Uriel
2016-12-14
We experimentally demonstrate a nanoscale mode converter that performs coupling between the first two transverse electric-like modes of a silicon-on-insulator waveguide. The device operates by introducing a nanoscale periodic perturbation in its effective refractive index along the propagation direction and a graded effective index profile along its transverse direction. The periodic perturbation provides phase matching between the modes, while the graded index profile, which is realized by the implementation of nanoscale dielectric metasurface consisting of silicon features that are etched into the waveguide taking advantage of the effective medium concept, provides the overlap between the modes. Following the device design and numerical analysis using three-dimensional finite difference time domain simulations, we have fabricated the device and characterized it by directly measuring the modal content using optical imaging microscopy. From these measurements, the mode purity is estimated to be 95% and the transmission relative to an unperturbed strip waveguide is as high as 88%. Finally, we extend this approach to accommodate for the coupling between photonic and plasmonic modes. Specifically, we design and numerically demonstrate photonic to plasmonic mode conversion in a hybrid waveguide in which photonic and surface plasmon polariton modes can be guided in the silicon core and in the silicon/metal interface, respectively. The same method can also be used for coupling between symmetric and antisymmetric plasmonic modes in metal-insulator-metal or insulator-metal-insulator structures. On the basis of the current demonstration, we believe that such nanoscale dielectric metasurface-based mode converters can now be realized and become an important building block in future nanoscale photonic and plasmonic devices. Furthermore, the demonstrated platform can be used for the implementation of other chip scale components such as splitters, combiners couplers, and more.
Lasing characteristics of InAs quantum dot laers on InP substrate
NASA Technical Reports Server (NTRS)
Yang, Y.; Qiu, D.; Uhl, R.; Chacon, R.
2003-01-01
Single-stack InAs self-assembled quantum dots (QD) lasers based on InP substrate have been grown by metalorganic vapor phase epitaxy. The narrow ridge waveguide lasers lased up to 260 K in continuous wave operation, and near room temperature in pulsed mode, with wavelengths between 1.59 to 1.74 mu m.
Initial results for a 170 GHz high power ITER waveguide component test stand
NASA Astrophysics Data System (ADS)
Bigelow, Timothy; Barker, Alan; Dukes, Carl; Killough, Stephen; Kaufman, Michael; White, John; Bell, Gary; Hanson, Greg; Rasmussen, Dave
2014-10-01
A high power microwave test stand is being setup at ORNL to enable prototype testing of 170 GHz cw waveguide components being developed for the ITER ECH system. The ITER ECH system will utilize 63.5 mm diameter evacuated corrugated waveguide and will have 24 >150 m long runs. A 170 GHz 1 MW class gyrotron is being developed by Communications and Power Industries and is nearing completion. A HVDC power supply, water-cooling and control system has been partially tested in preparation for arrival of the gyrotron. The power supply and water-cooling system are being designed to operate for >3600 second pulses to simulate the operating conditions planned for the ITER ECH system. The gyrotron Gaussian beam output has a single mirror for focusing into a 63.5 mm corrugated waveguide in the vertical plane. The output beam and mirror are enclosed in an evacuated duct with absorber for stray radiation. Beam alignment with the waveguide is a critical task so a combination of mirror tilt adjustments and a bellows for offsets will be provided. Analysis of thermal patterns on thin witness plates will provide gyrotron mode purity and waveguide coupling efficiency data. Pre-prototype waveguide components and two dummy loads are available for initial operational testing of the gyrotron. ORNL is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under Contract DE-AC-05-00OR22725.
NASA Astrophysics Data System (ADS)
Sobczak, Grzegorz; DÄ browska, ElŻbieta; Teodorczyk, Marian; Kalbarczyk, Joanna; MalÄ g, Andrzej
2013-01-01
Low quality of the optical beam emitted by high-power laser diodes is the main disadvantage of these devices. The two most important reasons are highly non-Gaussian beam profile with relatively wide divergence in the junction plane and the filamentation effect. Designing laser diode as an array of narrow, close to each other single-mode waveguides is one of the solutions to this problem. In such devices called phase locked arrays (PLA) there is no room for filaments formation. The consequence of optical coupling of many single-mode waveguides is the device emission in the form of few almost diffraction limited beams. Because of losses in regions between active stripes the PLA devices have, however, somewhat higher threshold current and lower slope efficiencies compared to wide-stripe devices of similar geometry. In this work the concept of the high-power laser diode resonator consisted of joined PLA and wide stripe segments is proposed. Resulting changes of electro-optical characteristics of PLA are discussed. The devices are based on the asymmetric heterostructure designed for improvement of the catastrophic optical damage threshold as well as thermal and electrical resistances. Due to reduced distance from the active layer to surface in this heterostructure, better stability of current (and gain) distribution with changing drive level is expected. This could lead to better stability of optical field distribution and supermodes control. The beam divergence reduction in the direction perpendicular of the junction plane has been also achieved.
Practical microstructured and plasmonic terahertz waveguides
NASA Astrophysics Data System (ADS)
Markov, Andrey
The terahertz frequency range, with frequencies lying between 100 GHz and 10 THz, has strong potential for various technological and scientific applications such as sensing, imaging, communications, and spectroscopy. Most terahertz (THz) sources are immobile and THz systems use free-space propagation in dry air where losses are minimal. Designing efficient THz waveguides for flexible delivery of broadband THz radiation is an important step towards practical applications of terahertz techniques. THz waveguides can be very useful on the system integration level when used for connection of the diverse THz point devices, such as sources, filters, sensor cells, detectors, etc. The most straightforward application of waveguides is to deliver electromagnetic waves from the source to the point of detection. Cumbersome free-space optics can be replaced by waveguides operating in the THz range, which could lead to the development of compact THz time domain spectroscopy systems. Other promising applications of THz waveguides are in sensing and imaging. THz waveguides have also been shown to operate in subwavelength regimes, offering mode confinement in waveguide structures with a size smaller than the diffraction limit, and thus, surpassing the resolution of free-space THz imaging systems. In order to design efficient terahertz waveguides, the frequency dependent loss and dispersion of the waveguide must be minimized. A possible solution would be to increase the fraction of mode power propagating through air. In this thesis, the usage of planar porous air/dielectric waveguides and metal wire/dielectric hybrid terahertz fibers will be discussed. First, I present a novel design of a planar porous low-loss waveguide, describe its fabrication, and characterize it in view of its potential applications as a low-loss waveguide and sensor in the THz spectral range. The waveguide structure features a periodic sequence of layers of thin (25-50 mum) polyethylene film that are separated by low-loss air layers of comparable thickness. A large fraction of the modal fields in these waveguides is guided in the low-loss air region, thus effectively reducing the waveguide transmission losses. I consider that such waveguides can be useful not only for low-loss THz wave delivery, but also for sensing of biological and chemical specimens in the terahertz region, by placing the recognition elements directly into the waveguide microstructure. The main advantage of the proposed planar porous waveguide is the convenient access to its optical mode, since the major portion of THz power launched into such a waveguide is confined within the air layers. Moreover, small spacing between the layers promotes rapid loading of the analyte into the waveguide due to strong capillary effect (< 1 s filling of a 10 cm long waveguide with an analyte). The transmission and absorption properties of such waveguides have been investigated both experimentally using THz-TDS spectroscopy and theoretically using finite element software. The modal refractive index of porous waveguides is smaller compared to pure polymer and it is easy to adjust by changing the air spacing between the layers, as well as the number of layers in the core. The porous waveguide exhibits considerably smaller transmission losses than bulk material. In the following chapters I review another promising approach towards designing of low-loss, low-dispersion THz waveguides. The hybrid metal/dielectric waveguides use a plasmonic mode guided in the gap between two parallel wires that are, in turn, encapsulated inside a low-loss, low-refractive index, micro-structured cladding that provides mechanical stability and isolation from the environment. I describe several promising techniques that can be used to encapsulate the two-wire waveguides, while minimizing the negative impact of dielectric cladding on the waveguide optical properties. In particular, I detail the use of low-density foams and microstructured plastic claddings as two enabling materials for the two-wire waveguide encapsulation. The hybrid fiber design is more convenient for practical applications than a classic two metal wire THz waveguide as it allows direct manipulations of the fiber without the risk of perturbing its core-guided mode. I present a detailed analysis of the modal properties of the hybrid metal/dielectric waveguides, compare them with the properties of a classic two-wire waveguide, and then present strategies for the improvement of hybrid waveguide performance by using higher cladding porosity or utilizing inherently porous cladding material. I study coupling efficiency into hybrid waveguides and conclude that it can be relatively high (>50%) in the broad frequency range ˜0.5 THz. Not surprisingly, optical properties of such fibers are inferior to those of a classic two-wire waveguide due to the presence of lossy dielectric near an inter-wire gap. At the same time, composite fibers outperform porous fibers of the same geometry both in bandwidth of operation and in lower dispersion. I demonstrate that hybrid metal/dielectric porous waveguides can have a very large operational bandwidth, while supporting tightly confined, air-bound modes both at high and low frequencies. This is possible as, at higher frequencies, hybrid fibers can support ARROW-like low-loss air-bound modes, while changing their guidance mechanism to plasmonic confinement in the inter-wire air gap at lower frequencies. Finally, I describe an intriguing resonant property of some hybrid plasmonic modes of metal / dielectric waveguides that manifests itself in the strong frequency dependent change in the modal confinement from dielectric-bound to air-bound. I discuss how this property can be used to construct THz refractometers. Introduction of even lossless analytes into the fiber core leads to significant changes in the modal losses, which is used as a transduction mechanism. The resolution of the refractometer has been investigated numerically as a function of the operation frequency and the geometric parameters of the fiber. With a refractive index resolution on the order of ˜10-3 RIU, the composite fiber-based sensor is capable of identifying various gaseous analytes and aerosols or measuring the concentration of dust particles in the air.
A novel optical waveguide LP01/LP02 mode converter
NASA Astrophysics Data System (ADS)
Shen, Dongya; Wang, Changhui; Ma, Chuan; Mellah, Hakim; Zhang, Xiupu; Yuan, Hong; Ren, Wenping
2018-07-01
A novel optical waveguide LP01 /LP02 mode converter is proposed using combination of bicone structure based on the coupled-mode theory. It is composed of a cladding, a tapered core and combined bicone structure. It is found that this mode converter can have operating bandwidth of 1350-1700 nm, i.e. 350 nm, with a conversion efficiency of ∼90% (∼0.5 dB) and low crosstalk from other modes
Improved optical efficiency of bulk laser amplifiers with femtosecond written waveguides
NASA Astrophysics Data System (ADS)
Bukharin, Mikhail A.; Lyashedko, Andrey; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.
2016-04-01
In the paper we proposed improved technique of three-dimensional waveguides writing with direct femtosecond laser inscription technology. The technique allows, for the first time of our knowledge, production of waveguides with mode field diameter larger than 200 μm. This result broadens field of application of femtosecond writing technology into bulk laser schemes and creates an opportunity to develop novel amplifiers with increased efficiency. We proposed a novel architecture of laser amplifier that combines free-space propagation of signal beam with low divergence and propagation of pump irradiation inside femtosecond written waveguide with large mode field diameter due to total internal reflection effect. Such scheme provides constant tight confinement of pump irradiation over the full length of active laser element (3-10 cm). The novel amplifier architecture was investigated numerically and experimentally in Nd:phosphate glass. Waveguides with 200 μm mode field diameter were written with high frequency femtosecond oscillator. Proposed technique of three-dimensional waveguides writing based on decreasing and compensation of spherical aberration effect due to writing in heat cumulative regime and dynamic pulse energy adjustment at different depths of writing. It was shown, that written waveguides could increase optical efficiency of amplifier up to 4 times compared with corresponding usual free-space schemes. Novelty of the results consists in technique of femtosecond writing of waveguides with large mode field diameter. Actuality of the results consists in originally proposed architecture allows to improve up to 4 times optical efficiency of conventional bulk laser schemes and especially ultrafast pulse laser amplifiers.
Simplified THz Instrumentation for High-Field DNP-NMR Spectroscopy
Sirigiri, Jagadishwar R.
2012-01-01
We present an alternate simplified concept to irradiate a nuclear magnetic resonance sample with terahertz (THz) radiation for dynamic nuclear polarization (DNP) experiments using the TE01 circular waveguide mode for transmission of the THz power and the illumination of the DNP sample by either the TE01 or TE11 mode. Using finite element method and 3D electromagnetic simulations we demonstrate that the average value of the transverse magnetic field induced by the THz radiation and responsible for the DNP effect using the TE11 or the TE01 mode are comparable to that generated by the HE11 mode and a corrugated waveguide. The choice of the TE11/TE01 mode allows the use of a smooth-walled, oversized waveguide that is easier to fabricate and less expensive than a corrugated waveguide required for transmission of the HE11 mode. Also, the choice of the TE01 mode can lead to a simplification of gyrotron oscillators that operate in the TE0n mode, by employing an on-axis rippled-wall mode converter to convert the TE0n mode into the TE01 mode either inside or outside of the gyrotron tube. These novel concepts will lead to a significant simplification of the gyrotron, the transmission line and the THz coupler, which are the three main components of a DNP system. PMID:22977293
Phonon Routing in Integrated Optomechanical Cavity-waveguide Systems
2015-08-20
optomechanical crystal cavities connected by a dispersion-engineered phonon waveguide. Pulsed and continuous- wave measurements are first used to char- acterize...device layer of a silicon-on-insulator wafer (see App. A), and consists of several parts: an op- tomechanical cavity with co- localized optical and acous... localized cavity mode and the nearly- resonant phonon waveguide modes. The optical coupling waveg- uide is fabricated in the near-field of the nanobeam
Packaged integrated opto-fluidic solution for harmful fluid analysis
NASA Astrophysics Data System (ADS)
Allenet, T.; Bucci, D.; Geoffray, F.; Canto, F.; Couston, L.; Jardinier, E.; Broquin, J.-E.
2016-02-01
Advances in nuclear fuel reprocessing have led to a surging need for novel chemical analysis tools. In this paper, we present a packaged lab-on-chip approach with co-integration of optical and micro-fluidic functions on a glass substrate as a solution. A chip was built and packaged to obtain light/fluid interaction in order for the entire device to make spectral measurements using the photo spectroscopy absorption principle. The interaction between the analyte solution and light takes place at the boundary between a waveguide and a fluid micro-channel thanks to the evanescent part of the waveguide's guided mode that propagates into the fluid. The waveguide was obtained via ion exchange on a glass wafer. The input and the output of the waveguides were pigtailed with standard single mode optical fibers. The micro-scale fluid channel was elaborated with a lithography procedure and hydrofluoric acid wet etching resulting in a 150+/-8 μm deep channel. The channel was designed with fluidic accesses, in order for the chip to be compatible with commercial fluidic interfaces/chip mounts. This allows for analyte fluid in external capillaries to be pumped into the device through micro-pipes, hence resulting in a fully packaged chip. In order to produce this co-integrated structure, two substrates were bonded. A study of direct glass wafer-to-wafer molecular bonding was carried-out to improve detector sturdiness and durability and put forward a bonding protocol with a bonding surface energy of γ>2.0 J.m-2. Detector viability was shown by obtaining optical mode measurements and detecting traces of 1.2 M neodymium (Nd) solute in 12+/-1 μL of 0.01 M and pH 2 nitric acid (HNO3) solvent by obtaining an absorption peak specific to neodymium at 795 nm.
Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors.
Huang, Yin; Min, Changjun; Dastmalchi, Pouya; Veronis, Georgios
2015-06-01
We introduce slow-light enhanced subwavelength scale refractive index sensors which consist of a plasmonic metal-dielectric-metal (MDM) waveguide based slow-light system sandwiched between two conventional MDM waveguides. We first consider a MDM waveguide with small width structrue for comparison, and then consider two MDM waveguide based slow light systems: a MDM waveguide side-coupled to arrays of stub resonators system and a MDM waveguide side-coupled to arrays of double-stub resonators system. We find that, as the group velocity decreases, the sensitivity of the effective index of the waveguide mode to variations of the refractive index of the fluid filling the sensors as well as the sensitivities of the reflection and transmission coefficients of the waveguide mode increase. The sensing characteristics of the slow-light waveguide based sensor structures are systematically analyzed. We show that the slow-light enhanced sensors lead to not only 3.9 and 3.5 times enhancements in the refractive index sensitivity, and therefore in the minimum detectable refractive index change, but also to 2 and 3 times reductions in the required sensing length, respectively, compared to a sensor using a MDM waveguide with small width structure.
Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser.
Moscoso-Mártir, Alvaro; Müller, Juliana; Hauck, Johannes; Chimot, Nicolas; Setter, Rony; Badihi, Avner; Rasmussen, Daniel E; Garreau, Alexandre; Nielsen, Mads; Islamova, Elmira; Romero-García, Sebastián; Shen, Bin; Sandomirsky, Anna; Rockman, Sylvie; Li, Chao; Sharif Azadeh, Saeed; Lo, Guo-Qiang; Mentovich, Elad; Merget, Florian; Lelarge, François; Witzens, Jeremy
2017-10-24
We experimentally investigate an optical link relying on silicon photonics transmitter and receiver components as well as a single section semiconductor mode-locked laser as a light source and a semiconductor optical amplifier for signal amplification. A transmitter based on a silicon photonics resonant ring modulator, an external single section mode-locked laser and an external semiconductor optical amplifier operated together with a standard receiver reliably supports 14 Gbps on-off keying signaling with a signal quality factor better than 7 for 8 consecutive comb lines, as well as 25 Gbps signaling with a signal quality factor better than 7 for one isolated comb line, both without forward error correction. Resonant ring modulators and Germanium waveguide photodetectors are further hybridly integrated with chip scale driver and receiver electronics, and their co-operability tested. These experiments will serve as the basis for assessing the feasibility of a silicon photonics wavelength division multiplexed link relying on a single section mode-locked laser as a multi-carrier light source.
Ray convergence in a flux-like propagation formulation.
Harrison, Chris H
2013-06-01
The energy flux formulation of waveguide propagation is closely related to the incoherent mode sum, and its simplicity has led to development of efficient computational algorithms for reverberation and target echo strength, but it lacks the effects of convergence or modal interference. By starting with the coherent mode sum and rejecting the most rapid interference but retaining beats on a scale of a ray cycle distance it is shown that convergence can be included in a hybrid formulation requiring minimal extra computation. Three solutions are offered by evaluating the modal intensity cross terms using Taylor expansions. In the most efficient approach the double summation of the cross terms is reduced to a single numerical sum by solving the other summation analytically. The other two solutions are a local range average and a local depth average. Favorable comparisons are made between these three solutions and the wave model Orca with, and without, spatial averaging in an upward refracting duct. As a by-product, it is shown that the running range average is very close to the mode solution excluding its fringes, given a relation between averaging window size and effective number of modes which, in turn, is related to the waveguide invariant.
Broadband mode conversion via gradient index metamaterials
Wang, HaiXiao; Xu, YaDong; Genevet, Patrice; Jiang, Jian-Hua; Chen, HuanYang
2016-01-01
We propose a design for broadband waveguide mode conversion based on gradient index metamaterials (GIMs). Numerical simulations demonstrate that the zeroth order of transverse magnetic mode or the first order of transverse electric mode (TM0/TE1) can be converted into the first order of transverse magnetic mode or the second order of transverse electric mode (TM1/TE2) for a broadband of frequencies. As an application, an asymmetric propagation is achieved by integrating zero index metamaterials inside the GIM waveguide. PMID:27098456
Integrated Optical Dipole Trap for Cold Neutral Atoms with an Optical Waveguide Coupler
NASA Astrophysics Data System (ADS)
Lee, J.; Park, D. H.; Mittal, S.; Meng, Y.; Dagenais, M.; Rolston, S. L.
2013-05-01
Using an optical waveguide, an integrated optical dipole trap uses two-color (red and blue-detuned) traveling evanescent wave fields for trapping cold neutral atoms. To achieve longitudinal confinement, we propose using an integrated optical waveguide coupler, which provides a potential gradient along the beam propagation direction sufficient to confine atoms. This integrated optical dipole trap can support an atomic ensemble with a large optical depth due to its small mode area. Its quasi-TE0 waveguide mode has an advantage over the HE11 mode of a nanofiber, with little inhomogeneous Zeeman broadening at the trapping region. The longitudinal confinement eliminates the need for a 1D optical lattice, reducing collisional blockaded atomic loading, potentially producing larger ensembles. The waveguide trap allows for scalability and integrability with nano-fabrication technology. We analyze the potential performance of such integrated atom traps and present current research progress towards a fiber-coupled silicon nitride optical waveguide integrable with atom chips. Work is supported by the ARO Atomtronics MURI. Work is supported by the ARO Atomtronics MURI.
Linear analysis of active-medium two-beam accelerator
NASA Astrophysics Data System (ADS)
Voin, Miron; Schächter, Levi
2015-07-01
We present detailed development of the linear theory of wakefield amplification by active medium and its possible application to a two-beam accelerator (TBA) is discussed. A relativistic train of triggering microbunches traveling along a vacuum channel in an active medium confined by a cylindrical waveguide excites Cherenkov wake in the medium. The wake is a superposition of azimuthally symmetric transverse magnetic modes propagating along a confining waveguide, with a phase velocity equal to the velocity of the triggering bunches. The structure may be designed in such a way that the frequency of one of the modes is close to active-medium resonant frequency, resulting in amplification of the former and domination of a single mode far behind the trigger bunches. Another electron bunch placed in proper phase with the amplified wakefield may be accelerated by the latter. Importantly, the energy for acceleration is provided by the active medium and not the drive bunch as in a traditional TBA. Based on a simplified model, we analyze extensively the impact of various parameters on the wakefield amplification process.
Mbonye, Marx; Mendis, Rajind; Mittleman, Daniel M
2012-12-03
We present numerical and experimental results on inhibiting diffraction losses associated with the lowest order transverse electric (TE1) mode of a terahertz (THz) parallel-plate waveguide (PPWG) via the use of slightly concave plates. We find that there is an optimal radius of curvature that inhibits the diffraction for a given waveguide operating at a given frequency. We also find that introducing this curvature does not introduce any additional group-velocity dispersion. These results support the possibility of realizing long range transport of THz radiation using the TE1 mode of the PPWG.
Waveguide apparatuses and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, James E.
2016-05-10
Optical fiber waveguides and related approaches are implemented to facilitate communication. As may be implemented in accordance with one or more embodiments, a waveguide has a substrate including a lattice structure having a plurality of lattice regions with a dielectric constant that is different than that of the substrate, a defect in the lattice, and one or more deviations from the lattice. The defect acts with trapped transverse modes (e.g., magnetic and/or electric modes) and facilitates wave propagation along a longitudinal direction while confining the wave transversely. The deviation(s) from the lattice produces additional modes and/or coupling effects.
NASA Astrophysics Data System (ADS)
Kivshar', Yu S.
1990-12-01
A study is reported of the stability of soliton pulses propagating in a two-mode fiber waveguide under conditions of a mismatch between the group velocities of the optical modes. An analytic explanation is proposed of the dependence of the threshold amplitude of an initial pulse, responsible for intermode locking of the pulses, on the mismatch between the group velocities. An analytically derived dependence is shown to be in good agreement with earlier numerical experiments. Decay of coupled intermode states of solitons due to dissipative losses is predicted.
NASA Astrophysics Data System (ADS)
Cao, Jianqiu; Liu, Wenbo; Ying, Hanyuan; Chen, Jinbao; Lu, Qisheng
2018-03-01
The characteristics of a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier are investigated numerically using the rate-equation model while taking thermal transfer into account. It is revealed that the seed power should play an important role in the fiber amplifier and should be large enough to ensure high output efficiency. The effects of three pumping schemes (i.e. the co-, counter- and bi-directional pumping schemes) and the initial refraction index difference are also studied. It is revealed that the optimum fiber length changes with the pumping scheme, and the initial refraction index difference should be lower than 10-4 in order to ensure the linear increment of the output signal power with the pump power. Furthermore, a brief comparison between the thermally induced waveguides in the fiber amplifiers for three pumping schemes is also made.
NASA Astrophysics Data System (ADS)
Gumennik, Alexander; Agranat, Aharon J.; Shachar, Igal; Hass, Michael
2005-12-01
A slab waveguide was fabricated in a potassium lithium tantalate niobate crystal by the implantation of He2+ ions at 2.26 MeV. The waveguide profile and loss were evaluated by measuring the dark mode TE spectrum using the prism coupling method at λ=1.3μm. The implantation generated amorphous cladding layer 5μm below the surface of the crystal with a refractive index lower by 3.9% then that of the substrate. The propagation loss of the waveguided modes was found to be 0.1-0.2dB/cm. Thermal stability of the waveguide was obtained by isothermal annealing at 351 and 446 °C. Following the annealing the waveguide index profile remained unchanged when subjected to annealing at 150 °C for one week.
Optical pumping in a whispering mode optical waveguide
Kurnit, Norman A.
1984-01-01
A device and method for optical pumping in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction pathlengths which are achieved in a small volume.
Lei, Yi; Li, Jianqiang; Wu, Rui; Fan, Yuting; Fu, Songnian; Yin, Feifei; Dai, Yitang; Xu, Kun
2017-06-01
Based on the observed random fluctuation phenomenon of speckle pattern across multimode fiber (MMF) facet and received optical power distribution across three output ports, we experimentally investigate the statistic characteristics of a 3×3 radio frequency multiple-input multiple-output (MIMO) channel enabled by mode division multiplexing in a conventional 50 µm MMF using non-mode-selective three-dimensional waveguide photonic lanterns as mode multiplexer and demultiplexer. The impacts of mode coupling on the MIMO channel coefficients, channel matrix, and channel capacity have been analyzed over different fiber lengths. The results indicate that spatial multiplexing benefits from the greater fiber length with stronger mode coupling, despite a higher optical loss.
Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej
2015-01-01
We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency. PMID:25587980
Biosensors for DNA sequence detection
NASA Technical Reports Server (NTRS)
Vercoutere, Wenonah; Akeson, Mark
2002-01-01
DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.
Test facility for the evaluation of microwave transmission components
NASA Astrophysics Data System (ADS)
Fong, C. G.; Poole, B. R.
1985-10-01
A Low Power Test Facility (LPTF) was developed to evaluate the performance of Electron Cyclotron Resonance Heating (ECRH) microwave transmission components for the Mirror Fusion Test Facility (MFTF-B). The facility generates 26 to 60 GHz in modes of TE01, TE02, or TE03 launched at power levels of 1/2 milliwatt. The propagation of the RF as it radiates from either transmitting or secondary reflecting microwave transmission components is recorded by a discriminating crystal detector mechanically manipulated at constant radius in spherical coordinates. The facility is used to test, calibrate, and verify the design of overmoded, circular waveguide components, quasi-optical reflecting elements before high power use. The test facility consists of microwave sources and metering components, such as VSWR, power and frequency meters, a rectangular TE10 to circular TE01 mode transducer, mode filter, circular TE01 to 2.5 in. diameter overmoded waveguide with mode converters for combination of TE01 to TE03 modes. This assembly then connects to a circular waveguide launcher or the waveguide component under test.
Single Mode Optical Waveguide Design Investigation.
1981-03-30
ADA09 979 CORNING GLASS WORKS NY F/6 20/6 SINGLE NOOK OPTICAL WAVEGUIOC DESIGN INVESTIGATION. (U) MA 81 V A BHAGAVAY~l-A, R A WESTWIG. D 6 KECK...Bhagavatula R. A. Westwig D. B. Keck Corning Glass Wqrks Corning, N.Y. March 30, 1981 Approved L r oc e 81 415 021 1i. Summary 1.1 Lateral and angular offset...sensitivity test equipment has been designed and built. 1.2 Measurements of lateral offset sensitivity have been made on several fibers to determine
NASA Astrophysics Data System (ADS)
Jin, Young-Hyun; Seo, Kyoung-Sun; Cho, Young-Ho; Lee, Sang-Shin; Song, Ki-Chang; Bu, Jong-Uk
2004-12-01
We present an silicon-on-insulator (SOI) optical microswitch, composed of silicon waveguides and electrostatically actuated gold-coated silicon micromirrors integrated with laser diode (LD) receivers and photo diode (PD) transmitters. For a low switching voltage, we modify the conventional curved electrode microactuator into a new microactuator with touch-down beams. We fabricate the waveguides and the actuated micromirror using the inductively coupled plasma (ICP) etching process of SOI wafers. The fabricated microswitch operates at the switching voltage of 31.7 ± 4 V with the resonant frequency of 6.89 kHz. Compared to the conventional microactuator, the touch-down beam microactuator achieves 77.4% reduction of the switching voltage. We observe the single mode wave propagation through the silicon waveguide with the measured micromirror loss of 4.18 ± 0.25 dB. We discuss a feasible method to achieve the switching voltage lower than 10 V by reducing the residual stress in the insulation layers of touch-down beams to the level of 30 MPa. We also analyze the major source of micromirror loss, thereby presenting design guidelines for low-loss micromirror switches.
Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti:Sapphire crystal
NASA Astrophysics Data System (ADS)
Ren, Yingying; Zhang, Limu; Xing, Hongguang; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng
2018-07-01
Highly-compact devices capable of beam splitting are intriguing for a broad range of photonic applications. In this work, we report on the fabrication of optical waveguide splitters with rectangular cladding geometry in a Ti:Sapphire crystal by femtosecond laser inscription. Y-splitters are fabricated with 30 μm × 15 μm and 50 μm × 25 μm input ends, corresponding to two 15 μm × 15 μm and 25 μm × 25 μm output ends, respectively. The full branching angle θ between the two output arms are changing from 0.5° to 2°. The performances of the splitters are characterized at 632.8 nm and 1064 nm, showing very good properties including symmetrical output ends, single-mode guidance, equalized splitting ratios, all-angle-polarization light transmission and intact luminescence features in the waveguide cores. The realization of these waveguide splitters with good performances demonstrates the potential of such promising devices in complex monolithic photonic circuits and active optical devices such as miniature tunable lasers.
FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides.
Dissanayake, Chethiya M; Premaratne, Malin; Rukhlenko, Ivan D; Agrawal, Govind P
2010-09-27
A deep insight into the inherent anisotropic optical properties of silicon is required to improve the performance of silicon-waveguide-based photonic devices. It may also lead to novel device concepts and substantially extend the capabilities of silicon photonics in the future. In this paper, for the first time to the best of our knowledge, we present a three-dimensional finite-difference time-domain (FDTD) method for modeling optical phenomena in silicon waveguides, which takes into account fully the anisotropy of the third-order electronic and Raman susceptibilities. We show that, under certain realistic conditions that prevent generation of the longitudinal optical field inside the waveguide, this model is considerably simplified and can be represented by a computationally efficient algorithm, suitable for numerical analysis of complex polarization effects. To demonstrate the versatility of our model, we study polarization dependence for several nonlinear effects, including self-phase modulation, cross-phase modulation, and stimulated Raman scattering. Our FDTD model provides a basis for a full-blown numerical simulator that is restricted neither by the single-mode assumption nor by the slowly varying envelope approximation.
NASA Astrophysics Data System (ADS)
Gallezot, M.; Treyssède, F.; Laguerre, L.
2018-03-01
This paper investigates the computation of the forced response of elastic open waveguides with a numerical modal approach based on perfectly matched layers (PML). With a PML of infinite thickness, the solution can theoretically be expanded as a discrete sum of trapped modes, a discrete sum of leaky modes and a continuous sum of radiation modes related to the PML branch cuts. Yet with numerical methods (e.g. finite elements), the waveguide cross-section is discretized and the PML must be truncated to a finite thickness. This truncation transforms the continuous sum into a discrete set of PML modes. To guarantee the uniqueness of the numerical solution of the forced response problem, an orthogonality relationship is proposed. This relationship is applicable to any type of modes (trapped, leaky and PML modes) and hence allows the numerical solution to be expanded on a discrete sum in a convenient manner. This also leads to an expression for the modal excitability valid for leaky modes. The physical relevance of each type of mode for the solution is clarified through two numerical test cases, a homogeneous medium and a circular bar waveguide example, excited by a point source. The former is favourably compared to a transient analytical solution, showing that PML modes reassemble the bulk wave contribution in a homogeneous medium. The latter shows that the PML mode contribution yields the long-term diffraction phenomenon whereas the leaky mode contribution prevails closer to the source. The leaky mode contribution is shown to remain accurate even with a relatively small PML thickness, hence reducing the computational cost. This is of particular interest for solving three-dimensional waveguide problems, involving two-dimensional cross-sections of arbitrary shapes. Such a problem is handled in a third numerical example by considering a buried square bar.
Wavelength interrogation of fiber Bragg grating sensors using tapered hollow Bragg waveguides.
Potts, C; Allen, T W; Azar, A; Melnyk, A; Dennison, C R; DeCorby, R G
2014-10-15
We describe an integrated system for wavelength interrogation, which uses tapered hollow Bragg waveguides coupled to an image sensor. Spectral shifts are extracted from the wavelength dependence of the light radiated at mode cutoff. Wavelength shifts as small as ~10 pm were resolved by employing a simple peak detection algorithm. Si/SiO₂-based cladding mirrors enable a potential operational range of several hundred nanometers in the 1550 nm wavelength region for a taper length of ~1 mm. Interrogation of a strain-tuned grating was accomplished using a broadband amplified spontaneous emission (ASE) source, and potential for single-chip interrogation of multiplexed sensor arrays is demonstrated.
Coupled resonator optical waveguides based on silicon-on-insulator photonic wires
NASA Astrophysics Data System (ADS)
Xia, Fengnian; Sekaric, Lidija; O'Boyle, Martin; Vlasov, Yurii
2006-07-01
Coupled resonator optical waveguides (CROWs) comprised of up to 16 racetrack resonators based on silicon-on-insulator (SOI) photonic wires were fabricated and characterized. The optical properties of the CROWs were simulated using measured single resonator parameters based on a matrix approach. The group delay property of CROWs was also analyzed. The SOI based CROWs consisting of multiple resonators have extremely small footprints and can find applications in optical filtering, dispersion compensation, and optical buffering. Moreover, such CROW structure is a promising candidate for exploration of low light level nonlinear optics due to its resonant nature and compact mode size (˜0.1μm2) in photonic wire.
A preliminary design of the Ti:LiNbO3 optical channel waveguide
NASA Astrophysics Data System (ADS)
Choi, Yat
1992-03-01
One of the goals of technology-based activities within the Electronic Warfare Division is to facilitate the development within Australia, of facilities and a capability to manufacture sophisticated, highspeed electro-optic devices, in particular, the integrated optical amplitude modulator and integrated optical switch, for use in microwave and millimetre-wave systems for the Australian Defense Force (ADF). An initial step towards this goal would be to produce a low-loss and single-mode propagation optical channel waveguide using titanium-indiffused lithium niobate (Ti:LiNbO3). As no dimensions and fabrication parameters have yet been optimized, this technical report provides preliminary design data which optimizes these parameters.
NASA Astrophysics Data System (ADS)
Wu, Sheng; Deev, Andrei
2013-01-01
A field deployable Compound Specific Isotope Analyzer (CSIA) coupled with capillary chromatogrpahy based on Quantum Cascade (QC) lasers and Hollow Waveguide (HWG) with precision and chemical resolution matching mature Mass Spectroscopy has been achieved in our laboratory. The system could realize 0.3 per mil accuracy for 12C/13C for a Gas Chromatography (GC) peak lasting as short as 5 seconds with carbon molar concentration in the GC peak less than 0.5%. Spectroscopic advantages of HWG when working with QC lasers, i.e. single mode transmission, noiseless measurement and small sample volume, are compared with traditional free space and multipass spectroscopy methods.
Theory of Gyrotron Traveling Wave Amplifiers at Harmonics of the Gyration Frequency
NASA Astrophysics Data System (ADS)
Li, Qiangfa
In developing gyrotrons at millimeter and submillimeter wavelengths, a means of operation at lower applied magnetic fields is desirable because of the size and weight of convetional magnets, and the expense and complexity of cryogenic magnets. This requirement can be met by operating the devices at higher harmonics of the electron gyration frequency. In the present work, a unified theory is developed for the gyrotron traveling wave amplifers (gyro-TWA) at harmonics of the gyration frequency, both in the nonlinear regime and in the linear regime. This theory can be applied to a wide class of waveguide cross sections, arbitrary harmonic number, any waveguide mode, and generalized electron beam model. The fields in the beam-field interaction region in the waveguide are expressed in the form of an infinite series of multipoles expanded around the guiding center of the electrons. A set of equations governing the nonlinear behavior of the gyro-TWA is derived. A general dispersion equation is derived both from that set of nonlinear equations by an iteration method and from plasma kinetic theory. The latter is employed to analyze gyro-TWA devices in a systematic and generalized manner. The Laplace transformation is introduced to allow inclusion of the initial values at the input end of the waveguide. From the linear theory it is found that for a gyrotron working at s-th gyration harmonic the electrons can interact only with the 2s-th order multipole field component. It is also found that a higher order waveguide mode is not always better than a lower order mode for the gyro-TWA working at higher harmonics. A novel out-ridged waveguide is proposed and analyzed for the use in gyrotrons. The prominent features of this new waveguide include simplicity of manufacture, freedom from local modes, good separation of lower order modes, high power handling ability, and high gain per unit length at higher gyration harmonics. A comparison of the gyro-TWAs with several different waveguide structures, such as the out-ridged, magnetron-type, rectangular and circular waveguides, is made through numerical examples of the gain-frequency curves computed from the linear kinetic theory.
Dissipationless transport of spin-polarized electrons and Cooper pairs in an electron waveguide
NASA Astrophysics Data System (ADS)
Levy, J.; Annadi, A.; Lu, S.; Cheng, G.; Tylan-Tyler, A.; Briggeman, M.; Tomczyk, M.; Huang, M.; Pekker, D.; Irvin, P.; Lee, H.; Lee, J.-W.; Eom, C.-B.
Electron systems undergo profound changes in their behavior when constrained to move along a single axis. To date, clean one-dimensional (1D) electron transport has only been observed in carbon-based nanotubes and nanoribbons, and compound semiconductor nanowires. Complex-oxide heterostructures can possess conductive two-dimensional (2D) interfaces with much richer chemistries and properties, e.g., superconductivity, but with mobilities that appear to preclude ballistic transport in 1D. Here we show that nearly ideal 1D electron waveguides exhibiting ballistic transport of electrons and non-superconducting Cooper pairs can be formed at the interface between the two band insulators LaAlO3 and SrTiO3. The electron waveguides possess gate and magnetic-field selectable spin and charge degrees of freedom, and can be tuned to the one-dimensional limit of a single spin-polarized quantum channel. The strong attractive electron-electron interactions enable a new mode of dissipationless transport of electron pairs that is not superconducting. The selectable spin and subband quantum numbers of these electron waveguides may be useful for quantum simulation, quantum informatio We gratefully acknowledge financial support from ONR N00014-15-1-2847 (JL), AFOSR (FA9550-15-1-0334 (CBE) and FA9550-12-1-0057 (JL, CBE)), AOARD FA2386-15-1-4046 (CBE) and NSF (DMR-1104191 (JL), DMR-1124131 (CBE, JL) and DMR-1234096 (CBE)).
Applications of Space-Time Duality
NASA Astrophysics Data System (ADS)
Plansinis, Brent W.
The concept of space-time duality is based on a mathematical analogy between paraxial diffraction and narrowband dispersion, and has led to the development of temporal imaging systems. The first part of this thesis focuses on the development of a temporal imaging system for the Laboratory for Laser Energetics. Using an electro-optic phase modulator as a time lens, a time-to-frequency converter is constructed capable of imaging pulses between 3 and 12 ps. Numerical simulations show how this system can be improved to image the 1-30 ps range used in OMEGA-EP. By adjusting the timing between the pulse and the sinusoidal clock of the phase modulator, the pulse spectrum can be selectively narrowed, broadened, or shifted. An experimental demonstration of this effect achieved spectral narrowing and broadening by a factor of 2. Numerical simulations show narrowing by a factor of 8 is possible with modern phase modulators. The second part of this thesis explores the space-time analog of reflection and refraction from a moving refractive index boundary. From a physics perspective, a temporal boundary breaks translational symmetry in time, requiring the momentum of the photon to remain unchanged while its energy may change. This leads to a shifting and splitting of the pulse spectrum as the boundary is crossed. Equations for the reflected and transmitted frequencies and a condition for total internal reflection are found. Two of these boundaries form a temporal waveguide, which confines the pulse to a narrow temporal window. These waveguides have a finite number of modes, which do not change during propagation. A single-mode waveguide can be created, allowing only a single pulse shape to form within the waveguide. Temporal reflection and refraction produce a frequency dependent phase shift on the incident pulse, leading to interference fringes between the incident light and the reflected light. In a waveguide, this leads to self-imaging, where the pulse shape reforms periodically at finite propagation lengths. Numerical simulations are performed for the specific case where the moving boundary is produced through cross-phase modulation. In this case, the Kerr nonlinearity causes the boundary to change during propagation, leading to unique temporal and spectral behavior.
Raman scattering in a whispering mode optical waveguide
Kurnit, Norman A.
1982-01-01
A device and method for Raman scattering in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature .rho. p for confining the beam to increase intensity. A Raman scattering medium is disposed in the optical path of the beam as it propagates along the waveguide. Raman scattering is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.
TE and TM guided modes in an air waveguide with negative-index-material cladding.
D'Aguanno, G; Mattiucci, N; Scalora, M; Bloemer, M J
2005-04-01
We numerically demonstrate that a planar waveguide in which the inner layer is a gas with refractive index n0 = 1, sandwiched between two identical semi-infinite layers of a negative index material, can support both transverse electric and transverse magnetic guided modes with low losses. Recent developments in the design of metamaterials with an effective negative index suggest that this waveguide could operate in the infrared region of the spectrum.
Optical pumping in a whispering-mode optical waveguide
Kurnit, N.A.
1981-08-11
A device and method for optical pumping in a whispering mode optical waveguide are described. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.
NASA Astrophysics Data System (ADS)
Buus, J.
1980-06-01
The group index for TE modes in an asymmetrical slab waveguide is investigated, and a simple analytical expression is derived. It is shown that the product of the phase and group indices is related to the power fraction in each of the three layers of the waveguide. The results are of interest in the analysis of double heterostructure semiconductor lasers. Theoretical and experimental results for lasers emitting at 1.55 microns are compared.
Acoustic-gravity waves in atmospheric and oceanic waveguides.
Godin, Oleg A
2012-08-01
A theory of guided propagation of sound in layered, moving fluids is extended to include acoustic-gravity waves (AGWs) in waveguides with piecewise continuous parameters. The orthogonality of AGW normal modes is established in moving and motionless media. A perturbation theory is developed to quantify the relative significance of the gravity and fluid compressibility as well as sensitivity of the normal modes to variations in sound speed, flow velocity, and density profiles and in boundary conditions. Phase and group speeds of the normal modes are found to have certain universal properties which are valid for waveguides with arbitrary stratification. The Lamb wave is shown to be the only AGW normal mode that can propagate without dispersion in a layered medium.
Tunable THz notch filter with a single groove inside parallel-plate waveguides.
Lee, Eui Su; Jeon, Tae-In
2012-12-31
A single groove in a parallel-plate waveguide (PPWG) has been applied to a tunable terahertz (THz) notch filter with a transverse-electromagnetic (TEM) mode. When the air gap between the metal plates of the PPWG is controlled from 60 to 240 μm using a motor controlled translation stage or a piezo-actuator, the resonant frequency of the notch filter is changed from 1.75 up to 0.62 THz, respectively. Therefore, the measured tunable sensitivity of the notch filter increases to 6.28 GHz/μm. The measured resonant frequencies were found to be in good agreement with the calculation using an effective groove depth. Using a finite-difference time-domain (FDTD) simulation, we also demonstrate that the sensitivity of a THz microfluidic sensor can be increased via a small air gap, a narrow groove width, and a deep groove depth.
NASA Astrophysics Data System (ADS)
Main, Philip; Mosley, Peter J.; Ding, Wei; Zhang, Lijian; Gorbach, Andrey V.
2016-12-01
We propose a compact, fiber-integrated architecture for photon-pair generation by parametric downconversion with unprecedented flexibility in the properties of the photons produced. Our approach is based on a thin-film lithium niobate nanowaveguide, evanescently coupled to a tapered silica microfiber. We demonstrate how controllable mode hybridization between the fiber and waveguide yields control over the joint spectrum of the photon pairs. We also investigate how independent engineering of the linear and nonlinear properties of the structure can be achieved through the addition of a tapered, proton-exchanged layer to the waveguide. This allows further refinement of the joint spectrum through custom profiling of the effective nonlinearity, drastically improving the purity of the heralded photons. We give details of a source design capable of generating heralded single photons in the telecom wavelength range with purity of at least 0.95, and we provide a feasible fabrication methodology.
Ultracompact 1×4 TM-polarized beam splitter based on photonic crystal surface mode.
Jiang, Bin; Zhang, Yejin; Wang, Yufei; Liu, Anjin; Zheng, Wanhua
2012-05-01
We provide an improved surface-mode photonic crystal (PhC) T-junction waveguide, combine it with an improved PhC bandgap T-junction waveguide, and then provide an ultracompact 1×4 TM-polarized beam splitter. The energy is split equally into the four output waveguides. The maximal transmission ratio of each output waveguide branch equals 24.7%, and the corresponding total transmission ratio of the ultracompact 1×4 beam splitter equals 98.8%. The normalized frequency of maximal transmission ratio is 0.397(2πc/a), and the bandwidth of the ultracompact 1×4 TM-polarized beam splitter is 0.0106(2πc/a). To the best of our knowledge, this is the first time such a high-efficiency 1×4 beam splitter exploiting the nonradiative surface mode as a guided mode has been proposed. Although we only employed a 1×4 beam splitter, our design can easily be extended to other 1×n beam splitters.
Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler
NASA Astrophysics Data System (ADS)
Lee, J.; Park, D. H.; Mittal, S.; Dagenais, M.; Rolston, S. L.
2013-04-01
An integrated optical dipole trap uses two-color (red and blue-detuned) traveling evanescent wave fields for trapping cold neutral atoms. To achieve longitudinal confinement, we propose using an integrated optical waveguide coupler, which provides a potential gradient along the beam propagation direction sufficient to confine atoms. This integrated optical dipole trap can support an atomic ensemble with a large optical depth due to its small mode area. Its quasi-TE0 waveguide mode has an advantage over the HE11 mode of a nanofiber, with little inhomogeneous Zeeman broadening at the trapping region. The longitudinal confinement eliminates the need for a one dimensional optical lattice, reducing collisional blockaded atomic loading, potentially producing larger ensembles. The waveguide trap allows for scalability and integrability with nano-fabrication technology. We analyze the potential performance of such integrated atom traps.
Vallejo, Felipe A; Hayden, L Michael
2013-03-11
We use coupled mode theory, adequately incorporating optical losses, to model ultra-broadband terahertz (THz) waveguide emitters (0.1-20 THz) based on difference frequency generation of femtosecond infrared (IR) optical pulses. We apply the model to a generic, symmetric, five-layer, metal/cladding/core waveguide structure using transfer matrix theory. We provide a design strategy for an efficient ultra-broadband THz emitter and apply it to polymer waveguides with a nonlinear core composed of a poled guest-host electro-optic polymer composite and pumped by a pulsed fiber laser system operating at 1567 nm. The predicted bandwidths are greater than 15 THz and we find a high conversion efficiency of 1.2 × 10(-4) W(-1) by balancing both the modal phase-matching and effective mode attenuation.
Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits.
Dai, Daoxin; Mao, Mao
2015-11-02
An inverse taper on silicon is proposed and designed to realize an efficient mode converter available for the connection between multimode silicon nanophotonic integrated circuits and few-mode fibers. The present mode converter has a silicon-on-insulator inverse taper buried in a 3 × 3μm(2) SiN strip waveguide to deal with not only for the fundamental mode but also for the higher-order modes. The designed inverse taper enables the conversion between the six modes (i.e., TE(11), TE(21), TE(31), TE(41), TM(11), TM(12)) in a 1.4 × 0.22μm(2) multimode SOI waveguide and the six modes (like the LP(01), LP(11a), LP(11b) modes in a few-mode fiber) in a 3 × 3μm(2) SiN strip waveguide. The conversion efficiency for any desired mode is higher than 95.6% while any undesired mode excitation ratio is lower than 0.5%. This is helpful to make multimode silicon nanophotonic integrated circuits (e.g., the on-chip mode (de)multiplexers developed well) available to work together with few-mode fibers in the future.
Modeling of Slot Waveguide Sensors Based on Polymeric Materials
Bettotti, Paolo; Pitanti, Alessandro; Rigo, Eveline; De Leonardis, Francesco; Passaro, Vittorio M. N.; Pavesi, Lorenzo
2011-01-01
Slot waveguides are very promising for optical sensing applications because of their peculiar spatial mode profile. In this paper we have carried out a detailed analysis of mode confinement properties in slot waveguides realized in very low refractive index materials. We show that the sensitivity of a slot waveguide is not directly related to the refractive index contrast of high and low materials forming the waveguide. Thus, a careful design of the structures allows the realization of high sensitivity devices even in very low refractive index materials (e.g., polymers) to be achieved. Advantages of low index dielectrics in terms of cost, functionalization and ease of fabrication are discussed while keeping both CMOS compatibility and integrable design schemes. Finally, applications of low index slot waveguides as substitute of bulky fiber capillary sensors or in ring resonator architectures are addressed. Theoretical results of this work are relevant to well established polymer technologies. PMID:22164020
Dong, Ming-Ming; Wang, Cheng-Wei; Wu, Zheng-Xiang; Zhang, Yang; Pan, Huai-Hai; Zhao, Quan-Zhong
2013-07-01
We report on the fabrication of stress-induced optical channel waveguides and waveguide splitters with laser-depressed cladding by femtosecond laser. The laser beam was focused into neodymium doped phosphate glass by an objective producing a destructive filament. By moving the sample along an enclosed routine in the horizontal plane followed by a minor descent less than the filament length in the vertical direction, a cylinder with rarified periphery and densified center region was fabricated. Lining up the segments in partially overlapping sequence enabled waveguiding therein. The refractive-index contrast, near- and far-field mode distribution and confocal microscope fluorescence image of the waveguide were obtained. 1-to-2, 1-to-3 and 1-to-4 splitters were also machined with adjustable splitting ratio. Compared with traditional femtosecond laser writing methods, waveguides prepared by this approach showed controllable mode conduction, strong field confinement, large numerical aperture, low propagation loss and intact core region.
Du, Jing; Wang, Jian
2017-11-27
Here we design and fabricate a hybrid surface plasmon polarities (SPP) waveguide on the silicon-on-insulator (SOI) photonics platform. The designed hybrid SPP waveguide is composed of a metal ridge, an air gap, and a silicon ridge. We simulate the mode characteristics in the structure and design the waveguide with a wide air gap that can simplify the fabrication process and maintain the advantages of the hybrid SPP mode. The performance of ultrahigh-bandwidth data transmission through the proposed waveguide is then investigated using 161 wavelength-division multiplexing (WDM) channels, each carrying a 11.2-Gbit/s orthogonal frequency-division multiplexing (OFDM) 16-ary quadrature amplitude modulation (16-QAM) signal. The bit-error rates (BERs) of all 161 channels are less than 1e-3. The favorable results show the prospect of on-chip optical interconnection using the proposed hybrid SPP waveguide.
Laser printed glass planar lightwave circuits with integrated fiber alignment structures
NASA Astrophysics Data System (ADS)
Desmet, A.; Radosavljevic, A.; Missinne, J.; Van Thourhout, D.; Van Steenberge, G.
2018-02-01
Femtosecond laser inscription allows straightforward manufacturing of glass planar lightwave circuits such as waveguides, interferometers, directional couplers, resonators and more complex structures. Fiber alignment structures are needed to facilitate communication with the glass planar lightwave circuit. In this study, a technique is described to create optical waveguides and alignment structures in the same laser exposure step. Using an industrial ytterbium-doped 1030 nm fiber laser pulses of 400 fs were focused into glass with a 0.4 NA objective causing permanent alteration of the material. Depending on laser parameters this modification allows direct writing of waveguides or the creation of channels after exposing the irradiated volumes to an etchant such as KOH. Writing of channels and waveguides with different laser powers, frequencies, polarisations, stage translation speeds and scan densities were investigated in fused silica and borosilicate glass. Waveguides with controlled dimensions were created, as well as etched U-grooves with a diameter of 126 μm and a sidewall roughness Ra of 255 nm. Cut back measurements were performed giving a waveguide propagation loss of 1.1 dB/cm in borosilicate glass. A coupling loss of 0.7 dB was measured for a transition between the waveguide and standard single mode fiber at 1550 nm, using index matching liquid. The described technique eliminates active alignment requirements and is useful for many applications such as microfluidic sensing, PLCs, fan-out connectors for multicore fibers and quantum optical networks.
Chillara, Vamshi Krishna; Ren, Baiyang; Lissenden, Cliff J
2016-04-01
This article describes the use of the frequency domain finite element (FDFE) technique for guided wave mode selection in inhomogeneous waveguides. Problems with Rayleigh-Lamb and Shear-Horizontal mode excitation in isotropic homogeneous plates are first studied to demonstrate the application of the approach. Then, two specific cases of inhomogeneous waveguides are studied using FDFE. Finally, an example of guided wave mode selection for inspecting disbonds in composites is presented. Identification of sensitive and insensitive modes for defect inspection is demonstrated. As the discretization parameters affect the accuracy of the results obtained from FDFE, effect of spatial discretization and the length of the domain used for the spatial fast Fourier transform are studied. Some recommendations with regard to the choice of the above parameters are provided. Copyright © 2015 Elsevier B.V. All rights reserved.
Vertically-coupled Whispering Gallery Mode Resonator Optical Waveguide, and Methods
NASA Technical Reports Server (NTRS)
Matsko, Andrey B. (Inventor); Savchenkov, Anatolly A. (Inventor); Matleki, Lute (Inventor)
2007-01-01
A vertically-coupled whispering gallery mode (WGM) resonator optical waveguide, a method of reducing a group velocity of light, and a method of making a waveguide are provided. The vertically-coupled WGM waveguide comprises a cylindrical rod portion having a round cross-section and an outer surface. First and second ring-shaped resonators are formed on the outer surface of the cylindrical rod portion and are spaced from each other along a longitudinal direction of the cylindrical rod. The first and second ringshaped resonators are capable of being coupled to each other by way an evanescent field formed in an interior of the cylindrical rod portion.
Novel analytical approach for strongly coupled waveguide arrays
NASA Astrophysics Data System (ADS)
Kohli, Niharika; Srivastava, Sangeeta; Sharma, Enakshi K.
2018-02-01
Coupled Mode theory and Variational methods are the most extensively used analytical methods for the study of coupled optical waveguides. In this paper we have discussed a variation of the Ritz Galerkin Variational method (RGVM) wherein the trial field is a superposition of an orthogonal basis set which in turn is generated from superposition of the individual waveguide modal fields using Gram Schmidt Orthogonalization Procedure (GSOP). The conventional coupled mode theory (CCMT), a modified coupled mode theory (MCMT) incorporating interaction terms that are neglected in CCMT, and an RGVM using orthogonal basis set (RG-GSOP) are compared for waveguide arrays of different materials. The exact effective indices values for these planar waveguide arrays are also studied. The different materials have their index-contrasts ranging between the GaAs/ AlGaAs system to Si/SiO2 system. It has been shown that the error in the effective indices values obtained from MCMT and CCMT is higher than RGVM-GSOP especially in the case of higher index-contrast. Therefore, for accurate calculations of the modal characteristics of planar waveguide arrays, even at higher index-contrasts, RGVM-GSOP is the best choice. Moreover, we obtain obviously orthogonal supermode fields and Hermitian matrix from RGVM-GSOP.
Coupling control based on Adiabatic elimination for densely integrated nano-photonics
NASA Astrophysics Data System (ADS)
Mrejen, Michael; Suchowski, Haim; Hatakeyama, Taiki; Wu, Chihhui; Feng, Liang; O'Brien, Kevin; Wang, Yuan; Zhang, Xiang
2015-03-01
The ever growing need for energy-efficient and fast communications is driving the development of highly integrated photonic circuits where controlling light at the nanoscale becomes the most critical aspect of information transfer. Here we develop a unique scheme of adiabatic elimination (AE) modulation to actively control the coupling among waveguides for densely integrated photonics. Analogous to atomic systems, AE is achieved by applying a decomposition on a three waveguide coupler, where the two outer waveguides serve as an effective two-mode system with an effective coupling of Veff = [(V*13 + V*23V*12/Δβ12) (V13-V23V12/Δβ23) ]1/2,and the middle waveguide is the equivalent to the intermediate level `dark state'. We experimentally demonstrate the first all optical AE modulation and its ability to control the coupling between the two waveguides by manipulating the mode index of the decoupled middle one. In addition, we show that the strong modes interactions allowed at the nano-scale offer a unique configuration of zero-coupling between all the waveguides, a phenomena that paves the way for ultra-high density photonic integrated circuits where small footprint is of crucial importance.
Analysis of a Waveguide-Fed Metasurface Antenna
NASA Astrophysics Data System (ADS)
Smith, David R.; Yurduseven, Okan; Mancera, Laura Pulido; Bowen, Patrick; Kundtz, Nathan B.
2017-11-01
The metasurface concept has emerged as an advantageous reconfigurable antenna architecture for beam forming and wave-front shaping, with applications that include satellite and terrestrial communications, radar, imaging, and wireless power transfer. The metasurface antenna consists of an array of metamaterial elements distributed over an electrically large structure, each subwavelength in dimension and with subwavelength separation between elements. In the antenna configuration we consider, the metasurface is excited by the fields from an attached waveguide. Each metamaterial element can be modeled as a polarizable dipole that couples the waveguide mode to radiation modes. Distinct from the phased array and electronically-scanned-antenna architectures, a dynamic metasurface antenna does not require active phase shifters and amplifiers but rather achieves reconfigurability by shifting the resonance frequency of each individual metamaterial element. We derive the basic properties of a one-dimensional waveguide-fed metasurface antenna in the approximation in which the metamaterial elements do not perturb the waveguide mode and are noninteracting. We derive analytical approximations for the array factors of the one-dimensional antenna, including the effective polarizabilities needed for amplitude-only, phase-only, and binary constraints. Using full-wave numerical simulations, we confirm the analysis, modeling waveguides with slots or complementary metamaterial elements patterned into one of the surfaces.
NASA Astrophysics Data System (ADS)
Helal, Alaa N. Abu; Taya, Sofyan A.; Elwasife, Khitam Y.
2018-06-01
The dispersion equation of an asymmetric three-layer slab waveguide, in which all layers are chiral materials is presented. Then, the dispersion equation of a symmetric slab waveguide, in which the claddings are chiral materials and the core layer is negative index material, is derived. Normalized cut-off frequencies, field profile, and energies flow of right-handed and left-handed circularly polarized modes are derived and plotted. We consider both odd and even guided modes. Numerical results of guided low-order modes are provided. Some novel features, such as abnormal dispersion curves, are found.
Dispersion characteristics of plasmonic waveguides for THz waves
NASA Astrophysics Data System (ADS)
Markides, Christos; Viphavakit, Charusluk; Themistos, Christos; Komodromos, Michael; Kalli, Kyriacos; Quadir, Anita; Rahman, Azizur
2013-05-01
Today there is an increasing surge in Surface Plasmon based research and recent studies have shown that a wide range of plasmon-based optical elements and techniques have led to the development of a variety of active switches, passive waveguides, biosensors, lithography masks, to name just a few. The Terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, the metal-clad waveguides supporting surface plasmon modes waves and specifically hollow core structures, coated with insulating material are showing the greatest promise as low-loss waveguides for their use in active components and as well as passive waveguides. The H-field finite element method (FEM) based full-vector formulation is used to study the vectorial modal field properties and the complex propagation characteristics of Surface Plasmon modes of a hollow-core dielectric coated rectangular waveguide structure. Additionally, the finite difference time domain (FDTD) method is used to estimate the dispersion parameters and the propagation loss of the rectangular waveguide.
Waveguide Transition for Submillimeter-Wave MMICs
NASA Technical Reports Server (NTRS)
Leong, Kevin M.; Deal, William R.; Radisic, Vesna; Mei, Xiaobing; Uyeda, Jansen; Lai, Richard; Fung, King Man; Gaier, Todd C.
2009-01-01
An integrated waveguide-to-MMIC (monolithic microwave integrated circuit) chip operating in the 300-GHz range is designed to operate well on high-permittivity semiconductor substrates typical for an MMIC amplifier, and allows a wider MMIC substrate to be used, enabling integration with larger MMICs (power amplifiers). The waveguide-to- CBCPW (conductor-backed coplanar waveguide) transition topology is based on an integrated dipole placed in the E-plane of the waveguide module. It demonstrates low loss and good impedance matching. Measurement and simulation demonstrate that the loss of the transition and waveguide loss is less than 1-dB over a 340-to-380-GHz bandwidth. A transition is inserted along the propagation direction of the waveguide. This transition uses a planar dipole aligned with the maximum E-field of the TE10 waveguide mode as an inter face between the waveguide and the MMIC. Mode conversion between the coplanar striplines (CPS) that feed the dipole and the CBCPW transmission line is accomplished using a simple air-bridge structure. The bottom side ground plane is truncated at the same reference as the top-side ground plane, leaving the end of the MMIC suspended in air.
Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka
2014-06-10
We design a GaP/Si composite waveguide to achieve efficient terahertz (THz) wave generation under collinear phase-matched difference frequency mixing (DFM) between near-infrared light sources. This waveguide structure provides a strong mode confinement of both near-infrared sources and THz wave, resulting in an efficient mode overlapping. The numerical results show that the waveguide can produce guided THz wave (5.93 THz) with a power conversion efficiency of 6.6×10(-4) W(-1). This value is larger than previously obtained with the bulk GaP crystal: 0.5×10(-9) W(-1) [J. Lightwave Technol.27, 3057 (2009)]. Our proposed composite waveguide can be achieved by bridging the telecom wavelength and THz frequency region.
Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs.
Gerace, Dario; Andreani, Lucio Claudio
2004-05-01
A theoretical study of photonic bands for one-dimensional (1D) lattices embedded in planar waveguides with strong refractive index contrast is presented. The approach relies on expanding the electromagnetic field on the basis of guided modes of an effective waveguide, and on treating the coupling to radiative modes by perturbation theory. Photonic mode dispersion, gap maps, and intrinsic diffraction losses of quasi guided modes are calculated for the case of self-standing membranes as well as for silicon-on-insulator structures. Photonic band gaps in a waveguide are found to depend strongly on the core thickness and on polarization, so that the gaps for transverse electric and transverse magnetic modes most often do not overlap. Radiative losses of quasiguided modes above the light line depend in a nontrivial way on structure parameters, mode index, and wave vector. The results of this study may be useful for the design of integrated 1D photonic structures with low radiative losses.
Coupling Between CPW and Slotline Modes in Finite Ground CPW with Unequal Ground Plane Widths
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Papapolymerou, John; Williams, W. D. (Technical Monitor); Tentzeris, Emmanouil M.
2002-01-01
The coupling between the desired CPW mode and the unwanted, slotline, mode is presented for finite ground coplanar waveguides with unequal ground plane widths. Measurements, quasi-static conformal mapping, and Method of Moment analysis are performed to determine the dependence of the slotline mode excitation on the physical dimensions of the FGC line and on the frequency range of operation. Introduction: Finite ground coplanar waveguide (FGC) is often used in low cost Monolithic Microwave Integrated Circuits (MMICs) because of its many advantages over microstrip and conventional CoPlanar Waveguide (CPW). It is uniplanar, which facilitates easy connection of series and shunt elements without via holes, supports a low loss, quasi-TEM mode over a wide frequency band, and since the ground planes are electrically and physically narrow, typically less than lambda/5 wide where lambda is the guided wavelength, they reduce the circuit size and the influence of higher order modes. However, they still support the parasitic slotline mode that plagues all CPW transmission lines.
1990-01-01
1988. 12 K. T. Shu and J. H. Ginsberg, "Ray Solution for Finite Amplitude Two- Dimensional Waves in a Hard -Walled Rectangular Waveguide", 115th...the effect of nonlinearity on a hard -walled rectangular waveguide. The excitation would induce only the fundamental nonplanar symmetric mode if the...interacting waves. In linear the surface of the plate vanishes. Such lines are perpendicu- theory, a mode in a hard -walled waveguide may be con- lar to the
NASA Astrophysics Data System (ADS)
Epishin, V. A.; Maslov, Vyacheslav A.; Ryabykh, V. N.; Svich, V. A.; Topkov, A. N.
1990-04-01
Theoretical and experimental investigations are reported of the propagation of axisymmetric linearly polarized laser radiation beams along hollow-core dielectric waveguides. The conditions for transmission with minimum distortion of the complex amplitude and minimum excitation losses are established for beams in the form of Gaussian-Laguerre modes. A scaling relationship is obtained for the attenuation constant of the EH11 mode in glass waveguides acting as transmission lines and for laser cells handling submillimeter wavelengths.
New waveguide-type HOM damper for ALS storage ring cavities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwiatkowski, Slawomir; Baptiste, Kenneth; Julian, James
2004-06-28
The ALS storage ring 500 MHz RF system uses two re-entrant accelerating cavities powered by a single 320kW PHILLIPS YK1305 klystron. During several years of initial operation, the RF cavities were not equipped with effective passive HOM damper systems. Longitudinal beam stability was achieved through cavity temperature control and the longitudinal feedback system (LFB), which was often operating at the edge of its capabilities. As a result, longitudinal beam stability was a significant operations issue at the ALS. During two consecutive shutdown periods (April 2002 and 2003) we installed E-type HOM dampers on the main and third harmonic cavities. Thesemore » devices dramatically decreased the Q-values of the longitudinal anti-symmetric HOM modes. The next step is to damp the rest of the longitudinal HOM modes in the main cavities below the synchrotron radiation damping level. This will hopefully eliminate the need for the LFB and set the stage for a possible increase in beam current. The ''waveguide'' type of HOM damper was the only option that didn't significantly compromise the vacuum performance of the RF cavity. The design process and the results of the low level measurements of the new waveguide dampers are presented in this paper.« less
Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W.
2011-01-01
The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg–Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers. PMID:21731106
Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W
2011-01-01
The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.
Successful Application of Low Loss, Over-Moded WR-187 Waveguide to the ASDE-3 Radar
DOT National Transportation Integrated Search
1982-04-01
Overmoded WR-187 waveguide has been incorporated into the short-range ASDE-3 system to provide a low-loss interconnection between the antenna and the transmitter/receiver. WR-62 to WR-187 transitions and WR-187 mode suppressors were developed specifi...
Yurduseven, Okan; Marks, Daniel L; Fromenteze, Thomas; Smith, David R
2018-03-05
We present a reconfigurable, dynamic beam steering holographic metasurface aperture to synthesize a microwave camera at K-band frequencies. The aperture consists of a 1D printed microstrip transmission line with the front surface patterned into an array of slot-shaped subwavelength metamaterial elements (or meta-elements) dynamically tuned between "ON" and "OFF" states using PIN diodes. The proposed aperture synthesizes a desired radiation pattern by converting the waveguide-mode to a free space radiation by means of a binary modulation scheme. This is achieved in a holographic manner; by interacting the waveguide-mode (reference-wave) with the metasurface layer (hologram layer). It is shown by means of full-wave simulations that using the developed metasurface aperture, the radiated wavefronts can be engineered in an all-electronic manner without the need for complex phase-shifting circuits or mechanical scanning apparatus. Using the dynamic beam steering capability of the developed antenna, we synthesize a Mills-Cross composite aperture, forming a single-frequency all-electronic microwave camera.
A broadband gyrotron backward-wave oscillator with tapered interaction structure and magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, G. D.; Chang, P. C.; Chiang, W. Y.
2015-11-15
The gyro-monotron and gyrotron backward-wave oscillator (gyro-BWO) are the two oscillator versions of gyrotrons. While serving different functions, they are also radically different in the RF field formation mechanisms. The gyro-monotron RF field profile is essentially fixed by the resonant interaction structure, while the gyro-BWO possesses an extra degree of freedom in that the axial RF field profile is self-determined by the beam-wave interaction in a waveguide structure. The present study examines ways to utilize the latter feature for bandwidth broadening with a tapered magnetic field, while also employing a tapered waveguide to enhance the interaction efficiency. We begin withmore » a mode competition analysis, which suggests the theoretical feasibility of broadband frequency tuning in single-mode operation. It is then shown in theory that, by controlling the RF field profile with an up- or down-tapered magnetic field, the gyro-BWO is capable of efficient operation with a much improved tunable bandwidth.« less
PLC-based LP₁₁ mode rotator for mode-division multiplexing transmission.
Saitoh, Kunimasa; Uematsu, Takui; Hanzawa, Nobutomo; Ishizaka, Yuhei; Masumoto, Kohei; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Yamamoto, Fumihiko
2014-08-11
A PLC-based LP11 mode rotator is proposed. The proposed mode rotator is composed of a waveguide with a trench that provides asymmetry of the waveguide. Numerical simulations show that converting LP11a (LP11b) mode to LP11b (LP11a) mode can be achieved with high conversion efficiency (more than 90%) and little polarization dependence over a wide wavelength range from 1450 nm to 1650 nm. In addition, we fabricate the proposed LP11 mode rotator using silica-based PLC. It is confirmed that the fabricated mode rotator can convert LP11a mode to LP11b mode over a wide wavelength range.
Optical analogue of relativistic Dirac solitons in binary waveguide arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, Truong X., E-mail: truong.tran@mpl.mpg.de; Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen; Longhi, Stefano
2014-01-15
We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An opticalmore » analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.« less
Two-Dimensional Planar Lightwave Circuit Integrated Spatial Filter Array and Method of Use Thereof
NASA Technical Reports Server (NTRS)
Dimov, Fedor (Inventor); Ai, Jun (Inventor)
2015-01-01
A large coherent two-dimensional (2D) spatial filter array (SFA), 30 by 30 or larger, is produced by coupling a 2D planar lightwave circuit (PLC) array with a pair of lenslet arrays at the input and output side. The 2D PLC array is produced by stacking a plurality of chips, each chip with a plural number of straight PLC waveguides. A pupil array is coated onto the focal plane of the lenslet array. The PLC waveguides are produced by deposition of a plural number of silica layers on the silicon wafer, followed by photolithography and reactive ion etching (RIE) processes. A plural number of mode filters are included in the silica-on-silicon waveguide such that the PLC waveguide is transparent to the fundamental mode but higher order modes are attenuated by 40 dB or more.
High-Power Microwave Transmission and Mode Conversion Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernon, Ronald J.
2015-08-14
This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design formore » high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.« less
Unified approach for calculating the number of confined modes in multilayered waveguiding structures
NASA Astrophysics Data System (ADS)
Ruschin, S.; Griffel, G.; Hardy, A.; Croitoru, N.
1986-01-01
A general formalism is developed in order to find the number of modes and mode cutoff conditions in multilayer waveguiding structures. An explicit expression is presented for the number of confined modes that allows the modes to be counted without having to analyze the specific eigenvalue equation of the structure. The method is illustrated by its application to several structures: the buried layer, the directional coupler, and the three-guide symmetrical arrangement. By a suitable extension of the formalism, the number of well-confined modes is found for a four-layer structure.
Overmoded subterahertz surface wave oscillator with pure TM{sub 01} mode output
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Guangqiang; Zeng, Peng; Wang, Dongyang
2016-02-15
Overmoded O-type Cerenkov generators using annular electron beams are facing the problem of multi-modes output due to the inevitable structural discontinuities. A simple but effective method to achieve the pure TM{sub 01} mode output is applied on the 0.14 THz overmoded surface wave oscillator (SWO) in this paper. In spite of still using an overmoded slow wave structure to ensure the easy fabrication, the followed smooth circular waveguide is shrinkingly tapered to the output waveguide with appropriate radius that it cuts off other higher modes except TM{sub 01} mode. Moreover, the modified device here has the same power capacity as themore » previous one according to the numerical analysis. By optimized lengths of the transition waveguide and tapered waveguide, particle-in-cell simulation results indicate that the subterahertz wave with output power increased 14.2% at the same frequency is obtained from the proposed SWO under the previous input conditions, and importantly, the output power is all carried by TM{sub 01} mode as expected. Further simulation results in the pulse regime confirm the feasibility of the optimized structure in the actual experiments. This simple and viable design is also applicable to overmoded devices in the lower frequency band of subterahertz wave.« less
Lasing in a nematic liquid crystal cell with an interdigitated electrode system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shtykov, N M; Palto, S P; Umanskii, B A
2015-04-30
Waveguide lasing in a layer of a dye-doped nematic liquid crystal has been observed. The liquid-crystal layer was sandwiched between a quartz substrate and a glass cover plate on whose surface was deposited an interdigitated electrode system. This system had a period of 3.75 μm and played a dual role, namely, it created a spatial periodicity of the waveguide medium refractive index (thus creating distributed feedback) and served as a diffraction grating coupling out a part of waveguide radiation into the glass cover plate. The distributed feedback ensured lasing in the 18th diffraction order for the TE modes and inmore » the 19th order for the TM modes of the waveguide. The generated radiation was observed at the exit from the glass plate end face at the angles to the waveguide plane of 33.1 ± 1.5° for TM modes and 21.8 ± 1.8° for TE modes. The intensity and position of the TE emission line showed no regular dependence on the voltage on the electrodes. In the case of TM radiation, an increase in the voltage led to a short-wavelength shift of the laser line and to a decrease in its intensity. (lasers)« less
Radiation from laser-microplasma-waveguide interactions in the ultra-intense regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Longqing, E-mail: yi@uni-duesseldorf.de; State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800; Pukhov, Alexander
When a high-contrast ultra-relativistic (>10{sup 20} W/cm{sup 2}) laser beam enters a micro-sized plasma waveguide, the pulse energy is coupled into waveguide modes, which significantly modifies the interaction between the electrons and electromagnetic wave. Electrons pulled out from the walls of the waveguide form a dense helical bunch inside the channel and are efficiently accelerated by the transverse magnetic modes to hundreds of MeV. The asymmetry in the transverse electric and magnetic fields drives strong oscillations, which lead to the emission of bright, well-collimated, hard X-rays. In this paper, we present our study on the underlying physics in the aforementioned processmore » using 3D particle-in-cell simulations. The mechanism of electron acceleration and the dependence of radiation properties on different laser plasma parameters are addressed. An analytic model and basic scalings for X-ray emission are also presented by considering the lowest optical modes in the waveguide, which is adequate to describe the basic phenomenon. In addition, the effects of high-order modes as well as laser polarization are also qualitatively discussed. The considered X-ray source has promising features, potentially making it a competitive candidate for a future tabletop synchrotron source.« less
Generation of optical vortices in an integrated optical circuit
NASA Astrophysics Data System (ADS)
Tudor, Rebeca; Kusko, Mihai; Kusko, Cristian
2017-09-01
In this work, the generation of optical vortices in an optical integrated circuit is numerically demonstrated. The optical vortices with topological charge m = ±1 are obtained by the coherent superposition of the first order modes present in a waveguide with a rectangular cross section, where the phase delay between these two propagating modes is Δφ = ±π/2. The optical integrated circuit consists of an input waveguide continued with a y-splitter. The left and the right arms of the splitter form two coupling regions K1 and K2 with a multimode output waveguide. In each coupling region, the fundamental modes present in the arms of the splitter are selectively coupled into the output waveguide horizontal and vertical first order modes, respectively. We showed by employing the beam propagation method simulations that the fine tuning of the geometrical parameters of the optical circuit makes possible the generation of optical vortices in both transverse electric (TE) and transverse magnetic (TM) modes. Also, we demonstrated that by placing a thermo-optical element on one of the y-splitter arms, it is possible to switch the topological charge of the generated vortex from m = 1 to m = -1.
Superfocusing terahertz waves below lambda/250 using plasmonic parallel-plate waveguides.
Zhan, Hui; Mendis, Rajind; Mittleman, Daniel M
2010-04-26
We experimentally demonstrate complete two-dimensional (2-D) confinement of terahertz (THz) energy in finite-width parallel-plate waveguides, defying conventional wisdom in the century-old field of microwave waveguide technology. We find that the degree of energy confinement increases exponentially with decreasing plate separation. We propose that this 2-D confinement is mediated by the mutual coupling of plasmonic edge modes, analogous to that observed in slot waveguides at optical wavelengths. By adiabatically tapering the width and the separation, we focus THz waves down to a size of 10 microm (approximately lambda/260) by 18 microm ( approximately lambda/145), which corresponds to a mode area of only 2.6 x 10(-5) lambda(2).
Heterogeneous integration of thin film compound semiconductor lasers and SU8 waveguides on SiO2/Si
NASA Astrophysics Data System (ADS)
Palit, Sabarni; Kirch, Jeremy; Mawst, Luke; Kuech, Thomas; Jokerst, Nan Marie
2010-02-01
We present the heterogeneous integration of a 3.8 μm thick InGaAs/GaAs edge emitting laser that was metal-metal bonded to SiO2/Si and end-fire coupled into a 2.8 μm thick tapered SU8 polymer waveguide integrated on the same substrate. The system was driven in pulsed mode and the waveguide output was captured on an IR imaging array to characterize the mode. The waveguide output was also coupled into a multimode fiber, and into an optical head and spectrum analyzer, indicating lasing at ~997 nm and a threshold current density of 250 A/cm2.
A microwave FEL (free electron laser) code using waveguide modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byers, J.A.; Cohen, R.H.
1987-08-01
A free electron laser code, GFEL, is being developed for application to the LLNL tokamak current drive experiment, MTX. This single frequency code solves for the slowly varying complex field amplitude using the usual wiggler-averaged equations of existing codes, in particular FRED, except that it describes the fields by a 2D expansion in the rectangular waveguide modes, using coupling coefficients similar to those developed by Wurtele, which include effects of spatial variations in the fields seen by the wiggler motion of the particles. Our coefficients differ from those of Wurtele in two respects. First, we have found a missing ..sqrt..2..gamma../a/submore » w/ factor in his C/sub z/; when corrected this increases the effect of the E/sub z/ field component and this in turn reduces the amplitude of the TM mode. Second, we have consistently retained all terms of second order in the wiggle amplitude. Both corrections are necessary for accurate computation. GFEL has the capability of following the TE/sub 0n/ and TE(M)/sub m1/ modes simultaneously. GFEL produces results nearly identical to those from FRED if the coupling coefficients are adjusted to equal those implied by the algorithm in FRED. Normally, the two codes produce results that are similar but different in detail due to the different treatment of modes higher than TE/sub 01/. 5 refs., 2 figs., 1 tab.« less
Atto-Joule, high-speed, low-loss plasmonic modulator based on adiabatic coupled waveguides
NASA Astrophysics Data System (ADS)
Dalir, Hamed; Mokhtari-Koushyar, Farzad; Zand, Iman; Heidari, Elham; Xu, Xiaochuan; Pan, Zeyu; Sun, Shuai; Amin, Rubab; Sorger, Volker J.; Chen, Ray T.
2018-05-01
In atomic multi-level systems, adiabatic elimination (AE) is a method used to minimize complicity of the system by eliminating irrelevant and strongly coupled levels by detuning them from one another. Such a three-level system, for instance, can be mapped onto physically in the form of a three-waveguide system. Actively detuning the coupling strength between the respective waveguide modes allows modulating light to propagate through the device, as proposed here. The outer waveguides act as an effective two-photonic-mode system similar to ground and excited states of a three-level atomic system, while the center waveguide is partially plasmonic. In AE regime, the amplitude of the middle waveguide oscillates much faster when compared to the outer waveguides leading to a vanishing field build up. As a result, the plasmonic intermediate waveguide becomes a "dark state," hence nearly zero decibel insertion loss is expected with modulation depth (extinction ratio) exceeding 25 dB. Here, the modulation mechanism relies on switching this waveguide system from a critical coupling regime to AE condition via electrostatically tuning the free-carrier concentration and hence the optical index of a thin indium thin oxide (ITO) layer resides in the plasmonic center waveguide. This alters the effective coupling length and the phase mismatching condition thus modulating in each of its outer waveguides. Our results also promise a power consumption as low as 49.74aJ/bit. Besides, we expected a modulation speed of 160 GHz reaching to millimeter wave range applications. Such anticipated performance is a direct result of both the unity-strong tunability of the plasmonic optical mode in conjunction with utilizing ultra-sensitive modal coupling between the critically coupled and the AE regimes. When taken together, this new class of modulators paves the way for next generation both for energy and speed conscience optical short-reach communication such as those found in interconnects.
Single Nanowire Probe for Single Cell Endoscopy and Sensing
NASA Astrophysics Data System (ADS)
Yan, Ruoxue
The ability to manipulate light in subwavelength photonic and plasmonic structures has shown great potentials in revolutionizing how information is generated, transformed and processed. Chemically synthesized nanowires, in particular, offers a unique toolbox not only for highly compact and integrated photonic modules and devices, including coherent and incoherent light sources, waveguides, photodetectors and photovoltaics, but also for new types of nanoscopic bio-probes for spot cargo delivery and in-situ single cell endoscopy and sensing. Such nanowire probes would enable us to carry out intracellular imaging and probing with high spatial resolution, monitor in-vivo biological processes within single living cells and greatly improve our fundamental understanding of cell functions, intracellular physiological processes, and cellular signal pathways. My work is aimed at developing a material and instrumental platform for such single nanowire probe. Successful optical integration of Ag nanowire plasmonic waveguides, which offers deep subwavelength mode confinement, and conventional photonic waveguides was demonstrated on a single nanowire level. The highest plasmonic-photonic coupling efficiency coupling was found at small coupling angles and low input frequencies. The frequency dependent propagation loss was observed in Ag nanowire and was confirmed by quantitative measurement and in agreement with theoretical expectations. Rational integration of dielectric and Ag nanowire waveguide components into hybrid optical-plasmonic routing devices has been demonstrated. This capability is essential for incorporating sub-100nm Ag nanowire waveguides into optical fiber based nanoprobes for single cell endoscopy. The nanoprobe system based on single nanowire waveguides was demonstrated by optically coupling semiconductor or metal nanowire with an optical fiber with tapered tip. This nanoprobe design requires minimal instrumentation which makes it cost efficient and readily adaptable to average bio-lab environment. These probes are mechanically robust and flexible and can withstand repeated bending and deformation without significant deterioration in optical performance, which offers an ideal instrumental platform for out subsequent effort of using these nanoprobes in chemical sensing as well as single cell endoscopy and spot delivery. Parameters affecting the coupling efficiency and output power of the nanoprobe were studied and chemical etched of single mode fiber with small cone angle was established to be optimized for highly effective optical nanoprobes. The versatility of the nanoprobe design was first tested by transforming the nanowire probe into a pH sensor with near-field photopolymerization of a copolymer containing pH sensitive dye on the tip of the nanowire. The pH-sensitive nanoprobe was able to report the pH difference in micro-droplets containing buffer solution with the excitation of light waveguided on the nanoprobe with internal calibration, fast response time and good photostability and reversibility. Such nanoprobe sensors are ideal for high definition spatial and temporal sensing of concentration profile, especially for the kinetic processes in single cell studies for which chemical probes of minute sizes and fast response are desired. The nanoprobe was then applied into spot cargo delivery and in-situ single cell endoscopy. It was demonstrated that nanowire-based optical probe can deliver payloads into the cell with a high spatiotemporal precision, guide and confine visible light into intracellular compartments selectively and detect optical signals from the subcellular regions with high spatial resolution. The nanoprobe was proven to be biocompatible and non-invasive. The effective optical coupling between the fiber optics and the nanowire enables highly localized excitation and detection, limiting the probe volume to the close proximity of the nanowire. None the less, this versatile technique does not rely on any expensive or bulky instrumentation, and relies only on micromanipulator and optical microscope that are readily available in most biological labs. The different functions can be further integrated to make the whole nanoprobe system more compact and even portable. In addition, my research also includes the first demonstration of the synthesis of the longitudinal heterostructured SiO2/Al2O 3 nanotubes and the nanofluidic diode device based on the discontinuity of their internal surface charge. Comprehensive characterization shows that the nanotubes has heterostructured inner tube walls, as well as a discontinuity of surface charge. The ionic transport through these nanotube heterojunctions exhibits clear current rectification, a signature of ionic diode behavior. The development of such nanofluidic devices would enable the modulation of ionic and molecular transport at a more sophisticated level, and lead to large-scale integrated nanofluidic networks and logic circuits.
Growth and optical waveguide fabrication in spinel MgGa2O4 crystal
NASA Astrophysics Data System (ADS)
Wang, Liang-Ling; Cui, Xiao-Jun; Rensberg, Jura; Wu, Kui; Wesch, Werner; Wendler, Elke
2017-10-01
We report on optical waveguide fabrication in a spinel MgGa2O4 crystal by 6.0 MeV carbon ion implantation at a fluence of 2 × 1015 ions/cm2 for the first time to our knowledge. The MgGa2O4 crystal was grown by the floating zone method. The refractive index profile reconstructed by reflectivity calculation method showed that the MgGa2O4 waveguide is a typical barrier waveguide. The typical barrier-shaped refractive index profile is attributed mainly to the nuclear energy deposition of the incident carbon ions into the MgGa2O4 crystal. By performing end-coupling measurements and using the beam propagation method (BPM) for the analysis of the observed modes, it can be concluded that the modes can be confined inside the waveguide.
Optical waveguides in magneto-optical glasses fabricated by proton implantation
NASA Astrophysics Data System (ADS)
Liu, Chun-Xiao; Li, Yu-Wen; Zheng, Rui-Lin; Fu, Li-Li; Zhang, Liao-Lin; Guo, Hai-Tao; Zhou, Zhi-Guang; Li, Wei-Nan; Lin, She-Bao; Wei, Wei
2016-11-01
Planar waveguides in magneto-optical glasses (Tb3+-doped aluminum borosilicate glasses) have been produced by a 550-keV proton implantation at a dose of 4.0×1016 ions/cm2 for the first time to our knowledge. After annealing at 260 °C for 1.0 h, the dark-mode spectra and near-field intensity distributions are measured by the prism-coupling and end-face coupling methods. The damage profile, refractive index distribution and light propagation mode of the planar waveguide are numerically calculated by SRIM 2010, RCM and FD-BPM, respectively. The effects of implantation on the structural and optical properties are investigated by Raman and absorption spectra. It suggests that the proton-implanted Tb3+-doped aluminum borosilicate glass waveguide is a good candidate for a waveguide isolator in optical fiber communication and all-optical communication.